CRITICAL AND SUBCRITICAL FRACTIONAL
TRUDINGER-MOSER TYPE INEQUALITIES ON R

FUTOSHI TAKAHASHI

ABSTRACT. In this paper, we are concerned with the critical and
subcritical Trudinger-Moser type inequalities for functions in a
fractional Sobolev space H'/?2 on the whole real line. We prove
the relation between two inequalities and discuss the attainability
of the suprema.

1. INTRODUCTION

Let © ¢ RN, N > 2 be a domain with finite volume. Then the
Sobolev embedding theorem assures that W™ (Q) < L(Q) for any
q € [1,+400), however, a simple example shows that the embedding
Wy (Q) < L>(Q) does not hold. Instead, functions in Wy ™ (Q)

enjoy the exponential summability:
WiN(Q) = {ue LN (9Q) / exp (a\u|%> dr < oo for any a > 0},
Q

see Yudovich [29], Pohozaev [24], and Trudinger [28]. Later, Moser [18]
improved the embedding above as follows, now known as the Trudinger-
Moser inequality:

1 N <00, a<a
TM(Q,a) = sup —/exp(a|u|N1)dx ’ =0
uEW&’N(Q) |Q| Q =00, «> oy,
IVull 5 () 1
1
here ay = Nwy_i and wy_; = |[SV7!| denotes the area of the unit

sphere in RY. On the attainability of TM (€, o), Carleson-Chang [4],
Flucher [6], and Lin [13] proved that TM(Q,«) is attained for any
0<a<ay.

On domains with infinite volume, for example on the whole space
RY the Trudinger-Moser inequality does not hold as it is. However,

Date: March 22, 2017.
2010 Mathematics Subject Classification. Primary 35A23; Secondary 26D10.
Key words and phrases. Trudinger-Moser inequality, fractional Sobolev spaces,
maximizing problem.
1



2 FUTOSHI TAKAHASHI

several variants are known on the whole space. In the following, let

CI)N(t) = €t - ﬁ
j=0

denote the truncated exponential function.

First, Ogawa [20], Ogawa-Ozawa [21], Cao [3], Ozawa [23], and
Adachi-Tanaka [1] proved that the following inequality holds true, which
we call Adachi-Tanaka type Trudinger-Moser inequality:

A(N,a) = sup ;/ <I>N(oz|u]%)dx S0 A= aw,
uew LN (RN )\ {0} ||u||gN(RN) RN =00, @2 ay.
IVull N gy <1

The inequality enjoys the scale invariance under the scaling u(z) —

ux(x) = u(Azx) for A > 0. Note that the critical exponent o = ay is not

allowed for the finiteness of the supremum. Recently, it is proved that

A(N, a) is attained for any a € (0, ay) by Ishiwata-Nakamura-Wadade

[10] and Dong-Lu [5]. In this sense, Adachi-Tanaka type Trudinger-

Moser inequality has a subcritical nature of the problem.

On the other hand, Ruf [26] and Li-Ruf [15] proved that the following
inequality holds true:

< <
B(N, a) = sup / CIDN(Oé|u’NN1)d${ oo, o X oy,
wew LN (V) RN =00, O > Qn.
”“HWLN(RN)Sl

1/N
Here ||ul|y1.~5@yy = (HVquN(RN) + HquN(RN)) / is the full Sobolev
norm. Note that the scale invariance (u — wy) does not hold for this
inequality. Also note that the critical exponent o = ayy is permitted
to the finiteness.
Concerning the attainability of B(N,«), the following facts have
been proved:
o If N >3, then B(N, ) is attained for 0 < a < ay [26].
e If N =2, then there exists ., > 0 such that B(2, «) is attained
for a,, < a < as(=4m) [26], [9].
o If N =2 and a > 0 is sufficiently small, then B(2,«) is not
attained. [9].

The non-attainability of B(2,«) for « sufficiently small is attributed
to the non-compactness of “vanishing” maximizing sequences, as de-
scribed in [9)].

In the following, we focus our attention on the fractional Sobolev
spaces.
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Let s € (0,1), p € [1,+0c0) and let @ C RY be a bounded Lipschitz
domain. For s > 0, let us consider the space

Ly(RY) = {u € L (RY) : /R Ldm < oo} :

N1+ |x|N+s
For u € Ly(R"), we define the fractional Laplacian (—A)*/?u as follows:
First, for ¢ € S(RY), the rapidly decreasing functions on RY, (—A)*/2¢
is defined via the normalized Fourier transform F as (—A)%2¢(z) =
L€l Fo(€))(z) for € RY. Then for u € Ly(RYN), (—A)*%u is
defined as the element of &'(RY), the tempered distributions on R,
by the relation

(6, (=A)2u) = ((~2)"2¢,u) = /R(—A)S/ch-udﬂs, ¢ € S(RY).

Note that LP(RY) C Ly(RY) for any p > 1. Also note that it could
happen supp((—A)*?u) ¢ Q even if supp(u) C Q for some open set
in RV,

By using the above notion, we define the Bessel potential space
H*?(Q) for a (possibly unbounded) set Q C RV as

HP(RY) = {u e LP(RY) : (—A)*/?u e LP(RN)},
H*P(Q) = {ue H’(RY) :u=0 onRY\Q}.

On the other hand, the Sobolev-Slobodeckij space W*?(RY) is de-
fined as

WeP(RY) = {u e LP RN) : u ]WSP(RN) < oo},

’P
Wsp RN) AN /RN ‘x_y‘N—FSP dfl;dy,

and for a bounded domain Q C R¥, we define
72 (0) = Cr(@) e
1/p .
where ||ul[ysp@y) = (HuHLp(RN) + [u ]WSP(RN)> . It is known that

WP(Q) = {u e WRY) :u=0 onRY\Q}

if Q is a Lipschitz domain and H*?(RY) = F3,(R") (Triebel-Lizorkin
space), W*(RV) = B (R") (Besov space). Thus H**(R") = W**(RY),
however in general, H*P(RY) #£ W*P(RY) for p # 2. See [25], [11] and
the references therein.

Recently, Martinazzi [17] (see also [12]) proved a fractional Trudinger-
Moser type inequality on H*P(Q) as follows: Let p € (1,00) and
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s = N/p for N € N. Then for any open 2 C RY with |Q] < oo,
it holds

1 2 < <
sup — / exp(alu|7T)dz o0 A= ANy
weHSP(Q) ‘Ql Q =00, Q> QN

I(=8)%/2ull p () <1

wn—1 \I'(s/2)25mN/2 :

We note that, differently from the classical case, the attainability of
the supremum is not known even for N =1 and p = 2.

On the Sobolev-Slobodeckij spaces W*P(Q2) with sp = N, similar
fractional Trudinger-Moser inequality is also proved by Parini-Ruf [25]
when N > 2 and Iula [11] when N = 1. In this case, the result is
weaker and the inequality holds true only for 0 < a < aj, for some
(explicit) value aj . Also, it is not known the inequality holds or not
when o = ajy,,.

In the following, we are interested in the simplest one dimensional
case, that is, we put N = 1, s = 1/2 and p = 2. In this case, the Bessel
potential space H'/>?(R) coincides with the Sobolev-Slobodeckij space
W1/22(R) and both seminorms are related as

1
1/4 2 2
(=2 4y = ol oy

Here ay,), =

see Proposition 3.6. in [19]. Then the fractional Trudinger-Moser in-
equality in [17], [12] can be read as

Proposition 1. (4 fractional Trudinger-Moser inequality on HY/22(I))
Let I C R be an open bounded interval. Then it holds

sup i /€a|“|2dx <00, asap=m,
weB1/2:2(1) 1| Jr =00, a>T

=2y 4ull oy <1

For the fractional Adachi-Tanaka type Trudinger-Moser inequality
on the whole line, put

1
(1.1) A(a) = sup — / (eau2 . 1> dx.
ueH/2:2(R)\{0} ||“||L2(1R<) R
(=) 2ull 3 ) <1

Then by the precedent results by Ogawa-Ozawa [21] and Ozawa [23],
it is known that A(a) < oo for small exponent .

On the other hand, it is already known a fractional Li-Ruf type
Trudinger-Moser inequality on H'/22(R):



Proposition 2. (Iula-Maalaoui-Martinazzi [12])

2 <
(1.2)  B(a) = sup / (eo‘“ — 1) dm{ DR
R =00, «@>T.

ue H/2:2(R)

<1
“uHHl/QvQ(R)*

Here
AY/4y12 2 1/2
Jullescey = (=200l + o
is the full Sobolev norm on H'Y/*%(R).

Concerning A(«) in (1.1), a natural question is that to what range
of the exponent « the supremum is finite. As pointed out in [§8], it
remained an open problem for a while. In this paper, first we prove
the finiteness of supremum in the full range of values of exponent.

Theorem 1. (Full range Adachi-Tanaka type on HY/*%(R)) We have

1 < o0 <

Ala) = sup T/ (e‘”‘z - 1) dzx. s
e >

||u||L2(R) R oo, «>T.

ueH/2.2(R)\{0}
I=a)4ull 3 ) <1

Ozawa [22] proved that the Adachi-Tanaka type Trudinger-Moser
inequality is equivalent to the Gagliardo-Nirenberg type inequality, and
he also proved an exact relation between the best constants of both
inequalities. As a result, we have the next corollary.

Corollary 1. Set

Bo = limsup sup [ull 2o w) '
q—=00  weHY/2:2(R),ut0 q1/2H(_ )1/4uHL2(2ﬂéqH Hi/;ER

Then By = (2me) /2.

Furthermore, we obtain the relation between the suprema of both

critical and subcritical Trudinger-Moser type inequalities along the line
of Lam-Lu-Zhang [14].

Theorem 2. (Relation) We have

= sup L@/
B(m) ae(or,)ﬂ) (a/m) Ala)

Also we obtain how Adachi-Tanaka type supremum A(«) behaves
when « tends to 7.
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Theorem 3. (Asymptotic behavior) There exist C1,Cy > 0 such that
for any o < 7 which is close enough to w, it holds

B .
l—a/n l—a/n
Note that the estimate from the above follows from Theorem 2 and
Proposition 2. On the other hand, we will see that that the estimate
from the below follows from a computation using the Moser sequence.
Concerning the existence of maximizers of Adachi-Tanaka type supre-
mum A(w) in (1.1), we see

Theorem 4. (Attainability of A(a)) A(«) is attained for any o €
(0,7).

On the other hand, as for B(«) in (1.2), we have

Theorem 5. (Non-attainability of B(a)) For 0 < a << 1, B(a) is
not attained.

It is plausible that there exists a,, > 0 such that B(«) is attained for
a, < a < m, but we do not have a proof up to now.

Finally, we improve the subcritical Adachi-Tanaka type inequality
along the line of Dong-Lu [5]:

Theorem 6. For a > 0, set

1.3 Fla) = su ; e du.
p 2
we H/2:2(R)\ {0} HUHLQ(R) R
H=a) Y Aull gy <1

Then we have

=00, Q>T.

E(a){ <oo, a<m,

Furthermore, E(«) is attained for all o € (0, ).

Since e®” —1 < at2e®” for t € R, Theorem 6 extends Theorem 1. In
the classical case, Dong-Lu used a rearrangement technique to reduce
the problem to one-dimension and obtained the similar inequality by
estimating a one-dimensional integral. The method is similar to [4]. In
the fractional setting H'/>?, we cannot follow this argument and we
need a new idea.

The organization of the paper is as follows: In section 2, we prove
Theorem 1, 2, and 3. In section 3, we prove Theorem 4 and 5. In
section 4, we prove Theorem 6.



2. PROOF OF THEOREM 1, 2, AND 3

For the proofs of Theorem 1, 2, and 3, we prepare several lemmas.

Lemma 1. Set

~ 2
(2.1) Ala) = sup / (e““ - 1) dx.
uEHi/j%R)\{O} R
=)t 4l o gy <1

H“”LQ(R)zl

Then A(a) = A(«) for any a > 0.

Proof. For any u € H'*?(R) \ {0} and A > 0, we put uy(z) = u(\z)
for x € R. Then we have

{ (=) u| 2y = [(=A) 4l 2wy,

(2.2) _
||U/\||i2(R) = A 1||7~L||%2(JR)

since

27| (=) uy ||L2(R [“A]Wl/z 2(R )

//Iu \w—y\z _— W

- [ [ M= dnyao

[]W1/22( —27TH( )1/4UH%2(R)

Thus for any v € HY**(R) \ {0} with ||(—A)Y*ul2@ < 1, if we
choose A = [[ul|72 gy, then uy € H'/**(R) satisfies

||(—A)1/4U)\||L2 < 1 and ||U)\||%2(R) =1.

Thus
]. 2 2 ~
e (= ()=
||UHL2(R) R R
which implies A(a) < A(a). The opposite inequality is trivial. O

Lemma 2. For any 0 < a < 7, it holds

(ov/m)
Ala) < ———B(7).
@) < 1
Proof. Choose any u € HY**(R) with ||(—=A)Y4u| 2y < 1 and ||ul| 2y =
1. Put v(z) = Cu(Ax) where C? = a/7 € (0,1) and /\ = 92 Then
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by scaling rules (2.2), we see

[0]31 /22y = (=A) 032 @) + V132

(R)
= 02’\(—A)1/4UH%2(R) + )\_102HUH%2(R)
<CTHNIO? =1,

Also we have

/ (67”’2 — 1) dr = / (e’TCQ“Q(’\’”) — 1) dzx
R R
_ )\—1\/R <€7r02u2(y) . 1) dy
~ g [
R

LD [ (et 1) g

Thus testing B(m) by v, we see

B(m) > /R (e’”’2 — 1) dr > %/}R <e‘“‘2(y) - 1) dy.

By taking the supremum for u € HY**(R) with ||(—A)Y4ul|r2@) < 1
and ||ul|z2®) = 1, we have

1= (a/m) ;.
B(r) = 7 Aa).

Finally, Lemma 1 implies the result. U

Proof of Theorem 1: The assertion that A(a) < oo for a < 7 follows
from Lemma 2 and the fact B(m) < oo by Proposition 2.
For the proof of A(m) = 0o, we use the Moser sequence

(log(1/eN?,  if|z| <e,

(2.3) U = % ife < |a| <1,
0, if1 < |z|,

and its estimates

(2.4) 1(=2) e[ oy = 7 + (1),

(2.5) I(=2) e[| Fo@y < 7 (14 (Clog(L/e)) ™),

(2.6) ucll?> ) = O ((log(1/2)) ")
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as ¢ — 0 for some C' > 0. Note u. € WY>2((—1,1)) ¢ WY?2(R) =
H'Y22(R). For the estimate (2.4), we refer to Iula [11] Proposition 2.2.
For the estimate (2.5), we refer to [11] equation (35). Actually, after a
careful look of the proof of Proposition 2.2 in [11], we confirm that

: CANL/A4, 2
lim (1og(1/2)) (I1(~2)" ez — 7) < C
for a positive C' > 0, which implies (2.5). For (2.6), we compute

o) = /|a:|§s (log(1/e))d +/s<|m|g1 ((10g(1/s))1/2> !

2 0 2 t
= 2810g(1/€) WA% l/e)t (—6 )dl’

= 2eclog(1/e) + (I'(3) + o(1))

10g(1/€)
as € — 0. Thus we obtain (2.6).
By testing A(m) by v. = u./||(=A)Y*u.| r2(r), we have

A(7T)>+/<e F1)ds

— llvellZem)

) el [ (=t
N ||u5||L2 |z|<e

S |‘(_A)1/4U6HL2( exp log 1/e)
T el I(=A) e[
5).

H(_A)l/4ue|’%2( log(1/¢) >

e D \T+ (Clog(1/e))!

since e — 1 > (1/2)e’ for ¢ large and (2.5). Also since
t -1/C
T —t=—"—7F—>——= asl— o0,
I+ 1+ & C
we see 1+ —t+-=t—1/C+o(1) as t — oo. Put t = log(1/¢), we see
Ct
log(1/e) -1
= log(1 —1 1)) = (1 /C+o(1)

o (1o 7 ) = exp (08(1/2) = 1/C + o{1) = (1/2)e /070,

which leads to

log(1/¢) ~1/C+o(1
o () 2 2020
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for some § > 0 independent of € — 0. Therefore, by (2.4), (2.5), (2.6),
we have for ¢ > 0

T+ o(1)
(Clog(1/¢)))~!
as € — 0. This proves A(m) = 0. O

A(r) > § > & (log(1/e)) — o0

Proof of Theorem 2: By Lemma 2, we have

1 —(a/m) N
Bz 20 Tam A

Let us prove the opposite inequality. Let {u,} Cc HY?%(R), u, # 0,
||(—A)1/4un||%2(R) + ||un||%2(R) < 1, be a maximizing sequence of B(m).

1/4

We may assume [|(—=A)"*u,|72 < 1 for any n € N. Put

A Tunll 2 gy
1= [[(=A) Y 4un 2

_ L2®)
>\n - H(_A)1/4un“2LQ(R) > 0
Thus by (2.2), we see
I(=2) va ) Zoey = 1,
A a1 72 gy
[vnllZ2 @y = i 72wy = <1,
O A ey L= (= 2)

since H(—A)1/4unH%Q(R)—i—ﬂunH%Q(R) < 1. Thus, setting oy, = 7TH(—A)1/4U77,H%2(R) <
7 for any n € N, we may test A(a,,) by {v,}, which results in

B(x) + o(1) = / (W%@) - 1) dy

R

— )xn/ (eﬂ“(_A)1/4“"Hi?(ne)”%(x) - 1> dx
R

1
< [ (5 <1)
R

anH%%R)

< MAlon) = 2T 40 )

(an /)
1 —
< sup MA(@).
acom) (/)
Here we have used a change of variables y = A,z for the second equality,
and [[v, ]|, ) < 1 for the first inequality. Letting n — oo, we have the
desired result. 0
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Proof of Theorem 3:
We need to prove that there exists C'; > 0 such that for any o < 7
which is sufficiently close to m, it holds that

&
Ale) 2 1—a/m

Again we use the Moser sequence (2.3) and we test A(a) by v. =
/|| (—A)*u.| z2®). As in the similar calculations in the proof of
Theorem 1, we have

Ala) > ;/ (ea”g — 1) dx

B HUEH%%R)

SUC Ry
B ||U£||i2(]1g) |z|<e

> Ce (log(1/¢)) exp (% 1+ (Sig{f}g»_J

= Ce (log(1/e)) exp (dc log(1/¢))

where we put J. = (%)W € (0,1).

Now, for @ < 7w which is sufficiently close to m, we fix ¢ > 0 small
such that

(2.7) <log(l/e) <

l—a/7 1—a/n’

which implies

o0 (=) <o <o (=)

With this choice of € > 0, we have

Afa) = Ce (log(1/¢)) exp (o log(1/¢))

(2.8) = Ce (log(1/¢)) (1/€)% = Ce' ™% (log(1/e)).
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Now, we estimate that

Jh s <eXp (_ 1 _Z/J)we — exp (— — (- 56))

= €xp (‘ (%/W) {(1 —a/m) + (a/7) (1 1+ (C’lcl)g 1/e)1

:exp< (1 _aé:;ﬂ) (1+Clog1/€)>
e (1_“5;) (=)

2(a/7)
= e —2 .e T CF¥1-— a/m —e . CV/TI')

where f(t) = C+1 - for ¢ € [0,1] and we have used (2.7) in the last
200 > 0 for t > 0,

inequality. We easily see that f(0) =0, f'(t) = -

thus f(t) is strictly increasing in ¢ and maxcp 1 f(¢ ) f(1) =2/C.
Thus we have

el > o2 o720 .

which is independent of o. Backing to (2.8) with (2.7), we observe that
CCy

Afa) = C<'~% (log(1/€)) = CCy (log(1/¢)) = T—air

which proves the result. 0

3. PROOF OF THEOREM 4 AND 5

For u € HY?2(R), u* will denote its symmetric decreasing rearrange-
ment defined as follows: For a measurable set A C R, let A* denote an
open interval A* = (—|A|/2,|A|/2). We define u* by

u*(z) :/0 X{yeR:|u(y)|>t}*(x)dt

where y 4 denote the indicator function of a measurable set A C R.
Note that u* is nonnegative, even, and decreasing on the positive line
R, = [0, +00). It is known that

(3.1) /RF(u*)dx: /RF(\u])dw

for any nonnegative measurable function F': Ry — R, , which is the
difference of two monotone increasing functions Fj, Fy with F;(0) =
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F5(0) = 0 such that either F o |u| or F; o |u] is integrable. Also the
inequality of Pdlya-Szego type

/ (—Aur) VP < / (—Au)Y2de
R R

holds true for u € HY/?2(R), see for example, [2] and [16].

Remark 1. Note that Radial Compactness Lemma by Strauss [27] is
violated on R. More precisely, let

H'22R) = {u € HY**(R) : u(z) = u(—z), z > 0},

rad

then H 6{3’2(R) cannot be embedded compactly in L4(R) for any ¢ > 0.
To see this, let ) # 0 be an even function in C2°(R) with supp(¢) C
(—1,1) and put u,(z) = ¢¥(xr —n) + ¥ (xr +n). Then we see u,, is even,
compactly supported smooth function, and u,, — 0 weakly in H'/22(R)
as n — oo. But {u,} does not have any strong convergent subsequence

in L4(R), because |[un|7q@) = 2[|¥[| 74 > 0 for any n sufficient large.

However, for a sequence {u, }ney € HY*2(R) with u,, even, nonneg-
ative and decreasing on R, , we have the following compactness result.

Proposition 3. Assume {u,} C HY**(R) be a sequence such that
u, 1S even, nonnegative and decreasing on Ry. Let u, — u weakly in
HY22(R). Then u, — u strongly in LY(R) for any q € (2,+00) for a
subsequence.

Proof. Since {u,} C HY/?%(R) is a weakly convergent sequence, we
have sup,,e [|Un | gr1/22) < C for some C' > 0. We also have u,(x) —
u(z) a.e x € R for a subsequence, thus u is even, nonnegative and
decreasing on R,. Now, we use the estimate below, which is referred
to a Simple Radial Lemma: If u € L*(R) is even, nonnegative and
decreasing on R, then it holds

||

9 1
(32)  w¥(z) < m/_

1
u?(y)dy < MHUH%P(R) (z #0).

||

Thus v?(x) < % for 2 # 0 by sup,ey [[tn || g1/22@ < C and v?(z) <

% by the pointwise convergence. Now, set v, = |u, — u|? for ¢ > 2.
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Then we see v, (z) — 0 a.e. z € R. Moreover,

/ |, — u|%dx = 2/ |t — u|?dx
2> R
<27 (/ |u, |?dx +/ |u|qu>
R

< dr CR'~4/2
<C = -0
/ x|/ (q/2) =1

as R — oo since ¢ > 2. Thus {v, }nen is uniformly integrable. Also by
[19] Theorem 6.9, we know that

H1/2’2(R) C LqO(R) for any qo Z 2 and HUHLQU(R) S CHU/HHl/Q,Q(R).

For any ¢ > 2, take ¢p such that 2 < ¢ < ¢p < o0. Since w,, — u is
uniformly bounded in H'/22(R), we have ||u, — ul|zo0®) < C, and

a/q0
/Unda: = /\un — ulldx < (/ luy, — u]‘”dg;) ml—tI/qo
I I I

for any bounded measurable set I C R. Therefore [ ;Undr — 0 if
|I| — 0, which implies {v, } is uniformly absolutely continuous. Thus
by Vitali’s Convergence Theorem (see for example, [7] p.187), we obtain
vp = |u, — ul? = 0 strongly in L'(R), which is the desired conclusion.

U

Proposition 4. Assume {u,} C HY/*?(R) be a sequence with ||(—A)Y4u, || 12(g)

1. Let u, — u weakly in HY/**(R) for some u and assume u, is even,
nonnegative and decreasing on R,.. Then we have

/ <6aui —1-— aui) dr — / (ea“Q —1- au2> dz
R R

for any o € (0, ).

Proof. The similar proposition above is already appeared, see [10] Lemma
3.1, and [5] Lemma 5.5. We prove it here for the reader’s convenience.

Put &, (t) = e — 1 and W, (t) = e* — 1 — at®. Note that $,(t) is
nonnegative, strictly convex and W/ (t) = 2at®,(t). Thus by the mean
value theorem, we have

U (un) — Wolu)| < W (Ou, + (1 — 0)u)|u, — ul
< 200uy, + (1 — 0)u| Py (Ou, + (1 — 0)u)|u, — ul
< 2a(|un| + [ul) (0o (un) + (1 = 0)P4o(u)) |un — ul
< 2a([un| + [ul) (Pa(tn) + Palw)) [un — ul.

<
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Thus we have

]£|waa%>—»hxundxf;2a/£aun++|un<¢aum)+-®auo>wn—-qu
(3.3)

< 2a|[un| + |U|”L“(R)H¢)a(un) + CI)oz(“)||Lb(]R)||un — U]|Le(R)

by Holder’s inequality, where a,b,c > 1 and 1/a+ 1/b+ 1/c = 1 are
chosen later.
First, direct calculation shows that

(3.4) ()" <™ —1 (teR)

for all b > 1. Thus if we fix 1 < b < 7/« so that ba < 7 is realized,
then we have

b
19a(tn) + o)l 7omy < (I1Paun)llzom) + [1Pa(u)l o))

< 9bt (/R ((Da(un))bdan/R(CDa(u))bdm)
<ot ([ (et )aos [ -1) i)

< 271 A®b0) (llunl3aq) + el ) -

here we used (3.4) for the third inequality and Theorem 1 for the last
inequality, the use of which is valid since ||(—A)Y4u,||2®) < 1 and
[(=A)Y4ul| 2y < 1 by the weak lower semicontinuity. Note that
{un} satisfies sup,,cy [[unll 1722y < C for some C' > 0. Thus we have
obtained || ®q(u,) + ®o(u)| p®) = O(1) independent of n.

Next, we estimate the term |||, |+ |u|||Ler). Since {u,} is a bounded
sequence in H/2?(R), we have by [19] Theorem 6.9 that ||ul|p@) <
Cllunl| grr/22(ry for any ¢ > 2. Thus we see |||u,| + |ull|paw)y < C for
some C' > 0 independent of n for a > 2. Now, note that if we choose
1 <b< 7m/a and a > 2 sufficiently large, then we can find ¢ > 2 such
that 1/a+1/b+1/c = 1.

By these choices and Proposition 3, we conclude that ||u, —u|| Le(R) —
0 as n — oo. Backing to (3.3) with all together, we conclude that

/R\Ifa(un)dx—)/ﬂg\lfa(u)dx (n — 00),

which is the desired conclusion. O

Now, we prove Theorem 4. We will show that A(«) in (1.1) is at-

tained for any 0 < a < 7. Since A(a) = A(a) by Lemma 1, we choose
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a maximizing sequence for A(a):
/ (ea“% - 1) dr = A(a) +o(1) (n — 0).
R

Here {u, }nen C HY*2(R) satisfies || (—A)Y4u,,| 2@ < 1and ||Jun||z2@) =
1. By appealing to the use of rearrangement, we may furthermore
assume that w, is nonnegative, even, and decreasing on R,. Since
{tp nen € HY?%(R) is a bounded sequence, we have u € H'/?%(R)
such that u, — u in H/2%(R). By Proposition 4, we see

/ (eau% -1- aui) dx = / (ea“2 -1- au2> dx
R R

as n — 0o. Therefore, since ||un||%2(R) = 1, we have, letting n — oo,

(3.5) Ala) = a+ /R <eau2 -1- Ozu2> dzx.

Next, we claim that A(a) > « for any 0 < a < 7. Indeed, take any
Uy € H1/2’2(R> such that Uo 7_é 07 ||(_A>1/4UOHL2(R) S 1 and ”u0||L2(R) =
1. Then we have

Ala) = A(a) > /R (eaug — 1) dr = a+ /R <eo‘“3 —1- au%) dz.

Now, since e — 1 — at? > 0 for any t > 0, we have

/ (eo‘“g —1 —au%) dz >0
R

for ug # 0, which results in A(a) > «, the claim.

By the claim and (3.5), we conclude that the weak limit u satisfies
u # 0. By the weak lower semi continuity, we have u # 0 satisfies
[ (=A)Y4u| 2y < 1 and ||ul|r2@) < 1. Thus by (3.5) again, we see

Ala) = a+ /R <ea“2 —-1- auQ) dx

1
§a—|——/<e““2—1—au2>dx
R

HUHQB(R)
1 Jull?
:oz%—T/ <e°‘“2—1>dx—aw
[ul| 2@ Jr [l 72 @)
1 / ( 2
= e — 1) dx.
HUH%%R) R

Thus we have shown that v € HY?2(R) maximizes A(a). O



17

Next, we prove Theorem 5. We follow Ishiwata’s argument in [9].
Let

M= {ue H**R) : ullmpo@ =1},

Jo: M SR, Ju(u) = / (eW - 1) dz.
R

Actually, we will show a stronger claim that J, has no critical point on
M for sufficiently small o > 0. Assume the contrary that there exists
a critical point v € M of J, for small & > 0. Then we define an orbit
on M through v as

v(z) = VTu(rz) 7€ (0,00), w,= T e M.

[0 /2

Note that w; = v thus it must be % Jo(w;) = 0. By scaling rules
T=1
(2.2), we see for any p > 2,

o7y = 72 Hloll}
(®)

Py and [[(=A) | o) = 7] (—2) Y40 L2y,

Now, we see

- ot _ ol 29(:10) A
dutwr) = [ (e 1) / Z rvT||2+||< A) Vo, [3)

o) : [e’e) — 27
— Z o’ HUTH Z 7/ IHUH y
= 3l 4+ =)0 13) 4= 7Y (Ivll3 + 7l (=A) 4] 3)
= Zf,fj(ﬂ
=1 7
where f;(1) = (Zim'i with a = [|(=A)Y4[[3, b = [|v])} and ¢ = ||v]|3.
Since
T 72¢ ,
fi(r) = {=ra+(j —1)b}

(b+ Ta)it!
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and [[(=A)Y*0[|3 + [[v]|3 = 1, we calculate

] O_/j 7'];2”'0“3? A 1/4, 112 ) )
f(HvH? + T”(_A)1/4UH2 1 {_TW— Yrlls+ (5 — 1)“1}”2}
1 2

Jj=
< —al[(=2) 3 ||v||2+z || 15

o0

:(I||(—A)1/4’U||2||U||2 _1+Z ol 1 ”UHS;
e = G = DHI=A) 3]l

Here, we need the following lemma:

Lemma 3. (Ogawa-Ozawa [21]) There exists C' > 0 such that for any
u € HY?2(R) and p > 2, it holds

—2
ullfp gy < OV (=) ull 2 oy |2y
For p = 25, Lemma 3 implies

loll3;
(ST

C(25)" I(=A)" 0]~ < C(24)’,
<1(7>2)

Thus for 0 < a << 1 sufficiently small (it would be enough that
a < 1/(2e)), Stirling’s formula j! ~ j7¢77\/2m; implies that

— o lv]l5] — o :
- < . (2j) <aC
= = DHI=A) 3l — = G = D!
for some C' > 0 independent of a. Therefore we have -L.J,(w-) <0
T=1
for small «, which is a desired contradiction. 0

4. PROOF OF THEOREM 6.
In order to prove Theorem 6, first we set

(4.1) F(B) = sup /uQeﬁ"2d:€
R

ueHL/2:2(R)

<1
||UHH1/2’2(R)_

for # > 0. Then we have

Proposition 5. We have F(f) < oo for f <

=1
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Proof. We follow the proof of Theorem 1.5 in [12]. Take any u €
HY?%2(R) with [ul 1220y < 1 in the admissible sets for F(3) in (4.1).
By appealing to the rearrangement, we may assume that u is even,
nonnegative and decreasing on R,. We divide the integral

/uQeBUQdm = / w2 dx + /U2€6u2dl‘ = (I)+ (I1),
R R\I I

where I = (—1/2,1/2).
First, we estimate (I). By the Radial Lemma (3.2), we see for any
keN, k> 2,

llZeg\" lullg 1
2k(2) < = fi 0.
u?(z) < ( o] ) % TaF or x#

U d
/ u (x)dx < Il L,: = / :Ck
R\J 2 R\ |z

_ww&m/w@_nwpm

Thus

Therefore, we have

oo k—1
= u?dr + b / u?kdx
/]R\I z:; (k=D Jr

2 g ull B
k=2 ’

ﬁk ! 2(k—1)
= [l 2y 1+Z k= 1) lellze

Now by the constraint |[u|| z1/22() < 1, we have ||ul|2@) < 1. Also if we
put a, = m, then >/, aj, converges since ak+1/ak = Bkk—z — 0

as k — oo. Thus we obtain

i 51@1 )SC

where C' > 0 is independent of u € Hl/Q’Q(R) with [|ull g2y < 1.
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Next, we estimate (/7). Set

(o) = {u(x) —u(l/2), 2l <1/2
0, lz| > 1/2.

Then by the argument of [12], we know that
1(=2)0l[Fa @y < I1(=2)ullZag),
wX(2) < v*(@) (14 ullfam, ) +2
forrx el Putw=uv,/1+ ||u||%2(R). Then we have w € HY/*%(I) since
v=0on R\ I, and
H(=2)w0l3agmy = (1+ lulaqmy ) 1 (=2) 0l

< (14 e (1 Nelifae) < 1.

Thus we may use the fractional Trudinger-Moser inequality (Proposi-

tion 1) to w to obtain
/ ™’ da <(C
I

for some C' > 0 independent of u. By u? < w? + 2 on I, we conclude

that
/e’”‘gdx < /e”(w2+2)d:v = 62”/6”“’26& <.
I I I

Now, since 8 < m, there is an absolute constant Cy such that ¢2eft <
Coe™ for any t € R. Finally, we obtain

(I[) = /u2eﬁ“2dx < Co/eﬂ-qul' < C()C/.
1 I

Proposition 5 follows from the estimates (1) and (/7). O

By using Proposition 5 and arguing as in the proof of Theorem 1
(after establishing the similar claims as in Lemma 1 and Lemma 2), it
is easy to obtain the following Proposition:

Proposition 6. For any 0 < a < § < mw, we have

B@) < (1=075) FO)

Since F(3) < oo for any § < 7, this proves the first part of Theorem
6. For the attainability of E(«a) for a € (0, 7), it is enough to argue as
in the proof of Theorem 4. We omit the details. U
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