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ABSTRACT

We enumerate ribbon 2-knots presented by virtual arc diagrams with up to four
classical crossings. We use a linear Gauss diagram for a virtual arc diagram.
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1. Intoduction

A ribbon 2-knot is a knotted 2-sphere in R4 that bounds a ribbon 3-disk, which is
an immersed 3-disk with only ribbon singularities. The ribbon crossing number of a
ribbon 2-knot is the minimal number of the ribbon singularities of any ribbon 3-disk
bounding the knot [24]. The enumeration of the classical knots are based on the
crossing number of a knot diagram. So, it is natural to enumerate ribbon 2-knots
based on the ribbon crossing number. Yasuda has listed ribbon 2-knots with ribbon
crossing number up to four [22,23,25,26,27].

Moreover, a ribbon 2-knot is presented by a virtual arc diagram, which was
introduced by Satoh [19]; a virtual arc diagram has classical and virtual crossings
and a classical crossing corresponds to a ribbon singularity. If a ribbon 2-knot is
presented by a virtual arc diagram with n classical crossings, then its ribbon crossing
number is at most n. In this paper we enumerate ribbon 2-knots based on the virtual
arc presentation. Our main result is the table of ribbon 2-knots which are presented
by virtual arc diagram with up to 4 crossings (Tables 2, 3 and 4). Therefore, the
ribbon 2-knots in our table are contained in that of Yasuda. However, in the course
of this enumeration we discovered an oversight in Yasuda’s table, that is, we found
6 ribbon 2-knots whose Alexander polynomials are not listed in Yasuda’s table.

From a virtual arc diagram we may obtain a linear Gauss diagram, which is an
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immersing interval with the preimages of each double point connected with a chord
equipped with the sign of the crossing. Then an oriented linear Gauss diagram
determines an associated ribbon 2-knot (Proposition 3.1). Also there are several
moves for a linear Gauss diagram which do not change the isotopy class of the asso-
ciated ribbon 2-knot (Subsec. 3.2); they are induced from the Reidemeister moves
(moves AI, AII, AIII), welded moves (moves D, EII), negative-amphicheirality of
a ribbon 2-knot (reversing move), and composition of knots (Eq. (3.1)). Further-
more, they yield some simplified moves (moves Ωi, i = 1, . . . , 8), which are useful
for investigating the equivalence of Gauss diagrams.

Using these moves, we enumerate linear Gauss diagrams. First, we show a ribbon
2-knot presented by linear Gauss diagrams with up to 4 chords is presented by one
of the 13 linear Gauss diagrams Γ4

l , 1 ≤ l ≤ 13, given in Fig. 29 (Lemma 5.1).
Then, for each diagram we examine the corresponding ribbon 2-knot, where we
calculate the knot group and Alexander polynomial (Sects. 5 and 7). We apply the
above mentioned moves for considering the equivalence. However, in some cases we
consider a ribbon handlebody (Lemma 7.3) or a virtual arc diagram (Lemma 7.5).

This paper is organized as follows: In Sec. 2, we introduce a ribbon 2-knot and
its virtual arc presentation, where we use a ribbon handlebody to present a ribbon
3-disk. In Sec. 3, we introduce a linear Gauss diagram which presents a virtual arc
diagram and so a ribbon 2-knot. In Sec. 4, we give our main result, tables of ribbon
2-knots presented by virtual arc diagrams with up to 4 crossings (Tables 2, 3 and
4). Secs. 5, 6, and 7 are devoted to the proof of our main result. Most of the results
in this paper are from the master’s thesis of one of the authors [14].

2. Ribbon 2-Knot and Its Virtual Arc Presentation

In this section, we introduce a ribbon knot, virtual arc, welded arc, and virtual arc
presentation of a ribbon 2-knot.

2.1. Ribbon knot

A ribbon (n+1)-disk, n ≥ 1, is an immersed (n+1)-disk Dn+1 into Rn+2 with only
transverse double points such that the singular set consists of ribbon singularities,
that is, the preimage of each ribbon singularity consists of a properly embedded
n-disk in Dn+1 and an embedded n-disk interior to Dn+1. An n-knot is a ribbon
n-knot if it bounds a ribbon (n + 1)-disk in Rn+2.

The ribbon crossing number of a ribbon n-knot K is the smallest number of
the ribbon singularities of any ribbon (n + 1)-disk bounding the knot K; cf. [24].
Yasuda [22,23,25,26,27] enumerated ribbon 2-knots with ribbon crossing number
up to four.

A ribbon handlebody [3] H is a ribbon 2-disk, which is a 2-dimensional han-
dlebody in R3 consisting of (p + 1) 0-handles D1, D2, . . . , Dp+1, p 1-handles B1,
B2, . . . , Bp and no 2-handle such that the preimage of each ribbon singularity con-
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sists of an arc in the interior of a 0-handle and a cocore of a 1-handle. We put
D = D1 ∪ D2 ∪ · · · ∪ Dp+1 and B = B1 ∪ B2 ∪ · · · ∪ Bp. Then the set of ribbon
singularities in H is the connected components of the intersection D∩B. Note that
in order to present a ribbon handlebody we may use a ribbon regular projection
defined in [6, Sect. 1] or [7, Sect. 3], .

We define the associated ribbon 2-knot in R4 = R3 ×R as the ribbon 2-knot
that bounds the immersed 3-disk D×[−2, 2]∪B×[−1, 1]. Conversely, for any ribbon
2-knot K, there exists a ribbon handlebody whose associated ribbon 2-knot is K;
see [10,21]. Thus we may represent a ribbon 2-knot by a ribbon handlebody.

2.2. Virtual arc and welded arc

A virtual knot diagram is an immersed circle and a virtual arc diagram is an im-
mersed interval in the plane R2 such that each crossing is either a classical crossing
or a virtual crossing as shown in Fig. 1.

(a) (b)

Fig. 1. (a) Classical crossing; (b) vitrtual crossing.

A virtual knot is an equivalence class of virtual knot diagram under the classical
Reidemeister moves AI, AII, AIII as shown in Fig. 2 and the virtual Reidemeister
moves BI, BII, BIII, C, EI as shown in Fig. 3. Similarly, a virtual arc is an equivalence
class of virtual arc diagram under the classical Reidemeister moves AI, AII, AIII

and the virtual Reidemeister moves BI, BII, BIII, C as well as EI as shown in Fig. 3.
We introduce the welded moves D and EII as shown in Fig. 4; the move D is

known as one of the “forbidden moves”; cf. [8,17]. Two virtual knot diagrams or
virtual arc diagrams A and A′ are w-equivalent if there exist a finite sequence of
the classical Reidemeister moves, virtual Reidemeister moves, and welded moves
which transforms A into A′. A welded knot is an equivalence class under the w-
equivalence of virtual knot diagrams, and a welded arc is an equivalence class under
the w-equivalence of virtual arc diagrams. A welded knot or arc is trivial if it is
an equivalence class containing a virtual knot or virtual arc diagram without any
crossing. Note that a welded knot and a welded arc are called a weakly virtual knot
and a weakly virtual knot, respectively, in [9,19].
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AI AII

AIII

Fig. 2. Reidemeister moves AI, AII, AIII.

BI BII

BIII

C EI

Fig. 3. Virtual Reidemeister moves BI, BII, BIII, C, EI.

2.3. Virtual arc presentation of a ribbon 2-knot

Given an oriented virtual arc diagram A, we can construct a ribbon handlebody
HA as shown in Fig. 5, where an overpass at a classical crossing corresponds to a
0-handle containing a ribbon singularity, a virtual crossing corresponds to two 1-
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D EII

Fig. 4. Welded moves D, EII.

handles passing over/under each other, and an end point corresponds to a 0-handle.
Then we denote the associated ribbon 2-knot of HA by Tube(A). If two virtual
arc diagrams A and A′ are w-equivalent, then the corresponding ribbon 2-knots
Tube(A) and Tube(A′) are ambient isotopic, and thus a welded arc determines a
ribbon 2-knot. Conversely, any ribbon 2-knot is associated with some virtual arc
diagram; see [19].

Fig. 5. Correspondence of an oriented virtual arc diagram to a ribbon handlebody.

Remark 2.1. Satoh [19] constructs the associated ribbon 2-knot Tube(A) using
a surface diagram, which is a projection image of a ribbon 2-knot in R4; see [1],
cf. [10].

Furthermore, we define two oriented virtual arc diagrams A and A′ are r-
equivalent, denoted by A

r∼A′, if they correspond to the isotopic ribbon 2-knots.
Let A be an oriented virtual arc diagram. We denote the horizontal mirror image

by A†, which is obtained from A by reflecting the diagram across a vertical plane.
We denote the orientation-reversion of A by −A. See Fig. 6; cf. [5, Sec. 2.2].

Then the both associated ribbon handlebodies HA† and H−A are obtained from
HA by reflecting across the vertical plane and the projection plane, respectively.
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A A† −A −A†

Fig. 6. Virtual arc diagrams A, A†, −A, and −A†.

Alternatively, both HA† and H−A are obtained from HA by reversing the orientation
of the immersed surface. This shows that a ribbon 2-knot is negative-amphicheiral;
see [20, Theorem 2.18], [19, Proposition 4.1]. Thus we have:

Proposition 2.2. Let A be an oriented virtual arc diagram. Then the associated
ribbon 2-knots Tube(A†) and Tube(−A) are isotopic, which are the mirror images
of Tube(A). In other words, A and −A† are r-equivalent.

We define the product of two oriented virtual arc diagrams A and A′, denoted by
A ·A′, as follows: First, we deform the diagrams A and A′ so that the the terminal
point of A and the initial point of A′ lie in the outermost region by the move EI.
We denote the resulting diagrams by Ã and Ã′. Then the product of A and A′ is
obtained by connecting the terminal point of Ã to the initial point of Ã′ as shown
in Fig. 7. It is easy to see that the product of oriented virtual arc diagrams is well
defined up to w-equivalence.

T´ T´TT

Ã Ã′ A ·A′

Fig. 7. Product of virtual arc diagrams.

The associated ribbon 2-knot Tube(A · A′) is the composition of Tube(A) and
Tube(A′); Tube(A · A′) = Tube(A)#Tube(A′). Since the composition of oriented
2-knots is well defined up to isotopy, we have the following:

Proposition 2.3. Let A and A′ be oriented virtual arc diagrams. Then the asso-
ciated ribbon 2-knots Tube(A · A′) and Tube(A′ · A) are isotopic, A · A′ r∼A′ · A.

Note that A ·A′ and A′ ·A may not be w-equivalent. We can see Proposition 2.3
by the associated ribbon handlebody as follows: HA·A′ is the boundary connected
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sum of HA and HA′ . Then by sliding HA along the boundary of HA′ we can isotope
HA·A′ into HA′·(−A†). This implies Tube(A · A′) is isotopic to Tube(A′ · (−A†)).
From this we have further Tube(A′ · (−A†)) is isotopic to Tube((−A†) · (−A′†)).
Since the virtual arc (−A†) · (−A′†) is the same as −(A′ · A)†, by Proposition 2.2
Tube((−A†) · (−A′†)) is isotopic to Tube(A′ ·A), completing the proof.

3. Gauss diagram

In this section, we first review a Gauss diagram of a virtual knot or a welded knot,
and then introduce a linear Gauss diagram of a virtual arc. We give several moves
of a linear Gauss diagram which do not change the isotopy class of the associated
ribbon 2-knot.

3.1. Gauss diagrams of virtual and welded knots

The Gauss diagram of an oriented virtual knot diagram is an oriented circle as the
preimage of the immersed circle with chords connecting the preimages of each clas-
sical crossing. We specify crossing information on each chord by directing the chord
toward the under crossing equipped with the sign of the crossing. We call such a
Gauss diagram a circular Gauss diagram. A circular Gauss diagram is considered
up to orientation preserving homeomorphism of the underlying oriented circle. A
circular Gauss diagram determines a virtual knot diagram up to virtual Reide-
meister moves; see [2, Theorem 1.A]; cf. [12]. Namely, if two virtual knot diagrams
have the same circular Gauss diagram, then there exist a finite sequence of virtual
Reidemeister moves BI, BII, BIII, C which transforms one into the other.

The classical Reidemeister moves on a knot give rise to moves on circular Gauss
diagrams. Depending on orientations of strings involved in the Reidemeister moves,
one may distinguish four different versions of each of the AI and AII moves, and
eight versions of the AIII move as shown in Figs. 8–10 [18, Figs. 2–4].

AIa AIb AIc AId

Fig. 8. Oriented Reidemeister moves of type I.

We give the corresponding moves of circular Gauss diagrams in Figs. 11–14.
For each of the moves AIIIa, . . . , AIIIh for a knot, there are two different possibil-
ities according to the structure of the diagram outside the local part given in the
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AIIa AIIb

AIIc AIId

Fig. 9. Oriented Reidemeister moves of type II.

AIIIa AIIIb

AIIIc AIIId

AIIIe AIIIf

AIIIg AIIIh

Fig. 10. Oriented Reidemeister moves of type III.
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diagrams in Fig. 10. By abuse of notation, we denote these moves by the same no-
tation; for the moves AIIIa, . . . , AIIIh, we denote the corresponding moves by AIIIa,
AIIIa′ , . . . , AIIIh, AIIIh′ ; cf. [2,17]. Therefore, an oriented virtual knot (that is, an
oriented virtual knot diagram modulo Reidemeister moves AIa, AIb, AIc, AId, AIIa,
AIIb, AIIc, AIId, AIIIa, . . . , AIIIh, and virtual Reidemeister moves BI, BII, BIII, C)
is equivalent to the corresponding circular Gauss diagram considered up to moves
given in Figs. 11–14.

pp
AIa (p = +) or AId (p = −) AIb (p = +) or AIc (p = −)

Fig. 11. Moves of circular Gauss diagrams corresponding to the oriented Reidemeister moves of
type I.

<p    p<p      p

AIIa (p = +) or AIIb (p = −) AIIc (p = +) or AIId (p = −)

Fig. 12. Moves of circular Gauss diagrams corresponding to the oriented Reidemeister moves of
type II.

<








 < <











<

AIIIa AIIIa′

Fig. 13. Moves of circular Gauss diagrams corresponding to the oriented Reidemeister moves of
type III.
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AIIIh AIIIh′

Fig. 14. Moves of circular Gauss diagrams corresponding to the oriented Reidemeister moves of
type III.
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Now we consider a circular Gauss diagram for a welded knot. Depending on
orientations of strings, there are four different versions of the welded move D as
shown in Fig. 15, where p, q = ±.

pp q q

Fig. 15. Moves of circular Gauss diagrams corresponding to the move D, where p, q = ±.

Therefore, if we allow the move D, then the moves AIIa and AIIc are equivalent,
and the moves AIIb and AIId are equivalent. Also, the moves AIIIa, AIIIa′ , . . . , AIIIh,
AIIIh′ are put together into the moves AIIIx, AIIIy, AIIIz, AIIIw as shown in Fig. 16,
where p, q = ±. We give the equivalent pairs in Table 1, where, for example, it shows
the move AIIIa is equivalent to the move AIVa with (p, q) = (+,+). Thus, an oriented
welded knot (that is, an oriented virtual knot diagram modulo Reidemeister moves,
virtual Reidemeister moves, and welded move D) is equivalent to the corresponding
circular Gauss diagram considered up to moves given in Figs. 11, 12, 15, and 16.

Table 1. Equivalent moves of circular
Gauss diagrams allowing the move D.

(p, q) (+, +) (+,−) (−, +) (−,−)

AIVa AIIIa AIIIf′ AIIIe AIIIh

AIVb AIIIe′ AIIIh′ AIIIa′ AIIIf

AIVc AIIIb′ AIIId AIIIc AIIIg′

AIVd AIIIb AIIId′ AIIIc′ AIIIg

3.2. Linear Gauss diagram

We can define the Gauss diagram for an oriented virtual arc in a similar way to a
circular Gauss diagram, which we call a linear Gauss diagram; see Fig. 17. Similarly,
a linear Gauss diagram is considered up to orientation preserving homeomorphism
of the underlying oriented interval. Then a linear Gauss diagram determines a
virtual arc diagram, that is, if two virtual arc diagrams have the same linear Gauss
diagram, then there exist a finite sequence of virtual Reidemeister moves BI, BII,
BIII, C, EI which transforms one into the other. Therefore, since a welded arc
determines a ribbon 2-knot [19, Proposition 5.2], we have:
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p <p
qp <p

qp <p
qp <p

q

AIIIx AIIIy

p
p

q
p

p

q
p

pq p
pq

AIIIz AIIIw

Fig. 16. Moves of circular Gauss diagrams equivalent to the moves AIIIa, . . . , AIIIh′ allowing the
move D, where p, q = ±.

Proposition 3.1. A linear Gauss diagram determines an associated ribbon 2-knot.






<

<


��<������<��


Fig. 17. Virtual arc diagram A in Fig. 6 and its linear Gauss diagram γ.

By abuse of notation, we denote by Tube(γ) the ribbon 2-knot obtained from a
virtual arc diagram with Gauss diagram γ. Also, we define two Gauss diagrams γ

and γ′ are r-equivalent, denoted by γ
r∼ γ′, if they correspond to the isotopic ribbon

2-knots; Tube(γ) ≈ Tube(γ′).
We define the moves AI, AII, AIII, D, and EII for a linear Gauss diagrams as

follows:

AI: One of the 2 types of moves as shown in Fig. 18.
AII: One of the 4 types of moves as shown in Fig. 19.
AIII: One of the 12 types of moves as shown in Fig. 20.

D: One of the 3 types of moves as shown in Fig. 21.
EII: One of the 2 types of moves as shown in Fig. 22.
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p p

Fig. 18. Moves AI for a linear Gauss diagram, where p = ±.

p <p p<p

p <p p<p

Fig. 19. Moves AII for a linear Gauss diagram, where p = ±.

p     <p   q

p     <p   q

<p  q                        p

p           q  <p

p           q  <p

q  <p                   p

Fig. 20. Moves AIII for a linear Gauss diagram, where p, q = ±.

The moves AI, AII, AIII, and D are yielded from those of a circular Gauss
diagram given in Figs. 11, 12, 16, and 15, respectively, and the move EII corresponds
to the welded move EII as shown in Fig. 4. So, we have:

Proposition 3.2. If two linear Gauss diagrams are related by the moves AI, AII,
AIII, D, or EII, then they are r-equivalent.

Furthermore, we define the move Ωi, i = 1, 2, . . . , 8, for a linear Gauss diagram
as shown in Fig. 23. Then we have:
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<p                        q   p <p                  p   q

q   p     <p

q   p     <p

p   q           <p

p   q           <p

q   p                         p

p      q    p

p      q    p

p   q                    p

p           p   q

p           p   q

q   p           p

q   p           p

p   q        p

p                    q   p

p   q      p

p                         p   q

Fig. 20. Cont’d.

Proposition 3.3. If two linear Gauss diagrams are related by the move Ωi, i =
1, . . . , 8, then they are r-equivalent.
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p           q p           q

p                         q

p           q p           q

p                         q

Fig. 21. Moves D for a linear Gauss diagram, where p, q = ±.

p

p

Fig. 22. Moves EII for a linear Gauss diagram, where p = ±.

Proof. Each of the moves Ω1, Ω2, Ω3, Ω4 is realized by a sequence of the moves
AI and AIII; for the move Ω1 see Fig. 24.

Next, the move Ω1 implies the move Ω5. In fact, the Ω5 is realized by a sequence
of the moves D and EII as shown in Fig. 25. Similarly, the moves Ω1, Ω3, Ω4 imply
the moves Ω6, Ω7, Ω8, respectively. This completes the proof.

Let γ be the Gauss diagram of a virtual arc A. We denote by γ† and −γ the
Gauss diagrams obtained from γ by changing the signs of chords and by reversing
the orientation of the underlying interval, respectively. Then γ† and −γ are the
Gauss diagrams of the virtual arcs A† and −A, respectively. In particular, the Gauss
diagram −γ† is obtained from γ by changing the signs of chords and reversing the
orientation of the interval, which is the Gauss diagrams of the virtual arc −A†.

Definition 3.4. We call the change of a linear Gauss diagram γ 7→ −γ† the re-
versing move; see Fig. 26.

Then by Proposition 2.2, we have
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<p     q                   p q                  p     <q
Ω1

p     <q         q p        <p      q
Ω2

p     q              p q              q      p
Ω3

q     p                p q              p      q
Ω4

q                  p p    <q
Ω5

p                  q <q    p
Ω6

q             p q    p
Ω7

q              p q    p
Ω8

Fig. 23. Moves Ωi, i = 1, . . . , 8, which preserve the r-equivalence.



Enumeration of ribbon 2-knots presented by virtual arcs 17

p     <q      q  <pp     <q         q
AI

p  <q   <p   q <q   p    <p     q
AIII AIII

p        <p      q
AI

Fig. 24. Proof of Proposition 3.3 for the move Ω1.

q                  p <p     q                   p
EII

p    <qq                  p    <q
Ω1 EII

Fig. 25. Proof of Proposition 3.3 for the move Ω5.

<��
������
��<
��<������<��


Fig. 26. Reversion move γ 7→ −γ†, where γ and −γ† are the linear Gauss diagrams for the virtual
arcs A and −A† given in Fig. 6.

Proposition 3.5. The reversing move of a linear Gauss diagram preserves the
r-equivalence, γ

r∼ − γ†.

Let γ and γ′ be the Gauss diagrams of virtual arcs A and A′. We define the
product γ · γ′ by connecting the terminal point of the underlying interval of γ to
the initial point of the underlying interval of γ′; see Fig. 27. Then γ ·γ′ is the Gauss
diagram of the product virtual arc A ·A′.
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The associated ribbon 2-knots Tube(γ·γ′) represents the composition of Tube(γ)
and Tube(γ′). Since the composition of oriented 2-knots is well defined up to isotopy,
we have the following:

γ · γ′ r∼ γ′ · γ r∼ (−γ†) · γ′. (3.1)

γ γ′ γ · γ′

Fig. 27. Product of Gauss diagrams.

By Proposition 2.2 two ribbon 2-knots Tube(γ†) and Tube(−γ) are isotopic,
which are the mirror images of Tube(γ), and thus, we have

γ
r∼ − γ†. (3.2)

If a virtual arc diagram A has a nugatory crossing as in Fig. 28(a), then A may
be deformed into A′ as in Fig. 28(b) by the Reidemeister moves and welded moves.
Therefore, we have the following:

Lemma 3.6. If a Gauss diagram γ has a separated single chord c as in Fig. 28(c)
with any orientation and sign, then it is r-equivalent to the Gauss diagram obtained
from γ by deleting the chord c.

(a) (b) (c)

Fig. 28. (a) Virtual arc diagram A with a nugatory crossing; (b) virtual arc diagram A′; (c)
Gauss diagram with a separated single chord.

4. Enumeration Result

Before stating the main result, we give some convention of a linear Gauss diagram
which presents a ribbon 2-knot. Given a linear Gauss diagram we order its chords
following the orientation of the underlying interval. More precisely, let γ be a linear
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Gauss diagram with n chords such that 2n endpoints lie in the underlying interval
[0, 1], where 0 is the initial point and 1 is the terminal point. We order the chords
c1, c2, . . . , cn of γ so that h(ci) < h(ci+1), where h(ci) is the arrowhead point of ci.
If the chord ci has the sign pi, pi = ±, then we denote γ by γ(p1, p2, . . . , pn).

The following is our main result.

Theorem 4.1. A ribbon 2-knot presented by a virtual arc with up to 4 crossings is
either the trivial one or one of those listed in Tables 2, 3 and 4.

Each column in Tables 2, 3 and 4 shows as follows:

• The first column, Name, shows the name of the corresponding ribbon 2-knot,
where K! denotes the mirror image of the knot K, and K#K ′ the composition
of two knots K and K ′.

Γ2
1 Γ3

1 Γ3
2

Γ4
1 Γ4

2 Γ4
3

Γ4
4 Γ4

5 Γ4
6

Γ4
7 Γ4

8 Γ4
9

Γ4
10 Γ4

11 Γ4
12

Γ4
13

Fig. 29. Linear Gauss diagrams with up to 4 chords.
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• The second column, Gauss diagram, shows the linear Gauss diagram presenting
the ribbon 2-knot, which are shown as in Fig. 29. If there are more than one
diagram, then they present isotopic ribbon 2-knots.

• The column, Group, in Tables 2 and 3 shows the group presentation of the ribbon
2-knot, that is, the fundamental group of the complement of the ribbon 2-knot,
where

G(a1, b1, . . . , an, bn) = 〈x, y ; y = wxw−1 〉, w = xa1yb1 · · ·xanybn . (4.1)

Note that x, y are meridians. In Table 4 there is no column listing the knot
group because those ribbon 2-knots are composite and do not have such a group
presentation.

• The column, ∆(t), shows the Alexander polynomial of the ribbon 2-knot which is
normalized so that ∆(1) = 1 and (d/dt)∆(1) = 0. We abbreviate ∆(t) as follows:
for ci ∈ Z

(c−m c−m+1 · · · c−1 [c0] c1 c2 · · · cn) =
n∑

i=−m

cit
i. (4.2)

• The column, Det, shows the determinant of the ribbon 2-knot which is given by
|∆(−1)|.

• In the last column if there is a mark “a”, then the ribbon 2-knot is amphicheiral.

Remark 4.2. The group G(a1, b1, . . . , an, bn) is isomorphic to
G(−bn,−an, . . . ,−b1,−a1). In fact, 〈x, y ; y = wxw−1 〉 = 〈x, y ; x = w−1yw 〉,
where w−1 = y−bnx−an · · · y−b1x−a1 for w = xa1yb1 · · ·xanybn . This is realized by
the reversing move of a linear Gauss diagram.

Table 2. Ribbon 2-knots presented by linear Gauss diagrams with 2 or 3
chords.

Name Gauss diagram Group ∆(t) Det

R2
1 Γ2

1(++), Γ2
1(−−) G(1, 1) (1 [-1] 1) 3 a

R2
2 Γ2

1(+−) G(1, -1) ([0] 2 -1) 3

R2
2! Γ2

1(−+) G(-1, 1) (-1 2 [0]) 3

R3
1 Γ3

1(+ + +) G(1, 2) (1 -1 [0] 1) 1

R3
1! Γ3

1(−−−) G(-1, -2) (1 [0] -1 1) 1

R3
2 Γ3

1(+−−) G(1, -2) ([0] 1 1 -1) 1

R3
2! Γ3

1(−+ +) G(-1, 2) (-1 1 1 [0]) 1

R3
3 Γ3

2(+ + +), Γ3
2(+−−) G(1, -1, 1, 1) ([2] -2 1) 5

R3
3! Γ3

2(−−−), Γ3
2(−+ +) G(-1, 1, -1, -1) (1 -2 [2]) 5

R3
4 Γ3

2(+ +−) G(1, 1, 1, -1) ([1] -1 2 -1) 5

R3
4! Γ3

2(−−+) G(-1, -1, -1, 1) (-1 2 -1 [1]) 5

R3
5 Γ3

2(+−+), Γ3
2(−+−) G(1, -1, -1, 1) (-1 [3] -1) 5 a
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Table 3. Ribbon 2-knots presented by the linear Gauss diagrams Γ4
l , 1 ≤ l ≤ 12.

Name Gauss diagram Group ∆(t) Det

R4
1,1 Γ4

1(+ + + +) G(1, 3) (1 -1 0 [0] 1) 3

R4
1,1! Γ4

1(−−−−) G(-1, -3) (1 [0] 0 -1 1) 3

R4
1,2 Γ4

1(−+ ++) G(-1, 3) (-1 1 0 1 [0]) 3

R4
1,2! Γ4

1(+−−−) G(1, -3) ([0] 1 0 1 -1) 3

R4
2,1 Γ4

2(+ + + +), Γ4
2(−−−−) G(1, 1, 1, 1) (1 -1 [1] -1 1) 5 a

R4
2,2 Γ4

2(+−+−) G(1, -1, 1, -1) ([0] 0 3 -2) 5

R4
2,2! Γ4

2(−+−+) G(-1, 1, -1, 1) (-2 3 0 [0]) 5

R4
3,1 Γ4

3(+ + + +), Γ4
3(−−−−) G(2, 2) (1 0 [-1] 0 1) 1 a

R4
3,2 Γ4

3(+ +−−) G(2, -2) ([0] 0 2 0 -1) 1

R4
3,2! Γ4

3(−−++) G(-2, 2) (-1 0 2 0 [0]) 1

R4
4,1 Γ4

4(+ + + +) G(1, -1, 1, 2) (2 [-2] 0 1) 3

R4
4,1! Γ4

4(−−−−) G(-1, 1, -1, -2) (1 0 [-2] 2) 3

R4
4,2 Γ4

4(+−++) G(1, -1, -1, 2) (-1 2 [0]) 3

R4
4,2! Γ4

4(−+−−) G(-1, 1, 1, -2) ([0] 2 -1) 3

R4
4,3 Γ4

4(−+ ++) G(-1, -1, 1, 2) (1 -2 1 [1]) 3

R4
4,3! Γ4

4(+−−−) G(1, 1, -1, -2) ([1] 1 -2 1) 3

R4
4,4 Γ4

4(+ +−−) G(1, 1, 1, 2) ([0] 1 0 1 -1) 3

R4
4,4! Γ4

4(−−++) G(-1, -1, -1, -2) (-1 1 0 1 [0]) 3

R4
5,1 Γ4

5(+ +−−) G(1, -1, -1, -2) ([1] 0 -1 2 -1) 3

R4
5,1! Γ4

5(−−++) G(-1, 1, 1, 2) (-1 2 -1 0 [1]) 3

R4
6,1 Γ4

6(+ + + +) G(1, 1, -1, 1, 1, 1) (1 -2 2 [-1] 1) 7

R4
6,1! Γ4

6(−−−−) G(-1, -1, 1, -1, -1, -1) (1 [-1] 2 -2 1) 7

R4
6,2 Γ4

6(+ + +−), Γ4
6(−−−+) G(1, 1, -1, -1, 1, 1) (2 [-3] 2) 7 a

R4
6,3 Γ4

6(+ +−+), Γ4
6(−+−−), G(1, -1, -1, 1, 1, 1) (-1 3 [-2] 1) 7

Γ4
6(−−++)

R4
6,3! Γ4

6(−−+−), Γ4
6(+−++), G(-1, 1, 1, -1, -1, -1) (1 [-2] 3 -1) 7

Γ4
6(+ +−−)

R4
6,4 Γ4

6(−+ ++) G(-1, 1, 1, 1, -1, 1) (-1 2 -2 2 [0]) 7

R4
6,4! Γ4

6(+−−−) G(1, -1, -1, -1, 1, -1) ([0] 2 -2 2 -1) 7

R4
6,5 Γ4

6(+−+−) G(1, 1, -1, -1, 1, -1) ([0] 3 -3 1) 7

R4
6,5! Γ4

6(−+−+) G(-1, -1, 1, 1, -1, 1) (1 -3 3 [0]) 7

R4
6,6 Γ4

6(−+ +−) G(-1, 1, 1, -1, -1, 1) (-2 4 [-1]) 7

R4
6,6! Γ4

6(+−−+) G(1, -1, -1, 1, 1, -1) ([-1] 4 -2) 7

R4
7,1 Γ4

7(+ + + +) G(-1, 1, -2, -1) (1 -1 -1 [2]) 1

R4
7,1! Γ4

7(−−−−) G(1, -1, 2, 1) ([2] -1 -1 1) 1

R4
7,2 Γ4

7(+ + +−) G(1, 1, -2, -1) (1 [0] -1 1) 1

R4
7,2! Γ4

7(−−−+) G(-1, -1, 2, 1) (1 -1 [0] 1) 1

R4
7,3 Γ4

7(−+ ++) G(-1, -1, -2, 1) (-1 1 1 -1 [1]) 1

R4
7,3! Γ4

7(+−−−) G(1, 1, 2, -1) ([1] -1 1 1 -1) 1

R4
7,4 Γ4

7(−+ +−) G(1, -1, -2, 1) (-1 1 [2] -1) 1

R4
7,4! Γ4

7(+−−+) G(-1, 1, 2, -1) (-1 [2] 1 -1) 1



22 T. Kanenobu & S. Komatsu

Table 3. Cont’d.

Name Gauss diagram Group ∆(t) Det

R4
8,1 Γ4

8(+ + + +), G(1, 1, 1, -1, -1, 1, 1, 1) (1 -2 [3] -2 1) 9

Γ4
8(−−−−)

R4
8,2 Γ4

8(+ + +−), G(1, -1, 1, 1, -1, 1, 1, -1) ([2] -3 3 -1) 9

Γ4
8(+−−−)

R4
8,2! Γ4

8(−−−+), G(-1, 1, -1, -1, 1, -1, -1, 1) (-1 3 -3 [2]) 9

Γ4
8(−+ ++)

R4
8,4 Γ4

8(+ +−−) G(1, -1, 1, -1, -1, -1, 1, -1) ([0] 0 4 -4 1) 9

R4
8,4! Γ4

8(−−++) G(-1, 1, -1, 1, 1, 1, -1, 1) (1 -4 4 0 [0]) 9

R4
8,5 Γ4

8(+−+−) G(1, -1, -1, 1, -1, 1, 1, -1) (-2 [5] -2) 9

R4
8,5! Γ4

8(−+−+) G(-1, 1, 1, -1, 1, -1, -1, 1) (-2 [5] -2) 9

R4
8,6 Γ4

8(−+ +−), G(-1, -1, 1, 1, 1, 1, -1, -1) (1 -2 [3] -2 1) 9 a

Γ4
8(+−−+)

R4
9,1 Γ4

9(+ +−−) G(1, 1, -1, 1, -1, -1) (2 [-3] 2) 7

R4
9,1! Γ4

9(−−++) G(-1, -1, 1, -1, 1, 1) (2 [-3] 2) 7

R4
9,2 Γ4

9(−+ +−), G(-1, 1, 1, 1, 1, -1) (-1 2 [-1] 2 -1) 7 a

Γ4
9(+−−+)

R4
10,1 Γ4

10(+ + + +) G(1, 1, -1, 1, 1, -1, -1, 1, 1, 1) (1 -3 4 [-2] 1) 11

R4
10,1! Γ4

10(−−−−) G(-1, -1, 1, -1, -1, 1, 1, -1, -1, -1) (1 [-2] 4 -3 1) 11

R4
10,2 Γ4

10(+ + +−) G(1, 1, -1, 1, 1, -1, -1, -1, 1, 1) (2 [-4] 4 -1) 11

R4
10,2! Γ4

10(−−−+) G(-1, -1, 1, -1, -1, 1, 1, 1, 1, 1) (-1 4 [-4] 2) 11

R4
10,3 Γ4

10(+ +−+) G(1, 1, -1, -1, 1, -1, -1, 1, 1, 1) (-1 4 [-4] 2) 11

R4
10,3! Γ4

10(−−+−) G(-1, -1, 1, 1, -1, 1, 1, -1, -1, -1) (2 [-4] 4 -1) 11

R4
10,4 Γ4

10(+−++) G(1, -1, -1, 1, 1, 1, -1, 1, 1, -1) (-1 3 [-3] 3 -1) 11

R4
10,4! Γ4

10(−+−−) G(-1, 1, 1, -1, -1, -1, 1, -1, -1, 1) (-1 3 [-3] 3 -1) 11

R4
10,5 Γ4

10(−+ ++) G(-1, 1, 1, 1, -1, -1, 1, 1, -1, 1) (-1 3 -4 3 [0]) 11

R4
10,5! Γ4

10(+−−−) G(1, -1, -1, -1, 1, 1, -1, -1, 1, -1) ([0] 3 -4 3 -1) 11

R4
10,6 Γ4

10(+ +−−) G(1, 1, -1, -1, 1, -1, -1, -1, 1, 1) (1 [-2] 4 -3 1) 11

R4
10,6! Γ4

10(−−++) G(-1, -1, 1, 1, -1, 1, 1, 1, -1, -1) (1 -3 4 [-2] 1) 11

R4
10,7 Γ4

10(+−+−) G(1, -1, -1, 1, 1, 1, -1, -1, 1, -1) ([-1] 5 -4 1) 11

R4
10,7! Γ4

10(−+−+) G(-1, 1, 1, -1, -1, -1, 1, 1, -1, 1) (1 -4 5 [-1]) 11

R4
10,8 Γ4

10(−+ +−) G(-1, 1, 1, 1, -1, -1, 1, -1, -1, 1) (-2 5 [-3] 1) 11

R4
10,8! Γ4

10(+−−+) G(1, -1, -1, -1, 1, 1, -1, 1, 1, -1) (1 [-3] 5 -2) 11

The proof of Theorem 4.1 is given in Sects. 5, 6 and 7, where we attempt to
find isotopic ribbon 2-knot pairs which are presented by linear Gauss diagrams with
up to 4 chords. Actually, Theorem 4.1 does not claim the ribbon 2-knots listed in
Tables 2, 3 and 4 are mutually distinct. A pair of ribbon 2-knots with the same
Alexander polynomial might be isotopic. In the forthcoming paper [11] we discuss
the classification of these ribbon 2-knots.



Enumeration of ribbon 2-knots presented by virtual arcs 23

Table 3. Cont’d.

Name Gauss diagram Group ∆(t) Det

R4
11,1 Γ4

11(+ + + +) G(1, 1, -1, 1, 1, 1, -1, -1) (1 -2 [3] -2 1) 9

R4
11,1! Γ4

11(−−−−) G(-1, -1, 1, -1, -1, -1 , 1, 1) (1 -2 [3] -2 1) 9

R4
11,2 Γ4

11(+ + +−) G(1, 1, -1, 1, 1, -1, -1, -1) ([2] -3 3 -1) 9

R4
11,2! Γ4

11(−−−+) G(-1,-1, 1,-1,-1, 1, 1, 1) (-1 3 -3 [2]) 9

R4
11,3 Γ4

11(+ +−+), G(1, -1, -1, 1, 1, 1, -1, -1) (-1 [4] -3 1) 9

Γ4
11(+−+−)

R4
11,3! Γ4

11(−−+−), G(-1, 1, 1, -1, -1, -1, 1, 1) (1 -3 [4] -1) 9

Γ4
11(−+−+)

R4
11,4 Γ4

11(+−++) G(-1, 1, 1, 1, -1, 1, 1, -1) (-1 2 -2 [3] -1) 9

R4
11,4! Γ4

11(−+−−) G(1, -1, -1, -1, 1, -1 -1, 1) (-1 [3] -2 2 -1) 9

R4
11,5 Γ4

11(−+ ++) G(1, 1, -1, -1, 1, 1, -1, 1) (2 -4 [3]) 9

R4
11,5! Γ4

11(+−−−) G(-1, -1, 1, 1, -1, -1, 1, -1) ([3] -4 2) 9

R4
11,6 Γ4

11(+ +−−) G(1, -1, -1, 1, 1, -1, -1, -1) ([1] -2 4 -2) 9

R4
11,6! Γ4

11(−−++) G(-1, 1, 1, -1, -1, 1, 1, 1) (-2 4 -2 [1]) 9

R4
11,7 Γ4

11(−+ +−) G(1, 1, -1, -1, 1, -1, -1, 1) (-1 [4] -3 1) 9

R4
11,7! Γ4

11(+−−+) G(-1, -1, 1, 1, -1, 1, 1, -1) (1 -3 [4] -1) 9

R4
12,1 Γ4

12(+ + +−) G(1, 1, -2, 1) ([1]) 1

R4
12,1! Γ4

12(−−−+) G(-1, -1, 2, -1) ([1]) 1

R4
12,2 Γ4

12(−+ ++) G(-1, 1, 2, 1) (1 [-1] 0 2 -1) 1

R4
12,2! Γ4

12(+−−−) G(1, -1, -2, -1) (-1 2 0 [-1] 1) 1

Table 4. Ribbon 2-knots presented by the linear Gauss diagram Γ4
13.

Name Gauss diagram ∆(t) Det

R2
1#R2

1 Γ4
13(+ + + +), Γ4

13(−−−−), (1 -2 [3] -2 1) 9 a

Γ4
13(+ +−−), Γ4

13(−−++)

R2
1#R2

2 Γ4
13(+ + +−), Γ4

13(−−+−), ([2] -3 3 -1) 9

Γ4
13(−+−−), Γ4

13(−+ ++)

R2
1#R2

2! Γ4
13(+ +−+), Γ4

13(−−−+), (-1 3 -3 [2]) 9

Γ4
13(−+−−), Γ4

13(−+ ++)

R2
2#R2

2! Γ4
13(+−−+), Γ4

13(−+ +−) (-2 [5] -2) 9 a

R2
2#R2

2 Γ4
13(+−+−) ([0] 0 4 -4 1) 9

R2
2!#R2

2! Γ4
13(−+−+) (1 -4 4 0 [0]) 9

In the remaining of this section, we explain the calculation of the knot group
and Alexander polynomial.

Let A be an oriented virtual arc diagram. Then we can define the group of A in
the same way as a virtual knot, which uses a generalization of Wirtinger’s algorithm;
see [12]. It is also the fundamental group of the complement of the corresponding
ribbon 2-knot Tube(A), π1(R4 − Tube(A)) [19, Proposition 5.3]. Furthermore, we
can obtain the group presentation of A (and so of Tube(A)) from a linear Gauss
diagram γ which presents A as for a virtual knot explained in [2, p. 1049]; cf. [13,
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Sec. 2.3]. If we cut the interval at each arrowhead (forgetting arrowtails), the interval
of γ is divided into a set of arcs. To each of these arcs there corresponds a generator
of the group, which corresponds to a meridian generator of the group of Tube(A).
Each arrow gives rise to a relation. Suppose the sign of an arrow is p, its tail lies
on an arc labeled x, its head is the final point of an arc labeled y and the initial
point of an arc labeled z. Then we assign to this arrow the relation z = x−pyxp,
meaning:

x−pyxp =

{
x−1yx if p = +;

xyx−1 if p = −.
(4.3)

The resulting group is the group of the virtual arc A and also the group of the
corresponding ribbon 2-knot Tube(A), which we denote by πγ.

Example 4.3. We calculate the group πΓ4
6(p, q, r, s). Cutting the interval at each

arrowhead, we obtain 5 arcs. Take generators x, y, z, u, v as shown in Fig. 30. Then
we obtain the following relations:

y = v−pxvp, (4.4)

z = x−qyxq, (4.5)

u = x−rzxr, (4.6)

v = z−suzs. (4.7)

s

r

x y z u v

Fig. 30. Generators of the group πΓ4
6(p, q, r, s).

In fact, from the linear Gauss diagram Γ4
6(+ − −+) we obtain a virtual arc

diagram as shown in Fig. 31, from which we obtain the above group presentation
by Wirtinger’s algorithm.

Substitute (4.4) and (4.6) into (4.5) and (4.7), respectively. Then we obtain

z = x−qv−pxvpxq, (4.8)

v = z−sx−rzxrzs. (4.9)

Substitute (4.8) into (4.9). Then we obtain

v = x−qv−px−svpxqx−rx−qv−pxvpxqxrx−qv−pxsvpxq

= (x−qv−px−svpx−rv−p)x(vpxrv−pxsvpxq). (4.10)

So, the group πΓ4
6(p, q, r, s) is presented by G(−q,−p,−s, p,−r,−p).
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Fig. 31. Virtual arc diagram with Gauss diagram Γ4
6(+−−+)

Alternatively, substitute (4.9) into (4.4). Then we obtain

y = z−sx−rz−pxrzsxz−sx−rzpxrzs (4.11)

Then substitute (4.11) into (4.5). Then we obtain

z = (x−qz−sx−rz−pxrzs)x(z−sx−rzpxrzsxq). (4.12)

So, the group πΓ4
6(p, q, r, s) is also presented by G(−q,−s,−r,−p, r, s). In Table 3

we list the former presentation. In particular, the group πΓ4
6(+ − −+) has two

presentations, G(1,−1,−1, 1, 1,−1) and G(1,−1, 1,−1,−1, 1). It is not trivial that
they present the same group.

Example 4.4. We calculate the group πΓ4
11(p, q, r, s). Take generators x, y, z, u,

v as shown in Fig. 32. Then we obtain the following relations:

y = z−pxzp, (4.13)

z = v−qyvq, (4.14)

u = y−rzyr, (4.15)

v = x−suxs. (4.16)

Removing x, y and u, we obtain:

v = (zpvqz−sv−qz−p)(vqz−rv−qzvqzrv−q)(zpvqzsv−qz−p). (4.17)

So, the group πΓ4
11(p, q, r, s) is presented by G(p, q,−s,−q,−p, q,−r,−q), which is

isomorphic to G(q, r,−q, p, q, s,−q,−p). In Table 3 we list this presentation.
Alternatively, removing y, u and v, we obtain:

z = (x−sz−px−rz−qxrzpxsz−p)x(zpx−sz−px−rzqxrzqxs). (4.18)

So, the group πΓ4
11(p, q, r, s) is also presented by G(−s,−p,−r,−q, r, p, s,−p).

From the group presentation Eq. (4.1) we obtain the Alexander polynomial as
follows:

1− ta1 + ta1+b1 − ta1+b1+a2 + ta1+b1+a2+b2 − · · ·
−ta1+b1+···+bn−1+an + ta1+b1+···+bn−1+an+bn ;

(4.19)
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p sq rx y z u v

Fig. 32. Generators x, y, z, u, v of the group πΓ4
11(p, q, r, s).

see [15]. If ∆(t) is the normalized Alexander polynomial of a ribbon 2-knot, then the
normalized Alexander polynomial of its mirror image is given by ∆(t−1), and thus
their determinants coincide. Further, if ∆(t) 6= ∆(t−1), then it is not amphicheiral.

Remark 4.5. We can define a sequence of invariants for a ribbon 2-knot by
αn(K) = (l/n!)dn/dtn∆K(1), which are finite type invariants [3, Theorem2.2]; see
also [4,10].

5. Ribbon 2-Knots Presented by Linear Gauss Diagrams with up
to 3 Chords

In this section, we prove Theorem 4.1 for a linear Gauss diagram with up to 3
chords.

5.1. Linear Gauss diagrams with up to 2 chords

A ribbon 2-knot presented by a linear Gauss diagram with one chord is trivial
by the move AI. In order to enumerate ribbon 2-knots presented by linear Gauss
diagrams with 2 chords, by Lemma 3.6 and the move EII we have only to consider
the diagram Γ2

1 as shown in Fig. 29. Then since Γ2
1(++) r∼Γ2

1(−−) by the reversing
move, we obtain the ribbon 2-knots R2

1, R2
2, R2

2! as listed in Table 2. The group is
presented as follows:

πΓ2
1(p, q) = G(p, q). (5.1)

5.2. Linear Gauss diagrams with 3 chords

We enumerate ribbon 2-knots presented by linear Gauss diagrams with 3 chords.

Lemma 5.1. Any linear Gauss diagram with 3 chords is r-equivalent to either the
trivial diagram or the diagrams Γ2

1, Γ3
1, or Γ3

2 given in Fig. 29 with some signs.

Proof. By Lemma 3.6 we have only to consider three linear Gauss diagrams βi,
i = 1, 2, 3, as shown in Fig. 33, where we ignore the orientation of the interval, and
the orientations and signs of the chords.

Then, by the move EII and reversing move we have only to consider the linear
Gauss diagrams Γ3

1, Γ3
2, β21, β31 as shown in Fig. 34. By the move D we have
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β1 β2 β3

Fig. 33. Unoriented linear Gauss diagrams with 3 chords.

Γ3
1 Γ3

2 β21 β31

Fig. 34. Oriented linear Gauss diagrams with 3 chords.

β21(p, q, r) r∼Γ3
1(p, q, r), and by the moves D and AI we have β31(p, q, r) r∼Γ2

1(q, r).
This completes the proof.

Now, we consider the diagrams Γ3
1(p, q, r) and Γ3

2(p, q, r). By the moves AII

and AI the diagram Γ3
1(p, q,−q) is deformed into the trivial diagram. By the move

Ω5 and reversing move the diagram Γ3
2(p, q, r) is deformed into Γ3

2(p,−r,−q); see
Fig. 35(a). This implies Γ3

2(+ + +) r∼Γ3
2(+ − −). Furthermore, by the reversing

move and the move Ω2 the diagram Γ3
2(p,−p, q) is deformed into Γ3

2(−q, q,−p); see
Fig. 35(b). This implies Γ3

2(+−+) r∼Γ3
2(−+−). Then we obtain the ribbon 2-knots

R3
i , R3

i ! (i = 1, 2, 3, 4) and R3
5 as listed in Table 2. The groups are presented as

follows:

πΓ3
1(p, q, r) = G(p, q + r); (5.2)

πΓ3
2(p, q, r) = G(p, −r, q, r). (5.3)

(a)

p  q       r p  <r    <qq      r  <p
Ω5 Reversing

(b)

p  <p    q <q  q     <p<q     p  <p
Reversing Ω2

Fig. 35. r-Equivalent linear Gauss diagrams with 3 chords.
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6. Linear Gauss diagrams with 4 chords

In this section, we prove the following lemma.

Lemma 6.1. Any linear Gauss diagram with 4 chords is r-equivalent to either a
linear Gauss diagram with up to 3 chords or Γ4

l , 1 ≤ l ≤ 13, given in Fig. 29 with
some signs.

Proof. First we note there are seven types of circular Gauss diagrams with 4 chords
that has no separated single chord as shown in Fig. 36.

γ1 γ2 γ3 γ4 γ5 γ6 γ7

Fig. 36. Circular Gauss diagrams with 4 chords.

From the circular Gauss diagram γi, 1 ≤ i ≤ 7, we obtain linear Gauss diagrams
γij ignoring the orientation of the interval, and the orientations and signs of the
chords as shown in Fig. 37.

From γij we obtain oriented Gauss diagrams γijk as shown in Fig. 38 up to
r-equivalence, where:

• γijk = Γ4
l means that the diagram γijk is the same as Γ4

l given in Fig. 29.
• γijk → Γ3 means that by the move D the diagram γijk(p, q, r, s) with any signs

(p, q, r, s = ±) is deformed into a linear Gauss diagram having a single sepa-
rated chord, which is r-equivalent to a Gauss diagram with up to 3 chords by
Lemma 3.6.

• γijk → ±Γ4
l means that by the move D the diagram γijk(p, q, r, s) is deformed

into the Gauss diagram ±Γ4
l (p

′, q′, r′, s′) for some l and some signs p′, q′, r′,
s′ = ±, where Γ4

l is given in Fig. 29.
• γijk → ±γi′j′k′ means that by the move D the diagram γijk(p, q, r, s) is deformed

into the Gauss diagram ±γi′j′k′(p′, q′, r′, s′).

The following are proved by the move Ωi, i = 5, 6, 7, 8:

γ112(p, q, r, s) r∼Γ4
7(q, r, s,−p) (by the move Ω6), (6.1)

γ113(p, q, r, s) r∼Γ4
6(q, r, s,−p) (by the move Ω5), (6.2)

γ114(p, q, r, s) r∼Γ4
5(q, r, s,−p) (by the move Ω5), (6.3)

γ441(p, q, r, s) r∼Γ4
6(p, s, q, r) (by the move Ω8), (6.4)

γ442(p, q, r, s) r∼Γ4
2(p, s, q, r) (by the move Ω8), (6.5)
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γ11 γ12 γ21 γ22

γ23 γ24 γ25 γ31

γ32 γ41 γ42 γ43

γ44 γ51 γ52 γ53

γ61 γ62 γ63 γ71

Fig. 37. Linear Gauss diagrams γij obtained from γi, 1 ≤ i ≤ 7.

γ531(p, q, r, s) r∼Γ4
8(r, p, q, s) (by the move Ω7), (6.6)

γ423(p, q, r, s) r∼ γ243(p, q, r, s) (by the move Ω7), (6.7)

γ622(p, q, r, s) r∼ γ113(p, q, s, r) (by the move Ω8), (6.8)

γ713(p, q, r, s) r∼ γ442(q, p, r, s) (by the move Ω7). (6.9)

Thus, each linear Gauss diagram γijk(p, q, r, s) is r-equivalent to either a diagram
with up to 3 chords or Γ4

l (p
′, q′, r′, s′) for some l and some signs p′, q′, r′, s′. This

completes the proof.

7. Ribbon 2-Knots Obtained from the Linear Gauss Diagrams Γ4
l

In this section, we prove Theorem 4.1 for a linear Gauss diagram with 4 chords
using Lemma 6.1; we examine the associated ribbon 2-knot for each Γ4

l (p, q, r, s),
1 ≤ l ≤ 13.

7.1. Ribbon 2-knots obtained from Γ4
1

By the move AII if either q = −r or r = −s, then Γ4
1(p, q, r, s) is r-equivalent to

a diagram with 2 chords. So, we consider the case q = r = s. Then we obtain the
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γ111 = Γ4
1 γ112 γ113 γ114

γ121 → Γ3 γ122 → Γ3 γ123 → Γ3 γ124 → Γ3

γ211 → Γ3 γ212 → Γ3 γ213 → Γ4
13

γ221 = Γ4
10 γ222 = Γ4

12 γ223 → Γ3 γ224 → Γ3

γ231 γ232 γ233 → Γ3 γ234 → Γ3

γ241 → Γ3 γ242 → Γ3 γ243 → γ531 γ244 → Γ3

γ251 = Γ4
6 γ252 = Γ4

2 γ253 = Γ4
5

γ311 → Γ3 γ312 → Γ4
12

γ321 = Γ4
7 γ322 = Γ4

3 γ323 → Γ4
5

Fig. 38. Oriented linear Gauss diagrams γijk obtained from γij .
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γ411 → Γ4
1 γ412 = Γ4

4 γ413 = Γ4
11 γ414 → γ114

γ421 → Γ3 γ422 → Γ3 γ423 γ424 → Γ3

γ431 → Γ4
6 γ432 → Γ4

2 γ433 → Γ3 γ434 → Γ3

γ441 → γ231 γ442 γ443 → −γ112 γ444 → −Γ4
1

γ511 = Γ4
13 γ521 = Γ4

8 γ531

γ611 → Γ3 γ612 → Γ4
2 γ613 = Γ4

9

γ621 → Γ4
1 γ622 γ623 → Γ4

3 γ624 → −Γ4
7

γ631 → Γ4
1 γ632 → Γ4

4

γ711 → Γ4
1 γ712 → Γ4

3 γ713

Fig. 38. Cont’d.

ribbon 2-knots R4
1,j , R4

1,j !, j = 1, 2, as listed in Table 3. The group is presented as
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follows:

πΓ4
1(p, q, r, s) = G(p, q + r + s). (7.1)

7.2. Ribbon 2-knots obtained from Γ4
2

By the move D the diagram Γ4
2(p, q, r, s) is deformed into γ612(p, q, r, s) given in

Fig. 38. If either s = −q or r = −p, then by the move AIII the diagram γ612(p, q, r, s)
is deformed into a diagram with a single separated chord; see Fig. 39. So, we consider
the case s = q and r = p. Note that Γ4

2(+ + + +) r∼Γ4
2(− − −−) by the reversing

move. Then we obtain the ribbon 2-knots R4
2,1, R4

2,2, R4
2,2! as listed in Table 3. The

group is presented as follows:

πΓ4
2(p, q, r, s) = G(p, q, r, s). (7.2)

γ612(p, q, r,−q) AIII

γ612(p, q,−p, s) AIII

Fig. 39. The diagrams γ612(p, q, r,−q) and γ612(p, q,−p, s) are deformed into diagrams with a
single separated chord.

7.3. Ribbon 2-knots obtained from Γ4
3

If either p = −q or q = −r, then by the move AII the diagram Γ4
3(p, q, r, s) is

r-equivalent to a diagram with 2 chords. So, we consider the case p = q and r = s.
Note that Γ4

3(+ + ++) r∼Γ4
3(−−−−) by the reversing move. Then we obtain the

ribbon 2-knots R4
3,1, R4

3,2, R4
3,2! as listed in Table 3. The group is presented as

follows:

πΓ4
3(p, q, r, s) = G(p + q, r + s). (7.3)

7.4. Ribbon 2-knots obtained from Γ4
4

By the move D the diagram Γ4
4(p, q, r, s) is deformed into γ632(p, q, r, s) given in

Fig. 38. Then if s = −r, by the move AIII the diagram γ632(p, q, r, s) is deformed
into a Gauss diagram with a single separated chord; see Fig. 40. So, we consider
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the cases r = s. Then we obtain the ribbon 2-knots R4
4,j , R4

4,j !, j = 1, 2, 3, 4, as
listed in Table 3. The group is presented as follows:

πΓ4
4(p, q, r, s) = G(p,−s, q, r + s). (7.4)

γ632(p, q, r,−r) AIII

Fig. 40. γ632(p, q, r,−r) is r-equivalent to a diagram with a single separated chord.

7.5. Ribbon 2-knots obtained from Γ4
5

By the move Ω5 the diagram Γ4
5(p, q, r, s) is r-equivalent to γ114(−s, p, q, r) given in

Fig. 38; see Fig. 41. If p = s, then by the move AII the diagram γ114(−s, p, q, r) is
r-equivalent to a diagram with 2 chords. So, we consider the case p = −s. Note that
by the reversing move we have Γ4

5(+−−−) r∼Γ4
5(+++−) and Γ4

5(−+++) r∼Γ4
5(−−

−+).

p q rΓ4
5(p, q, r, s) Ω5 γ114(−s, p, q, r)

Fig. 41. The diagram Γ4
6(p, q, r, s) is deformed into γ114(−s, p, q, r).

Furthermore, we have the following r-equivalent pairs.

Lemma 7.1.

Γ4
4(+−++) r∼Γ4

5(−+−+); (7.5)

Γ4
4(−+−−) r∼Γ4

5(+−+−); (7.6)

Γ4
4(−+ ++) r∼Γ4

5(−−−+); (7.7)

Γ4
4(+−−−) r∼Γ4

5(+ + +−). (7.8)

Proof. Figure 42 shows the diagrams Γ4
4(p,−p, +,+) and Γ4

5(−,−, p,+) are r-
equivalent to the same diagram, proving Eqs. (7.5) and (7.7); Eqs. (7.6) and (7.8)
are their mirror images.
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Then the remaining diagrams are Γ4
5(−−++) and Γ4

5(++−−), which present
the ribbon 2-knots R4

5,1 and R4
5,1!, respectively, as listed in Table 3. The group is

presented as follows:

πΓ4
5(p, q, r, s) = G(−r,−q, r, s− p). (7.9)

7.6. Ribbon 2-knots obtained from Γ4
6

First we show the following lemma.

Lemma 7.2.

Γ4
6(p, q, r,−q) r∼Γ4

9(p, r, p, q); (7.10)

Proof. See Fig. 43.

Now we show the following r-equivalence.

Lemma 7.3.

Γ4
6(+ + +−) r∼Γ4

6(−−−+); (7.11)

Γ4
6(−−+−) r∼Γ4

6(+ +−−) r∼Γ4
6(+−++); (7.12)

Γ4
6(+ +−+) r∼Γ4

6(−−++) r∼Γ4
6(−+−−). (7.13)

Proof. First, we show Eq. (7.11). By Lemma 7.2 we have Γ4
6(+ + +−) r∼Γ4

9(+ +
++) and Γ4

6(− − −+) r∼Γ4
9(− − −−). Since Γ4

9(+ + + +) r∼Γ4
9(− − −−) by the

reversing move, we obtain Eq. (7.11).
Next, we show Eq. (7.13); Eq. (7.12) is its mirror image. We start with the

ribbon handlebody H0 as shown in Fig. 44, which is consisting of four 0-handles
and three 1-handles. We deform this into three ribbon handlebodies H1, H2, H3 as
shown in Fig. 44 by the stably equivalent move introduced by Marumoto [16, Fig. 2-
2], and so these four ribbon handlebodies represent the same ribbon 2-knot. Then
H1, H2, H3 are represented by the virtual arcs A1, A2, A3, and their diagrams
are δ1, δ2, δ3, respectively, as shown in Fig. 45. Note that δ1 = γ441(+ − ++),
δ2 = −γ441(+−−+), δ3 = γ441(−−−+). Then δ1 is r-equivalent to Γ4

6(+ +−+)
by the move Ω8; δ2 is r-equivalent to γ441(−++−) by the reversing move, which is
r-equivalent to Γ4

6(−−++) by the move Ω8; δ3 is r-equivalent to Γ4
6(−+−−) by

the move Ω8; see Eq. (6.4). Thus we obtain Eq. (7.13). This completes the proof.

Therefore, we obtain the ribbon 2-knots R4
6,j R4

6,j !, j = 1, 3, 4, 5, 6, and R4
6,2

as listed in Table 3. For the group πΓ4
6(p, q, r, s), see Example 4.3.

Remark 7.4. In [24, Example 4.1] Yasuda has shown the ribbon 2-knot represented
by H0 has three different ribbon handlebodies consisting of two 0-handles and one
1-handle. The ribbon handlebodies H0 and H1 in Fig. 44 are given in [24, Fig. 7].
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<pΓ4
4(p, q,+,+) AII (p, q,+,−,+,+)

s<p= (p, q,+,−,+,+) AIII (p,−, q,+,+)

AI (p,−, q,+,+) D (p,−, q,+,+)

Γ4
5(−, p,−,+) Ω6 (p,−,+,+)

<
< 

 

<


< 

 


s

AI (p,−, p,−p, +,+) = (p,−, p,−p, +,+)


 
 <

<AIII (p, p,−,−p, +,+) D (p, p,−,−p, +,+)

AI (p,−,−p, +,+) D (p,−,−p, +,+)

Fig. 42. Proof of Lemma 7.1.
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p rq q rp q <qr
Γ4

6(p, q, r,−q) Ω5 γ113(q, p, q, r) =
γ113(q, p, q, r)

r r qΩ8 γ622(q, p, r, q) =
γ622(q, p, r, q) Ω3 Γ4

9(p, r, p, q)

Fig. 43. Proof of Lemma 7.2.

H0 H1

H2 H3

Fig. 44. Ribbon handlebodies.

7.7. Ribbon 2-knots obtained from Γ4
7

If q = −r, then the diagram Γ4
7(p, q, r, s) is r-equivalent to a diagram with 2 chords

by the move AII. So, we consider the case q = r. Then we obtain the ribbon 2-knots
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A1 A2 A3

+ −+ + +−− + − −−+

δ1 δ2 δ3

Fig. 45. Virtual arcs A1, A2, A3 representing ribbon handlebodies H1, H2, H3, and their dia-
grams δ1, δ2, δ3.

R4
7,j , R4

7,j !, j = 1, 2, 3, 4, as listed in Table 3. The group is presented as follows:

πΓ4
7(p, q, r, s) = G(−s, p,−q − r,−p). (7.14)

7.8. Ribbon 2-knots obtained from Γ4
8

Note that Γ4
8(p, q, r, s) r∼Γ4

8(−s,−r,−q,−p) by the reversing move. Then we obtain
the ribbon 2-knots R4

8,1, R4
8,6, and R4

8,j , R4
8,j !, j = 2, 3, 4, 5, as listed in Table 3.

The group is presented as follows:

πΓ4
8(p, q, r, s) = G(p, s, q,−s,−p, r, p, s). (7.15)

7.9. Ribbon 2-knots obtained from Γ4
9

If either p = r or q = s, then Γ4
9(p, q, r, s) is r-equivalent to Γ4

6(p
′, q′, r′, s′)

for some signs p′, q′, r′, s′. In fact, if p = r, then by Lemma 7.2 we have
Γ4

9(p, q, p, s) r∼Γ4
7(p, s, q,−s). Next, suppose q = s. By the reversing move we

have Γ4
9(p, q, r, q) r∼Γ4

9(−q,−r,−q,−p), which is r-equivalent to Γ4
6(−q,−p,−r, p)

by Lemma 7.2. Then we obtain the ribbon 2-knots R4
9,1, R4

9,1!, and R4
9,2 as listed

in Table 3. The group is presented as follows:

πΓ4
9(p, q, r, s) = G(p, q,−p,−s, r, s). (7.16)
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7.10. Ribbon 2-knots obtained from Γ4
10

From the diagram Γ4
10 we obtain the ribbon 2-knots R4

10,j , R4
10,j !, j = 1, . . . , 8, as

listed in Table 3. The group is presented as follows:

πΓ4
10(p, q, r, s) = G(p, q,−p, r, p,−q,−p, s, p, q). (7.17)

7.11. Ribbon 2-knots obtained from Γ4
11

We have the following r-equivalent pairs.

Lemma 7.5.

Γ4
11(+ +−+) r∼Γ4

11(+−+−); (7.18)

Γ4
11(−−+−) r∼Γ4

11(−+−+). (7.19)

Proof. We show Eq. (7.18). The diagram Γ4
11(+ +−+) represents the virtual arc

diagram A4 as shown in Fig. 46, which is r-equivalent to −A†
4. Then it is deformed

into A′
4 by the moves AII, AIII, D, EII as shown in Fig. 46, which has the diagram

δ4 as shown in Fig. 48.

A4

−A†
4 A′

4

Fig. 46. Virtual arc diagram A4 having diagram Γ4
11(+ +−+), and r-equivalent virtual arcs.

The diagram Γ4
11(+ − +−) represents the virtual arc diagram A5 as shown in

Fig. 47. It is deformed into A′
5 by the moves AII, AIII, BII, BIII, D, EI, EII as shown

in Fig. 47, which has the Gauss diagram δ5 as shown in Fig. 48. Both the Gauss
diagrams γ4 and γ5 are deformed into γ6 as shown in Fig. 48 by the move D, which
completes the proof.

Then we obtain the ribbon 2-knots R4
11,j , R4

11,j !, j = 1, . . . , 7, as listed in Table 3.
For the group πΓ4

11(p, q, r, s), see Example 4.4
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A5

A′
5

Fig. 47. Virtual arc diagram A5 having diagram Γ4
11(+−+−), and r-equivalent virtual arcs.


��
� <��<��<��
��
��<
��
� <��<��<��
��
��<
δ4 δ5


��
� <��<��<��
��
��<
δ6

Fig. 48. Gauss linear diagrams for the virtual arcs A′
4 and A′

5.

7.12. Ribbon 2-knots obtained from Γ4
12

If p = r, then the diagram Γ4
12(p, q, r, s) is r-equivalent to a linear Gauss diagram

with less than 4 chords. In fact, by the move AIII the diagram Γ4
12(p, q, p, s) is

r-equivalent to a linear Gauss diagram with a separated chord; see Fig. 49.
Moreover, if s = −q, then we have Γ4

12(p, q, r,−q) r∼ −Γ4
7(p, r,−p,−q) as shown

in Fig. 50. By the reversing move −Γ4
7(p, r,−p,−q) r∼Γ4

7(q, p,−r,−p). So, we con-
sider Γ4

12(p, q, r, s) with p = −r and q = s. Then we obtain the ribbon 2-knots R4
12,j ,

R4
12,j !, j = 1, 2, as listed in Table 3. The group is presented as follows:

πΓ4
12(p, q, r, s) = G(p, q, r − p, s) (7.20)
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p qq r p qrΓ4
12(p, q, p, s) AIII

Fig. 49. Γ4
12(p, q, p, s) is deformed into a diagram with a single separated chord.

Γ4
12(p, q, r,−q) D

γ312(p, q, r,−q) Ω2 −Γ4
7(p, r,−p,−q)

Fig. 50. Γ4
12(p, q, r,−q) is r-equivalent to −Γ4

7(p, r,−p,−q).

7.13. Ribbon 2-knots obtained from Γ4
13

Since the diagram Γ4
13(p, q, r, s) is the product Γ2

1(p, q) · Γ2
1(r, s) and

Γ2
1(++) r∼Γ2

1(−−), by Eq. (3.1) we have:

Γ4
13(+ + ++) r∼Γ4

13(−−−−) r∼Γ4
13(+ +−−) r∼Γ4

13(−−++), (7.21)

Γ4
13(+ + +−) r∼Γ4

13(+−++) r∼Γ4
13(−−+−) r∼Γ4

13(+−−−), (7.22)

Γ4
13(+ +−+) r∼Γ4

13(−+ ++) r∼Γ4
13(−−−+) r∼Γ4

13(−+−−), (7.23)

Γ4
13(+−−+) r∼Γ4

13(−+ +−), (7.24)

which present the composite ribbon 2-knots R2
1#R2

1, R2
1#R2

2, R2
1#R2

2!, R2
2#R2

2!,
respectively. Additionally, we have R2

2#R2
2 and R2

2!#R2
2!, which are presented by

Γ4
13(+ − +−) and Γ4

13(− + −+), respectively. For the composition of two ribbon
2-knots K and K ′, K#K ′, we have ∆K#K′(t) = ∆K(t)∆K′(t), and so we obtain
Table 4.

8. Final Remarks

(i) In Tables 2, 3 and 4 there are several pairs and triples sharing the same Alexan-
der polynomials. Except for the pair (R4

8,1, R
4
8,6) we can distinguish using the

knot group and the twisted Alexander polynomial; see the forthcoming paper
[11] for the detail. The groups of this pair are actually isomorphic.

(ii) The following ribbon 2-knots are missing in Yasuda’s table [22,23,25,26,27]. In
fact, in Yasuda’s table there do not exist ribbon knots having the Alexander
polynomials of these knots.

R4
11,4, R4

11,4!, R4
11,5, R4

11,5!, R4
11,6, R4

11,6!. (8.1)
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