ON A WEIGHTED TRUDINGER-MOSER TYPE
INEQUALITY ON THE WHOLE SPACE AND ITS
(NON-)EXISTENCE OF MAXIMIZERS

FUTOSHI TAKAHASHI

ABSTRACT. In this paper, we establish a weighted Trudinger-Moser
type inequality with the full Sobolev norm constraint on the whole
Euclidean space. The radial weight is allowed to increase in the ra-
dial direction, therefore we cannot use a rearrangement argument
directly. Also we discuss the non-attainability of the supremum
related to the inequality when the exponent is sufficiently small.

1. INTRODUCTION

Let @ ¢ RN, N > 2 be a domain with finite volume. Then the
Sobolev embedding theorem assures that Wy (Q) < L(Q) for any
q € [1,4+00), however, as the function log (log(e/|z|)) € Wy ™(B),
B the unit ball in RY, shows, the embedding W, (Q) < L>(Q)
does not hold. Instead, functions in Wy (Q) enjoy the exponential
summability:

Wi Q) = {ue LY Q) / exp <a|u|%> dr < oo for anya > 0},
0

see Yudovich [31], Pohozaev [26], and Trudinger [30]. Moser [22] im-
proved the above embedding as follows, now known as the Trudinger-
Moser inequality: Define

1
TM(N,Q,a) = sup —/exp(a\u]NN—l)da:.
wewg N (@) ’Q’ Q

IVull N gy <1

Then we have

< oo, «a<ay,
TM(N,Q,a){ — . a>ay
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1

here and henceforth oy = Nwy~; and wy_; denotes the area of the unit
sphere SV~! in RY. On the attainability of the supremum, Carleson-
Chang [5], Flucher [12], and Lin [17] proved that TM (N, Q, «) is at-
tained on any bounded domain for all 0 < a < ay.

Later, Adimurthi-Sandeep [2] established a weighted (singular) Trudinger-
Moser inequality as follows: Let 0 < 5 < N and put ang = (NTfﬁ) ay.
Define

— 1 ~ _dx

TN Qa8 = s o [ explaful 1)
uew N (@) |Q| Q |:L‘|
IVl v () <1

Then it is proved that

— < oo, «a<ayg,
TM<N,Q,a,6>{ s 0o

On the attainability of the supremum, recently Csat6-Roy [9], [10]
proved that T'M (2,2, av, B) is attained for 0 < a < ag g3 = 2w(2—3) for
any bounded domain Q C R2. For other types of weighted Trudinger-
Moser inequalities, see for example, [6], [7], [8], [13], [18], [28], [29], [32],
to name a few.

On domains with infinite volume, for example on the whole space
R, the Trudinger-Moser inequality does not hold as it is. However,
several variants are known on the whole space. In the following, let

N-2

Oy(t)=e =)

J=0

t
il
denote the truncated exponential function.
First, Ogawa [23], Ogawa-Ozawa [24], Cao [4], Ozawa [25], and

Adachi-Tanaka [1] proved that the following inequality holds true, which
we call Adachi-Tanaka type Trudinger-Moser inequality: Define

(1.1)  A(N,a)=  sup ! /@N(a|u|NN—1)dx.
) JRY

N
uew LN @N)\ {0} HUHLN(RN
IVull N g <1

Then
(1.2) A(N, a) {

The functional in (1.1)

< oo, a < ay,
=00, Q> ay.

1
F(u):N—/ By (afu| 1 )dz
] ) JRN

LN (RN
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enjoys the scale invariance under the scaling u(z) — uy(z) = u(Ax)
for A\ > 0, ie.,, F(uy) = F(u) for any v € WHV(RN) \ {0}. Note
that the critical exponent o = ay is not allowed for the finiteness of
the supremum. Recently, Ishiwata-Nakamura-Wadade [16] and Dong-
Lu [11] proved that A(N,«) is attained for any a € (0, ). In this
sense, Adachi-Tanaka type Trudinger-Moser inequality has a subcritical
nature of the problem.

On the other hand, Ruf [27] and Li-Ruf [20] proved that the following
inequality holds true: Define

(1.3) B(N,«a) = sup / @N(a|u|%)d9§.
uew LN (RN) RN
“'“'HWLN(RN)Sl

Then

<oo, «a < ay,

=00, a>ay.

(1.4) B(N,a) {

1N
Here |lu||yy@yy = <||Vu||gN(RN) + ||u||gN(RN)> is the full Sobolev

norm. Note that the scale invariance (u — wy) does not hold for this
inequality. Also the critical exponent o = apy is permitted to the
finiteness of (1.3). Concerning the attainability of B(N, «), it is known
that B(V, «) is attained for 0 < a < ay if N > 3 [27]. On the other
hand when N = 2, there exists an explicit constant a, > 0 related to
the Gagliardo-Nirenberg inequality in R? such that B(2, «) is attained
for av. < a0 < (= 4m) [27], [15]. However, if o > 0 is sufficiently small,
then B(2, «v) is not attained [15]. The non-attainability of B(2, «) for «
sufficiently small is attributed to the non-compactness of “vanishing”
maximizing sequences, as described in [15].

Intuitively, the different nature of both inequalities may be explained
as follows: For the Adachi-Tanaka type Trudinger-Moser inequality
(1.2), the constraint ||Vu|p~@yy < 1 is weak, thus it holds only for
a < an and the limiting case a = ay is excluded. On the other hand,
for the Li-Ruf type Trudinger-Moser inequality (1.4), the constraint
|lu|lwrv@yy < 1 is strong, thus it holds even for a = ay. From this
point of view, a natural question is what kind of Trudinger-Moser type
inequality would hold even for @« = ax under the weaker constraint
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|Vul|p~®sy < 1. Obviously, it is necessary to weaken the (exponen-
tial) growth of the integrand somehow. Recently, Ibrahim-Masmoudi-
Nakanishi [14] and Masmoudi-Sani [21] answered the question as fol-
lows: Define

N
1 b N-1
(1.5)  C(N,a)=  sup _ / ~(alul = ) g
wew LN &N\ {0} ||u||LN(RN) RN (1 + |u])¥=1

IVull N gy <1

Then

(1.6) C(N,«a) {

<oo, a < ay,

=00, a>ay.

If we replace the functional in (1.5) by

1 / ® (afu|7T)
~ dx
HUHLN(RN) RN (1 + |u|)p

for p < N/(N — 1), then we easily check that the corresponding supre-
mum is +0o when a = ay. In this sense, the inequality (1.6) is called
as the “exact growth” Trudinger-Moser type inequality. Note that the
scale invariance under u — wu, holds for the inequality. Also it is known
that the exact growth Trudinger-Moser inequality (1.6) yields Adachi-
Tanaka type and Li-Ruf type Trudinger-Moser inequalities.

In the following, we are interested in the weighted version of the
Trudinger-Moser inequalities on the whole space. Let N > 2, —oo <
v < N and define the weighted Sobolev space

1,N N\ _ yi/71L,N N N N —
XINRY) = WV (RY) A LY (RY, o] da)
= {u € Lj,e(RY) ¢ [[Vul| 17 zny < 00},

1/N
HU”)@’N(RN) = (HVUH% + ||“||%7) , here

N 1/N
N~ — HUHLN RN |\z|—7d = M X
Y RY; || =7 da) an |z]7 )

lullx = llullo-

|

We note that a special form of the Caffarelli-Kohn-Nirenberg inequality
in [3]:
N-§8 1_N-8

(1.7) lullns < Cllullyy IVully ¥

implies that XV(RY) C XE’N(]RN) when v < . From now on, we
assume

(1.8) N>2 —oco<vy<pB<N
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and put ang = (22) ay. Recently, Ishiwata-Nakamura-Wadade [16]
(in the radial case) and Dong-Lu [11] (in the general case) proved that
the following weighted Adachi-Tanaka type Trudinger-Moser inequality
holds true: Define

. 1 ~_ dx
(19) A(N,O{,ﬁ,’}/) - Sup W/ @N(OJ|U’N71) 3
wexy NN} ||qq|| VT RY |z
IVl N gy ST Ny
Then for (5, satisfying (1.8), we have
= < <
(L.10) A(N, , 8,7) { n s e
=00, 2> ang.
In particular, if we take v = 3 and put
- 1 d
(111)  A(N,a,) = sup —N/ <1>N<a|u|%>—xﬁ,
uGXé’N(RN)\{O} ||u||N,,8 RN |ZE|

IVull N gy <1

then we have A(N,«a, ) < oo when o < ang, and A(N,a, ) = 0o
when a > ay . Attainability of the best constant (1.9) is also consid-
ered in [16] and [11]: A(N,a, §,7) is attained for any 0 < a < ay .
First purpose of this note is to establish the weighted Li-Ruf type
Trudinger-Moser inequality on the weighted Sobolev space X ;’N(RN )

where the space dimension NV and the weight g satisfies
(1.12) N>2 and —oo<f<N.

Theorem 1. (Weighted Li-Ruf type inequality) Assume (1.12) and put
ang = (%) ay. Define

~ d

113 BWa) = sw [ el
uEX};’N(RN) RN |x|
Hu”Xé’Ngl

Then

<00, a < ang,
=00, «>Aang.

(1.14) B(N,a, B) {

Here ||u||Xé,N = (|Vul|§ + ||u||%v3)l/N is the full Sobolev norm of the
space Xg,’N(]RN).
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As a former result, de Souza-de O [29] proved that

d < <
sup / <I>N(a|u|%) xﬁ 0, & = AN,
RN |4U|

wew LN &N =00, Q>ang
lullyy 1, N (g Ny <1

for N > 2 and 0 < f < N. Note that W'V = X}V Xé’N when
0 < (. In [29], the rearrangement technique is used, and for this reason,
the authors in [29] need to assume [ > 0 for the weight ﬁ.

In this paper, we cannot use the rearrangement directly since the
weight 8 in (1.12) may be negative. Instead, we use the following
inequality to prove Theorem 1.

Theorem 2. (Weighted exact growth type) Assume (1.8). Then

N
. 1 Oy (e|u|~T) do
C(N =
( 70%677) sup N(%i:f) /RN (1+|u|)% |$‘B
77

1,N
e [lully

< oo, a < ang,
=00, «>ang.

It is easy to see that the weighted exact growth Trudinger-Moser
inequality in Theorem 2 yields the weighted Adachi-Tanaka type in-
equality (1.10). Also Theorem 2 derives the weighted Li-Ruf type
Trudinger-Moser inequality Theorem 1, as shown later.

Next, we obtain the relation between the suprema of Adachi-Tanaka
type and Li-Ruf type weighted Trudinger-Moser inequalities, along the
line of Lam-Lu-Zhang [19]. Set B(N, 3) = B(N, ayg, ) in (1.13), i.e.,

. d
(1.15) B(N,5)=  sup / CIDN(aN,5|u|%) IB.
wex pN @N) JRN |z
HUHX;NSl

Then B(N, ) < oo by Theorem 1.
Theorem 3. (Relation) Assume (1.12). Then we have

1_ <L>N_l
B(N,B)= sup mE AN, a, B).
ae(0,an,8) <L>

aN,B

Furthermore, we prove how A(N ,a, () behaves as a approaches to
an,g from the below:



7

Theorem 4. (Asymptotic behavior of AN, a, 3)) Assume (1.12). Then
there exist positive constants C,Cy (depending on N and () such that
for a close enough to an g, the estimate

C -
L1 < AN, 8) <

N— = N—1
1— (&) 1 — (L)
an, B aN,B

Note that the estimate from the above follows from Theorem 3. On
the other hand, we will see that the estimate from the below follows
from a computation using the Moser sequence.

Lastly, we prove the following non-attainability result:

Theorem 5. (Non-attainability of the best constant) Let N =2, <

2 and a > 0 is sufficiently small. Then B(2,a,f) in (1.13) is not
attained.

holds.

According to the results by [27], [20], and [15], we may conjecture
that

e When N > 3, B(N,a,@) is attained for 0 < a < ayg.
e When N = 2, there exists a, > 0 such that B(2,«, ) is at-
tained for o, < a < .

But we do not have a proof up to now.

The organization of the paper is as follows: In section 2, first we
prove Theorem 2. Main tools are a transformation which eliminates
the weights and the (unweighted) exact growth Trudinger-Moser type
inequality (1.6). Next, we prove Theorem 1 by using Theorem 2 and
an argument by [14], [21]. In section 3, we prove Theorem 3 and
Theorem 4. Finally in section 4, we prove Theorem 5. The letter C'
will denote various positive constant which varies from line to line, but
is independent of functions under consideration.

2. PROOF OF THEOREM 1.

In this section, first we prove Theorem 2 and then Theorem 1 by the
use of Theorem 2. For the proof of Theorem 2, it is enough to prove
its special case:

Proposition 1. (Special case of the weighted exact growth type) As-
sume (1.12). Then it holds that

1 / Oy(alulv1) do [ <oo, a < awg,
RN (1 + W)% |I|B =00, Q> AQang.

sup
uEXé’N\{O} HUH%”B
IVul y<1
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Once this proposition is established, then the Caffarelli-Korn-Nirenberg
inequality (1.7):

= NO-3=2)
lull s < Cllu HN Ivully

with the assumption ||[Vul|y < 1 yields the weighted exact growth
Trudinger-Moser inequality in Theorem 2 easily.

Proof of Proposition 1. By abuse of the notation, we write u(y) =
u(s,w) for y = sw € RN, s = |y| and w € SV~L. Let A > 0. We use a
change of variables which eliminates the weight

Us(z) = Ux(r,w) = A=~ u(y),
r=rwoe RN r=lz, y=sweRY s=]y,
S = 7”/\, dS = )\r/\ildr'

Then by a direct calculation, we see

0

0
o N .N-1, _ 10 N N-1
|8TU)\(7’,w)| r T hdr |asu(s,w)| s ds.
Integrating both sides by [¢v_, [ (-+-)d(-)dS,, implies
[ i@ = [ vy
RN RN
On the other hand, we have
[ FOanas = [ (3 ) 1540
RN RN
2y (ot NINTD)

forany F' = F(t) € C( ). In particular, by choosing F'(t) = NEETmE/ieeny
for > 0 and A = 575 > 0 so that N(1/A — 1) = —f3, we see

/ @N(ayUA\Nl)dx:/ Oy (a(52)|u| 7)) dy

(1+ U~ ey ((52) " + Jul) ¥ ol
N / Sy (a(N2) u|¥T) dy
ey (A4 )

where A >~ B means ¢; B < A < ¢ B for some ¢y, co > 0. Similarly, we
have

[ 1@ - (NT‘B)NM i

and thus v € Xlé’N implies that Uy, € WYY (RY). Therefore, we may
apply the unweighted exact growth Trudinger-Moser inequality (1.6)
by [14], [21] to Uy € WEN(RY), which results in Proposition 1. O



Proof of Theorem 1:
Here we follow the argument by Masmoudi and Sani (see [21] Section
6). Assume N > 2, —oo < f < N. We will prove that there exists C' >

0 such that for any u € Xé’N with ||U||Xé,N = (|Vul|§ + ||u||%’5)1/N <
1, it holds

2.1) / Byl olu] 1)L < ¢
RN ’ ||”

We take 6 € (0,1) such that [|ul|y ; = 6 and [|[Vu||§ < 1—6. We divide
the proof into two cases:

) N-1
Case 1: 6 > ~

In this case, we put @ = N'/Nu. Then
|l = NO, [[Vally < N(1—-6) <1
since 6 > NN Take o € (0, i ) so that aNVWN-1) — = ay,g and apply

the weighted Adachi-Tanaka type Trudinger-Moser inequality (1.10)

Withﬁ:’ytOﬁEXé’N. Then we have C' > 0 such that
N de jal

Oy (alu| - <(C ——dx < CN8&.
f mtetas < [T

Since the left hand side coincides with
1 N d{L’ d(L‘
By(aN T |uf#) 5 = [ @lanalul F)
/RN lz|? Jrw ’ |z|P

thus we have (2.1) for some C' > 0.

Case 2: § < 81 Put
A={x e RY : |u(x)| > 1}
First, we derive

d
(2.2) / Dy (aslul ) < €
RN\ A 2]

for some C' > 0. Since |u| < 1 on RY \ A, and ®y(t) < OntV-1 for
some Cy > 0 for all t € [0, ay ], we have

~_ dx ||V
Oy (a : |u| ¥=T) < Oy« / dx<C||u||
/RN\A M op =N v Nk

Next, we prove

. N1 <C.
2.3) [ entanshiP s <0
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By a direct calculation, we observe that &y ()P < &y (pt) for p > 1;
see also [16] Lemma A.2. Thus by Holder’s inequality,

A
Y NN e
O (payslul77) dr ) (1 4 [u) ™05 P
= N 8 3 dz
A (14 [u))F 2] A ||

- 1/p N (p—1)/p
N/(N-1) ‘I)N(pOéNg\ |N ) dx \u|(N71>(p—1>
S 2 N B —Bdﬂf
A 1+ fup)mr 2] Azl

(2.4)

1
<2N/(N—1) /(I)N(pO(Nﬁ‘UPVl) dux |||U|%H1/p
= N ﬁ _
A 1+ u)vT 2|

Now, take p = N T 9 > 1. Note that — > N — 1 holds in this case.

Then by expanding the exponential functlon into the power series in
the weighted Adachi-Tanaka inequality (1.10) (with v = ) and by the
Stirling formula, we have C' > 0 such that

N
171 [l g5 < Cllul| N8

for any u € XlN with ||Vu||N < 1 and for any ¢ > N — 1. Thus in
particular, puttlng q= , we have

1 1/p
25 L/ <C (p=1)/p
(2.5) 5 <€ (=5 ) Il

On the other hand, if we put @ = p ~ u, then we see |Va|y =
pV Y| Vu||¥ < 1. Now, applying the weighted exact growth Trudinger-
Moser inequality in Theorem 2 to u, we have
1/
) de \ "
P

Py (porplul Y1) da Py (ool ¥
</ (1 + fu) ™ W) §<p/A (1 + i)™

- 1/
(2.6) <C(lla|¥s) " =C N/puun’w




11

Thus backing to (2.4) with (2.5) and (2.6), we see

v dx 1\ N(E=L)4 N
Oy (anplu| T SC’(—) PPl P
[ evtenslu ™05 < 0 (= Jullvi
p Hr (N-1)/ N
o (E) e
o (N1 TN -1 e
(7)) =)
0 1
< C(N —1)fv—1
(1— %)kae
_0 0 N—-1-6 1\N-—-1
Now, we see %71 < 1 and (1 — %) > (1-+) for 0 < 0 <

(N —1)/N. Hence the last expression is bounded by a constant which
depends only on N and (2.3) is proved. By (2.2) and (2.3), we have
(2.1) so the first part of Theorem 1 is obtained.

For the proof of B(N, a, ) = oo when a > a5, we use the weighted
Moser sequence as in [16], [19]: Let —oo <y < < N and for n € N

set ) ,
1/N —1/N

Anz( 1) (—” ) R

WN-1 N-3 N-p

so that (Anbn)% =n/ayng. Put

A, by, if|z| < ebn,
(2.7) up, =} Aplog(1/|z]), ife™ < |z| <1,
0, if1 <|z|.
Then direct calculation shows that
(2.8) [Vt ||y @yy = 1,
2.9 v - N=0 rovinn 1
(2.9) [unln, = (N —y)N+t (N +1)(1/n) +o(1/n)

as n — oo. Note u, € X)M(RY). In fact for (2.9), we compute

HU“H%W = WN-1 / (Anb, ) NN 1A + wy -y / AN (log(1/r))NrN=17dr
0 o—bn
=1+1I
We see

TN_,Y r=e~bn n N-1 e—(%:g)n
[:WN_l(Anbn)N |:N_7:| = WN-1 (aNﬁ) = 0(1/n)
r=0 )
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as n — o0o. Also

7= (N —F ) / " (log(1/r) NN 1y

n —bn,

N _ 5 bn N _(N_’y)p N _ /8 (N_"/)bn N _
— dp=——"_(1 rd
( - )/O pe 1% (N_’Y)N+l</n)/o pe Pdp

__N-8
S

(1/n)I'(N 4+ 1) + o(1/n).
Thus we obtain (2.9).

Now, put v,(x) = A\ u,(z) where u, is the weighted Moser sequence
in (2.7) and A, > 0 is chosen so that AJ + A||u, ||y g = 1. Thus we

have ||[Vup||}y + [[vallN g = 1 for any n € N. By (2.9) with 3 = v, we
see that AN =1 —O(1/n) as n — co. For a > ay 5, we calculate

N dx N dx
D (afoa|71) L z/ D (afoa| V1) 2
/RN |$|ﬁ {0<|z|<e—bn} |$|ﬁ
N-2
_ ofon| V=T _ O‘_J| |% dr.
— € - |Un
/{0<|w<e—bn} < Z J! 2|
N d
> {exp (—na >\/¥1> — O(an)}/ —xg
an.g {0<|z|<e—bn} ||
no 1 _ WN-1 _
>cexp(— (1-0(— —O(M N —= e =+
_{ P (Oém( (nm))) n )} (N—B>€ OO

as n — oo. Here we have used that for 0 < |z| < e7bn

N N
afvn| 7T = aA\T T (Aph,) 71 = L p\F
Oéng
by definition of A4,, and b,. Also we used that for 0 < |z| < e~bn,

Nj

L e j N-1
|0 | VT = AT (Apb,) VT < Cn? < Cn

for 0 < 7 < N—2and nislarge. This proves Theorem 1 completely. [J

3. PROOF OF THEOREM 3 AND 4.

In this section, we prove Theorem 3 and Theorem 4. As stated in the
Introduction, we follow the argument by Lam-Lu-Zhang [19]. First, we
prepare several lemmata.
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Lemma 1. Assume (1.8) and set

B ANas - ap [ el
uEX N®N)\{0} |37’
HVUHLN(RN)
llull v, g=1

Let A(N, o, B) be defined as in (1.11). Then A(N,«,f) = (N a, f)
for any a > 0.

Proof. For any u € Xg’N(RN) \ {0} and A > 0, we put uy(z) = u(Ax)
for x € RY. Then it is easy to see that

(3 2) HVUAHLN (RN) HVUHLN (RN)
urllN 5 = A~ [ul|N 5.

Thus for any u € Xg’N(]RN) \ {0} with [|Vul| vgsy < 1, if we choose
A= ||lu ||N/ (N=8) then uy € Xé’N(RN) satisfies

||VU)\||LN(RN) S 1 and ||UJ)\||]]$,B =1.

Thus
~ N dx 1 N . dz
AN.a.0) 2 [ ewlalu#0)5 = i [ @xlalul ™)
RN [2? Jully g Jrx ||
which implies A(N a,B) > A(N,a,). The opposite inequality is
trivial. O

Lemma 2. Assume (1.8) and set B(N, ) as in (1.15). Then we have

N—-1
A(N, o, B) < (32 B(N, )

— N-1
1— (L)
aN,B

Proof. Choose any u € Xé’N with [|Vul|pv@yy < 1 and [[ul|ng = 1.
Put v(z) = Cu(Az) where C € (0,1) and A > 0 are defined as

for any 0 < a < ayg.

N—-1

o -~ ON 1/(N-8)
C=|—— d A= )
(OéN,B> o (1—CN)

Then by scaling rules (3.2), we see
lolsw = IV0llY + 1ol = CYIIVully + S el (11

<N 4 N WN=AoN =
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Also we have

N dl‘ N N dSC
) N1 :)\—(N—/B)/ ) ( CO~—1 m) il
[ oxlansl¥ 05 [ o (e )

RN ||
Thus testing B(N, 8) by v, we see

Bumﬁ)z<155N>A¥®N(mw#%>é%.

By taking the supremum for u € Xg,’N with ||Vullpyveyy < 1 and
|lul|ns =1, we have

N—-1
BN.G) > — (=5) AN, o, B).

N-1
_a
<aN,B)

Finally, Lemma 1 implies the result. U

Proof of Theorem 3: The assertion that

N—-1
B(N,3)> su = <ﬁ> A
yP) Z p N—1 (N, 8)
ae(0,an,8) (L)

aN,B

follows from Lemma 2. Note that B(N, 3) < co by Theorem 1.
Let us prove the opposite inequality. Let {u,} C XE’N(RN), Uy # 0,
V|| ¥n + llunll§ 5 < 1, be a maximizing sequence of B(N, j):

~  dx ~
[, @tanalunl F1)5 = BV 8) + (1)

as n — 0o. We may assume ||Vun||gN(RN) < 1 for any n € N. Define

Op (1) = e (e RY)

— IVualln?

. 1_HvunHN 1/(N_18)
ho = (o) >0
Thus by (3.2), we see
IV onl|Zn @y = 1,

—(N-8) N
Jenls = 2y = o <y
I = I T Ty <
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since || V|| + [|un||¥ 3 < 1. Thus, setting

an = angl|Vua [N < ang

for any n € N, we may test fl(N, an, B) by {v,}, which results in

B(N, ) + o(1) :/

R

~_ . dy
Oy (anglun(y)| V-1
v N( N75| ( ) )|y|5

dx
||

- o1 N
=AY [ Bl Tuall ¥ @) )

_ \N-B ) 9%
- )‘n /RN (I)N(an|vn(x)|N 1)|$|/B
dx

1 N
BN S
= p | i~ N<a ’U ($)‘ )|I|B

’Un”]NV,,B

<A TPAN, o, B) = (M) A(N, o, B)

IV

L\
1_<aw> 7

sup 1A

ag(0,an,5) (L)

AN,

(N, o, B).

Here we have used a change of variables y = A,z for the second equality,
and [|v,||N 5 < 1 for the first inequality. Letting n — oo, we have the
desired result. 0

Proof of Theorem 4: The assertion that

N C,
A(N,a, ) < o (ﬁ)N_l

follows form Theorem 3 and the fact that B(N, 8) < oo.
For the rest, we need to prove that there exists C' > 0 such that for
any o < ay g sufficiently close to ay g, it holds that

C

N
1— (&)
aN,ﬁ
For that purpose, we use the weighted Moser sequence (2.7) again. By
(2.9) with v = 3, we have N7 € N such that if n € N satisfies n > Ny,

(3.3) — < A(N,q,B).
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then it holds
2I(N + 1)

N =5 (1/n).

(3.4) ||un||N5 >

On the other hand,

—b

/ @N(Oé|un|N/(N_1))| |6 Z WN— 1/ @N (a(Anbn)N/(N_l)) TN_I_BdT
RN 0

— Vg (afangm) [P

N-§
_ ]‘V"N_—lﬁqm ((a/ang)n) e

Note that there exists Ny € N such that if n > Ny then @y ((a/ang)n) >
%e(a/O‘Nﬁ)”. Thus we have

d 1 - <\
(3.5) Dy (|| VN 2 > “N ! g
- PR

Combining (3.4) and (3.5), we have C1(N, ) > 0 such that

1 1), dx (-
Tl /RN @y (crfu, [N 1))W > Cy(N, B)ne v
n N7B

n

(3.6)

holds when n > maX{Nl, Ny}

Note that lim,_,q (1 17” - 1) = N — 1, thus

1-— (Oz/OéNﬁ)N_l > N -1
1-— (Oé/OéN’g) - 2

if a/ays < 1is very close to 1. Now, for any o > 0 sufficiently close
to ay g so that

max{Ny, No} < (

1

2
l1-a/ang )’
1—(a/an )N~ N—1
I-(a/ang) — 27

(3.7)

we can find n € N such that

(33) ?aX{lNh ];i o (=)

l-a/ang
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We fix n € N satisfying (3.8). Then by 1 < n(l — a/ang) < 2, (3.6)
and (3.7), we have

1 / NJ(N-1) dx -2

S Oy (aluy, T = GV, B)ne

||un||%”8 . N( ’ ’ )|l“'8 1( )
1 N -1 1

> >

- CQ(N? ﬁ)l . (Oé/O[N’B> - 2 02(N7 ﬁ)l — (O(/O(N7B>N—1
1

:Cg(Nyﬁ)

1 —(a/ang)N-V

where Co(N, 8) = e 2Cy(N, ) and C5(N, 8) = ¥2Cy(N, 3). Thus we
have (3.3) for some C' > 0 independent of o which is sufficiently close
to aN 3. O

4. PROOF OF THEOREM 5.

In this section, we prove Theorem 5. We follow Ishiwata’s argument
in [15].
Assume —oo < f <2 and 0 < o < a3 = 2m(2 — [3) and define

~ 2 dl’
B(2 = At —1) —.
( ,Oé7ﬁ> sup /v]R2 (6 > |[E|ﬁ

uEXé‘z(R?)

<1
Il 1252, <

We will show that B(2, a, 8) is not attained if & > 0 sufficiently small.
Set

, ) 1/2
M= {ue XP®R) ¢ lullye = (IVull + lluls) " = 1}

be the unit sphere in the Hilbert space X;*(R?) and

Jo: M =R, Ja(u):/Rz (60“2—1)%

be the corresponding functional defined on M. Actually, we will prove
the stronger claim that J, has no critical point on M when a > 0 is
sufficiently small.

Assume the contrary that there existed v € M such that v is a critical
point of J, on M. Define an orbit on M through v as

ve(x) = VTo(vTr) 7€ (0,00), w,= Ur

[orl z2

e M.

Since w,|,—1 = v, we must have

d

dr lr=1

(4.1) Ju(w,) = 0.
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Note that

p+B—2
= il s

HVUTH%2(R2) = THVUH%%R?)? “UT“Z,B =7

for p > 1. Thus,

ol ’UQJ (x) dx

Jo (W, :/ (ea“’T /
)= ., ) Rzzy ol TP
oo

_ Zaj HUTHZ‘yﬁ _ Oé_]

(Ve + Nerli3s)' 5503 (o3 + 74013, )

By using an elementary computation

i 7

T+ 5. )
f(r) = ma a=|Vol3, b= [lv]l35, c= V]2 5.
B. T ,
(M) =(1-0)—— 5 {—ra+(j— 1)},
P =0 e a0
we estimate —‘ Jo(w,):
d
E T:lJa(wT)
= |ad 8 IRy
:Z [T( 9 5/2 2 G+1 {_ ||VU||2 (Jj— ||U||2/3}
prl A (THVU||2+T ||U|| ) 1
=—a(l - )HV’UH |!UH2,3+Z ' HUH2]B —[IVoll5 + (G = Dllvl3 5}
(4.2)

<a(1_§)HVUH2”UH2 1+Z al™! ”UHZJﬂ
N 2 a Vool s

since —[|V[l3 + (j — Dl[v[3 5 < j.

Now, we state a lemma. Unweighted version of the next lemma
is proved in [15]:Lemma 3.1, and the proof of the next is a simple
modification of the one given there using the weighted Adachi-Tanaka
type Trudinger-Moser inequality (1.10) (with v = ) and the expansion
of the exponential function.

Lemma 3. For any o € (0, ay 5) there exists C, > 0 such that

252
lull3,5 < HWH T lullz s
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holds for any u € Xé’2(R2) and j €N, j > 2.

By this lemma, if we take o < & < g g and put C' = Cy, we see

111555 !
TS TRl —HV I3 < C=
IVoli3lv Hw @l

for j > 2 since v € M. Thus we have

ol ||U||2jﬁ Ca’™1 j' Ca = fai—2
< = (— - 104
< (G- DVolElE, ~ & G-1'ad @ (5) i=e

o0

«

J= Jj=2

for some C" > 0. Inserting this into the former estimate (4.2), we
obtain

d B
| Jalwr) < (1= Z)al[Voll3[lv]55(=1 + C'a) < 0
T lr=1 2
when « > 0 is sufficiently small. This contradicts to (4.1). O
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