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Abstract. In this paper, we establish a weighted Trudinger-Moser
type inequality with the full Sobolev norm constraint on the whole
Euclidean space. The radial weight is allowed to increase in the ra-
dial direction, therefore we cannot use a rearrangement argument
directly. Also we discuss the non-attainability of the supremum
related to the inequality when the exponent is sufficiently small.

1. Introduction

Let Ω ⊂ RN , N ≥ 2 be a domain with finite volume. Then the
Sobolev embedding theorem assures that W 1,N

0 (Ω) ↪→ Lq(Ω) for any

q ∈ [1,+∞), however, as the function log (log(e/|x|)) ∈ W 1,N
0 (B),

B the unit ball in RN , shows, the embedding W 1,N
0 (Ω) ↪→ L∞(Ω)

does not hold. Instead, functions in W 1,N
0 (Ω) enjoy the exponential

summability:

W 1,N
0 (Ω) ↪→ {u ∈ LN(Ω) :

∫
Ω

exp
(
α|u|

N
N−1

)
dx < ∞ for anyα > 0},

see Yudovich [31], Pohozaev [26], and Trudinger [30]. Moser [22] im-
proved the above embedding as follows, now known as the Trudinger-
Moser inequality: Define

TM(N,Ω, α) = sup
u∈W

1,N
0 (Ω)

∥∇u∥
LN (Ω)

≤1

1

|Ω|

∫
Ω

exp(α|u|
N

N−1 )dx.

Then we have

TM(N,Ω, α)

{
< ∞, α ≤ αN ,

= ∞, α > αN ,
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here and henceforth αN = Nω
1

N−1

N−1 and ωN−1 denotes the area of the unit
sphere SN−1 in RN . On the attainability of the supremum, Carleson-
Chang [5], Flucher [12], and Lin [17] proved that TM(N,Ω, α) is at-
tained on any bounded domain for all 0 < α ≤ αN .

Later, Adimurthi-Sandeep [2] established a weighted (singular) Trudinger-
Moser inequality as follows: Let 0 ≤ β < N and put αN,β =

(
N−β
N

)
αN .

Define

T̃M(N,Ω, α, β) = sup
u∈W

1,N
0 (Ω)

∥∇u∥
LN (Ω)

≤1

1

|Ω|

∫
Ω

exp(α|u|
N

N−1 )
dx

|x|β
.

Then it is proved that

T̃M(N,Ω, α, β)

{
< ∞, α ≤ αN,β,

= ∞, α > αN,β.

On the attainability of the supremum, recently Csató-Roy [9], [10]

proved that T̃M(2,Ω, α, β) is attained for 0 < α ≤ α2,β = 2π(2−β) for
any bounded domain Ω ⊂ R2. For other types of weighted Trudinger-
Moser inequalities, see for example, [6], [7], [8], [13], [18], [28], [29], [32],
to name a few.

On domains with infinite volume, for example on the whole space
RN , the Trudinger-Moser inequality does not hold as it is. However,
several variants are known on the whole space. In the following, let

ΦN(t) = et −
N−2∑
j=0

tj

j!

denote the truncated exponential function.
First, Ogawa [23], Ogawa-Ozawa [24], Cao [4], Ozawa [25], and

Adachi-Tanaka [1] proved that the following inequality holds true, which
we call Adachi-Tanaka type Trudinger-Moser inequality: Define

A(N,α) = sup
u∈W1,N (RN )\{0}
∥∇u∥

LN (RN )
≤1

1

∥u∥N
LN (RN )

∫
RN

ΦN(α|u|
N

N−1 )dx.(1.1)

Then

(1.2) A(N,α)

{
< ∞, α < αN ,

= ∞, α ≥ αN .

The functional in (1.1)

F (u) =
1

∥u∥N
LN (RN )

∫
RN

ΦN(α|u|
N

N−1 )dx
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enjoys the scale invariance under the scaling u(x) 7→ uλ(x) = u(λx)
for λ > 0, i.e., F (uλ) = F (u) for any u ∈ W 1,N(RN) \ {0}. Note
that the critical exponent α = αN is not allowed for the finiteness of
the supremum. Recently, Ishiwata-Nakamura-Wadade [16] and Dong-
Lu [11] proved that A(N,α) is attained for any α ∈ (0, αN). In this
sense, Adachi-Tanaka type Trudinger-Moser inequality has a subcritical
nature of the problem.

On the other hand, Ruf [27] and Li-Ruf [20] proved that the following
inequality holds true: Define

B(N,α) = sup
u∈W1,N (RN )

∥u∥
W1,N (RN )

≤1

∫
RN

ΦN(α|u|
N

N−1 )dx.(1.3)

Then

(1.4) B(N,α)

{
< ∞, α ≤ αN ,

= ∞, α > αN .

Here ∥u∥W 1,N (RN ) =
(
∥∇u∥NLN (RN ) + ∥u∥NLN (RN )

)1/N
is the full Sobolev

norm. Note that the scale invariance (u 7→ uλ) does not hold for this
inequality. Also the critical exponent α = αN is permitted to the
finiteness of (1.3). Concerning the attainability of B(N,α), it is known
that B(N,α) is attained for 0 < α ≤ αN if N ≥ 3 [27]. On the other
hand when N = 2, there exists an explicit constant α∗ > 0 related to
the Gagliardo-Nirenberg inequality in R2 such that B(2, α) is attained
for α∗ < α ≤ α2(= 4π) [27], [15]. However, if α > 0 is sufficiently small,
then B(2, α) is not attained [15]. The non-attainability of B(2, α) for α
sufficiently small is attributed to the non-compactness of “vanishing”
maximizing sequences, as described in [15].

Intuitively, the different nature of both inequalities may be explained
as follows: For the Adachi-Tanaka type Trudinger-Moser inequality
(1.2), the constraint ∥∇u∥LN (RN ) ≤ 1 is weak, thus it holds only for
α < αN and the limiting case α = αN is excluded. On the other hand,
for the Li-Ruf type Trudinger-Moser inequality (1.4), the constraint
∥u∥W 1,N (RN ) ≤ 1 is strong, thus it holds even for α = αN . From this
point of view, a natural question is what kind of Trudinger-Moser type
inequality would hold even for α = αN under the weaker constraint
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∥∇u∥LN (RN ) ≤ 1. Obviously, it is necessary to weaken the (exponen-
tial) growth of the integrand somehow. Recently, Ibrahim-Masmoudi-
Nakanishi [14] and Masmoudi-Sani [21] answered the question as fol-
lows: Define

(1.5) C(N,α) = sup
u∈W1,N (RN )\{0}
∥∇u∥

LN (RN )
≤1

1

∥u∥N
LN (RN )

∫
RN

ΦN(α|u|
N

N−1 )

(1 + |u|)
N

N−1

dx.

Then

(1.6) C(N,α)

{
< ∞, α ≤ αN ,

= ∞, α > αN .

If we replace the functional in (1.5) by

1

∥u∥N
LN (RN )

∫
RN

ΦN(α|u|
N

N−1 )

(1 + |u|)p
dx

for p < N/(N − 1), then we easily check that the corresponding supre-
mum is +∞ when α = αN . In this sense, the inequality (1.6) is called
as the “exact growth” Trudinger-Moser type inequality. Note that the
scale invariance under u 7→ uλ holds for the inequality. Also it is known
that the exact growth Trudinger-Moser inequality (1.6) yields Adachi-
Tanaka type and Li-Ruf type Trudinger-Moser inequalities.

In the following, we are interested in the weighted version of the
Trudinger-Moser inequalities on the whole space. Let N ≥ 2, −∞ <
γ < N and define the weighted Sobolev space

X1,N
γ (RN) = Ẇ 1,N(RN) ∩ LN(RN , |x|−γdx)

= {u ∈ L1
loc(RN) : ∥∇u∥X1,N

γ (RN ) < ∞},

∥u∥X1,N
γ (RN ) =

(
∥∇u∥NN + ∥u∥NN,γ

)1/N
, here

∥u∥N,γ = ∥u∥LN (RN ;|x|−γdx) =

(∫
RN

|u|N

|x|γ
dx

)1/N

,

∥u∥N = ∥u∥N,0.

We note that a special form of the Caffarelli-Kohn-Nirenberg inequality
in [3]:

(1.7) ∥u∥N,β ≤ C∥u∥
N−β
N−γ

N,γ ∥∇u∥
1−N−β

N−γ

N

implies that X1,N
γ (RN) ⊂ X1,N

β (RN) when γ ≤ β. From now on, we
assume

(1.8) N ≥ 2, −∞ < γ ≤ β < N
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and put αN,β =
(
N−β
N

)
αN . Recently, Ishiwata-Nakamura-Wadade [16]

(in the radial case) and Dong-Lu [11] (in the general case) proved that
the following weighted Adachi-Tanaka type Trudinger-Moser inequality
holds true: Define

(1.9) Ã(N,α, β, γ) = sup
u∈X

1,N
γ (RN )\{0}

∥∇u∥
LN (RN )

≤1

1

∥u∥
N(N−β

N−γ
)

N,γ

∫
RN

ΦN(α|u|
N

N−1 )
dx

|x|β
.

Then for β, γ satisfying (1.8), we have

Ã(N,α, β, γ)

{
< ∞, α < αN,β,

= ∞, α ≥ αN,β.
(1.10)

In particular, if we take γ = β and put

(1.11) Ã(N,α, β) = sup
u∈X

1,N
β

(RN )\{0}
∥∇u∥

LN (RN )
≤1

1

∥u∥NN,β

∫
RN

ΦN(α|u|
N

N−1 )
dx

|x|β
,

then we have Ã(N,α, β) < ∞ when α < αN,β, and Ã(N,α, β) = ∞
when α ≥ αN,β. Attainability of the best constant (1.9) is also consid-

ered in [16] and [11]: Ã(N,α, β, γ) is attained for any 0 < α < αN,β.
First purpose of this note is to establish the weighted Li-Ruf type

Trudinger-Moser inequality on the weighted Sobolev space X1,N
β (RN),

where the space dimension N and the weight β satisfies

(1.12) N ≥ 2, and −∞ < β < N.

Theorem 1. (Weighted Li-Ruf type inequality) Assume (1.12) and put
αN,β =

(
N−β
N

)
αN . Define

(1.13) B̃(N,α, β) = sup
u∈X

1,N
β

(RN )

∥u∥
X

1,N
β

≤1

∫
RN

ΦN(α|u|
N

N−1 )
dx

|x|β
.

Then

B̃(N,α, β)

{
< ∞, α ≤ αN,β,

= ∞, α > αN,β.
(1.14)

Here ∥u∥X1,N
β

=
(
∥∇u∥NN + ∥u∥NN,β

)1/N
is the full Sobolev norm of the

space X1,N
β (RN).
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As a former result, de Souza-de O [29] proved that

sup
u∈W1,N (RN )

∥u∥
W1,N (RN )

≤1

∫
RN

ΦN(α|u|
N

N−1 )
dx

|x|β

{
< ∞, α ≤ αN,β,

= ∞, α > αN,β

for N ≥ 2 and 0 ≤ β < N . Note that W 1,N = X1,N
0 ⊂ X1,N

β when
0 < β. In [29], the rearrangement technique is used, and for this reason,
the authors in [29] need to assume β ≥ 0 for the weight 1

|x|β .

In this paper, we cannot use the rearrangement directly since the
weight β in (1.12) may be negative. Instead, we use the following
inequality to prove Theorem 1.

Theorem 2. (Weighted exact growth type) Assume (1.8). Then

C̃(N,α, β, γ) = sup
u∈X

1,N
γ \{0}

∥∇u∥N≤1

1

∥u∥
N(N−β

N−γ
)

N,γ

∫
RN

ΦN(α|u|
N

N−1 )

(1 + |u|)
N

N−1

dx

|x|β{
< ∞, α ≤ αN,β,

= ∞, α > αN,β.

It is easy to see that the weighted exact growth Trudinger-Moser
inequality in Theorem 2 yields the weighted Adachi-Tanaka type in-
equality (1.10). Also Theorem 2 derives the weighted Li-Ruf type
Trudinger-Moser inequality Theorem 1, as shown later.

Next, we obtain the relation between the suprema of Adachi-Tanaka
type and Li-Ruf type weighted Trudinger-Moser inequalities, along the
line of Lam-Lu-Zhang [19]. Set B̃(N, β) = B̃(N,αN,β, β) in (1.13), i.e.,

(1.15) B̃(N, β) = sup
u∈X

1,N
β

(RN )

∥u∥
X

1,N
β

≤1

∫
RN

ΦN(αN,β|u|
N

N−1 )
dx

|x|β
.

Then B̃(N, β) < ∞ by Theorem 1.

Theorem 3. (Relation) Assume (1.12). Then we have

B̃(N, β) = sup
α∈(0,αN,β)

1−
(

α
αN,β

)N−1

(
α

αN,β

)N−1
Ã(N,α, β).

Furthermore, we prove how Ã(N,α, β) behaves as α approaches to
αN,β from the below:
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Theorem 4. (Asymptotic behavior of Ã(N,α, β)) Assume (1.12). Then
there exist positive constants C1, C2 (depending on N and β) such that
for α close enough to αN,β, the estimate

C1

1−
(

α
αN,β

)N−1
≤ Ã(N,α, β) ≤ C2

1−
(

α
αN,β

)N−1

holds.

Note that the estimate from the above follows from Theorem 3. On
the other hand, we will see that the estimate from the below follows
from a computation using the Moser sequence.

Lastly, we prove the following non-attainability result:

Theorem 5. (Non-attainability of the best constant) Let N = 2, β <
2 and α > 0 is sufficiently small. Then B̃(2, α, β) in (1.13) is not
attained.

According to the results by [27], [20], and [15], we may conjecture
that

• When N ≥ 3, B̃(N,α, β) is attained for 0 < α ≤ αN,β.

• When N = 2, there exists α∗ > 0 such that B̃(2, α, β) is at-
tained for α∗ < α ≤ α2,β.

But we do not have a proof up to now.
The organization of the paper is as follows: In section 2, first we

prove Theorem 2. Main tools are a transformation which eliminates
the weights and the (unweighted) exact growth Trudinger-Moser type
inequality (1.6). Next, we prove Theorem 1 by using Theorem 2 and
an argument by [14], [21]. In section 3, we prove Theorem 3 and
Theorem 4. Finally in section 4, we prove Theorem 5. The letter C
will denote various positive constant which varies from line to line, but
is independent of functions under consideration.

2. Proof of Theorem 1.

In this section, first we prove Theorem 2 and then Theorem 1 by the
use of Theorem 2. For the proof of Theorem 2, it is enough to prove
its special case:

Proposition 1. (Special case of the weighted exact growth type) As-
sume (1.12). Then it holds that

sup
u∈X

1,N
β

\{0}
∥∇u∥N≤1

1

∥u∥NN,β

∫
RN

ΦN(α|u|
N

N−1 )

(1 + |u|)
N

N−1

dx

|x|β

{
< ∞, α ≤ αN,β,

= ∞, α > αN,β.
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Once this proposition is established, then the Caffarelli-Korn-Nirenberg
inequality (1.7):

∥u∥NN,β ≤ C∥u∥
N(N−β

N−γ
)

N,γ ∥∇u∥
N(1−N−β

N−γ
)

N

with the assumption ∥∇u∥N ≤ 1 yields the weighted exact growth
Trudinger-Moser inequality in Theorem 2 easily.

Proof of Proposition 1. By abuse of the notation, we write u(y) =
u(s, ω) for y = sω ∈ RN , s = |y| and ω ∈ SN−1. Let λ > 0. We use a
change of variables which eliminates the weight

Uλ(x) = Uλ(r, ω) = λ−N−1
N u(y),

x = rω ∈ RN , r = |x|, y = sω ∈ RN , s = |y|,
s = rλ, ds = λrλ−1dr.

Then by a direct calculation, we see

| ∂
∂r

Uλ(r, ω)|NrN−1dr = | ∂
∂s

u(s, ω)|NsN−1ds.

Integrating both sides by
∫
SN−1

∫∞
0
(· · · )d(·)dSω implies∫

RN

|∇Uλ(x)|Ndx =

∫
RN

|∇u(y)|Ndy.

On the other hand, we have∫
RN

F (Uλ(x))dx = λ−1

∫
RN

F
(
λ−N−1

N u(y)
)
|y|N(1/λ−1)dy

for any F = F (t) ∈ C(R). In particular, by choosing F (t) = ΦN (α|t|N(N−1))

(1+|t|)N/(N−1)

for α > 0 and λ = N
N−β

> 0 so that N(1/λ− 1) = −β, we see∫
RN

ΦN(α|Uλ|
N

N−1 )

(1 + |Uλ|)
N

N−1

dx =

∫
RN

ΦN(α(
N−β
N

)|u|
N

N−1 )

(( N
N−β

)
N−1
N + |u|)

N
N−1

dy

|y|β

≃
∫
RN

ΦN(α(
N−β
N

)|u|
N

N−1 )

(1 + |u|)
N

N−1

dy

|y|β
,

where A ≃ B means c1B ≤ A ≤ c2B for some c1, c2 > 0. Similarly, we
have ∫

RN

|Uλ(x)|Ndx =

(
N − β

N

)N ∫
RN

|u(y)|N dy

|y|β

and thus u ∈ X1,N
β implies that Uλ ∈ W 1,N(RN). Therefore, we may

apply the unweighted exact growth Trudinger-Moser inequality (1.6)
by [14], [21] to Uλ ∈ W 1,N(RN), which results in Proposition 1. □
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Proof of Theorem 1:
Here we follow the argument by Masmoudi and Sani (see [21] Section

6). Assume N ≥ 2, −∞ < β < N . We will prove that there exists C >

0 such that for any u ∈ X1,N
β with ∥u∥X1,N

β
=
(
∥∇u∥NN + ∥u∥NN,β

)1/N ≤
1, it holds

(2.1)

∫
RN

ΦN(αN,β|u|
N

N−1 )
dx

|x|β
≤ C.

We take θ ∈ (0, 1) such that ∥u∥NN,β = θ and ∥∇u∥NN ≤ 1−θ. We divide
the proof into two cases:

Case 1: θ ≥ N−1
N

.

In this case, we put ũ = N1/Nu. Then

∥ũ∥NN,β = Nθ, ∥∇ũ∥NN ≤ N(1− θ) ≤ 1

since θ ≥ N−1
N

. Take α ∈ (0, αN,β) so that αN1/(N−1) = αN,β and apply
the weighted Adachi-Tanaka type Trudinger-Moser inequality (1.10)

with β = γ to ũ ∈ X1,N
β . Then we have C > 0 such that∫

RN

ΦN(α|ũ|
N

N−1 )
dx

|x|β
≤ C

∫
RN

|ũ|N

|x|β
dx ≤ CNθ.

Since the left hand side coincides with∫
RN

ΦN(αN
1

N−1 |u|
N

N−1 )
dx

|x|β
=

∫
RN

ΦN(αN,β|u|
N

N−1 )
dx

|x|β
,

thus we have (2.1) for some C > 0.

Case 2: θ < N−1
N

. Put

A = {x ∈ RN : |u(x)| ≥ 1}
First, we derive

(2.2)

∫
RN\A

ΦN(αN,β|u|
N

N−1 )
dx

|x|β
≤ C

for some C > 0. Since |u| < 1 on RN \ A, and ΦN(t) ≤ CN t
N−1 for

some CN > 0 for all t ∈ [0, αN,β], we have∫
RN\A

ΦN(αN,β|u|
N

N−1 )
dx

|x|β
≤ CNα

N−1
N,β

∫
RN\A

|u|N

|x|β
dx ≤ C∥u∥NN,β ≤ C.

Next, we prove

(2.3)

∫
A

ΦN(αN,β|u|
N

N−1 )
dx

|x|β
≤ C.
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By a direct calculation, we observe that ΦN(t)
p ≤ ΦN(pt) for p ≥ 1;

see also [16] Lemma A.2. Thus by Hölder’s inequality,

∫
A

ΦN(αN,β|u|
N

N−1 )
dx

|x|β

≤

(∫
A

ΦN(pαN,β|u|
N

N−1 )

(1 + |u|)
N

N−1

dx

|x|β

)1/p(∫
A

(1 + |u|)
N

(N−1)(p−1)

|x|β
dx

)(p−1)/p

≤ 2N/(N−1)

(∫
A

ΦN(pαN,β|u|
N

N−1 )

(1 + |u|)
N

N−1

dx

|x|β

)1/p(∫
A

|u|
N

(N−1)(p−1)

|x|β
dx

)(p−1)/p

≤ 2N/(N−1)

(∫
A

ΦN(pαN,β|u|
N

N−1 )

(1 + |u|)
N

N−1

dx

|x|β

)1/p

∥|u|
N

N−1∥1/p1
p−1

,β
.

(2.4)

Now, take p = N−1
N−1−θ

> 1. Note that 1
p−1

> N − 1 holds in this case.

Then by expanding the exponential function into the power series in
the weighted Adachi-Tanaka inequality (1.10) (with γ = β) and by the
Stirling formula, we have C > 0 such that

∥|u|
N

N−1∥q,β ≤ Cq∥u∥N/q
N,β

for any u ∈ X1,N
β with ∥∇u∥N ≤ 1 and for any q ≥ N − 1. Thus in

particular, putting q = 1
p−1

, we have

(2.5) ∥|u|
N

N−1∥1/p1
p−1

,β
≤ C

(
1

p− 1

)1/p

∥u∥N(p−1)/p
N,β .

On the other hand, if we put ũ = p
N−1
N u, then we see ∥∇ũ∥NN =

pN−1∥∇u∥NN ≤ 1. Now, applying the weighted exact growth Trudinger-
Moser inequality in Theorem 2 to ũ, we have

(∫
A

ΦN(pαN,β|u|
N

N−1 )

(1 + |u|)
N

N−1

dx

|x|β

)1/p

≤

(
p

∫
A

ΦN(αN,β|ũ|
N

N−1 )

(1 + |ũ|)
N

N−1

dx

|x|β

)1/p

≤ C
(
p∥ũ∥NN,β

)1/p
= CpN/p∥u∥N/p

N,β .(2.6)
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Thus backing to (2.4) with (2.5) and (2.6), we see∫
A

ΦN(αN,β|u|
N

N−1 )
dx

|x|β
≤ C

(
1

p− 1

)1/p

pN/p∥u∥
N( p−1

p
)+N

p

N,β

= C

(
p

p− 1

)1/p

p(N−1)/p∥u∥NN,β

= C

(
N − 1

θ

)N−1−θ
N−1

(
N − 1

N − 1− θ

)N−1−θ

θ

≤ C(N − 1)θ
θ

N−1
1

(1− θ
N−1

)N−1−θ
.

Now, we see θ
θ

N−1 < 1 and
(
1− θ

N−1

)N−1−θ ≥ (1− 1
N
)N−1 for 0 < θ <

(N − 1)/N . Hence the last expression is bounded by a constant which
depends only on N and (2.3) is proved. By (2.2) and (2.3), we have
(2.1) so the first part of Theorem 1 is obtained.

For the proof of B(N,α, β) = ∞ when α > αN,β, we use the weighted
Moser sequence as in [16], [19]: Let −∞ < γ ≤ β < N and for n ∈ N
set

An =

(
1

ωN−1

)1/N (
n

N − β

)−1/N

, bn =
n

N − β
,

so that (Anbn)
N

N−1 = n/αN,β. Put

un =


Anbn, if |x| < e−bn ,

An log(1/|x|), if e−bn < |x| < 1,

0, if 1 ≤ |x|.
(2.7)

Then direct calculation shows that

∥∇un∥LN (RN ) = 1,(2.8)

∥un∥NN,γ =
N − β

(N − γ)N+1
Γ(N + 1)(1/n) + o(1/n)(2.9)

as n → ∞. Note un ∈ X1,N
γ (RN). In fact for (2.9), we compute

∥un∥NN,γ = ωN−1

∫ e−bn

0

(Anbn)
NrN−1−γdr + ωN−1

∫ 1

e−bn

AN
n (log(1/r))

NrN−1−γdr

= I + II.

We see

I = ωN−1(Anbn)
N

[
rN−γ

N − γ

]r=e−bn

r=0

= ωN−1

(
n

αN,β

)N−1
e−(N−γ

N−β
)n

N − γ
= o(1/n)
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as n → ∞. Also

II =

(
N − β

n

)∫ 1

e−bn

(log(1/r))NrN−1−γdr

=

(
N − β

n

)∫ bn

0

ρNe−(N−γ)ρdρ =
N − β

(N − γ)N+1
(1/n)

∫ (N−γ)bn

0

ρNe−ρdρ

=
N − β

(N − γ)N+1
(1/n)Γ(N + 1) + o(1/n).

Thus we obtain (2.9).
Now, put vn(x) = λnun(x) where un is the weighted Moser sequence

in (2.7) and λn > 0 is chosen so that λN
n + λN

n ∥un∥NN,β = 1. Thus we

have ∥∇vn∥NLN + ∥vn∥NN,β = 1 for any n ∈ N. By (2.9) with β = γ, we

see that λN
n = 1−O(1/n) as n → ∞. For α > αN,β, we calculate∫

RN

ΦN(α|vn|
N

N−1 )
dx

|x|β
≥
∫
{0≤|x|≤e−bn}

ΦN(α|vn|
N

N−1 )
dx

|x|β

=

∫
{0≤|x|≤e−bn}

(
eα|vn|

N
N−1 −

N−2∑
j=0

αj

j!
|vn|

Nj
N−1

)
dx

|x|β

≥
{
exp

(
nα

αN,β

λ
N

N−1
n

)
−O(nN−1)

}∫
{0≤|x|≤e−bn}

dx

|x|β

≥
{
exp

(
nα

αN,β

(
1−O

(
1

n
1

N−1

)))
−O(nN−1)

}(
ωN−1

N − β

)
e−n → +∞

as n → ∞. Here we have used that for 0 ≤ |x| ≤ e−bn ,

α|vn|
N

N−1 = αλ
N

N−1
n (Anbn)

N
N−1 =

nα

αN,β

λ
N

N−1
n

by definition of An and bn. Also we used that for 0 ≤ |x| ≤ e−bn ,

|vn|
Nj

N−1 = λ
Nj

N−1
n (Anbn)

Nj
N−1 ≤ Cnj ≤ CnN−1

for 0 ≤ j ≤ N−2 and n is large. This proves Theorem 1 completely. □

3. Proof of Theorem 3 and 4.

In this section, we prove Theorem 3 and Theorem 4. As stated in the
Introduction, we follow the argument by Lam-Lu-Zhang [19]. First, we
prepare several lemmata.
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Lemma 1. Assume (1.8) and set

(3.1) Â(N,α, β) = sup
u∈X

1,N
β

(RN )\{0}
∥∇u∥

LN (RN )
≤1

∥u∥N,β=1

∫
RN

ΦN(α|u|
N

N−1 )
dx

|x|β
.

Let Ã(N,α, β) be defined as in (1.11). Then Ã(N,α, β) = Â(N,α, β)
for any α > 0.

Proof. For any u ∈ X1,N
β (RN) \ {0} and λ > 0, we put uλ(x) = u(λx)

for x ∈ RN . Then it is easy to see that

(3.2)

{
∥∇uλ∥NLN (RN ) = ∥∇u∥NLN (RN ),

∥uλ∥NN,β = λ−(N−β)∥u∥NN,β.

Thus for any u ∈ X1,N
β (RN) \ {0} with ∥∇u∥LN (RN ) ≤ 1, if we choose

λ = ∥u∥N/(N−β)
N,β , then uλ ∈ X1,N

β (RN) satisfies

∥∇uλ∥LN (RN ) ≤ 1 and ∥uλ∥NN,β = 1.

Thus

Â(N,α, β) ≥
∫
RN

ΦN(α|uλ|
N

N−1 )
dx

|x|β
=

1

∥u∥NN,β

∫
RN

ΦN(α|u|
N

N−1 )
dx

|x|β

which implies Â(N,α, β) ≥ Ã(N,α, β). The opposite inequality is
trivial. □
Lemma 2. Assume (1.8) and set B̃(N, β) as in (1.15). Then we have

Ã(N,α, β) ≤

(
α

αN,β

)N−1

1−
(

α
αN,β

)N−1
B̃(N, β)

for any 0 < α < αN,β.

Proof. Choose any u ∈ X1,N
β with ∥∇u∥LN (RN ) ≤ 1 and ∥u∥N,β = 1.

Put v(x) = Cu(λx) where C ∈ (0, 1) and λ > 0 are defined as

C =

(
α

αN,β

)N−1
N

and λ =

(
CN

1− CN

)1/(N−β)

.

Then by scaling rules (3.2), we see

∥v∥N
X1,N

β

= ∥∇v∥NN + ∥v∥NN,β = CN∥∇u∥NN + λ−(N−β)CN∥u∥NN,β

≤ CN + λ−(N−β)CN = 1.
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Also we have∫
RN

ΦN(αN,β|v|
N

N−1 )
dx

|x|β
= λ−(N−β)

∫
RN

ΦN

(
αN,βC

N
N−1 |u|

N
N−1

) dx

|x|β

= λ−(N−β)

∫
RN

ΦN

(
α|u|

N
N−1

) dx

|x|β
.

Thus testing B̃(N, β) by v, we see

B̃(N, β) ≥
(
1− CN

CN

)∫
RN

ΦN

(
α|u|

N
N−1

) dx

|x|β
.

By taking the supremum for u ∈ X1,N
β with ∥∇u∥LN (RN ) ≤ 1 and

∥u∥N,β = 1, we have

B̃(N, β) ≥
1−

(
α

αN,β

)N−1

(
α

αN,β

)N−1
Â(N,α, β).

Finally, Lemma 1 implies the result. □

Proof of Theorem 3: The assertion that

B̃(N, β) ≥ sup
α∈(0,αN,β)

1−
(

α
αN,β

)N−1

(
α

αN,β

)N−1
Ã(N,α, β)

follows from Lemma 2. Note that B̃(N, β) < ∞ by Theorem 1.

Let us prove the opposite inequality. Let {un} ⊂ X1,N
β (RN), un ̸= 0,

∥∇un∥NLN + ∥un∥NN,β ≤ 1, be a maximizing sequence of B̃(N, β):∫
RN

ΦN(αN,β|un|
N

N−1 )
dx

|x|β
= B̃(N, β) + o(1)

as n → ∞. We may assume ∥∇un∥NLN (RN ) < 1 for any n ∈ N. Define vn(x) =
un(λnx)
∥∇un∥N

, (x ∈ RN)

λn =
(

1−∥∇un∥NN
∥∇un∥NN

)1/(N−β)

> 0.

Thus by (3.2), we see

∥∇vn∥NLN (RN ) = 1,

∥vn∥NN,β =
λ
−(N−β)
n

∥∇un∥NN
∥un∥NN,β =

∥un∥NN,β

1− ∥∇un∥NN
≤ 1,
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since ∥∇un∥NN + ∥un∥NN,β ≤ 1. Thus, setting

αn = αN,β∥∇un∥
N

N−1

N < αN,β

for any n ∈ N, we may test Ã(N,αn, β) by {vn}, which results in

B̃(N, β) + o(1) =

∫
RN

ΦN(αN,β|un(y)|
N

N−1 )
dy

|y|β

= λN−β
n

∫
RN

ΦN(αN,β∥∇un∥
N

N−1

N |vn(x)|
N

N−1 )
dx

|x|β

= λN−β
n

∫
RN

ΦN(αn|vn(x)|
N

N−1 )
dx

|x|β

≤ λN−β
n

1

∥vn∥NN,β

∫
RN

ΦN(αn|vn(x)|
N

N−1 )
dx

|x|β

≤ λN−β
n Ã(N,αn, β) =

(
1− ∥∇un∥NN
∥∇un∥NN

)
Ã(N,αn, β)

=
1−

(
αn

αN,β

)N−1

(
αn

αN,β

)N−1
Ã(N,αn, β)

≤ sup
α∈(0,αN,β)

1−
(

α
αN,β

)N−1

(
α

αN,β

)N−1
Ã(N,α, β).

Here we have used a change of variables y = λnx for the second equality,
and ∥vn∥NN,β ≤ 1 for the first inequality. Letting n → ∞, we have the
desired result. □

Proof of Theorem 4: The assertion that

Ã(N,α, β) ≤ C2

1−
(

α
αN,β

)N−1

follows form Theorem 3 and the fact that B̃(N, β) < ∞.
For the rest, we need to prove that there exists C > 0 such that for

any α < αN,β sufficiently close to αN,β, it holds that

(3.3)
C

1−
(

α
αN,β

)N−1
≤ Ã(N,α, β).

For that purpose, we use the weighted Moser sequence (2.7) again. By
(2.9) with γ = β, we have N1 ∈ N such that if n ∈ N satisfies n ≥ N1,
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then it holds

(3.4) ∥un∥NN,β ≤ 2Γ(N + 1)

(N − β)N
(1/n).

On the other hand,∫
RN

ΦN(α|un|N/(N−1))
dx

|x|β
≥ ωN−1

∫ e−bn

0

ΦN

(
α(Anbn)

N/(N−1)
)
rN−1−βdr

=
ωN−1

N − β
ΦN ((α/αN,β)n)

[
rN−β

]r=e−bn

r=0

=
ωN−1

N − β
ΦN ((α/αN,β)n) e

−n.

Note that there existsN2 ∈ N such that if n ≥ N2 then ΦN ((α/αN,β)n) ≥
1
2
e(α/αN,β)n. Thus we have

(3.5)

∫
RN

ΦN(α|un|N/(N−1))
dx

|x|β
≥ 1

2

(
ωN−1

N − β

)
e
−(1− α

αN,β
)n
.

Combining (3.4) and (3.5), we have C1(N, β) > 0 such that

(3.6)
1

∥un∥NN,β

∫
RN

ΦN(α|un|N/(N−1))
dx

|x|β
≥ C1(N, β)ne

−(1− α
αN,β

)n

holds when n ≥ max{N1, N2}.
Note that limx→1

(
1−xN−1

1−x

)
= N − 1, thus

1− (α/αN,β)
N−1

1− (α/αN,β)
≥ N − 1

2

if α/αN,β < 1 is very close to 1. Now, for any α > 0 sufficiently close
to αN,β so that  max{N1, N2} <

(
2

1−α/αN,β

)
,

1−(α/αN,β)
N−1

1−(α/αN,β)
≥ N−1

2
,

(3.7)

we can find n ∈ N such that max{N1, N2} ≤ n ≤
(

2
1−α/αN,β

)
,(

1
1−α/αN,β

)
≤ n.

(3.8)



17

We fix n ∈ N satisfying (3.8). Then by 1 ≤ n(1 − α/αN,β) ≤ 2, (3.6)
and (3.7), we have

1

∥un∥NN,β

∫
RN

ΦN(α|un|N/(N−1))
dx

|x|β
≥ C1(N, β)ne−2

≥ C2(N, β)
1

1− (α/αN,β)
≥ N − 1

2
C2(N, β)

1

1− (α/αN,β)N−1

= C3(N, β)
1

1− (α/αN,β)N−1
,

where C2(N, β) = e−2C1(N, β) and C3(N, β) = N−1
2

C2(N, β). Thus we
have (3.3) for some C > 0 independent of α which is sufficiently close
to αN,β. □

4. Proof of Theorem 5.

In this section, we prove Theorem 5. We follow Ishiwata’s argument
in [15].

Assume −∞ < β < 2 and 0 < α ≤ α2,β = 2π(2− β) and define

B̃(2, α, β) = sup
u∈X

1,2
β

(R2)
∥u∥

X
1,2
β

(R2)
≤1

∫
R2

(
eαu

2 − 1
) dx

|x|β
.

We will show that B̃(2, α, β) is not attained if α > 0 sufficiently small.
Set

M =
{
u ∈ X1,2

β (R2) : ∥u∥X1,2
β

=
(
∥∇u∥22 + ∥u∥22,β

)1/2
= 1
}

be the unit sphere in the Hilbert space X1,2
β (R2) and

Jα : M → R, Jα(u) =

∫
R2

(
eαu

2 − 1
) dx

|x|β

be the corresponding functional defined on M . Actually, we will prove
the stronger claim that Jα has no critical point on M when α > 0 is
sufficiently small.

Assume the contrary that there existed v ∈ M such that v is a critical
point of Jα on M . Define an orbit on M through v as

vτ (x) =
√
τv(

√
τx) τ ∈ (0,∞), wτ =

vτ
∥vτ∥X1,2

β

∈ M.

Since wτ |τ=1 = v, we must have

(4.1)
d

dτ

∣∣∣
τ=1

Jα(wτ ) = 0.
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Note that

∥∇vτ∥2L2(R2) = τ∥∇v∥2L2(R2), ∥vτ∥pp,β = τ
p+β−2

2 ∥v∥pp,β
for p > 1. Thus,

Jα(wτ ) =

∫
R2

(
eαw

2
τ − 1

) dx

|x|β
=

∫
R2

∞∑
j=1

αj

j!

v2jτ (x)

∥vτ∥2jX1,2
β

dx

|x|β

=
∞∑
j=1

αj

j!

∥vτ∥2j2j,β(
∥∇vτ∥22 + ∥vτ∥22,β

)j =
∞∑
j=1

αj

j!

τ j−1+β
2 ∥v∥2j2j,β(

τ∥∇v∥22 + τ
β
2 ∥v∥22,β

)j .
By using an elementary computation

f(τ) =
τ j−1+β

2 c

(τa+ τ
β
2 b)j

, a = ∥∇v∥22, b = ∥v∥22,β, c = ∥v∥2j2j,β,

f ′(τ) = (1− β

2
)

τ j−2+β
2 c

(τa+ τ
β
2 b)j+1

{−τa+ (j − 1)b} ,

we estimate d
dτ

∣∣∣
τ=1

Jα(wτ ):

d

dτ

∣∣∣
τ=1

Jα(wτ )

=
∞∑
j=1

[
αj

j!
(1− β

2
)

τ j−2+β/2∥v∥2j2j,β(
τ∥∇v∥22 + τβ/2∥v∥22,β

)j+1

{
−τ∥∇v∥22 + (j − 1)∥v∥22,β

}]
τ=1

= −α(1− β

2
)∥∇v∥22∥v∥22,β +

∞∑
j=2

αj

j!
(1− β

2
)∥v∥2j2j,β

{
−∥∇v∥22 + (j − 1)∥v∥22,β

}

≤ α(1− β

2
)∥∇v∥22∥v∥22,β

{
−1 +

∞∑
j=2

αj−1

(j − 1)!

∥v∥2j2j,β
∥∇v∥22∥v∥22,β

}
,

(4.2)

since −∥∇v∥22 + (j − 1)∥v∥22,β ≤ j.
Now, we state a lemma. Unweighted version of the next lemma

is proved in [15]:Lemma 3.1, and the proof of the next is a simple
modification of the one given there using the weighted Adachi-Tanaka
type Trudinger-Moser inequality (1.10) (with γ = β) and the expansion
of the exponential function.

Lemma 3. For any α ∈ (0, α2,β), there exists Cα > 0 such that

∥u∥2j2j,β ≤ Cα
j!

αj
∥∇u∥2j−2

2 ∥u∥22,β
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holds for any u ∈ X1,2
β (R2) and j ∈ N, j ≥ 2.

By this lemma, if we take α < α̃ < α2,β and put C = Cα̃, we see

∥v∥2j2j,β
∥∇v∥22∥v∥22,β

≤ C
j!

α̃j
∥∇v∥2j−4

2j ≤ C
j!

α̃j

for j ≥ 2 since v ∈ M . Thus we have

∞∑
j=2

αj−1

(j − 1)!

∥v∥2j2j,β
∥∇v∥22∥v∥22,β

≤
∞∑
j=2

Cαj−1

(j − 1)!

j!

α̃j
= (

Cα

α̃2
)

∞∑
j=2

(α
α̃

)j−2

j ≤ αC ′

for some C ′ > 0. Inserting this into the former estimate (4.2), we
obtain

d

dτ

∣∣∣
τ=1

Jα(wτ ) ≤ (1− β

2
)α∥∇v∥22∥v∥22,β(−1 + C ′α) < 0

when α > 0 is sufficiently small. This contradicts to (4.1). □
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