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Abstract. We consider the class P of 3-dimensional simple polytopes P

which are flag and do not have 4-belts of facets. It includes fullerenes, i. e.

simple 3-polytopes with only 5-gonal and 6-gonal facets. According to a the-
orem of Pogorelov, any polytope from P admits a right-angled realisation in

Lobachevsky 3-space, and such a realisation is unique up to isometry.

We study two families of smooth manifolds associated with polytopes from
the class P. The first family consists of 6-dimensional quasitoric manifolds over

polytopes from P. The second family consists of 3-dimensional small covers

of polytopes from P or, equivalently, hyperbolic 3-manifolds of Löbell type.
Our main result is that both families are cohomologically rigid, i. e. two man-

ifolds M and M ′ from either of the families are diffeomorphic if and only if

their cohomology rings are isomorphic. We also prove that if M and M ′ are
diffeomorphic, then their corresponding polytopes P and P ′ are combinato-

rially equivalent. These results are intertwined with the classical subjects of
geometry and topology, such as combinatorics of 3-polytopes, the Four Colour

Theorem, diffeomorphism classification of 6-manifolds and invariance of Pon-

tryagin classes. The proofs use techniques of toric topology.
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1. Introduction

There is the following naive question from the early days of differential topol-
ogy: given two closed smooth manifolds M and M ′, when does an isomorphism
H∗(M) ∼= H∗(M ′) of integral cohomology rings imply that M and M ′ are diffeo-
morphic? This is generally regarded as an unlikely case, as in the 20th century topol-
ogists discovered many important series of manifolds for which the cohomology ring,
or even the homotopy type, does not determine the diffeomorphism class. Three-
dimensional lens spaces, Milnor’s exotic spheres and Donaldson’s four-dimensional
manifolds are prominent examples of different level of complexity.

We say that a family of closed smooth manifolds is cohomologically rigid if a
cohomology ring isomorphism H∗(M) ∼= H∗(M ′) implies a diffeomorphism M ∼=
M ′ for any two manifolds in the family.

In this paper we establish cohomological rigidity for two particular families of
manifolds of dimension 3 and 6, respectively. Each of these families arises from
a particularly important class of combinatorial polytopes, which we refer to as
the Pogorelov class P. It consists of simple 3-dimensional polytopes which are
flag and do not have 4-belts. In particular, polytopes in P do not have triangu-
lar and quadrangular facets. The class P includes combinatorial fullerenes, i. e.
simple 3-polytopes with only pentagonal and hexagonal facets. By the results of
Pogorelov [40] and Andreev [1], the class P consists precisely of combinatorial 3-
polytopes which can be realised in Lobachevsky space L3 with right angles between
adjacent facets (right-angled 3-polytopes for short). The conditions specifying the
Pogorelov class also feature as the “no 4-condition” and “no �-condition” in Gro-
mov’s theory of hyperbolic groups [29].

Our first family consists of hyperbolic 3-manifolds of Löbell type. These manifolds
were introduced and studied by Vesnin [43]. They arise from right-angled realisa-
tions of polytopes from the Pogorelov class P (see the details in Subsection 2.4).
Each hyperbolic 3-manifold N of Löbell type is composed of 8 copies of a polytope
P ∈ P and is a small cover of P in the sense of Davis and Januszkiewicz [22]. We
prove (in Theorem 5.4) that two such manifolds N and N ′ are diffeomorphic if and
only if their Z2-cohomology rings are isomorphic.

Our second family arises from toric topology: it consists of quasitoric (or topo-
logical toric) manifolds whose quotient polytopes are in the class P. These are
6-dimensional smooth manifolds acted on by a 3-torus T 3 with quotient P ∈ P. We
show (in Theorem 5.2 and Corollary 5.3) that this family is cohomologically rigid,
i. e. two manifolds M and M ′ in the family are diffeomorphic if and only if their
cohomology rings are isomorphic. In general a diffeomorphism between quasitoric
manifolds M and M ′ does not imply that the corresponding polytopes P and P ′

are combinatorially equivalent, but this is the case when the quotient polytopes are
in the class P (see Theorem 5.2).

Our proofs use both combinatorial and cohomological techniques of toric topol-
ogy, and build upon recent important results of Fan, Ma and Wang on cohomological
rigidity of moment-angle manifolds [27], [28]. These authors come to the class P
independently, by considering the property of B-rigidity for simple polytopes (see
Section 3). The class P also featured in the work of Buchstaber and Erokhovets [8]
on combinatorial classification of fullerenes.

We note that cohomological rigidity is open for the whole family of toric or topo-
logical toric manifolds. In fact, we find it quite surprising that no counterexamples
to the “toric cohomological rigidity problem” were found up to date.

In real dimension 6 the families of quasitoric and topological toric manifolds
coincide and contain strictly the family of toric manifolds (smooth complete toric
varieties). The family of quasitoric (or topological toric) manifolds whose quotient
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polytopes are in the class P is large enough, as there is at least one quasitoric
manifold over any simple 3-polytope. Indeed, the Four Colour Theorem implies
that any simple 3-polytope admits a “characteristic function” (see Proposition 2.8);
this remarkable observation was made by Davis and Januszkiewicz in [22]. Toric
manifolds whose associated polytopes are in P are fewer, but still abundant; many
concrete examples were produced recently by Suyama [42]. On the other hand, there
are no projective toric manifolds whose associated polytopes are in P. This follows
from a result of C. Delaunay [23] that a Delzant 3-polytope must have at least one
triangular or quadrangular face.

Our results on cohomological rigidity of toric manifolds chime with the problem
of diffeomorphism classification for simply connected oriented manifolds, which is
a classical subject of algebraic and differential topology. The foundations of this
classification in dimensions > 5 were laid in the works of Browder and Novikov
(see [5], [39]). Novikov [38] showed that for a given simply connected oriented man-
ifold M of dimension > 5 there are only finitely many manifolds M ′ for which there

exists a homotopy equivalence M
'−→ M ′ preserving the Pontryagin classes. Im-

portant classification results in dimension 6 were obtained in the works of Wall [44],
Jupp [32] and Zhubr [45].

Toric, quasitoric or topological toric manifolds M are simply connected, and
their cohomology rings H∗(M) are generated by 2-dimensional classes. According
to the general results mentioned above, two such manifolds in dimension 6 are dif-
feomorphic if there is an isomorphism of their cohomology rings preserving the first
Pontryagin class p1. Therefore, the toric cohomological rigidity problem in dimen-
sion 6 reduces to establishing the invariance of p1 under cohomology isomorphisms.
This turns out to be a purely combinatorial and linear algebra problem, see details
in Section 6. However, we were not able to prove directly the invariance of p1 un-
der cohomology isomorphisms for toric manifolds over simple 3-polytopes from the
class P. One of our main results (Theorem 5.2) can be interpreted as a classification
result for a particular family of simply connected 6-dimensional manifolds, and its
proof is independent of the general classification results of Wall, Jupp and Zhubr.
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2. Preliminaries

Here we collect the necessary information about toric varieties, quasitoric man-
ifolds and moment-angle manifolds; the details can be found in [11].

2.1. Simple polytopes. Let Rn be an n-dimensional Euclidean space with the
scalar product 〈 , 〉. A convex polytope P is a nonempty bounded intersection of
finitely many half-spaces in some Rn:

(2.1) P =
{
x ∈ Rn : 〈a i,x 〉+ bi > 0 for i = 1, . . . ,m

}
,

where a i ∈ Rn and bi ∈ R. We often fix a presentation by inequalities (2.1) alongside
with the polytope P . We assume that P is n-dimensional, that is, the dimension
of the affine hull of P is n. We also assume that each inequality 〈a i,x 〉 + bi > 0
in (2.1) is not redundant, that is, cannot be removed without changing P . Then P
has m facets F1, . . . , Fm, where

Fi = {x ∈ P : 〈a i,x 〉+ bi = 0}.
Each facet is a polytope of dimension n− 1. A face of P is a nonempty intersection
of facets. Zero-dimensional faces are vertices, and one-dimensional faces are edges.

We refer to n-dimensional polytopes simply as n-polytopes.
Two polytopes P and Q are combinatorially equivalent (P ' Q) if there is

a bijection between their faces preserving the inclusion relation. A combinatorial
polytope is a class of combinatorially equivalent polytopes.

A polytope P is simple if exactly n facets meet at each vertex of P . A simple
polytope P is called a flag polytope if every collection of its pairwise intersecting
facets has a nonempty intersection. An n-simplex ∆n is not flag for n > 2. An
n-cube In is flag for any n.

We denote by GP the vertex-edge graph of a polytope P , and refer to it simply
as the graph of P . A graph is simple if it has no loops and multiple edges. A
connected graph G is 3-connected if it has at least 6 edges and deletion of any one
or two vertices with all incident edges leaves G connected. The following classical
result describes the graphs of 3-polytopes.

Theorem 2.1 (Steinitz, see [46, Theorem 4.1]). A graph G is the graph of a 3-
polytope if and only it is simple, planar and 3-connected.

For k > 4, a k-belt in a simple polytope P is a cyclic sequence Bk = (Fi1 , . . . , Fik)
of facets in which only two consecutive facets (including Fik , Fi1) have nonempty
intersection. For a 3-belt we assume additionally that Fi1 ∩ Fi2 ∩ Fi3 = ∅.

A 3-polytope P with a triangular facet has a 3-belt around it, unless P = ∆3.
A simple 3-polytope P 6= ∆3 is flag if and only if it does not contain 3-belts.

A fullerene is a simple 3-polytope with only pentagonal and hexagonal facets. A
simple calculation with Euler characteristic shows that the number of pentagonal
facets in a fullerene is 12. The number of hexagonal facets can be arbitrary except
for 1 (see [25, Proposition 2]). Also, any fullerene is a flag polytope without 4-belts
(see [26] and [8, Corollary 3.16]).

2.2. Toric varieties and manifolds. A toric variety is a normal complex alge-
braic variety V containing an algebraic torus (C×)n as a Zariski open subset in such
a way that the natural action of (C×)n on itself extends to an action on V . We only
consider nonsingular complete (compact in the usual topology) toric varieties, also
known as toric manifolds.

There is a bijective correspondence between the isomorphism classes of complex
n-dimensional toric manifolds and complete nonsingular fans in Rn. A fan is a finite
collection Σ = {σ1, . . . , σs} of strongly convex cones σi in Rn such that every face
of a cone in Σ belongs to Σ and the intersection of any two cones in Σ is a face of
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each. A fan Σ is nonsingular (or regular) if each of its cones σj is generated by part
of a basis of the lattice Zn ⊂ Rn (we choose the standard lattice for simplicity).
In particular, each one-dimensional cone of Σ is generated by a primitive vector
a i ∈ Zn. A fan Σ is complete if the union of its cones is the whole Rn.

Projective toric varieties are particularly important. A projective toric manifold
V is defined by a lattice Delzant polytope P . Given a simple n-polytope P with ver-
tices in the lattice Zn, the normal fan ΣP has n-dimensional cones σv corresponding
to the vertices v of P , where σv is generated by the primitive inside-pointing nor-
mals to the facets of P meeting at v. The polytope P is Delzant whenever its normal
fan ΣP is nonsingular. The fan ΣP defines a projective toric manifold VP . Different
lattice Delzant polytopes with the same normal fan produce different projective
embeddings of the same toric manifold.

Irreducible torus-invariant subvarieties of complex codimension one in V corre-
spond to one-dimensional cones of Σ. When V is projective, they also correspond
to the facets of P . We assume that there are m one-dimensional cones (or facets),
denote the corresponding primitive vectors by a1, . . . ,am, and denote the corre-
sponding codimension-1 subvarieties by V1, . . . , Vm.

Theorem 2.2 (Danilov–Jurkiewicz, see [11, Theorem 5.3.1]). Let V be a toric man-
ifold of complex dimension n, with the corresponding complete nonsingular fan Σ.
The cohomology ring H∗(V ;Z) is generated by the degree-two classes [vi] dual to
the invariant submanifolds Vi, and is given by

H∗(V ;Z) ∼= Z[v1, . . . , vm]/I, deg vi = 2,

where I is the ideal generated by elements of the following two types:

(a) vi1 · · · vik such that ai1 , . . . ,aik do not span a cone of Σ;

(b)

m∑
i=1

〈ai,x〉vi, for any vector x ∈ Zn.

It is convenient to consider the integer n×m-matrix

(2.2) Λ =

a11 · · · a1m
...

. . .
...

an1 · · · anm


whose columns are the vectors a i written in the standard basis of Zn. Then the
ideal (b) of Theorem 2.2 is generated by the n linear forms aj1v1 + · · · + ajmvm
corresponding to the rows of Λ.

The quotient of a projective toric manifold VP by the action of the compact
torus Tn ⊂ (C×)n is the polytope P . When a toric manifold V is not projective, the
quotient V/Tn has a face structure of a manifold with corners. This face structure
locally looks like that of a simple convex polytope, but globally may fail to be so even
combinatorially. In the case n = 3, however, the quotient V/T 3 is combinatorially
equivalent to a simple 3-polytope, by Steinitz’s theorem (Theorem 2.1).

2.3. Quasitoric manifolds. In their 1991 work [22] Davis and Januszkiewicz sug-
gested a topological generalisation of projective toric manifolds, which became
known as quasitoric manifolds.

A quasitoric manifold over a combinatorial simple n-polytope P is a topological
manifold M of dimension 2n with a locally standard action of Tn and a projection
π : M → P whose fibres are the orbits of the Tn-action. (An action of Tn on M is
locally standard if every point x ∈M is contained in a Tn-invariant neighbourhood
equivariantly homeomorphic to an open subset in Cn with the standard coordinate-
wise action of Tn twisted by an automorphism of the torus. The orbit space of a
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locally standard action is a manifold with corners. For a quasitoric manifold M ,
the orbit space M/Tn is homeomorphic to P .)

Not every simple polytope can be the quotient of a quasitoric manifold. Never-
theless, quasitoric manifolds constitute a much larger family than projective toric
manifolds, and enjoy more flexibility for topological applications.

Let F = {F1, . . . , Fm} be the set of facets of P . Each Mi = π−1(Fi) is a qua-
sitoric submanifold of M of codimension 2, called a characteristic submanifold. The
characteristic submanifolds Mi ⊂M are analogues of the invariant divisors Vi on a
toric manifold V . Each Mi is fixed pointwise by a closed one-dimensional subgroup
(a subcircle) Ti ⊂ Tn and therefore corresponds to a primitive vector λi ∈ Zn de-
fined up to a sign. Choosing a direction of λi is equivalent to choosing an orientation
for the normal bundle ν(Mi ⊂M) or, equivalently, choosing an orientation for Mi,
provided that M itself is oriented. An omniorientation of a quasitoric manifold M
consists of a choice of orientation for M and each characteristic submanifold Mi.

The vectors λi are analogues of the generators a i of the one-dimensional cones
in the fan corresponding to a toric manifold V , or analogues of the normal vectors
to the facets of P when V is projective. However, the vectors λi need not be the
normal vectors to the facets of P in general.

There is an analogue of Theorem 2.2 for quasitoric manifolds:

Theorem 2.3 ([22]). Let M be an omnioriented quasitoric manifold of dimen-
sion 2n over a simple n-polytope P . The cohomology ring H∗(M ;Z) is generated
by the degree-two classes [vi] dual to the oriented characteristic submanifolds Mi,
and is given by

H∗(M ;Z) ∼= Z[v1, . . . , vm]/I, deg vi = 2,

where I is the ideal generated by elements of the following two types:

(a) vi1 · · · vik such that Fi1 ∩ · · · ∩ Fik = ∅ in P ;

(b)

m∑
i=1

〈λi,x〉vi, for any vector x ∈ Zn.

We record a simple corollary for the latter use.

Corollary 2.4. In the notation of Theorem 2.3,

(a) the product [vi1 ] · · · [vin ] of n different classes is a generator of H2n(M) ∼= Z
if Fi1 ∩ · · · ∩ Fin 6= ∅ and is zero otherwise;

(b) for i 6= j, we have [vi][vj ] = 0 if and only if Fi ∩ Fj = ∅.

By analogy with (2.2), we consider the integer characteristic matrix

(2.3) Λ =

λ11 · · · λ1m
...

. . .
...

λn1 · · · λnm


whose columns are the vectors λi written in the standard basis of Zn. The matrix
Λ has the following property:

(2.4) det(λi1 , . . . , λin) = ±1 whenever Fi1 ∩ · · · ∩ Fin 6= ∅ in P .

Note that the ideal (b) of Theorem 2.3 is generated by the n linear forms λj1v1+
· · ·+ λjmvm corresponding to the rows of Λ.

A map λ : F → Zn, Fi 7→ λi, satisfying (2.4) is called a characteristic function
for a simple n-polytope P . One can produce a characteristic matrix Λ from a
characteristic function λ by fixing an order of facets. A characteristic pair (P,Λ)
consists of a simple polytope P and its characteristic matrix Λ.
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A quasitoric manifold M defines a characteristic pair (P,Λ). On the other hand,
each characteristic pair gives rise to a quasitoric manifold as follows.

Construction 2.5 ([22]). Let (P,Λ) be a characteristic pair. For each facet Fi of
P we denote by Ti the circle subgroup of Tn = Rn/Zn corresponding to the ith
column λi ∈ Zn of the characteristic matrix Λ. For each point x ∈ P , define a torus

T (x) =
∏

i : x∈Fi

Ti,

assuming that T (x) = {1} if there are no facets containing x. Property (2.4) implies
that T (x) embeds as a subgroup in Tn. Then define

M(P,Λ) = P × Tn/∼,

where the equivalence relation ∼ is given by (x, t) ∼ (x′, t′) whenever x = x′ and
t′ − t ∈ T (x). One can see that M(P,Λ) is a quasitoric manifold over P .

Change of basis in the lattice results in multiplying Λ from the left by a matrix
from GL (n,Z). Changing the orientation of the ith characteristic submanifold Mi

in the omniorientation data results in changing the sign of the ith column of Λ. A
combinatorial equivalence between polytopes P and P ′ allows us to identify their
sets of facets F and F ′ and therefore identify their characteristic functions. These
observations lead us to the following definition.

Definition 2.6. Two characteristic pairs (P,Λ) and (P ′, Λ′) are equivalent if

(a) P and P ′ are combinatorially equivalent, and
(b) Λ′ = AΛB, where A ∈ GL (n,Z) and B is a diagonal (m×m)-matrix with
±1 on the diagonal.

Quasitoric manifolds M(P,Λ) and M(P ′, Λ′) corresponding to equivalent pairs
are equivariantly homeomorphic (in the weak sense). The latter means that there

is a homeomorphism f : M(P,Λ)
∼=−→M(P ′, Λ′) satisfying f(t · x) = ψ(t) · f(x) for

any t ∈ Tn and x ∈M(P,Λ), where ψ : Tn → Tn is the automorphism of the torus
given by the matrix A. Furthermore, we have

Proposition 2.7 ([22, Proposition 1.8] and [11, Proposition 7.3.8]). There is a one-
to-one correspondence between equivariant homeomorphism classes of quasitoric
manifolds and equivalence classes of characteristic pairs. In particular, for any qu-
asitoric manifold M over P with characteristic matrix Λ, there is an equivariant
homeomorphism M ∼= M(P,Λ).

Remark. Both M and M(P,Λ) were defined as topological manifolds in [22]. The
manifold M(P,Λ) can be endowed with a canonical smooth structure by defining
it as the quotient of the moment-angle manifold ZP by a smooth torus action,
see [12] and Subsection 2.9. Nevertheless, for a smooth quasitoric manifold M , the
existence of a diffeomorphism M ∼= M(P,Λ) is a delicate issue, see the discussion
in [11, §7.3]. On the other hand, in the case of 6-dimensional quasitoric manifolds
(which is our main concern in this paper), such a diffeomorphism follows from the
classification results of Wall and Jupp discussed in Section 6.

In dimensions n > 4, there are simple n-polytopes P which do not admit any
characteristic matrix Λ, see [22, 1.22]. Such a polytope cannot be the quotient of a
quasitoric manifold. On the other hand, we have the following observation by Davis
and Januszkiewicz, whose proof remarkably uses the Four Colour Theorem:

Proposition 2.8 ([22]). Any simple 3-polytope admits a characteristic matrix Λ.
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Proof. Given a 4-colouring of the facets of P , we assign to a facet of ith colour
the ith basis vector e i ∈ Z3 for i = 1, 2, 3 and the vector e1 + e2 + e3 for i =
4. The resulting 3 × m-matrix Λ satisfies (2.4), as any three of the four vectors
e1, e2, e3, e1 + e2 + e3 form a basis of Z3. �

A projective toric manifold is a quasitoric manifold. A non-projective toric man-
ifold V may fail to be quasitoric, as the quotient manifold with corners V/Tn is
not necessarily a simple polytope, even combinatorially. First examples of this sort
appear in dimension n = 4, see [41]. All complex 3-dimensional toric manifolds,
even non-projective ones, are quasitoric by the Steinitz theorem (Theorem 2.1).

2.4. Small covers and hyperbolic 3-manifolds. Replacing the torus Tn in the
definition of a quasitoric manifold by the subgroup Zn2 ⊂ Tn (n commuting invo-
lutions), one obtains the definition of a small cover [22]. A small cover of a simple
n-polytope P is a manifold N of dimension n with a locally standard action of Zn2
and a projection π : N → P whose fibres are the orbits of the Zn2 -action.

The set of real points of a projective toric manifold VP (i. e. the set of points
fixed under complex conjugation) is a small cover of P ; it is sometimes called a real
toric manifold.

The theory of small covers parallels that of quasitoric manifolds, and we just
outline the most crucial points.

Theorem 2.9 ([22]). Let N be a small cover of a simple n-polytope P . The co-
homology ring H∗(N ;Z2) is generated by the degree-one classes [vi] dual to the
characteristic submanifolds Ni, and is given by

H∗(N ;Z2) ∼= Z2[v1, . . . , vm]/I, deg vi = 1,

where I is the ideal generated by elements of the following two types:

(a) vi1 · · · vik such that Fi1 ∩ · · · ∩ Fik = ∅ in P ;

(b)

m∑
i=1

〈λi,x〉vi, for any vector x ∈ (Z2)n.

The characteristic matrix Λ corresponding to a small cover N has entries in Z2

and satisfies the same condition (2.4). The equivalence of Z2-characteristic pairs
is defined in the same way as in the quasitoric case, with GL(n,Z) replaced by
GL(n,Z2). A small cover N of P is equivariantly homeomorphic to the “canonical
model”

N(P,Λ) = P × Zn2/∼
with the equivalence relation ∼ defined as in the quasitoric case. Note that N(P,Λ)
is composed of 2n copies of the polytope P , patched together along their facets.

Reducing a Z-characteristic matrix mod 2 we obtain a Z2-characteristic matrix.
The following question is open.

Problem 1. Assume given a Z2-characteristic pair (P,Λ) consisting of a simple
n-polytope P and an (n × m)-matrix Λ with entries in Z2 satisfying (2.4). Can
Λ be obtained by reduction mod 2 from an integer matrix satisfying the same
condition (2.4)?

The answer to the above problem is positive for 3-polytopes:

Proposition 2.10. Every Z2-characteristic pair (P,Λ) with 3-dimensional P is
the mod 2 reduction of a Z-characteristic pair.

Proof. One can check that any (3×3)-matrix with entries 0 or 1 and determinant 1
mod 2 has determinant ±1 when viewed as an integer matrix. Ineed, such a matrix
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either has a column with 2 zeros, or is

1 0 1
1 1 1
0 1 1

 up to permutation of rows and

columns. The required property is then verified directly. �

A particularly important class of 3-dimensional small covers are hyperbolic 3-
manifolds of Löbell type, introduced and studied by Vesnin in [43].

Construction 2.11. Let P be a polytope in 3-dimensional Lobachevsky space L3

with right angles between adjacent facets (a right-angled 3-polytope for short). De-
note byG(P ) the group generated by reflections in the facets of P . It is a right-angled
Coxeter group given by the presentation

G(P ) = 〈g1, . . . , gm | g2i = 1, gigj = gjgi if Fi ∩ Fj 6= ∅〉,
where gi denotes the reflection in the facet Fi. The reflections in adjacent facets
commute because of the right-angledness. There are no relations between the re-
flections in non-adjacent faces, as the corresponding reflection hyperplanes do not
intersect in L3. The group G(P ) acts on L3 discretely with finite isotropy subgroups
and with fundamental domain P .

Now consider an epimorphism ϕ : G(P )→ Z3
2. As was observed in [43, Lemma 1],

the subgroup Kerϕ ⊂ G(P ) does not contain elements of finite order if and only if
the images of the reflections in any three facets of P that have a common vertex
are linearly independent in Z3

2. In this case the group Kerϕ acts freely on L3.
The quotient N = L3/Kerϕ is called a hyperbolic 3-manifold of Löbell type. It is
composed of |Z3

2| = 8 copies of P and has a Riemannian metric of constant negative
curvature. Furthermore, such a manifold N is aspherical (has the homotopy type
of Eilenberg–Mac Lane space K(G(P ), 1)), as its universal cover L3 is contractible.

Since the abelianisation of G(P ) is Zm2 , the epimorphism ϕ factors as G(P )
ab−→

Zm2
Λ−→ Z3

2, where Λ is a linear map. The above condition for the freeness of the
action of Kerϕ on L3 is equivalent to that Λ satisfies (2.4) (i. e. Λ is given by a
Z2-characteristic matrix). We therefore can identify N = L3/Kerϕ with the small
cover N(P,Λ).

Which combinatorial 3-polytopes have right-angled realisations in L3? Pogorelov
stated necessary conditions in 1967, which were later shown by Andreev to be
sufficient:

Theorem 2.12 ([40], [1]). A combinatorial 3-polytope can be realised as a right-
angled polytope in Lobachevsky space L3 if and only if it is simple, flag and does
not have 4-belts. Furthermore, such a realisation is unique up to isometry.

We refer to the class of simple flag 3-polytopes without 4-belts as the Pogorelov
class P. It will feature prominently throughout the rest of our paper.

A polytope from the class P does not have triangular or quadrangular facets.
According to a result of Došlić [26] (see also [7, Corollary 3.16]), the Pogorelov class
contains all fullerenes.

We summarise the constructions and results above as follows.

Theorem 2.13. A small cover N(P,Λ) of a 3-polytope P from the Pogorelov
class P has the structure of a hyperbolic 3-manifold of Löbell type L3/Kerϕ, with

the epimorphsim ϕ given by the composition G(P )
ab−→ Zm2

Λ−→ Z3
2. Furthermore,

such a 3-manifold N(P,Λ) is aspherical.

Remark. The conditions specifying the Pogorelov class P also feature in Gromov’s
theory of hyperbolic groups. Namely, the “no 4-condition” from [29, §4.2.E] for a
simplicial complex K is the absence of missing 2-faces, while the “no �-condition” is
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the absence of chordless 4-cycles. When K is the dual complex of a simple polytope,
these two conditions translate to the absence of 3- and 4-belts, respectively.

The relationship between small covers and hyperbolic manifolds was also men-
tioned in the work of Davis and Januszkiewicz [22, p. 428], although the criterion
for right-angled realisation of a polytope was stated there incorrectly.

2.5. Topological toric manifolds. A toric manifold is not necessarily a quasitoric
manifold and a quasitoric manifold is also not necessarily a toric manifold. How-
ever, both toric and quasitoric manifolds are examples of topological toric manifolds
introduced in [31]. Recall that a toric manifold admits an algebraic action of (C×)n

with an open dense orbit. It has local charts equivariantly isomorphic to a sum
of complex one-dimensional algebraic representations of (C×)n. A topological toric
manifold is a compact smooth 2n-dimensional manifold with an effective smooth
action of (C×)n having an open dense orbit and covered by finitely many invariant
open subsets each equivariantly diffeomorphic to a sum of complex one-dimensional
smooth representation spaces of (C×)n. (The latter condition automatically follows
from the existence of a dense orbit in the algebraic category, but not in the smooth
category.)

The cohomology ring of a topological toric manifold is described similarly to
the toric or quasitoric case; there is an analogue of Theorems 2.2 or 2.3, see [31,
Proposition 8.3].

2.6. Simplicial complexes and face rings. Let K be an (abstract) simplicial
complex on the set [m] = {1, . . . ,m}, i. e. K is a collection of subsets I ⊂ [m]
such that for any I ∈ K all subsets of I also belong to K. We always assume that
the empty set ∅ and all one-element subsets {i} ⊂ [m] belong to K. We refer to
I ∈ K as a simplex (or a face) of K. Every abstract simplicial complex K has a
geometric realisation |K|, which is a polyhedron in a Euclidean space (a union of
convex geometric simplices).

A non-face of K is a subset I ⊂ [m] such that I /∈ K. A missing face (or a
minimal non-face) of K is an inclusion-minimal non-face of K, that is, a subset
I ⊂ [m] such that I is not a simplex of K, but every proper subset of I is a simplex
of K. A simplicial complex K is called a flag complex if each of its missing faces
consists of two vertices. Equivalently, K is flag if any set of vertices of K which are
pairwise connected by edges spans a simplex. Every flag complex K is determined
by its 1-skeleton K1, and is obtained from the graph K1 by filling in all complete
subgraphs by simplices.

Let P be a simple n-polytope with m facets F1, . . . , Fm. Then

KP =
{
I = {i1, . . . , ik} ∈ [m] : Fi1 ∩ · · · ∩ Fik 6= ∅

}
is a simplicial complex on [m], called the dual complex of P . The vertices of KP
correspond to the facets of P , and the empty simplex ∅ corresponds to P itself.
Geometrically, |KP | is an (n− 1)-dimensional sphere simplicially subdivided as the
boundary of the dual polytope of P .

The definitions of flag polytopes and complexes agree: P is a flag polytope if and
only if KP is a flag complex. A k-belt in P with k > 4 corresponds to a chordless
k-cycle in the graph K1

P .
We fix a commutative ring k with unit.
The face ring of K (also known as the Stanley–Reisner ring) is defined as the

quotient of the polynomial algebra k[v1, . . . , vm] by the square-free monomial ideal
generated by non-simplices of K:

k[K] = k[v1, . . . , vm]
/(
vi1 · · · vik : {i1, . . . , ik} /∈ K

)
.
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As k[K] is the quotient of the polynomial ring by a monomial ideal, it has a grading
or even a multigrading (a Zm-grading). We use an even grading: deg vi = 2 and
mdeg vi = 2e i, where e i ∈ Zm is the ith standard basis vector.

Note that when K = KP for a simple polytope P , the ring Z[P ] coincides with
the quotient of Z[v1, . . . , vm] by the relations (a) in Theorem 2.2 or in Theorem 2.3.

A simplicial complex K is flag if and only if its face ring k[K] is a quadratic alge-
bra, i. e. the quotient of k[v1, . . . , vm] by an ideal generated by quadratic monomials
(which have degree 4 in our grading).

2.7. Moment-angle complexes and manifolds. Let K be a simplicial complex
on the set [m], and let (D2, S1) denote the pair of a disc and its boundary circle.
For each simplex I = {i1, . . . , ik} ∈ K, set

(D2, S1)I = {(x1, . . . , xm) ∈ (D2)m : xi ∈ S1 when i /∈ I}.
The moment-angle complex is defined as

(2.5) ZK = (D2, S1)K =
⋃
I∈K

(D2, S1)I ⊂ (D2)m.

If |K| is homeomorphic to a sphere Sn−1, then ZK is a topological manifold. If
K is the boundary of a convex simplicial polytope or is a starshaped sphere (the
underlying complex of a complete simplicial fan), then ZK has a smooth structure.

In the polytopal case there is an alternative way to define ZK in terms of the dual
simple polytope P . Namely, assume given a presentation of a convex n-dimensional
polytope P by inequalities (2.1). Define the map

iP : Rn → Rm, x 7→
(
〈a1,x 〉+ b1, . . . , 〈am,x 〉+ bm

)
,

so iP (P ) ⊂ Rm> = {(y1, . . . , ym) ∈ Rm : yi > 0}. Also, define the map

µ : Cm → Rm> , (z1, . . . , zm) 7→ (|z1|2, . . . , |zm|2).

Then define the space ZP by the pullback diagram

(2.6)

ZP −−−−→ Cmy yµ
P

ip−−−−→ Rm>
The space ZP can be written as an intersection of (m − n) Hermitian quadrics in
Cm, and this intersection is nondegenerate precisely when the polytope P is simple.
In the latter case, ZP is a smooth (m+n)-dimensional manifold. Furthermore, the
manifold ZP is diffeomorphic to the moment-angle complex ZKP

. In particular, the
diffeomorphism type of ZP depends only on the combinatorial type of P . We shall
therefore not distinguish between ZP and ZKP

and refer to it as the moment-angle
manifold corresponding to a simple polytope P . The details of these constructions
can be found in [11, Chapter 6].

The standard coordinatewise action of the m-torus Tm on (D2)m or Cm induces
the canonical Tm-action on ZK or ZP .

2.8. Cohomology of moment-angle complexes. We consider (co)homology
with coefficients in k. Denote by Λ[u1, . . . , um] the exterior algebra on m gener-
ators over k which satisfy the relations u2i = 0 and uiuj = −ujui.

The Koszul complex (or the Koszul algebra) of the face ring k[K] is defined as
the differential Z⊕ Zm-graded algebra (Λ[u1, . . . , um]⊗ k[K], d), where

(2.7) mdeg ui = (−1, 2e i), mdeg vi = (0, 2e i), dui = vi, dvi = 0.

Cohomology of (Λ[u1, . . . , um] ⊗ k[K], d) is the Tor-algebra Tork[v1,...,vm](k[K],k).
It also inherits a Z⊕ Zm-grading.
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Theorem 2.14 ([4], [11, Theorem 4.5.5]). There are isomorphisms of (multi)graded
commutative algebras

H∗(ZK) ∼= Tork[v1,...,vm]

(
k[K],k

)
∼= H

(
Λ[u1, . . . , um]⊗ k[K], d

)
.

The cohomology of ZK therefore acquires a multigrading, with the multigraded
and ordinary graded components of H∗(ZK) given by

H−i,2J(ZK) = Tor−i,2Jk[v1,...,vm]

(
k[K],k

)
, H`(ZK) =

⊕
−i+2|J|=`

H−i,2J(ZK),

where J = (j1, . . . , jm) ∈ Zm and |J | = j1 + · · ·+ jm.
The Koszul algebra (Λ[u1, . . . , um]⊗k[K], d

)
is infinitely generated as a k-module.

We define its quotient algebra

R∗(K) = Λ[u1, . . . , um]⊗ k[K]
/

(v2i = uivi = 0, 1 6 i 6 m)

with the induced multigrading and differential (2.7). Note that R∗(K) has a finite k-
basis. Passing to R∗(K) does not change the cohomology. This can be proved either
algebraically [11, Lemma 3.2.6] or using the following topological interpretation:

Lemma 2.15 ([11, Lemma 4.5.3]). The algebra R∗(K) coincides with the cellular
cochains of ZK for the appropriate cell structure. In particular, there is an isomor-
phism of cohomology algebras

H(R∗(K)) ∼= H∗(ZK).

The multigraded component R−i,2J(K) is zero unless all coordinates of the vector
J ∈ Zm are 0 or 1, and the same is true for the multigraded cohomologyH−i,2J(ZK).

We can identify subsets J ⊂ [m] with vectors
∑
j∈J ej ∈ Zm. Given J =

{j1, . . . , jk} ⊂ [m], we denote by vJ the monomial vj1 · · · vjk ∈ k[v1, . . . , vm],
and similarly consider exterior monomials uJ = uj1 · · ·ujk ∈ Λ[u1, . . . , um]. We
also use the notation uJvI for the monomial uJ ⊗ vI in the Koszul algebra
Λ[u1, . . . , um] ⊗ k[K]. Then R∗(K) has a finite k-basis consisting of monomials
uJvI where J ⊂ [m], I ∈ K and J ∩ I = ∅.

Given J ⊂ [m], define the corresponding full subcomplex of K as

KJ = {I ∈ K : I ⊂ J}.

Consider simplicial cochains C∗(KJ) with coefficients in k. Let αL ∈ Cp−1(KJ) be
the basis cochain corresponding to an oriented simplex L = (l1, . . . , lp) ∈ KJ ; it
takes value 1 on L and vanishes on all other simplices. Define a k-linear map

(2.8)
f : Cp−1(KJ) −→ Rp−|J|,2J(K),

αL 7−→ ε(L, J)uJ\LvL,

where ε(L, J) is the sign given by ε(L, J) =
∏
j∈L ε(j, J) and ε(j, J) = (−1)r−1 if

j is the rth element of the set J ⊂ [m] written in increasing order.

Theorem 2.16 ([11, Theorem 3.2.9]). The maps (2.8) combine to an isomorphism
of cochain complexes C∗(KJ)→ R ∗,2J(K) and induce an isomorphism

H̃ |J|−i−1(KJ) ∼= Tor−i,2Jk[v1,...,vm]

(
k[K],k

)
,

where H̃k(KJ) denotes the kth reduced simplicial cohomology group of KJ .

Theorem 2.17 ([11, Theorem 4.5.8]). There are isomorphisms of k-modules

H−i,2J(ZK) ∼= H̃ |J|−i−1(KJ), H`(ZK) ∼=
⊕
J⊂[m]

H̃`−|J|−1(KJ).
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These isomorphisms combine to form a ring isomorphism

H∗(ZK) ∼=
⊕
J⊂[m]

H̃∗(KJ),

where the ring structure on the right hand side is given by the canonical maps

Hk−|I|−1(KI)⊗H`−|J|−1(KJ)→ Hk+`−|I|−|J|−1(KI∪J)

which are induced by the simplicial maps KI∪J → KI ∗ KJ for I ∩ J = ∅ and zero
otherwise.

Proposition 2.18. The 3-dimensional cohomology H3(ZK) is freely generated by
the cohomology classes [uivj ] = [ujvi] corresponding to pairs of vertices i, j such
that {i, j} /∈ K. If K = KP for a simple polytope P , then these 3-dimensional
cohomology classes correspond to pairs of non-adjacent facets Fi, Fj.

Example 2.19. Let K = r r r r1 2 3 4 be the union of two segments. Then
nontrivial integral cohomology groups of ZK are given below together with the
cocycles in the algebra R∗(K) representing generators:

H0(ZK) ∼= H̃−1(∅) ∼= Z 1

H3(ZK) ∼=
⊕
|J|=2

H̃0(KJ) ∼= Z4 u1v3, u1v4, u2v3, u2v4

H4(ZK) ∼=
⊕
|J|=3

H̃0(KJ) ∼= Z4 u1u2v3, u1u2v4, u3u4v1, u3u4v2

H5(ZK) ∼= H̃0(K) ∼= Z u1u2u4v3 − u1u2u3v4

Cochains in C0(K) are functions on the vertices of K, and cocycles are functions
which are constant on the connected components of K. In our case, the cocycle

α{3} + α{4} represents a generator of H̃0(K). It is mapped by (2.8) to the cocycle

u1u2u4v3 − u1u2u3v4 representing a generator of H5(ZK).

Moment-angle complexes ZK may have nontrivial triple Massey products of 3-
dimensional cohomology classes. First examples (found by Baskakov [3]) appear
already for moment-angle manifolds corresponding to 3-polytopes (see also [11,
§4.9]). A complete description of the triple Massey product H3(ZK) ⊗ H3(ZK) ⊗
H3(ZK)→ H8(ZK) is given by the following result of Denham and Suciu:

Theorem 2.20 ([24, Theorem 6.1.1]). The following are equivalent:

(a) there exist cohomology classes α, β, γ ∈ H3(ZK) for which the Massey prod-
uct 〈α, β, γ〉 is defined and non-trivial;

(b) the graph K1 contains an induced subgraph isomorphic to one of the five
graphs in Figure 1.
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2.9. Moment-angle manifolds and quasitoric manifolds. Let P be a simple
n-polytope with the dual simplicial complex KP . The existence of a characteristic
matrix (2.3) for P is equivalent to a choice of n linear forms

(2.9) tj = λj1v1 + · · ·+ λjmvm, j = 1, . . . , n

such that Z[KP ] is a finitely generated free module over Z[t1, . . . , tn]. Such t1, . . . , tn
form a linear regular sequence in Z[KP ]. This implies that k[KP ] is a Cohen–
Macaulay ring over any k, but the condition is actually stronger, as it assumes
the existence of a linear regular sequence over Z (and hence over any finite field).

Given a characteristic matrix (2.3) (or a linear regular sequence (2.9) in Z[KP ]),
one can define the corresponding homomorphism of tori ΛT : Tm → Tn. Its kernel
KerΛT is an (m− n)-dimensional subtorus in Tm that acts freely on ZP . The
quotient ZP /KerΛT can be identified with the quasitoric manifold M(P,Λ) from
Construction 2.5. As ZP is a smooth intersection of quadrics (2.6) and the action
of torus is smooth, we obtain a canonical smooth structure on M(P,Λ) as in [12].

We say that Tn-manifolds M and M ′ are weakly equivariantly diffeomorphic if
there is a diffeomorphism f : M →M ′ and an automorphism θ : Tn → Tn such that
f(t · x) = θ(t) · f(x) for any x ∈M and t ∈ Tn. The following result is immediate.

Proposition 2.21. If characteristic pairs (P,Λ) and (P ′, Λ′) are equivalent, then
the corresponding quasitoric manifolds M(P,Λ) and M(P ′, Λ′) are weakly equivari-
antly diffeomorphic.

The general homological properties of regular sequences imply yet another de-
scription of the cohomology of ZP :

Theorem 2.22 ([10, Theorem 4.2.11], [11, Lemma A.3.5]). Let P be a simple
n-polytope with m facets, and assume there exists a linear integral regular se-
quence (2.9). Denote by J the ideal in Z[v1, . . . , vm] generated by t1, . . . , tn. Then
there is an isomorphism of cohomology rings

H∗(ZP ;Z) ∼= TorZ[v1,...,vm]/J
(
Z[KP ]/J ,Z

)
.

Note that Z[KP ]/J is the cohomology ring of the quasitoric manifold M(P,Λ),
see Theorem 2.3. The theorem above implies that the spectral sequence of the
principal Tm−n-fibration ZP →M(P,Λ) degenerates at the E3 term.

3. Cohomological rigidity

We continue to consider cohomology with coefficients in a commutative ring with
unit k. When k is not specified explicitly, we assume k = Z.

Definition 3.1. We say that a family of closed manifolds is cohomologically rigid
over k if manifolds in the family are distinguished up to homeomorphism by their
cohomology rings with coefficients in k. That is, a family is cohomologically rigid
if a graded ring isomorphism H∗(M1; k) ∼= H∗(M2; k) implies a homeomorphism
M1
∼= M2 whenever M1 and M2 are in the family.

There is a homotopical and smooth versions of cohomological rigidity, with home-
omorphisms replaced by homotopy equivalences and diffeomorphisms, respectively.

In toric topology, cohomological rigidity is studied for (quasi)toric manifolds and
moment-angle manifolds. We refer to [37], [18] and [11, §7.8] for a more detailed
survey of related results and problems. The main question here is as follows.

Problem 2. Let M1 and M2 be two toric manifolds with isomorphic cohomology
rings. Are they homeomorphic? In other words, is the family of toric manifolds
cohomologically rigid? One can ask the same question for quasitoric and topological
toric manifolds, and with homeomorphisms replaced by diffeomorphisms.
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The problem is solved positively for some particular families of toric and qua-
sitoric manifolds, such as cohomologically trivial Bott towers (whose correspond-
ing polytopes are combinatorial cubes) [36], Q-cohomologically trivial Bott tow-
ers [14], Z2-cohomologically trivial Bott towers [15], Bott towers of real dimension
up to 8 [13], quasitoric manifolds over a product of two simplices [21] and over
some dual cyclic polytopes [30]. The problem is open for general Bott towers, and
for (quasi)toric manifolds of real dimension 6 (over 3-dimensional polytopes). The
latter case is the subject of this paper: we give a solution for a particular class of
3-polytopes.

There is also a cohomological rigidity problem for real toric objects, such as real
toric manifolds, small covers, and real topological toric manifolds [31], with Z2-
cohomology rings. This problem is solved positively for real Bott towers [16], [33],
but negatively in some other cases [35].

Cohomological rigidity is also open for moment-angle manifolds, in both graded
and bigraded versions:

Problem 3. Let ZP1
and ZP2

be two moment-angle manifolds whose (bigraded)
cohomology rings are isomorphic. Are they homeomorphic? In other words, is the
family of moment-angle manifolds cohomologically rigid?

A homeomorphism of two quasitoric manifolds over P1 and P2, or a homeomor-
phism of moment-angle manifolds ZP1 and ZP2 does not imply that the polytopes
P1 and P2 are combinatorially equivalent, as shown by the next example.

Example 3.2. A vertex truncation operation [11, Construction 1.1.1] can be ap-
plied to a simple polytope P to produce a new simple polytope vt(P ) with one
more facet. If one applies this operation iteratively, then the combinatorial type of
the resulting polytope depends, in general, on the choice and order of truncated
vertices. For example, applying this operation three times to a 3-simplex one can
produce three combinatorially different polytopes Pi, i = 1, 2, 3, with 7 facets each
(their dual simplicial polytopes are known as stacked). The corresponding moment-
angle manifolds ZPi

are diffeomorphic, see [11, §4.6]. The polytopes Pi have Delzant
realisations such that the correponding toric manifolds VPi are obtained from CP 3

by blowing it up three times in three different ways. Each of VPi is diffeomorphic
to a connected sum of 4 copies of CP 3 (see the details in [37]).

One can look for classes of simple polytopes P whose combinatorial type is
determined by the cohomology ring of any (quasi)toric manifold over P or by the
cohomology ring of the moment-angle manifold ZP . This leads to the following two
notions of rigidity for simple polytopes, considered in [37] and [6] respectively.

Definition 3.3. A simple polytope P is said to be C-rigid if any of the two con-
ditions hold:

(a) there are no quasitoric manifolds M over P (equivalently, there are no linear
regular sequences (2.9) in Z[KP ]), or

(b) whenever there exist a quasitoric manifold M over P and a quasitoric man-
ifold M ′ over another polytope P ′ with a cohomology ring isomorphism
H∗(M) ∼= H∗(M ′), there is a combinatorial equivalence P ' P ′.

We say that a property of simple polytopes is C-rigid if for any ring isomorphism
H∗(M) ∼= H∗(M ′), both P and P ′ either have or do not have the property.

Definition 3.4. A simple polytope P is said to be B-rigid if any cohomology ring
isomorphism H∗(ZP ) ∼= H∗(ZP ′) of moment-angle manifolds implies a combinato-
rial equivalence P ' P ′.

We say that a property of simple polytopes is B-rigid if for any ring isomorphism
H∗(ZP ) ∼= H∗(ZP ′), both P and P ′ either have or do not have the property.
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According to Example 3.2, a truncated simplex with at least 3 truncations (the
dual to a stacked polytope with at least 3 stacks) is neither C-rigid nor B-rigid.
Previously known examples of C-rigid polytopes include products of simplices and
their single vertex truncations [19], as well as a product of a simplex and a poly-
gon [20]. Also, C-rigidity was determined in [19] for all simple 3-polytopes with 6 9
facets. The following relation between the two notions of rigidity can be extracted
from the results of [19]:

Proposition 3.5. If a simple polytope P is B-rigid, then it is C-rigid.

Proof. Assume that we have a cohomology ring isomorphism ϕ : H∗(M)
∼=−→

H∗(M ′) for quasitoric manifolds M over P and M ′ over P ′. We need to show

that it implies a ring isomorphism ψ : H∗(ZP )
∼=−→ H∗(ZP ′), as the latter would

give P ' P ′ by B-rigidity. Let J and J ′ denote the corresponding ideals in Z[KP ]
and Z[KP ′ ], respectively, generated by the linear regular sequences (2.9). Then we

have a ring isomorphism ϕ : Z[KP ]/J
∼=−→ Z[KP ′ ]/J ′. We need to show that this

isomorphism gives rise to a ring isomorphism

(3.1) TorZ[v1,...,vm]/J
(
Z[KP ]/J ,Z

) ∼=−→ TorZ[v1,...,vm′ ]/J ′
(
Z[KP ′ ]/J ′,Z

)
,

as the latter is nothing but an isomorphism H∗(ZP )
∼=−→ H∗(ZP ′) according to

Theorem 2.22. This is is proved in [19, Lemma 3.7]. Namely, the isomorphism

ϕ : Z[KP ]/J
∼=−→ Z[KP ′ ]/J ′ can be extended to a commutative diagram

Z[v1, . . . , vm]/J
∼= //

��

Z[v1, . . . , vm′ ]/J ′

��
Z[KP ]/J ∼=

ϕ // Z[KP ′ ]/J ′,

implying in particular that m = m′. The commutative diagram above gives rise
to an isomorphism (3.1) by the standard properties of Tor. More specifically, the
isomorphism ϕ gives an isomorphism of the Koszul algebras

(3.2) ϕ̃ :
(
Λ[u1, . . . , um]/J ⊗Z[KP ]/J , d

) ∼=−→
(
Λ[u′1, . . . , u

′
m]/J ′⊗Z[KP ′ ]/J ′, d

)
,

where the ideals in the exterior algebras are defined by the same linear forms as in
the face rings. Then (3.1) is obtained by passing to the cohomology. �

Remark. The argument above is essentially [19, Lemma 3.7]. The term “B-rigidity”
was introduced in the last section of [19]. However, the implication of Proposition 3.5
was erroneously stated there in the opposite direction: “if P is C-rigid, then it is
B-rigid”. This was a confusion. It is not known whether C-rigidity is equivalent to
B-rigidity, and it is unlikely to be true in general.

4. The Pogorelov class: flag 3-polytopes without 4-belts

Recall that the Pogorelov class P consists of simple 3-polytopes P which are flag
and do not have 4-belts (or, equivalently, of simple 3-polytopes P 6= ∆3 without 3-
and 4-belts). In this section we consider combinatorial properties of polytopes P ∈
P and cohomological properties of the corresponding moment-angle manifolds ZP .
The key statements here are Theorem 4.8, Theorem 4.10 and Lemma 4.11; they
will be used in the proof of the main results in the next section.

The first property is straightforward:

Proposition 4.1. In a polytope P ∈ P, there are no 3-gonal or 4-gonal facets.
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Lemma 4.2. A simple 3-polytope P is flag if and only if each of its facets F is
surrounded by a k-belt with k > 4.

Proof. Note that k is the number of edges in F .
Assume that P is flag. Let (F1, . . . , Fk), k > 4, be the sequence of facets adjacent

to F , written in a cyclic order. The claim is that it forms a k-belt. Indeed, otherwise
there is a pair of facets Fi, Fj with Fi ∩Fj 6= ∅ and j − i 6≡ ±1 mod k. Then each
pair of facets in the triple F, Fi, Fj has nonempty intersection, but F ∩Fi∩Fj = ∅.
This contradicts the assumption that P is flag.

Now assume that P is not flag. Then either P = ∆3, or P has a 3-belt, and none
of the facets in this 3-belt is surrounded by a belt. �

Lemma 4.3. For any two facets Fi and Fj in a polytope P ∈ P, there is a vertex
x /∈ Fi ∪ Fj.

Proof. Take any facet F` different from Fi and Fj . Then F` has at most two common
vertices with Fi and at most two common vertices with Fj . On the other hand, F`
has at least 5 vertices by the previous corollary. Thus, at least one vertex of F` does
not lie in Fi ∪ Fj . �

Lemma 4.4. In a flag 3-polytope P , for any facet Fi there is a facet Fj such that
Fi ∩ Fj = ∅.

Proof. By Lemma 4.2 the facet Fi is surrounded by a k-belt Bk with k > 4. Then
∂P \ Bk consists of two connected components: one of them is the interior of Fi,
and the other contains the interior of a facet Fj that we look for. �

Now we consider cohomology of moment-angle manifolds ZP with coefficients
in Z. We recall from Proposition 2.18 that H3(ZP ) has a basis of cohomology
classes [uivj ] = [ujvi] corresponding to pairs of non-adjacent facets Fi, Fj .

Proposition 4.5. Let P be a simple 3-polytope with m facets and let K = KP be
its dual simplicial complex. In the notation of Theorem 2.17, we have

H`(ZP ) =


H̃−1(K∅) = Z for ` = 0,⊕
|I|=`−1 H̃

0(KI)⊕
⊕
|I|=`−2 H̃

1(KI) for 3 6 ` 6 m,

H̃2(K) = Z for ` = m+ 3,

0 otherwise.

In particular, H∗(ZP ) does not have torsion. Furthermore, all nontrivial products
in H∗(ZP ) are of the form

H̃0(KI)⊗ H̃0(KJ)→ H̃1(KI∪J), I ∩ J = ∅,

or

H̃0(KI)⊗ H̃1(K[m]\I)→ H̃2(K) = Z.
For the multigraded components of H∗(ZP ), these two cases correspond to

H−(|I|−1), 2I(ZP )⊗H−(|J|−1), 2J(ZP )→ H−(|I|+|J|−2), 2(ItJ)(ZP ),

H−(|I|−1), 2I(ZP )⊗H−(m−|I|−2), 2([m]\I)(ZP )→ H−(m−3), 2[m](ZP ) = Z,

where the latter is the Poincaré duality pairing.

Proof. This follows from Theorem 2.14, Theorem 2.16 and Theorem 2.17. �

An element in a graded ring is called decomposable if it can be written as a sum
of nontrivial products of elements of nonzero degree.
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Lemma 4.6 ([28, Proposition 6.3]). Let P be a flag 3-polytope and K its dual

simplicial complex. Then the ring H∗(ZP ) ∼=
⊕

J⊂[m] H̃
∗(KJ) is multiplicatively

generated by
⊕

J⊂[m] H̃
0(KJ).

To prove this lemma it is enough to show that each nontrivial cohomology class

in H̃1(KI) ⊂ H∗(ZP ) is decomposable or, equivalently, the product map⊕
I=I1tI2

H̃0(KI1)⊗ H̃0(KI2)→ H̃1(KI)

is surjective. This proof is quite technical. We include it in Appendix B for the
reader’s convenience.

Lemma 4.7. A simple 3-polytope P 6= ∆3 with m facets is flag if and only if
any nontrivial cohomology class in Hm−2(ZP ) is decomposable. In particular, if
Hm−2(ZP ) = 0 then either P is flag or P = ∆3.

Proof. Suppose that P is not flag. Since P 6= ∆3, it has a 3-belt {Fj1 , Fj2 , Fj3}.
Equivalently, the dual complex K has a missing 3-face J = {j1, j2, j3}. It gives
a nonzero cohomology class α ∈ H−1,2J(ZP ) ⊂ H5(ZP ). Consider the Poincaré
duality pairing

Hm−2(ZP )⊗H5(ZP )→ Hm+3(ZP ) = Z,
which specifies to

H−(m−4),2([m]\J)(ZP )⊗H−1,2J(ZP )→ H−(m−3), 2[m](ZP ) = Z

(see Proposition 4.5). Take β ∈ H−(m−4),2([m]\J)(ZP ) ⊂ Hm−2(ZP ) such that α ·β
is a generator of H−(m−3), 2[m](ZP ) = Z. By Theorem 2.17, H−(m−4),2([m]\J)(ZP ) =

H̃0(K[m]\J), and any element of H̃0(K[m]\J) is indecomposable by Proposition 4.5.

We have therefore found an indecomposable element β ∈ Hm−2(ZP ).
Now suppose that P is flag. By Proposition 4.5,

Hm−2(ZP ) =
⊕

|I|=m−3

H̃0(KI)⊕
⊕

|I|=m−4

H̃1(KI),

Consider the Poincaré duality pairing H̃0(KI) ⊗ H̃1(K[m]\I) → Z. Since K is

flag, H̃1(K[m]\I) = 0 for |I| = m − 3 (as there are no missing 2-faces). Hence,⊕
|I|=m−3 H̃

0(KI)=0 by Poincaré duality, and Hm−2(ZP ) =
⊕
|I|=m−4 H̃

1(KI).
Then each nonzero element of Hm−2(ZP ) is decomposable by Lemma 4.6. �

Theorem 4.8. Let P be a flag 3-polytope, and assume given a ring isomorphism
H∗(ZP ) ∼= H∗(ZP ′) for another simple 3-polytope P ′. Then P ′ is also flag.

In other words, the property of being a flag 3-polytope is B-rigid.

Proof. This follows from Lemma 4.7 and the fact that ∆3 is B-rigid. �

Remark. Theorem 4.8 also follows from [28, Theorem 6.6].

Proposition 4.9. Let P be a simple 3-polytope.

(a) The product H3(ZP )⊗H3(ZP )→ H6(ZP ) is trivial if and only if P does
not have 4-belts.

(b) The triple Massey product H3(ZP ) ⊗ H3(ZP ) ⊗ H3(ZP ) → H8(ZP ) is
trivial if P does not have 4-belts.

Proof. We first prove (a). Suppose P has a 4-belt (F1, F2, F3, F4). It corresponds to
a chordless 4-cycle {1, 2, 3, 4} in K = KP , i. e. a cycle with {1, 3} /∈ K and {2, 4} /∈ K.

Hence, we have a nontrivial product H̃0(K{1,3})⊗H̃0(K{2,4})→ H̃1(K{1,2,3,4}), and

a nontrivial product H3(ZP )⊗H3(ZP )→ H6(ZP ).
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Now suppose there is a nontrivial product H3(ZP ) ⊗ H3(ZP ) → H6(ZP ). We

have H6(ZP ) =
⊕
|I|=5 H̃

0(KI) ⊕
⊕
|I|=4 H̃

1(KI). Elements of H̃0(KI) are inde-

composable. An element of H̃1(KI) with |I| = 4 can be decomposed into a product
if and only if I can be split into two pairs of non-adjacent vertices, which means
that I is a chordless 4-cycle. It corresponds to a 4-belt in P .

To prove (b), assume that there is a nontrivial Massey product 〈α, β, γ〉 ∈
H8(ZP ). Then, by Theorem 2.20, the graph K1

P contains an induced subgraph
isomorphic to one of the five graphs in Figure 1. By inspection, each of these five
graphs has a chordless 4-cycle (the outer cycle for the first four graphs, and the left
cycle for the last one). Hence, the polytope P has a 4-belt. �

It is not known whether moment-angle manifolds of polytopes from the Pogorelov
class P have nontrivial Massey products of cohomology classes of dimension > 3 or
of order > 3, or whether these moment-angle manifolds are formal in the sense of
rational homotopy theory. For general polytopes P , there are examples of nontrivial
Massey products of any order in H∗(ZP ), see [34].

Theorem 4.10. Let P be a simple 3-polytope without 4-belts, and assume given a
ring isomorphism H∗(ZP ) ∼= H∗(ZP ′) for another simple 3-polytope P ′. Then P ′

also does not have 4-belts.
It other words, the property of being a 3-polytope without 4-belts is B-rigid.

Proof. This follows from Proposition 4.9 (a). �

Recently Fan, Ma and Wang proved that any polytope P ∈ P is B-rigid, see [27,
Theorem 3.1]. The proof builds upon the following crucial lemma:

Lemma 4.11 ([27, Corollary 3.4]). Consider the set of cohomology classes

T (P ) = {±[uivj ] ∈ H3(ZP ), Fi ∩ Fj = ∅}.

If P ∈ P, then for any cohomology ring isomorphism ψ : H∗(ZP )
∼=−→ H∗(ZP ′), we

have ψ(T (P )) = T (P ′).

Note that the lemma above does not hold for all simple 3-polytopes. For example,
if P is a 3-cube with the pairs of opposite facets {F1, F4}, {F2, F5}, {F3, F6}, then

ZP ∼= S3 × S3 × S3 and there is an isomorphism ψ : H∗(ZP )
∼=−→ H∗(ZP ) which

maps [u1v4] to [u1v4] + [u2v5].
We include the proof of Lemma 4.11 in Appendix C for the reader’s convenience,

and also because some details were missing in the original argument. Note that this
proof uses Theorem 4.8 and Theorem 4.10.

5. Main results

Here we prove the cohomological rigidity for small covers and quasitoric mani-
folds over 3-polytopes from the Pogorelov class P. We start with a crucial lemma.

Lemma 5.1. In the notation of Theorem 2.3, consider the set of cohomology classes

D(M) = {±[vi] ∈ H2(M), i = 1, . . . ,m}.
If P is a 3-polytope from the Pogorelov class P and M ′ is a quasitoric manifold

over P ′, then for any cohomology ring isomorphism ϕ : H∗(M)
∼=−→ H∗(M ′) we

have ϕ(D(M)) = D(M ′). Moreover, the set D(M) is mapped bijectively under ϕ.

Proof. The idea is to reduce the statement to Lemma 4.11. The ring isomorphism

ϕ is determined uniquely by the isomorphism H2(M)
∼=−→ H2(M ′) of free abelian

groups. Let ϕ([vi]) =
∑m
j=1Aij [v

′
j ] for some Aij ∈ Z, 1 6 i, j 6 m. The elements

Aij are not defined uniquely as there are linear relations between the classes [v′j ] in
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H2(M ′). To get rid of this indeterminacy, one can choose a vertex x = Fi1∩Fi2∩Fi3
of P and a vertex x′ = F ′p1 ∩F

′
p2 ∩F

′
p3 of P ′. Then the complementary cohomology

classes [vi] with i /∈ {i1, i2, i3} form a basis in H2(M) and the cohomology classes
[v′p] with p /∈ {p1, p2, p3} form a basis in H2(M ′), so we have

(5.1) ϕ([vi]) =

m∑
p/∈{p1,p2,p3}

Bip[v
′
p], i ∈ [m] \ {i1, i2, i3},

with uniquely defined Bip ∈ Z, i ∈ [m] \ {i1, i2, i3}, p ∈ [m] \ {p1, p2, p3}.
As we have seen in the proof of Proposition 3.5, the isomorphism ϕ gives an

isomorphism ψ : H∗(ZP )
∼=−→ H∗(ZP ′), which is obtained from (3.2) by passing to

the cohomology. We write (3.2) as ϕ̃ : C(P,Λ)
∼=−→ C(P ′, Λ′). This isomorphism is

defined on the exterior generators ui and the polynomial generators vi of the Koszul
algebra C(P,Λ) by the same formulae as ϕ.

Now take a cohomology class [uivj ] ∈ H3(ZP ). By Lemma 4.11, it is mapped
under ψ to an element ε[u′kv

′
l] ∈ H3(ZP ′), ε = ±1. Choose vertices x = Fi1∩Fi2∩Fi3

of P and x′ = F ′p1 ∩ F
′
p2 ∩ F

′
p3 of P ′ such that x /∈ Fi ∪ Fj and x′ /∈ F ′k ∪ F ′l (see

Lemma 4.3). We use the vertices x and x′ to choose bases in the groups H2(M)
and H2(M ′) as described in the first paragraph of the proof. Then we have

ψ[uivj ] =
∑

p,q/∈{p1,p2,p3}

BipBjq[u
′
pv
′
q].

On the other hand, we have ψ[uivj ] = ε[u′kv
′
l] by Lemma 4.11. Hence,

a =
∑

p,q/∈{p1,p2,p3}

BipBjqu
′
pv
′
q − εu′kv′l

is a coboundary in C(P ′, Λ′), so there exists

c =
∑

p,q/∈{p1,p2,p3}, p<q

Lpqu
′
pu
′
q, dc = a.

We have

dc =
∑

p,q/∈{p1,p2,p3}, p<q

Lpq(u
′
qv
′
p − u′pv′q).

Comparing this with the expression for a we obtain the following relations between
the coefficients:

(5.2)

BipBjq = −BiqBjp = −Lpq for p < q and {p, q} 6= {k, l};

BikBjl − ε = −BilBjk =

{
−Lkl if k < l,

Llk if l < k;

BipBjp = 0.

From the third equation of (5.2) we have, for any p ∈ [m]\{p1, p2, p3}, either Bip = 0
or Bjp = 0. The first equation of (5.2) implies that for {p, q} 6= {k, l} the vectors(
Bip
Bjp

)
and

(
Biq
−Bjq

)
are linearly dependent. Hence, for {p, q} 6= {k, l}, either one

of the vectors

(
Bip
Bjp

)
and

(
Biq
Bjq

)
is zero, or both vectors are nonzero and have a

zero entry on the same place. From the second equation BikBjl+BilBjk = ε we see

that both vectors bk =

(
Bik
Bjk

)
and bl =

(
Bil
Bjl

)
are nonzero. If there is a nonzero

vector bp =

(
Bip
Bjp

)
for some p /∈ {k, l}, then by considering the pairs (bp, bk) and
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(bp, bl) we see that both bk and bl have zero on the same place, which contradicts
the second equation of (5.2). It follows that Bip = Bjp = 0 for any p /∈ {k, l}, and(

Bik Bil
Bjk Bjl

)
=

(
Bik 0
0 ε

Bik

)
or

(
Bik Bil
Bjk Bjl

)
=

(
0 Bil
ε
Bil

0

)
.

Since all entries are integer, we have Bik = ±1 and Bil = ±1. Then (5.1) gives
ϕ([vi]) ∈ {±[v′k],±[v′l]}. It follows that ϕ(D(M)) ⊂ D(M ′).

It remains to show that the set D(M) is mapped bijectively under ϕ. For this
we note that [vi] 6= ±[vj ] in H2(M) for any i 6= j. Indeed, by Lemma 4.3 we can
choose a vertex x /∈ Fi ∪ Fj . Then both [vi] and [vj ] belong to a basis of H2(M).
Now, since ϕ is an isomorphism, we also have ϕ([vi]) 6= ±ϕ([vj ]) in H2(M ′). Thus,
both sets D(M) and D(M ′) consist of 2m elements and ϕ(D(M)) = D(M ′). �

It follows from the Steinitz Theorem that any toric manifold of complex dimen-
sion 3 is a quasitoric manifold. Also, the family of quasitoric manifolds agrees with
that of topological toric manifolds in real dimension 6 if we forget the actions.

Now we state the first main result.

Theorem 5.2. Let M = M(P,Λ) and M ′ = M(P ′, Λ′) be quasitoric manifolds
over 3-dimensional simple polytopes P and P ′, respectively. Assume that P belongs
to the Pogorelov class P. Then the following conditions are equivalent:

(a) there is a cohomology ring isomorphism ϕ : H∗(M)
∼=−→ H∗(M ′);

(b) there is a diffeomorphism M ∼= M ′;
(c) there is an equivalence of characteristic pairs (P,Λ) ∼ (P ′, Λ′).

Proof. The implication (b)⇒(a) is obvious. The implication (c)⇒(b) follows from
Proposition 2.21. We need to prove (a)⇒(c).

By Lemma 5.1, ϕ([vi]) = ±[v′σ(i)], where σ is a permutation of the set [m].

Renumbering the facets and multiplying the matrix Λ from the right by a matrix
B as in Definition 2.6, we may assume that ϕ([vi]) = v′i; this does not change
the equivalence class of the pair (P,Λ). Then ϕ[vivj ] = [v′iv

′
j ]. By Corollary 2.4,

[vivj ] = 0 in H∗(M) if and only if Fi ∩ Fj = ∅ and [vivjvk] = 0 in H∗(M) if and
only if Fi ∩ Fj ∩ Fk = ∅ in P , and the same holds for H∗(M ′) and P ′. It follows
that KP is isomorphic to KP ′ . Hence, P and P ′ are combinatorially equivalent.

Now consider the (3 × m)-matrices Λ and Λ′. First, by changing the order of
facets in P and P ′ if necessary we may assume that F1 ∩ F2 ∩ F3 6= ∅ in P and
F ′1 ∩ F ′2 ∩ F ′3 6= ∅ in P ′. Then, by multiplying the matrices Λ and Λ′ from the left
by appropriate matrices from GL (3,Z) we may assume that

Λ =

1 0 0 λ14 · · · λ1m
0 1 0 λ24 · · · λ2m
0 0 1 λ34 · · · λ3m

 , Λ′ =

1 0 0 λ′14 · · · λ′1m
0 1 0 λ′24 · · · λ′2m
0 0 1 λ′34 · · · λ′3m

 .

This does not change the equivalence class of pairs (P,Λ) and (P ′, Λ′). Now the
entries λjk, 4 6 k 6 m, are the coefficients in the expression of [vj ], 1 6 j 6 3, via
the basis [v4], . . . , [vm] of H2(M). The same holds for the λ′jk. Since ϕ([vi]) = v′i, it

follows that λjk = λ′jk. Thus, the pairs (P,Λ) and (P ′, Λ′) are equivalent. �

Remark. Any smooth structure on a quasitoric manifoldM over a polytope P ∈ P is
equivalent to the standard one defined on the canonical model M(P,Λ) via Propo-
sition 2.21. This follows from the general classification results for 6-dimensional
manifolds, see Corollary 6.4.

Corollary 5.3. Toric, quasitoric and topological toric manifolds over polytopes
from the Pogorelov class P are cohomologically rigid.
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The family of quasitoric (or topological toric) manifolds over 3-polytopes from
the Pogorelov class P is large enough, as there is at least one quasitoric manifold
over any such polytope by Proposition 2.8 (recall that it uses the Four Colour The-
orem). There are fewer toric manifolds in this family. In fact, there are no projective
toric manifolds over combinatorial flag 3-polytopes without 4-belts. The reason is
that a Delzant 3-polytope must have at least one triangular or quadrangular face
by the result of C. Delaunay [23] (see also [2]). On the other hand, there are many
non-projective toric manifolds in this family, see [42].

Remark. In general, a (non-equivariant) diffeomorphism M ∼= M ′ does not im-
ply an equivalence of characteristic pairs. For example consider the family of toric
manifolds (Hirzebruch surfaces) Hk = CP (O(k)⊕C), where O(k) is the kth power
of the canonical line bundle over CP 1, C is a trivial line bundle, and CP (−) de-
notes the complex projectivisation. Then each Hk is a quasitoric manifold over a
combinatorial 4-gon with characteristic matrix(

1 0 −1 k
0 1 0 −1

)
.

Manifolds Hk with even k are all diffeomorphic to S2 × S2, but the characteristic
matrices corresponding to different positive k are not equivalent. Similar examples
exist in all dimensions, see e.g. [36].

Our second main result is about small covers (or hyperbolic 3-manifolds).

Theorem 5.4. Let N = N(P,Λ) and N ′ = N(P ′, Λ′) be small covers of 3-
dimensional simple polytopes P and P ′, respectively. Assume that P belongs to
the Pogorelov class P, so N is a hyperbolic 3-manifold of Löbell type. Then the
following conditions are equivalent:

(a) there is a cohomology ring isomorphism ϕ : H∗(N ;Z2)
∼=−→ H∗(N ′;Z2);

(b) there is a diffeomorphism N ∼= N ′;
(c) there is an equivalence of Z2-characteristic pairs (P,Λ) ∼ (P ′, Λ′).

Proof. We only need to prove the implication (a)⇒(c). Using Proposition 2.10 we
upgrade (P,Λ) and (P ′, Λ′) to Z-characteristic pairs and consider the corresponding
quasitoric manifolds M = M(P,Λ) and M ′ = M(P ′, Λ′). Since the cohomology ring
H∗(M ;Z2) is obtained from H∗(N ;Z2) by doubling the grading (see Theorem 2.9),

we have an isomorphism H∗(M ;Z2)
∼=−→ H∗(M ′;Z2). Now the equivalence of char-

acteristic pairs follows from Theorem 5.2 (with coefficients in Z2). �

6. Classification of 6-dimensional manifolds and related problems

The classification of smooth simply connected 6-dimensional manifolds with
torsion-free homology was done in the works of Wall [44] and Jupp [32]. They
also stated a result in the topological category, whose proof was corrected in the
work of Zhubr [45]. The latter work also treated the case of homology with tor-
sion. We only give the following result, which will be enough for our purposes (the
cohomology is with integer coefficients, unless otherwise specified).

Theorem 6.1 ([44], [32]). Let ϕ : H∗(N)
∼=−→ H∗(N ′) be an isomorphism of the

cohomology rings of smooth closed simply connected 6-dimensional manifolds N,N ′

with H3(N) = H3(N ′) = 0. Suppose that

(a) ϕ(w2(N)) = w2(N ′), where w2(N) ∈ H2(N ;Z2) is the second Stiefel–
Whitney class;

(b) ϕ(p1(N)) = p1(N ′), where p1(N) ∈ H4(N) is the first Pontryagin class.

Then the manifolds N and N ′ are diffeomorphic.
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The following lemma is proved using Steenrod squares:

Lemma 6.2 ([17, Lemma 8.1]). Suppose that the ring H∗(N ;Z2) is gener-
ated by Hk(N ;Z2) for some k > 0. Then any cohomology ring isomorphism

ϕ : H∗(N ;Z2)
∼=−→ H∗(N ′;Z2) preserves the total Stiefel–Whitney class, i. e.

ϕ(w(N)) = w(N ′).

Lemma 6.2 applies to toric or quasitoric manifolds, whose cohomology is gener-
ated in degree two. From Theorem 6.1 we obtain

Corollary 6.3. Let ϕ : H2(M)
∼=−→ H2(M ′) be an isomorphism of second coho-

mology groups of 6-dimensional smooth quasitoric manifolds. Suppose that

(a) ϕ preserves the cubic form H2(M)⊗H2(M)⊗H2(M)→ Z = H6(M) given
by the cohomology multiplication;

(b) ϕ preserves the first Pontryagin class.

Then the manifolds M and M ′ are diffeomorphic.

From the topological invariance of rational Pontryagin classes (proved in general
by S. P. Novikov) we obtain

Corollary 6.4. Let M and M ′ be 6-dimensional smooth quasitoric manifolds. If
M and M ′ are homeomorphic, then they are diffeomorphic.

The characteristic classes of quasitoric manifolds are given as follows:

Proposition 6.5 ([22, Corollary 6.7]). In the notation of Theorem 2.3, the total
Stiefel–Whitney and Pontryagin classes of a quasitoric manifold M are given by

w(M) =

m∏
i=1

(1 + vi) mod 2, p(M) =

m∏
i=1

(1 + v2i ).

In particular, w2(M) = v1 + · · ·+ vm mod 2, and p1(M) = v21 + · · ·+ v2m.

Corollary 6.6. A family of 6-dimensional quasitoric manifolds is cohomologically
rigid if any cohomology ring isomorphism between manifolds from the family pre-
serves the first Pontryagin class.

This reduces cohomological rigidity for 6-dimensional quasitoric manifolds M to
a problem of combinatorics and linear algebra, as both the cohomology ring H∗(M)
and the first Pontryagin class p1(M) = v21 + · · ·+ v2m are defined entirely in terms
of the characteristic pair (P,Λ).

Our result on cohomological rigidity for quasitoric manifolds over polytopes from
the Pogorelov class P (Theorem 5.2) gives a complete classification for this particu-
lar class of simply connected 6-manifolds, and its proof is indepenent of the general
classification results of Wall and Jupp. The invariance of the first Pontryagin class
for quasitoric manifolds over polytopes from the Pogorelov class follows directly
from Lemma 5.1. It would be interesting to find a direct (combinatorial?) proof of
this fact. Bott towers (of any dimension) form another family of toric manifolds for
which the invariance of Pontryagin classes is known, see [15].

Remark. In dimension 4 we have the identity 〈p1(M), [M ]〉 = 3 sign(M), where
[M ] ∈ H4(M) is the fundamental class and sign(M) is the signature of M . There-
fore, p1 is invariant under cohomology ring isomorphisms. When M is a toric mani-
fold, the signature is equal to 4−m, wherem is the number of vertices in the quotient
polygon P (see e.g. [11, Example 9.5.3]). The identity 〈p1(M), [M ]〉 = 3 sign(M)
then becomes

〈v21 + · · ·+ v2m, [M ]〉 = 12− 3m,

which can be seen directly from Theorem 2.2.
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Appendix A. Belts in 3-polytopes

Here we give proofs of two combinatorial lemmata on belts in flag 3-polytopes,
originally due to [28] and [27] respectively. These proofs are included mainly for the
sake of completeness, but we also fill in some details missing in the original works.
Lemma A.1 is used in the proof of the product decomposition lemma in Appendix B,
while Lemma A.3 is used in the proof of B-rigidity of the set of canonical generators
of H3(ZP ) in Appendix C.

Recall that a belt in a simple polytope P corresponds to a chordless cycle in
the dual simplicial complex KP , or to a full subcomplex (KP )I isomorphic to the
boundary of a polygon.

Lemma A.1. Let P be a flag simple 3-polytope. Then for every three facets Fi,
Fi′ , Fk with Fi ∩ Fi′ = ∅, there exists a belt B such that Fi, Fi′ ∈ B and Fk /∈ B.

We reformulate this lemma in the dual notation; this is how the lemma was
stated and proved in [28]:

Lemma A.2 ([28, Lemma 6.1]). Let K be a flag triangulation of the disk D2

with m vertices, and let S be the set of vertices of the boundary ∂K. Assume that
KS = ∂K. Then for every missing face {i, i′} of K there exists a subset I ⊂ [m]
such that {i, i′} ⊂ I and KI is a chordless cycle (boundary of a polygon).

To obtain Lemma A.1 from Lemma A.2 we take K = (KP )[m]\{k}, the simplicial
complement to the vertex of KP corresponding to the facet Fk ⊂ P . Then K is
a flag triangulation of D2 (as a full subcomplex in the flag complex KP ), and
KS = ∂K because KP is flag. Lemma A.2 gives a chordless cycle I in K ⊂ KP ,
which corresponds to the required belt in P .

The star and link of a vertex {i} ∈ K are the subcomplexes

starK{i} = {I ∈ K : {i} ∪ I ∈ K}, linkK{i} = {I ∈ K : {i} ∪ I ∈ K, i /∈ I}.

Proof of Lemma A.2. We use the induction on m, the number of vertices of K.
Since K is flag, ∂K has at least 4 vertices, that is, |S| > 4 and m > 5. If m = 5,
then |S| = 4 and K is the cone over a square. Then we can take I = S, as every
missing face of K is contained in the chordless boundary cycle KS = ∂K.

Now assume that the statement holds for simplicial complexes with < m vertices.
If both vertices i and i′ lie in ∂K, then I = S is the required chordless cycle. Hence,
we only need to consider the case {i, i′} 6⊂ S. If |S| > m−1, then there is no missing
face {i, i′} such that {i, i′} 6⊂ S. Hence, |S| < m− 1. For a vertex j ∈ S, denote by
mj the number of vertices in starK{j}. Then mj > 4 for any j ∈ S, since KS = ∂K.

I. Suppose that there is a vertex j ∈ S \ {i, i′} such that mj = 4. Then the set
of vertices of starK{j} is {j, j′, j′′, k}, where j, j′, j′′ ∈ S and k /∈ S, see Figure 2.

j′

k

j

j′′ j′

k

j

j′′

Figure 2. starK{j} and its bistellar 1-move

(i) If there is no vertex k′ ∈ S \ {j, j′, j′′} such that {k, k′} is an edge of K, then
the simplicial complex K′ = K[m]\{j} satisfies the hypothesis of the lemma. Hence,
there is a subset I ′ of [m] \ {j} such that {i, i′} ⊂ I ′ and K′I′ is a chordless cycle.
Then I = I ′ is the required set, as KI′ = K′I′ .
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(ii) Now assume that there exists a vertex k′ ∈ S \ {j, j′, j′′} such that {k, k′}
is an edge in K. Let K′ be the simplicial complex obtained from K by applying
a bistellar 1-move at starK{j}, see Figure 2. Then K′′ := K′[m]\{j} satisfies the

hypothesis of the lemma. By induction, there is a subset I ′′ of [m] \ {j} such that
{i, i′} ⊂ I ′′ and K′′I′′ is a chordless cycle. If j′ or j′′ is not in I ′′, then I = I ′′ is the
required set. If both j′ and j′′ are in I ′′, then I = I ′′ ∪ {j} is the required set.

II. Suppose that mj > 4 for every j ∈ S \ {i, i′}. Let S = {j1, . . . , jn}, ordered
counterclockwise, and assume that j1 /∈ {i, i′}. Let Vjp denote the set of vertices of
starK(jp), so |Vjp | = mjp , for 1 6 p 6 n. Note that if jp ∈ S \ {i, i′}, then mjp > 4
and |Vjp \ S| > 1.

(i) Assume that, for some jp ∈ S \ {i, i′}, there is no edge {k, k′} in K such that

(∗) k ∈ Vjp \ S and k′ ∈ S \ {jp−1, jp, jp+1}, where j0 = jn.

Then K′ := K[m]\{jp} satisfies the hypothesis of the lemma, so we can find the
required subset I of [m] \ {jp}.

(ii) Assume that, for every jp ∈ S \ {i, i′}, there is an edge {kp, jqp} in K sat-
isfying (∗) for k = kp and k′ = jqp . We shall lead this case to a contradiction.
Set I1 = {j1, k1, jq1}. Then KI1 divides K into two simplicial complexes K1 and
K2, where K1 has boundary vertices j1, . . . , jq1 , k1, and K2 has boundary vertices
jq1 , . . . , jn, k1, see Figure 3.

jq1

j1

k1

jq1−1 jq1+1

j2 jn

Figure 3. KI1 divides K into two simplicial complexes.

Since {i, i′} 6⊂ S, either {i, i′}∩{j1, . . . , jq1−1} = ∅ or {i, i′}∩{jq1 , . . . , jn} = ∅.
Without loss of generality, assume that {i, i′} ∩ {j1, . . . , jq1−1} = ∅. Then mjp > 4
for 1 6 p 6 q1 − 1. By the flagness of K and the condition for the existence of an
edge satisfying (∗), there is no vertex k ∈ [m] \ S such that k is connected to the
vertices jp and jp+2 for 1 6 p 6 q1 − 2. This implies in particular that q1 > 3.

Now consider the path from j2 to k2 and to jq2 . If k2 = k1, then we may assume
that jq2 = jq1 . Otherwise, k2 must be contained in the simplicial complex K1. In
either case, the the path j2 − k2 − jq2 is contained in the simplicial subcomplex K1

with boundary vertices j1, . . . , jq1 , k1. Proceeding inductively, we obtain that the
path jp−kp−jqp is contained in the simplicial subcomplex whose boundary vertices
are jp−1, . . . , jqp−1 , kp−1, see Figure 4. It follows that p < qp 6 qp−1 6 · · · 6 q1.
Eventually we obtain p such that qp = p + 2, so the vertex kp is connected to the
vertices jp and jp+2. This is a contradiction.

From I and II, the lemma is proved. �

Lemma A.3 ([27, Lemma 3.2]). Let P be a flag 3-polytope without 4-belts. Then
for every three different facets Fi, Fi′ , Fk with Fi ∩ Fi′ = ∅ there is a belt B such
that Fi, Fi′ ∈ B, Fk /∈ B, and Fk does not intersect at least one of the two connected
components of B \ {Fi, Fi′}.
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jp

jp−1

kp−1

jqp−1

Figure 4. The path jp − kp − jqp is contained in the above sim-
plicial complex.

Proof. We work with the dual simplicial complex K = KP , which is a triangulated
2-sphere. We need to find a subset I ⊂ [m] \ {k} such that {i, i′} ⊂ I, KI is a

chordless cycle, and H̃0(K(I\{i,i′})∪{k}) 6= 0. By Lemma A.2, there is a subset I0
of [m] \ {k} such that {i, i′} ⊂ I0 and KI0 is a chordless cycle. We construct the
required subset I by modifying I0.

i

i′

KI0

i

i′

X̃ Ỹk

Kin

Kout
i

i′

X Y
k

Figure 5. Examples of KI0 , Kin, Kout, X̃, Ỹ , X and Y

Since KI0 is a cycle, it divides K into two polygons (triangulated discs) Kin and
Kout with the common boundary KI0 . Assume that the vertex k is contained in Kin.

The vertices i and i′ divide the cycle KI0 into two arcs, and we denote by X̃ and

Ỹ the sets of vertices in I0 \ {i, i′} contained in these arcs, so I0 \ {i, i′} = X̃ t Ỹ .

We set X = linkK{k} ∩ X̃ and Y = linkK{k} ∩ Ỹ , see Figure 5. If either X or Y

is empty, then H̃0(K(I0\{i,i′})∪{k}) 6= 0, so I = I0 is the required subset. In what
follows we assume that both X and Y are nonempty.

We consider the links of all x ∈ X in Kout. Since KI0 is a chordless cycle,
every such link has at least three vertices, that is, there is a vertex in linkKout{x}
which is not in I0. To simplify notation, for X ⊂ [m], we write linkKX instead of⋃
x∈X linkK{x}. Now define

KX := the full subcomplex of K induced on the set X̃ ∪ {i, i′} ∪ linkKout X.

We take the outermost path PX between i and i′ in KX with respect to the vertex k,
so that all vertices of KX not in PX are on the side of k, see Figure 6. Let IX be
the vertex set of PX .

i

i′

k

linkKout X

i

i′

KX

i

i′

k

The gray thick path is PX .

Figure 6. Examples of KX and PX
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Claim. The full subcomplex of K induced on IX is the path PX , i.e., KIX = PX .

Proof of Claim. Suppose to the contrary that there is a subset {p, q, r} of I1
such that K{p,q,r} is a triangle. Consider the intersection {p, q, r} ∩ X̃. Note that

|{p, q, r} ∩ X̃| < 3 because KX̃ is a part of a chordless cycle KI0 . We have the
following cases, shown in Figure 7.

p

q

r

x

(1)

p

q

r

x

x′

(2)-(a)

p

q

r

x

(2)-(b)

p

q

r

x′

x′′

x

(3)-(a)

p

q

r

x′

x

(3)-(b)

Figure 7. KX has no triangle.

(1) If |{p, q, r}∩ X̃| = 2, say {p, q, r}∩ X̃ = {p, q}, then p and q are consecutive
vertices in X, and r is in linkKout{x} for some x ∈ X. Then, p or q is on
the side of k in KX . This is a contradiction.

(2) If |{p, q, r} ∩ X̃| = 1, say {p, q, r} ∩ X̃ = {p}, then q ∈ linkK2
x and r ∈

linkK2
{x′} for some x, x′ ∈ X.

(a) If x 6= x′, then p must be on the side of k in KX , which contradicts
the assumption that p ∈ PX .

(b) If x = x′, then either q or r is on the side of k in KX , and we obtain
a contradiction again.

(3) If |{p, q, r}∩X̃| = 0, then there are x, x′, x′′ in X such that p ∈ linkKout
{x},

q ∈ linkKout
{x′}, and r ∈ linkKout

{x′′}. Since p, q, r are in the outermost
path PX , the case x = x′ = x′′ is impossible. Hence, we may assume that
x 6= x′ or x 6= x′′.

(a) If x, x′, x′′ are all distinct, then one of p, q, and r must be on the side
of k in KX , which contradicts the assumption that p, q, r are on PX
and PX is the outermost path with respect to k.

(b) If x′ = x′′, then either q or r is on the side of k in KX . This final
contradiction finishes the proof of the claim. �

We return to the proof of Lemma A.3. The endpoints of the path PX = KIX are
i, i′ and there is no edge connecting k and IX . Therefore, if KIX∪Ỹ is a chordless

cycle, then IX ∪ Ỹ is the required set I.
Suppose that KIX∪Ỹ has a chord. Then the chord must be an edge in Kout.

Note that since K has no chordless 4-cycles, there is no edge connecting linkKout
X

and Y . We consider the vertices x+ ∈ X and x− ∈ X that are closest to i and i′,

respectively, on the arc containing X̃. Similarly, consider the vertices y+ ∈ Y and

y− ∈ Y that are closest to i and i′, respectively, on the arc containing Ỹ . Denote by

X+ the subset of vertices in X̃ lying strictly between i and x+. Define the subsets

X− ⊂ X̃, Y+ ⊂ Ỹ and Y− ⊂ Ỹ similarly. See Figure 8, left.
We consider two cases.

Case 1. There is no edge connecting IX and Y− ∪ Y+ in Kout.
We define

KY := the full subcomplex of K induced on Ỹ ∪{i, i′}∪ linkKin(Ỹ \(Y ∪Y−∪Y+)).
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i

i′

k

x+

x−

y+

y−

linkKin(Ỹ \ (Y ∪ Y− ∪ Y+))

i

i′

y+

y−

KY

i

i′

k

i

i′

y+

y−

The gray thick path is PY .

Figure 8. Example of Case 1

We take the innermost path PY connecting i and i′ in KY with respect to k, see
Figure 8, and let IY be the vertex set of PY . Then KIY = PY by the same argument
as the claim above, and IX ∪ IY is the required subset I.

x+

i

i′

y+
k

x− y−

i

i′

y+

y−

K+
Y and P+

Y

x+

i

i′
x−

K+
X and P+

X

Figure 9. Example of Case 2

Case 2. There is an edge connecting IX and Y+ or Y− in Kout.
Suppose that IX is connected by an edge in Kout to only one of Y+ and Y−, say

to Y+. We define

K+
Y = the full subcomplex of K induced on Ỹ ∪ {i, i′} ∪ linkKin

(Ỹ \ (Y ∪ Y−)).

We take the innermost path P+
Y connecting i and i′ in Kin with respect to the

vertex k, and let I+Y be the vertex set of P+
Y . See Figure 9, middle. Then KI+Y = P+

Y

by the same reason as the claim above. If KIX∪I+Y is a chordless cycle, then IX ∪ I+Y
is the required subset I.

If KIX∪I+Y has a chord, then it must be an edge in Kin connecting linkKin Y+ and

X+ ∩ IX . In this case we modify IX as follows. We define

K+
X := the full subcomplex of K induced on X̃ ∪ {i, i′} ∪ linkKout(X ∪X+).

We take the outermost path P+
X connecting i and i′ in K+

X with respect to the

vertex k, see Figure 9, right. Let I+X be the vertex set of P+
X . Then KI+X = P+

X by

the same argument as the claim above, and we can see that I+X ∪ IY is the required
subset I. Indeed, we only need to check that there is no edge connecting linkKout

X+

and Y in Kout. This is because there is an edge connecting IX and Y+.

It remains to consider the case when IX is connected to both Y+ and Y− by
edges in Kout. Here the same argument as above works if we consider

K±Y := the full subcomplex of K induced on Ỹ ∪ {i, i′} ∪ linkKin
(Ỹ \ Y )

and

K±X := the full subcomplex of K induced on X̃ ∪ {i, i′} ∪ linkKout
(X ∪X+ ∪X−)

instead of K+
Y and K+

X , respectively. �
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Appendix B. Proof of Lemma 4.6.

Here we give a proof which is different from the original proof of [28]. It uses a
reformulation of the description of product in the cohomology of a moment-angle
complex (Theorem 2.17) in terms of the polytope P . A detailed description of this
approach can be found in [9, §5.8].

We need to prove that the product map

(B.1)
⊕

I=I1tI2

H̃0(KI1)⊗ H̃0(KI2)→ H̃1(KI)

is surjective for any flag 3-polytope P and I ⊂ [m]. We first restate this in terms of
the polytope P rather than its dual simplical complex K. The decomposition of ∂P
into facets F1, . . . , Fm defines a cell decomposition of ∂P which is Poincaré dual to
the simplicial decomposition K. The two decompositions have the same barycentric
subdivision, (∂P )′ ∼= K′. We identify the set of facets {F1, . . . , Fm} with [m], and
for each I ⊂ [m] define

PI =
⋃
i∈I

Fi ⊂ ∂P.

Note that PI is the combinatorial neighbourhood of (KI)′ in K′, so there is a

deformation retraction PI
'−→ KI . We have Poincaré duality isomorphisms

(B.2) H2−i(PI , ∂PI) ∼= Hi(KI), i = 0, 1, 2,

where the boundary ∂PI consists of points x ∈ PI such that x ∈ Fj for some j /∈ I.
Topologically, PI is a disjoint union of several discs with holes, and ∂PI is a disjoint
union of edge cycles.

The cellular homology groups Hi(PI , ∂PI) have the following description. Let
PI = PI1 t · · · t PIs be the decomposition into connected components. Then

(a) H2(PI , ∂PI) is a free abelian group with basis of homology classes [PIk ] =∑
i∈Ik [Fi], k = 1, . . . , s;

(b) H1(PI , ∂PI) =
s⊕

k=1

H1(PIk , ∂PIk), where H1(PIk , ∂PIk) is a free abelian

group of rank one less the number of cycles in ∂PIk . A basis ofH1(PIk , ∂PIk)
is given by any set of edge paths in PIk connecting one fixed boundary cycle
with the other boundary cycles.

As the product map (B.1) is stated in terms of the reduced cohomology groups

H̃i(KI), we introduce the corresponding “reduced” homology groups

Ĥi(PI , ∂PI) =

{
Hi(PI , ∂PI), i = 0, 1;

H2(PI , ∂PI)
/(∑

i∈I [Fi]
)
, i = 2.

Then we can rewrite (B.2) as

(B.3) Ĥ2−i(PI , ∂PI) ∼= H̃i(KI), i = 0, 1, 2.

With this interpretation in mind, we can rewrite the product map (B.1) as the
“intersection pairing”

(B.4)

⊕
I=I1tI2

Ĥ2(PI1 , ∂PI1)⊗ Ĥ2(PI2 , ∂PI2)→ Ĥ1(PI , ∂PI),

[PIp1 ]⊗ [PIq2 ] 7→ [PIp1 ∩ PIq2 ] = [γ1] + · · ·+ [γr],

where PIp1 is a connected component of PI1 , PIq2 is a connected component of PI2 ,
and γ1, . . . , γr are edge paths in P which form the connected components of the
intersection PIp1 ∩PIq2 . (There is a sign involved in the transition from (B.1) to (B.4),

but it does not affect our subsequent considerations.)
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Proof of Lemma 4.6. To see that (B.4) is surjective for a flag 3-polytope P , we recall

that Ĥ1(PI , ∂PI) =
s⊕

k=1

Ĥ1(PIk , ∂PIk) and consider for each connected component

PIk of PI the decomposition ∂PIk = η1 t · · · t ηtk into boundary cycles. We may

assume that tk > 2, as otherwise PIk is a disc and Ĥ1(PIk , ∂PIk) = 0. For each pair
of boundary cycles ηp and ηq among η1, . . . , ηtk , we shall decompose the generator

gpq of Ĥ1(PIk , ∂PIk) corresponding to an edge path from ηp to ηq into a product

of elements of Ĥ2(PI1 , ∂PI1) and Ĥ2(PI2 , ∂PI2), I1 t I2 = I. This will prove the
surjectivity of (B.4).

We choose facets Fp and Fq in ∂P \ PIk adjacent to ηp and ηq respectively, see
Figure 10. By Lemma A.1, there is a belt B = (Fj1 , . . . , Fjl) with Fj1 = Fp and

Fq

Fp

P
Ik

b

B1

γ1

γ2

γ3

a

a a
B1

p

p

q

r

Figure 10. A belt crossing a disc with holes.

Fjr = Fq, where 3 6 r 6 l − 1. Let B1 = (Fj1 , . . . , Fjr ) be a part of the belt
between Fp and Fq (there are two such parts, and we can take any of them). The
complement ∂P \ B is a union of two open discs. We denote the closures of these
discs by W1 and W2; each of them is a union of facets not in B. Now set

I1 = {i : Fi ∈ PIk ∩ B}, I2 = I \ I1,

a =
∑

Fi∈PIk
∩B1

[Fi] ∈ Ĥ2(PI1 , ∂PI1), b =
∑

Fj∈PIk
∩W1

[Fj ] ∈ Ĥ2(PI2 , ∂PI2).

Then a · b = [γ1] + · · · + [γs] ∈ H1(PI , ∂PI), where each γi is an edge path in PIk
that begins at some boundary cycle ηji−1 and ends at ηji . We may assume that γ1
begins at ηp and γs ends at ηq (where ηp, ηq is the pair of boundary cycles chosen

above). The homology class [γ1] + · · · + [γs] ∈ Ĥ1(PI , ∂PI) is then equal to the

chosen generator gpq of Ĥ1(PIk , ∂PIk) corresponding to an edge path from ηp to
ηq. We have therefore decomposed gpq into a product a · b, as needed. �

Appendix C. Proof of Lemma 4.11

The proof uses the combinatorial result of Lemma A.3 and an algebraic “anni-
hilator lemma” of Fan, Ma and Wang.
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Recall that the annihilator of an element r in a ring R is defined as

AnnR(r) = {s ∈ R : rs = 0}.

Lemma C.1 ([27, Lemma 3.3]). Let P be a 3-polytope from the Pogorelov class P,
with the dual complex K = KP . Let R = H∗(ZP ; k), where k is a field. In the
notation of Lemma 4.11, consider a k-linear combination of elements of T (P ),

α =
∑
{i,j}/∈K

rij [uivj ]

with at least two nonzero rij ∈ k. Then, for any {k, l} such that rkl 6= 0,

dim AnnR[ukvl] > dim AnnR α.

Proof. In view of the isomorphisms (B.3), we can rewrite the isomorphism of The-
orem 2.17 as

R = H∗(ZP ) ∼=
⊕
I⊂[m]

Ĥ∗(PI , ∂PI)

(we omit the coefficient field k in the notation for homology).
Take a complementary subspace Lkl to AnnR[ukvl] in R, so that Lkl ⊕

AnnR[ukvl] = R. For any β ∈ Lkl \ {0} we have β · [ukvl] 6= 0. Furthermore, we can
choose Lkl respecting the multigrading, so that the Ith multigraded component

of Lkl is a complementary subspace to AnnR[ukvl] ∩ Ĥ∗(PI , ∂PI) in Ĥ∗(PI , ∂PI).
Then we can write β =

∑
I⊂[m]\{k,l} βI , where βI denotes the Ith multigraded

component of β ∈ Lkl \ {0}. (Note that βI = 0 whenever I ∩ {k, l} 6= ∅, as such βI
would annihilate [ukvl].) We can choose I ⊂ [m] \ {k, l} such that βI · [ukvl] 6= 0.
Now consider α =

∑
rij [uivj ]. We claim that the (I ∪ {k, l})th multigraded com-

ponent of β · α consists of βI · [ukvl] only. Indeed, for any other component βI′ of
β with I ′ 6= I and any summand rij [uivj ] of α, we have I ′ ∪ {i, j} 6= I ∪ {k, l}, as
I ′ ∈ [m] \ {k, l}. Then (β · α)I∪{k,l} = βI · [ukvl] 6= 0. Hence, Lkl ∩ AnnR α = {0},
which implies that dim AnnR[ukvl] > dim AnnR α.

In order to show that the strict inequality holds, we shall find an element ξ ∈
AnnR[ukvl] such that (Lkl ⊕ 〈ξ〉) ∩ AnnR α = {0}. Take a summand rst[usvt] of α
different from rkl[ukvl]. That is, {s, t} 6= {k, l} and rst 6= 0. We can assume without
loss of generality that l /∈ {s, t}. By Lemma A.3, there is a belt B in P such that
Fs, Ft ∈ B, Fl /∈ B, and Fl does not intersect one of the two connected components
B1 and B2 of B \ {Fs, Ft}, say B1. In the dual language, there is a chordless cycle
C in KP such that s, t ∈ C, l /∈ C, and the vertex l is not joined by an edge to any
vertex of the connected component L1 of C \ {s, t}.

Now we observe that C \ {s, t} is a full subcomplex of KP and take ξ to be the

cohomology class in R = H∗(ZP ) given by a generator of H̃0(C \{s, t}) ∼= Z. Such a
generator is represented by the 0-cocycle

∑
i∈L1

α{i} (see Example 2.19). We have

ξ · [ukvl] = 0 because we can write ξ =
∑
i∈L1
±[uJivi] (see Example 2.19) and

vivl = 0 for any i ∈ L1 by the choice of the cycle C. On the other hand, the product

ξ · [usvt] corresponds to a generator of H̃1(C) ∼= Z. Therefore, ξ ∈ AnnR[ukvl] and
ξ ·α 6= 0 (the latter is because the multigraded component of ξ ·α corresponding to C
is ξ · rst[usvt] 6= 0). Take β =

∑
I⊂[m]\{k,l} βI ∈ Lkl \{0} and choose I ⊂ [m]\{k, l}

such that (β · α)I∪{k,l} = βI · rkl[ukvl] 6= 0, as in the beginning of the proof. The
multigrading of ξ does not contain l, so we have (ξ ·α)I∪{k,l} = ξ · rjl[ujvl] for some
j ∈ [m]. Now, ξ · rjl[ujvl] = 0 because ξ =

∑
i∈L1
±[uJivi] and vivl = 0 for any i ∈

L1, as i and l are not joined by an edge. Hence, ((β+ξ)·α)I∪{k,l} = (β ·α)I∪{k,l} 6= 0.
Thus, (β + ξ) · α 6= 0 and we have proved that (Lkl ⊕ 〈ξ〉) ∩ AnnR α = {0}. This
implies that dim AnnR[ukvl] > dim AnnR α. �
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Proof of Lemma 4.11. We are given a 3-polytope P from the Pogorelov class P and

a ring isomorphism ψ : R = H∗(ZP )
∼=−→ H∗(ZP ′) = R′. We defined the set

T (P ) = {±[uivj ] ∈ H3(ZP ), Fi ∩ Fj = ∅},

and the corresponding set for P ′,

T (P ′) = {±[u′iv
′
j ] ∈ H3(ZP ′), F ′i ∩ F ′j = ∅}.

We need to show that ψ(T (P )) = T (P ′), in other words, ψ([upvq]) = ±[u′rv
′
s]. We

first use Theorems 4.8 and 4.10 to conclude that P ′ also belongs to the class P.
Now suppose that ψ([upvq]) = α′ =

∑
rij [u

′
iv
′
j ] with at least two nonzero rij . We

are then in the situation of Lemma C.1, which we can apply to P ′. We obtain
that dim AnnR′ α

′ < dim AnnR[u′kv
′
l] for any nonzero summand rkl[u

′
kv
′
l] of α′.

Considering the inverse isomorphism ψ−1 : R′ → R, we can choose [u′kv
′
l] such that

ψ−1([u′kv
′
l]) = α =

∑
rab[uavb] where [upvq] appears in the latter sum. As an

isomorphism preserves the dimension of the annihilator subspace, we obtain

dim AnnR[upvq] = dim AnnR′ α
′ < dim AnnR[u′kv

′
l] = dim AnnR α

< dim AnnR[upvq],

which is a contradiction. It follows that ψ([upvq]) is a multiple of a single [u′rv
′
s].

Since ψ is an isomorphism over Z, we have ψ([upvq]) = ±[u′rv
′
s]. �
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