ON A WEIGHTED TRUDINGER-MOSER TYPE INEQUALITY ON THE WHOLE SPACE AND ITS (NON-)EXISTENCE OF MAXIMIZERS

FUTOSHI TAKAHASHI

Abstract

In this paper, we establish a weighted Trudinger-Moser type inequality with the full Sobolev norm constraint on the whole Euclidean space. The radial weight is allowed to increase in the radial direction, therefore we cannot use a rearrangement argument directly. Also we discuss the non-attainability of the supremum related to the inequality when the exponent is sufficiently small.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$ be a domain with finite volume. Then the Sobolev embedding theorem assures that $W_{0}^{1, N}(\Omega) \hookrightarrow L^{q}(\Omega)$ for any $q \in[1,+\infty)$, however, as the function $\log (\log (e /|x|)) \in W_{0}^{1, N}(B)$, B the unit ball in \mathbb{R}^{N}, shows, the embedding $W_{0}^{1, N}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ does not hold. Instead, functions in $W_{0}^{1, N}(\Omega)$ enjoy the exponential summability:
$W_{0}^{1, N}(\Omega) \hookrightarrow\left\{u \in L^{N}(\Omega): \int_{\Omega} \exp \left(\alpha|u|^{\frac{N}{N-1}}\right) d x<\infty \quad\right.$ for any $\left.\alpha>0\right\}$, see Yudovich [31], Pohozaev [26], and Trudinger [30]. Moser [22] improved the above embedding as follows, now known as the TrudingerMoser inequality: Define

$$
T M(N, \Omega, \alpha)=\sup _{\substack{u \in W^{1, N}(\Omega) \\\|\nabla u\|_{L^{N}(\Omega)}^{\leq 1}}} \frac{1}{|\Omega|} \int_{\Omega} \exp \left(\alpha|u|^{\frac{N}{N-1}}\right) d x .
$$

Then we have

$$
T M(N, \Omega, \alpha) \begin{cases}<\infty, & \alpha \leq \alpha_{N} \\ =\infty, & \alpha>\alpha_{N}\end{cases}
$$

[^0]here and henceforth $\alpha_{N}=N \omega_{N-1}^{\frac{1}{N-1}}$ and ω_{N-1} denotes the area of the unit sphere S^{N-1} in \mathbb{R}^{N}. On the attainability of the supremum, CarlesonChang [5], Flucher [12], and Lin [17] proved that $T M(N, \Omega, \alpha)$ is attained on any bounded domain for all $0<\alpha \leq \alpha_{N}$.

Later, Adimurthi-Sandeep [2] established a weighted (singular) TrudingerMoser inequality as follows: Let $0 \leq \beta<N$ and put $\alpha_{N, \beta}=\left(\frac{N-\beta}{N}\right) \alpha_{N}$. Define

$$
\widetilde{T M}(N, \Omega, \alpha, \beta)=\sup _{\substack{u \in W_{0}^{1, N}(\Omega) \\\|\nabla u\|_{L^{N}(\Omega)^{\leq 1}}^{\leq 1}}} \frac{1}{|\Omega|} \int_{\Omega} \exp \left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}
$$

Then it is proved that

$$
\widetilde{T M}(N, \Omega, \alpha, \beta) \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta} \\ =\infty, & \alpha>\alpha_{N, \beta}\end{cases}
$$

On the attainability of the supremum, recently Csató-Roy [9], [10] proved that $\widetilde{T M}(2, \Omega, \alpha, \beta)$ is attained for $0<\alpha \leq \alpha_{2, \beta}=2 \pi(2-\beta)$ for any bounded domain $\Omega \subset \mathbb{R}^{2}$. For other types of weighted TrudingerMoser inequalities, see for example, [6], [7], [8], [13], [18], [28], [29], [32], to name a few.

On domains with infinite volume, for example on the whole space \mathbb{R}^{N}, the Trudinger-Moser inequality does not hold as it is. However, several variants are known on the whole space. In the following, let

$$
\Phi_{N}(t)=e^{t}-\sum_{j=0}^{N-2} \frac{t^{j}}{j!}
$$

denote the truncated exponential function.
First, Ogawa [23], Ogawa-Ozawa [24], Cao [4], Ozawa [25], and Adachi-Tanaka [1] proved that the following inequality holds true, which we call Adachi-Tanaka type Trudinger-Moser inequality: Define

$$
\begin{equation*}
A(N, \alpha)=\sup _{\substack{u \in W^{1}, N\left(\mathbb{R}^{N}\right) \backslash\{0\} \\\|V u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1}} \frac{1}{\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) d x . \tag{1.1}
\end{equation*}
$$

Then

$$
A(N, \alpha) \begin{cases}<\infty, & \alpha<\alpha_{N} \tag{1.2}\\ =\infty, & \alpha \geq \alpha_{N}\end{cases}
$$

The functional in (1.1)

$$
F(u)=\frac{1}{\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) d x
$$

enjoys the scale invariance under the scaling $u(x) \mapsto u_{\lambda}(x)=u(\lambda x)$ for $\lambda>0$, i.e., $F\left(u_{\lambda}\right)=F(u)$ for any $u \in W^{1, N}\left(\mathbb{R}^{N}\right) \backslash\{0\}$. Note that the critical exponent $\alpha=\alpha_{N}$ is not allowed for the finiteness of the supremum. Recently, Ishiwata-Nakamura-Wadade [16] and Dong$\mathrm{Lu}[11]$ proved that $A(N, \alpha)$ is attained for any $\alpha \in\left(0, \alpha_{N}\right)$. In this sense, Adachi-Tanaka type Trudinger-Moser inequality has a subcritical nature of the problem.

On the other hand, Ruf [27] and Li-Ruf [20] proved that the following inequality holds true: Define

$$
\begin{equation*}
B(N, \alpha)=\sup _{\substack{\left.u \in W^{1, N_{(\mathbb{R}}}\right) \\\|u\|_{W^{1, N}}\left(\mathbb{R}^{N}\right) \leq 1}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) d x . \tag{1.3}
\end{equation*}
$$

Then

$$
B(N, \alpha) \begin{cases}<\infty, & \alpha \leq \alpha_{N} \tag{1.4}\\ =\infty, & \alpha>\alpha_{N}\end{cases}
$$

Here $\|u\|_{W^{1, N}\left(\mathbb{R}^{N}\right)}=\left(\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}+\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}\right)^{1 / N}$ is the full Sobolev norm. Note that the scale invariance ($u \mapsto u_{\lambda}$) does not hold for this inequality. Also the critical exponent $\alpha=\alpha_{N}$ is permitted to the finiteness of (1.3). Concerning the attainability of $B(N, \alpha)$, it is known that $B(N, \alpha)$ is attained for $0<\alpha \leq \alpha_{N}$ if $N \geq 3$ [27]. On the other hand when $N=2$, there exists an explicit constant $\alpha_{*}>0$ related to the Gagliardo-Nirenberg inequality in \mathbb{R}^{2} such that $B(2, \alpha)$ is attained for $\alpha_{*}<\alpha \leq \alpha_{2}(=4 \pi)$ [27], [15]. However, if $\alpha>0$ is sufficiently small, then $B(2, \alpha)$ is not attained [15]. The non-attainability of $B(2, \alpha)$ for α sufficiently small is attributed to the non-compactness of "vanishing" maximizing sequences, as described in [15].

Intuitively, the different nature of both inequalities may be explained as follows: For the Adachi-Tanaka type Trudinger-Moser inequality (1.2), the constraint $\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1$ is weak, thus it holds only for $\alpha<\alpha_{N}$ and the limiting case $\alpha=\alpha_{N}$ is excluded. On the other hand, for the Li-Ruf type Trudinger-Moser inequality (1.4), the constraint $\|u\|_{W^{1, N}\left(\mathbb{R}^{N}\right)} \leq 1$ is strong, thus it holds even for $\alpha=\alpha_{N}$. From this point of view, a natural question is what kind of Trudinger-Moser type inequality would hold even for $\alpha=\alpha_{N}$ under the weaker constraint
$\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1$. Obviously, it is necessary to weaken the (exponential) growth of the integrand somehow. Recently, Ibrahim-MasmoudiNakanishi [14] and Masmoudi-Sani [21] answered the question as follows: Define

$$
\begin{equation*}
C(N, \alpha)=\sup _{\substack{u \in W 1, N\left(\mathbb{R}^{N}\right) \backslash\{0\} \\\|\nabla u\|_{L^{N\left(\mathbb{R}^{N}\right)} \leq 1} \leq 1}} \frac{1}{\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}} \int_{\mathbb{R}^{N}} \frac{\Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{\frac{N}{N-1}}} d x . \tag{1.5}
\end{equation*}
$$

Then

$$
C(N, \alpha) \begin{cases}<\infty, & \alpha \leq \alpha_{N} \tag{1.6}\\ =\infty, & \alpha>\alpha_{N}\end{cases}
$$

If we replace the functional in (1.5) by

$$
\frac{1}{\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}} \int_{\mathbb{R}^{N}} \frac{\Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{p}} d x
$$

for $p<N /(N-1)$, then we easily check that the corresponding supremum is $+\infty$ when $\alpha=\alpha_{N}$. In this sense, the inequality (1.6) is called as the "exact growth" Trudinger-Moser type inequality. Note that the scale invariance under $u \mapsto u_{\lambda}$ holds for the inequality. Also it is known that the exact growth Trudinger-Moser inequality (1.6) yields AdachiTanaka type and Li-Ruf type Trudinger-Moser inequalities.

In the following, we are interested in the weighted version of the Trudinger-Moser inequalities on the whole space. Let $N \geq 2,-\infty<$ $\gamma<N$ and define the weighted Sobolev space

$$
\begin{aligned}
& X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)=\dot{W}^{1, N}\left(\mathbb{R}^{N}\right) \cap L^{N}\left(\mathbb{R}^{N},|x|^{-\gamma} d x\right) \\
& =\left\{u \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right):\|\nabla u\|_{X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)}<\infty\right\} \\
& \|u\|_{X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)}=\left(\|\nabla u\|_{N}^{N}+\|u\|_{N, \gamma}^{N}\right)^{1 / N}, \text { here } \\
& \|u\|_{N, \gamma}=\|u\|_{L^{N}\left(\mathbb{R}^{N} ;|x|-\gamma d x\right)}=\left(\int_{\mathbb{R}^{N}} \frac{|u|^{N}}{|x|^{\gamma}} d x\right)^{1 / N}, \\
& \|u\|_{N}=\|u\|_{N, 0} .
\end{aligned}
$$

We note that a special form of the Caffarelli-Kohn-Nirenberg inequality in [3]:

$$
\begin{equation*}
\|u\|_{N, \beta} \leq C\|u\|_{N, \gamma}^{\frac{N-\beta}{N-\gamma}}\|\nabla u\|_{N}^{1-\frac{N-\beta}{N-\gamma}} \tag{1.7}
\end{equation*}
$$

implies that $X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right) \subset X_{\beta}^{1, N}\left(\mathbb{R}^{N}\right)$ when $\gamma \leq \beta$. From now on, we assume

$$
\begin{equation*}
N \geq 2, \quad-\infty<\gamma \leq \beta<N \tag{1.8}
\end{equation*}
$$

and put $\alpha_{N, \beta}=\left(\frac{N-\beta}{N}\right) \alpha_{N}$. Recently, Ishiwata-Nakamura-Wadade [16] (in the radial case) and Dong-Lu [11] (in the general case) proved that the following weighted Adachi-Tanaka type Trudinger-Moser inequality holds true: Define

$$
\begin{equation*}
\tilde{A}(N, \alpha, \beta, \gamma)=\sup _{\substack{\left.u \in \in_{1}^{1, N} \mathbb{(\mathbb { R }}^{N}\right) \backslash\{0\} \\\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1}} \frac{1}{\left.\|u\|_{N, \gamma}^{N(N-\gamma}\right)} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{1.9}
\end{equation*}
$$

Then for β, γ satisfying (1.8), we have

$$
\tilde{A}(N, \alpha, \beta, \gamma) \begin{cases}<\infty, & \alpha<\alpha_{N, \beta} \tag{1.10}\\ =\infty, & \alpha \geq \alpha_{N, \beta}\end{cases}
$$

In particular, if we take $\gamma=\beta$ and put

$$
\begin{equation*}
\tilde{A}(N, \alpha, \beta)=\sup _{\substack{u \in X_{\beta}^{1, N} N_{\left(\mathbb{R}^{N}\right) \backslash\{\{ \}}^{u} \\\|\nabla u\|_{L^{N}}\left(\mathbb{R}^{N}\right) \leq 1}} \frac{1}{\|u\|_{N, \beta}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}, \tag{1.11}
\end{equation*}
$$

then we have $\tilde{A}(N, \alpha, \beta)<\infty$ when $\alpha<\alpha_{N, \beta}$, and $\tilde{A}(N, \alpha, \beta)=\infty$ when $\alpha \geq \alpha_{N, \beta}$. Attainability of the best constant (1.9) is also considered in [16] and [11]: $\tilde{A}(N, \alpha, \beta, \gamma)$ is attained for any $0<\alpha<\alpha_{N, \beta}$.

First purpose of this note is to establish the weighted Li-Ruf type Trudinger-Moser inequality on the weighted Sobolev space $X_{\beta}^{1, N}\left(\mathbb{R}^{N}\right)$, where the space dimension N and the weight β satisfies

$$
\begin{equation*}
N \geq 2, \quad \text { and } \quad-\infty<\beta<N \tag{1.12}
\end{equation*}
$$

Theorem 1. (Weighted Li-Ruf type inequality) Assume (1.12) and put $\alpha_{N, \beta}=\left(\frac{N-\beta}{N}\right) \alpha_{N}$. Define

$$
\begin{equation*}
\tilde{B}(N, \alpha, \beta)=\sup _{\substack{u \in X^{1, N_{\left(\mathbb{R}^{N}\right)}} \\\|u\| \|_{\beta}^{1, N} \leq 1}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{1.13}
\end{equation*}
$$

Then

$$
\tilde{B}(N, \alpha, \beta) \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta} \tag{1.14}\\ =\infty, & \alpha>\alpha_{N, \beta}\end{cases}
$$

Here $\|u\|_{X_{\beta}^{1, N}}=\left(\|\nabla u\|_{N}^{N}+\|u\|_{N, \beta}^{N}\right)^{1 / N}$ is the full Sobolev norm of the space $X_{\beta}^{1, N}\left(\mathbb{R}^{N}\right)$.

As a former result, de Souza-de O [29] proved that

$$
\sup _{\substack{u \in W^{1, N}\left(\mathbb{R}^{N}\right) \leq 1 \\\|u\|_{W^{1, N}\left(\mathbb{R}^{N}\right)} \leq 1}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta}, \\ =\infty, & \alpha>\alpha_{N, \beta}\end{cases}
$$

for $N \geq 2$ and $0 \leq \beta<N$. Note that $W^{1, N}=X_{0}^{1, N} \subset X_{\beta}^{1, N}$ when $0<\beta$. In [29], the rearrangement technique is used, and for this reason, the authors in [29] need to assume $\beta \geq 0$ for the weight $\frac{1}{|x|^{\beta}}$.

In this paper, we cannot use the rearrangement directly since the weight β in (1.12) may be negative. Instead, we use the following inequality to prove Theorem 1.

Theorem 2. (Weighted exact growth type) Assume (1.8). Then

$$
\begin{aligned}
\tilde{C}(N, \alpha, \beta, \gamma) & =\sup _{\substack{u \in X_{\gamma}^{1, N} \backslash\{0\} \\
\|\nabla u\|_{N} \leq 1}} \frac{1}{\|u\|_{N, \gamma}^{N\left(\frac{N-\beta}{N-\gamma}\right)}} \int_{\mathbb{R}^{N}} \frac{\Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{\frac{N}{N-1}}} \frac{d x}{|x|^{\beta}} \\
& \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta} \\
=\infty, & \alpha>\alpha_{N, \beta} .\end{cases}
\end{aligned}
$$

It is easy to see that the weighted exact growth Trudinger-Moser inequality in Theorem 2 yields the weighted Adachi-Tanaka type inequality (1.10). Also Theorem 2 derives the weighted Li-Ruf type Trudinger-Moser inequality Theorem 1, as shown later.

Next, we obtain the relation between the suprema of Adachi-Tanaka type and Li-Ruf type weighted Trudinger-Moser inequalities, along the line of Lam-Lu-Zhang [19]. Set $\tilde{B}(N, \beta)=\tilde{B}\left(N, \alpha_{N, \beta}, \beta\right)$ in (1.13), i.e.,

$$
\begin{equation*}
\tilde{B}(N, \beta)=\sup _{\substack{u \in X_{1}^{1, N}\left(\mathbb{R}^{N}\right) \\\|u\|_{X_{\beta}^{1, N}}^{1, N}}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{1.15}
\end{equation*}
$$

Then $\tilde{B}(N, \beta)<\infty$ by Theorem 1 .
Theorem 3. (Relation) Assume (1.12). Then we have

$$
\tilde{B}(N, \beta)=\sup _{\alpha \in\left(0, \alpha_{N, \beta}\right)} \frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}} \tilde{A}(N, \alpha, \beta) .
$$

Furthermore, we prove how $\tilde{A}(N, \alpha, \beta)$ behaves as α approaches to $\alpha_{N, \beta}$ from the below:

Theorem 4. (Asymptotic behavior of $\tilde{A}(N, \alpha, \beta))$ Assume (1.12). Then there exist positive constants C_{1}, C_{2} (depending on N and β) such that for α close enough to $\alpha_{N, \beta}$, the estimate

$$
\frac{C_{1}}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}} \leq \tilde{A}(N, \alpha, \beta) \leq \frac{C_{2}}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}
$$

holds.
Note that the estimate from the above follows from Theorem 3. On the other hand, we will see that the estimate from the below follows from a computation using the Moser sequence.

Lastly, we prove the following non-attainability result:
Theorem 5. (Non-attainability of the best constant) Let $N=2, \beta<$ 2 and $\alpha>0$ is sufficiently small. Then $\tilde{B}(2, \alpha, \beta)$ in (1.13) is not attained.

According to the results by [27], [20], and [15], we may conjecture that

- When $N \geq 3, \tilde{B}(N, \alpha, \beta)$ is attained for $0<\alpha \leq \alpha_{N, \beta}$.
- When $N=2$, there exists $\alpha_{*}>0$ such that $\tilde{B}(2, \alpha, \beta)$ is attained for $\alpha_{*}<\alpha \leq \alpha_{2, \beta}$.
But we do not have a proof up to now.
The organization of the paper is as follows: In section 2, first we prove Theorem 2. Main tools are a transformation which eliminates the weights and the (unweighted) exact growth Trudinger-Moser type inequality (1.6). Next, we prove Theorem 1 by using Theorem 2 and an argument by [14], [21]. In section 3, we prove Theorem 3 and Theorem 4. Finally in section 4, we prove Theorem 5. The letter C will denote various positive constant which varies from line to line, but is independent of functions under consideration.

2. Proof of Theorem 1.

In this section, first we prove Theorem 2 and then Theorem 1 by the use of Theorem 2. For the proof of Theorem 2, it is enough to prove its special case:
Proposition 1. (Special case of the weighted exact growth type) Assume (1.12). Then it holds that

$$
\sup _{\substack{u \in \in_{\beta}^{1, N} \backslash\{0\} \\\|\nabla u\|_{N} \leq 1}} \frac{1}{\|u\|_{N, \beta}^{N}} \int_{\mathbb{R}^{N}} \frac{\Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{\frac{N}{N-1}}} \frac{d x}{|x|^{\beta}} \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta}, \\ =\infty, & \alpha>\alpha_{N, \beta} .\end{cases}
$$

Once this proposition is established, then the Caffarelli-Korn-Nirenberg inequality (1.7):

$$
\|u\|_{N, \beta}^{N} \leq C\|u\|_{N, \gamma}^{N\left(\frac{N-\beta}{N-\gamma}\right)}\|\nabla u\|_{N}^{N\left(1-\frac{N-\beta}{N-\gamma}\right)}
$$

with the assumption $\|\nabla u\|_{N} \leq 1$ yields the weighted exact growth Trudinger-Moser inequality in Theorem 2 easily.

Proof of Proposition 1. By abuse of the notation, we write $u(y)=$ $u(s, \omega)$ for $y=s \omega \in \mathbb{R}^{N}, s=|y|$ and $\omega \in S^{N-1}$. Let $\lambda>0$. We use a change of variables which eliminates the weight

$$
\left\{\begin{array}{l}
U_{\lambda}(x)=U_{\lambda}(r, \omega)=\lambda^{-\frac{N-1}{N}} u(y), \\
x=r \omega \in \mathbb{R}^{N}, r=|x|, \quad y=s \omega \in \mathbb{R}^{N}, s=|y|, \\
s=r^{\lambda}, \quad d s=\lambda r^{\lambda-1} d r .
\end{array}\right.
$$

Then by a direct calculation, we see

$$
\left|\frac{\partial}{\partial r} U_{\lambda}(r, \omega)\right|^{N} r^{N-1} d r=\left|\frac{\partial}{\partial s} u(s, \omega)\right|^{N} s^{N-1} d s
$$

Integrating both sides by $\int_{S^{N-1}} \int_{0}^{\infty}(\cdots) d(\cdot) d S_{\omega}$ implies

$$
\int_{\mathbb{R}^{N}}\left|\nabla U_{\lambda}(x)\right|^{N} d x=\int_{\mathbb{R}^{N}}|\nabla u(y)|^{N} d y .
$$

On the other hand, we have

$$
\int_{\mathbb{R}^{N}} F\left(U_{\lambda}(x)\right) d x=\lambda^{-1} \int_{\mathbb{R}^{N}} F\left(\lambda^{-\frac{N-1}{N}} u(y)\right)|y|^{N(1 / \lambda-1)} d y
$$

for any $F=F(t) \in C(\mathbb{R})$. In particular, by choosing $F(t)=\frac{\Phi_{N}\left(\left.\alpha|t|\right|^{N(N-1)}\right)}{(1+|t|)^{N /(N-1)}}$ for $\alpha>0$ and $\lambda=\frac{N}{N-\beta}>0$ so that $N(1 / \lambda-1)=-\beta$, we see

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} \frac{\Phi_{N}\left(\alpha\left|U_{\lambda}\right|^{\frac{N}{N-1}}\right)}{\left(1+\left|U_{\lambda}\right|\right)^{\frac{N}{N-1}}} d x=\int_{\mathbb{R}^{N}} \frac{\Phi_{N}\left(\alpha\left(\frac{N-\beta}{N}\right)|u|^{\frac{N}{N-1}}\right)}{\left(\left(\frac{N}{N-\beta}\right)^{\frac{N-1}{N}}+|u|\right)^{\frac{N}{N-1}}} \frac{d y}{|y|^{\beta}} \\
& \simeq \int_{\mathbb{R}^{N}} \frac{\Phi_{N}\left(\alpha\left(\frac{N-\beta}{N}\right)|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{\frac{N}{N-1}}} \frac{d y}{|y|^{\beta}},
\end{aligned}
$$

where $A \simeq B$ means $c_{1} B \leq A \leq c_{2} B$ for some $c_{1}, c_{2}>0$. Similarly, we have

$$
\int_{\mathbb{R}^{N}}\left|U_{\lambda}(x)\right|^{N} d x=\left(\frac{N-\beta}{N}\right)^{N} \int_{\mathbb{R}^{N}}|u(y)|^{N} \frac{d y}{|y|^{\beta}}
$$

and thus $u \in X_{\beta}^{1, N}$ implies that $U_{\lambda} \in W^{1, N}\left(\mathbb{R}^{N}\right)$. Therefore, we may apply the unweighted exact growth Trudinger-Moser inequality (1.6) by [14], [21] to $U_{\lambda} \in W^{1, N}\left(\mathbb{R}^{N}\right)$, which results in Proposition 1.

Proof of Theorem 1:
Here we follow the argument by Masmoudi and Sani (see [21] Section 6). Assume $N \geq 2,-\infty<\beta<N$. We will prove that there exists $C>$ 0 such that for any $u \in X_{\beta}^{1, N}$ with $\|u\|_{X_{\beta}^{1, N}}=\left(\|\nabla u\|_{N}^{N}+\|u\|_{N, \beta}^{N}\right)^{1 / N} \leq$ 1, it holds

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \leq C . \tag{2.1}
\end{equation*}
$$

We take $\theta \in(0,1)$ such that $\|u\|_{N, \beta}^{N}=\theta$ and $\|\nabla u\|_{N}^{N} \leq 1-\theta$. We divide the proof into two cases:

Case 1: $\theta \geq \frac{N-1}{N}$.
In this case, we put $\tilde{u}=N^{1 / N} u$. Then

$$
\|\tilde{u}\|_{N, \beta}^{N}=N \theta, \quad\|\nabla \tilde{u}\|_{N}^{N} \leq N(1-\theta) \leq 1
$$

since $\theta \geq \frac{N-1}{N}$. Take $\alpha \in\left(0, \alpha_{N, \beta}\right)$ so that $\alpha N^{1 /(N-1)}=\alpha_{N, \beta}$ and apply the weighted Adachi-Tanaka type Trudinger-Moser inequality (1.10) with $\beta=\gamma$ to $\tilde{u} \in X_{\beta}^{1, N}$. Then we have $C>0$ such that

$$
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|\tilde{u}|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \leq C \int_{\mathbb{R}^{N}} \frac{|\tilde{u}|^{N}}{|x|^{\beta}} d x \leq C N \theta
$$

Since the left hand side coincides with

$$
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha N^{\frac{1}{N-1}}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}=\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}},
$$

thus we have (2.1) for some $C>0$.
Case 2: $\theta<\frac{N-1}{N}$. Put

$$
A=\left\{x \in \mathbb{R}^{N}:|u(x)| \geq 1\right\}
$$

First, we derive

$$
\begin{equation*}
\int_{\mathbb{R}^{N} \backslash A} \Phi_{N}\left(\alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \leq C \tag{2.2}
\end{equation*}
$$

for some $C>0$. Since $|u|<1$ on $\mathbb{R}^{N} \backslash A$, and $\Phi_{N}(t) \leq C_{N} t^{N-1}$ for some $C_{N}>0$ for all $t \in\left[0, \alpha_{N, \beta}\right]$, we have

$$
\int_{\mathbb{R}^{N} \backslash A} \Phi_{N}\left(\alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \leq C_{N} \alpha_{N, \beta}^{N-1} \int_{\mathbb{R}^{N} \backslash A} \frac{|u|^{N}}{|x|^{\beta}} d x \leq C\|u\|_{N, \beta}^{N} \leq C .
$$

Next, we prove

$$
\begin{equation*}
\int_{A} \Phi_{N}\left(\alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \leq C . \tag{2.3}
\end{equation*}
$$

By a direct calculation, we observe that $\Phi_{N}(t)^{p} \leq \Phi_{N}(p t)$ for $p \geq 1$; see also [16] Lemma A.2. Thus by Hölder's inequality,

$$
\begin{aligned}
& \int_{A} \Phi_{N}\left(\alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& \leq\left(\int_{A} \frac{\Phi_{N}\left(p \alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{\frac{N}{N-1}}} \frac{d x}{|x|^{\beta}}\right)^{1 / p}\left(\int_{A} \frac{\left(1+|u|^{\frac{N}{(N-1)(p-1)}}\right.}{|x|^{\beta}} d x\right)^{(p-1) / p} \\
& \leq 2^{N /(N-1)}\left(\int_{A} \frac{\Phi_{N}\left(p \alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{\frac{N}{N-1}}} \frac{d x}{|x|^{\beta}}\right)^{1 / p}\left(\int_{A} \frac{|u|^{\frac{N}{(N-1)(p-1)}}}{|x|^{\beta}} d x\right)^{(p-1) / p}
\end{aligned}
$$

$$
\begin{equation*}
\leq 2^{N /(N-1)}\left(\int_{A} \frac{\Phi_{N}\left(p \alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{\frac{N}{N-1}}} \frac{d x}{|x|^{\beta}}\right)^{1 / p}\left\||u|^{\frac{N}{N-1}}\right\|_{\frac{1}{p-1}, \beta}^{1 / p} . \tag{2.4}
\end{equation*}
$$

Now, take $p=\frac{N-1}{N-1-\theta}>1$. Note that $\frac{1}{p-1}>N-1$ holds in this case. Then by expanding the exponential function into the power series in the weighted Adachi-Tanaka inequality (1.10) (with $\gamma=\beta$) and by the Stirling formula, we have $C>0$ such that

$$
\left\|\left.u\right|^{\frac{N}{N-1}}\right\|_{q, \beta} \leq C q\|u\|_{N, \beta}^{N / q}
$$

for any $u \in X_{\beta}^{1, N}$ with $\|\nabla u\|_{N} \leq 1$ and for any $q \geq N-1$. Thus in particular, putting $q=\frac{1}{p-1}$, we have

$$
\begin{equation*}
\left\||u|^{\frac{N}{N-1}}\right\|_{\frac{1}{p-1}, \beta}^{1 / p} \leq C\left(\frac{1}{p-1}\right)^{1 / p}\|u\|_{N, \beta}^{N(p-1) / p} . \tag{2.5}
\end{equation*}
$$

On the other hand, if we put $\tilde{u}=p^{\frac{N-1}{N}} u$, then we see $\|\nabla \tilde{u}\|_{N}^{N}=$ $p^{N-1}\|\nabla u\|_{N}^{N} \leq 1$. Now, applying the weighted exact growth TrudingerMoser inequality in Theorem 2 to \tilde{u}, we have

$$
\begin{align*}
\left(\int_{A} \frac{\Phi_{N}\left(p \alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right)}{(1+|u|)^{\frac{N}{N-1}}} \frac{d x}{|x|^{\beta}}\right)^{1 / p} & \leq\left(p \int_{A} \frac{\Phi_{N}\left(\alpha_{N, \beta}|\tilde{u}|^{\frac{N}{N-1}}\right)}{(1+|\tilde{u}|)^{\frac{N}{N-1}}} \frac{d x}{|x|^{\beta}}\right)^{1 / p} \\
& \leq C\left(p\|\tilde{u}\|_{N, \beta}^{N}\right)^{1 / p}=C p^{N / p}\|u\|_{N, \beta}^{N / p} . \tag{2.6}
\end{align*}
$$

Thus backing to (2.4) with (2.5) and (2.6), we see

$$
\begin{aligned}
\int_{A} \Phi_{N}\left(\alpha_{N, \beta}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} & \leq C\left(\frac{1}{p-1}\right)^{1 / p} p^{N / p}\|u\|_{N, \beta}^{N\left(\frac{p-1}{p}\right)+\frac{N}{p}} \\
& =C\left(\frac{p}{p-1}\right)^{1 / p} p^{(N-1) / p}\|u\|_{N, \beta}^{N} \\
& =C\left(\frac{N-1}{\theta}\right)^{\frac{N-1-\theta}{N-1}}\left(\frac{N-1}{N-1-\theta}\right)^{N-1-\theta} \theta \\
& \leq C(N-1) \theta^{\frac{\theta}{N-1}} \frac{1}{\left(1-\frac{\theta}{N-1}\right)^{N-1-\theta}} .
\end{aligned}
$$

Now, we see $\theta^{\frac{\theta}{N-1}}<1$ and $\left(1-\frac{\theta}{N-1}\right)^{N-1-\theta} \geq\left(1-\frac{1}{N}\right)^{N-1}$ for $0<\theta<$ $(N-1) / N$. Hence the last expression is bounded by a constant which depends only on N and (2.3) is proved. By (2.2) and (2.3), we have (2.1) so the first part of Theorem 1 is obtained.

For the proof of $B(N, \alpha, \beta)=\infty$ when $\alpha>\alpha_{N, \beta}$, we use the weighted Moser sequence as in [16], [19]: Let $-\infty<\gamma \leq \beta<N$ and for $n \in \mathbb{N}$ set

$$
A_{n}=\left(\frac{1}{\omega_{N-1}}\right)^{1 / N}\left(\frac{n}{N-\beta}\right)^{-1 / N}, \quad b_{n}=\frac{n}{N-\beta}
$$

so that $\left(A_{n} b_{n}\right)^{\frac{N}{N-1}}=n / \alpha_{N, \beta}$. Put

$$
u_{n}= \begin{cases}A_{n} b_{n}, & \text { if }|x|<e^{-b_{n}} \tag{2.7}\\ A_{n} \log (1 /|x|), & \text { if } e^{-b_{n}}<|x|<1 \\ 0, & \text { if } 1 \leq|x|\end{cases}
$$

Then direct calculation shows that

$$
\begin{align*}
& \left\|\nabla u_{n}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)}=1 \tag{2.8}\\
& \left\|u_{n}\right\|_{N, \gamma}^{N}=\frac{N-\beta}{(N-\gamma)^{N+1}} \Gamma(N+1)(1 / n)+o(1 / n) \tag{2.9}
\end{align*}
$$

as $n \rightarrow \infty$. Note $u_{n} \in X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)$. In fact for (2.9), we compute

$$
\begin{aligned}
\left\|u_{n}\right\|_{N, \gamma}^{N} & =\omega_{N-1} \int_{0}^{e^{-b_{n}}}\left(A_{n} b_{n}\right)^{N} r^{N-1-\gamma} d r+\omega_{N-1} \int_{e^{-b_{n}}}^{1} A_{n}^{N}(\log (1 / r))^{N} r^{N-1-\gamma} d r \\
& =I+I I .
\end{aligned}
$$

We see

$$
I=\omega_{N-1}\left(A_{n} b_{n}\right)^{N}\left[\frac{r^{N-\gamma}}{N-\gamma}\right]_{r=0}^{r=e^{-b_{n}}}=\omega_{N-1}\left(\frac{n}{\alpha_{N, \beta}}\right)^{N-1} \frac{e^{-\left(\frac{N-\gamma}{N-\beta}\right) n}}{N-\gamma}=o(1 / n)
$$

as $n \rightarrow \infty$. Also

$$
\begin{aligned}
I I & =\left(\frac{N-\beta}{n}\right) \int_{e^{-b_{n}}}^{1}(\log (1 / r))^{N} r^{N-1-\gamma} d r \\
& =\left(\frac{N-\beta}{n}\right) \int_{0}^{b_{n}} \rho^{N} e^{-(N-\gamma) \rho} d \rho=\frac{N-\beta}{(N-\gamma)^{N+1}}(1 / n) \int_{0}^{(N-\gamma) b_{n}} \rho^{N} e^{-\rho} d \rho \\
& =\frac{N-\beta}{(N-\gamma)^{N+1}}(1 / n) \Gamma(N+1)+o(1 / n) .
\end{aligned}
$$

Thus we obtain (2.9).
Now, put $v_{n}(x)=\lambda_{n} u_{n}(x)$ where u_{n} is the weighted Moser sequence in (2.7) and $\lambda_{n}>0$ is chosen so that $\lambda_{n}^{N}+\lambda_{n}^{N}\left\|u_{n}\right\|_{N, \beta}^{N}=1$. Thus we have $\left\|\nabla v_{n}\right\|_{L^{N}}^{N}+\left\|v_{n}\right\|_{N, \beta}^{N}=1$ for any $n \in \mathbb{N}$. By (2.9) with $\beta=\gamma$, we see that $\lambda_{n}^{N}=1-O(1 / n)$ as $n \rightarrow \infty$. For $\alpha>\alpha_{N, \beta}$, we calculate

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|v_{n}\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \geq \int_{\left\{0 \leq|x| \leq e^{-b_{n}}\right\}} \Phi_{N}\left(\alpha\left|v_{n}\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& =\int_{\left\{0 \leq|x| \leq e^{\left.-b_{n}\right\}}\right.}\left(e^{\left.\alpha\left|v_{n}\right|\right|^{N-1}}-\sum_{j=0}^{N-2} \frac{\alpha^{j}}{j!}\left|v_{n}\right|^{\frac{N j}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& \geq\left\{\exp \left(\frac{n \alpha}{\alpha_{N, \beta}} \lambda_{n}^{\frac{N}{N-1}}\right)-O\left(n^{N-1}\right)\right\} \int_{\left\{0 \leq|x| \leq e^{\left.-b_{n}\right\}}\right\}} \frac{d x}{|x|^{\beta}} \\
& \geq\left\{\exp \left(\frac{n \alpha}{\alpha_{N, \beta}}\left(1-O\left(\frac{1}{n^{\frac{1}{N-1}}}\right)\right)\right)-O\left(n^{N-1}\right)\right\}\left(\frac{\omega_{N-1}}{N-\beta}\right) e^{-n} \rightarrow+\infty
\end{aligned}
$$

as $n \rightarrow \infty$. Here we have used that for $0 \leq|x| \leq e^{-b_{n}}$,

$$
\alpha\left|v_{n}\right|^{\frac{N}{N-1}}=\alpha \lambda_{n}^{\frac{N}{N-1}}\left(A_{n} b_{n}\right)^{\frac{N}{N-1}}=\frac{n \alpha}{\alpha_{N, \beta}} \lambda_{n}^{\frac{N}{N-1}}
$$

by definition of A_{n} and b_{n}. Also we used that for $0 \leq|x| \leq e^{-b_{n}}$,

$$
\left|v_{n}\right|^{\frac{N j}{N-1}}=\lambda_{n}^{\frac{N j}{N-1}}\left(A_{n} b_{n}\right)^{\frac{N j}{N-1}} \leq C n^{j} \leq C n^{N-1}
$$

for $0 \leq j \leq N-2$ and n is large. This proves Theorem 1 completely.

3. Proof of Theorem 3 and 4.

In this section, we prove Theorem 3 and Theorem 4. As stated in the Introduction, we follow the argument by Lam-Lu-Zhang [19]. First, we prepare several lemmata.

Lemma 1. Assume (1.8) and set

$$
\begin{equation*}
\widehat{A}(N, \alpha, \beta)=\sup _{\substack{\left.u \in X_{\beta}^{1, N} \\ \| \nabla \mathbb{R}^{N}\right) \backslash\{0\} \\\|u\|_{L^{N}} \mathbb{R}^{N} \leq 1}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{3.1}
\end{equation*}
$$

Let $\tilde{A}(N, \alpha, \beta)$ be defined as in (1.11). Then $\tilde{A}(N, \alpha, \beta)=\widehat{A}(N, \alpha, \beta)$ for any $\alpha>0$.

Proof. For any $u \in X_{\beta}^{1, N}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ and $\lambda>0$, we put $u_{\lambda}(x)=u(\lambda x)$ for $x \in \mathbb{R}^{N}$. Then it is easy to see that

$$
\left\{\begin{array}{l}
\left\|\nabla u_{\lambda}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}=\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}, \tag{3.2}\\
\left\|u_{\lambda}\right\|_{N, \beta}^{N}=\lambda^{-(N-\beta)}\|u\|_{N, \beta}^{N} .
\end{array}\right.
$$

Thus for any $u \in X_{\beta}^{1, N}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ with $\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1$, if we choose $\lambda=\|u\|_{N, \beta}^{N /(N-\beta)}$, then $u_{\lambda} \in X_{\beta}^{1, N}\left(\mathbb{R}^{N}\right)$ satisfies

$$
\left\|\nabla u_{\lambda}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1 \quad \text { and } \quad\left\|u_{\lambda}\right\|_{N, \beta}^{N}=1
$$

Thus

$$
\widehat{A}(N, \alpha, \beta) \geq \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{\lambda}\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}=\frac{1}{\|u\|_{N, \beta}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}} \frac{d x}{|x|^{\beta}}\right.
$$

which implies $\widehat{A}(N, \alpha, \beta) \geq \tilde{A}(N, \alpha, \beta)$. The opposite inequality is trivial.

Lemma 2. Assume (1.8) and set $\tilde{B}(N, \beta)$ as in (1.15). Then we have

$$
\tilde{A}(N, \alpha, \beta) \leq \frac{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}} \tilde{B}(N, \beta)
$$

for any $0<\alpha<\alpha_{N, \beta}$.
Proof. Choose any $u \in X_{\beta}^{1, N}$ with $\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1$ and $\|u\|_{N, \beta}=1$. Put $v(x)=C u(\lambda x)$ where $C \in(0,1)$ and $\lambda>0$ are defined as

$$
C=\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{\frac{N-1}{N}} \quad \text { and } \quad \lambda=\left(\frac{C^{N}}{1-C^{N}}\right)^{1 /(N-\beta)}
$$

Then by scaling rules (3.2), we see

$$
\begin{aligned}
\|v\|_{X_{\beta}^{1, N}}^{N} & =\|\nabla v\|_{N}^{N}+\|v\|_{N, \beta}^{N}=C^{N}\|\nabla u\|_{N}^{N}+\lambda^{-(N-\beta)} C^{N}\|u\|_{N, \beta}^{N} \\
& \leq C^{N}+\lambda^{-(N-\beta)} C^{N}=1 .
\end{aligned}
$$

Also we have

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}|v|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} & =\lambda^{-(N-\beta)} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta} C^{\frac{N}{N-1}}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& =\lambda^{-(N-\beta)} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} .
\end{aligned}
$$

Thus testing $\tilde{B}(N, \beta)$ by v, we see

$$
\tilde{B}(N, \beta) \geq\left(\frac{1-C^{N}}{C^{N}}\right) \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} .
$$

By taking the supremum for $u \in X_{\beta}^{1, N}$ with $\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1$ and $\|u\|_{N, \beta}=1$, we have

$$
\tilde{B}(N, \beta) \geq \frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}} \widehat{A}(N, \alpha, \beta) .
$$

Finally, Lemma 1 implies the result.

Proof of Theorem 3: The assertion that

$$
\tilde{B}(N, \beta) \geq \sup _{\alpha \in\left(0, \alpha_{N, \beta}\right)} \frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}} \tilde{A}(N, \alpha, \beta)
$$

follows from Lemma 2. Note that $\tilde{B}(N, \beta)<\infty$ by Theorem 1 .
Let us prove the opposite inequality. Let $\left\{u_{n}\right\} \subset X_{\beta}^{1, N}\left(\mathbb{R}^{N}\right), u_{n} \neq 0$, $\left\|\nabla u_{n}\right\|_{L^{N}}^{N}+\left\|u_{n}\right\|_{N, \beta}^{N} \leq 1$, be a maximizing sequence of $\tilde{B}(N, \beta)$:

$$
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}\left|u_{n}\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}=\tilde{B}(N, \beta)+o(1)
$$

as $n \rightarrow \infty$. We may assume $\left\|\nabla u_{n}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}<1$ for any $n \in \mathbb{N}$. Define

$$
\begin{cases}v_{n}(x)=\frac{u_{n}\left(\lambda_{n} x\right)}{\left\|\nabla u_{n}\right\|_{N}}, \quad\left(x \in \mathbb{R}^{N}\right) \\ \lambda_{n}=\left(\frac{1-\left\|\nabla u_{n}\right\|_{N}^{N}}{\left\|\nabla u_{n}\right\|_{N}^{N}}\right)^{1 /(N-\beta)}>0\end{cases}
$$

Thus by (3.2), we see

$$
\begin{aligned}
& \left\|\nabla v_{n}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}=1 \\
& \left\|v_{n}\right\|_{N, \beta}^{N}=\frac{\lambda_{n}^{-(N-\beta)}}{\left\|\nabla u_{n}\right\|_{N}^{N}}\left\|u_{n}\right\|_{N, \beta}^{N}=\frac{\left\|u_{n}\right\|_{N, \beta}^{N}}{1-\left\|\nabla u_{n}\right\|_{N}^{N}} \leq 1,
\end{aligned}
$$

since $\left\|\nabla u_{n}\right\|_{N}^{N}+\left\|u_{n}\right\|_{N, \beta}^{N} \leq 1$. Thus, setting

$$
\alpha_{n}=\alpha_{N, \beta}\left\|\nabla u_{n}\right\|_{N}^{\frac{N}{N-1}}<\alpha_{N, \beta}
$$

for any $n \in \mathbb{N}$, we may test $\tilde{A}\left(N, \alpha_{n}, \beta\right)$ by $\left\{v_{n}\right\}$, which results in

$$
\begin{aligned}
\tilde{B}(N, \beta)+o(1) & =\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}\left|u_{n}(y)\right|^{\frac{N}{N-1}}\right) \frac{d y}{|y|^{\beta}} \\
& =\lambda_{n}^{N-\beta} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}\left\|\nabla u_{n}\right\|_{N}^{\frac{N}{N-1}}\left|v_{n}(x)\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& =\lambda_{n}^{N-\beta} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{n}\left|v_{n}(x)\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& \leq \lambda_{n}^{N-\beta} \frac{1}{\left\|v_{n}\right\|_{N, \beta}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{n}\left|v_{n}(x)\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& \leq \lambda_{n}^{N-\beta} \tilde{A}\left(N, \alpha_{n}, \beta\right)=\left(\frac{1-\left\|\nabla u_{n}\right\|_{N}^{N}}{\left\|\nabla u_{n}\right\|_{N}^{N}}\right) \tilde{A}\left(N, \alpha_{n}, \beta\right) \\
& =\frac{1-\left(\frac{\alpha_{n}}{\alpha_{N}, \beta}\right)^{N-1}}{\left(\frac{\alpha_{n}}{\alpha_{N, \beta}}\right)^{N-1}} \tilde{A}\left(N, \alpha_{n}, \beta\right) \\
& \leq \sup _{\alpha \in\left(0, \alpha_{N, \beta}\right)}^{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}} \tilde{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}} \tilde{A}(N, \alpha, \beta) .
\end{aligned}
$$

Here we have used a change of variables $y=\lambda_{n} x$ for the second equality, and $\left\|v_{n}\right\|_{N, \beta}^{N} \leq 1$ for the first inequality. Letting $n \rightarrow \infty$, we have the desired result.

Proof of Theorem 4: The assertion that

$$
\tilde{A}(N, \alpha, \beta) \leq \frac{C_{2}}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}
$$

follows form Theorem 3 and the fact that $\tilde{B}(N, \beta)<\infty$.
For the rest, we need to prove that there exists $C>0$ such that for any $\alpha<\alpha_{N, \beta}$ sufficiently close to $\alpha_{N, \beta}$, it holds that

$$
\begin{equation*}
\frac{C}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}} \leq \tilde{A}(N, \alpha, \beta) . \tag{3.3}
\end{equation*}
$$

For that purpose, we use the weighted Moser sequence (2.7) again. By (2.9) with $\gamma=\beta$, we have $N_{1} \in \mathbb{N}$ such that if $n \in \mathbb{N}$ satisfies $n \geq N_{1}$,
then it holds

$$
\begin{equation*}
\left\|u_{n}\right\|_{N, \beta}^{N} \leq \frac{2 \Gamma(N+1)}{(N-\beta)^{N}}(1 / n) \tag{3.4}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{n}\right|^{N /(N-1)}\right) \frac{d x}{|x|^{\beta}} & \geq \omega_{N-1} \int_{0}^{e^{-b_{n}}} \Phi_{N}\left(\alpha\left(A_{n} b_{n}\right)^{N /(N-1)}\right) r^{N-1-\beta} d r \\
& =\frac{\omega_{N-1}}{N-\beta} \Phi_{N}\left(\left(\alpha / \alpha_{N, \beta}\right) n\right)\left[r^{N-\beta}\right]_{r=0}^{r=e^{-b_{n}}} \\
& =\frac{\omega_{N-1}}{N-\beta} \Phi_{N}\left(\left(\alpha / \alpha_{N, \beta}\right) n\right) e^{-n}
\end{aligned}
$$

Note that there exists $N_{2} \in \mathbb{N}$ such that if $n \geq N_{2}$ then $\Phi_{N}\left(\left(\alpha / \alpha_{N, \beta}\right) n\right) \geq$ $\frac{1}{2} e^{\left(\alpha / \alpha_{N, \beta}\right) n}$. Thus we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{n}\right|^{N /(N-1)}\right) \frac{d x}{|x|^{\beta}} \geq \frac{1}{2}\left(\frac{\omega_{N-1}}{N-\beta}\right) e^{-\left(1-\frac{\alpha}{\alpha_{N, \beta}}\right) n} \tag{3.5}
\end{equation*}
$$

Combining (3.4) and (3.5), we have $C_{1}(N, \beta)>0$ such that

$$
\begin{equation*}
\frac{1}{\left\|u_{n}\right\|_{N, \beta}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{n}\right|^{N /(N-1)}\right) \frac{d x}{|x|^{\beta}} \geq C_{1}(N, \beta) n e^{-\left(1-\frac{\alpha}{\alpha_{N, \beta}}\right) n} \tag{3.6}
\end{equation*}
$$

holds when $n \geq \max \left\{N_{1}, N_{2}\right\}$.
Note that $\lim _{x \rightarrow 1}\left(\frac{1-x^{N-1}}{1-x}\right)=N-1$, thus

$$
\frac{1-\left(\alpha / \alpha_{N, \beta}\right)^{N-1}}{1-\left(\alpha / \alpha_{N, \beta}\right)} \geq \frac{N-1}{2}
$$

if $\alpha / \alpha_{N, \beta}<1$ is very close to 1 . Now, for any $\alpha>0$ sufficiently close to $\alpha_{N, \beta}$ so that

$$
\left\{\begin{array}{l}
\max \left\{N_{1}, N_{2}\right\}<\left(\frac{2}{1-\alpha / \alpha_{N, \beta}}\right) \tag{3.7}\\
\frac{1-\left(\alpha / \alpha_{N, \beta}\right)^{N-1}}{1-\left(\alpha / \alpha_{N, \beta}\right)} \geq \frac{N-1}{2}
\end{array}\right.
$$

we can find $n \in \mathbb{N}$ such that

$$
\left\{\begin{array}{l}
\max \left\{N_{1}, N_{2}\right\} \leq n \leq\left(\frac{2}{1-\alpha / \alpha_{N, \beta}}\right) \tag{3.8}\\
\left(\frac{1}{1-\alpha / \alpha_{N, \beta}}\right) \leq n .
\end{array}\right.
$$

We fix $n \in \mathbb{N}$ satisfying (3.8). Then by $1 \leq n\left(1-\alpha / \alpha_{N, \beta}\right) \leq 2$, (3.6) and (3.7), we have

$$
\begin{aligned}
& \frac{1}{\left\|u_{n}\right\|_{N, \beta}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{n}\right|^{N /(N-1)}\right) \frac{d x}{|x|^{\beta}} \geq C_{1}(N, \beta) n e^{-2} \\
& \geq C_{2}(N, \beta) \frac{1}{1-\left(\alpha / \alpha_{N, \beta}\right)} \geq \frac{N-1}{2} C_{2}(N, \beta) \frac{1}{1-\left(\alpha / \alpha_{N, \beta}\right)^{N-1}} \\
& =C_{3}(N, \beta) \frac{1}{1-\left(\alpha / \alpha_{N, \beta}\right)^{N-1}},
\end{aligned}
$$

where $C_{2}(N, \beta)=e^{-2} C_{1}(N, \beta)$ and $C_{3}(N, \beta)=\frac{N-1}{2} C_{2}(N, \beta)$. Thus we have (3.3) for some $C>0$ independent of α which is sufficiently close to $\alpha_{N, \beta}$.

4. Proof of Theorem 5.

In this section, we prove Theorem 5. We follow Ishiwata's argument in [15].

Assume $-\infty<\beta<2$ and $0<\alpha \leq \alpha_{2, \beta}=2 \pi(2-\beta)$ and define

$$
\tilde{B}(2, \alpha, \beta)=\sup _{\substack{u \in X_{1,2,\left(\mathbb{R}^{2}\right)}^{\|u\|_{X^{1}}^{1,2}\left(\mathbb{R}^{2}\right)} \leq}} \int_{\mathbb{R}^{2}}\left(e^{\alpha u^{2}}-1\right) \frac{d x}{|x|^{\beta}} .
$$

We will show that $\tilde{B}(2, \alpha, \beta)$ is not attained if $\alpha>0$ sufficiently small. Set

$$
M=\left\{u \in X_{\beta}^{1,2}\left(\mathbb{R}^{2}\right):\|u\|_{X_{\beta}^{1,2}}=\left(\|\nabla u\|_{2}^{2}+\|u\|_{2, \beta}^{2}\right)^{1 / 2}=1\right\}
$$

be the unit sphere in the Hilbert space $X_{\beta}^{1,2}\left(\mathbb{R}^{2}\right)$ and

$$
J_{\alpha}: M \rightarrow \mathbb{R}, \quad J_{\alpha}(u)=\int_{\mathbb{R}^{2}}\left(e^{\alpha u^{2}}-1\right) \frac{d x}{|x|^{\beta}}
$$

be the corresponding functional defined on M. Actually, we will prove the stronger claim that J_{α} has no critical point on M when $\alpha>0$ is sufficiently small.

Assume the contrary that there existed $v \in M$ such that v is a critical point of J_{α} on M. Define an orbit on M through v as

$$
v_{\tau}(x)=\sqrt{\tau} v(\sqrt{\tau} x) \quad \tau \in(0, \infty), \quad w_{\tau}=\frac{v_{\tau}}{\left\|v_{\tau}\right\|_{X_{\beta}^{1,2}}} \in M
$$

Since $\left.w_{\tau}\right|_{\tau=1}=v$, we must have

$$
\begin{equation*}
\left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right)=0 \tag{4.1}
\end{equation*}
$$

Note that

$$
\left\|\nabla v_{\tau}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=\tau\|\nabla v\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}, \quad\left\|v_{\tau}\right\|_{p, \beta}^{p}=\tau^{\frac{p+\beta-2}{2}}\|v\|_{p, \beta}^{p}
$$

for $p>1$. Thus,

$$
\begin{aligned}
& J_{\alpha}\left(w_{\tau}\right)=\int_{\mathbb{R}^{2}}\left(e^{\alpha w_{\tau}^{2}}-1\right) \frac{d x}{|x|^{\beta}}=\int_{\mathbb{R}^{2}} \sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{v_{\tau}^{2 j}(x)}{\left\|v_{\tau}\right\|_{X_{\beta}^{1,2}}^{2 j}} \frac{d x}{|x|^{\beta}} \\
& =\sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{\left\|v_{\tau}\right\|_{2 j, \beta}^{2 j}}{\left(\left\|\nabla v_{\tau}\right\|_{2}^{2}+\left\|v_{\tau}\right\|_{2, \beta}^{2}\right)^{j}}=\sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{\tau^{j-1+\frac{\beta}{2}}\|v\|_{2 j, \beta}^{2 j}}{\left(\tau\|\nabla v\|_{2}^{2}+\tau^{\frac{\beta}{2}}\|v\|_{2, \beta}^{2}\right)^{j}} .
\end{aligned}
$$

By using an elementary computation

$$
\begin{aligned}
& f(\tau)=\frac{\tau^{j-1+\frac{\beta}{2}} c}{\left(\tau a+\tau^{\frac{\beta}{2}} b\right)^{j}}, \quad a=\|\nabla v\|_{2}^{2}, b=\|v\|_{2, \beta}^{2}, c=\|v\|_{2 j, \beta}^{2 j}, \\
& f^{\prime}(\tau)=\left(1-\frac{\beta}{2}\right) \frac{\tau^{j-2+\frac{\beta}{2}} c}{\left(\tau a+\tau^{\frac{\beta}{2}} b\right)^{j+1}}\{-\tau a+(j-1) b\},
\end{aligned}
$$

we estimate $\left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right)$:

$$
\begin{aligned}
& \left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right) \\
& =\sum_{j=1}^{\infty}\left[\frac{\alpha^{j}}{j!}\left(1-\frac{\beta}{2}\right) \frac{\tau^{j-2+\beta / 2}\|v\|_{2 j, \beta}^{2 j}}{\left(\tau\|\nabla v\|_{2}^{2}+\tau^{\beta / 2}\|v\|_{2, \beta}^{2}\right)^{j+1}}\left\{-\tau\|\nabla v\|_{2}^{2}+(j-1)\|v\|_{2, \beta}^{2}\right\}\right]_{\tau=1} \\
& =-\alpha\left(1-\frac{\beta}{2}\right)\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}+\sum_{j=2}^{\infty} \frac{\alpha^{j}}{j!}\left(1-\frac{\beta}{2}\right)\|v\|_{2 j, \beta}^{2 j}\left\{-\|\nabla v\|_{2}^{2}+(j-1)\|v\|_{2, \beta}^{2}\right\}
\end{aligned}
$$

$$
\begin{equation*}
\leq \alpha\left(1-\frac{\beta}{2}\right)\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}\left\{-1+\sum_{j=2}^{\infty} \frac{\alpha^{j-1}}{(j-1)!} \frac{\|v\|_{2 j, \beta}^{2 j}}{\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}}\right\}, \tag{4.2}
\end{equation*}
$$

since $-\|\nabla v\|_{2}^{2}+(j-1)\|v\|_{2, \beta}^{2} \leq j$.
Now, we state a lemma. Unweighted version of the next lemma is proved in [15]:Lemma 3.1, and the proof of the next is a simple modification of the one given there using the weighted Adachi-Tanaka type Trudinger-Moser inequality (1.10) (with $\gamma=\beta$) and the expansion of the exponential function.

Lemma 3. For any $\alpha \in\left(0, \alpha_{2, \beta}\right)$, there exists $C_{\alpha}>0$ such that

$$
\|u\|_{2 j, \beta}^{2 j} \leq C_{\alpha} \frac{j!}{\alpha^{j}}\|\nabla u\|_{2}^{2 j-2}\|u\|_{2, \beta}^{2}
$$

holds for any $u \in X_{\beta}^{1,2}\left(\mathbb{R}^{2}\right)$ and $j \in \mathbb{N}, j \geq 2$.
By this lemma, if we take $\alpha<\tilde{\alpha}<\alpha_{2, \beta}$ and put $C=C_{\tilde{\alpha}}$, we see

$$
\frac{\|v\|_{2 j, \beta}^{2 j}}{\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}} \leq C \frac{j!}{\tilde{\alpha}^{j}}\|\nabla v\|_{2 j}^{2 j-4} \leq C \frac{j!}{\tilde{\alpha}^{j}}
$$

for $j \geq 2$ since $v \in M$. Thus we have
$\sum_{j=2}^{\infty} \frac{\alpha^{j-1}}{(j-1)!} \frac{\|v\|_{2 j, \beta}^{2 j}}{\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}} \leq \sum_{j=2}^{\infty} \frac{C \alpha^{j-1}}{(j-1)!} \frac{j!}{\tilde{\alpha}^{j}}=\left(\frac{C \alpha}{\tilde{\alpha}^{2}}\right) \sum_{j=2}^{\infty}\left(\frac{\alpha}{\tilde{\alpha}}\right)^{j-2} j \leq \alpha C^{\prime}$
for some $C^{\prime}>0$. Inserting this into the former estimate (4.2), we obtain

$$
\left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right) \leq\left(1-\frac{\beta}{2}\right) \alpha\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}\left(-1+C^{\prime} \alpha\right)<0
$$

when $\alpha>0$ is sufficiently small. This contradicts to (4.1).

Acknowledgments.

Part of this work was supported by JSPS Grant-in-Aid for Scientific Research (B), No.15H03631, JSPS Grant-in-Aid for Challenging Exploratory Research, No. 26610030.

References

[1] S. Adachi, and K. Tanaka: A scale-invariant form of Trudinger-Moser inequality and its best exponent, Proc. Am. Math. Soc. 1102, (1999) 148-153.
[2] Adimurthi, and K. Sandeep: A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl. 13 (2007), no. 5-6, 585-603.
[3] L. Caffarelli, R. Kohn, and L. Nirenberg: First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259-275.
[4] D. M. Cao: Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^{2}, Commun. Partial Differ. Equ. 17, (1992) 407-435.
[5] L. Carleson, and S.-Y.A. Chang: On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. 2(110), (1986) 113-127.
[6] M. Calanchi: Some weighted inequalities of Trudinger-Moser type, Analysis and topology in nonlinear differential equations, Progr. Nonlinear Differential Equations Appl. 85, (2014) 163-174.
[7] M. Calanchi, and B. Ruf: On Trudinger-Moser type inequalities with logarithmic weights, J. Differential Equations, 258, no.6, (2015), 1967-1989.
[8] M. Calanchi, and B. Ruf: Trudinger-Moser type inequalities with logarithmic weights in dimension N, Nonlinear Anal., 121, (2015), 403-411.
[9] G. Csató, and P. Roy: Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions, Calc. Var. Partial Differential Equations, 54 (2015), no. 2, 2341-2366.
[10] G. Csató, and P. Roy: Singular Moser-Trudinger inequality on simply connected domains, Comm. Partial Differential Equations, 41 (2016), no. 5, 838847.
[11] M. Dong, and G. Lu: Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 88, 26 pp.
[12] M. Flucher: Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv. 67, (1992) 471-497.
[13] M. F. Furtado, E. S. Medeiros, and U. B. Severo: A Trudinger-Moser inequality in a weighted Sobolev space and applications, Math. Nachr. 287, (2014) 12551273.
[14] S. Ibrahim, N. Masmoudi, and K. Nakanishi: Trudinger-Moser inequality on the whole plane with the exact growth condition, J. Eur. Math. Soc. (JEMS), 17 (2015), no. 4, 819-835.
[15] M. Ishiwata: Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in \mathbb{R}^{N}, Math. Ann. 351, (2011) 781-804.
[16] M. Ishiwata, M. Nakamura and H. Wadade: On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincare Anal. Non Lineaire. 31 (2014), no. 2, 297-314.
[17] K. C. Lin: Extremal functions for Moser's inequality, Trans. Am. Math. Soc. 348, (1996) 2663-2671.
[18] N. Lam, and G. Lu: Sharp singular Trudinger-Moser-Adams type inequalities with exact growth, Geometric Methods in PDE's, (G. Citti et al. (eds.)), Springer INdAM Series 13, (2015) 43-80.
[19] N. Lam, G. Lu, and L. Zhang: Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities, arXiv:1504.04858v1 (2015)
[20] Y. Li, and B. Ruf: A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{n}, Indiana Univ. Math. J. 57, (2008) 451-480.
[21] N. Masmoudi, and F. Sani: Trudinger-Moser inequalities with the exact growth condition in \mathbb{R}^{N} and applications, Comm. Partial Differential Equations, 40 (2015), no. 8, 1408-1440.
[22] J. Moser: A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20, (1970) 1077-1092.
[23] T. Ogawa: A proof of Trudinger's inequality and its application to nonlinear Schrodinger equation, Nonlinear Anal. 14, (1990) 765-769.
[24] T. Ogawa, and T. Ozawa: Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl. 155, (1991) 531-540.
[25] T. Ozawa: On critical cases of Sobolev's inequalities, J. Funct. Anal. 127, (1995) 259-269.
[26] S. Pohozaev: The Sobolev embedding in the case $p l=n$, Proceedings of the Technical Scientic Conference on Advances of Scientic Research (1964/1965). Mathematics Section, Moskov. Energetics Institute, Moscow, (1965) 158-170.
[27] B. Ruf: A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{2}, J. Funct. Anal. 219, (2005) 340-367.
[28] M. de Souza: On a class of singular Trudinger-Moser type inequalities for unbounded domains in \mathbb{R}^{N}, Appl. Math. Lett. 25 (2012), no. 12, 2100-2104.
[29] M. de Souza, and M. do Ó: On singular Trudinger-Moser type inequalities for unbounded domains and their best exponents, Potential Anal. 38 (2013), no. 4, 1091-1101.
[30] N. S. Trudinger: On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17, (1967) 473-483.
[31] V. I. Yudovich: Some estimates connected with integral operators and with solutions of elliptic equations, Dok. Akad. Nauk SSSR 138, (1961) 804-808.
[32] Y. Yuan: A weighted form of Moser-Trudinger inequality on Riemannian surface, Nonlinera Anal. 65 no. 3, (2006) 647-659.

Department of Mathematics, Osaka City University \& OCAMI, Sumiyoshiku, Osaka, 558-8585, Japan

E-mail address: futoshi@sci.osaka-cu.ac.jp

[^0]: Date: March 22, 2017.
 2010 Mathematics Subject Classification. Primary 35A23; Secondary 26D10.
 Key words and phrases. Trudinger-Moser inequality, weighted Sobolev spaces, maximizing problem.

