CRITICAL AND SUBCRITICAL FRACTIONAL TRUDINGER-MOSER TYPE INEQUALITIES ON \mathbb{R}

FUTOSHI TAKAHASHI

Abstract

In this paper, we are concerned with the critical and subcritical Trudinger-Moser type inequalities for functions in a fractional Sobolev space $H^{1 / 2,2}$ on the whole real line. We prove the relation between two inequalities and discuss the attainability of the suprema.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$ be a domain with finite volume. Then the Sobolev embedding theorem assures that $W_{0}^{1, N}(\Omega) \hookrightarrow L^{q}(\Omega)$ for any $q \in[1,+\infty)$, however, a simple example shows that the embedding $W_{0}^{1, N}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ does not hold. Instead, functions in $W_{0}^{1, N}(\Omega)$ enjoy the exponential summability:
$W_{0}^{1, N}(\Omega) \hookrightarrow\left\{u \in L^{N}(\Omega): \int_{\Omega} \exp \left(\alpha|u|^{\frac{N}{N-1}}\right) d x<\infty \quad\right.$ for any $\left.\alpha>0\right\}$,
see Yudovich [29], Pohozaev [24], and Trudinger [28]. Later, Moser [18] improved the embedding above as follows, now known as the TrudingerMoser inequality:

$$
T M(\Omega, \alpha)=\sup _{\substack{u \in W_{0}^{1, N}(\Omega) \leq 1 \\\|\nabla u\|_{L^{N}(\Omega)} \leq 1}} \frac{1}{|\Omega|} \int_{\Omega} \exp \left(\alpha|u|^{\frac{N}{N-1}}\right) d x \begin{cases}<\infty, & \alpha \leq \alpha_{N}, \\ =\infty, & \alpha>\alpha_{N},\end{cases}
$$

here $\alpha_{N}=N \omega_{N-1}^{\frac{1}{N-1}}$ and $\omega_{N-1}=\left|S^{N-1}\right|$ denotes the area of the unit sphere in \mathbb{R}^{N}. On the attainability of $T M(\Omega, \alpha)$, Carleson-Chang [4], Flucher [6], and Lin [13] proved that $T M(\Omega, \alpha)$ is attained for any $0<\alpha \leq \alpha_{N}$.

On domains with infinite volume, for example on the whole space \mathbb{R}^{N}, the Trudinger-Moser inequality does not hold as it is. However,

[^0]several variants are known on the whole space. In the following, let
$$
\Phi_{N}(t)=e^{t}-\sum_{j=0}^{N-2} \frac{t^{j}}{j!}
$$
denote the truncated exponential function.
First, Ogawa [20], Ogawa-Ozawa [21], Cao [3], Ozawa [23], and Adachi-Tanaka [1] proved that the following inequality holds true, which we call Adachi-Tanaka type Trudinger-Moser inequality:
\[

A(N, \alpha)=\sup _{\substack{u \in W 1, N\left(\mathbb{R}^{N}\right) \backslash\{0\}
\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1}} \frac{1}{\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) d x $$
\begin{cases}<\infty, & \alpha<\alpha_{N} \\ =\infty, & \alpha \geq \alpha_{N}\end{cases}
$$
\]

The inequality enjoys the scale invariance under the scaling $u(x) \mapsto$ $u_{\lambda}(x)=u(\lambda x)$ for $\lambda>0$. Note that the critical exponent $\alpha=\alpha_{N}$ is not allowed for the finiteness of the supremum. Recently, it is proved that $A(N, \alpha)$ is attained for any $\alpha \in\left(0, \alpha_{N}\right)$ by Ishiwata-Nakamura-Wadade [10] and Dong-Lu [5]. In this sense, Adachi-Tanaka type TrudingerMoser inequality has a subcritical nature of the problem.

On the other hand, Ruf [26] and Li-Ruf [15] proved that the following inequality holds true:

$$
B(N, \alpha)=\sup _{\substack{u \in W^{1, N}\left(\mathbb{R}^{N}\right) \\\|u\|_{W^{1, N}}\left(\mathbb{R}^{N}\right) \leq 1}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) d x \begin{cases}<\infty, & \alpha \leq \alpha_{N}, \\ =\infty, & \alpha>\alpha_{N}\end{cases}
$$

Here $\|u\|_{W^{1, N}\left(\mathbb{R}^{N}\right)}=\left(\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}+\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}\right)^{1 / N}$ is the full Sobolev norm. Note that the scale invariance $\left(u \mapsto u_{\lambda}\right)$ does not hold for this inequality. Also note that the critical exponent $\alpha=\alpha_{N}$ is permitted to the finiteness.

Concerning the attainability of $B(N, \alpha)$, the following facts have been proved:

- If $N \geq 3$, then $B(N, \alpha)$ is attained for $0<\alpha \leq \alpha_{N}$ [26].
- If $N=2$, then there exists $\alpha_{*}>0$ such that $B(2, \alpha)$ is attained for $\alpha_{*}<\alpha \leq \alpha_{2}(=4 \pi)$ [26], [9].
- If $N=2$ and $\alpha>0$ is sufficiently small, then $B(2, \alpha)$ is not attained. [9].
The non-attainability of $B(2, \alpha)$ for α sufficiently small is attributed to the non-compactness of "vanishing" maximizing sequences, as described in [9].

In the following, we focus our attention on the fractional Sobolev spaces.

Let $s \in(0,1), p \in[1,+\infty)$ and let $\Omega \subset \mathbb{R}^{N}$ be a bounded Lipschitz domain. For $s>0$, let us consider the space

$$
L_{s}\left(\mathbb{R}^{N}\right)=\left\{u \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} \frac{|u|}{1+|x|^{N+s}} d x<\infty\right\}
$$

For $u \in L_{s}\left(\mathbb{R}^{N}\right)$, we define the fractional Laplacian $(-\Delta)^{s / 2} u$ as follows: First, for $\phi \in \mathcal{S}\left(\mathbb{R}^{N}\right)$, the rapidly decreasing functions on $\mathbb{R}^{N},(-\Delta)^{s / 2} \phi$ is defined via the normalized Fourier transform \mathcal{F} as $(-\Delta)^{s / 2} \phi(x)=$ $\mathcal{F}^{-1}\left(|\xi|^{s} \mathcal{F} \phi(\xi)\right)(x)$ for $x \in \mathbb{R}^{N}$. Then for $u \in L_{s}\left(\mathbb{R}^{N}\right),(-\Delta)^{s / 2} u$ is defined as the element of $\mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$, the tempered distributions on \mathbb{R}^{N}, by the relation

$$
\left\langle\phi,(-\Delta)^{s / 2} u\right\rangle=\left\langle(-\Delta)^{s / 2} \phi, u\right\rangle=\int_{\mathbb{R}}(-\Delta)^{s / 2} \phi \cdot u d x, \quad \phi \in \mathcal{S}\left(\mathbb{R}^{N}\right) .
$$

Note that $L^{p}\left(\mathbb{R}^{N}\right) \subset L_{s}\left(\mathbb{R}^{N}\right)$ for any $p \geq 1$. Also note that it could happen $\operatorname{supp}\left((-\Delta)^{s / 2} u\right) \not \subset \Omega$ even if $\operatorname{supp}(u) \subset \Omega$ for some open set Ω in \mathbb{R}^{N}.

By using the above notion, we define the Bessel potential space $H^{s, p}(\Omega)$ for a (possibly unbounded) set $\Omega \subset \mathbb{R}^{N}$ as

$$
\begin{aligned}
H^{s, p}\left(\mathbb{R}^{N}\right) & =\left\{u \in L^{p}\left(\mathbb{R}^{N}\right):(-\Delta)^{s / 2} u \in L^{p}\left(\mathbb{R}^{N}\right)\right\}, \\
\tilde{H}^{s, p}(\Omega) & =\left\{u \in H^{s, p}\left(\mathbb{R}^{N}\right): u \equiv 0 \quad \text { on } \mathbb{R}^{N} \backslash \Omega\right\} .
\end{aligned}
$$

On the other hand, the Sobolev-Slobodeckij space $W^{s, p}\left(\mathbb{R}^{N}\right)$ is defined as

$$
\begin{aligned}
W^{s, p}\left(\mathbb{R}^{N}\right) & =\left\{u \in L^{p}\left(\mathbb{R}^{N}\right):[u]_{W^{s, p}\left(\mathbb{R}^{N}\right)}<\infty\right\}, \\
{[u]_{W^{s, p}\left(\mathbb{R}^{N}\right)}^{p} } & =\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y,
\end{aligned}
$$

and for a bounded domain $\Omega \subset \mathbb{R}^{N}$, we define

$$
\tilde{W}^{s, p}(\Omega)={\overline{C_{c}^{\infty}(\Omega)}}^{\|\cdot\|_{W^{s, p}\left(\mathbb{R}^{N}\right)}}
$$

where $\|u\|_{W^{s, p}\left(\mathbb{R}^{N}\right)}=\left(\|u\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p}+[u]_{W^{s, p}\left(\mathbb{R}^{N}\right)}^{p}\right)^{1 / p}$. It is known that

$$
\tilde{W}^{s, p}(\Omega)=\left\{u \in W^{s, p}\left(\mathbb{R}^{N}\right): u \equiv 0 \quad \text { on } \mathbb{R}^{N} \backslash \Omega\right\}
$$

if Ω is a Lipschitz domain and $H^{s, p}\left(\mathbb{R}^{N}\right)=F_{p, 2}^{s}\left(\mathbb{R}^{N}\right)$ (Triebel-Lizorkin space), $W^{s, p}\left(\mathbb{R}^{N}\right)=B_{p, p}^{s}\left(\mathbb{R}^{N}\right)$ (Besov space). Thus $H^{s, 2}\left(\mathbb{R}^{N}\right)=W^{s, 2}\left(\mathbb{R}^{N}\right)$, however in general, $H^{s, p}\left(\mathbb{R}^{N}\right) \neq W^{s, p}\left(\mathbb{R}^{N}\right)$ for $p \neq 2$. See [25], [11] and the references therein.

Recently, Martinazzi [17] (see also [12]) proved a fractional TrudingerMoser type inequality on $\tilde{H}^{s, p}(\Omega)$ as follows: Let $p \in(1, \infty)$ and
$s=N / p$ for $N \in \mathbb{N}$. Then for any open $\Omega \subset \mathbb{R}^{N}$ with $|\Omega|<\infty$, it holds

$$
\sup _{\substack{u \in \tilde{H}, s(\Omega) \\\left\|(-\Delta)^{/ 2}, u^{2}\right\|_{L p}(\Omega) \leq 1}} \frac{1}{|\Omega|} \int_{\Omega} \exp \left(\alpha|u|^{\frac{p}{p-1}}\right) d x \begin{cases}<\infty, & \alpha \leq \alpha_{N, p}, \\ =\infty, & \alpha>\alpha_{N, p} .\end{cases}
$$

Here $\alpha_{N, p}=\frac{N}{\omega_{N-1}}\left(\frac{\Gamma((N-s) / 2)}{\Gamma(s / 2) 2^{s} \pi^{N / 2}}\right)^{-p /(p-1)}$.
We note that, differently from the classical case, the attainability of the supremum is not known even for $N=1$ and $p=2$.

On the Sobolev-Slobodeckij spaces $\tilde{W}^{s, p}(\Omega)$ with $s p=N$, similar fractional Trudinger-Moser inequality is also proved by Parini-Ruf [25] when $N \geq 2$ and Iula [11] when $N=1$. In this case, the result is weaker and the inequality holds true only for $0 \leq \alpha<\alpha_{N, p}^{*}$ for some (explicit) value $\alpha_{N, p}^{*}$. Also, it is not known the inequality holds or not when $\alpha=\alpha_{N, p}^{*}$.

In the following, we are interested in the simplest one dimensional case, that is, we put $N=1, s=1 / 2$ and $p=2$. In this case, the Bessel potential space $H^{1 / 2,2}(\mathbb{R})$ coincides with the Sobolev-Slobodeckij space $W^{1 / 2,2}(\mathbb{R})$ and both seminorms are related as

$$
\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})}^{2}=\frac{1}{2 \pi}[u]_{W^{1 / 2,2}(\mathbb{R})}^{2},
$$

see Proposition 3.6. in [19]. Then the fractional Trudinger-Moser inequality in [17], [12] can be read as

Proposition 1. (A fractional Trudinger-Moser inequality on $\tilde{H}^{1 / 2,2}(I)$) Let $I \subset \mathbb{R}$ be an open bounded interval. Then it holds

$$
\sup _{\substack{u \in \tilde{H}^{1 / 2,2}(I) \\\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(I)} \leq 1}} \frac{1}{|I|} \int_{I} e^{\alpha|u|^{2}} d x \begin{cases}<\infty, & \alpha \leq \alpha_{1,2}=\pi \\ =\infty, & \alpha>\pi\end{cases}
$$

For the fractional Adachi-Tanaka type Trudinger-Moser inequality on the whole line, put

$$
\begin{equation*}
A(\alpha)=\sup _{\substack{u \in H^{1 / 2,2}(\mathbb{R}) \backslash\{0\} \\ \|(-\Delta)^{1 / 4} u_{L^{2}(\mathbb{R})} \leq 1}} \frac{1}{\|u\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x . \tag{1.1}
\end{equation*}
$$

Then by the precedent results by Ogawa-Ozawa [21] and Ozawa [23], it is known that $A(\alpha)<\infty$ for small exponent α.

On the other hand, it is already known a fractional Li-Ruf type Trudinger-Moser inequality on $H^{1 / 2,2}(\mathbb{R})$:

Proposition 2. (Iula-Maalaoui-Martinazzi [12])

$$
B(\alpha)=\sup _{\substack{u \in H^{1 / 2,2}(\mathbb{R}) \leq 1 \tag{1.2}\\\|u\|_{H^{1 / 2,2}(\mathbb{R})} \leq 1}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x \begin{cases}<\infty, & \alpha \leq \pi, \\ =\infty, & \alpha>\pi .\end{cases}
$$

Here

$$
\|u\|_{H^{1 / 2,2(\mathbb{R})}}=\left(\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})}^{2}+\|u\|_{L^{2}(\mathbb{R})}^{2}\right)^{1 / 2}
$$

is the full Sobolev norm on $H^{1 / 2,2}(\mathbb{R})$.
Concerning $A(\alpha)$ in (1.1), a natural question is that to what range of the exponent α the supremum is finite. As pointed out in [8], it remained an open problem for a while. In this paper, first we prove the finiteness of supremum in the full range of values of exponent.

Theorem 1. (Full range Adachi-Tanaka type on $H^{1 / 2,2}(\mathbb{R})$) We have

$$
A(\alpha)=\sup _{\substack{u \in H^{1 / 2,2}(\mathbb{R}) \backslash\{0\} \\\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})} \leq 1}} \frac{1}{\|u\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x . \begin{cases}<\infty, & \alpha<\pi \\ =\infty, & \alpha \geq \pi\end{cases}
$$

Ozawa [22] proved that the Adachi-Tanaka type Trudinger-Moser inequality is equivalent to the Gagliardo-Nirenberg type inequality, and he also proved an exact relation between the best constants of both inequalities. As a result, we have the next corollary.

Corollary 1. Set

$$
\beta_{0}=\limsup _{q \rightarrow \infty} \sup _{u \in H^{1 / 2,2(\mathbb{R}), u \neq 0}} \frac{\|u\|_{L^{q}(\mathbb{R})}}{q^{1 / 2}\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})}^{1-2 / q}\|u\|_{L^{2}(\mathbb{R})}^{2 / q}} .
$$

Then $\beta_{0}=(2 \pi e)^{-1 / 2}$.
Furthermore, we obtain the relation between the suprema of both critical and subcritical Trudinger-Moser type inequalities along the line of Lam-Lu-Zhang [14].

Theorem 2. (Relation) We have

$$
B(\pi)=\sup _{\alpha \in(0, \pi)} \frac{1-(\alpha / \pi)}{(\alpha / \pi)} A(\alpha) .
$$

Also we obtain how Adachi-Tanaka type supremum $A(\alpha)$ behaves when α tends to π.

Theorem 3. (Asymptotic behavior) There exist $C_{1}, C_{2}>0$ such that for any $\alpha<\pi$ which is close enough to π, it holds

$$
\frac{C_{1}}{1-\alpha / \pi} \leq A(\alpha) \leq \frac{C_{2}}{1-\alpha / \pi} .
$$

Note that the estimate from the above follows from Theorem 2 and Proposition 2. On the other hand, we will see that that the estimate from the below follows from a computation using the Moser sequence.

Concerning the existence of maximizers of Adachi-Tanaka type supremum $A(\alpha)$ in (1.1), we see

Theorem 4. (Attainability of $A(\alpha)) A(\alpha)$ is attained for any $\alpha \in$ $(0, \pi)$.

On the other hand, as for $B(\alpha)$ in (1.2), we have
Theorem 5. (Non-attainability of $B(\alpha))$ For $0<\alpha \ll 1, B(\alpha)$ is not attained.

It is plausible that there exists $\alpha_{*}>0$ such that $B(\alpha)$ is attained for $\alpha_{*}<\alpha \leq \pi$, but we do not have a proof up to now.

Finally, we improve the subcritical Adachi-Tanaka type inequality along the line of Dong-Lu [5]:

Theorem 6. For $\alpha>0$, set

$$
\begin{equation*}
E(\alpha)=\sup _{\substack{u \in H^{1 / 2,2(\mathbb{R}) \backslash(0)} \\\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})} \leq 1}} \frac{1}{\|u\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}} u^{2} e^{\alpha u^{2}} d x . \tag{1.3}
\end{equation*}
$$

Then we have

$$
E(\alpha) \begin{cases}<\infty, & \alpha<\pi \\ =\infty, & \alpha \geq \pi\end{cases}
$$

Furthermore, $E(\alpha)$ is attained for all $\alpha \in(0, \pi)$.
Since $e^{\alpha t^{2}}-1 \leq \alpha t^{2} e^{\alpha t^{2}}$ for $t \in \mathbb{R}$, Theorem 6 extends Theorem 1. In the classical case, Dong-Lu used a rearrangement technique to reduce the problem to one-dimension and obtained the similar inequality by estimating a one-dimensional integral. The method is similar to [4]. In the fractional setting $H^{1 / 2,2}$, we cannot follow this argument and we need a new idea.

The organization of the paper is as follows: In section 2, we prove Theorem 1, 2, and 3. In section 3, we prove Theorem 4 and 5. In section 4, we prove Theorem 6.

2. Proof of Theorem 1, 2, and 3

For the proofs of Theorem 1, 2, and 3, we prepare several lemmas.
Lemma 1. Set

Then $\tilde{A}(\alpha)=A(\alpha)$ for any $\alpha>0$.
Proof. For any $u \in H^{1 / 2,2}(\mathbb{R}) \backslash\{0\}$ and $\lambda>0$, we put $u_{\lambda}(x)=u(\lambda x)$ for $x \in \mathbb{R}$. Then we have

$$
\left\{\begin{array}{l}
\left\|(-\Delta)^{1 / 4} u_{\lambda}\right\|_{L^{2}(\mathbb{R})}=\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})} \tag{2.2}\\
\left\|u_{\lambda}\right\|_{L^{2}(\mathbb{R})}^{2}=\lambda^{-1}\|u\|_{L^{2}(\mathbb{R})}^{2}
\end{array}\right.
$$

since

$$
\begin{aligned}
2 \pi\left\|(-\Delta)^{1 / 4} u_{\lambda}\right\|_{L^{2}(\mathbb{R})}^{2} & =\left[u_{\lambda}\right]_{W^{1 / 2,2}(\mathbb{R})}^{2} \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|u(\lambda x)-u(\lambda y)|^{2}}{|x-y|^{2}} d x d y \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|u(\lambda x)-u(\lambda y)|^{2}}{|\lambda x-\lambda y|^{2}} d(\lambda x) d(\lambda y) \\
& =[u]_{W^{1 / 2,2}(\mathbb{R})}^{2}=2 \pi\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})}^{2} .
\end{aligned}
$$

Thus for any $u \in H^{1 / 2,2}(\mathbb{R}) \backslash\{0\}$ with $\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})} \leq 1$, if we choose $\lambda=\|u\|_{L^{2}(\mathbb{R})}^{2}$, then $u_{\lambda} \in H^{1 / 2,2}(\mathbb{R})$ satisfies

$$
\left\|(-\Delta)^{1 / 4} u_{\lambda}\right\|_{L^{2}(\mathbb{R})} \leq 1 \quad \text { and } \quad\left\|u_{\lambda}\right\|_{L^{2}(\mathbb{R})}^{2}=1
$$

Thus

$$
\frac{1}{\|u\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x=\int_{\mathbb{R}}\left(e^{\alpha u_{\lambda}^{2}}-1\right) d x \leq \tilde{A}(\alpha)
$$

which implies $A(\alpha) \leq \tilde{A}(\alpha)$. The opposite inequality is trivial.
Lemma 2. For any $0<\alpha<\pi$, it holds

$$
A(\alpha) \leq \frac{(\alpha / \pi)}{1-(\alpha / \pi)} B(\pi)
$$

Proof. Choose any $u \in H^{1 / 2,2}(\mathbb{R})$ with $\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})} \leq 1$ and $\|u\|_{L^{2}(\mathbb{R})}=$ 1. Put $v(x)=C u(\lambda x)$ where $C^{2}=\alpha / \pi \in(0,1)$ and $\lambda=\frac{C^{2}}{1-C^{2}}$. Then
by scaling rules (2.2), we see

$$
\begin{aligned}
\|v\|_{H^{1 / 2,2}(\mathbb{R})}^{2} & =\left\|(-\Delta)^{1 / 4} v\right\|_{L^{2}(\mathbb{R})}^{2}+\|v\|_{L^{2}(\mathbb{R})}^{2} \\
& =C^{2}\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})}^{2}+\lambda^{-1} C^{2}\|u\|_{L^{2}(\mathbb{R})}^{2} \\
& \leq C^{2}+\lambda^{-1} C^{2}=1 .
\end{aligned}
$$

Also we have

$$
\begin{aligned}
\int_{\mathbb{R}}\left(e^{\pi v^{2}}-1\right) d x & =\int_{\mathbb{R}}\left(e^{\pi C^{2} u^{2}(\lambda x)}-1\right) d x \\
& =\lambda^{-1} \int_{\mathbb{R}}\left(e^{\pi C^{2} u^{2}(y)}-1\right) d y \\
& =\frac{1-C^{2}}{C^{2}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}(y)}-1\right) d y \\
& =\frac{1-(\alpha / \pi)}{(\alpha / \pi)} \int_{\mathbb{R}}\left(e^{\alpha u^{2}(y)}-1\right) d y .
\end{aligned}
$$

Thus testing $B(\pi)$ by v, we see

$$
B(\pi) \geq \int_{\mathbb{R}}\left(e^{\pi v^{2}}-1\right) d x \geq \frac{1-(\alpha / \pi)}{(\alpha / \pi)} \int_{\mathbb{R}}\left(e^{\alpha u^{2}(y)}-1\right) d y
$$

By taking the supremum for $u \in H^{1 / 2,2}(\mathbb{R})$ with $\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})} \leq 1$ and $\|u\|_{L^{2}(\mathbb{R})}=1$, we have

$$
B(\pi) \geq \frac{1-(\alpha / \pi)}{(\alpha / \pi)} \tilde{A}(\alpha)
$$

Finally, Lemma 1 implies the result.

Proof of Theorem 1: The assertion that $A(\alpha)<\infty$ for $\alpha<\pi$ follows from Lemma 2 and the fact $B(\pi)<\infty$ by Proposition 2.

For the proof of $A(\pi)=\infty$, we use the Moser sequence

$$
u_{\varepsilon}= \begin{cases}(\log (1 / \varepsilon))^{1 / 2}, & \text { if }|x|<\varepsilon, \tag{2.3}\\ \log (1 /|x|) \\ (\log (1 / \varepsilon))^{1 / 2} & \text { if } \varepsilon<|x|<1, \\ 0, & \text { if } 1 \leq|x|,\end{cases}
$$

and its estimates

$$
\begin{align*}
& \left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}=\pi+o(1) \tag{2.4}\\
& \left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2} \leq \pi\left(1+(C \log (1 / \varepsilon))^{-1}\right) \tag{2.5}\\
& \left\|u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}=O\left((\log (1 / \varepsilon))^{-1}\right) \tag{2.6}
\end{align*}
$$

as $\varepsilon \rightarrow 0$ for some $C>0$. Note $u_{\varepsilon} \in \tilde{W}^{1 / 2,2}((-1,1)) \subset W^{1 / 2,2}(\mathbb{R})=$ $H^{1 / 2,2}(\mathbb{R})$. For the estimate (2.4), we refer to Iula [11] Proposition 2.2. For the estimate (2.5), we refer to [11] equation (35). Actually, after a careful look of the proof of Proposition 2.2 in [11], we confirm that

$$
\lim _{\varepsilon \rightarrow 0}(\log (1 / \varepsilon))\left(\left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}-\pi\right) \leq C
$$

for a positive $C>0$, which implies (2.5). For (2.6), we compute

$$
\begin{aligned}
\left\|u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2} & =\int_{|x| \leq \varepsilon}(\log (1 / \varepsilon)) d x+\int_{\varepsilon<|x| \leq 1}\left(\frac{\log (1 /|x|)}{(\log (1 / \varepsilon))^{1 / 2}}\right)^{2} d x \\
& =2 \varepsilon \log (1 / \varepsilon)+\frac{2}{\log (1 / \varepsilon)} \int_{\log (1 / \varepsilon)}^{0} t^{2}\left(-e^{t}\right) d x \\
& =2 \varepsilon \log (1 / \varepsilon)+\frac{2}{\log (1 / \varepsilon)}(\Gamma(3)+o(1))
\end{aligned}
$$

as $\varepsilon \rightarrow 0$. Thus we obtain (2.6).
By testing $A(\pi)$ by $v_{\varepsilon}=u_{\varepsilon} /\left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}$, we have

$$
\begin{aligned}
A(\pi) & \geq \frac{1}{\left\|v_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\pi v_{\varepsilon}^{2}}-1\right) d x \\
& \geq \frac{\left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}}{\left\|u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}} \int_{|x| \leq \varepsilon}\left(e^{\pi v_{\varepsilon}^{2}}-1\right) d x \\
& \geq \frac{\left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}}{\left\|u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}} \varepsilon \exp \left(\pi \frac{\log (1 / \varepsilon)}{\left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}}\right) \\
& \geq \frac{\left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}}{\left\|u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}} \varepsilon \exp \left(\frac{\log (1 / \varepsilon)}{1+(C \log (1 / \varepsilon))^{-1}}\right)
\end{aligned}
$$

since $e^{t}-1 \geq(1 / 2) e^{t}$ for t large and (2.5). Also since

$$
\frac{t}{1+\frac{1}{C t}}-t=\frac{-1 / C}{1+\frac{1}{C t}} \rightarrow-\frac{1}{C} \quad \text { as } t \rightarrow \infty
$$

we see $\frac{t}{1+\frac{1}{C t}}=t-1 / C+o(1)$ as $t \rightarrow \infty$. Put $t=\log (1 / \varepsilon)$, we see $\exp \left(\frac{\log (1 / \varepsilon)}{1+(C \log (1 / \varepsilon))^{-1}}\right)=\exp (\log (1 / \varepsilon)-1 / C+o(1))=(1 / \varepsilon) e^{-1 / C+o(1)}$,
which leads to

$$
\varepsilon \exp \left(\frac{\log (1 / \varepsilon)}{1+(C \log (1 / \varepsilon))^{-1}}\right) \geq e^{-1 / C+o(1)} \geq \delta>0
$$

for some $\delta>0$ independent of $\varepsilon \rightarrow 0$. Therefore, by (2.4), (2.5), (2.6), we have for $\delta^{\prime}>0$

$$
A(\pi) \geq \frac{\pi+o(1)}{(C \log (1 / \varepsilon)))^{-1}} \delta \geq \delta^{\prime}(\log (1 / \varepsilon)) \rightarrow \infty
$$

as $\varepsilon \rightarrow 0$. This proves $A(\pi)=\infty$.
Proof of Theorem 2: By Lemma 2, we have

$$
B(\pi) \geq \sup _{\alpha \in(0, \pi)} \frac{1-(\alpha / \pi)}{(\alpha / \pi)} A(\alpha)
$$

Let us prove the opposite inequality. Let $\left\{u_{n}\right\} \subset H^{1 / 2,2}(\mathbb{R}), u_{n} \neq 0$, $\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}+\left\|u_{n}\right\|_{L^{2}(\mathbb{R})}^{2} \leq 1$, be a maximizing sequence of $B(\pi)$. We may assume $\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}<1$ for any $n \in \mathbb{N}$. Put

$$
\left\{\begin{array}{l}
v_{n}(x)=\frac{u_{n}\left(\lambda_{n} x\right)}{\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}}, \quad(x \in \mathbb{R}) \\
\lambda_{n}=\frac{1-\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}}{\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}}>0
\end{array}\right.
$$

Thus by (2.2), we see

$$
\begin{aligned}
& \left\|(-\Delta)^{1 / 4} v_{n}\right\|_{L^{2}(\mathbb{R})}^{2}=1 \\
& \left\|v_{n}\right\|_{L^{2}(\mathbb{R})}^{2}=\frac{\lambda_{n}^{-1}}{\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}}\left\|u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}=\frac{\left\|u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}}{1-\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}} \leq 1
\end{aligned}
$$

since $\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}+\left\|u_{n}\right\|_{L^{2}(\mathbb{R})}^{2} \leq 1$. Thus, setting $\alpha_{n}=\pi\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}<$ π for any $n \in \mathbb{N}$, we may test $A\left(\alpha_{n}\right)$ by $\left\{v_{n}\right\}$, which results in

$$
\begin{aligned}
B(\pi)+o(1) & =\int_{\mathbb{R}}\left(e^{\pi u_{n}^{2}(y)}-1\right) d y \\
& =\lambda_{n} \int_{\mathbb{R}}\left(e^{\pi\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})}^{2} v_{n}^{2}(x)}-1\right) d x \\
& \leq \lambda_{n} \frac{1}{\left\|v_{n}\right\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\alpha_{n} v_{n}^{2}(x)}-1\right) d x \\
& \leq \lambda_{n} A\left(\alpha_{n}\right)=\frac{1-\left(\alpha_{n} / \pi\right)}{\left(\alpha_{n} / \pi\right)} A\left(\alpha_{n}\right) \\
& \leq \sup _{\alpha \in(0, \pi)} \frac{1-(\alpha / \pi)}{(\alpha / \pi)} A(\alpha) .
\end{aligned}
$$

Here we have used a change of variables $y=\lambda_{n} x$ for the second equality, and $\left\|v_{n}\right\|_{L^{2}(\mathbb{R})}^{2} \leq 1$ for the first inequality. Letting $n \rightarrow \infty$, we have the desired result.

Proof of Theorem 3:
We need to prove that there exists $C_{1}>0$ such that for any $\alpha<\pi$ which is sufficiently close to π, it holds that

$$
A(\alpha) \geq \frac{C_{1}}{1-\alpha / \pi}
$$

Again we use the Moser sequence (2.3) and we test $A(\alpha)$ by $v_{\varepsilon}=$ $u_{\varepsilon} /\left\|(-\Delta)^{1 / 4} u_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}$. As in the similar calculations in the proof of Theorem 1, we have

$$
\begin{aligned}
A(\alpha) & \geq \frac{1}{\left\|v_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\alpha v_{\varepsilon}^{2}}-1\right) d x \\
& \geq \frac{(1 / 2)}{\left\|v_{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}} \int_{|x| \leq \varepsilon} e^{\alpha v_{\varepsilon}^{2}} d x \\
& \geq C \varepsilon(\log (1 / \varepsilon)) \exp \left(\frac{\alpha}{\pi} \frac{\log (1 / \varepsilon)}{1+(C \log (1 / \varepsilon))^{-1}}\right) \\
& =C \varepsilon(\log (1 / \varepsilon)) \exp \left(\delta_{\varepsilon} \log (1 / \varepsilon)\right)
\end{aligned}
$$

where we put $\delta_{\varepsilon}=\left(\frac{\alpha}{\pi}\right) \frac{1}{1+(C \log (1 / \varepsilon))^{-1}} \in(0,1)$.
Now, for $\alpha<\pi$ which is sufficiently close to π, we fix $\varepsilon>0$ small such that

$$
\begin{equation*}
\frac{1}{1-\alpha / \pi} \leq \log (1 / \varepsilon) \leq \frac{2}{1-\alpha / \pi} \tag{2.7}
\end{equation*}
$$

which implies

$$
\exp \left(-\frac{2}{1-\alpha / \pi}\right) \leq \varepsilon \leq \exp \left(-\frac{1}{1-\alpha / \pi}\right)
$$

With this choice of $\varepsilon>0$, we have

$$
\begin{align*}
A(\alpha) & \geq C \varepsilon(\log (1 / \varepsilon)) \exp \left(\delta_{\varepsilon} \log (1 / \varepsilon)\right) \\
& =C \varepsilon(\log (1 / \varepsilon))(1 / \varepsilon)^{\delta_{\varepsilon}}=C \varepsilon^{1-\delta_{\varepsilon}}(\log (1 / \varepsilon)) . \tag{2.8}
\end{align*}
$$

Now, we estimate that

$$
\begin{aligned}
\varepsilon^{1-\delta_{\varepsilon}} & \geq\left(\exp \left(-\frac{2}{1-\alpha / \pi}\right)\right)^{1-\delta_{\varepsilon}}=\exp \left(-\frac{2}{1-\alpha / \pi}\left(1-\delta_{\varepsilon}\right)\right) \\
& =\exp \left(-\left(\frac{2}{1-\alpha / \pi}\right)\left\{(1-\alpha / \pi)+(\alpha / \pi)\left(1-\frac{1}{1+(C \log 1 / \varepsilon)^{-1}}\right)\right\}\right) \\
& =\exp \left(-2-\left(\frac{2(\alpha / \pi)}{1-\alpha / \pi}\right)\left(\frac{1}{1+C \log 1 / \varepsilon}\right)\right) \\
& \geq \exp \left(-2-\left(\frac{2(\alpha / \pi)}{1-\alpha / \pi}\right)\left(\frac{1}{1+\frac{C}{1-\alpha / \pi}}\right)\right) \\
& =e^{-2} \cdot e^{-\frac{2(\alpha / \pi)}{C+1-\alpha / \pi}}=e^{-2} \cdot e^{-f(\alpha / \pi)}
\end{aligned}
$$

where $f(t)=\frac{2 t}{C+1-t}$ for $t \in[0,1]$ and we have used (2.7) in the last inequality. We easily see that $f(0)=0, f^{\prime}(t)=\frac{2(C+1)}{(C+1-t)^{2}}>0$ for $t>0$, thus $f(t)$ is strictly increasing in t and $\max _{t \in[0,1]} f(t)=f(1)=2 / C$. Thus we have

$$
\varepsilon^{1-\delta_{\varepsilon}} \geq e^{-2} \cdot e^{-2 / C}=: C_{0}
$$

which is independent of α. Backing to (2.8) with (2.7), we observe that

$$
A(\alpha) \geq C \varepsilon^{1-\delta_{\varepsilon}}(\log (1 / \varepsilon)) \geq C C_{0}(\log (1 / \varepsilon)) \geq \frac{C C_{0}}{1-\alpha / \pi}
$$

which proves the result.

3. Proof of Theorem 4 and 5

For $u \in H^{1 / 2,2}(\mathbb{R})$, u^{*} will denote its symmetric decreasing rearrangement defined as follows: For a measurable set $A \subset \mathbb{R}$, let A^{*} denote an open interval $A^{*}=(-|A| / 2,|A| / 2)$. We define u^{*} by

$$
u^{*}(x)=\int_{0}^{\infty} \chi_{\{y \in \mathbb{R}:|u(y)|>t\}^{*}}(x) d t
$$

where χ_{A} denote the indicator function of a measurable set $A \subset \mathbb{R}$. Note that u^{*} is nonnegative, even, and decreasing on the positive line $\mathbb{R}_{+}=[0,+\infty)$. It is known that

$$
\begin{equation*}
\int_{\mathbb{R}} F\left(u^{*}\right) d x=\int_{\mathbb{R}} F(|u|) d x \tag{3.1}
\end{equation*}
$$

for any nonnegative measurable function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, which is the difference of two monotone increasing functions F_{1}, F_{2} with $F_{1}(0)=$
$F_{2}(0)=0$ such that either $F_{1} \circ|u|$ or $F_{2} \circ|u|$ is integrable. Also the inequality of Pólya-Szegö type

$$
\int_{\mathbb{R}}\left|\left(-\Delta u^{*}\right)^{1 / 4}\right|^{2} d x \leq \int_{\mathbb{R}}\left|(-\Delta u)^{1 / 4}\right|^{2} d x
$$

holds true for $u \in H^{1 / 2,2}(\mathbb{R})$, see for example, [2] and [16].
Remark 1. Note that Radial Compactness Lemma by Strauss [27] is violated on \mathbb{R}. More precisely, let

$$
H_{r a d}^{1 / 2,2}(\mathbb{R})=\left\{u \in H^{1 / 2,2}(\mathbb{R}): u(x)=u(-x), x \geq 0\right\}
$$

then $H_{\text {rad }}^{1 / 2,2}(\mathbb{R})$ cannot be embedded compactly in $L^{q}(\mathbb{R})$ for any $q>0$. To see this, let $\psi \neq 0$ be an even function in $C_{c}^{\infty}(\mathbb{R})$ with $\operatorname{supp}(\psi) \subset$ $(-1,1)$ and put $u_{n}(x)=\psi(x-n)+\psi(x+n)$. Then we see u_{n} is even, compactly supported smooth function, and $u_{n} \rightharpoonup 0$ weakly in $H^{1 / 2,2}(\mathbb{R})$ as $n \rightarrow \infty$. But $\left\{u_{n}\right\}$ does not have any strong convergent subsequence in $L^{q}(\mathbb{R})$, because $\left\|u_{n}\right\|_{L^{q}(\mathbb{R})}^{q}=2\|\psi\|_{L^{q}(\mathbb{R})}^{q}>0$ for any n sufficient large.

However, for a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset H^{1 / 2,2}(\mathbb{R})$ with u_{n} even, nonnegative and decreasing on \mathbb{R}_{+}, we have the following compactness result.

Proposition 3. Assume $\left\{u_{n}\right\} \subset H^{1 / 2,2}(\mathbb{R})$ be a sequence such that u_{n} is even, nonnegative and decreasing on \mathbb{R}_{+}. Let $u_{n} \rightharpoonup u$ weakly in $H^{1 / 2,2}(\mathbb{R})$. Then $u_{n} \rightarrow u$ strongly in $L^{q}(\mathbb{R})$ for any $q \in(2,+\infty)$ for a subsequence.

Proof. Since $\left\{u_{n}\right\} \subset H^{1 / 2,2}(\mathbb{R})$ is a weakly convergent sequence, we have $\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{H^{1 / 2,2}(\mathbb{R})} \leq C$ for some $C>0$. We also have $u_{n}(x) \rightarrow$ $u(x)$ a.e $x \in \mathbb{R}$ for a subsequence, thus u is even, nonnegative and decreasing on \mathbb{R}_{+}. Now, we use the estimate below, which is referred to a Simple Radial Lemma: If $u \in L^{2}(\mathbb{R})$ is even, nonnegative and decreasing on \mathbb{R}_{+}, then it holds

$$
\begin{equation*}
u^{2}(x) \leq \frac{1}{2|x|} \int_{-|x|}^{|x|} u^{2}(y) d y \leq \frac{1}{2|x|}\|u\|_{L^{2}(\mathbb{R})}^{2} \quad(x \neq 0) . \tag{3.2}
\end{equation*}
$$

Thus $u_{n}^{2}(x) \leq \frac{C}{2|x|}$ for $x \neq 0$ by $\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{H^{1 / 2,2}(\mathbb{R})} \leq C$ and $u^{2}(x) \leq$ $\frac{C}{2|x|}$ by the pointwise convergence. Now, set $v_{n}=\left|u_{n}-u\right|^{q}$ for $q>2$.

Then we see $v_{n}(x) \rightarrow 0$ a.e. $x \in \mathbb{R}$. Moreover,

$$
\begin{aligned}
\int_{|x| \geq R}\left|u_{n}-u\right|^{q} d x & =2 \int_{R}^{\infty}\left|u_{n}-u\right|^{q} d x \\
& \leq 2^{q}\left(\int_{R}^{\infty}\left|u_{n}\right|^{q} d x+\int_{R}^{\infty}|u|^{q} d x\right) \\
& \leq C \int_{R}^{\infty} \frac{d x}{|x|^{q / 2}}=\frac{C R^{1-q / 2}}{(q / 2)-1} \rightarrow 0
\end{aligned}
$$

as $R \rightarrow \infty$ since $q>2$. Thus $\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is uniformly integrable. Also by [19] Theorem 6.9, we know that

$$
H^{1 / 2,2}(\mathbb{R}) \subset L^{q_{0}}(\mathbb{R}) \quad \text { for any } q_{0} \geq 2 \text { and } \quad\|u\|_{L^{q_{0}}(\mathbb{R})} \leq C\|u\|_{H^{1 / 2,2}(\mathbb{R})}
$$

For any $q>2$, take q_{0} such that $2<q<q_{0}<\infty$. Since $u_{n}-u$ is uniformly bounded in $H^{1 / 2,2}(\mathbb{R})$, we have $\left\|u_{n}-u\right\|_{L^{q_{0}}(\mathbb{R})} \leq C$, and

$$
\int_{I} v_{n} d x=\int_{I}\left|u_{n}-u\right|^{q} d x \leq\left(\int_{I}\left|u_{n}-u\right|^{q_{0}} d x\right)^{q / q_{0}}|I|^{1-q / q_{0}}
$$

for any bounded measurable set $I \subset \mathbb{R}$. Therefore $\int_{I} v_{n} d x \rightarrow 0$ if $|I| \rightarrow 0$, which implies $\left\{v_{n}\right\}$ is uniformly absolutely continuous. Thus by Vitali's Convergence Theorem (see for example, [7] p.187), we obtain $v_{n}=\left|u_{n}-u\right|^{q} \rightarrow 0$ strongly in $L^{1}(\mathbb{R})$, which is the desired conclusion.

Proposition 4. Assume $\left\{u_{n}\right\} \subset H^{1 / 2,2}(\mathbb{R})$ be a sequence with $\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})} \leq$ 1. Let $u_{n} \rightharpoonup u$ weakly in $H^{1 / 2,2}(\mathbb{R})$ for some u and assume u_{n} is even, nonnegative and decreasing on \mathbb{R}_{+}. Then we have

$$
\int_{\mathbb{R}}\left(e^{\alpha u_{n}^{2}}-1-\alpha u_{n}^{2}\right) d x \rightarrow \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1-\alpha u^{2}\right) d x
$$

for any $\alpha \in(0, \pi)$.
Proof. The similar proposition above is already appeared, see [10] Lemma 3.1, and [5] Lemma 5.5. We prove it here for the reader's convenience.

Put $\Phi_{\alpha}(t)=e^{\alpha t^{2}}-1$ and $\Psi_{\alpha}(t)=e^{\alpha t^{2}}-1-\alpha t^{2}$. Note that $\Phi_{\alpha}(t)$ is nonnegative, strictly convex and $\Psi_{\alpha}^{\prime}(t)=2 \alpha t \Phi_{\alpha}(t)$. Thus by the mean value theorem, we have

$$
\begin{aligned}
\left|\Psi_{\alpha}\left(u_{n}\right)-\Psi_{\alpha}(u)\right| & \leq \Psi_{\alpha}^{\prime}\left(\theta u_{n}+(1-\theta) u\right)\left|u_{n}-u\right| \\
& \leq 2 \alpha\left|\theta u_{n}+(1-\theta) u\right| \Phi_{\alpha}\left(\theta u_{n}+(1-\theta) u\right)\left|u_{n}-u\right| \\
& \leq 2 \alpha\left(\left|u_{n}\right|+|u|\right)\left(\theta \Phi_{\alpha}\left(u_{n}\right)+(1-\theta) \Phi_{\alpha}(u)\right)\left|u_{n}-u\right| \\
& \leq 2 \alpha\left(\left|u_{n}\right|+|u|\right)\left(\Phi_{\alpha}\left(u_{n}\right)+\Phi_{\alpha}(u)\right)\left|u_{n}-u\right| .
\end{aligned}
$$

Thus we have
$\int_{\mathbb{R}}\left|\Psi_{\alpha}\left(u_{n}\right)-\Psi_{\alpha}(u)\right| d x \leq 2 \alpha \int_{\mathbb{R}}\left(\left|u_{n}\right|+|u|\right)\left(\Phi_{\alpha}\left(u_{n}\right)+\Phi_{\alpha}(u)\right)\left|u_{n}-u\right| d x$

$$
\begin{equation*}
\leq 2 \alpha\left\|\left|u_{n}\right|+|u|\right\|_{L^{a}(\mathbb{R})}\left\|\Phi_{\alpha}\left(u_{n}\right)+\Phi_{\alpha}(u)\right\|_{L^{b}(\mathbb{R})}\left\|u_{n}-u\right\|_{L^{c}(\mathbb{R})} \tag{3.3}
\end{equation*}
$$

by Hölder's inequality, where $a, b, c>1$ and $1 / a+1 / b+1 / c=1$ are chosen later.
First, direct calculation shows that

$$
\begin{equation*}
\left(\Phi_{\alpha}(t)\right)^{b}<e^{b \alpha t^{2}}-1 \quad(t \in \mathbb{R}) \tag{3.4}
\end{equation*}
$$

for all $b>1$. Thus if we fix $1<b<\pi / \alpha$ so that $b \alpha<\pi$ is realized, then we have

$$
\begin{aligned}
& \left\|\Phi_{\alpha}\left(u_{n}\right)+\Phi_{\alpha}(u)\right\|_{L^{b}(\mathbb{R})}^{b} \leq\left(\left\|\Phi_{\alpha}\left(u_{n}\right)\right\|_{L^{b}(\mathbb{R})}+\left\|\Phi_{\alpha}(u)\right\|_{L^{b}(\mathbb{R})}\right)^{b} \\
& \leq 2^{b-1}\left(\int_{\mathbb{R}}\left(\Phi_{\alpha}\left(u_{n}\right)\right)^{b} d x+\int_{\mathbb{R}}\left(\Phi_{\alpha}(u)\right)^{b} d x\right) \\
& \leq 2^{b-1}\left(\int_{\mathbb{R}}\left(e^{b \alpha u_{n}^{2}}-1\right) d x+\int_{\mathbb{R}}\left(e^{b \alpha u^{2}}-1\right) d x\right) \\
& \leq 2^{b-1} A(b \alpha)\left(\left\|u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}+\|u\|_{L^{2}(\mathbb{R})}^{2}\right),
\end{aligned}
$$

here we used (3.4) for the third inequality and Theorem 1 for the last inequality, the use of which is valid since $\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})} \leq 1$ and $\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})} \leq 1$ by the weak lower semicontinuity. Note that $\left\{u_{n}\right\}$ satisfies $\sup _{n \in \mathbb{N}}\left\|u_{n}\right\|_{H^{1 / 2,2}(\mathbb{R})} \leq C$ for some $C>0$. Thus we have obtained $\left\|\Phi_{\alpha}\left(u_{n}\right)+\Phi_{\alpha}(u)\right\|_{L^{b}(\mathbb{R})}=O(1)$ independent of n.

Next, we estimate the term $\left\|\left|u_{n}\right|+|u|\right\|_{L^{a}(\mathbb{R})}$. Since $\left\{u_{n}\right\}$ is a bounded sequence in $H^{1 / 2,2}(\mathbb{R})$, we have by [19] Theorem 6.9 that $\|u\|_{L^{q}(\mathbb{R})} \leq$ $C\left\|u_{n}\right\|_{H^{1 / 2,2}(\mathbb{R})}$ for any $q \geq 2$. Thus we see $\left\|\left|u_{n}\right|+|u|\right\|_{L^{a}(\mathbb{R})} \leq C$ for some $C>0$ independent of n for $a \geq 2$. Now, note that if we choose $1<b<\pi / \alpha$ and $a>2$ sufficiently large, then we can find $c>2$ such that $1 / a+1 / b+1 / c=1$.

By these choices and Proposition 3, we conclude that $\left\|u_{n}-u\right\|_{L^{c}(\mathbb{R})} \rightarrow$ 0 as $n \rightarrow \infty$. Backing to (3.3) with all together, we conclude that

$$
\int_{\mathbb{R}} \Psi_{\alpha}\left(u_{n}\right) d x \rightarrow \int_{\mathbb{R}} \Psi_{\alpha}(u) d x \quad(n \rightarrow \infty)
$$

which is the desired conclusion.
Now, we prove Theorem 4 . We will show that $A(\alpha)$ in (1.1) is attained for any $0<\alpha<\pi$. Since $A(\alpha)=\tilde{A}(\alpha)$ by Lemma 1 , we choose
a maximizing sequence for $\tilde{A}(\alpha)$:

$$
\int_{\mathbb{R}}\left(e^{\alpha u_{n}^{2}}-1\right) d x=A(\alpha)+o(1) \quad(n \rightarrow \infty)
$$

Here $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset H^{1 / 2,2}(\mathbb{R})$ satisfies $\left\|(-\Delta)^{1 / 4} u_{n}\right\|_{L^{2}(\mathbb{R})} \leq 1$ and $\left\|u_{n}\right\|_{L^{2}(\mathbb{R})}=$ 1. By appealing to the use of rearrangement, we may furthermore assume that u_{n} is nonnegative, even, and decreasing on \mathbb{R}_{+}. Since $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset H^{1 / 2,2}(\mathbb{R})$ is a bounded sequence, we have $u \in H^{1 / 2,2}(\mathbb{R})$ such that $u_{n} \rightharpoonup u$ in $H^{1 / 2,2}(\mathbb{R})$. By Proposition 4, we see

$$
\int_{\mathbb{R}}\left(e^{\alpha u_{n}^{2}}-1-\alpha u_{n}^{2}\right) d x=\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1-\alpha u^{2}\right) d x
$$

as $n \rightarrow \infty$. Therefore, since $\left\|u_{n}\right\|_{L^{2}(\mathbb{R})}^{2}=1$, we have, letting $n \rightarrow \infty$,

$$
\begin{equation*}
A(\alpha)=\alpha+\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1-\alpha u^{2}\right) d x \tag{3.5}
\end{equation*}
$$

Next, we claim that $A(\alpha)>\alpha$ for any $0<\alpha<\pi$. Indeed, take any $u_{0} \in H^{1 / 2,2}(\mathbb{R})$ such that $u_{0} \not \equiv 0,\left\|(-\Delta)^{1 / 4} u_{0}\right\|_{L^{2}(\mathbb{R})} \leq 1$ and $\left\|u_{0}\right\|_{L^{2}(\mathbb{R})}=$ 1. Then we have

$$
A(\alpha)=\tilde{A}(\alpha) \geq \int_{\mathbb{R}}\left(e^{\alpha u_{0}^{2}}-1\right) d x=\alpha+\int_{\mathbb{R}}\left(e^{\alpha u_{0}^{2}}-1-\alpha u_{0}^{2}\right) d x
$$

Now, since $e^{\alpha t^{2}}-1-\alpha t^{2}>0$ for any $t>0$, we have

$$
\int_{\mathbb{R}}\left(e^{\alpha u_{0}^{2}}-1-\alpha u_{0}^{2}\right) d x>0
$$

for $u_{0} \not \equiv 0$, which results in $A(\alpha)>\alpha$, the claim.
By the claim and (3.5), we conclude that the weak limit u satisfies $u \not \equiv 0$. By the weak lower semi continuity, we have $u \not \equiv 0$ satisfies $\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})} \leq 1$ and $\|u\|_{L^{2}(\mathbb{R})} \leq 1$. Thus by (3.5) again, we see

$$
\begin{aligned}
A(\alpha) & =\alpha+\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1-\alpha u^{2}\right) d x \\
& \leq \alpha+\frac{1}{\|u\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1-\alpha u^{2}\right) d x \\
& =\alpha+\frac{1}{\|u\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x-\alpha \frac{\|u\|_{L^{2}(\mathbb{R})}^{2}}{\|u\|_{L^{2}(\mathbb{R})}^{2}} \\
& =\frac{1}{\|u\|_{L^{2}(\mathbb{R})}^{2}} \int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x .
\end{aligned}
$$

Thus we have shown that $u \in H^{1 / 2,2}(\mathbb{R})$ maximizes $A(\alpha)$.

Next, we prove Theorem 5. We follow Ishiwata's argument in [9]. Let

$$
\begin{aligned}
& M=\left\{u \in H^{1 / 2,2}(\mathbb{R}):\|u\|_{H^{1 / 2,2}(\mathbb{R})}=1\right\} \\
& J_{\alpha}: M \rightarrow \mathbb{R}, \quad J_{\alpha}(u)=\int_{\mathbb{R}}\left(e^{\alpha u^{2}}-1\right) d x
\end{aligned}
$$

Actually, we will show a stronger claim that J_{α} has no critical point on M for sufficiently small $\alpha>0$. Assume the contrary that there exists a critical point $v \in M$ of J_{α} for small $\alpha>0$. Then we define an orbit on M through v as

$$
v_{\tau}(x)=\sqrt{\tau} v(\tau x) \quad \tau \in(0, \infty), \quad w_{\tau}=\frac{v_{\tau}}{\left\|v_{\tau}\right\|_{H^{1 / 2}}} \in M
$$

Note that $w_{1}=v$ thus it must be $\left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right)=0$. By scaling rules (2.2), we see for any $p \geq 2$,

$$
\left\|v_{\tau}\right\|_{L^{p}(\mathbb{R})}^{p}=\tau^{p / 2-1}\|v\|_{L^{p}(\mathbb{R})}^{p} \quad \text { and } \quad\left\|(-\Delta)^{1 / 4} v_{\tau}\right\|_{L^{2}(\mathbb{R})}=\tau\left\|(-\Delta)^{1 / 4} v\right\|_{L^{2}(\mathbb{R})} .
$$

Now, we see

$$
\begin{aligned}
& J_{\alpha}\left(w_{\tau}\right)=\int_{\mathbb{R}}\left(e^{\alpha w_{\tau}^{2}}-1\right) d x=\int_{\mathbb{R}} \sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{v_{\tau}^{2 j}(x)}{\left(\left\|v_{\tau}\right\|_{2}^{2}+\left\|(-\Delta)^{1 / 4} v_{\tau}\right\|_{2}^{2}\right)^{j}} \\
& =\sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{\left\|v_{\tau}\right\|_{2 j}^{2 j}}{\left(\left\|v_{\tau}\right\|_{2}^{2}+\left\|(-\Delta)^{1 / 4} v_{\tau}\right\|_{2}^{2}\right)^{j}}=\sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{\tau^{j-1}\|v\|_{2 j}^{2 j}}{\left(\|v\|_{2}^{2}+\tau\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}\right)^{j}} \\
& =\sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} f_{j}(\tau)
\end{aligned}
$$

where $f_{j}(\tau)=\frac{\tau^{j-1} c}{(b+\tau a)^{j}}$ with $a=\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}, b=\|v\|_{2}^{2}$ and $c=\|v\|_{2 j}^{2 j}$. Since

$$
f_{j}^{\prime}(\tau)=\frac{\tau^{j-2} c}{(b+\tau a)^{j+1}}\{-\tau a+(j-1) b\}
$$

and $\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}+\|v\|_{2}^{2}=1$, we calculate

$$
\begin{aligned}
& \left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right) \\
& =\sum_{j=1}^{\infty}\left[\frac{\alpha^{j}}{j!} \frac{\tau^{j-2}\|v\|_{2 j}^{2 j}}{\left(\|v\|_{2}^{2}+\tau\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}\right)^{j+1}}\left\{-\tau\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}+(j-1)\|v\|_{2}^{2}\right\}\right]_{\tau=1} \\
& \leq-\alpha\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}\|v\|_{2}^{2}+\sum_{j=2}^{\infty} \frac{\alpha^{j}}{(j-1)!}\|v\|_{2 j}^{2 j} \\
& =\alpha\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}\|v\|_{2}^{2}\left\{-1+\sum_{j=2}^{\infty} \frac{\alpha^{j-1}}{(j-1)!} \frac{\|v\|_{2 j}^{2 j}}{\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}\|v\|_{2}^{2}}\right\}
\end{aligned}
$$

Here, we need the following lemma:
Lemma 3. (Ogawa-Ozawa [21]) There exists $C>0$ such that for any $u \in H^{1 / 2,2}(\mathbb{R})$ and $p \geq 2$, it holds

$$
\|u\|_{L^{p}(\mathbb{R})}^{p} \leq C p^{p / 2}\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})}^{p-2}\|u\|_{L^{2}(\mathbb{R})}^{2} .
$$

For $p=2 j$, Lemma 3 implies

$$
\frac{\|v\|_{2 j}^{2 j}}{\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}\|v\|_{2}^{2}} \leq C(2 j)^{j} \underbrace{\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2 j-4}}_{\leq 1(j \geq 2)} \leq C(2 j)^{j}
$$

Thus for $0<\alpha \ll 1$ sufficiently small (it would be enough that $\alpha<1 /(2 e))$, Stirling's formula $j!\sim j^{j} e^{-j} \sqrt{2 \pi j}$ implies that

$$
\sum_{j=2}^{\infty} \frac{\alpha^{j-1}}{(j-1)!} \frac{\|v\|_{2 j}^{2 j}}{\left\|(-\Delta)^{1 / 4} v\right\|_{2}^{2}\|v\|_{2}^{2}} \leq \sum_{j=2}^{\infty} \frac{\alpha^{j-1}}{(j-1)!}(2 j)^{j} \leq \alpha C
$$

for some $C>0$ independent of α. Therefore we have $\left.\frac{d}{d \tau} J_{\alpha}\left(w_{\tau}\right)\right|_{\tau=1}<0$ for small α, which is a desired contradiction.

4. Proof of Theorem 6.

In order to prove Theorem 6, first we set

$$
\begin{equation*}
F(\beta)=\sup _{\substack{u \in H^{1 / 2,2(\mathbb{R})} \\\|u\|_{H^{1 / 2,2}(\mathbb{R})} \leq 1}} \int_{\mathbb{R}} u^{2} e^{\beta u^{2}} d x \tag{4.1}
\end{equation*}
$$

for $\beta>0$. Then we have
Proposition 5. We have $F(\beta)<\infty$ for $\beta<\pi$

Proof. We follow the proof of Theorem 1.5 in [12]. Take any $u \in$ $H^{1 / 2,2}(\mathbb{R})$ with $\|u\|_{H^{1 / 2,2}(\mathbb{R})} \leq 1$ in the admissible sets for $F(\beta)$ in (4.1). By appealing to the rearrangement, we may assume that u is even, nonnegative and decreasing on \mathbb{R}_{+}. We divide the integral

$$
\int_{\mathbb{R}} u^{2} e^{\beta u^{2}} d x=\int_{\mathbb{R} \backslash I} u^{2} e^{\beta u^{2}} d x+\int_{I} u^{2} e^{\beta u^{2}} d x=(I)+(I I),
$$

where $I=(-1 / 2,1 / 2)$.
First, we estimate (I). By the Radial Lemma (3.2), we see for any $k \in \mathbb{N}, k \geq 2$,

$$
u^{2 k}(x) \leq\left(\frac{\|u\|_{L^{2}(\mathbb{R})}^{2}}{2|x|}\right)^{k}=\frac{\|u\|_{L^{2}(\mathbb{R})}^{2 k}}{2^{k}} \frac{1}{|x|^{k}} \quad \text { for } \quad x \neq 0
$$

Thus

$$
\begin{aligned}
\int_{\mathbb{R} \backslash I} u^{2 k}(x) d x & \leq \frac{\|u\|_{L^{2}(\mathbb{R})}^{2 k}}{2^{k}} \int_{\mathbb{R} \backslash I} \frac{d x}{\overline{\left.x\right|^{k}}} \\
& =\frac{\|u\|_{L^{2}(\mathbb{R})}^{2 k}}{2^{k-1}} \int_{1 / 2}^{\infty} \frac{d x}{x^{k}}=\frac{\|u\|_{L^{2}(\mathbb{R})}^{2 k}}{k-1} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
(I) & =\int_{\mathbb{R} \backslash I} u^{2} e^{\beta u^{2}} d x=\int_{\mathbb{R} \backslash I} u^{2}\left(1+\sum_{k=1}^{\infty} \frac{\beta^{k} u^{2 k}}{k!}\right) d x \\
& =\int_{\mathbb{R} \backslash I} u^{2} d x+\sum_{k=2}^{\infty} \frac{\beta^{k-1}}{(k-1)!} \int_{\mathbb{R} \backslash I} u^{2 k} d x \\
& \leq\|u\|_{L^{2}(\mathbb{R})}^{2}+\sum_{k=2}^{\infty} \frac{\beta^{k-1}}{(k-1)!} \frac{\|u\|_{L^{2}(\mathbb{R})}^{2 k}}{k-1} \\
& =\|u\|_{L^{2}(\mathbb{R})}^{2}\left(1+\sum_{k=2}^{\infty} \frac{\beta^{k-1}}{(k-1)(k-1)!}\|u\|_{L^{2}(\mathbb{R})}^{2(k-1)}\right) .
\end{aligned}
$$

Now by the constraint $\|u\|_{H^{1 / 2,2}(\mathbb{R})} \leq 1$, we have $\|u\|_{L^{2}(\mathbb{R})} \leq 1$. Also if we put $a_{k}=\frac{\beta^{k-1}}{(k-1)(k-1)!}$, then $\sum_{k=2}^{\infty} a_{k}$ converges since $a_{k+1} / a_{k}=\beta \frac{k-1}{k^{2}} \rightarrow 0$ as $k \rightarrow \infty$. Thus we obtain

$$
(I) \leq 1+\sum_{k=2}^{\infty} \frac{\beta^{k-1}}{(k-1)(k-1)!} \leq C
$$

where $C>0$ is independent of $u \in H^{1 / 2,2}(\mathbb{R})$ with $\|u\|_{H^{1 / 2,2}(\mathbb{R})} \leq 1$.

Next, we estimate ($I I$). Set

$$
v(x)= \begin{cases}u(x)-u(1 / 2), & |x| \leq 1 / 2 \\ 0, & |x|>1 / 2\end{cases}
$$

Then by the argument of [12], we know that

$$
\begin{aligned}
& \left\|(-\Delta)^{1 / 4} v\right\|_{L^{2}(\mathbb{R})}^{2} \leq\left\|(-\Delta)^{1 / 4} u\right\|_{L^{2}(\mathbb{R})}^{2} \\
& u^{2}(x) \leq v^{2}(x)\left(1+\|u\|_{L^{2}(\mathbb{R})}^{2}\right)+2
\end{aligned}
$$

for $x \in I$. Put $w=v \sqrt{1+\|u\|_{L^{2}(\mathbb{R})}^{2}}$. Then we have $w \in \tilde{H}^{1 / 2,2}(I)$ since $v \equiv 0$ on $\mathbb{R} \backslash I$, and

$$
\begin{aligned}
& \left\|(-\Delta)^{1 / 4} w\right\|_{L^{2}(\mathbb{R})}^{2}=\left(1+\|u\|_{L^{2}(\mathbb{R})}^{2}\right)\left\|(-\Delta)^{1 / 4} v\right\|_{L^{2}(\mathbb{R})}^{2} \\
& \leq\left(1+\|u\|_{L^{2}(\mathbb{R})}^{2}\right)\left(1-\|u\|_{L^{2}(\mathbb{R})}^{2}\right) \leq 1 .
\end{aligned}
$$

Thus we may use the fractional Trudinger-Moser inequality (Proposition 1) to w to obtain

$$
\int_{I} e^{\pi w^{2}} d x \leq C
$$

for some $C>0$ independent of u. By $u^{2} \leq w^{2}+2$ on I, we conclude that

$$
\int_{I} e^{\pi u^{2}} d x \leq \int_{I} e^{\pi\left(w^{2}+2\right)} d x=e^{2 \pi} \int_{I} e^{\pi w^{2}} d x \leq C^{\prime}
$$

Now, since $\beta<\pi$, there is an absolute constant C_{0} such that $t^{2} e^{\beta t^{2}} \leq$ $C_{0} e^{\pi t^{2}}$ for any $t \in \mathbb{R}$. Finally, we obtain

$$
(I I)=\int_{I} u^{2} e^{\beta u^{2}} d x \leq C_{0} \int_{I} e^{\pi u^{2}} d x \leq C_{0} C^{\prime} .
$$

Proposition 5 follows from the estimates (I) and (II).
By using Proposition 5 and arguing as in the proof of Theorem 1 (after establishing the similar claims as in Lemma 1 and Lemma 2), it is easy to obtain the following Proposition:

Proposition 6. For any $0<\alpha<\beta<\pi$, we have

$$
E(\alpha) \leq\left(\frac{1}{1-\alpha / \beta}\right) F(\beta)
$$

Since $F(\beta)<\infty$ for any $\beta<\pi$, this proves the first part of Theorem 6. For the attainability of $E(\alpha)$ for $\alpha \in(0, \pi)$, it is enough to argue as in the proof of Theorem 4. We omit the details.

Acknowledgments.

Part of this work was supported by JSPS Grant-in-Aid for Scientific Research (B), No.15H03631, JSPS Grant-in-Aid for Challenging Exploratory Research, No. 26610030.

References

[1] S. Adachi, and K. Tanaka: A scale-invariant form of Trudinger-Moser inequality and its best exponent, Proc. Am. Math. Soc. 1102, (1999) 148-153.
[2] F. J. Almgren, Jr. and E. Lieb: Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), no. 4, 683-773.
[3] D. M. Cao: Nontrivial solution of semilinear elliptic equation with critical exponentin \mathbb{R}^{2}, Commun. Partial Differ. Equ. 17, (1992) 407-435.
[4] L. Carleson, and S.-Y.A. Chang: On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. 2(110), (1986) 113-127.
[5] M. Dong, and G. Lu: Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 88, 26 pp.
[6] M. Flucher: Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv. 67, (1992) 471-497.
[7] G. B. Folland: Real analysis. Modern techniques and their applications. Second edition, Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1999. xvi+386 pp.
[8] A. Iannizzotto, and M. Squassina: 1/2-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl. 414a (2014), no. 1, 372-385.
[9] M. Ishiwata: Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in \mathbb{R}^{N}, Math. Ann. 351, (2011) 781-804.
[10] M. Ishiwata, M. Nakamura and H. Wadade: On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincare Anal. Non Lineaire. 31 (2014), no. 2, 297-314.
[11] S. Iula: A note on the Moser-Trudinger inequality in Sobolev-Slobodeckij spaces in dimension one, arXiv:1610.00933v1 (2016)
[12] S. Iula, A. Maalaoui and L. Martinazzi: A fractional Moser-Trudinger type inequality in one dimension and its critical points, Differential Integral Equations 29 (2016), no. 5-6, 455-492.
[13] K. C. Lin: Extremal functions for Moser's inequality, Trans. Am. Math. Soc. 348, (1996) 2663-2671.
[14] N. Lam, G. Lu, and L. Zhang: Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities, arXiv:1504.04858v1 (2015)
[15] Y. Li, and B. Ruf: A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{n}, Indiana Univ. Math. J. 57, (2008) 451-480.
[16] E. Lieb, and M. Loss: Analysis (second edition), Graduate Studies in Mathematics, 14, Amer. Math. Soc. Providence, RI, (2001), xxii+346 pp.
[17] L. Martinazzi: Fractional Adams-Moser-Trudinger type inequalities, Nonlinear Anal. 127a (2015), 263-278.
[18] J. Moser: A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20, (1970) 1077-1092.
[19] E. Di Nezza, G. Palatucci, and E. Valdinoci: Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573.
[20] T. Ogawa: A proof of Trudinger's inequality and its application to nonlinear Schrodinger equation, Nonlinear Anal. 14, (1990) 765-769.
[21] T. Ogawa, and T. Ozawa: Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl. 155, (1991) 531-540.
[22] T. Ozawa: Characterization of Trudinger's inequality, J. Inequal. Appl. 1 (1997), no. 4, 369-374.
[23] T. Ozawa: On critical cases of Sobolev's inequalities, J. Funct. Anal. 127, (1995) 259-269.
[24] S. Pohozaev: The Sobolev embedding in the case $p l=n$, Proceedings of the Technical Scientic Conference on Advances of Scientic Research (1964/1965). Mathematics Section, Moskov. Energetics Institute, Moscow, (1965) 158-170.
[25] E. Parini, and B. Ruf: On the Moser-Trudinger inequality in fractional SobolevSlobodeckij spaces, arXiv:1607.07681v1 (2016)
[26] B. Ruf: A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{2}, J. Funct. Anal. 219, (2005) 340-367.
[27] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162.
[28] N. S. Trudinger: On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17, (1967) 473-483.
[29] V. I. Yudovich: Some estimates connected with integral operators and with solutions of elliptic equations, Dok. Akad. Nauk SSSR 138, (1961) 804-808.

Department of Mathematics, Osaka City University \& OCAMI, Sumiyoshiku, Osaka, 558-8585, Japan

E-mail address: futoshi@sci.osaka-cu.ac.jp

[^0]: Date: March 22, 2017.
 2010 Mathematics Subject Classification. Primary 35A23; Secondary 26D10.
 Key words and phrases. Trudinger-Moser inequality, fractional Sobolev spaces, maximizing problem.

