SCALING INVARIANT HARDY TYPE INEQUALITIES WITH
NON-STANDARD REMAINDER TERMS

MEGUMI SANO

Asstract. We consider the Hardy inequality @&, the critical Hardy
inequality on a ball, and the Rellich inequality BN. These three Hardy
type inequalities can be refined by adding remainder terms. Our remain-
der terms are expressed by a distance from the families of “virtual” ex-
tremals. A key ingredient is the critical Hardy inequality BN which

was proved by Machihara, Ozawa, and Wadade [20].

1. INTRODUCTION

LetN > 2 and 1< p < N. The Hardy inequality
Vu- 1

p _n\P p
(1.1) f dx > (u) f P 4
RN ] p =N |[X|P

holds for allu € D*P(RN), whereD*P(RN)) is the completion o2y (RM)

with respect to the norV - [|Lsev. The inequality (1.1) is also called the
Uncertainty Principle, and has many applications for the elliptic and the
parabolic equations with the singular potential (see [6], [4] etc.). In the
higher-order generalization of (1.1), for2k < kp < N, the inequality

ufP
N [X[KP

(1.2) lulep = C dx

holds for allu € D*P(RN) (see [24], [9], [22]). Here we set

o | fulAmuPdx if k=2m
Ul =9 .
P L IV@ATM)Pdx if k=2m+ 1,

o= PPN = 2pjHN(p - 1) +2p(j - 1) ik = 2m,
PSR L (N - @i+ D) IN(p- 1)+ (2 - 1p)  ifk=2m+1,

for k,m € N,m > 1. For the sake of simplicity, we defir@&,, = 1 and

— N-p
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For (1.1), it is known that the constarﬂ;@)p is optimal, and equality of
(1.1) is not achieved unless= 0. Furthermore, Cianchi-Ferone [8] pro-

vided a remainder term of (1.1) as follows: Lgt= g5, va(x) = ax e
for x e RN, a e RandL*(RN) (0 < p < 00,1 < 0 < ) is the Lorentz
space. Then there exists a constant C(p, N) such that the inequality

N — p p . u - V * oo Zp*
(1.3) f IVulpdxz( p) f &dx 1+C(|nf [IU = Valle (RN))
RN p gy [XIP ac®  |UllLppqeny

holds for every real-valued weaklyftBrentiable functiom in RN decaying
to zero at infinity with|Vu| € LP(RN).

This type remainder term expresses not only the absence of extremal of
(1.1), but also the cause of that. Indeed, the improved Hardy inequality (1.3)
says that if there exists a extremak D*P(RN) of (1.1), thenu = v, for
somea € R. Howevern, ¢ DP(RN) (note that, € LP-~(RN)) which yields
a contradiction. Here we cal}, “virtual” extremal of (1.1). In the paper [8],
the proof of (1.3) is based on the rearrangement theory which is well suited
for the Hardy inequality (1.1). On the other hand, it is not suited for the
Rellich inequality (1.2). Therefore it seemdfatiult to obtain remainder
term of (1.2) by using same way as [8]. One of our aims is to provide a
remainder term of (1.2). Our method is quitéeient from theirs in [8]. In
our proofs, there are two key ingredients. One is the magical computation
via the transformation (3.1) (resp. (4.2)) using a virtual extremal of the
inequality (1.1) (resp. (1.2)). This idea was implicitly used in [21] or [6].
The other is the critical Hardy inequality on the whole space which was
proved by Machihara, Ozawa, and Wadade :

F(X) = F(RE)P 5V in(X)ﬁﬂ
(1.4) fR T dx< )fR

N Ria _ a—

We call (1.4) Machihara-Ozawa-Wadade’s inequality (briefly, MOW in-
equality) in this paper. The crucial point of MOW inequality is taking away
its boundary vaIue‘(Rﬁ) from f(x) to weaken the singularity of the log-
arithmic term|log %rf’. Actually, its boundary value of MOW inequality
plays the role of virtual extremal for improvements of Hardy type inequali-
ties. Our main results are as follows:

Theorem 1. (Improved Hardy inequality oiRN) Let2 < p < N. Set
N—
Va(X) = ax " ® foraeR,xeRNand

(e —vaeP )
du(y; R) := (LN —IXIpI Iogﬁlp dx) .
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X
Vu- —

Then there exists a constabt> 0 such that the inequality
P N = p\°P P
dx—(—p) &dxzc supdy(u; R)P.
X R>0

1.5 f
&5 p ) Jun NP
holds for allu € D*P(RN), wherea = a(x,u,R) = R%J(Rﬁ)-

Concerning improvement on a bounded domain, see [1], [6], [7], [11],
[14], to name a few.

Remark2. We can check that the distandg(u; R) in Theorem 1 is well-
defined. Indeed, set

dH(U;R)p:f -l-f =11+ Io.
Bry2(0)UB5,(0) B2r(0)\Br/2(0)

We see thau(x)|x|¥ < C near|x = 0, o, sinceu € DLPRN) and the
N
Sobolev embeddin®*P(RN) < L¥5(RN) holds. Thus we obtain

Np (P
‘U(X)|X| P— a' C
1 = f N R dx < f NI~ Rip dX < o
Bro(O)UBs©)  IXNlog [P Br2(0)uBS(0) [XIN|l0g =P

X X

On the other hand, by the elementary inequality>dczgx;x1 for x € [1, +0)
and the mean value property we have

N-p N-p [P
o\ RP ' U)X — URX)R'?
R B2r(0)\Br/2(0) [IX — RIP

< Cf [VulPdx < co.
RN
Therefore the distanad; (u; R) is well-defined foru € D*P(RN).

For derivative termfIRN ’Vu . ﬁ P dx, we do not know whether to apply
rearrangement theory (actually, thélya-Sze@ inequality) or not. There-
fore one of good points of (1.5) is that we can obtain a remainder term of
the Hardy inequality with its derivative term.

For (1.2), it is known that the constaﬁf’p is optimal. We also have the

following.

Theorem 3. (Improved Rellich inequality oRN) LetN, k € N satisfyN, k >
2andk < kp < N. Setw,(X) := a|x|‘N%kp and

p-2 2 %
lu(x)| z° — Wy
dre(U; R) 1= fR N Iu(x) U(X) — Wa(X) i

R
IX<Pllog 12
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Then there exists a constabt> 0 such that the inequality
|ulP

(1.6) lulkp — Cip X

dx>C sup dre(u; R)?

holds for all radial functionss € D*P(RN), wherea = Rz |u(R)| u(R)
We can obtain the non-radially symmetric casekier 2.

corollary 4. Letk = 2. If u € D*P(RN) is a non-radial function, then it
holds

(1.7) f JAuPdx—CJ uP dx > C supdge( U; R)?

| |2 R>0

whereti(x) = fRN(A‘D 9 dy(e Z)ZP(RN)) wherea = Rz |u(R|X|)|*u(R|X|)

x=yN-2
Especially, if there exists a extremat D>P(RV), thenli(x) = a|x” 7
D*P(RN). Therefore the equality of (1.2) is not achieved unlesso.

Concerning improvement on a bounded domain, see [2], [3], [5], [10],
[12], [15], [29] and the references therein. And also for the another type
improvement orRN, see [25].

This paper is organized as follows: §2, we state preliminaries to show
our results. Ir§3, we give the proof of Theorem 1. §4, we prove Theorem
3 and Corollary 4. Ir§5, we discuss the critical Hardy inequality (5.1) with
a remainder term (Theorem 10).

We fix several notationsBgr(0) is a ball centered 0 with radiurR in
RN. wy is the area of a unit sphere R". |A| denotes the measure of a
setA ¢ RN. The Schwarz symmetrizationt : RN — [0, o] is given
by u*(x) = inf {r > 0 : (xe RV : [u(X)| > 7}| < [By(0)l}. DP(RN) is the
completion ofCy (R") with respect to the nortnl, ,. Throughout the paper,
if uis a radial function irRN, then we can write as(x) = {(|x|) by some
functiond = U(r) in R,. Then we writeu(x) = u(|x]) with admitting some
ambiguity. We hope no confusion occurs by this abbreviation. And also,
we useC as a general constant.

2. PRELIMINARIES

The critical Hardy inequalities oRN were proved by Machihara, Ozawa,
and Wadade [20] by using only integration by parts aiiddr’s inequality.

Theorem 5. ([20] Theorem 1.1.) La¥l e N, 1 < a < oo andmaxl, a—1} <
B < oo. Then for anyR > 0, the inequalities

10— TRE)F 5 IR
2.1) fR Mg EF dxs(a—_l)f : a_ﬁdx

N-3 R
X4 log &
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hold for all f € WlLNﬁ’;%(RN), where the embedding conste(@f—l)ﬁ in
(2.1) is best-possible.

Here,Lpq(RV) is the Lorentz-Zygmund space aid'L,q.(R") is the
Sobolev-Lorentz-Zygmund space. On their definitions, see [20]. In [20],
they proved (2.1) forf € WlLNﬁ’%(RN). However, we need (2.1) fdf €

Co(RN) U CYRN \ {0}) with only Vf € LN’B’%Q(RN) to prove our theorems.
In fact, we can obtain Lemma 6 by the minor change in their proof.

Lemma 6. ( Machiha-Ozawa-Wadade’s inequality) Ldte N, 1 < @ < o0
andmax1, a — 1} < 8 < c. Then for anyR > 0, the inequalities (2.1) hold
for all f € Co(RN) nCHRN \ {0}) withVf € LNA%(RN).

To show our Theorems, We provide two point-wise estimatéa ofb|P
from below. First, we prepare the following point-wise estimategfaer 1.
We omit the proof.

Lemma 7. Letp > 1anda,b € R. Then the inequality
(2.2) la—DblP - [a° > —plal’2ab
holds true.

In p > 2 case, it is known a better estimate (2.3) than former one (2.2).
Here, we provide the simple proof of (2.3).

Lemma 8. Let p > 2. Then there exists a constabt= C(p) > 0 such that
(2.3) la—b|P - |al® > —pla’%ab+ C|b|P
holds true fora,b € R.
Proof of Lemma 8. Set
ft) =11L-tP—[t° + pit|" >t (teR).
It is enough to show
(2.4) f(t)>C >0,

since (2.3) follows from (2.4), on takintg= {. Whent > 1, the mean value
theorem for the functioxP-? which is defined fox > 0 yields that

(1) = p[(t - 1P =" + p(p - Lt*2 = p(p- D[t > - " *] 2 O,
for p > 2, wheres > 0 satisfies — 1 < s < t. Hence we obtain
(2.5) f)) > f(1)=p-1 forall t>1
In the same manner as above, we also obtain
(2.6) f(t)>f(0)=1 forall t<O.
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When 0< t < 1, we defineC, = Mingzi<1 (1) (= Mingai<a((1 - P — tP + ptP)).
Let 0 < a < 1 satisfyC, = f(a). From Lemma 7, we observe th@g > 0.
If Cp, = 0, then the following equalities hold

O=f(@)=(1-aP-a+pa”! and

0= a;pl f'@=(1-aP-a"a-1)+(p-1)a"?(1-a)

which impliesa = 0. However this contradicts t6(0) = 1. We can also
derive a contradiction whep = 2. Thus we obtain
(2.7) ft)>Cp,>0 forall O<t<1

Consequently, from (2.5), (2.6), and (2.7), we obtain Lemma 8. O

3. THE HARDY INEQUALITY

In this section, We prove Theorem 1.

Proof of Theorem 1. [Step 1] Letx = rw(r > 0,w € SN1). First, we
show that the inequality (1.5) holds for a smooth functior= u(rw) €
C(RN). We consider the following transformation:

(3.1) V(rw) = r'7u(rw), wherer € [0, ), w € SNL.

Note thatv(0) = lim,_. V(rw) = 0 for w € SN-! since the support df is
compact. Now, direct calculation shows that

—n\P p
| = f (u) &dx
RN p N |X|P

( ) lu(rw)|PrN-P-1drds,
SN-1

Vu—
||

N-p
p

N _Np 0
rpv(rw)—r 5\/

AP
- _(N_pp) V(rw)[Pr-tdrdsS,.

SN-1

Applying Lemma 8 with the choica = N-p

r‘%v(rw) andb = r‘NEpgv(rw),

and using the facj(\)oo |v|p‘2v(§v) dr = 0, we have

00 N - p p-1 2 P p ) .
= LN—lj; ) p( p ) Vo) Vrw)z v(rw) + C ‘§V(rw)' rPdrdS,
(3.2)

:Cf XN
RN

Vv —‘ dx
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Now, we apply Lemma 6 fof = ve CRN\ {0) N Co(RN)ina =4 =p
case, and combine this with (3.2), we obtain

X

— V(RX)|P © Mrw) —
Ich IV(X) = V(Rp)! dx:Cf f Mre) ~vRIP 4 o
RN sN-1 Jo

R R
IX|N| log [P rllog 7IP

(3.3)
~ |urw) - R7 URw)r 7 [P
:cf f u(re) drds,
sh-1Jo

ri+p-N|log B

for anyR > 0. Therefore we have (1.5) fore C5(RV).
[Step 2] In this step, we prove (1.5) fore D*P(RN) by using same
argument as it in [20]. Letun)>, c Cy(RM) be a sequence such that

m=1
Un — uin D*P(RN) asm — . Then there exists a subsequerieg )72,

such that
. Np
Un — U in LW (RN),
Un— U in LPRN: |x7PdX),
Un, — U a.e. inR"
by Sobolev embedding and Hardy inequality (1.1). Here, we define

_N-p
_u(x)—alxe

R
xillog &

Ur(X) :

L (RN) andR > 0, wherea = R¥U(R‘—§|). Sincept\h/e inequality
(3.3) holds forun — u; € Cy(RN), we can observe thad{Um ) hmy 1S @
Cauchy sequence ItP(RN). Hence there exists a functidne LP(RN) such

that(ﬁ;:)R — fin LP(RN) asm — 0. Sinceuy,, — ua.e. inR", we can see
thatUr = f. Therefore the inequality

—_n\P p _ N
prdx_(u) f ﬂdxch () = A PP
RN p =N [XP mn [XPllog &P

holds for allu € D*P(RN) andR > 0. m

foru e LL

Remark9. In the case k p < 2, instead of the point-wise estimate (2.3),
the following inequality is known

|bf?
(la— bl +a)>P

fora,b e R (see e.g., [19]). If we use the point-wise estimate (3.4), we also
have the case & p < 2 of Theorem 1, but we omit here.

(3.4) la—blP —|a® > —pla]P2ab+ C
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4. THE RELLICH INEQUALITY

In this section, we discuss the improvement of the Rellich inequality
(1.2). And also, by using this improvement, we show the non-existence
of extremals of (1.2). In the proof of Theorem 3, it is enough to use the
weaken estimate (2.2) than (2.3).

Proof of Theorem 3. From (i) Step 2 in the proof of Theorem 1 and higher
order Sobolev embedding*P(RN) — L¥(RN) (see [13]), it is enough
to prove the inequality (1.5) for radial functions= u(r) € Cy(R") where
r=1x.

First, note that the inequality

(4.1) lul, = |AUlg_, ) = CP A
: k,p k-2,p = “k-2,p BN |X|(k—2)p

holds from Rellich’s inequality (1.2). Actually whek = 2, this is the
equality. Here, we consider the following transformation:

4.2) v(r) = rN;pkpu(r), wherer € [0, ).

Note thatv(0) = 0 and also/(+e0) = O since the support af is compact.
Fork > 2,k e Nandk < kp < N, put

-1

O = 6(k, N, p) = 2k + :

and Agf=1'(r)+ f'(r)

N(p-2)
p

for smooth radial function$ = f(r). Define

_ (N-kpI(k—2)p+(p - )N

Acp 72

Then direct calculation shows thatu = rk2 (Awpv(r) = r2Agv(r)).
Now applying Lemma 7 with the choi@e= A ,v(r) andb = r2AgVv(r), and
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using the fac%oo IVIP~2vvdr = 0 sincev(0) = v(+c0) = 0, we have

J:= ‘[RNl)l(ﬁ(—lfl;dx—AﬁprN%dx
= wn j(;oo|—Au(r)|prN‘l‘("‘2)pdr - AEpr jo‘m lu(r)|PrN-kP-1 gy
= WN Lm (|Ak,pV(r) - rerkV(r)|p - (Ak,pV(r))p) rtdr
> _prAE,_pl fo ) IVIP~2VAg v T dr
= —pwnAL fow |V|p_2v(\/’ Lot

(4.3) :_prAE‘plf IMP2wW/r dr.
T Jo

\/) rdr

Moreover we observe that

—f |v|p‘ZV\/’rdr:(p—1)f |v|'°‘2(\/)2rdr+f IVIP~2wV dr
0 0 0

St f (VI V) Prdr
p 0

_4P-1)
(4.4) C Pwz Jwe

2
dx

—2 X
V(v Z V) —

Now, we apply Lemma 2.1 fau{*z v € CY(RN \ {0}) N Co(RN) ina = g =
N = 2 case, and combine this to (4.3) and (4.4), we obtain

2
dx

e f VIV ~ MRE) = v(Rz)

R
X2 log &2

X

2 p2 2
. fw MOV - MRIFVR
0

R
rllog =2

(4.5) =C dr

— - - _kp |2
fm U1 u(r) - R*2*|u(R) "% u(Ryr "
0

rl—N+kp| |og ?'2
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for anyR > 0. Consequently, from (4.1), (4.5) af@l_2,Acp = Ckp, We
obtain

p
Ul > CP &
P “k2p an | X|(k-2p

_ P p ufP
Ck 2p(J+Ak fRN X X)
" Nekp 12
U691 u(x) - a2
f kP dx+ Csupf
| X|P R-0 JRN

d
X log &P :
wherea = RN%“jlu(R)lp%zu(R). The proof of Theorem 3 is now completeo

For the Rellich inequality (1.2), we can not apply the rearrangement tech-
niques, namely, Hardy-Littlewood inequality anélffa-Sze@ inequality
directly. However, thanks to Talenti’'s comparison principle [28], we can
prove Corollary 4 by using Theorem 3.

Proof of Corollary 4. Letu € D? p(RN) be a non-radial function. Sét:=
~Au € LP@®RMN) andu(x) = [, le ¥ dy. Note thatuis a radial func-
tion, sinceu{Ox) = T(x) for any O € O(N), whereO(N) is the group of
orthogonal matrices iRN. By f# € LP(RN) and the Calderon-Zygmund
inequality ( see [16] Theorem 9.9.), we obtain thiat “D>P(RN), and U
satisfies-Al = f# a.e. inRN. Therefore we have

(4.6) AT, = lAullp.

By Talenti's comparison principle [28], we know that="u¥ > 0. Hence
we have

f [P Ix” dx > f IW*PIx” dx if B> 0

RN RN

4.7) > f luP|x” dx if > 0andy < O.
RN

where second inequality comes from the Hardy-Littlewood inequality (see
e.g., [23]). From (4.6) and (4.7), we obtain

paw_cp [ U 1Py P
fRN |AulP dx Cz,pf X2 dx > » |ATIP dx C X |2p

Thus, by using theorem 3 for the radial functi@nwe obtain (1.7).
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5. THE criTICAL HARDY INEQUALITY

On the critical casep = N, the Hardy inequality (1.1) fails for every
constant and instead of (1.1) the critical Hardy inequality

CON .

holds for allu € W;™N(Br(0)) (see [17], [27] etc.). Note that the inequality
(5.1) is not invariant under the standard scalingx) = u(4x) due to the
logarithmic term. However the following scaling is introduced

(5.2) w(X) = /l‘NN_lu((l—g)ﬁ_l x)

for A > 0. Under this scaling (5.2), the critical Hardy inequality (5.1) has
the scale invariance (see [17]). Furthermore it is known that the optimal

vu(x) - —

Jh dx > (—N _ 1)Nf " dx
X “\ N Br(0) XIN(log )N

N-1
constant §)" is not attained unless = 0 and the functior(log ﬁ) " s
virtual extremal of (5.1) (see [17]).
In this section, we refine the critical Hardy inequality (5.1) Bx{0) by
adding the non-standard remainder term.

Theorem 10. (Improved critical Hardy inequality olBg(0)) LetN > 2. Set
Xa(x) := alog 3) © and

Ju(x) — Xa()N §
den(u; T) := [f ol
B 80) X[ log Nl log(T log )M

Then there exists a constabtsuch that the inequality
(5.3)

‘fBR(O)

holds for allu € WXN(Bg(0)), wherea = T'% u(Re'* X).

1

N _ 1\N N
Iil dx—(N—l) f dezCsupdCH(u;T)N
B

Vu(x) - —
N =(0) |X|N(|Og ﬁ)N T>0

For the another type remainder term to (5.1) on a ball, see [18], [26].
It is difficult to show Theorem 10 by applying the transformation used

only the virtual extremal and Lemma 6. One of the reasons is that the MOW
N N-1

inequality (2.1) can not treat the terﬂVv- ﬁ‘ (Iog‘—ff') dx. Therefore

we introduce the transformation (5.4) to change the remainder term from

f‘Vv- L N(Iog l—ffl)N_l dxtof‘Vv- x|

x| dx
Proof of Theorem 10. From (i) Step 2 in the proof of Theorem 1 and the
Poincaé inequalityW, ™ (Br(0)) — LN(Br(0)), it is enough to prove the
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inequality (5.3) foru = u(rw) € C7(Br(0)) wherer = |x|. We consider the
following transformation

_N-1 -1

(5.4) v(sw) = (Iog ?R) ) u(fw), wheres = s(r) = (Iog FR) ,we SN

Note thatv(0) = 0 andv has a compact support singes C5’(Br(0)). Then
direct calculation shows that

N-1

00 =~ (M) (0g RY M), (16R) ™ L ygapsin,

N r
Set
N _1\N N
(5.5) K::f Vu-i dx—(u)f de
Br(0) X N Br(0) IXN(log |x\)N
Then we have
N
f f pN-1 (N 1) |U(rw|1| drds,
SIS N/ r(log )M
N
N — 1

rlog ) v(sw) — (rlogF)N’q1 (%V(Sw)s'(r)

LTS

drdS,.

_ (N - 1) IV(sw)N
N rlog®

Here, we can apply Lemma 8 with the choice

NF(”O‘J?)_&V(S‘“) and b=(r Iog?)NN_l 2 s ().

By using the boundary conditiong0) = lim,_, v(rw) = 0 and (5.5), we
obtain

K> LN 1f ( ) |v(Sw)|N‘2v(Sw)§Sv(Sw)s’(r)

e (r log ?R)N_ldrdsw

a=

8
N-1

N-1
LN 1f T) |V(Sw)|N_2V(Sw)%’V(S)dS+ C (fs
(5.6)

:Cf Vv
RN

N
Si-1dsdS,

N

1dx

X
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Now, we apply Lemma 6 fov e CY(RN \ {0}) N Co(RN) in @ = 8 = N case,
and combine this with (5.6), we obtain

_ XN ~
chf IV(X) = V(T )l dxch f V(sw) — (Tw) dsds,
RN SN—l 0

T T
XN log 7N glog

N

N-1
N

(Iog ?) U(rw) - TR u(ReTw)

R
e[ |
sv-1 Jo r(log &)/ log(T log &) N

drdS,

N

7 |u(rw) - T uRe w)(log &)
_c f f drdsS,,.
sN-1 Jo

r(log )N/ log(T log &) N
Therefore the inequality

ju(x) - a(log &) N
K>C f = = X
B0 XN 10g %[N log(T log )N
holds for anyT > 0. The proof of Theorem 10 is now complete. O
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