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Abstract. We characterize building sets whose associated nonsingular pro-

jective toric varieties are Fano. Furthermore, we show that all such toric Fano
varieties are obtained from smooth Fano polytopes associated to finite directed
graphs.

1. Introduction

An n-dimensional toric variety is a normal algebraic variety X over C containing
the algebraic torus (C∗)n as an open dense subset, such that the natural action
of (C∗)n on itself extends to an action on X. The category of toric varieties is
equivalent to the category of fans, which are combinatorial objects.

A nonsingular projective algebraic variety is said to be Fano if its anticanonical
divisor is ample. The classification of toric Fano varieties is a fundamental problem
and has been studied by many researchers. In particular, Øbro [2] gave an algorithm
that classifies all toric Fano varieties for any given dimension.

There is a construction of nonsingular projective toric varieties from building
sets. The class of such toric varieties includes toric varieties corresponding to graph
associahedra of finite simple graphs [4]. On the other hand, Higashitani [1] gave a
construction of integral convex polytopes from finite directed graphs. There is a
one-to-one correspondence between smooth Fano polytopes and toric Fano varieties.
He also gave a necessary and sufficient condition for the polytope to be smooth Fano
in terms of the finite directed graph.

In this paper, we give a necessary and sufficient condition for the toric variety
associated to a building set to be Fano in terms of the building set (Theorem 2.5).
The author [5] characterized finite simple graphs whose associated toric varieties
are Fano. Theorem 2.5 generalizes this result (Example 2.6 (2)). Furthermore, we
prove that any toric Fano variety associated to a building set is obtained from the
smooth Fano polytope associated to a finite directed graph (Theorem 4.1).

The structure of the paper is as follows. In Section 2, we state the characteri-
zation of building sets whose associated toric varieties are Fano. In Section 3, we
give its proof. In Section 4, we show that all such toric Fano varieties are obtained
from finite directed graphs.
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2. Building sets whose associated toric varieties are Fano

We review the construction of a toric variety from a building set. Let S be a
nonempty finite set. A building set on S is a finite set B of nonempty subsets of S
satisfying the following conditions:

(1) If I, J ∈ B and I ∩ J ̸= ∅, then we have I ∪ J ∈ B.
(2) For every i ∈ S, we have {i} ∈ B.

We denote by Bmax the set of all maximal (by inclusion) elements of B. An element
of Bmax is called a B-component and B is said to be connected if Bmax = {S}. For a
nonempty subset C of S, we call B|C = {I ∈ B | I ⊂ C} the restriction of B to C.
B|C is a building set on C. Note that we have B =

⊔
C∈Bmax

B|C for any building
set B. In particular, any building set is a disjoint union of connected building sets.

Definition 2.1. A nested set of B is a subset N of B\Bmax satisfying the following
conditions:

(1) If I, J ∈ N , then we have either I ⊂ J or J ⊂ I or I ∩ J = ∅.
(2) For any integer k ≥ 2 and for any pairwise disjoint I1, . . . , Ik ∈ N , we have

I1 ∪ · · · ∪ Ik /∈ B.

The set N (B) of all nested sets of B is called the nested complex. N (B) is a
simplicial complex on B \Bmax.

Proposition 2.2 ([6, Proposition 4.1]). Let B be a building set on S. Then all
maximal (by inclusion) nested sets of B have the same cardinality |S| − |Bmax|. In
particular, if B is connected, then the cardinality of a maximal nested set of B is
|S| − 1.

First, suppose that B is a connected building set on S. Let S = {1, . . . , n+ 1}.
We denote by e1, . . . , en the standard basis for Rn and we put en+1 = −e1−· · ·−en.
For I ⊂ S, we denote eI =

∑
i∈I ei. For N ∈ N (B), we denote by R≥0N the |N |-

dimensional cone
∑

I∈N R≥0eI , where R≥0 is the set of non-negative real numbers.
We define ∆(B) = {R≥0N | N ∈ N (B)}. Then ∆(B) is a fan in Rn and thus we
have an n-dimensional toric variety X(∆(B)). If B is not connected, then we define
X(∆(B)) =

∏
C∈Bmax

X(∆(B|C)).

Theorem 2.3 ([6, Corollary 5.2 and Theorem 6.1]). Let B be a building set. Then
the associated toric variety X(∆(B)) is nonsingular and projective.

Example 2.4. Let S = {1, 2, 3} and B = {{1}, {2}, {3}, {2, 3}, {1, 2, 3}}. Then the
nested complex N (B) is

{∅, {{1}}, {{2}}, {{3}}, {{2, 3}},
{{1}, {2}}, {{1}, {3}}, {{2}, {2, 3}}, {{3}, {2, 3}}}.

Hence we have the fan ∆(B) in Figure 1. Therefore the corresponding toric variety
X(∆(B)) is P2 blown-up at one point.

Our first main result is the following:

Theorem 2.5. Let B be a building set. Then the following are equivalent:

(1) The associated nonsingular projective toric variety X(∆(B)) is Fano.
(2) For any B-component C and for any I1, I2 ∈ B|C such that I1∩I2 ̸= ∅, I1 ̸⊂

I2 and I2 ̸⊂ I1, we have I1 ∪ I2 = C and I1 ∩ I2 ∈ B|C .
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Figure 1. the fan ∆(B).

Example 2.6. (1) If |S| ≤ 3, then a connected building set B on S is isomor-
phic to one of the following six types:
(a) {{1}}: a point, which is understood to be Fano.
(b) {{1}, {2}, {1, 2}}: P1.
(c) {{1}, {2}, {3}, {1, 2, 3}}: P2.
(d) {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}: P2 blown-up at one point.
(e) {{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 2, 3}}: P2 blown-up at two points.
(f) {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}: P2 blown-up at three points.
Thus X(∆(B)) is Fano in every case. Since the disconnected building set
{{1}, {2}, {1, 2}, {3}, {4}, {3, 4}} yields P1×P1, it follows that all toric Fano
varieties of dimension ≤ 2 are obtained from building sets.

(2) Let G be a finite simple graph, that is, a finite graph with no loops and
no multiple edges. We denote by V (G) and E(G) its node set and edge
set respectively. For I ⊂ V (G), we define a graph G|I by V (G|I) = I and
E(G|I) = {{v, w} ∈ E(G) | v, w ∈ I}. The graphical building set B(G) of G
is defined to be {I ⊂ V (G) | G|I is connected, I ̸= ∅}. Theorem 2.5 implies
that the toric variety X(∆(B(G))) is Fano if and only if each connected
component of G has at most three nodes, which agrees with [5, Theorem
3.1].

(3) If |S| = 4, then a connected building set B on S whose associated toric
variety is Fano is isomorphic to one of the following nine types:
(a) {{1}, {2}, {3}, {4}, {1, 2, 3, 4}}.
(b) {{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 3, 4}}.
(c) {{1}, {2}, {3}, {4}, {1, 2}, {1, 2, 3, 4}}.
(d) {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3, 4}}.
(e) {{1}, {2}, {3}, {4}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}.
(f) {{1}, {2}, {3}, {4}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}}.
(g) {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 3, 4}}.
(h) {{1}, {2}, {3}, {4}, {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}}.
(i) {{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}}.

Among 18 types of toric Fano threefolds, 13 types are indecomposable and
five types are products of P1 and toric del Pezzo surfaces (see, for example
[3, pp.90–92]). This shows that there are nine types of indecomposable toric
Fano threefolds that are obtained from building sets. On the other hand,
(1) shows that all toric del Pezzo surfaces are obtained from building sets.
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Thus there are exactly 14 types of toric Fano threefolds that are obtained
from building sets.

3. Proof of Theorem 2.5

We recall a description of the intersection number of the anticanonical divisor
with a torus-invariant curve, see [3] for details. For a nonsingular complete fan ∆
in Rn and 0 ≤ r ≤ n, we denote by ∆(r) the set of r-dimensional cones of ∆. We
denote by X(∆) the associated toric variety. For τ ∈ ∆(n − 1), the intersection
number of the anticanonical divisor −KX(∆) with the torus-invariant curve V (τ)
corresponding to τ can be computed as follows:

Proposition 3.1. Let X(∆) be an n-dimensional nonsingular complete toric va-
riety and τ = R≥0v1 + · · · + R≥0vn−1 ∈ ∆(n − 1), where v1, . . . , vn−1 are primi-
tive vectors in Zn. Let v and v′ be the distinct primitive vectors in Zn such that
τ + R≥0v and τ + R≥0v

′ are in ∆(n). Then there exist integers a1, . . . , an−1 such
that v + v′ + a1v1 + · · ·+ an−1vn−1 = 0. The intersection number (−KX(∆).V (τ))
is equal to 2 + a1 + · · ·+ an−1.

Proposition 3.2. Let X(∆) be an n-dimensional nonsingular complete toric va-
riety. Then X(∆) is Fano if and only if (−KX(∆).V (τ)) is positive for every
τ ∈ ∆(n− 1).

Let B be a building set on S. For C ∈ B \Bmax, we call

N (B)C = {N ⊂ (B \Bmax) \ {C} | N ∪ {C} ∈ N (B)}
the link of C in N (B). N (B)C is a simplicial complex on

{I ∈ (B \Bmax) \ {C} | {I, C} ∈ N (B)}.
For a nonempty proper subset C of S, we call

C \B = {I ⊂ S \ C | I ̸= ∅; I ∈ B or C ∪ I ∈ B}
the contraction of C from B. C \B is a building set on S \ C.

Proposition 3.3 ([6, Proposition 3.2]). Let B be a building set on S and let C ∈
B \Bmax. Then the correspondence

I 7→
{

I \ C (C ⊂ I),
I (C ̸⊂ I)

induces an isomorphism N (B)C → N (B|C ∪ (C \B)) of simplicial complexes.

The symmetric difference of two sets X and Y is defined by X△Y = (X ∪ Y ) \
(X ∩ Y ). The following is the key lemma.

Lemma 3.4. Let B be a connected building set on S and let I1, I2 ∈ B with
I1 ∩ I2 ̸= ∅, I1 ̸⊂ I2 and I2 ̸⊂ I1. Then the following hold:

(1) There exist J1, J2 ∈ B with J1 ∩ J2 ̸= ∅ and J1 ∪ J2 ⊂ I1 ∪ I2, j1 ∈
J1 \ J2, j2 ∈ J2 \ J1, a maximal nested set N of B|J1∩J2 and a maximal
nested set N ′ of B|(J1△J2)\{j1,j2} such that

(3.1) {Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

are nested sets of B for k = 1, 2. If I1 ∩ I2 /∈ B, then we can choose
J1, J2 ∈ B so that J1 ∩ J2 /∈ B or J1 ∪ J2 ⊊ I1 ∪ I2.
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(2) Furthermore, if J1 ∪ J2 ⊊ S, then there exists a nested set N ′′ of B such
that

{Jk, J1 ∪ J2} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪N ′′

are maximal nested sets of B for k = 1, 2 (N ′′ can be empty).

If J1△J2 = {j1, j2}, then N ′ and (B|(J1△J2)\{j1,j2})max are understood to be empty.

Proof. (1) We use induction on |I1△I2|. We have |I1△I2| ≥ 2. Suppose |I1△I2| =
2. We put J1 = I1 and J2 = I2. Clearly J1 ∩ J2 ̸= ∅ and J1 ∪ J2 ⊂ I1 ∪ I2. We
choose any maximal nested set N of B|J1∩J2 . Then {J1} ∪N ∪ (B|J1∩J2)max and
{J2} ∪N ∪ (B|J1∩J2)max are nested sets of B. If I1 ∩ I2 /∈ B, then J1 ∩ J2 /∈ B.

Suppose |I1△I2| ≥ 3. We choose i1 ∈ I1 \ I2, i2 ∈ I2 \ I1, and maximal nested
sets N and N ′ of B|I1∩I2 and B|(I1△I2)\{i1,i2}, respectively. If

{Ik} ∪N ∪ (B|I1∩I2)max ∪N ′ ∪ (B|(I1△I2)\{i1,i2})max

are nested sets of B for k = 1, 2, then there is nothing to prove. Without loss of
generality, we may assume that

(3.2) {I1} ∪N ∪ (B|I1∩I2)max ∪N ′ ∪ (B|(I1△I2)\{i1,i2})max

is not a nested set of B. We find I ′1, I
′
2 ∈ B satisfying I1∩I2 ⊊ I ′1∩I ′2, I ′1 ̸⊂ I ′2, I

′
2 ̸⊂ I ′1

and I ′1 ∪ I ′2 = I1 ∪ I2 as follows:
Case 1. Suppose that (3.2) does not satisfy the condition (1) in Definition 2.1.

{I1} ∪ N ∪ (B|I1∩I2)max and N ′ ∪ (B|(I1△I2)\{i1,i2})max are nested sets. For any
K ∈ N ∪ (B|I1∩I2)max and L ∈ N ′ ∪ (B|(I1△I2)\{i1,i2})max, we have K ∩ L = ∅.
Hence there exists L ∈ N ′ ∪ (B|(I1△I2)\{i1,i2})max such that I1 ̸⊂ L,L ̸⊂ I1 and
I1 ∩ L ̸= ∅. Then I1 ∪ L ∈ B. We put I ′1 = I1 ∪ L and I ′2 = I2. Since L ⊂ I1△I2,
it follows that L \ I1 ⊂ (I ′1 ∩ I ′2) \ (I1 ∩ I2). Thus I1 ∩ I2 ⊊ I ′1 ∩ I ′2.

Case 2. Suppose that (3.2) does not satisfy the condition (2) in Definition 2.1,
and there exist

K1, . . . ,Kr ∈ N ∪ (B|I1∩I2)max, L1, . . . , Ls ∈ N ′ ∪ (B|(I1△I2)\{i1,i2})max

for r, s ≥ 1 such that K1, . . . ,Kr, L1, . . . , Ls are pairwise disjoint and K1 ∪ · · · ∪
Kr ∪ L1 ∪ · · · ∪ Ls ∈ B. Then we have Ik ∪ L1 ∪ · · · ∪ Ls ∈ B for k = 1, 2. We put
I ′k = Ik ∪ L1 ∪ · · · ∪ Ls for k = 1, 2. Since L1 ∪ · · · ∪ Ls ⊂ I1△I2, we must have
I1 ⊊ I ′1 or I2 ⊊ I ′2. If I1 ⊊ I ′1, then it follows that I ′1 \ I1 ⊂ (I ′1 ∩ I ′2) \ (I1 ∩ I2).
Thus I1 ∩ I2 ⊊ I ′1 ∩ I ′2. Similarly, I2 ⊊ I ′2 implies I1 ∩ I2 ⊊ I ′1 ∩ I ′2.

Case 3. Suppose that (3.2) does not satisfy the condition (2) in Definition 2.1,
and there exist L1, . . . , Ls ∈ N ′ ∪ (B|(I1△I2)\{i1,i2})max such that I1, L1, . . . , Ls are
pairwise disjoint and I1∪L1∪· · ·∪Ls ∈ B. We put I ′1 = I1∪L1∪· · ·∪Ls and I ′2 = I2.
Since L1∪ · · ·∪Ls ⊂ I1△I2, it follows that (L1∪ · · ·∪Ls)\ I1 ⊂ (I ′1∩ I ′2)\ (I1∩ I2).
Thus I1 ∩ I2 ⊊ I ′1 ∩ I ′2.

In every case, we have i1 ∈ I ′1 \ I ′2, i2 ∈ I ′2 \ I ′1 and I ′1 ∪ I ′2 = I1 ∪ I2. Hence
|I ′1△I ′2| = |I ′1 ∪ I ′2| − |I ′1 ∩ I ′2| < |I1 ∪ I2| − |I1 ∩ I2| = |I1△I2|. By the hypothesis of
induction, there exist J1, J2 ∈ B with J1 ∩ J2 ̸= ∅ and J1 ∪ J2 ⊂ I ′1 ∪ I ′2 = I1 ∪ I2,
j1 ∈ J1 \ J2, j2 ∈ J2 \ J1, a maximal nested set N of B|J1∩J2 and a maximal nested
set N ′ of B|(J1△J2)\{j1,j2} such that (3.1) are nested sets of B for k = 1, 2.

Suppose that I1∩ I2 /∈ B. If I ′1∩ I ′2 /∈ B, then by the hypothesis of induction, we
have J1∩J2 /∈ B or J1∪J2 ⊊ I ′1∪I ′2 = I1∪I2. Suppose I ′1∩I ′2 ∈ B. We may assume
that I1 ⊊ I ′1. We put I ′′1 = I1 and I ′′2 = I ′1∩I ′2. We have I ′′1∩I ′′2 = I1∩I ′2 ⊃ I1∩I2 ̸= ∅
and I ′′1∪I ′′2 ⊂ I1∪I2. Since I ′′2 ⊂ I ′1 and i2 /∈ I ′1, it follows that i2 ∈ (I1∪I2)\(I ′′1∪I ′′2 ).
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Hence |I ′′1△I ′′2 | = |I ′′1 ∪ I ′′2 | − |I ′′1 ∩ I ′′2 | < |I1 ∪ I2| − |I1 ∩ I2| = |I1△I2|. We have
i1 ∈ I ′′1 \ I ′′2 and I ′1 \ I1 ⊂ I ′′2 \ I ′′1 , since I ′1 ∪ I ′2 = I1 ∪ I2. By the hypothesis of
induction, there exist J1, J2 ∈ B with J1 ∩ J2 ̸= ∅ and J1 ∪ J2 ⊂ I ′′1 ∪ I ′′2 ⊊ I1 ∪ I2,
j1 ∈ J1 \ J2, j2 ∈ J2 \ J1, a maximal nested set N of B|J1∩J2 and a maximal nested
set N ′ of B|(J1△J2)\{j1,j2} such that (3.1) are nested sets of B for k = 1, 2.

Therefore the assertion holds for |I1△I2|.
(2) We see that

|{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max|
= 1 + |J1 ∩ J2|+ |(J1△J2) \ {j1, j2}|
= |J1 ∪ J2| − 1

for k = 1, 2. Hence by Proposition 2.2, (3.1) are maximal nested sets of B|J1∪J2 .
We choose any maximal nested set M of (J1 ∪ J2) \B. Then

{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪M

are maximal nested sets of B|J1∪J2 ∪ ((J1 ∪ J2) \B). By Proposition 3.3,

{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪N ′′

are in N (B)J1∪J2 for some N ′′ ∈ N (B). Thus

{Jk, J1 ∪ J2} ∪N ∪ (B|J1∩J2
)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪N ′′

are maximal nested sets of B. □

Example 3.5. The proof of Lemma 3.4 (1) gives a method for obtaining explicit
J1 and J2. Let S = {1, 2, 3, 4, 5, 6},

B = {{1}, {2}, {3}, {4}, {5}, {6}, {2, 5}, {2, 3, 4}, {3, 4, 5}, {1, 2, 3, 4},
{2, 3, 4, 5}, {3, 4, 5, 6}, {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}},

I1 = {1, 2, 3, 4}, I2 = {3, 4, 5, 6}, i1 = 1 and i2 = 6. Then I1 ∩ I2 = {3, 4} /∈ B. We
have

B|I1∩I2 = {{3}, {4}}, B|(I1△I2)\{i1,i2} = {{2}, {5}, {2, 5}}.
∅ and {{2}} are maximal nested sets of B|I1∩I2 and B|(I1△I2)\{i1,i2}, respectively.
However,

{I1} ∪ ∅ ∪ (B|I1∩I2)max ∪ {{2}} ∪ (B|(I1△I2)\{i1,i2})max

= {{1, 2, 3, 4}, {3}, {4}, {2}, {2, 5}}

is not a nested set because of I1 = {1, 2, 3, 4} and L = {2, 5} (Case 1). Thus we put
I ′1 = I1 ∪ L = {1, 2, 3, 4, 5} and I ′2 = I2 = {3, 4, 5, 6}. But I ′1 ∩ I ′2 = {3, 4, 5} ∈ B.
Thus we put I ′′1 = I1 = {1, 2, 3, 4}, I ′′2 = I ′1 ∩ I ′2 = {3, 4, 5}, i′′1 = 1 and i′′2 = 5. Then
we have

B|I′′
1 ∩I′′

2
= {{3}, {4}}, B|(I′′

1 △I′′
2 )\{i′′1 ,i′′2 } = {{2}}.

The only maximal nested set of each is the empty set. However,

{I ′′1 } ∪ ∅ ∪ (B|I′′
1 ∩I′′

2
)max ∪ ∅ ∪ (B|(I′′

1 △I′′
2 )\{i′′1 ,i′′2 })max

= {{1, 2, 3, 4}, {3}, {4}, {2}}

is not a nested set because {2, 3, 4} ∈ B (Case 2). Thus we put J1 = I ′′1 ∪ {2} =
{1, 2, 3, 4}, J2 = I ′′2 ∪ {2} = {2, 3, 4, 5}, j1 = 1 and j2 = 5. Then we have

B|J1∩J2 = {{2}, {3}, {4}, {2, 3, 4}}, J1△J2 = {j1, j2}.
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We choose {{2}, {3}} as a maximal nested set of B|J1∩J2 . Then

{J1} ∪ {{2}, {3}} ∪ (B|J1∩J2)max = {{1, 2, 3, 4}, {2}, {3}, {2, 3, 4}},
{J2} ∪ {{2}, {3}} ∪ (B|J1∩J2)max = {{2, 3, 4, 5}, {2}, {3}, {2, 3, 4}}

are nested sets of B.

Proposition 3.6 ([6, Proposition 4.5]). Let B be a building set on S and let N∪{I1}
and N ∪ {I2} be two maximal nested sets of B with the intersection N ∈ N (B).
Then the following hold:

(1) We have I1 ̸⊂ I2 and I2 ̸⊂ I1.
(2) If I1 ∩ I2 ̸= ∅, then (B|I1∩I2)max ⊂ N .
(3) There exist I3, . . . , Ik ∈ N such that I1 ∪ I2, I3, . . . , Ik are pairwise disjoint

and I1 ∪ · · · ∪ Ik ∈ N ∪Bmax ({I3, . . . , Ik} can be empty).

Proof of Theorem 2.5. Any building set is a disjoint union of connected building
sets. The disjoint union of connected building sets corresponds to the product of
toric varieties associated to the connected building sets. The product of nonsingular
projective toric varieties is Fano if and only if every factor is Fano. Hence it suffices
to show that, for any connected building set B on S = {1, . . . , n+1}, the following
are equivalent:

(1′) X(∆(B)) is Fano.
(2′) I1, I2 ∈ B, I1 ∩ I2 ̸= ∅, I1 ̸⊂ I2, I2 ̸⊂ I1 ⇒ I1 ∪ I2 = S and I1 ∩ I2 ∈ B.

(1′) ⇒ (2′): Suppose that there exist I1, I2 ∈ B with I1 ∩ I2 ̸= ∅, I1 ̸⊂ I2, I2 ̸⊂ I1
such that I1 ∪ I2 ⊊ S or I1 ∩ I2 /∈ B. We will use the notation of Lemma 3.4.

The case where I1 ∪ I2 ⊊ S. By Lemma 3.4, we have maximal nested sets

{Jk, J1 ∪ J2} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪N ′′

of B for k = 1, 2. Let

τ = R≥0({J1 ∪ J2} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪N ′′).

Clearly

eJ1 + eJ2 −
∑

C∈(B|J1∩J2 )max

eC − eJ1∪J2 = 0.

Hence by Proposition 3.1, we have (−KX(∆(B)).V (τ)) = 2−|(B|J1∩J2)max|−1 ≤ 0.
By Proposition 3.2, X(∆(B)) is not Fano.

The case where I1 ∪ I2 = S and I1 ∩ I2 /∈ B. By Lemma 3.4 (1), we have nested
sets

{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

of B for k = 1, 2, where J1 ∩ J2 /∈ B or J1 ∪ J2 ⊊ I1 ∪ I2 = S. If J1 ∪ J2 ⊊ S, then
by Lemma 3.4 (2), we have maximal nested sets

{Jk, J1 ∪ J2} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪N ′′

and a similar augment shows that X(∆(B)) is not Fano. If J1 ∩ J2 /∈ B and
J1 ∪ J2 = S, then we have |(B|J1∩J2)max| ≥ 2. Let

τ = R≥0(N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max).

Note that τ is an (n− 1)-dimensional cone. Since eJ1∪J2 = eS = 0, it follows that

eJ1 + eJ2 −
∑

C∈(B|J1∩J2
)max

eC = 0.
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Hence by Proposition 3.1, we have (−KX(∆(B)).V (τ)) = 2 − |(B|J1∩J2)max| ≤ 0.
By Proposition 3.2, X(∆(B)) is not Fano.

(2′) ⇒ (1′): Let N ∪ {I1} and N ∪ {I2} be two maximal nested sets of B with
the intersection N ∈ N (B). We need to show that (−KX(∆(B)).V (R≥0N)) > 0.

The case where I1∩I2 = ∅. By Proposition 3.6 (3), there exist I3, . . . , Ik ∈ N such
that I1∪ I2, I3, . . . , Ik are pairwise disjoint and I1∪ · · ·∪ Ik ∈ N ∪Bmax = N ∪{S}.
Since

eI1 + eI2 + eI3 + · · ·+ eIk − eI1∪···∪Ik = 0,

we have

(−KX(∆(B)).V (R≥0N)) =

{
k − 1 (I1 ∪ · · · ∪ Ik ∈ N),
k (I1 ∪ · · · ∪ Ik = S).

Hence (−KX(∆(B)).V (R≥0N)) ≥ 1.
The case where I1 ∩ I2 ̸= ∅. By Proposition 3.6 (1), we have I1 ̸⊂ I2 and

I2 ̸⊂ I1. Applying (2′) for I1 and I2, we have I1 ∪ I2 = S and I1 ∩ I2 ∈ B. Thus
{I1 ∩ I2} = (B|I1∩I2)max ⊂ N by Proposition 3.6 (2). Since eI1∪I2 = eS = 0, it
follows that

eI1 + eI2 − eI1∩I2 = 0.

Hence (−KX(∆(B)).V (R≥0N)) = 1 by Proposition 3.1.
Therefore X(∆(B)) is Fano by Proposition 3.2. This completes the proof of

Theorem 2.5. □

4. Smooth Fano polytopes associated to finite directed graphs

We review the construction of an integral convex polytope from a finite directed
graph. Let G be a finite directed graph with no loops and no multiple arrows. We
denote by V (G) and A(G) its node set and arrow set respectively. A(G) is a subset
of V (G) × V (G). Let V (G) = {1, . . . , n + 1}. For −→e = (i, j) ∈ A(G), we define
ρ(−→e ) ∈ Rn+1 to be ei − ej . We define PG to be the convex hull of {ρ(−→e ) | −→e ∈
A(G)} in Rn+1. PG is an integral convex polytope in H = {(x1, . . . , xn+1) ∈ Rn+1 |
x1 + · · ·+ xn+1 = 0}.

An integral convex polytope is said to be Fano if the origin is the only lattice
point in the interior, and it is said to be smooth if the vertices of every facet form
a basis for the lattice. Not all finite directed graphs yield smooth Fano polytopes.
See [1] for the characterization of finite directed graphs that yield smooth Fano
polytopes of dimension n.

We state our second main result:

Theorem 4.1. Let B be a building set. If the associated toric variety X(∆(B))
is Fano, then there exists a finite directed graph G such that PG is a smooth Fano
polytope and its associated fan is isomorphic to ∆(B).

For a connected building set B on S, we put

(4.1) U = {I ∈ B \ {S} | there exists J ∈ B \ {S} s.t. I ∩ J ̸= ∅ and I ∪ J = S}.

Lemma 4.2. Let B be a connected building set on S such that X(∆(B)) is Fano.
If I, J ∈ U with I ̸= J and I ∩ J ̸= ∅, then we have I ∪ J = S and I ∩ J ∈ B.

Proof. Let I, J ∈ U with I ̸= J and I ∩ J ̸= ∅. We show that I ̸⊂ J and J ̸⊂ I.
Assume I ⊊ J for contradiction. There exists K ∈ U such that I ∩ K ̸= ∅ and
I ∪K = S.
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First we apply Theorem 2.5 (2) for J and K. We have J ∩K ⊃ I ∩K ̸= ∅ and
I \K ⊂ J \K. Let x ∈ S \ J . Then we must have x /∈ I and thus x ∈ K. Hence
x ∈ K \ J . Thus Theorem 2.5 (2) implies J ∩K ∈ B.

Next we apply Theorem 2.5 (2) for I and J∩K. We have I∩(J∩K) = I∩K ̸= ∅
and I \ K ⊂ I \ (J ∩ K). Let x ∈ J \ I. Then we must have x ∈ K. Hence
x ∈ (J ∩K) \ I. Thus Theorem 2.5 (2) implies I ∪ (J ∩K) = S. This contradicts
that I ∪ (J ∩K) = J ∩ (I ∪K) = J ⊊ S. Therefore I ̸⊂ J .

Similarly we have J ̸⊂ I. Theorem 2.5 (2) implies I ∪ J = S and I ∩ J ∈ B.
This completes the proof. □

Lemma 4.3. Let B be a connected building set on S such that X(∆(B)) is Fano.
Then the following hold:

(1) U in (4.1) must be one of the following:
(a) U = ∅.
(b) |U | = 2.
(c) U = {I, J, S \ (I ∩ J)} for some I, J ∈ B, and the union of any two

elements of U is S.
(2) Let I, J ∈ U with I ∩ J ̸= ∅ and I ∪ J = S. If K ∈ B \ {S, I, J} with

K ̸⊂ I \ J,K ̸⊂ I ∩ J and K ̸⊂ J \ I, then we have K = S \ (I ∩ J).

Proof. (1) If U ̸= ∅, then we have |U | ≥ 2. Suppose |U | ≥ 3. Let I ∈ U . There
exists J ∈ U such that I ∩ J ̸= ∅ and I ∪ J = S. Let K ∈ U \ {I, J}. We may
assume I ∩K ̸= ∅. Lemma 4.2 implies I ∪K = S and I ∩K ∈ B. Since J \ I ⊂ K,
we have J ∩K ̸= ∅. Lemma 4.2 implies J ∪K = S and J ∩K ∈ B.

Assume I ∩ J ∩K ̸= ∅ for contradiction. We apply Theorem 2.5 (2) for I ∩K
and J ∩ K. We have I \ J ⊂ (I ∩ K) \ (J ∩ K) and J \ I ⊂ (J ∩ K) \ (I ∩ K).
Thus Theorem 2.5 (2) implies (I ∩ K) ∪ (J ∩ K) = S. This contradicts that
(I ∩K) ∪ (J ∩K) = (I ∪ J) ∩K = K ⊊ S. Hence I ∩ J ∩K = ∅. Thus x ∈ I ∩ J
implies x /∈ K.

On the other hand, x ∈ S \K implies x ∈ I ∩ J , since I ∪K = J ∪K = S. Thus
K = S \ (I ∩ J). Therefore we must have U = {I, J, S \ (I ∩ J)}. The union of any
two elements of U is S.

(2) Let K ∈ B \ {S, I, J} with K ̸⊂ I \ J,K ̸⊂ I ∩ J and K ̸⊂ J \ I. We
may assume that there exists x ∈ K \ I. If I ∩ K = ∅, then we have K ⊂ J \ I,
which is a contradiction. Hence I ∩ K ̸= ∅. If I ⊂ K, then J ∪ K ⊃ I ∪ J = S.
Thus K ∈ U . However (1) implies K = S \ (I ∩ J), which is a contradiction.
Hence I ̸⊂ K. Theorem 2.5 (2) implies I ∪K = S. Thus K ∈ U and (1) implies
K = S \ (I ∩ J). □

For a building set B on S, we put

l(B) = max{k | there exist I1, . . . , Ik ∈ B such that |I1| ≥ 2, I1 ⊊ · · · ⊊ Ik}

and we define m(B) to be{
{I ∈ B | |I| ≥ 2; ∃I2, . . . , Il(B) ∈ B s.t. I ⊊ I2 ⊊ · · · ⊊ Il(B)} (l(B) ≥ 2),
{I ∈ B | |I| ≥ 2} (l(B) ≤ 1).

l(B) is understood to be zero when B consists of the singletons.

Lemma 4.4. Let B be a building set on S such that I, J ∈ B with I∩J ̸= ∅ implies
I ⊂ J or J ⊂ I. Then there exists a bijection f : S → {1, . . . , |S|} such that f(I)
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is an interval for any I ∈ B, that is, f(I) is equal to [i, j] = {x ∈ {1, . . . , |S|} | i ≤
x ≤ j} for some 1 ≤ i ≤ j ≤ |S|.

Proof. We use induction on l(B). It is obvious for l(B) = 0 and for l(B) = 1.
Assume l(B) ≥ 2. Note thatB\m(B) is a building set andm(B) is pairwise disjoint.
We have l(B \ m(B)) = l(B) − 1. By the hypothesis of induction, there exists a
bijection f : S → {1, . . . , |S|} such that f(I) is an interval for any I ∈ B \m(B).
Since m(B \m(B)) is also pairwise disjoint, for any I ∈ m(B), there exists unique
J ∈ m(B \ m(B)) such that I ⊂ J . Hence for each J ∈ m(B \ m(B)), we can
modify f |J : J → f(J) without changing the image of J so that every f |J (I) is an
interval. Thus we can construct a bijection satisfying the condition. Therefore the
assertion holds for l(B). □

Proof of Theorem 4.1. By connecting finite directed graphs that yield toric Fano
varieties with one node, we obtain a graph that yields a toric variety isomorphic
to the product of the toric Fano varieties of the graphs. Hence it suffices to prove
the assertion when B is connected and S = {1, . . . , n + 1}. By Lemma 4.3 (1), U
in (4.1) falls into the following three cases:

(a) The case where U = ∅. Since X(∆(B)) is Fano, B satisfies the assumption
of Lemma 4.4. Hence we may assume that every element of B is an interval.
We define a finite directed graph G as follows: Let V (G) = {1, . . . , n + 1}. For
K = [i, j] ∈ B \ {S}, we put

−→e K =

{
(i, j + 1) (1 ≤ j ≤ n),
(i, 1) (j = n+ 1).

Let A(G) = {−→e K | K ∈ B \ {S}}. We define a linear isomorphism F : H → Rn

by ei − ei+1 7→ ei for 1 ≤ i ≤ n. Then F induces a bijection from {ρ(−→e K) | K ∈
B \ {S}} to {eK | K ∈ B \ {S}}, which is the set of vertices of the smooth Fano
polytope corresponding to ∆(B).

(b) The case where |U | = 2. Let U = {I, J}. We may assume that I = [1, b] and
J = [a, n + 1] for 1 < a ≤ b < n + 1. By Lemma 4.3 (2), we have B = {S} ∪ U ∪
B|I\J ∪B|I∩J ∪B|J\I . Note that I \ J, I ∩ J and J \ I are intervals. Furthermore,
since X(∆(B)) is Fano, B|I\J , B|I∩J and B|J\I satisfy the assumption of Lemma
4.4. Hence we may assume that every element of B is an interval. Let V (G) =
{1, . . . , n+1} and A(G) = {−→e K | K ∈ B \ {S}}. Then the isomorphism F induces
a bijection from {ρ(−→e K) | K ∈ B \ {S}} to {eK | K ∈ B \ {S}}.

(c) The case where U = {I, J, S \ (I ∩ J)} for some I, J ∈ B, and the union of
any two elements of U is S. We may assume that I = [1, b] and J = [a, n+ 1] for
1 < a ≤ b < n+1. By Lemma 4.3 (2), we have B = {S}∪U∪B|I\J ∪B|I∩J ∪B|J\I .
I \ J, I ∩ J and J \ I are intervals. Since X(∆(B)) is Fano, B|I\J , B|I∩J and
B|J\I satisfy the assumption of Lemma 4.4. Hence we may assume that every
element of B \ {S \ (I ∩ J)} is an interval. Let V (G) = {1, . . . , n+ 1} and A(G) =
{−→e K | K ∈ B \ {S, S \ (I ∩ J)}} ∪ {(b + 1, a)}. Then F induces a bijection from
{ρ(−→e K) | K ∈ B \ {S, S \ (I ∩ J)}} ∪ {ρ((b+ 1, a))} to {eK | K ∈ B \ {S}}.

Therefore we have constructed a finite directed graph G such that the fan asso-
ciated to PG is isomorphic to ∆(B). This completes the proof of Theorem 4.1. □

Example 4.5. Let S = {1, 2, 3, 4, 5} and

B = {{1}, {2}, {3}, {4}, {5}, {2, 3}, {4, 5}, {1, 2, 3}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}.
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Then by Theorem 2.5, the toric varietyX(∆(B)) is Fano. We define a finite directed
graph G by V (G) = {1, 2, 3, 4, 5} and

A(G) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (2, 4), (4, 1), (1, 4), (2, 1)}.
Then ∆(B) is isomorphic to the fan associated to the smooth Fano polytope PG.

Figure 2. the directed graph G.

Example 4.6. The converse of Theorem 4.1 is not true. The finite directed graphs
in Figure 3 yield smooth Fano polytopes (see [1, Theorem 2.2]). However, these
polytopes cannot be obtained from building sets.

Figure 3. directed graphs whose smooth Fano polytopes cannot
be obtained from building sets.
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