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Abstract. Given a semisimple complex linear algebraic group G and a lower
ideal I in positive roots of G, three objects arise: the ideal arrangement AI ,
the regular nilpotent Hessenberg variety Hess(N, I), and the regular semisimple
Hessenberg variety Hess(S, I). We show that a certain graded ring derived from
the logarithmic derivation module of AI is isomorphic to H∗(Hess(N, I)) and
H∗(Hess(S, I))W , the invariants in H∗(Hess(S, I)) under an action of the Weyl
group W of G. This isomorphism is shown for general Lie type, and generalizes
Borel’s celebrated theorem showing that the coinvariant algebra ofW is isomorphic
to the cohomology ring of the flag variety G/B.

This surprising connection between Hessenberg varieties and hyperplane ar-
rangements enables us to produce a number of interesting consequences. For
instance, the surjectivity of the restriction map H∗(G/B) → H∗(Hess(N, I)) an-
nounced by Dale Peterson and an affirmative answer to a conjecture of Sommers-
Tymoczko are immediate consequences. We also give an explicit ring presentation
of H∗(Hess(N, I)) in types B, C, and G. Such a presentation was already known
in type A or when Hess(N, I) is the Peterson variety. Moreover, we find the vol-
ume polynomial of Hess(N, I) and see that the hard Lefschetz property and the
Hodge-Riemann relations hold for Hess(N, I), despite the fact that it is a singular
variety in general.

1. Introduction

In this paper we study Hessenberg varieties and hyperplane arrangements. Hes-
senberg varieties are subvarieties of a flag variety. Their geometry and (equivariant)
topology have been studied extensively since the late 1980s ([12, 13]). This subject
lies at the intersection of, and makes connections between, many research areas such
as geometric representation theory, combinatorics, algebraic geometry, and topology
(see the references in [2]). More recently, a remarkable connection to graph theory
has been found ([36]). Hyperplane arrangements are collections of finitely many
hyperplanes. Although these are conceptually simple objects, it is a subject actively
studied from various viewpoints such as algebraic geometry, topology, representa-
tion theory, combinatorics, statistics, and so on (cf. for example [3, 30, 41, 42, 48]).
These two objects – Hessenberg varieties and hyperplane arrangements – may seem
unrelated at first glance, but our results connect their topology and algebra.
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In the following, all cohomology groups will be taken with real coefficients unless
otherwise specified but the results actually hold with rational coefficients under
suitable modification.

We begin with a prototype of our results. Let G be a semisimple complex linear
algebraic group of rank n, B a Borel subgroup, and T the maximal torus in B. Let
T̂ be the group of characters of T and R the symmetric algebra Sym(T̂ ⊗ R) of

T̂ ⊗ R, where T̂ is regarded as an additive group. The Weyl group W of G acts on
T̂ and R. To each α ∈ T̂ , one can associate a complex line bundle Lα over the flag
variety G/B; assigning its Euler class e(Lα) to α induces a ring homomorphism

(1.1) φ : R = Sym(T̂ ⊗ R) → H∗(G/B)

which doubles the grading on R. Borel’s celebrated theorem [7] states that φ is
surjective and its kernel is the ideal (RW

+ ) generated by the W -invariants in R with
zero constant term, so that φ induces an isomorphism

R/(RW
+ ) ∼= H∗(G/B).

The ideal (RW
+ ) also appears in the study of hyperplane arrangements. Let t

denote the vector space dual to T̂ ⊗ R, so that T̂ ⊗ R = t∗. We may think of t as
the Lie algebra of the maximal compact torus in T . A root of G is a linear function
on t and the hyperplane arrangement

AΦ+ := {kerα | α ∈ Φ+} (Φ+: the set of positive roots of G)

is called the Weyl arrangement. The logarithmic derivation R-module D(AΦ+) of
AΦ+ (geometrically speaking, this consists of polynomial vector fields on t tangent
to AΦ+) is defined in R⊗ t. Then for a W -invariant non-degenerate quadratic form
Q ∈ RW , the ideal {θ(Q) | θ ∈ D(AΦ+)} turns out to be the ideal (RW

+ ). See
Theorem 3.9 for details.

Our aim in this paper is to generalize the phenomenon described above. For that
we need one more piece of data: a lower ideal in Φ+, that is, a lower closed subset
of Φ+ with respect to the usual partial order on Φ+. To such a lower ideal I of Φ+,
we associate the ideal arrangement AI of I, defined to be the subarrangement

AI := {kerα | α ∈ I}

of AΦ+ . Then a graded ideal of R, denoted by a(I), can be defined for AI similarly
for AΦ+ , i.e.,

a(I) := {θ(Q) | θ ∈ D(AI)}.
In particular, a(Φ+) = (RW

+ ). The ideal a(I) plays a key role in our argument and
will be discussed in a more general setup in [4].

On the other hand, Hessenberg varieties are defined as follows. Let g (resp. b)
be the Lie algebra of G (resp. B) and gα the root space of a root α. The subspace
H(I) = b ⊕ (

⊕
α∈I g−α) of g is b-stable and, for X ∈ g, the Hessenberg variety

Hess(X, I) is defined by

Hess(X, I) := {gB ∈ G/B | Ad(g−1)(X) ∈ H(I)}.
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When I is empty (soH(I) = b) andX is nilpotent, Hess(X, I) is the famous Springer
variety (or Springer fiber) and has been studied by many people in connection with
geometric representation theory (see e.g. the survey article [47]).

The Hessenberg variety Hess(X, I) is called regular nilpotent (resp. regular
semisimple) if X is regular nilpotent (resp. regular semisimple). These two cases
have been much studied in recent research on Hessenberg varieties. In particular,
affine pavings have been constructed in these cases, from which it follows that their
odd degree cohomology groups vanish, and their even degree Betti numbers are well
understood ([12, 31, 44]). However, their cohomology ring structures are not well
understood in general. In this paper we show that the study of these cohomology
rings is closely related to the logarithmic derivation modules of hyperplane arrange-
ments. This surprising connection enables us to produce a number of interesting
consequences and provides a systematic method to give an explicit presentation of
the cohomology ring of a regular nilpotent Hessenberg variety. Moreover, our argu-
ment is independent of Lie type, i.e., we do not use the classification of root systems
except in the explicit computation of the ring structure for specific Lie types.

First we treat the nilpotent case. We denote by N a regular nilpotent element of
g. Since the regular nilpotent Hessenberg variety Hess(N, I) is a subvariety of G/B,
φ in (1.1) followed by the restriction map yields a homomorphism

φI : R → H∗(Hess(N, I))

which doubles the grading on R. Our first main theorem is the following.

Theorem 1.1. The map φI is surjective and its kernel is a(I). Hence φI induces
an isomorphism

R/a(I) ∼= H∗(Hess(N, I)).

When I = Φ+, Theorem 1.1 is nothing but Borel’s isomorphism between the
coinvariant ring and H∗(G/B) mentioned above. Theorem 1.1 has two important
corollaries. One is Corollary 1.2 below, which was announced by Dale Peterson (see
[8, Theorem 3]).

Corollary 1.2. The restriction map H∗(G/B) → H∗(Hess(N, I)) is surjective and
H∗(Hess(N, I)) is a complete intersection, and in particular, is a Poincaré duality
algebra. Moreover, the Poincaré polynomial of Hess(N, I) is given by the product
formula

(1.2) Poin(Hess(N, I),
√
q) =

∏
α∈I

1− qht(α)+1

1− qht(α)
,

where ht(α) denotes the sum of the coefficients of α over the simple roots.

The other corollary is an affirmative answer to the first conjecture in [37] by
Sommers-Tymoczko. The ideal arrangement AI is known to be free, that is, the
logarithmic derivation R-module D(AI) is free as a graded R-module. The free R-
module D(AI) has n homogeneous generators, where n is the rank of G, and their
(polynomial) degrees are called the exponents of AI . See §2.1 for details.
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Corollary 1.3. Let WI be the subsets of I of Weyl type (see §6) and let dI1, . . . , d
I
n

be the exponents of AI . Then

(1.3)
∑

Y ∈WI

q|Y | =
n∏

i=1

(1 + q + · · ·+ qd
I
i ).

Corollary 1.3 can be obtained by computing the Poincaré polynomial of Hess(N, I)
in two ways. Indeed, the left hand side of (1.3) is obtained from the affine paving
of Hess(N, I) ([31, 44]) while the right hand side of (1.3) agrees with (1.2).

Next we treat the semisimple case. We denote by S a regular semisimple element
of g. The regular semisimple Hessenberg variety Hess(S, I) has different features
from Hess(N, I). For instance, Hess(S, I) is smooth and invariant under the T -action
on G/B, while Hess(N, I) is in general neither. Moreover, the homomorphism

ψI : R → H∗(Hess(S, I))

obtained from φ in (1.1) followed by the restriction map is not surjective. In general
Hess(S, I) does not have a natural action of the Weyl group W , but the cohomology
H∗(Hess(S, I)) does admit a natural W -action, as noticed by Tymoczko [45] (in
type A). Indeed, Hess(S, I) is a GKM manifold and its associated GKM graph has
an action of W and it induces a linear action of W on H∗(Hess(S, I)). Our second
main theorem is the following.

Theorem 1.4. The image of ψI is the ring of W -invariants H∗(Hess(S, I))W and
the kernel of ψI is a(I). Hence ψI induces an isomorphism

R/a(I) ∼= H∗(Hess(S, I))W .

Theorems 1.1 and 1.4 (and Corollary 1.2) imply that there exists an isomorphism
between H∗(Hess(N, I)) and H∗(Hess(S, I))W which makes the following diagram
commute:

H∗(G/B)

vvnnnnnnnnnnnn

((QQQQQQQQQQQQ

H∗(Hess(N, I))
∼= // H∗(Hess(S, I))W

where the slanting arrows are restriction maps which are surjective. We note that
when I consists of all simple roots, Hess(N, I) is called the Peterson variety and
Hess(S, I) is a toric variety, and in this case the isomorphism betweenH∗(Hess(N, I))
andH∗(Hess(S, I))W can be observed from their explicit ring presentations ([19, 27]).
The isomorphism is also known in type A for any I, as was shown in [2]. In fact, in
[2] the authors find an explicit ring presentation of H∗(Hess(N, I)) in type A and
construct the isomorphism explicitly using it. In constrast, in this manuscript, our
result holds for any type and any I, our proofs do not depend on the classification
of Lie types, and we do not need an explicit ring presentation of H∗(Hess(N, I)) in
order to show the above isomorphism.

The graded ring R/a(I) is a complete intersection, so that a(I) is generated by n
homogeneous elements that come from an R-basis of D(AI). Another advantage of
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our approach is that one can check whether n elements in D(AI) form generators
using Saito’s criterion for the freeness of logarithmic derivation modules. In fact, we
carry out this idea and find explicit generators of a(I) in types B, C, and G, so that
we obtain an explicit ring presentation of H∗(Hess(N, I)) in these Lie types. Such a
presentation was known in type A ([2]) or when Hess(N, I) is the Peterson variety
([14, 19]). Our method is also applicable to these cases and reproves their results.

The organization of this paper is as follows. In §2 we collect some general results
and notions on hyperplane arrangements, commutative algebra, and equivariant
cohomology. In §3 we mention our setting, give the precise definition of the ideal
a(I), and recall some results on hyperplane arrangements and Hessenberg varieties
necessary for our purposes. In §4 we describe the Hilbert series of R/a(I) in terms
of the ideal exponents of AI and prove a key property which the ideals a(I) satisfy.
In §5 we study regular nilpotent Hessenberg varieties using equivariant cohomology.
We introduce the ideal n(I) for each I and show that those ideals satisfy similar
properties to a(I)’s. In §6 we study the relation between the setWI of the Weyl type
subsets of I and chambers of the ideal arrangement AI . In §7 we prove Theorem 1.1
by showing that n(I) = a(I) and deduce a few corollaries, especially the affirmative
answer to the conjecture by Sommers-Tymoczko. We study regular semisimple
Hessenberg varieties using GKM theory in §8, and prove Theorem 1.4 in §9. In §10
we give explicit generators of a(I) in types B, C, and G. Those explicit generators
are analogs of the generators in type A found by [2]. In §11 we find the volume
polynomial of Hess(N, I), i.e., the polynomial on t whose annihilator in the ring of
differential operators can be identified with a(I). In §12 we will see that the hard
Lefschetz property and the Hodge-Riemann relations hold for Hess(N, I) although
it is a singular variety in general.
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Research (B) 16H03924. The second author is partially supported by JSPS Grant-
in-Aid for JSPS Fellows 15J09343. The third author is partially supported by JSPS
Grant-in-Aid for Scientific Research (C) 16K05152.

2. Preliminaries

In this section we collect some results and review some notions on hyperplane
arrangements, commutative algebra, and equivariant cohomology, which will be used
throughout this paper.

2.1. Hyperplane arrangements. In this subsection we review definitions and re-
sults on hyperplane arrangements. For general reference, see [30].

Let V be a finite dimensional real vector space and let A be a hyperplane
arrangement in V , i.e., a finite set of linear hyperplanes in V . Let M(A) :=
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V \
∪

H∈AH and define the set of chambers C(A) of A by

C(A) := {connected components of M(A)}.
The polynomial π(A, t) := Poin(M(A)⊗RC, t) is called the Poincaré polynomial
of A. It is well-known that |A| coincides with the coefficient of t in π(A, t), and
π(A, t) depends only on the combinatorial structure of A, see [29] for details. Now
let us introduce several results used for the proofs of main results in this paper. The
following is a well-known counting result of chambers by Zaslavsky.

Theorem 2.1 ([48]). |C(A)| = π(A, 1).
Let R be the symmetric algebra Sym(V ∗) of V ∗ the dual space to V . An element

of V is a linear function on V ∗ and extends to a derivation on R:

v(fg) = v(f)g + fv(g) for v ∈ V, f, g ∈ R.

We then define the R-module of derivations on R by

DerR := R⊗ V.

Choosing a linear coordinate system x1, . . . , xn on V , i.e., x1, . . . , xn is a basis for
V ∗, DerR can be expressed as

⊕n
i=1R(∂/∂xi). A nonzero element θ ∈ DerR is

homogeneous of (polynomial) degree d if θ =
∑ℓ

k=1 fk ⊗ vk (fk ∈ R, vk ∈ V ) and all
non-zero fk’s are of degree d.

For each H ∈ A, let αH ∈ V ∗ be the defining linear form of H. The logarithmic
derivation module D(A) of A is a graded R-module defined by

D(A) := {θ ∈ DerR | θ(αH) ∈ RαH (∀H ∈ A)}.
In general D(A) is reflexive but not necessarily free. We say that A is free with
exp(A) = (d1, . . . , dn) if D(A) is a free R-module with homogeneous basis θ1, . . . , θn
of degree d1, . . . , dn.

Theorem 2.2 (Terao’s factorization, [42]). Let A be free with exp(A) = (d1, . . . , dn).
Then π(A, t) =

∏n
i=1(1+dit). In particular, |C(A)| =

∏n
i=1(1+di) by Theorem 2.1.

We finally recall the following well-known criterion for bases of logarithmic deriva-
tion modules of arbitrary hyperplane arrangement.

Theorem 2.3 (Saito’s criterion, [34], see also [30]). Let A be a hyperplane ar-
rangement in V and let θ1, . . . , θn ∈ D(A) be homogeneous derivations. Then
θ1, . . . , θn form an R-basis for D(A) if and only if θ1, . . . , θn are R-independent
and

∑n
i=1 deg θi = |A|.

2.2. Poincaré duality algebras and complete intersections. Here we intro-
duce some basic algebraic properties of Poincaré duality algebras and complete in-
tersections.

A graded R-algebra A = R/a is Artinian if dimRA < ∞. Let A = A0 ⊕ A1 ⊕
· · · ⊕Ar be an Artinian graded R-algebra, where Ai is the homogeneous component
of A of degree i and Ar is non-zero. The algebra A is said to be a Poincaré duality
algebra of socle degree r if Ar

∼= R and the map

Ai × Ar−i → Ar, (a, b) 7→ ab
6



is non-degenerate. For an ideal a ⊂ R and f ∈ R, let a : f be the ideal of R defined
by

a : f = {g ∈ R | fg ∈ a}.

We notice that, for ideals a, a′ ⊂ R, the multiplication map R/a′
×f→ R/a is well-

defined if and only if a′ ⊂ a : f .
We need the following simple algebraic property of Poincaré duality algebras.

Lemma 2.4. Let a, a′ be homogeneous ideals of R and f ∈ R a homogeneous poly-
nomial of degree k with f ̸∈ a. Suppose a′ ⊂ a : f . If R/a′ is a Poincaré duality
algebra of socle degree r and R/a is a Poincaré duality algebra of socle degree r+ k,
then a′ = a : f .

Proof. Since a′ ⊂ a : f , we have a natural R-homomorphism

R/a′
×f−→ R/a.

Observe that the above map sends (R/a′)i to (R/a)i+k. We first show×f : (R/a′)r →
(R/a)r+k is an isomorphism. Since (R/a′)r ∼= (R/a)r+k

∼= R, we only need to prove
that the map is not the zero map. Since f ̸∈ a, f + a ∈ (R/a)k is non-zero. By the
Poincaré duality of R/a, there is g ∈ Rr such that fg + a ∈ (R/a)r+k is non-zero in
R/a. This implies that the map ×f : (R/a′)r → (R/a)r+k is not zero since it sends
g + a′ ∈ (R/a′)r to a non-zero element fg + a ∈ (R/a)r+k.

We now prove that a′ = a : f . Let h ̸∈ a′ be a homogeneous polynomial of
degree i. What we must prove is that hf ̸∈ a, equivalently, hf + a ∈ R/a is non-
zero. By the Poincaré duality of R/a′, there is a polynomial g′ ∈ Rr−i such that
hg′ + a′ ∈ (R/a′)r is non-zero in R/a′. Then hg′f + a ∈ (R/a)r+k is non-zero since
×f : (R/a′)r → (R/a)r+k is an isomorphism. Since hg′f + a = (hf + a)g′ ∈ R/a,
the element hf + a ∈ (R/a)i+k is non-zero as desired. □

A sequence of homogeneous polynomials f1, . . . , fi ∈ R of positive degrees is
a regular sequence of R if fj is a non-zero divisor of R/(f1, . . . , fj−1) for all
j = 1, 2, . . . , i. A graded R-algebra A = R/a is called a complete intersection if a
is generated by a regular sequence. If A = R/(f1, . . . , fi) is a complete intersection,
then its Krull dimension is n − i. Hence A is Artinian if and only if i = n. The
following facts are well-known in commutative algebra. See [9, Theorem 2.3.3] and
[38, p. 35].

Lemma 2.5. If a graded R-algebra A = R/a is Artinian and a is generated by n
polynomials, then A is a complete intersection.

Recall that for a graded R-algebra A, its Hilbert series is the formal power series

F (A, q) :=
∑
i≥0

(dimRAi)q
i.

Lemma 2.6. Let A = R/(f1, . . . , fn) be a graded Artinian complete intersection
and let di = deg fi for all i. Then A is a Poincaré duality algebra of socle degree
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∑n
i=1(di − 1) and its Hilbert series is given by

F (A, q) =
n∏

i=1

(1 + q + · · ·+ qdi−1).

2.3. Equivariant cohomology. We shall briefly review some facts on equivariant
cohomology needed later. We use [22] as a reference for the results in this subsection.
All cohomology groups will be taken with real coefficients.

Let K be a C∗-torus1 of rank m and let EK → BK be a universal principal
K-bundle, where EK is a contractible topological space with free K-action and
BK = EK/K. In fact, we may think of BK as (CP∞)m. Therefore H∗(BK) is a
polynomial ring in m variables of degree 2. If K acts on a topological space X, then
the equivariant cohomology of the K-space X is defined by

H∗
K(X) := H∗(EK ×K X),

where EK×KX is the orbit space of EK×X by the K-action defined by k(u, x) =
(uk−1, kx) for (u, x) ∈ EK ×X and k ∈ K. If X is one point pt, then EK ×K pt =
BK × pt; so

H∗
K(pt) = H∗(BK).

More generally, if the K-action on X is trivial, then H∗
K(X) = H∗(BK)⊗H∗(X).

Since the K-action on EK is free, the first projection π : EK ×K X → EK/K =
BK yields a fibration with fiberX. Therefore one can regardH∗

K(X) as anH∗(BK)-
module via π∗ : H∗(BK) → H∗

K(X). We also have the restriction map H∗
K(X) →

H∗(X) since X is a fiber.
Suppose that Hodd(X) vanishes (this is satisfied in our case treated later). Then

since Hodd(BK) also vanishes (because BK = (CP∞)m), the Serre spectral sequence
of the fibration π : EK ×K X → BK collapses and hence

H∗
K(X) ∼= H∗(BK)⊗H∗(X) as H∗(BK)-modules

and the restriction map H∗
K(X) → H∗(X) is surjective. In addition, under some

technical hypothesis onX which are satisfied by the spaces considered in this paper2,
it follows from the localization theorem ([22, p.40]) that the restriction map to the
K-fixed point set XK of X

H∗
K(X) → H∗

K(X
K) ∼= H∗(BK)⊗H∗(XK)

is injective. In our case, XK consists of finitely many points and H∗
K(X

K) is a direct
sum of copies of the polynomial ring H∗(BK).

For an oriented K-vector bundle E → X (E is a complex vector bundle in our
case treated later), one can associate a vector bundle

EK ×K E → EK ×K X

with the orientation induced from E. The Euler class of this oriented vector bundle
is called the equivariant Euler class of E and denoted by eK(E). Note that

1The same argument works for a compact torus.
2For instance, it would certainly suffice if X is locally contractible, compact, and Hausdorff.
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eK(E) lies in H∗
K(X) and the restriction map H∗

K(X) → H∗(X) sends eK(E) to the
(ordinary) Euler class e(E) of E.

3. Setting

In this paper, we discuss three objects: ideal arrangements, regular nilpotent
Hessenberg varieties, and regular semisimple Hessenberg varieties. They all arise
from the data of a semisimple linear algebraic group (with a fixed Borel subgroup)
and a lower ideal in the set of positive roots of the group. In this section, we give the
precise definition of those three objects and related notions and recall some results
on them needed later. Throughout this paper, all (co)homology groups will be taken
with real coefficients unless otherwise stated.

Let G be a semisimple linear algebraic group of rank n. We fix a Borel subgroup
B of G. Then the following data is uniquely determined:

• the maximal torus T of G in B
• the Weyl group W = N(T )/T where N(T ) is the normalizer of T
• the Lie algebras b ⊂ g of B and G
• Φ = {roots of G}
• Φ+ = {positive roots in Φ}
• the simple roots ∆ = {α1, . . . , αn}
• the partial order ⪯ on Φ; α ⪯ β if and only if β − α ∈

∑n
i=1 Z≥0αi

• the root space gα for a root α

3.1. Some identifications and the ring R. Let TR be the maximal compact torus
in T and t the Lie algebra of TR. Since G is of rank n, t is a real vector space of
dimension n. The Weyl groupW acts on t through the differential of the conjugation
map g → wgw−1 for w ∈ W, g ∈ T . The W -action on t induces the W -action on
the dual space t∗ to t defined by (w(u))(v) := u(w−1v) for w ∈ W, u ∈ t∗, v ∈ t.

The character group T̂R of TR determines a lattice t∗Z through differential at the

identity element of TR. We note that the character group T̂ of T is isomorphic to
T̂R, where the isomorphism from T̂ to T̂R is given by restriction. Throughout this
paper we make the following identification:

(3.1) t∗Z = T̂ , t∗ = T̂ ⊗ R

where T̂ is regarded as an additive group. We note that Φ is a subset of t∗Z = T̂ .

The Weyl group W acts on T̂ through conjugation, i.e., w(α)(g) := α(w−1gw) for

w ∈ W , α ∈ T̂ and g ∈ T . We note that the above identification preserves the
W -actions. We define

(3.2) R := Sym(t∗) =
∞⊕
k=0

Symk(t∗),

where Sym(t∗) denotes the symmetric algebra of t∗ and Symk(t∗) denotes the k-th
symmetric power of t∗.

We shall give a different description of R in terms of topology. Let ET → BT be
a universal principal T -bundle. Then H2(BT ;Z) is a free abelian group of rank n

9



and H∗(BT ;Z) is a polynomial ring over Z in n variables of degree 2. Let Cα be the

complex 1-dimensional T -module associated to α ∈ T̂ . The equivariant Euler class
eT (Cα) lies in H2

T (pt;Z) = H2(BT ;Z). It is known that the correspondence α →
eT (Cα) gives an isomorphism from T̂ to H2(BT ;Z). Therefore, the identification
(3.1) is extended to

(3.3) t∗Z = T̂ = H2(BT ;Z), t∗ = T̂ ⊗ R = H2(BT )

and the definition (3.2) is to

(3.4) R := Sym(t∗) = H∗(BT ).

3.2. Lower ideals and Hessenberg spaces. Our starting data was a semisimple
linear algebraic group G and its (fixed) Borel subgroup B. In this paper, we consider
one more data, that is a lower ideal I in Φ+. A lower ideal I ⊂ Φ+ is a collection of
positive roots such that if α ∈ Φ+ and β ∈ I with α ⪯ β, then α ∈ I. If I is a lower
ideal, then H(I) = b⊕ (

⊕
α∈I g−α) is a b-submodule of g containing b. Conversely,

one can see that any b-submodule of g containing b, which is called a Hessenberg
space, is of the form H(I) for some lower ideal I. Therefore, the notions of lower
ideals and Hessenberg spaces are equivalent.

Example 3.1. It is convenient to visualize a lower ideal I. We take types A3, B3,
and C3 to illustrate it. We choose their simple roots as in [23]. We arrange their
positive roots Φ+

A3
, Φ+

B3
, and Φ+

C3
as follows, which is natural from the Lie-theoretical

viewpoint:

x1 − x4

x2 − x4

x3 − x4

x1 − x3

x2 − x3

x1 − x2 x1 + x2x1 + x3

x2 + x3

x1

x2

x3

x1 − x3

x2 − x3

x1 − x2 2x1x1 + x2

2x2

x1 + x3

x2 + x3

2x3

x1 − x3

x2 − x3

x1 − x2

positive roots Φ+
A3

positive roots Φ+
B3

positive roots Φ+
C3

Here in the above table, the elements at the left ends of rows are simple roots in
each type. Then the partial order ⪯ on Φ+ can be interpreted as follows: α ⪯ β if
and only if β is located northeast of α. Thus, if β is an element of I, then elements
located southwest of β must belong to I. For example,

I1 = {x1 − x2, x1 − x3, x2 − x3, x3 − x4} ⊂ Φ+
A3
,

I2 = {x1 − x2, x1 − x3, x2 − x3, x2, x2 + x3, x3} ⊂ Φ+
B3
,

I3 = {x1 − x2, x1 − x3, x1 + x3, x2 − x3, x2 + x3, 2x2, 2x3} ⊂ Φ+
C3

are lower ideals shown as follows:
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x3 − x4

x1 − x3

x2 − x3

x1 − x2

x2 + x3x2

x3

x1 − x3

x2 − x3

x1 − x2

2x2

x1 + x3

x2 + x3

2x3

x1 − x3

x2 − x3

x1 − x2

I1 ⊂ Φ+
A3

I2 ⊂ Φ+
B3

I3 ⊂ Φ+
C3

3.3. Hessenberg varieties. For X ∈ g and a lower ideal I, the Hessenberg
variety Hess(X, I) is defined by

Hess(X, I) := {gB ∈ G/B | Ad(g−1)(X) ∈ H(I)},

where H(I) is the Hessenberg space defined in §3.2. An element X ∈ g is nilpotent if
ad(X) is nilpotent, i.e., ad(X)k = 0 for some k > 0. An element X ∈ g is semisimple
if ad(X) is semisimple, i.e., ad(X) is diagonalizable. An element X ∈ g is regular if
its G-orbit of the adjoint action has the largest possible dimension (cf. [23, 24]).

Remark 3.2. An element N ∈ g is regular nilpotent if and only if N is a nilpotent
element of the regular (or principal) nilpotent orbit which is a unique maximal
nilpotent orbit. Fix a basis Eα for each root space gα. Since a nilpotent element of
the form

∑
αi∈∆Eαi

is regular, an element N ∈ g is regular nilpotent if and only if N
belongs to the adjoint orbit of the regular nilpotent element of the form

∑
αi∈∆Eαi

.
An element S ∈ g is regular semisimple if and only if the centralizer of S in G is the
maximal torus T , i.e., CG(S) := {g ∈ G | Ad(g)(S) = S} = T .

The Hessenberg variety Hess(X, I) is called regular nilpotent (resp. regular
semisimple) if X is regular nilpotent (resp. regular semisimple). If X and X ′

belong to the same adjoint orbit, then Hess(X, I) and Hess(X ′, I) are isomorphic.
From this fact together with Remark 3.2, we may assume that N in the regular
nilpotent Hessenberg variety Hess(N, I) is of the form

∑
αi∈∆Eαi

.
The following is a summary of some results from [31, 32] about Hess(N, I) ([44]

in the classical types).

Theorem 3.3 ([31, 32]). The regular nilpotent Hessenberg variety Hess(N, I) has
no odd degree cohomology and is of dimension equal to |I|. Moreover, the Poincaré
polynomial of Hess(N, I) is given by

Poin(Hess(N, I),
√
q) =

∑
w∈W

w−1(∆)⊂(−I)∪Φ+

q|N(w)∩I|

where N(w) = {α ∈ Φ+ | w(α) ≺ 0}, and is palindromic, i.e.,

q|I| Poin(Hess(N, I),
√
q−1) = Poin(Hess(N, I),

√
q).

Proof. We shall briefly explain how the theorem follows from results in [31] and [32].
LetXw = BwB/B be the Schubert cell of the flag variety G/B associated to w ∈ W .
Then the intersections Xw ∩ Hess(N, I) (w ∈ W ) form a complex affine paving of
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Hess(N, I) ([31, Theorem 4.10]), so that Hess(N, I) has no odd degree cohomology
(see [15, §B.3, Lemma 6] for paving). By [31, Corollary 4.13], we have

Xw ∩ Hess(N, I) ̸= ∅ if and only if w−1(∆) ⊂ (−I) ∪ Φ+, and then

dimCXw ∩ Hess(N, I) = |N(w−1) ∩ w(−I)| = |N(w) ∩ I|.
It follows that

Poin(Hess(N, I),
√
q) =

∑
w∈W

w−1(∆)⊂(−I)∪Φ+

q|N(w)∩I|.

One can see dimC Hess(N, I) = |I| from the above formula but it is also a special case
of [32, Corollary 2.7]. The palindromicity of the Poincaré polynomial of Hess(N, I)
is [32, Proposition 3.4]. □

The following is a summary of results from [12] about Hess(S, I), where S ∈ g
is regular semisimple. Since S is semisimple, the action of the maximal torus T on
G/B leaves Hess(S, I) invariant.

Theorem 3.4 ([12, Theorems 6, 8 and Lemma 7]). The regular semisimple Hes-
senberg variety Hess(S, I) is smooth equidimensional of dimension equal to |I| and
has no odd-dimensional cohomology. The T -fixed point set Hess(S, I)T of Hess(S, I)
agrees with that of G/B, so Hess(S, I)T can be identified with the Weyl group W .
The Poincaré polynomial of Hess(S, I) is given by

Poin(Hess(S, I),
√
q) =

∑
w∈W

q|N(w)∩I|.

Finally, the tangent space Tw Hess(S, I) of Hess(S, I) at w ∈ W is of the form

(3.5) Tw Hess(S, I) =
⊕
α∈−I

Cw(α) as T -modules,

where Cw(α) denotes the complex 1-dimensional T -module determined by w(α).

3.4. Ideal arrangements and ideal a(I). Let I be a lower ideal in Φ+. Since
α ∈ I is a linear function on t, its kernel kerα is a hyperplane in t. We consider the
arrangement AI defined by

AI := {kerα | α ∈ I}.
When I = Φ+, AΦ+ is called the Weyl arrangement and for a general lower ideal
I we call AI the ideal arrangement3 associated to I.

Remember that

(3.6) D(AI) = {θ ∈ DerR = R⊗ t | θ(α) ∈ Rα (∀α ∈ I)}.

Definition 3.5. For a lower ideal I and a W -invariant non-degenerate quadratic
form Q ∈ Sym2(t∗)W ⊂ R on t, we define

(3.7) a(I) := {θ(Q) | θ ∈ D(AI)}.

3It is called the ideal subarrangement of the Weyl arrangement AΦ+ in [3].
12



Since D(AI) is an R-module, a(I) is an ideal of R. This ideal plays an important
role in our argument. If we choose a W -invariant inner product on t and x1, . . . , xn
is an orthonormal linear system, then we may take Q =

∑n
i=1 x

2
i , that is nothing

but the chosen W -invariant inner product.

Remark 3.6. TheW -invariant non-degenerate quadratic form Q on t is not unique,
hence it is not clear whether the ideal a(I) is independent of the choice of Q. How-
ever, it is independent of the choice by the following reason. Suppose that the Lie
algebra g of G is simple, which is equivalent to t being irreducible as a W -module.
Then Sym2(t∗)W is of real dimension one4 because the irreducible W -module t does
not admit a complex structure as is well-known (or easily checked). Since Q is an
element of Sym2(t∗)W , this means that Q is unique up to a nonzero scalar multiple.
Therefore, a(I) is independent of the choice of Q in this case. Suppose that the
semisimple Lie algebra g decomposes into a direct sum of simple Lie algebras. Then
the Lie algebra t, the ideal arrangement AI , and a W -invariant quadratic form Q
on t decompose accordingly. This together with the observation of the simple case
implies the independence of the choice of Q for a(I).

Because of the independence discussed in Remark 3.6, we may take aW -invariant
inner product on t as Q. Then the inner product determines an isomorphism t → t∗

as W -modules and one can see that a(I) agrees with the image of D(AI) by the
following R-module map:

(3.8) DerR = R⊗ t → R⊗ t∗ → R
where the second map is the multiplication map (note that t∗ is the degree one piece
of R).

The following theorem plays a key role when we consider the ideal arrangements
AI .

Theorem 3.7 (Ideal-free theorem, [3, Theorem 1.1]). Let I ⊂ Φ+ be a lower ideal.
Then AI is free. Moreover, exp(AI) coincides with the dual partition of the height
distribution in I.

Here, the height distribution in I is a sequence (n, i1, i2, . . . , im), where ij is
the number of height j positive roots and m is the maximum of the height of pos-
itive roots in I. Also, for a non-increasing sequence (i0, i1, . . . , im) of non-negative
integers, its dual partition is given by ((0)i0−i1 , (1)i1−i2 , . . . , (m − 1)im−1−im , (m)im),
where i0 = n and (i)j denotes the j-copies of i.

Definition 3.8. For a lower ideal I ⊂ Φ+, we denote by (dI1, . . . , d
I
n) the dual

partition of the height distribution of the positive roots in I.

By Theorem 3.7, it is clear that exp(AI) = (dI1, . . . , d
I
n). The following theorem

provides a starting point in our argument.

4An element in Sym2(t∗)W determines a W -equivariant linear map t → t∗, so choosing a W -
invariant inner product on t, we may think of Sym2(t∗) as the algebra End(t)W of W -equivariant
endomorphisms of t. Since t is irreducible as a W -module, End(t)W is isomorphic to R,C or the
quaternion filed as R-algebras and End(t)W is isomorphic to R if and only if t does not admit a
complex structure as a W -module.
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Theorem 3.9. a(Φ+) = (RW
+ ), where the right hand side denotes the ideal in R

generated by the W -invariants RW
+ =

⊕
k>0RW

k .

Proof. This result follows from a result of K. Saito ([33], see also [35] and [43]) but
we shall give a short proof for the sake of the reader’s convenience.

The exterior derivative df of f ∈ R lies in R ⊗ t∗. On the other hand, DerR
can be thought of as R ⊗ t as explained above. We choose a W -invariant inner
product on t. It induces aW -equivariantR-module isomorphism betweenR⊗t∗ and
DerR = R⊗t. Then, through the map (3.8), the element∇f in DerR corresponding
to df ∈ R⊗ t∗, that is the gradient of f , maps to (deg f)f when f is homogeneous.
Indeed, if we choose an orthonormal linear coordinate system x1, . . . , xn on t, then
∇f =

∑n
i=1

∂f
∂xi

∂
∂xi

because df =
∑n

i=1
∂f
∂xi
dxi, so ∇f maps to

∑n
i=1

∂f
∂xi
xi = (deg f)f

through (3.8).
By the discussion in the previous paragraph, what we must prove is that {∇f :

f ∈ RW
+ } generates D(AΦ+). Since the correspondence f → ∇f is W -equivariant,

for any f ∈ RW
+ and α ∈ Φ+, we have

∇f (α) = ∇sαf (α) = sα(∇f (s
−1
α (α))) = −sα(∇f (α))

where sα denotes the reflection through the hyperplane kerα. Therefore, ∇f (α)
restricted to kerα vanishes and this implies that ∇f (α) is divisible by α. Hence
∇f ∈ D(AΦ+) for any f ∈ RW

+ . By Chevalley’s theorem in [11], RW is generated by
homogeneous n polynomials P1, P2, . . . , Pn with

∑n
i=1(degPi − 1) = |Φ+|. Also, it

is known that the Jacobian det(∂Pi/∂xj)ij is non-zero (see [39]), which implies that
∇P1 , . . . ,∇Pn are R-independent. These facts and Saito’s criterion (Theorem 2.3)
prove that ∇P1 , . . . ,∇Pn is an R-basis of D(AΦ+), and hence a(Φ+) = (RW

+ ). □

4. The ideal a(I) and its residue algebra

In this section we study properties of the ideal a(I) and the algebra R/a(I) for a
lower ideal I, where

a(I) = {θ(Q) | θ ∈ D(AI)},
see § 3.4. Recall that (dI1, . . . , dIn) denotes the dual partition of the height distribution
of positive roots in I in Definition 3.8, which coincides with exp(AI), see § 2.1.

Proposition 4.1 ([4]). Let I be a lower ideal. Then R/a(I) is a complete intersec-
tion of socle degree |I| and

F (R/a(I), q) =
n∏

i=1

(1 + q + · · ·+ qd
I
i ).

Proof. This is a special case of the result in [4], where the statement is proved for
all free arrangements. Here we give a different proof for the ideal arrangement case.
We know that there is a surjection R/a(Φ+) → R/a(I) since D(AΦ+) ⊂ D(AI).
Also, dimRR/a(Φ+) < ∞ since it is a coinvariant algebra by Theorem 3.9. Hence
dimR R/a(I) < ∞. Since AI is free by Theorem 3.7, D(AI) is generated by n
elements of degrees dI1, . . . , d

I
n. Thus a(I) is generated by n polynomials of degrees

dI1 + 1, . . . , dIn + 1 and the desired statement follows from Lemmas 2.5 and 2.6. □
14



The following proposition is the key to prove our main theorems.

Proposition 4.2. Let I ⊊ Φ+ be a lower ideal and βI :=
∏

α∈Φ+\I α. Then

a(I) = a(Φ+) : βI .

Proof. Let α ∈ Φ+ \ I be an element such that I ′ := I ∪ {α} is a lower ideal. It
suffices to prove that a(I) = a(I ′) : α.

We first show α ̸∈ a(I ′). Suppose contrary that α ∈ a(I ′). Then there is θ ∈
D(AI′) such that θ(Q) = α. Since α is a linear form, θ has degree zero and θ = ∇γ

for some linear form γ ∈ R, where ∇γ denotes the gradient of γ. Moreover γ = 1
2
α

since 1
2
∇γ(Q) = γ. However, this implies that θ(α) = 1

2
∇α(α) is a non-zero constant,

contradicting θ ∈ D(AI′).
By definition, αθ ∈ D(AI′) for any θ ∈ D(AI). This implies that αf ∈ a(I ′) for

any f ∈ a(I). Since both R/a(I) and R/a(I ′) are complete intersections and their
socle degrees are |a(I)| and |a(I ′)| = |a(I)| + 1 respectively by Proposition 4.1, the
desired statement follows from Lemma 2.4. □

5. Regular nilpotent Hessenberg varieties

Let G be a semisimple linear algebraic group and T ⊂ B a maximal torus and
a Borel subgroup of G respectively as before. To each character α ∈ T̂ , one can
associate a complex line bundle Lα over G/B. Taking the Euler class e(Lα) of Lα

induces a homomorphism from T̂ to H2(G/B), which extends to a homomorphism

(5.1) φ : R = Sym(T̂ ⊗ R) → H∗(G/B).

This map doubles the grading onR and is surjective by Borel’s theorem. Composing
φ with the restriction mapH∗(G/B) → H∗(Hess(N, I)), we obtain a homomorphism

(5.2) φI : R → H∗(Hess(N, I)).

In this section we introduce an ideal n(I) in R associated to I, which is contained
in the kernel of φI , and show that n(I)’s have similar properties to the ideals a(I)’s.
In order to define and study n(I) we will use equivariant cohomology.

5.1. T -action on G/B. We begin with the study of the T -action on G/B. As is
well-known, the identity map on T extends to a homomorphism from B to T , so
any character α of T extends to a character α̃ of B. We associate a complex line
bundle over G/B defined by

Lα := G×B Cα̃ → G/B

where Cα̃ is the complex 1-dimensional B-module via α̃ and G×BCα̃ is the quotient
space of G×Cα̃ by the B-action given by b(g, z) = (gb−1, α̃(b)z) for (g, z) ∈ G×Cα̃

and b ∈ B. The left T -action on G makes Lα a T -equivariant complex line bundle.
Then the assignment T̂ ∋ α 7→ eT (Lα) ∈ H2

T (G/B) induces a homomorphism

(5.3) R → H∗
T (G/B)

which doubles the grading on R and agrees with the map φ in (5.1) when composed
with the restriction map H∗

T (G/B) → H∗(G/B).
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The fixed point set (G/B)T of the T -action on G/B is given by

(5.4) (G/B)T =
⊔
w∈W

wB.

We identify (G/B)T with W through the correspondence wB → w. We denote the
image of f ∈ H∗

T (G/B) under the restriction map H∗
T (G/B) → H∗

T (w) = H∗(BT )
for w ∈ W by f |w.

As explained in §3.1, we identify T̂ with H2(BT ;Z). Remember that the Weyl

group W acts on T̂ by conjugation, i.e., w(α)(g) = α(w−1gw) for w ∈ W , α ∈ T̂ ,
and g ∈ T .

Remark 5.1. The automorphism of T defined by g → w−1gw for g ∈ T and
w ∈ W induces a self-homeomorphism of BT and an automorphism of H∗(BT ).
Therefore we obtain another W -action on H2(BT ) but this agrees with the W -

action introduced above through T̂ .

Lemma 5.2. Let α be a character of T . Then eT (Lα)|w = w(α) for any w ∈ W .

Proof. Let Lα|w be the fiber of the line bundle Lα at w ∈ W . Since w is a T -fixed
point, Lα|w is a T -module and

(5.5) eT (Lα)|w = eT (Lα|w)
from the naturality of Euler class. Since Lα|w = {[w, x] | x ∈ Cα}, it follows from
the definition of Lα and the T -action on Lα that

g[w, x] = [gw, x] = [w(w−1gw), x] = [w,α(w−1gw)x] = [w, (w(α))(g)x] for g ∈ T .

This shows that the T -module Lα|w is given by the character w(α) and hence

(5.6) eT (Lα|w) = w(α).

The identities (5.5) and (5.6) prove the lemma. □

5.2. S-action on Hess(N, I). The T -action on the flag variety G/B does not leave
a regular nilpotent Hessenberg variety Hess(N, I) invariant in general. However,
there is a C∗-subgroup S of T which leaves Hess(N, I) invariant ([20]) and it plays
an important role in [2] to study Hess(N, I) in type A. The definition of the subgroup
S is as follows. We consider a homomorphism

n∏
i=1

αi : T → (C∗)n given by g 7→ (α1(g), . . . , αn(g)),

where α1, . . . , αn are simple roots of G. Then the C∗-subgroup S is the identity
component of the preimage of the diagonal subgroup {(c, · · · , c) | c ∈ C∗} of (C∗)n.

Proposition 5.3 ([20, Lemma 5.1 and Proposition 5.2]). The S-fixed point set
Hess(N, I)S is the intersection Hess(N, I) ∩ (G/B)T and under the natural identifi-
cation (G/B)T =W by (5.4), we have

Hess(N, I)S = {w ∈ W | w−1(∆) ⊂ (−I) ∪ Φ+}.
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By abuse of notation, we use the same symbol e(Lα) for the image of e(Lα)
under the restriction map H∗(G/B) → H∗(Hess(N, I)). Similarly, we use the
symbol eS(Lα) for the image of eT (Lα) under the restriction map H∗

T (G/B) →
H∗

S(Hess(N, I)). Let t be the character of S obtained as the composition of the in-
clusion

∏
αi : S ↪→ T and the isomorphism from the diagonal subgroup {(c, · · · , c) |

c ∈ C∗} to C∗ given by (c, · · · , c) 7→ c. Then, through the equivariant Euler class,
we have identification

H∗(BS) = R[t].
The inclusion map ι : S ↪→ T induces a homomorphism ι∗ : H∗(BT ) → H∗(BS) and
it follows from the definition of S that

(5.7) ι∗(αi) = t for all i = 1, · · · , n.

Proposition 5.4. Let I ⊊ Φ+ be a lower ideal and α ∈ Φ+ \ I an element such that
I ′ := I ∪ {α} is also a lower ideal. Then

eS(Lα)|v = −t for v ∈ Hess(N, I ′)S \ Hess(N, I)S.

Proof. By Proposition 5.3, w ∈ Hess(N, I)S if and only if w−1(∆) ⊂ (−I) ∪ Φ+.
Therefore, for v ∈ Hess(N, I ′)S \ Hess(N, I)S, there exists αi ∈ ∆ such that

(5.8) v(α) = −αi.

Using the following commutative diagram

H∗
T (G/B) −−−→ H∗

T (v) = H∗(BT )y yι∗

H∗
S(Hess(N, I

′)) −−−→ H∗
S(v) = H∗(BS) = R[t]

where all the homomorphisms are induced from the inclusion maps, we have

eS(Lα)|v =ι∗(eT (Lα)|v)
=ι∗(v(α)) by Lemma 5.2

=ι∗(−αi) by (5.8)

=− t by (5.7),

proving the proposition. □

5.3. Ideal n(I). Recall the homomorphism R → H∗
T (G/B) in (5.3). Composing

this with the restriction homomorphism H∗
T (G/B) → H∗

S(Hess(N, I)), we obtain a
homomorphism

ϕI : R → H∗
S(Hess(N, I))

sending α ∈ T̂ ⊂ R to eS(Lα). The map ϕI composed with the restriction map
H∗

S(Hess(N, I)) → H∗(Hess(N, I)) is the map

φI : R → H∗(Hess(N, I))

in (5.2), which sends α ∈ T̂ to e(Lα) ∈ H2(Hess(N, I)).
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Through the projection ES ×S Hess(N, I) → ES/S = BS, one can regard an
element of H∗(BS) = R[t] as an element of H∗

S(Hess(N, I)). Therefore, the homo-
morphism ϕI naturally extends to a homomorphism

(5.9) φS
I : R[t] → H∗

S(Hess(N, I))

sending t to t. We define

nS(I) : = {f(t) ∈ R[t] | φS
I (f(t)) = 0},

n(I) : = {f(0) ∈ R | f(t) ∈ nS(I)}.
(5.10)

We note that n(I) is contained in the kernel of φI , which follows from the following
commutative diagram:

(5.11) R[t]
φS
I //

��

H∗
S(Hess(N, I))

��

R φI

//

ϕI

55kkkkkkkkkkkkkkkkk
H∗(Hess(N, I))

where the left vertical map is the evaluation at t = 0 and the right one is the
restriction map.

Lemma 5.5. If φI is surjective, then n(I) agrees with the kernel kerφI of φI .

Proof. Since we know n(I) ⊂ kerφI , it suffices to prove n(I) ⊃ kerφI when φI is
surjective. We note that since H∗

S(Hess(N, I)) = H∗(Hess(N, I)) ⊗ H∗(BS), the
surjectivity of φI implies the surjectivity of φS

I . Let h ∈ kerφI . Since H∗(BS) =

R[t] and φI(h) = 0, φS
I (h) is divisible by t, i.e., φS

I (h) is of the form tf̃ with

f̃ ∈ H∗
S(Hess(N, I)), where h is regarded as an element of R[t] in a natural way.

Since φS
I is surjective, there exists an element h̃ ∈ R[t] such that φS

I (h̃) = f̃ . Then

φS
I (h− th̃) = 0 while h− th̃ maps to h by the evaluation map at t = 0. This shows

that h is in n(I). □
Corollary 5.6. n(Φ+) = (RW

+ ).

Proof. When I = Φ+, we have Hess(N, I) = G/B and φI = φ : R → H∗(G/B).
Since φ is surjective and its kernel is (RW

+ ) by Borel’s theorem, the corollary follows
from Lemma 5.5. □

The above corollary corresponds to Theorem 3.9 and the following lemma corre-
sponds to Proposition 4.2 in terms of a(I).

Lemma 5.7. Let I ⊊ Φ+ be a lower ideal and βI =
∏

α∈Φ+\I α as in Proposition 4.2.

Then n(I) ⊂ n(Φ+) : βI .

Proof. It suffices to show that if α is an element of Φ+ \ I such that I ′ = I ∪ {α} is
also a lower ideal, then n(I) ⊂ n(I ′) : α, i.e., αn(I) ⊂ n(I ′).

By (5.10), any element of n(I) is of the form f(0) for some f(t) ∈ nS(I). We
claim (α + t)f(t) ∈ nS(I

′). Indeed,

φS
I′(α+ t)|v = eS(Lα)|v + t = 0 for all v ∈ Hess(N, I ′)S\Hess(N, I)S
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by Proposition 5.4 while

φS
I′(f(t))|w = φS

I (f(t))|w = 0 for all w ∈ Hess(N, I)S

since f(t) ∈ nS(I). Therefore φS
I′((α + t)f(t))|w = 0 for all w ∈ Hess(N, I ′)S

and hence φS
I′((α + t)f(t)) = 0 because the restriction map H∗

S(Hess(N, I
′)) →

H∗
S(Hess(N, I

′)S) is injective since Hodd(Hess(N, I ′)) vanishes by Theorem 3.3. This
shows that (α + t)f(t) ∈ nS(I

′) as claimed. Therefore αf(0) is contained in n(I ′).
Since f(0) is an arbitrary element of n(I), this proves the lemma. □

6. Weyl type subsets of ideals

In this section, we discuss a relation between chambers of AI , S-fixed points of
Hess(N, I), and Weyl type subsets of I defined by Sommers and Tymoczko [37].

Let I ⊂ Φ+ be a lower ideal. A subset Y ⊂ I is said to be of Weyl type if
α, β ∈ Y and α + β ∈ I, then α + β ∈ Y , and if γ, δ ∈ I \ Y and γ + δ ∈ I, then
γ + δ ∈ I \ Y . Let WI denote the set of the Weyl type subsets of I. Sommers and
Tymoczko posed the following conjecture and verified it in types An, Bn, Cn, E6,
F4, G2 by case-by-case arguments ([37, Theorem 4.1]).

Conjecture 6.1 ([37]).
∑

Y ∈WI

q|Y | =
n∏

i=1

(1 + q + · · ·+ qd
I
i ), where dI1, . . . , d

I
n are the

dual partitions of the height distributions of positive roots in I (see Definition 3.8).

When I = Φ+, this is a well-known fact that the Poincaré polynomial of the flag
variety coincides with the generating function of the length of w ∈ W when q is
replaced by q2. We will prove Conjecture 6.1 in the next section as a corollary of
Theorem 1.1, and here we introduce some related results.

Weyl type subsets are closely related to S-fixed points of Hess(N, I). Recall that
by Proposition 5.3 we have

Hess(N, I)S = {w ∈ W | w−1(∆) ⊂ (−I) ∪ Φ+}.
It is easy to see that, for any w ∈ W , the set N(w) ∩ I is a Weyl type subset of I.
The following result was proved by Sommers and Tymoczko [37, Proposition 6.3].

Theorem 6.2 ([37]). Let I be a lower ideal. The map η : Hess(N, I)S → WI defined
by η(w) = N(w) ∩ I is a bijection.

Remark 6.3. Sommers and Tymoczko also showed in [37] that, for Y ∈ WI , w :=
η−1(Y ) ∈ Hess(N, I)S is the smallest element in {v ∈ W | N(v) ∩ I = Y } with
respect to the Bruhat order.

Recall that C(AI) is the set of chambers of the ideal arrangement AI (see §2.1).

Proposition 6.4. For any lower ideal I, we have |C(AI)| = |WI |.

Proof. For C ∈ C(AI) we define f(C) := {α ∈ I | α(C) < 0}, where α(C) < 0
means that α(x) < 0 for any point x ∈ C. Then it is obvious that f(C) is an
element of WI . Therefore, we obtain a map

(6.1) f : C(AI) → WI .
19



This map is injective because an element C of C(AI) is determined by the signs of
the values which elements of I take on C.

We shall prove that f is surjective. For any Y ∈ WI , there is an element w ∈ W
such that

(6.2) Y = N(w) ∩ I = {α ∈ I | w(α) ≺ 0}
by Theorem 6.2. Take any point x in the fundamental Weyl chamber, that is, take
a point x satisfying α(x) > 0 for any α ∈ Φ+. Then we have

α(w−1x) = (w(α))(x)

{
< 0 (α ∈ Y ),

> 0 (α ∈ I\Y ),

where the inequalities follow from (6.2). This shows that if C is the element of
C(AI) which contains the point w−1x, then f(C) = Y , proving the surjectivity of
f . □
Proposition 6.5. Poin(Hess(N, I),

√
q) =

∑
Y ∈WI q|Y |. Therefore,

Poin(Hess(N, I), 1) = |WI | = |C(AI)| =
n∏

i=1

(1 + dIi ).

Proof. The equation Poin(Hess(N, I),
√
q) =

∑
Y ∈WI q|Y | immediately follows from

Theorems 3.3 and 6.2. The other equations follow from the former equation with
q = 1 plugged, Proposition 6.4, Theorem 2.2, and Theorem 3.7. □

7. Proof of Theorem 1.1

In this section we prove Theorem 1.1 in the Introduction and deduce a few corollar-
ies, especially we will see that Conjecture 6.1 immediately follows from Theorem 1.1.

Remember that we have a homomorphism

(7.1) φI : R → H∗(Hess(N, I))

sending α ∈ T̂ ⊂ R to e(Lα) ∈ H2(Hess(N, I)), see §5. The following theorem
implies Theorem 1.1 in the Introduction.

Theorem 7.1. The map φI in (7.1) is surjective and kerφI = n(I) = a(I).

Proof. Since Hodd(Hess(N, I)) vanishes by Theorem 3.3, we have

H∗
S(Hess(N, I))

∼= H∗(BS)⊗H∗(Hess(N, I)) as H∗(BS)-modules

where H∗(BS) = R[t]. Moreover, it follows from the definition (5.10) of nS(I) that
the map φS

I : R[t] → H∗
S(Hess(N, I)) in (5.9) induces an injective R[t]-homomorphism

(7.2) φ̂S
I : R[t]/nS(I) ↪→ H∗

S(Hess(N, I)).

Hence we have
1

1− q
Poin(Hess(N, I),

√
q) = F (H∗

S(Hess(N, I)),
√
q) ≥ F (R[t]/nS(I), q).(7.3)

Here, for two formal power series F (q) =
∑
aiq

i and G(q) =
∑
biq

i, F (q) ≥ G(q)
means that ai ≥ bi for all i.
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Since H∗
S(Hess(N, I)) is a free R[t]-module and R[t] is PID, the R[t]-submodule

R[t]/nS(I) is also a free R[t]-module. Thus t is a nonzero divisor of R[t]/nS(I) and
since

R/n(I) ∼= (R[t]/nS(I))/t(R[t]/nS(I)),

which follows from the definition (5.10), we have

F (R/n(I), q) = F (R[t]/nS(I), q)− q F (R[t]/nS(I), q).(7.4)

It follows from (7.3) and (7.4) that

1

1− q
Poin(Hess(N, I),

√
q) ≥ F (R[t]/nS(I), q) =

1

1− q
F (R/n(I), q).(7.5)

On the other hand, it follows from Lemma 5.7, Corollary 5.6, Theorem 3.9, and
Proposition 4.2 that

(7.6) n(I) ⊂ n(Φ+) : βI = a(Φ+) : βI = a(I).

Therefore

F (R/n(I), q) ≥ F (R/a(I), q).(7.7)

Thus, we finally get

1

1− q
Poin(Hess(N, I),

√
q) ≥ 1

1− q
F (R/a(I), q)(7.8)

from (7.5) and (7.7).
We claim that we actually have equality in (7.8). We have dimCHess(N, I) = |I|

by Theorem 3.3 and the socle degree of R/a(I) is also |I| by Proposition 4.1. Set
m = |I|. Then one can write

Poin(Hess(N, I),
√
q) =

m∑
i=0

aiq
i, F (R/a(I), q) =

m∑
i=0

biq
i

with non-negative integers ai, bi. These Hilbert series are palindromic, that is,

ai = am−i and bi = bm−i for 0 ≤ i ≤ m(7.9)

by Theorem 3.3 for the symmetry of ak, and by Proposition 4.1 for bk. Moreover, it
follows from Propositions 6.5 and 4.1 that

m∑
i=0

ai = Poin(Hess(N, I), 1) =
n∏

i=1

(1 + dIi ) = F (R/a(I), 1) =
m∑
i=0

bi.(7.10)

Since the coefficient of qk in the formal power series 1
1−q

(
∑m

i=0 ciq
i) is

∑k
i=0 ci for

0 ≤ k ≤ m, the inequality (7.8) says

(7.11)
k∑

i=0

ai ≥
k∑

i=0

bi for 0 ≤ k ≤ m.
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On the other hand, it follows from (7.9), (7.10), and (7.11) that we get the opposite
inequality to (7.11), indeed, we can set p =

∑m
i=0 ai =

∑m
i=0 bi by (7.10) and have

k∑
i=0

ai =
m∑

i=m−k

ai = p−
m−k−1∑
i=0

ai ≤ p−
m−k−1∑
i=0

bi =
m∑

i=m−k

bi =
k∑

i=0

bi for 0 ≤ k ≤ m.

Hence
∑k

i=0 ai =
∑k

i=0 bi for all k, i.e., ak = bk for all k, and Poin(Hess(N, I),
√
q) =

F (R/a(I), q) which means that equality holds in (7.8). Thus equality must hold for
both (7.3) and (7.7).

The equality in (7.3) implies that the map φ̂S
I in (7.2) is an isomorphism and

hence the map φS
I : R[t] → H∗

S(Hess(N, I)) in (5.9) is surjective, so the map φI

in the theorem is also surjective because both vertical maps in the commutative
diagram (5.11) are surjective. Therefore, kerφI = n(I) by Lemma 5.5. The equality
in (7.7) implies n(I) = a(I) since we know n(I) ⊂ a(I) by (7.6). □

We shall mention a few corollaries which will immediately follow from Theo-
rem 7.1 (i.e., Theorem 1.1). The first one is Corollary 1.2 in the Introduction, which
was announced by Dale Peterson (see [8, Theorem 3]) but his proof is not given
unfortunately.

Corollary 7.2. The restriction map H∗(G/B) → H∗(Hess(N, I)) is surjective and
H∗(Hess(N, I)) is a complete intersection, in particular, a Poincaré duality algebra.
Moreover, the Poincaré polynomial of Hess(N, I) is given by the product formula

(7.12) Poin(Hess(N, I),
√
q) =

∏
α∈I

1− qht(α)+1

1− qht(α)
,

where ht(α) denotes the sum of the coefficients of α over the simple roots.

Proof. The map φ : R → H∗(G/B) followed by the restriction map H∗(G/B) →
H∗(Hess(N, I)) is the map φI : R → H∗(Hess(N, I)) by definition and φI is surjec-
tive by Theorem 7.1. This shows the surjectivity of the restriction map H∗(G/B) →
H∗(Hess(N, I)).

It easily follows from the definition of the exponents dI1, . . . , d
I
n (see Definition 3.8)

that the right hand side of (7.12) agrees with the right hand side of the identity in
Proposition 4.1. Therefore, the remaining two assertions in the corollary follow from
Proposition 4.1 since H∗(Hess(N, I)) ∼= R/a(I) by Theorem 1.1. □

The following corollary is Corollary 1.3 in the Introduction and answers Conjec-
ture 6.1 affirmatively.

Corollary 7.3. For any lower ideal I,∑
Y ∈WI

q|Y | = Poin(Hess(N, I),
√
q) = F (R/a(I), q) =

n∏
i=1

(1 + q + · · ·+ qd
I
i ).

Proof. The first identity is Proposition 6.5, the second is Theorem 7.1, and the last
is Proposition 4.1. □
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Corollary 7.3 (i.e., Corollary 1.3) implies an interesting application to free ar-
rangement theory. Recall that the generating function of the length of w ∈ W
coincides with the Poincaré polynomial of the flag variety and also the generating
function of the number of reflecting hyperplanes which separates a chamber and the
fundamental chamber. For some free arrangements, this formula is known to hold,
i.e., for some free arrangement A with exp(A) = (d1, . . . , dn), there is a chamber
C0 ∈ C(A) such that

(7.13)
∑

C∈C(A)

qd(C,C0) =
n∏

i=1

(1 + q + · · ·+ qdi),

where d(C,C0) denotes the number of hyperplanes in A which separates C and
C0. The class of certain free arrangements above contains, e.g., a supersolvable
arrangement. We say that A is supersolvable if there is a filtration A1 ⊂ A2 ⊂
· · · ⊂ An = A such that

∩
H∈Ai

H is of codimension i, and for any distinct H1, H2 ∈
Ai \ Ai−1, there is L ∈ Ai−1 such that H1 ∩H2 ⊂ L. For details, see [6].

Ideal arrangements are not necessarily supersolvable. For example, in type D
case, AΦ+ itself is not supersolvable. As for the ideal arrangement AI , we take C0 to
be the element of C(AI) which contains the fundamental Weyl chamber in C(AΦ+).
Recall the bijection f : C(AI) → WI in (6.1) defined as f(C) = {α ∈ I | α(C) < 0}.
Since d(C,C0) agrees with |f(C)| as is easily observed, the following follows from
Corollary 7.3.

Corollary 7.4. The identity (7.13) holds for ideal arrangements with C0 ∈ C(AI)
containing the fundamental Weyl chamber in C(AΦ+).

8. Regular semisimple Hessenberg varieties

Unlike the regular nilpotent case in Section 5, the action of the maximal torus T
on the flag variety G/B leaves a regular semisimple Hessenberg variety Hess(S, I)
invariant. The variety Hess(S, I) is smooth projective, has finitely many T -fixed
points, has finitely many one-dimensional T -orbits and has no odd degree cohomol-
ogy, so that its (equivariant) cohomology ring can be described combinatorially in
terms of the associated so-called GKM graph ([18]). The variety Hess(S, I) may not
admit an action of the Weyl group W in general but the associated GKM graph
always does and one can define an action ofW on H∗(Hess(S, I)) through the GKM
graph as observed by Tymoczko [45]. We study the ring H∗(Hess(S, I))W of W -
invariants. This ring is studied in [27] when Hess(S, I) is a toric variety.

8.1. GKM theory. Let X be a complex projective smooth variety with an alge-
braic action of a C∗-torus T which satisfies the following three conditions:

(i) X has finitely many T -fixed points,
(ii) X has finitely many one-dimensional T -orbits,
(iii) X has no odd degree cohomology.
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Then the restriction map

(8.1) H∗
T (X) ↪→ H∗

T (X
T ) =

⊕
x∈XT

H∗(BT ).

is injective by condition (iii) and Goresky-Kottwitz-MacPherson ([18]) gave an ex-
plicit description of the image of the restriction map, which we shall explain. The
closure Ō of a one-dimensional T -orbit O is diffeomorphic to CP 1 and Ō\O consists
of exactly two T -fixed points, denoted by nO and sO and called the north and south
poles of the orbit O. If the weight of the T -action on the tangent space of Ō at
the point nO is α, then the T -weight on the tangent space at the point sO is −α.
Therefore, the T -weight at the fixed points in the closure Ō is determined up to
sign. We call it the T -weight on the orbit O. We regard the weight α as an element
of H2(BT ) as before.

Theorem 8.1 ([18]). The image of the restriction map in (8.1) is given by{
(fx) ∈

⊕
x∈XT

H∗(BT )

∣∣∣∣ fnO
− fsO ∈ (α) for each one-dimensional T -orbit O

with poles nO and sO and T -weight α

}
.

In this paper we call the condition in Theorem 8.1 the GKM condition for X.
The GKM condition for X can be visualized by a graph, called a GKM graph. The
GKM graph for X is the graph with vertices corresponding to the T -fixed points
and edges corresponding to one-dimensional T -orbits. Additionally, we equip each
edge with the T -weight of the corresponding one-dimensional T -orbit, see Exam-
ple 8.5 below.

8.2. GKM condition for Hess(S, I). We return to our previous setting. The
regular semisimple Hessenberg variety Hess(S, I) is smooth projective and satisfies
the conditions (i), (ii), (iii) in §8.1 (see Theorem 3.4 and [12] for more details). In
fact, the T -fixed point set Hess(S, I)T agrees with (G/B)T = ⊔w∈WwB and we make
the natural identification

Hess(S, I)T =W

as before throughout this section. Since Hodd(Hess(S, I)) vanishes, the restriction
map

(8.2) H∗
T (Hess(S, I)) ↪→ H∗

T (Hess(S, I)
T ) =

⊕
w∈W

H∗(BT )

is injective. In this subsection we analyze the GKM condition for Hess(S, I) and
prove the following.

Proposition 8.2 (GKM condition for Hess(S, I)).

H∗
T (Hess(S, I))

∼={(fw)w∈W ∈
⊕
w∈W

H∗(BT ) | fw − fv ∈ (w(α)) if v = wsα for some α ∈ I}

where sα is the reflection corresponding to α.
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Proposition 8.2 is known in type A ([40, 45]) and the proof in other types is
essentially same as type A. We shall give a proof for the reader’s convenience. For
each root α there exists a morphism of algebraic groups uα : C → G, which induces
an isomorphism onto uα(C) such that guα(c)g

−1 = uα(α(g)c) for all g ∈ T and
c ∈ C. The root subgroup Uα is defined by the image of uα (cf. [28, Theorem 8.17
and Definition 8.18]).

Proposition 8.3. ([10], [46, Proposition 4.6]). Under the identification (G/B)T =
W , there is a one-dimensional T -orbit with poles w and v (w, v ∈ W ) if and only if
v = sαw for some α ∈ Φ+. If v = sαw, then the one-dimensional T -orbit is given
by Uαw ∪ Uαv and the T -weight on the orbit is α.

Remark 8.4. If w−1(α) is a positive root, then Uαw is a one point set in G/B.
This is because w−1Uαw = Uw−1(α) ⊂ B for such w and α.

Proposition 8.3 together with Theorem 8.1 shows that the GKM condition for
G/B is given by

{(fw)w∈W ∈
⊕
w∈W

H∗(BT ) | fw − fv ∈ (α) if v = sαw for some α ∈ Φ+}.

Using the equality w−1sαw = sw−1(α), we can rewrite the above GKM condition for
G/B as follows:

{(fw)w∈W ∈
⊕
w∈W

H∗(BT ) | fw − fv ∈ (w(α)) if v = wsα for some α ∈ Φ+}.

This description is exactly the right hand side for I = Φ+ in Proposition 8.2.

Example 8.5. As mentioned in §8.1, a GKM condition can be visualized in terms
of a GKM graph. For example, the GKM graph associated to the flag variety G/B
of type A2 is the following labeled graph (cf. [45]):

d
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d
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d
d

HHHHHHH

HHH

HHH
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�������
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���

���
���

e

s1s2s1

s2

s2s1

s1

s1s2

labels

= α1

= α2

= α1 + α2

where e is the identity element and s1, s2 are the simple reflections corresponding
to simple roots α1, α2 respectively. The GKM condition says that the collection
of polynomials (fw)w∈W satisfies the following condition: if w and v are connected
by an edge labeled by α in the GKM graph, then the difference fw − fv must be
divisible by the polynomial α. For example, the following collection of polynomials
satisfies the GKM condition:
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−α2

α1 + α2

−(α1 + α2)

−α1

α2

To describe the GKM condition for Hess(S, I), we need to investigate the condition
Uαw ∪ Uαv ⊂ Hess(S, I).

Lemma 8.6. The condition Uαw ∪ Uαv ⊂ Hess(S, I) is equivalent to the condition

w−1(α) ∈ (−I) ∪ Φ+ and v−1(α) ∈ (−I) ∪ Φ+.

Proof. It is enough to prove that the condition Uαw ⊂ Hess(S, I) is equivalent to
the condition w−1(α) ∈ (−I) ∪ Φ+. Let x be an arbitrary element of Uαw. Then
it is enough to prove that x ∈ Hess(S, I) if and only if w−1(α) ∈ (−I) ∪ Φ+. Let
uα : C → G be a morphism such that Uα = im(uα) and write x = uα(c)w with some
c ∈ C. Then
(8.3) x ∈ Hess(S, I) ⇔ Ad((uα(c)w)

−1)(S) ∈ H(I) = b⊕ (
⊕
α∈I

g−α).

Since w−1Uαw = Uw−1(α), we have w−1uα(c)
−1 = uw−1(α)(d)w

−1 for some d ∈ C.
Therefore,

(8.4) Ad((uα(c)w)
−1)(S) = Ad(uw−1(α)(d))(Ad(w

−1)(S)) ∈ t⊕ gw−1(α)

where the last assertion ∈ is because S ∈ t and w ∈ W . It follows from (8.3) and
(8.4) that

x ∈ Hess(S, I) ⇔ w−1(α) ∈ (−I) ∪ Φ+

and we are done. □
Proof of Proposition 8.2. From Proposition 8.3 and Lemma 8.6, we obtain the fol-
lowing GKM condition for Hess(S, I):{

(fw)w∈W ∈
⊕
w∈W

H∗(BT )

∣∣∣∣ fw − fv ∈ (α) if v = sαw,w
−1(α) ∈ (−I) ∪ Φ+

and v−1(α) ∈ (−I) ∪ Φ+ for some α ∈ Φ+

}
.

When v = sαw, we have

v−1(α) = (sαw)
−1(α) = w−1sα(α) = −w−1(α).

Therefore, the conditions w−1(α) ∈ (−I) ∪ Φ+ and v−1(α) ∈ (−I) ∪ Φ+ above are
equivalent to the condition w−1(α) ∈ I ∪ (−I) when v = sαw. We put β = w−1(α)
when w−1(α) ∈ I, and β = −w−1(α) when w−1(α) ∈ −I. Then β ∈ I, w(β) = (α)
and

sαw = w(w−1sαw) = wsw−1(α) = wsβ.

Therefore, the GKM condition above coincides with the GKM condition in Propo-
sition 8.2. □
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8.3. W -action on H∗(Hess(S, I)). In this subsection, we define a W -action on
H∗(Hess(S, I)) using the GKM condition for Hess(S, I). It is the dot action intro-
duced by Tymoczko in type A ([45]).

Through the restriction map in (8.2), we regard H∗
T (Hess(S, I)) as a submodule

of
⊕

w∈W H∗(BT ) and we first define a W -action on
⊕

w∈W H∗(BT ) as follows:

(u · f)w := u(fu−1w) for u ∈ W and f ∈
⊕
w∈W

H∗(BT )(8.5)

where fw is the w-component of f and the W -action on H∗(BT ) is the one induced

from the W -action on the character T̂ of T , see §5.

Lemma 8.7. The W -action in (8.5) preserves H∗
T (Hess(S, I)).

Proof. Let f ∈ H∗
T (Hess(S, I)) and u ∈ W . We denote the restriction image of

f to H∗
T (w) = H∗(BT ) (w ∈ W = Hess(S, I)T ) by f |w as before. Because of

Proposition 8.2, it is enough to prove that if α ∈ I, then

(u · f)|w − (u · f)|wsα ∈ (w(α)).

Since f ∈ H∗
T (Hess(S, I)), we have

f |u−1w − f |(u−1w)sα ∈ (u−1w(α))

by Proposition 8.2. These together with (8.5) show

(u · f)|w − (u · f)|wsα = u(f |u−1w)− u(f |u−1wsα)

= u(f |u−1w − f |u−1wsα) ∈ (w(α))

and we are done. □

Remember that since Hodd(Hess(S, I)) vanishes,

H∗
T (Hess(S, I)) = H∗(BT )⊗H∗(Hess(S, I)) as H∗(BT )-modules.

This means that

H∗(Hess(S, I)) = H∗
T (Hess(S, I))/H

>0(BT )H∗
T (Hess(S, I))

where H>0(BT ) denotes the positive degree part of H∗(BT ). Since H∗
T (Hess(S, I))

is regarded as an H∗(BT )-module through the projection map ET ×T Hess(S, I) →
ET/T = BT ,H∗(BT ) inH∗

T (Hess(S, I)) maps to the diagonal part of
⊕

w∈W H∗(BT )
by the restriction map in (8.2). On the other hand, the W -action in (8.5) preserves
the diagonal part. Therefore, the W -action on H∗

T (Hess(S, I)) induces a W -action
on H∗(Hess(S, I)).

Remember that we have an element eT (Lα) ∈ H2
T (G/B), see §5. Through the

restriction map H2
T (G/B) → H2

T (Hess(S, I)), we may think of eT (Lα) as an element
of H2

T (Hess(S, I)). They are same if we regard them as elements of
⊕

w∈W H2(BT )
through the restriction map in (8.2).

Lemma 8.8. The element eT (Lα) ∈ H2
T (Hess(S, I)) ⊂

⊕
w∈W H2(BT ) is W -

invariant. Hence e(Lα) ∈ H2(Hess(S, I)) is also W -invariant.
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Proof. From (8.5) and Lemma 5.2, we have

(u · eT (Lα))|w = u(eT (Lα)|u−1w) = u(u−1w(α)) = w(α) = eT (Lα)|w
for all u,w ∈ W , so u · eT (Lα) = eT (Lα) for all u ∈ W . □

Remark 8.9. Since e(Lα) ∈ H2(G/B) for α ∈ T̂ generate H∗(G/B) as an R-
algebra, we have H∗(G/B)W = H∗(G/B) from Lemma 8.8. However, the W -action
on H∗(Hess(S, I)) is nontrivial in general.

We conclude this subsection with the following proposition.

Proposition 8.10. The ring H∗
T (Hess(S, I))

W of W -invariants is a polynomial ring

over R generated by eT (Lα) for α ∈ T̂ . Moreover H∗(Hess(S, I))W is generated by

e(Lα) for α ∈ T̂ as an R-algebra.

Proof. Let e be the identity element in W . We will prove that the restriction map
to the point e

H∗
T (Hess(S, I))

W ⊂ H∗
T (Hess(S, I)) → H∗

T (e) = H∗(BT )

is an isomorphism. First, we prove the injectivity. Let f ∈ H∗
T (Hess(S, I))

W such
that f |e = 0. From (8.5),

f |w = (u · f)|w = u(f |u−1w) for all u,w ∈ W .

Taking u = w, we have

f |w = w(f |e) = 0 for all w ∈ W,

so we obtain f = 0. Next, we prove the surjectivity. We note that eT (Lα) lies in
H2(Hess(S, I))W by Lemma 8.8 and eT (Lα)|e = α by Lemma 5.2. Since H∗(BT )

is generated by α ∈ T̂ through the identification H2(BT ;Z) = T̂ , this proves the
surjectivity.

Since the restriction map H∗
T (Hess(S, I)) → H∗(Hess(S, I)) is surjective and W

is a finite group, its restriction to the W -invariants is also surjective. This together
with the former statement implies the latter statement in the proposition. □

8.4. Gysin map. Equivariant Gysin map plays an important role in the following
argument and we first review basic facts on it needed later. We refer the reader
to [16] and [26] for more details. The reference [16] discusses in the category of
algebraic geometry while [26] discusses in the category of topology but both are
essentially same. We follow the description of [16].

Let G be a linear algebraic group acting on nonsingular algebraic varieties X and
Y , and let h : X → Y be a proper G-equivariant morphism (since X and Y are
regular semisimple Hessenberg varieties or a point in our case, they are compact
and hence the properness of h is satisfied for any h). Then there is an equivariant
Gysin map

hG! : H
∗
G(X) → H∗+2d

G (Y )

where d = dimC Y − dimCX. Here are two properties of the equivariant Gysin map
used later.

28



(P1) If h is a closed G-equivariant embedding, then its normal bundle ν becomes
a G-equivariant vector bundle on X, and the composition h∗◦hG! : H∗

G(X) →
H∗+2d

G (X) is multiplication by the equivariant Euler class eG(ν) of ν.
(P2) The map hG! reduces to the (ordinary) Gysin map h! : H

∗(X) → H∗+2d(Y )
through the restriction map from equivariant cohomology to ordinary coho-
mology and h! sends the cofundamental class of X to that of Y .5

Now we return to our previous setting. Let α ∈ Φ+\I such that I ∪{α} is a lower
ideal. Then Hess(S, I) is a T -invariant complex codimension one submanifold of
Hess(S, I ∪ {α}) and the inclusion map jα : Hess(S, I) ↪→ Hess(S, I ∪ {α}) induces
an equivariant Gysin map

jTα ! : H
∗
T (Hess(S, I)) → H∗+2

T (Hess(S, I ∪ {α}))
which raises cohomology degrees by two. On the other hand, we have a complex
T -line bundle Lα over G/B (see §5) and regard its equivariant Euler class eT (Lα)
as an element of

⊕
w∈W H2(BT ) through the restriction to the T -fixed point set W .

We consider the following diagram:

(8.6)

H∗
T (Hess(S, I))

jTα !−−−→ H∗+2
T (Hess(S, I ∪ {α}))y y⊕

w∈W H∗(BT )
×eT (L−α)−−−−−−→

⊕
w∈W H∗+2(BT )

where the vertical maps are restrictions to the T -fixed point set W (so they are
injective) and the bottom horizontal map is multiplication by eT (L−α) = −eT (Lα) ∈⊕

w∈W H2(BT ).

Lemma 8.11. The diagram (8.6) is commutative. Hence the equivariant Gysin map
jTα ! is W -equivariant since eT (L−α) is W -invariant by Lemma 8.8.

Proof. It follows from Property (P1) of equivariant Gysin maps that

(8.7) jα
∗(jTα !(x)) = xeT (να) for x ∈ H∗

T (Hess(S, I))

where jα
∗ : H∗

T (Hess(S, I∪{α})) → H∗
T (Hess(S, I)) is the restriction homomorphism

and να is the T -equivariant normal bundle of Hess(S, I) in Hess(S, I∪{α}). It follows
from (3.5) that να restricted to w is the T -module determined by w(−α) and this
agrees with the restriction of L−α to w by Lemma 5.2. Therefore, eT (να)|w =
eT (L−α)|w for all w ∈ W and hence eT (να) = eT (L−α). This together with (8.7) and
the injectivity of j∗α implies the commutativity of the diagram (8.6). □

The inclusion map jα also induces a Gysin map in ordinary cohomology:

(8.8) jα! : H
∗(Hess(S, I)) → H∗+2(Hess(S, I ∪ {α})

which also raises cohomology degrees by two.

Proposition 8.12. The Gysin map jα! in (8.8) is W -equivariant. In particular, it
maps H∗(Hess(S, I))W to H∗+2(Hess(S, I ∪ {α}))W .

5This is because h! is defined as the composition D−1
Y ◦h∗ ◦DX where DX and DY are Poincaré

duality maps of X and Y and h∗ : H∗(X) → H∗(Y ).
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Proof. As mentioned in Property (P2) of equivariant Gysin maps, jTα ! reduces to
the (ordinary) Gysin map jα! through the restriction map from equivariant coho-
mology to ordinary cohomology. Therefore, jα! is W -equivariant because so is jTα !

by Lemma 8.11. □

8.5. Poincaré duality on H∗(Hess(S, I))W . We will prove that H∗(Hess(S, I))W

is a Poincaré duality algebra of socle degree 2|I| where |I| = dimC Hess(S, I) by
Theorem 3.4.

We have a pairing defined by cup product composed with the evaluation map on
the fundamental class of Hess(S, I):

(8.9) H2k(Hess(S, I))×H2|I|−2k(Hess(S, I)) → H2|I|(Hess(S, I)) → R

This pairing is non-degenerate since Hess(S, I) is a compact smooth equidimensional
oriented manifold. If the W -action on H∗(Hess(S, I)) is induced from a W -action
on Hess(S, I) preserving the orientation, then the fundamental class of Hess(S, I)
is invariant under the induced W -action so that the evaluation map in (8.9) is W -
invariant. This means that the pairing (8.9) is W -invariant and its restriction to
H∗(Hess(S, I))W is still non-degenerate and this will imply that H∗(Hess(S, I))W

is a Poincaré duality algebra. However, since our W -action on H∗(Hess(S, I)) is
defined algebraically using GKM theory, this argument does not work and we need
to check the W -invariance of the evaluation map in a different way.

Proposition 8.13. H∗(Hess(S, I))W is a Poincaré duality algebra of socle degree
2|I|.

Proof. The map ρ : Hess(S, I) → {pt} induces the T -equivariant Gysin map

ρT! : H∗
T (Hess(S, I)) → H

∗−2|I|
T (pt) = H∗−2|I|(BT )

which decreases cohomology degrees by 2|I| = dimRHess(S, I). The Atiyah-Bott-
Berline-Vergne formula ([5]) tells us that

ρT! (f) =
∑
w∈W

f |w
eT (Tw Hess(S, I))

where Tw Hess(S, I) denotes the tangent space of Hess(S, I) at w. It follows from
(3.5) that

eT (Tw Hess(S, I)) =
∏
α∈−I

w(α),

so we have

ρT! (u · f) =
∑
w∈W

u(f |u−1w)
∏
α∈−I

1

w(α)
=
∑
v∈W

u(f |v)
∏
α∈−I

1

u(v(α))
= u(ρT! (f))

for all u ∈ W , proving the W -equivariance of ρT! .
Since ρT! reduces to the (ordinary) Gysin map

ρ! : H
∗(Hess(S, I)) → H∗−2|I|(pt) = H∗−2|I|(BT )/H>0(BT )
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through the map from equivariant cohomology to ordinary cohomology and the W -
action on H∗(pt) is trivial, ρ! is W -invariant. Since H∗−2|I|(pt) = 0 unless ∗ = 2|I|,
ρ! can be nontrivial only when ∗ = 2|I|. In fact, ρ! is the evaluation map on the
fundamental class of Hess(S, I) as is well-known. Therefore the non-degenerate
pairing (8.9) is W -invariant.

Since dimRH
0(Hess(S, I))W = 1 by Proposition 8.10, the existence of the W -

invariant non-degenerate pairing (8.9) implies that dimRH
2|I|(Hess(S, I))W = 1 and

H∗(Hess(S, I))W is a Poincaré duality algebra of socle degree 2|I|. □

9. Proof of Theorem 1.4

Remember that R = Sym(T̂ ⊗ R) (see §3.1). The map

(9.1) ψI : R → H∗(Hess(S, I))W

sending α ∈ T̂ to e(Lα) ∈ H2(Hess(S, I))W is surjective by Proposition 8.10. We
define

s(I) := kerψI ,

so that we have

(9.2) R/s(I) ∼= H∗(Hess(S, I))W .

The following theorem implies Theorem 1.4 in the Introduction.

Theorem 9.1. s(I) = a(I) for any lower ideal I.

Proof. When I = Φ+, Hess(S, I) = G/B and H∗(G/B)W = H∗(G/B) by Re-
mark 8.9. Hence s(Φ+) = (RW

+ ) by Borel’s theorem while a(Φ+) = (RW
+ ) by Theo-

rem 3.9, so we have s(Φ+) = a(Φ+). Therefore, it suffices to prove

(9.3) s(I) = s(I ′) : α

for α ∈ Φ+ \I such that I ′ = I∪{α} is a lower ideal because the ideals a(I)’s satisfy
the same identities.

The Gysin map jα! sends H∗(Hess(S, I))W to H∗+2(Hess(S, I ′))W by Proposi-
tion 8.12 and is nontrivial since it maps the cofundamental class of Hess(S, I) to
that of Hess(S, I ′) and those cofundamental classes are in the W -invariants. The
Gysin map jα! can be regarded as a map from R/s(I) to R/s(I ′) by (9.2) and
the commutativity of the diagram (8.6) implies that the map is just multiplication
by −α. Here both R/s(I) and R/s(I ′) are Poincaré duality algebras by Proposi-
tion 8.13, so the desired fact (9.3) follows from Lemma 2.4. □

10. Explicit description of D(AI) and a(I) for types A,B,C and G

Throughout this section, V is an n-dimensional real vector space with an inner
product, x1, . . . , xn form an orthonormal basis of V ∗, R := Sym(V ∗) = R[x1, . . . , xn],
and ∂i = ∂/∂xi for all i. It is an interesting but challenging problem to find an
explicit description of cohomology rings of all (regular) Hessenberg varieties as quo-
tients of polynomial rings. While to obtain an explicit description of a cohomology
ring is difficult in general, Theorem 1.1 makes this problem quite tractable in the
case of regular nilpotent Hessenberg varieties. Indeed, it guarantees that, to find
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such a description, it suffices to compute a basis of D(AI) and to find an explicit
description of R/a(I). Recall that AI is an hyperplane arrangement in t, a(I) is an
ideal of R = Sym(t∗) and the set of positive roots Φ+ lives in R (see Section 3). In
this section, we will identify t with (a subspace of) V , and find an explicit descrip-
tion of the ring R/a(I) as a quotient of the polynomial ring R = R[x1, . . . , xn] for
types A,B,C and G.

We refer the readers to [23, III. §12] for a concrete construction of a root system,
which will be used in this section.

10.1. Background. We recall the result in [2] which gives an explicit description
of the cohomology rings of regular nilpotent Hessenberg varieties in type A. A
Hessenberg function (of type An−1) is a function h : {1, 2, . . . , n} → {1, 2, . . . , n}
satisfying the following two conditions:

(1) i ≤ h(i) for i = 1, 2, . . . , n, and
(2) h(1) ≤ h(2) ≤ . . . ≤ h(n).

To a Hessenberg function h, the lower ideal I in the positive roots Φ+
An−1

of type
An−1 is defined by

I = {xi − xj | 1 ≤ i ≤ n− 1, i < j ≤ h(i)}

and this correspondence gives a bijection between Hessenberg functions of type An−1

and lower ideals in Φ+
An−1

.

Remark 10.1. In type An−1, the regular nilpotent element N can be regarded as
the nilpotent matrix of size n with one Jordan block and if h is the Hessenberg
function associated to a lower ideal I, then one can see that the regular nilpotent
Hessenberg variety Hess(N, I) consists of the following full flags in Cn:

{(V1 ⊊ V2 ⊊ · · · ⊊ Vn = Cn) | NVi ⊂ Vh(i) for i = 1, 2, . . . , n}.

For any non-negative integers i, j with 1 ≤ i ≤ j ≤ n, we define the polynomials
fA
i,j ∈ R = R[x1, . . . , xn] by

fA
i,j :=

∑i
k=1

(∏j
ℓ=i+1(xk − xℓ)

)
xk

with the convention
∏i

ℓ=i+1(xk − xℓ) = 1. (Note that f̌i,j in [2] is our fA
j,i.)

Theorem 10.2 ([2]). Let I ⊂ Φ+
An−1

be a lower ideal and h the corresponding
Hessenberg function. Then

H∗(Hess(N, I)) ∼= R[x1, · · · , xn]/(fA
1,h(1), . . . , f

A
n,h(n)).

The polynomials fA
i,j (1 ≤ i ≤ j ≤ n) were originally defined recursively. Indeed,

they satisfy the initial conditions

(10.1) fA
i,i = x1 + · · ·+ xi for i = 1, . . . , n,

and the recursive formula

(10.2) fA
i,j = fA

i−1,j−1 + (xi − xj)f
A
i,j−1 for 1 ≤ i < j ≤ n,
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where we take the convention f0,∗ = 0 for any ∗. We put fA
i,j in the (i, j) entry of

an n × n matrix. Then (10.2) means that fA
i,j is determined by “its northwest and

west”:

fA
i,j−1

fA
i−1,j−1

fA
i,j

· · ·

The polynomial xi − xj in (10.2) can be regarded as a positive root in Φ+
An−1

. As

observed in Example 3.1, it is natural to arrange elements in Φ+
An−1

in a strict upper

triangular n× n matrix shown below, so xi − xj is naturally associated to the (i, j)
entry from the Lie-theoretical viewpoint:

x1 − xn· · · · · ·x1 − x3x1 − x2

x2 − xn· · ·x2 − x4x2 − x3

. . . . . .

xi − xn· · ·xi − xi+2xi − xi+1

. . . . . .
...

...

xn−2 − xnxn−2 − xn−1

xn−1 − xn

It turns out that this observation applied to types B, C, and G with a little modi-
fication produces the desired results.

10.2. Type An−1. We first consider type An−1. We will identify t with the hyper-
plane in V defined by the linear form x1 + · · ·+ xn. In this setting, R = Sym(t∗) =
R/(x1 + · · ·+ xn) and

Φ+
An−1

= {xi − xj ∈ R | 1 ≤ i < j ≤ n}.

Note that we identify f ∈ R with its image f modulo
∑n

i=1 xi in R, and the same
f denotes both.

The proof of Theorem 10.2 given in [2] is based on a careful analysis of the
structure of H∗

S(Hess(N, h)) and needs some technical computations. Below we
show that Theorem 10.2 can be proved quite easily if we use Theorem 1.1.

Let ∂ = ∂1 + · · ·+ ∂n. For 1 ≤ i ≤ j ≤ n, define

ψA
i,j :=

i∑
k=1

(
j∏

ℓ=i+1

(xk − xℓ)

)(
∂k −

1

n
∂
)
∈ DerR = R⊗ t,

where t is identified with the R-linear space {
∑n

i=1 ai∂i |
∑n

i=1 ai = 0}.

Proposition 10.3. Let I ⊂ Φ+
An−1

be a lower ideal and h be the corresponding

Hessenberg function. Then ψA
1,h(1), . . . , ψ

A
n−1,h(n−1) is an R-basis of D(AI).
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Proof. Since each ψA
i,h(i) is an R-linear combination of ∂1, . . . , ∂i and the coefficient

of ∂i in ψ
A
i,h(i) is non-zero modulo ∂, ψA

1,h(1), . . . , ψ
A
n−1,h(n−1) are R-independent. Also∑n−1

i=1 degψA
i,h(i) =

∑n−1
i=1 (h(i)− i) = |I| = |AI |. Then, by Saito’s criterion (Theorem

2.3), what we must prove is that each ψA
i,h(i) is contained in D(AI).

Let xp − xq ∈ I, so p < q ≤ h(p). Observe that ∂(xp − xq) = 0. We prove

ψA
i,h(i)(xp − xq) ∈ (xp − xq) for all 1 ≤ i ≤ n− 1.(10.3)

One can easily see that

ψA
i,h(i)(xp − xq) =


0 if i < p,∏h(i)

ℓ=i+1(xp − xℓ) if p ≤ i < q,∏h(i)
ℓ=i+1(xp − xℓ)−

∏h(i)
ℓ=i+1(xq − xℓ) if q ≤ i.

It is obvious that (10.3) holds in the first and third cases above. In the second
case, we have i + 1 ≤ q ≤ h(i) since i < q ≤ h(p) ≤ h(i) (note that p ≤ i implies
h(p) ≤ h(i) by condition (2) in the definition of the Hessenberg function h); so (10.3)
holds in any case. Therefore ψA

1,h(1), . . . , ψ
A
n−1,h(n−1) ∈ D(AI) as desired. □

Observe that fA
n,h(n) = fA

n,n = x1 + · · · + xn, and in R, fA
i,j =

1
2
ψA
i,j(x

2
1 + · · · + x2n)

for all i, j. Then, by Theorem 1.1, the following corollary which immediately follows
from Proposition 10.3 proves Theorem 10.2.

Corollary 10.4. With the same notation as in Proposition 10.3, a(I) is the ideal
of R = R/(x1 + · · ·+ xn) generated by fA

1,h(1), . . . , f
A
n−1,h(n−1).

Remark 10.5. When the lower ideal I consists of the hyperplanes kerα such that
ht(α) ≤ k, the corresponding ideal arrangement A≤k is called a height subar-
rangement of the Weyl arrangement. In 2012, the first author learned from Terao
the construction of the basis of D(A≤k) for all k when Φ is of type A, which coin-
cides with that in Proposition 10.3. At that time no relations were found between
D(A≤k) and Hessenberg varieties.

10.3. Type Bn. We consider type Bn. Here we identify t with V (in particular, R
is identified with R) and take

Φ+
Bn

= {xi ± xj | 1 ≤ i < j ≤ n} ∪ {xi | i = 1, 2, . . . , n}

as the set of positive roots of type Bn. As observed in Example 3.1, we arrange
positive roots in Φ+

Bn
as follows:
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x1 + x2· · ·x1 − xn x1 x1 + xn· · ·x1 − x2

. . .
... · · ·

xi + xi+1xi − xn · · ·xi· · · xi + xnxi − xi+1

. . .
... · · ·

xn−1 + xnxn−1xn−1 − xn

xn

We regard these positive roots as being arranged in the region

(10.4) ▽n := {(i, j) | 1 ≤ i ≤ n, i+ 1 ≤ j ≤ 2n+ 1− i}

of an n × 2n matrix and denote by αi,j the positive root in the (i, j) entry. Then
the i-th row αi,i+1, αi,i+2, . . . , αi,2n+1−i are

xi − xi+1, . . . , xi − xn, xi, xi + xn, . . . , xi + xi+1.

Note that α ⪯ β for α, β ∈ Φ+
Bn

if and only if β is located northeast of α, that is,

αi,j ⪯ αp,q if and only if i ≥ p and j ≤ q.

We define a Hessenberg function (of type Bn) to be a function h : {1, . . . , n} →
{1, . . . , 2n} satisfying the following three conditions:

(1) i ≤ h(i) ≤ 2n+ 1− i for i = 1, 2, . . . , n,
(2) if h(i) ̸= 2n+ 1− i, then h(i) ≤ h(i+ 1), and
(3) if h(i) = 2n+ 1− i, then h(k) = 2n+ 1− k for k > i.

To a Hessenberg function h (of type Bn), the lower ideal I in Φ+
Bn

is defined by

I = {αi,j | 1 ≤ i ≤ n, i < j ≤ h(i)}

and this correspondence gives a bijection between Hessenberg functions of type Bn

and lower ideals in Φ+
Bn

.

Motivated by (10.1) and (10.2), we define derivations ψB
i,j ∈ R⊗ t by the following

initial conditions and recursive formula:

ψB
i,i = ∂1 + · · ·+ ∂i for i = 1, . . . , n,

ψB
i,j = ψB

i−1,j−1 + αi,jψ
B
i,j−1 for (i, j) ∈ ▽n,

where we take the convention ψ0,∗ = 0 for any ∗. Then an elementary computation
shows that

ψB
i,j =

∑i
k=1

(∏j
ℓ=i+1 αk,ℓ

)
∂k for (i, j) ∈ ▽n ∪ {(i, i) | 1 ≤ i ≤ n}

with the convention
∏i

ℓ=i+1 αk,ℓ = 1.

Remark 10.6. The initial terms ψB
1,1, ψ

B
2,2, . . . , ψ

B
n,n are dual to the simple roots

α1,2, α2,3, . . . , αn,n+1, i.e., ψ
B
i,i(αj,j+1) = δij where δij is the Kronecker delta.

35



Example 10.7. In type B3, we have

Φ+
B3

= {x1 − x2, x1 − x3, x1, x1 + x3, x1 + x2, x2 − x3, x2, x2 + x3, x3}.

ψB
1,1

ψB
2,2

ψB
1,2

ψB
3,3

ψB
2,3

ψB
1,3

ψB
3,4

ψB
2,4

ψB
1,4

ψB
2,5

ψB
1,5 ψB

1,6

Then ψB
i,j are as follows:

ψB
1,1 = ∂1, ψB

2,2 = ∂1 + ∂2, ψB
3,3 = ∂1 + ∂2 + ∂3,

ψB
1,2 = (x1 − x2)∂1,

ψB
1,3 = (x1 − x2)(x1 − x3)∂1,

ψB
1,4 = (x1 − x2)(x1 − x3)x1∂1,

ψB
1,5 = (x1 − x2)(x1 − x3)x1(x1 + x3)∂1,

ψB
1,6 = (x1 − x2)(x1 − x3)x1(x1 + x3)(x1 + x2)∂1,

ψB
2,3 = (x1 − x3)∂1 + (x2 − x3)∂2,

ψB
2,4 = (x1 − x3)x1∂1 + (x2 − x3)x2∂2,

ψB
2,5 = (x1 − x3)x1(x1 + x3)∂1 + (x2 − x3)x2(x2 + x3)∂2,

ψB
3,4 = x1∂1 + x2∂2 + x3∂3.

Recall that, for a lower ideal I ⊂ Φ+
Bn

, AI is the hyperplane arrangement in V

defined by linear forms in I. We first prove that ψB
i,2n+1−i is an element of D(AI)

for any ideal I ⊂ Φ+
Bn

.

Lemma 10.8. Let 1 ≤ i ≤ n. Then ψB
i,2n+1−i(α) ∈ (α) for any α ∈ Φ+

Bn
.

Proof. We note that

ψB
i,2n+1−i =

i∑
k=1

(
2n+1−i∏
ℓ=i+1

αk,ℓ

)
∂k =

i∑
k=1

(
n∏

ℓ=i+1

(xk − xℓ)(xk + xℓ)

)
xk∂k.

If α = xu ± xv with v ≥ i + 1 or α = xu, then ψB
i,2n+1−i(α) is either zero or∏n

ℓ=i+1(xu−xℓ)(xu+xℓ)xu, which is contained in the ideal (α). Suppose α = xu±xv
with u, v ≤ i. Then

ψB
i,2n+1−i(xu ± xv)

=

(
n∏

ℓ=i+1

(xu − xℓ)(xu + xℓ)

)
xu ±

(
n∏

ℓ=i+1

(xv − xℓ)(xv + xℓ)

)
xv.

The right-hand side of the above equation is contained in (xu ± xv) since if we
replace xu by ±xv in

(∏n
ℓ=i+1(xu − xℓ)(xu + xℓ)

)
xu, then we obtain the polynomial

±(
∏n

ℓ=i+1(xv − xℓ)(xv + xℓ))xv. □
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We now prove the main result of this subsection.

Theorem 10.9. Let I ⊂ Φ+
Bn

be a lower ideal and let h be the corresponding Hes-

senberg function. Then ψB
1,h(1), ψ

B
2,h(2), . . . , ψ

B
n,h(n) is an R-basis of D(AI).

Proof. Since each ψB
i,h(i) is anR-linear combination of ∂1, . . . , ∂i and the coefficient of

∂i in ψ
B
i,h(i) is non-zero, ψ

B
1,h(1), . . . , ψ

B
n,h(n) areR-independent. Also

∑n
i=1 degψ

B
i,h(i) =∑n

i=1(h(i)−i) = |I| = |AI |. Then, by Saito’s criterion (Theorem 2.3), what we must
prove is that each ψB

i,h(i) is contained in D(AI).
Let αp,q ∈ I, so

(10.5) p < q ≤ h(p).

We prove

ψB
i,h(i)(αp,q) ∈ (αp,q) for all 1 ≤ i ≤ n.(10.6)

We fix i and may assume h(i) < 2n+ 1− i by Lemma 10.8. Then one can see that

(10.7) ψB
i,h(i)(αp,q) =


0 if i < p,∏h(i)

ℓ=i+1 αp,ℓ if p ≤ i < q,∏h(i)
ℓ=i+1 αp,ℓ −

∏h(i)
ℓ=i+1 αq,ℓ if q ≤ i.

Indeed, (10.7) is obvious in the first and third cases. In the second case, since p ≤ i
and h(i) < 2n + 1− i, it follows from the definition of Hessenberg function of type
Bn that we have h(p) ̸= 2n + 1 − p by condition (3) and hence h(p) ≤ h(i) by
condition (2). Therefore, we obtain i < q ≤ h(p) ≤ h(i) < 2n + 1 − i, where the
second inequality follows from (10.5). The obtained inequality i < q < 2n + 1 − i
means that αp,q = xp ± xr with r ≥ i+ 1 or xp. Since ψi,h(i)(xr) = 0 and p ≤ i, the
second identity in (10.7) follows.

We have i < q ≤ h(i) in the second case and we note that αp,ℓ − αq,ℓ = αp,q in
the third case, so (10.6) holds in any case. Therefore ψB

1,h(1), . . . , ψ
B
n,h(n) ∈ D(AI) as

desired. □
Corollary 10.10. Let fB

i,j =
1
2
ψB
i,j(x

2
1 + · · ·+ x2n). Then, with the same notation as

in Theorem 10.9, we have a(I) = (fB
1,h(1), f

B
2,h(2), . . . , f

B
n,h(n)), and hence

H∗(Hess(N, I)) ∼= R[x1, . . . , xn]/(fB
1,h(1), f

B
2,h(2), . . . , f

B
n,h(n)).

Example 10.11. Consider type B3. Let

I = {x1 − x2, x1 − x3, x2 − x3, x2, x2 + x3, x3}.
Then (h(1), h(2), h(3)) = (3, 5, 4), and it follows from Example 10.7 that R/a(I) ∼=
H∗(Hess(N, I)) is isomorphic to the quotient of R[x1, x2, x3] by the ideal generated
by the following three polynomials

fB
1,3 = (x1 − x2)(x1 − x3)x1,

fB
2,5 = (x1 − x3)(x1 + x3)x

2
1 + (x2 − x3)(x2 + x3)x

2
2,

fB
3,4 = x21 + x22 + x23.
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10.4. Type Cn. Next, we consider type Cn. We again identify t with V , and take

Φ+
Cn

= {xi ± xj | 1 ≤ i < j ≤ n} ∪ {2xi | i = 1, 2, . . . , n}
as the set of positive roots of type Cn. As observed in Example 3.1, we arrange
positive roots in Φ+

Cn
as follows:

2x1· · ·x1 − xn x1 + xn x1 + x2· · ·x1 − x2

. . .
...

... · · ·· · ·

2xixi − xn · · ·xi + xn· · · xi + xi+1xi − xi+1

. . .
...

... · · ·· · ·

2xn−1xn−1 + xnxn−1 − xn

2xn

Similarly to type Bn case, we regard these positive roots as being arranged in the
region ▽n (see (10.4)). We define αi,j for (i, j) ∈ ▽n by

αi,j =

{
the (i, j) entry if j ̸= 2n+ 1− i,

xi if j = 2n+ 1− i,

and derivations ψC
i,j ∈ R⊗t by the following initial conditions and recursive formula:

ψC
i,i = ∂1 + · · ·+ ∂i for i = 1, . . . , n,

ψC
i,j = ψC

i−1,j−1 + αi,jψ
C
i,j−1 for (i, j) ∈ ▽n,

where we take the convention ψ0,∗ = 0 for any ∗ as before. Then an elementary
computation shows that

ψC
i,j =

{∑i
k=1

(∏j
ℓ=i+1 αk,ℓ

)
∂k if j ̸= 2n+ 1− i,∑i

k=1

(∏n
ℓ=i+1(xk − xℓ)(xk + xℓ)

)
xk∂k if j = 2n+ 1− i.

for (i, j) ∈ ▽n ∪ {(i, i) | 1 ≤ i ≤ n}, with the convention
∏i

ℓ=i+1 ∗ = 1.

Remark 10.12. (1) ψC
i,2n+1−i = ψB

i,2n+1−i for i = 1, . . . , n.

(2) The initial terms ψC
1,1, ψ

C
2,2, . . . , ψ

C
n,n are dual to α1,2, α2,3, . . . , αn,n+1 similarly

to type Bn case, but αn,n+1 = xn is not a simple root although the others are simple
roots.

Example 10.13. In type C3, we have

Φ+
C3

= {x1 − x2, x1 − x3, x1 + x3, x1 + x2, 2x1, x2 − x3, x2 + x3, 2x2, 2x3}.

ψC
1,1

ψC
2,2

ψC
1,2

ψC
3,3

ψC
2,3

ψC
1,3

ψC
3,4

ψC
2,4

ψC
1,4

ψC
2,5

ψC
1,5 ψC

1,6
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Then

ψC
1,4 = (x1 − x2)(x1 − x3)(x1 + x3)∂1,

ψC
1,5 = (x1 − x2)(x1 − x3)(x1 + x3)(x1 + x2)∂1,

ψC
2,4 = (x1 − x3)(x1 + x3)∂1 + (x2 − x3)(x2 + x3)∂2,

and other ψC
i,j are same as ψB

i,j in Example 10.7.

We define Hessenberg functions of type Cn to be the same as type Bn. Since
ψC
i,2n+1−i = ψB

i,2n+1−i and Φ+
Cn

agrees with Φ+
Bn

up to constant multiples, Lemma

10.8 holds for ψC
i,2n+1−i and the following theorem can be proved exactly in the same

way as in the proof of Theorem 10.9.

Theorem 10.14. Let I ⊂ Φ+
Cn

be a lower ideal and h be the corresponding Hessen-

berg function. Then ψC
1,h(1), ψ

C
2,h(2), . . . , ψ

C
n,h(n) is an R-basis of D(AI).

Corollary 10.15. Let fC
i,j =

1
2
ψC
i,j(x

2
1 + · · ·+ x2n). Then, with the same notation as

in Theorem 10.14, we have a(I) = (fC
1,h(1), f

C
2,h(2), . . . , f

C
n,h(n)), and hence

H∗(Hess(N, I)) ∼= R[x1, . . . , xn]/(fC
1,h(1), f

C
2,h(2), . . . , f

C
n,h(n)).

10.5. Type G2. We finally consider type G2. Let V be the real vector space of
dimension 3 with an inner product, x, y, z an orthonormal basis of V ∗, and we
identify t with the hyperplane in V defined by the linear form x+ y + z. Then the
positive roots Φ+

G2
of type G2 can be taken as the images of the following polynomials

in R = Sym(t∗) = R[x, y, z]/(x+ y + z):

x− y, −x+ z, −y + z, x− 2y + z, −x− y + 2z, −2x+ y + z.

We arrange these polynomials in the region

▽ := {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3)}

as follows:

x− y

−2x+ y + z

−x+ z −y + z x− 2y + z −x− y + 2z

The images of these entries in R are positive roots in Φ+
G2

and we denote the image
of the (i, j) entry by αi,j. Then

αi,j ⪯ αp,q if and only if i ≥ p and j ≤ q

as before.
We define a Hessenberg function (of type G2) to be a function h : {1, 2} →

{1, 2, 3, 4, 5, 6} satisfying the following conditions:

(1) 1 ≤ h(1) ≤ 6 and 2 ≤ h(2) ≤ 3, and
(2) if h(1) ≥ 3, then h(2) = 3.
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To a Hessenberg function h (of type G2), the lower ideal I in Φ+
G2

is defined by

I = {αi,j | 1 ≤ i ≤ 2, i < j ≤ h(i)}
and this correspondence gives a bijection between Hessenberg functions of type G2

and lower ideals in Φ+
G2
.

Let ∂ = ∂x + ∂y + ∂z. We identify t with the R-linear space
{ax∂x + ay∂y + az∂z | ax, ay, az ∈ R, ax + ay + az = 0}

and define derivations ψG
i,j ∈ R⊗ t by the following initial conditions and recursive

formula:

ψG
1,1 = −∂y + ∂z, ψG

2,2 = ∂z − 1
3
∂,

ψG
i,j = ψG

i−1,j−1 + αi,jψ
G
i,j−1 for (i, j) ∈ ▽

with the convention ψ0,∗ = 0 for any ∗.
Remark 10.16. The initial terms ψG

1,1, ψ
G
2,2 are dual to the simple roots α1,2, α2,3.

An elementary computation shows that

ψG
i,j =

{(∏j
ℓ=2 α1,ℓ

)
(−∂y + ∂z) if 1 = i < j,

x∂x + y∂y + z∂z − 1
3
(x+ y + z)∂ if (i, j) = (2, 3),

where the images of x, y, z in R are denoted by the same notation respectively.

Theorem 10.17. Let I ⊂ Φ+
G2

be a lower ideal and h be the corresponding Hessen-

berg function. Then ψG
1,h(1), ψ

G
2,h(2) is an R-basis of D(AI).

Proof. It is a routine work to check that ψG
i,h(i)(α) ∈ (α) for any α ∈ I. Since

ψG
1,h(1) and ψ

G
2,h(2) are R-independent and degψG

1,h(1) + degψG
2,h(2) = |AI |, Theorem

2.3 proves the desired statement. □
Corollary 10.18. Let fG

i,j =
1
2
ψG
i,j(x

2 + y2 + z2). Then, with the same notation as

in Theorem 10.17, we have a(I) = (fG
1,h(1), f

G
2,h(2)), and hence

H∗(Hess(N, I)) ∼= R[x, y, z]/(x+ y + z, fG
1,h(1), f

G
2,h(2)).

11. Volume polynomial

In this section, we will give another type of description of the ideal a(I). In fact,
a(I) can be described by one homogeneous polynomial and we will find it.

For a homogeneous polynomial P of degree r in n variables x1, . . . , xn, we define
the annihilator of P by

Ann(P ) := {f ∈ R[x1, . . . , xn] | f(∂/∂x1, . . . , ∂/∂xn)(P ) = 0}.
One can check that two homogeneous polynomials have the same annihilator if and
only if they agree up to a nonzero scalar multiple. It is well-known (and indeed easy
to check) that Ann(P ) is a graded ideal of the polynomial ring R[x1, . . . , xn] and the
quotient

A(P ) := R[x1, . . . , xn]/Ann(P )
is a Poincaré duality algebra of socle degree r.
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Remark 11.1. Conversely, any Poincaré duality algebra A generated by degree one
elements is obtained this way up to isomorphism. Indeed, if A is of socle degree r
and generated by degree one elements ξ1, . . . , ξn, then PA defined by

(11.1) PA(x1, . . . , xn) :=
1

r!

∫
A

(x1ξ1 + · · ·+ xnξn)
r,

is the desired homogeneous polynomial, where
∫
A
denotes an isomorphism from the

r-th graded piece of A to R. Under some situation, the right hand side of (11.1)
gives the volume of a polytope associated to the element x1ξ1 + · · ·+ xnξn (see [17,
Section 5.3], [25]).

In order to make things clear, we take a coordinate free approach in our case.
Remember that G is a semisimple linear algebraic group, t is the Lie algebra of a
compact maximal torus TR of G, the Weyl group W of G acts on t and its dual t∗,
and R = Sym(t∗). We set

D := Sym(t).

We regard t as derivations on R and the algebra D as differential operators on R in
a natural way.

We choose a W -invariant inner product on t∗ or t which determines an isomor-
phism between t∗ and t as W -modules. This isomorphism extends to an equivariant
isomorphism between R and D as graded algebras with W -actions. Through this
isomorphism, we denote the element inD corresponding to f ∈ R by ∂f . If we choose
an orthonormal coordinate system on t, say (x1, . . . , xn), then f can be expressed
as a polynomial f(x1, . . . , xn) in x1, . . . , xn and ∂f agrees with f(∂/∂x1, . . . , ∂/∂xn).
Using this description, one can easily see that

(11.2) ∂f (f) > 0 for any nonzero f ∈ R.

For g ∈ R we define

Ann(g) := {f ∈ R | ∂f (g) = 0}.
The roots of G are degree one elements of R and we put

P :=
∏

α∈Φ+

α.

The following proposition is known as a theorem of Kostant (see [25]) and a proof
can be found in [21, Proposition 8.19].

Proposition 11.2. Ann(P ) = (RW
+ ).

For a lower ideal I ⊂ Φ+ we put

(11.3) PI := ∂βI
(P ) where βI =

∏
α∈Φ+\I

α.

The following is our main result in this section.

Theorem 11.3. Ann(PI) = a(I) for any lower ideal I.
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Proof. Ann(P ) = (RW
+ ) by Proposition 11.2 while a(Φ+) = (RW

+ ) by Theorem 3.9,
so Ann(PI) = a(I) when I = Φ+. Therefore it suffices to prove that if I ∪ {α} is a
lower ideal for α ∈ Φ+\I, then
(11.4) Ann(PI) = Ann(PI∪{α}) : α

because a(I)’s satisfy the same identities by Proposition 4.2.
For any element f ∈ Ann(PI), we have

∂αf (PI∪{α}) = ∂f (∂α(PI∪{α})) = ∂f (PI) = 0,

where the second identity follows from (11.3). This proves the inclusion relation ⊂
in (11.4).

To prove the equality in (11.4), Lemma 2.4 says that it suffices to check α /∈
Ann(PI∪{α}). Moreover, since ∂α(PI∪{α}) = PI from (11.3), it suffices to prove
PI ̸= 0. If we set αI =

∏
α∈I α, then

(11.5) ∂αI
(PI) = ∂αI

(∂βI
(P )) = ∂P (P ) > 0

where the first identity follows from (11.3), the second is because αIβI = P and the
last positivity follows from (11.2). The desired fact PI ̸= 0 follows from (11.5). □
Example 11.4. Let G be a simple linear algebraic group of type A2 and let α1, α2

be its simple roots. Then P = α1α2(α1 + α2). We take I = {α1, α2}, so Φ+\I =
{α1 + α2}. We choose a usual W -invariant inner product ( , ) on t∗ such that
(αi, αi) = 2 for i = 1, 2 and (αi, αj) = −1 for i ̸= j. Then it follows from the
definition of ∂αi

that

∂αi
(αi) = (αi, αi) = 2 for i = 1, 2, ∂αi

(αj) = (αi, αj) = −1 for i ̸= j

and an elementary computation yields

PI = ∂α1+α2(P ) = ∂α1(P ) + ∂α2(P ) = α2
1 + α2

2 + 4α1α2.

A further elementary computation shows

Ann(PI) = (α2
1 − α2

2, 2α
2
1 + α1α2).

Remark 11.5. The polynomial PI is related to the volume of a Newton-Okounkov
body of the regular nilpotent Hessenberg variety Hess(N, I) in type A, see [1].

12. Hard Lefschetz property and Hodge-Riemann relations

In this section we observe that the hard Lefschetz property and the Hodge-
Riemann relations hold for any regular nilpotent Hessenberg variety Hess(N, I) of
positive dimension, despite the fact that it is a singular variety in general.

Since the regular semisimple Hessenberg variety Hess(S, I) is non-singular and
projective, it is a compact Kähler manifold; so the hard Lefschetz property and the
Hodge-Riemann relations hold for the Kähler form ω on it if |I| = dimC Hess(S, I) ≥
1. Namely the cohomology class in H2(Hess(S, I)) determined by ω, denoted [ω],
satisfies the following for 2q ≤ |I|:
Hard Lefschetz property. The multiplication by [ω]|I|−2q defines an isomorphism

H2q(Hess(S, I)) → H2(|I|−q)(Hess(S, I)).
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Hodge-Riemann relations. The multiplication by [ω]|I|−2q defines a symmetric
bilinear form

H2q(Hess(S, I))×H2q(Hess(S, I)) → R, (ξ1, ξ2) 7→ (−1)q
∫
[ω]|I|−2q ∪ ξ1 ∪ ξ2

that is positive definite when restricted to the kernel of the multiplication map
[ω]|I|−2q+1 : H2q(Hess(S, I)) → H2(|I|−q+1)(Hess(S, I)), where

∫
denotes the evalua-

tion on the fundamental class of Hess(S, I).

The flag variety G/B is also a non-singular projective variety, so it is a compact
Kähler manifold as well. Since Hess(S, I) is a complex submanifold of G/B, the
Kähler form on G/B restricted to Hess(S, I) becomes a Kähler form on Hess(S, I).
Therefore one can take [ω] above as the restriction image of an element in H2(G/B).
As remarked in Remark 8.9, the W -action on H∗(G/B) is trivial, so that such
[ω] is invariant under the W -action. Therefore, the hard Lefschetz property and
the Hodge-Riemann relations above still hold when restricted to the W -invariants
H∗(Hess(S, I))W for such [ω]. SinceH∗(Hess(S, I))W is isomorphic toH∗(Hess(N, I))
by Theorem 1.4, we obtain the following.

Theorem 12.1. Any regular nilpotent Hessenberg variety Hess(N, I) of positive di-
mension has a non-zero element in H2(Hess(N, I)) which satisfies the hard Lefschetz
property and the Hodge-Riemann relations.
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Birkhäuser, Boston, 1996.

44



[39] R. Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960), 616–618.
[40] N. Teff, Representations on Hessenberg varieties and Young’s rule, 23rd International Confer-

ence on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 903-914, Discrete
Math. Theor. Comput. Sci. Proc., AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy,
2011.

[41] H. Terao, Arrangements of hyperplanes and their freeness I, II, J. Fac. Sci. Univ. Tokyo 27
(1980), 293–320.

[42] H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-
Brieskorn formula, Invent. Math. 63 (1981), no. 1, 159–179.

[43] H. Terao, Multiderivations of Coxeter arrangements, Invent. Math. 148 (2002), 659–674.
[44] J. Tymoczko, Paving Hessenberg varieties by affines, Selecta Math. (N.S.) 13 (2007), 353–367.
[45] J. Tymoczko, Permutation actions on equivariant cohomology of flag varieties,Contemp. Math.

460 (2008), 365–384.
[46] J. Tymoczko, Permutation representations on Schubert varieties, Amer. J. Math. 130 (2008),

no. 5, 1171–1194.
[47] J. Tymoczko, The geometry and combinatorics of Springer fibers, arXiv:1606.02760.
[48] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hy-

perplanes, Mem. Amer. Math. Soc. 1 (1975), issue 1, no. 154, vii+102.

INSTITUTE OF MATHEMATICS FOR INDUSTRY, KYUSHU UNIVERSITY, FUKUOKA
819-0395, JAPAN.

E-mail address: ABE@IMI.KYUSHU-U.AC.JP

OSAKA CITY UNIVERSITY ADVANCED MATHEMATICAL INSTITUTE, 3-3-138
SUGIMOTO, SUMIYOSHI-KU, OSAKA 558-8585, JAPAN.

E-mail address: TATSUYA.HORIGUCHI0103@GMAIL.COM

DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY, SUMIYOSHI-
KU, OSAKA 558-8585, JAPAN.

E-mail address: MASUDA@SCI.OSAKA-CU.AC.JP

DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL
OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, SUITA,
OSAKA, 565-0871, JAPAN

E-mail address: S-MURAI@IST.OSAKA-U.AC.JP

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO, 606-8502,
JAPAN

E-mail address: T-SATO@MATH.KYOTO-U.AC.JP

45


