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Abstract. We consider the Hardy inequality onRN, the critical Hardy
inequality on a ball, and the Rellich inequality onRN. These three Hardy
type inequalities can be refined by adding remainder terms. Our remain-
der terms are expressed by a distance from the families of “virtual” ex-
tremals. A key ingredient is the critical Hardy inequality onRN which
was proved by Machihara, Ozawa, and Wadade [20].

1. Introduction

Let N ≥ 2 and 1< p < N. The Hardy inequality

(1.1)
∫
RN

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣p dx≥
(
N − p

p

)p ∫
RN

|u|p
|x|pdx

holds for allu ∈ D1,p(RN), whereD1,p(RN)) is the completion ofC∞0 (RN)
with respect to the norm∥∇ · ∥Lp(RN). The inequality (1.1) is also called the
Uncertainty Principle, and has many applications for the elliptic and the
parabolic equations with the singular potential (see [6], [4] etc.). In the
higher-order generalization of (1.1), for 2≤ k < kp< N, the inequality

(1.2) |u|pk,p ≥ Cp
k,p

∫
RN

|u|p
|x|kp

dx

holds for allu ∈ Dk,p(RN) (see [24], [9], [22]). Here we set

|u|pk,p =

∫
RN |∆mu|p dx if k = 2m,∫
RN |∇(∆mu)|p dx if k = 2m+ 1,

Ck,p =

p−2m∏m
j=1{N − 2p j}{N(p− 1)+ 2p( j − 1)} if k = 2m,

(N−p)
p2(m+1)

∏m
j=1 (N − (2 j + 1)p) {N(p− 1)+ (2 j − 1)p} if k = 2m+ 1,

for k,m ∈ N,m ≥ 1. For the sake of simplicity, we defineC0,p = 1 and
C1,p =

N−p
p .
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For (1.1), it is known that the constant (N−p
p )p is optimal, and equality of

(1.1) is not achieved unlessu ≡ 0. Furthermore, Cianchi-Ferone [8] pro-

vided a remainder term of (1.1) as follows: Letp∗ = Np
N−p, va(x) = a|x|−

N−p
p

for x ∈ RN, a ∈ R andLρ,σ(RN) (0 < ρ ≤ ∞,1 ≤ σ ≤ ∞) is the Lorentz
space. Then there exists a constantC = C(p,N) such that the inequality∫

RN
|∇u|pdx≥

(
N − p

p

)p ∫
RN

|u|p
|x|pdx

1+C

(
inf
a∈R

∥u− va∥Lp∗ ,∞(RN)

∥u∥Lp∗ ,p(RN)

)2p∗
(1.3)

holds for every real-valued weakly differentiable functionu in RN decaying
to zero at infinity with|∇u| ∈ Lp(RN).

This type remainder term expresses not only the absence of extremal of
(1.1), but also the cause of that. Indeed, the improved Hardy inequality (1.3)
says that if there exists a extremalu ∈ D1,p(RN) of (1.1), thenu = va for
somea ∈ R. Howeverva < D1,p(RN) (note thatva ∈ Lp∗,∞(RN)) which yields
a contradiction. Here we callva “virtual” extremal of (1.1). In the paper [8],
the proof of (1.3) is based on the rearrangement theory which is well suited
for the Hardy inequality (1.1). On the other hand, it is not suited for the
Rellich inequality (1.2). Therefore it seems difficult to obtain remainder
term of (1.2) by using same way as [8]. One of our aims is to provide a
remainder term of (1.2). Our method is quite different from theirs in [8]. In
our proofs, there are two key ingredients. One is the magical computation
via the transformation (3.1) (resp. (4.2)) using a virtual extremal of the
inequality (1.1) (resp. (1.2)). This idea was implicitly used in [21] or [6].
The other is the critical Hardy inequality on the whole space which was
proved by Machihara, Ozawa, and Wadade :∫

RN

| f (x) − f (R x
|x| )|β

|x|N| log R
|x| |α

dx≤
(
β

α − 1

)β ∫
RN

∣∣∣∣∇ f (x) · x
|x|

∣∣∣∣β
|x|N−β

∣∣∣∣log R
|x|

∣∣∣∣α−β dx.(1.4)

We call (1.4) Machihara-Ozawa-Wadade’s inequality (briefly, MOW in-
equality) in this paper. The crucial point of MOW inequality is taking away
its boundary valuef (R x

|x| ) from f (x) to weaken the singularity of the log-
arithmic term| log R

|x| |−α. Actually, its boundary value of MOW inequality
plays the role of virtual extremal for improvements of Hardy type inequali-
ties. Our main results are as follows:

Theorem 1. (Improved Hardy inequality onRN) Let 2 ≤ p < N. Set

va(x) := a|x|−
N−p

p for a ∈ R, x ∈ RN and

dH(u; R) :=

∫
RN

|u(x) − va(x)|p

|x|p| log R
|x| |p

dx


1
p

.
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Then there exists a constantC > 0 such that the inequality∫
RN

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣p dx−
(
N − p

p

)p ∫
RN

|u|p
|x|p dx≥ C sup

R>0
dH(u; R)p.(1.5)

holds for allu ∈ D1,p(RN), wherea = a(x,u,R) = R
N−p

p u
(
R x
|x|

)
.

Concerning improvement on a bounded domain, see [1], [6], [7], [11],
[14], to name a few.

Remark2. We can check that the distancedH(u; R) in Theorem 1 is well-
defined. Indeed, set

dH(u; R)p =

∫
BR/2(0)∪Bc

2R(0)
+

∫
B2R(0)\BR/2(0)

=: I1 + I2.

We see thatu(x) |x|
N−p

p ≤ C near |x| = 0, ∞, sinceu ∈ D1,p(RN) and the
Sobolev embeddingD1,p(RN) ↪→ L

Np
N−p (RN) holds. Thus we obtain

I1 =

∫
BR/2(0)∪Bc

2R(0)

∣∣∣∣u(x)|x|
N−p

p − a
∣∣∣∣p

|x|N| log R
|x| |p

dx≤
∫

BR/2(0)∪Bc
2R(0)

C

|x|N| log R
|x| |p

dx< ∞.

On the other hand, by the elementary inequality logx ≥ x−1
x for x ∈ [1,+∞)

and the mean value property we have

I2 ≤
(
2
R

)N ∫
B2R(0)\BR/2(0)

Rp
∣∣∣∣ u(x)|x|

N−p
p − u(R x

|x| )R
N−p

p

∣∣∣∣p
| |x| − R|p dx

≤ C
∫
RN
|∇u|p dx< ∞.

Therefore the distancedH(u; R) is well-defined foru ∈ D1,p(RN).

For derivative term
∫
RN

∣∣∣∣∇u · x
|x|

∣∣∣∣p dx, we do not know whether to apply
rearrangement theory (actually, the Pólya-Szeg̈o inequality) or not. There-
fore one of good points of (1.5) is that we can obtain a remainder term of
the Hardy inequality with its derivative term.

For (1.2), it is known that the constantCp
k,p is optimal. We also have the

following.

Theorem 3. (Improved Rellich inequality onRN) LetN, k ∈ N satisfyN, k ≥
2 andk < kp< N. Setwa(x) := a|x|− N−kp

2 and

dRE(u; R) :=


∫
RN

∣∣∣∣|u(x)| p−2
2 u(x) − wa(x)

∣∣∣∣2
|x|kp| log R

|x| |2
dx


1
2

.
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Then there exists a constantC > 0 such that the inequality

|u|k,p −Cp
k,p

∫
RN

|u|p
|x|kp

dx≥ C sup
R>0

dRE(u; R)2(1.6)

holds for all radial functionsu ∈ Dk,p(RN), wherea = R
N−kp

2 |u(R)| p−2
2 u(R).

We can obtain the non-radially symmetric case fork = 2.

corollary 4. Let k = 2. If u ∈ D2,p(RN) is a non-radial function, then it
holds ∫

RN
|∆u|p dx−Cp

2,p

∫
RN

|u|p
|x|2p

dx≥ C sup
R>0

dRE( ũ; R)2(1.7)

whereũ(x) =
∫
RN

(−∆u)#(y)
|x−y|N−2 dy(∈ D2,p(RN)), wherea = R

N−kp
2 |ũ(R x

|x| )|
p−2
2 ũ(R x

|x| ).

Especially, if there exists a extremalu ∈ D2,p(RN), thenũ(x) = a|x|−
N−2p

p <
D2,p(RN). Therefore the equality of (1.2) is not achieved unlessu ≡ 0.

Concerning improvement on a bounded domain, see [2], [3], [5], [10],
[12], [15], [29] and the references therein. And also for the another type
improvement onRN, see [25].

This paper is organized as follows: In§2, we state preliminaries to show
our results. In§3, we give the proof of Theorem 1. In§4, we prove Theorem
3 and Corollary 4. In§5, we discuss the critical Hardy inequality (5.1) with
a remainder term (Theorem 10).

We fix several notations:BR(0) is a ball centered 0 with radiusR in
RN. ωN is the area of a unit sphere inRN. |A| denotes the measure of a
set A ⊂ RN. The Schwarz symmetrizationu# : RN → [0,∞] is given
by u#(|x|) = inf

{
τ > 0 : |{x ∈ RN : |u(x)| > τ} | ≤ |B|x|(0)|

}
. Dk,p(RN) is the

completion ofC∞0 (RN) with respect to the norm| · |k,p. Throughout the paper,
if u is a radial function inRN, then we can write asu(x) = ũ(|x|) by some
function ũ = ũ(r) in R+. Then we writeu(x) = u(|x|) with admitting some
ambiguity. We hope no confusion occurs by this abbreviation. And also,
we useC as a general constant.

2. Preliminaries

The critical Hardy inequalities onRN were proved by Machihara, Ozawa,
and Wadade [20] by using only integration by parts and Hölder’s inequality.

Theorem 5. ([20] Theorem 1.1.) LetN ∈ N, 1 < α < ∞ andmax{1, α−1} <
β < ∞. Then for anyR> 0, the inequalities∫

RN

| f (x) − f (R x
|x| )|β

|x|N| log R
|x| |α

dx≤
(
β

α − 1

)β ∫
RN

∣∣∣∣∇ f (x) · x
|x|

∣∣∣∣β
|x|N−β

∣∣∣∣log R
|x|

∣∣∣∣α−β dx(2.1)
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hold for all f ∈ W1LN,β, β−αβ
(RN), where the embedding constant

(
β

α−1

)β
in

(2.1) is best-possible.

Here,Lp,q,λ(RN) is the Lorentz-Zygmund space andW1Lp,q,λ(RN) is the
Sobolev-Lorentz-Zygmund space. On their definitions, see [20]. In [20],
they proved (2.1) forf ∈ W1LN,β, β−αβ

(RN). However, we need (2.1) forf ∈
C0(RN) ∪ C1(RN \ {0}) with only ∇ f ∈ LN,β, β−αβ

(RN) to prove our theorems.

In fact, we can obtain Lemma 6 by the minor change in their proof.

Lemma 6. ( Machiha-Ozawa-Wadade’s inequality) LetN ∈ N, 1 < α < ∞
andmax{1, α − 1} < β < ∞. Then for anyR> 0, the inequalities (2.1) hold
for all f ∈ C0(RN) ∩C1(RN \ {0}) with∇ f ∈ LN,β, β−αβ

(RN).

To show our Theorems, We provide two point-wise estimates of|a− b|p
from below. First, we prepare the following point-wise estimate forp ≥ 1.
We omit the proof.

Lemma 7. Let p ≥ 1 anda,b ∈ R. Then the inequality

(2.2) |a− b|p − |a|p ≥ −p|a|p−2ab

holds true.

In p ≥ 2 case, it is known a better estimate (2.3) than former one (2.2).
Here, we provide the simple proof of (2.3).

Lemma 8. Let p ≥ 2. Then there exists a constantC = C(p) > 0 such that

|a− b|p − |a|p ≥ −p|a|p−2ab+C|b|p(2.3)

holds true fora, b ∈ R.

Proof of Lemma 8. Set

f (t) = |1− t|p − |t|p + p|t|p−2t (t ∈ R).

It is enough to show

f (t) ≥ C > 0,(2.4)

since (2.3) follows from (2.4), on takingt = a
b. Whent ≥ 1, the mean value

theorem for the functionxp−2 which is defined forx ≥ 0 yields that

f ′(t) = p [(t − 1)p−1 − tp−1] + p(p− 1)tp−2 = p(p− 1)[tp−2 − sp−2] ≥ 0,

for p ≥ 2, wheres≥ 0 satisfiest − 1 ≤ s≤ t. Hence we obtain

f (t) ≥ f (1) = p− 1 for all t ≥ 1.(2.5)

In the same manner as above, we also obtain

f (t) ≥ f (0) = 1 for all t ≤ 0.(2.6)
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When 0≤ t ≤ 1, we defineCp = min0≤t≤1 f (t)
(
= min0≤t≤1((1− t)p − tp + ptp−1)

)
.

Let 0 ≤ a ≤ 1 satisfyCp = f (a). From Lemma 7, we observe thatCp ≥ 0.
If Cp = 0, then the following equalities hold

0 = f (a) = (1− a)p − ap + pap−1 and

0 =
a− 1

p
f ′(a) = (1− a)p − ap−1(a− 1)+ (p− 1)ap−2(1− a)

which impliesa = 0. However this contradicts tof (0) = 1. We can also
derive a contradiction whenp = 2. Thus we obtain

f (t) ≥ Cp > 0 for all 0≤ t ≤ 1.(2.7)

Consequently, from (2.5), (2.6), and (2.7), we obtain Lemma 8. □

3. The Hardy inequality

In this section, We prove Theorem 1.

Proof of Theorem 1. [Step 1] Letx = rω(r > 0, ω ∈ SN−1). First, we
show that the inequality (1.5) holds for a smooth functionu = u(rω) ∈
C∞0 (RN). We consider the following transformation:

v(rω) = r
N−p

p u(rω), wherer ∈ [0,∞), ω ∈ SN−1.(3.1)

Note thatv(0) = limr→∞ v(rω) = 0 for ω ∈ SN−1 since the support ofu is
compact. Now, direct calculation shows that

I :=
∫
RN

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣p dx−
(
N − p

p

)p ∫
RN

|u|p
|x|p dx

=

∫
SN−1

∫ ∞

0

∣∣∣∣∣− ∂∂r u(rω)
∣∣∣∣∣p rN−1 −

(
N − p

p

)p

|u(rω)|prN−p−1 drdSω

=

∫
SN−1

∫ ∞

0

∣∣∣∣∣N − p
p

r−
N
p v(rω) − r−

N−p
p
∂

∂r
v(rω)

∣∣∣∣∣p rN−1 −
(
N − p

p

)p

|v(rω)|pr−1 drdSω.

Applying Lemma 8 with the choicea =
N − p

p
r−

N
p v(rω) andb = r−

N−p
p
∂

∂r
v(rω),

and using the fact
∫ ∞

0
|v|p−2v

(
∂
∂r v

)
dr = 0, we have

I ≥
∫

SN−1

∫ ∞

0
− p

(
N − p

p

)p−1

|v(rω)|p−2v(rω)
∂

∂r
v(rω) +C

∣∣∣∣∣ ∂∂r v(rω)
∣∣∣∣∣p r p−1 drdSω

= C
∫
RN
|x|p−N

∣∣∣∣∣∇v · x
|x|

∣∣∣∣∣p dx.

(3.2)
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Now, we apply Lemma 6 forf = v ∈ C1(RN \ {0}) ∩C0(RN) in α = β = p
case, and combine this with (3.2), we obtain

I ≥ C
∫
RN

|v(x) − v(R x
|x| )|p

|x|N| log R
|x| |p

dx= C
∫

SN−1

∫ ∞

0

|v(rω) − v(Rω)|p

r | log R
r |p

drdSω

= C
∫

SN−1

∫ ∞

0

|u(rω) − R
N−p

p u(Rω)r−
N−p

p |p

r1+p−N| log R
r |p

drdSω

(3.3)

for anyR> 0. Therefore we have (1.5) foru ∈ C∞0 (RN).
[Step 2] In this step, we prove (1.5) foru ∈ D1,p(RN) by using same

argument as it in [20]. Let{um}∞m=1 ⊂ C∞0 (RN) be a sequence such that
um → u in D1,p(RN) asm→ ∞. Then there exists a subsequence{umj }∞j=1
such that

um→ u in L
Np

N−p (RN),

um→ u in Lp(RN; |x|−pdx),

umj → u a.e. inRN

by Sobolev embedding and Hardy inequality (1.1). Here, we define

ũR(x) :=
u(x) − a|x|−

N−p
p

|x|| log R
|x| |

for u ∈ L1
loc(R

N) andR > 0, wherea = R
N−p

p u(R x
|x|). Since the inequality

(3.3) holds forum − uj ∈ C∞0 (RN), we can observe that{˜(umj )R
}∞m=1 is a

Cauchy sequence inLp(RN). Hence there exists a functionf ∈ Lp(RN) such
that ˜(umj )R

→ f in Lp(RN) asm→ ∞. Sinceumj → u a.e. inRN, we can see
thatũR = f . Therefore the inequality∫

RN
|∇u|p dx−

(
N − p

p

)p ∫
RN

|u|p
|x|p dx≥ C

∫
RN

|u(x) − a|x|−
N−p

p |p

|x|p| log R
|x| |p

dx

holds for allu ∈ D1,p(RN) andR> 0. □

Remark9. In the case 1< p < 2, instead of the point-wise estimate (2.3),
the following inequality is known

|a− b|p − |a|p ≥ −p|a|p−2ab+C
|b|2

(|a− b| + |a|)2−p
(3.4)

for a,b ∈ R (see e.g., [19]). If we use the point-wise estimate (3.4), we also
have the case 1< p < 2 of Theorem 1, but we omit here.
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4. The Rellich inequality

In this section, we discuss the improvement of the Rellich inequality
(1.2). And also, by using this improvement, we show the non-existence
of extremals of (1.2). In the proof of Theorem 3, it is enough to use the
weaken estimate (2.2) than (2.3).

Proof of Theorem 3. From (i) Step 2 in the proof of Theorem 1 and higher

order Sobolev embeddingDk,p(RN) ↪→ L
Np

N−kp(RN) (see [13]), it is enough
to prove the inequality (1.5) for radial functionsu = u(r) ∈ C∞0 (RN) where
r = |x|.

First, note that the inequality

(4.1) |u|pk,p = |∆u|pk−2,p ≥ Cp
k−2,p

∫
RN

|∆u|p
|x|(k−2)p

dx

holds from Rellich’s inequality (1.2). Actually whenk = 2, this is the
equality. Here, we consider the following transformation:

v(r) = r
N−kp

p u(r), wherer ∈ [0,∞).(4.2)

Note thatv(0) = 0 and alsov(+∞) = 0 since the support ofu is compact.
Fork ≥ 2, k ∈ N andk < kp< N, put

θk = θ(k,N, p) = 2k+
N(p− 2)

p
and ∆θk f = f

′′
(r) +

θk − 1
r

f
′
(r)

for smooth radial functionsf = f (r). Define

Ak,p =
(N − kp)[(k− 2)p+ (p− 1)N]

p2
.

Then direct calculation shows that−∆u = rk−2− N
p

(
Ak,pv(r) − r2∆θkv(r)

)
.

Now applying Lemma 7 with the choicea = Ak,pv(r) andb = r2∆θkv(r), and



SCALING INVARIANT HARDY TYPE INEQUALITIES 9

using the fact
∫ ∞

0
|v|p−2vv′dr = 0 sincev(0) = v(+∞) = 0, we have

J :=
∫
RN

|∆u|p
|x|(k−2)p

dx− Ap
k,p

∫
RN

|u|p
|x|kp

dx

= ωN

∫ ∞

0
|−∆u(r)|p rN−1−(k−2)p dr − Ap

k,pωN

∫ ∞

0
|u(r)|prN−kp−1 dr

= ωN

∫ ∞

0

(∣∣∣Ak,pv(r) − r2∆θkv(r)
∣∣∣p − (Ak,pv(r))p

)
r−1 dr

≥ −pωNAp−1
k,p

∫ ∞

0
|v|p−2v∆θkv r dr

= −pωNAp−1
k,p

∫ ∞

0
|v|p−2v

(
v′′ +

θk − 1
r

v′
)

r dr

= −pωNAp−1
k,p

∫ ∞

0
|v|p−2vv′′r dr.(4.3)

Moreover we observe that

−
∫ ∞

0
|v|p−2vv′′r dr = (p− 1)

∫ ∞

0
|v|p−2(v′)2r dr +

∫ ∞

0
|v|p−2vv′ dr

=
4(p− 1)

p2

∫ ∞

0
|( |v|

p−2
2 v)′|2r dr

=
4(p− 1)

p2ω2

∫
R2

∣∣∣∣∣∇( |v|
p−2
2 v) · x

|x|

∣∣∣∣∣2 dx.(4.4)

Now, we apply Lemma 2.1 for|v| p−2
2 v ∈ C1(RN \ {0}) ∩ C0(RN) in α = β =

N = 2 case, and combine this to (4.3) and (4.4), we obtain

J ≥ C
∫
R2

∣∣∣∣|v(x)| p−2
2 v(x) − |v(R x

|x| )|
p−2
2 v(R x

|x| )
∣∣∣∣2

|x|2| log R
|x| |2

dx

= C
∫ ∞

0

∣∣∣∣|v(r)| p−2
2 v(r) − |v(R)| p−2

2 v(R)
∣∣∣∣2

r | log R
r |2

dr

= C
∫ ∞

0

∣∣∣∣|u(r)| p−2
2 u(r) − R

N−kp
2 |u(R)| p−2

2 u(R)r−
N−kp

2

∣∣∣∣2
r1−N+kp| log R

r |2
dr(4.5)
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for any R > 0. Consequently, from (4.1), (4.5) andCk−2,pAk,p = Ck,p, we
obtain

|u|k,p ≥ Cp
k−2,p

∫
RN

|∆u|p
|x|(k−2)p

dx

= Cp
k−2,p

(
J + Ap

k,p

∫
RN

|u|p
|x|kp

dx

)

≥ Cp
k,p

∫
RN

|u|p
|x|kp

dx+C sup
R>0

∫
RN

∣∣∣∣|u(x)| p−2
2 u(x) − a|x|− N−kp

2

∣∣∣∣2
|x|kp| log R

|x| |2
dx,

wherea = R
N−kp

2 |u(R)| p−2
2 u(R). The proof of Theorem 3 is now complete.□

For the Rellich inequality (1.2), we can not apply the rearrangement tech-
niques, namely, Hardy-Littlewood inequality and Pólya-Szeg̈o inequality
directly. However, thanks to Talenti’s comparison principle [28], we can
prove Corollary 4 by using Theorem 3.

Proof of Corollary 4. Let u ∈ D2,p(RN) be a non-radial function. Setf :=
−∆u ∈ Lp(RN) and ũ(x) :=

∫
RN

f #(y)
|x−y|N−2 dy. Note thatũ is a radial func-

tion, sinceũ(Ox) = ũ(x) for any O ∈ O(N), whereO(N) is the group of
orthogonal matrices inRN. By f # ∈ Lp(RN) and the Calderon-Zygmund
inequality ( see [16] Theorem 9.9.), we obtain that ˜u ∈ D2,p(RN), and ũ
satisfies−∆ũ = f # a.e. inRN. Therefore we have

(4.6) ∥∆ũ∥p = ∥∆u∥p.

By Talenti’s comparison principle [28], we know that ˜u ≥ u# ≥ 0. Hence
we have ∫

RN
|ũ|β|x|γ dx≥

∫
RN
|u#|β|x|γ dx if β ≥ 0

≥
∫
RN
|u|β|x|γ dx if β ≥ 0 andγ ≤ 0.(4.7)

where second inequality comes from the Hardy-Littlewood inequality (see
e.g., [23]). From (4.6) and (4.7), we obtain∫

RN
|∆u|p dx−Cp

2,p

∫
RN

|u|p
|x|2p

dx≥
∫
RN
|∆ũ|p dx−Cp

2,p

∫
RN

|ũ|p
|x|2p

dx.

Thus, by using theorem 3 for the radial function ˜u, we obtain (1.7).
□
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5. The critical Hardy inequality

On the critical casep = N, the Hardy inequality (1.1) fails for every
constant and instead of (1.1) the critical Hardy inequality

(5.1)
∫

BR(0)

∣∣∣∣∣∇u(x) · x
|x|

∣∣∣∣∣N dx≥
(
N − 1

N

)N ∫
BR(0)

|u(x)|N

|x|N(log R
|x| )

N
dx

holds for allu ∈ W1,N
0 (BR(0)) (see [17], [27] etc.). Note that the inequality

(5.1) is not invariant under the standard scalinguλ(x) = u(λx) due to the
logarithmic term. However the following scaling is introduced

(5.2) uλ(x) = λ−
N−1

N u

( |x|R
)λ−1

x


for λ > 0. Under this scaling (5.2), the critical Hardy inequality (5.1) has
the scale invariance (see [17]). Furthermore it is known that the optimal

constant (N−1
N )N is not attained unlessu ≡ 0 and the function

(
log R

|x|

) N−1
N is

virtual extremal of (5.1) (see [17]).
In this section, we refine the critical Hardy inequality (5.1) onBR(0) by

adding the non-standard remainder term.

Theorem 10. (Improved critical Hardy inequality onBR(0)) Let N ≥ 2. Set
xa(x) := a(log R

|x| )
N−1

N and

dCH(u; T) :=

∫
BR(0)

|u(x) − xa(x)|N

|x|N| log R
|x| |N| log(T log R

|x| )|N
dx


1
N

.

Then there exists a constantC such that the inequality

∫
BR(0)

∣∣∣∣∣∇u(x) · x
|x|

∣∣∣∣∣N dx−
(
N − 1

N

)N ∫
BR(0)

|u(x)|N

|x|N(log R
|x| )

N
dx≥ C sup

T>0
dCH(u; T)N

(5.3)

holds for allu ∈W1,N
0 (BR(0)), wherea = T

N−1
N u(Re−

1
T x
|x| ).

For the another type remainder term to (5.1) on a ball, see [18], [26].
It is difficult to show Theorem 10 by applying the transformation used

only the virtual extremal and Lemma 6. One of the reasons is that the MOW

inequality (2.1) can not treat the term
∫ ∣∣∣∣∇v · x

|x|

∣∣∣∣N (
log R

|x|

)N−1
dx. Therefore

we introduce the transformation (5.4) to change the remainder term from∫ ∣∣∣∣∇v · x
|x|

∣∣∣∣N (
log R

|x|

)N−1
dx to

∫ ∣∣∣∣∇v · x
|x|

∣∣∣∣N dx.

Proof of Theorem 10. From (i) Step 2 in the proof of Theorem 1 and the
Poincaŕe inequalityW1,N

0 (BR(0)) ↪→ LN(BR(0)), it is enough to prove the
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inequality (5.3) foru = u(rω) ∈ C∞0 (BR(0)) wherer = |x|. We consider the
following transformation

v(sω) =
(
log

R
r

)− N−1
N

u(rω), wheres= s(r) =
(
log

R
r

)−1

, ω ∈ SN−1.(5.4)

Note thatv(0) = 0 andv has a compact support sinceu ∈ C∞0 (BR(0)). Then
direct calculation shows that

∂

∂r
u(r) = −

(
N − 1

N

) (
log

R
r

)− 1
N v(sω)

r
+

(
log

R
r

) N−1
N ∂

∂s
v(sω)s′(r).

Set

K :=
∫

BR(0)

∣∣∣∣∣∇u · x
|x|

∣∣∣∣∣N dx−
(
N − 1

N

)N ∫
BR(0)

|u|N

|x|N(log R
|x| )

N
dx.(5.5)

Then we have

K =
∫

SN−1

∫ R

0

∣∣∣∣∣ ∂∂r u(rω)
∣∣∣∣∣N rN−1 −

(
N − 1

N

)N |u(rω)|N

r(log R
r )N

drdSω

=

∫
SN−1

∫ R

0

∣∣∣∣∣∣∣N − 1
N

(
r log

R
r

)− 1
N

v(sω) −
(
r log

R
r

) N−1
N ∂

∂s
v(sω)s′(r)

∣∣∣∣∣∣∣
N

−
(
N − 1

N

)N |v(sω)|N

r log R
r

drdSω.

Here, we can apply Lemma 8 with the choice

a =
N − 1

N

(
r log

R
r

)− 1
N

v(sω) and b =
(
r log

R
r

) N−1
N ∂

∂s
v(sω)s′(r).

By using the boundary conditionsv(0) = limr→∞ v(rω) = 0 and (5.5), we
obtain

K ≥
∫

SN−1

∫ R

0
−N

(
N − 1

N

)N−1

|v(sω)|N−2v(sω)
∂

∂s
v(sω)s′(r)

+C
∣∣∣∣∣ ∂∂sv(sω)

∣∣∣∣∣N (
s′(r)

)N
(
r log

R
r

)N−1

drdSω

=

∫
SN−1

∫ ∞

0
−N

(
N − 1

N

)N−1

|v(sω)|N−2v(sω)
∂

∂s
v(s) ds+C

∣∣∣∣∣ ∂∂sv(sω)
∣∣∣∣∣N sN−1 dsdSω

= C
∫
RN

∣∣∣∣∣∇v · x
|x|

∣∣∣∣∣N dx.

(5.6)
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Now, we apply Lemma 6 forv ∈ C1(RN \ {0}) ∩C0(RN) in α = β = N case,
and combine this with (5.6), we obtain

K ≥ C
∫
RN

|v(x) − v(T x
|x| )|N

|x|N| log T
|x| |N

dx= C
∫

SN−1

∫ ∞

0

|v(sω) − v(Tω)|N

s| log T
s |N

dsdSω

= C
∫

SN−1

∫ R

0

∣∣∣∣∣(log R
r

)− N−1
N u(rω) − T

N−1
N u(Re−

1
Tω)

∣∣∣∣∣N
r(log R

r )| log
(
T log R

r

)
|N

drdSω

= C
∫

SN−1

∫ R

0

∣∣∣∣u(rω) − T
N−1

N u(Re−
1
Tω)(log R

r )
N−1

N

∣∣∣∣N
r(log R

r )N| log
(
T log R

r

)
|N

drdSω.

Therefore the inequality

K ≥ C
∫

BR(0)

|u(x) − a(log R
|x| )

N−1
N |N

|x|N| log R
|x| |N| log(T log R

|x| )|N
dx

holds for anyT > 0. The proof of Theorem 10 is now complete. □

Acknowledgment: The author would like to thank Prof. Hidemitsu Wadade
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