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Abstract Onabounded domai@, we consider the minimization problem associated
with the optimal constant of generalized critical Hardy inequalities in the boundary
singularity case and other cases. Especially, in the boundary singularity case, we
show that the validity of the inequality depends on the sharpness of the corner of
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1 Introduction and main results

Let 2 be a bounded domain RN with 0 € Q. In the subcritical case ¢ p < N, the
classical Hardy inequality holds for alle Wé’p(Q) as follows:

p
p o IXP Q

Here Wé’p(Q) is a completion ofC3’(Q2) with respect to the normiVv - [|Lsq). We

refer the celebrated work [29] in 1920. For physical background of (1), see e.qg. [38].

For (1), it is known that the optimal constar&%@)p is not attained for any bounded

domaing. Therefore we can expect the existence of remainder terms of (1). Indeed

there exist several remainder terms of (1), see [7], [17], [4], [5], [18], [21], [12]. And
also there are applications of remainder terms to PDE, see [58], [3], [8], [1], [2]-
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In this paper, we focus on the critical cage= N. In this case, the classical one
loses its meaning. However, instead of (1), the critical Hardy inequality

N - 1\M N
(T) fQ |X|N(|Og |x\)NdX< f[;

holds for allu € Wy™(Q) anda > 1, whereR = sup,, x| andN > 2 (see e.g. [36],

[20] Corollary 9.1.2., [4], [5], [44], [56]). It is known that the optimal constant of (2)
with a > eis ('\‘T‘l)N and is not attained for any bounded dom&inwith 0 € Q by

using rearrangement technique and a improvement of (2) (see [3], [2], [54] etc.). On
the other hand, in the case<la < e, the optimal constamﬁ%)’\‘ is also not attained

in spite of luck of rearrangement technique (see [32], [21] Theorem 9.1.4., Theorem
1(ii) in §1, Corollary 2 in§2). For a generalization of (2), the following inequality

Ju(x)[4 N
C[fp|x|N(|og|X| ) flvul dx 3)

holds for allu € Wé’”(.Q) anda > 1, where appropriatg@ andg, see [43], Corollary 1
in §2. We defineG as the optimal constant of the inequality (3) as follows:

N
vu- 23| dx @)

X

_ 5, IvuN dx
G=0G(L;a09,8) = inf N 4)
uewsN (@)\(0} ( luje dx)a
2 |xN(log 3%

fora> 1 andg,8 > 1. Our aim of this paper is to study positivity and attainability of
G for a general bounded domathwith O € Q. Note that some results are obtained
by [31] only for balls.

Our minimization problem (4) is related to the followild-Laplace equation
with the singular potential:

. _ -2 .
—div (|VuN-2vu) = % in Q )
u=0 on Q.

The minimizers foiG are grand state solutions of the Euler-Lagrange equation (5).
One virtue of our problem is that the phenomenon occurrinG andergoes a drastic
change with respect to the exponeats8 and the boundar§ sinceG is affected by

the shape of the potential functidg(x) := [x"N(log ﬁ)‘ﬁ. Especially the structure

of the singularity of the potential functiofy s is quite diterent betweea > 1 and

a = 1. Indeed, the singularity of it with > 1 is only at the origin. In contrast, the
singularity of it witha = 1 is not only at the origin but also on a portion of the
boundary, that i9Br(0) N Q. In this paper, we cak = 1 case as “sharp” one and

a > 1 case as “non-sharp” one. First result is concerning non-sharp case.

Theorem 1 (Non-sharp case : & 1) Let a> 1, Q be a bounded domain iRV,
0e Q,N>2 R=suplx, g, > 1satisfy

{>NT‘1q+1 if 1<g<N, ©)

>Ng+1 if N<q
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G is defined by (4). Then the following statements: (ij) hold.
(i) If B> Stq+ 1, then G is attained.
(i) If B=q= N, thenG= (’\'T‘l)N independent of? and a, and G is not attained.

(i) If B = %q +1,9> N,and a> ef, then G is independent & and is not
attained.

Remark 1In Theorem 1 (iii), we assume the conditien> ef. In this case, the
potential functionf, s is radially decreasing in the domaid. Therefore, we can
apply the rearrangement technigue to our minimization problem (4). We do not know
whether Theorem 1 (iii) holds for argy> 1.

In sharp casa = 1, the positivity ofG heavily depends on geometry @ near
0BRr(0) and the exponerit which expresses the strength of the boundary singularity
of the potential functionf, . Roughly speaking, iB is small, then the singularity
of f14 at the origin is too strong. On the other hand3 i€ large, then the boundary
singularity of f1 4 is too strong. Moreover the sharpness of the cornep,ofvhich
touchesdBgr(0), plays the role of weakening the boundary singularityfof. We
can observe that the critical Hardy inequality has a good balance concerning these
singularities. Second result is as follows.

Theorem 2 (Sharp case : a= 1) Let N > 2, 3,q > 1 satisfy (6),2 c RN be
a bounded domain with € @, and R= sup,,|X. G is defined by (4). Then the
following statements (i), (ii) hold.
(i) If there exists a neighborhoadd c 92 N dBr(0) in dBR(0), then G> 0 if and only
ifg=8=N.
(i) Let Q2 N dBR(0) = {(0,--- ,0,-R)}. There exist a functiop : RN-1 — [-R, o)
and a smalb > 0 such that)Q is represented by the graph > ¢(X') for [X'| < 6.
Furthermore there exist positive constants C, and0 < « < 1 such that G|X'|* <
d(X) + R < CyIX|* for |X| < . Then there exist8* = 8*(«, g) such thatNT*l +1<
B < g and the following statements (ii)’, (ii)" hold.
(iiy If B <p*, then G> 0. Moreover, ifS5tq+ 1 < g < g, then G is attained.
(i)y" If B> p*, thenG=0.

Third result is concerning the explicit optimal constant and its minimizess of
for radial functions.

Theorem 3 (Optimal constant and its minimizers) Set

_ fBR(O) [VulN dx
Grad = Grad(Br(0); 8,0, 8) = 1N|nf N @)
ueW; 24 (BR(O)\(0} ( u dX) a
Br(0) [xN(log =X

Then the following statements-i)iii) hold.

(i) Graa is independent of & 1if g = N2q + 1.

(i) Grada(1,0.8) > Oif and only if g> N andB = N2q + 1. Inthe casgs = Nilq+1,
Grad(a, 0, 8) is attained if and only if &= 1 and g> N.
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(iii) When g> N andg = NT*1q + 1, the optimal constant (1, g, 8) is given by

N)l-zq” ( N)-2+2q” {r(qg’“_Nl))r(q_LN))l—ﬁ

1-N
Gradszq(N_l)(_ 1-— N
| r(3tv)

q
whereI'(-) is the gamma function, and the minimizers are given by the family of
functions

N

N1 Ry ™) *"
Uly)=Ca v |1+ /llog|—y| ,CeR\{0},A>0.

Only for two dimensional casl = 2, the form of minimizer in Theorem 3 (iii)
was already found by [59].

Remark 2In the caseg = N,a = 1 in Theorem 3 (ii), loku-Ishiwata [32] showed
not only the non-existence of the minimizers@#4(1, N, N) = (NW‘l)N but also the

existence of “virtual” minimizer (Io§)¥. To be more precise, if there exists a
minimizer u of Grag(1, N, N), thenu(x) = (log £)'%". However, since (log) ™ ¢

W, N(B(R)), the radial minimizer does not exist. This phenomenon is also observed
in other Hardy type inequalities (see [12], [33], [52]).

A few comments are in order.
Scale invariance often plays a important role in consideration of minimization prob-
lems. It is well-known that the Hardy-Sobolev type inequality (1) has the scale in-
variance under the scaling
X

ui(x) = /I‘N*;pu(z) (8)

for A > 0 when@ = RN. WhenQ # RN, the inequality (1) is also invariant under (8)
excluding variation of the domain. For simplicity, we call this invariance as “quasi-
scale” invariance. On the other hand, the critical Hardy inequality (2) is not invariant
under the scalingi,(X) = u(4x) due to the logarithmic term. However, under the
non-standard scaling

w(x) =17 u (m)ﬂ_l x| (1>0) )
A - aR B
the inequality (2) has the scale invariance in the @sel and has the quasi-scale
invariance in the case > 1 whenQ = Bg(0) (see [32], Proposition 3 i§5). Unfor-
tunately, the generalized critical Hardy inequality (3) does not have even the quasi-
scale invariance under the scaling (9) due to the derivative fstﬁw'\‘dxof (3) (see
Proposition 3 in§5). The lack of the scale invariance makes itidult to study our
minimization problem (4).
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In the subcritical casp < N (especiallyp = 2 case), there is an enormous number of
researches concerning the following type minimization problem associated with the
optimal constant of the Hardy-Sobolev inequality:

. fQ |VulP dx
inf —_—, (10)
UeW, P(Q)\(0} ( [ |u|\p|*<s> dx)m
XS

wherep'(s) := B2, On the whole spac@ = RV, the explicit optimal constant

and its minimizers were revealed (see [57], [39] [13], [26], [30] and the references
therein). On the other hand,df is a bounded domain anddoQ, it is known that the
existence of minimizers heavily depend on the mean curvatuf@att O (see [19],

[22], [25], [23], [11], [41]). We refer the survey paper [24] and the book [20].

In the critical casep = N, there are several researches of maximization problem
associated with the Trudinger-Moser inequality which expresses the embedding of
the the critical Sobolev spad&®N to the Orlicz space (see e.qg. [10], [55], [16], [42],
[51], [37], [34], [35] and so on). On the other hand, our problem (4) is a minimization
problem associated with the embedding of it to the weighted Lebesgue space like the
subcritical one. In this view, we can consider our minimization problem (4) as a
limiting case of (10) (see alsyt).

This paper is organized as follows: §2, we show Theorem 1. Again, note that
the generalized critical Hardy inequality (3) does not have even the quasi-scale in-
variance in general. However, only for radial functions, (3) has the quasi-scale invari-
ance. The key tools of the proof of Theorem 1 (iii) are the rearrangement technique
and the quasi-scale invariance only for radial functions. For Theorem 1 (ii), in the
case 1< a < e, we can not apply the rearrangement technique, because the potential
function (x| log %‘)*N is not radially decreasing oBr(0). Instead of the rearrange-
ment technique, we take some spherical averaging (26) in order to use the quasi-scale
invariance. In§3, we give the proof of Theorem 2. Theorem 2 (i) says that (3) can not
hold except for the Hardy casq £ 8 = N) if 6Q touchesHBg(0) enough. However,
Theorem 2 (ii) implies that (3) can holddf2 touches?Bg(0) at only one point very
sharply. In order to show these, we make several test functions, which concentrate
on the boundary or the origin, and the weighted inequality in a domain with a sharp
corner. In§4, we firstly explain the transformation which introduced by [53] in order
to prove Theorem 3. Roughly speaking, this transformation says that the Hardy in-
equality with the optimal constant is equivalent to the critical Hardy inequality with
it in the radial case. By showing that this transformation also connects the Hardy-
Sobolev type inequality and the generalized critical Hardy inequality (3), we shall
reveal the explicit optimal constant and its minimizerssfy . In §5, we state some
Propositions about our inequality (3).

Before stating the proof, we fix several notatioBg(a) and Bg (a) are balls cen-
tereda with radiusR in RN, Especially, whera is the origin, we writeB(R) for
the sake of simplicitywy is an area of the unit sphere kY. |A| denotes the mea-
sure of a seAA ¢ RN. The Schwarz symmetrizatianf : RN — [0, o] is given by
u*(Ix)) = inf {T >0 : |{ixeRN : JuX)| > 1} < |B|X|(O)|}. Xrad IS @ set of radial func-
tions in a functional spack¥. Throughout the paper, if is a radial function irRN,
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then we can write ag(x) = T(]x]) by some functioru™ {(r) in R,. Then we write
u(x) = u(]x]) with admitting some ambiguity. We hope no confusion occurs by this
abbreviation. And also, we usgas a general constant.

2 Non-sharpcase a> 1

At first, we confirm that the necessary andf&ient condition for the validity of the
inequality (3) is the assumption (6) in Theorem 1. To do so, we shall show Corollary
1 from Theorem A proved by Machihara-Ozawa-Wadade [43]. They proved more
general critical Hardy inequality in Sobolev-Lorentz sp&%(RN) as follows (see
also [15], [27], [28], [47], [48], [49)).

Theorem A ([43] Theorem 1.1)Let NN, 1< p<oo,l<r<oandl<a,p<
N
o0. Then there exists a constantC0 such that for all ue H,ir(RN), the inequality

1
f Lx)lldx < Clull (12)
8(3) IXN(log ) Hyh (RN)

holds true if and only if one of the following conditions-ifiii) is fulfilled
i) 1+a-B<0,
(i) 1l+a-p>0andr< o, (12)
(i) 1+a-B8>0,r= ﬁl_ﬂ, anda > .
SinceHy \(R") is equivalent to the Sobolev spasé-N(RN), we can obtain the
following Corollary.

Corollary 1 Leta> 1,2 c RN be abounded domain withe Q, R = sup,, |X, N >
2 and gpB > 1. Then there exists a constant-€0 such that the inequality (3) holds
for all u e W>"() if and only ifg is fulfilled (6).

Remark 3In fact, we can obtain the following inequality with the only radial deriva-

tive term
N
q q
o IXN(log £ Q
if < Nandg > NT*1q+ 1. In contrast, i > N, the inequality (13) does not hold for
all u e W;N(€Q), see Proposition 2 i§5.

vu- 2| dx (13)

Proof of Corollary 1 Letg be fulfilled (6). Foru € Wy™N(€), setd(x) = u(y) (y =
2RX). Thend'e W, N (£Q) and:Q c B(3). If we take (.1, N, @, 8) = (N, N, N, q, ),
then we can check that a st (, N, @, 8) in Theorem A satisfies (12). Thus we can
apply Theorem A fou” Then there exists a constadit> 0 such that the inequality

- y
C L)()'ldx < | viNdx
% IXN(log ) %

R
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holds. Therefore we obtain the following inequality

C[f |y|N(||og ] < J, oy

Since IogM > Clog ‘R for anyy € Br(0) and som& = C(a) > 0, the inequality

N
VR ! f N
C f—d < [Vu™d
[ o y(log 2y y) Ml

holds for allu e Wy N(€).

On the other hand, # does not satisfy (6), we consider the following test function
us € W2 (€2): We choosé > 0 which satisfieBpar(0) c Q. Lets < N2 be a positive
parameter. We define

(log 28 if 0<|x < 2R
us(¥) := 4 (log 2) % if 228 < |x < baR (14)
0 if baR< |x.

Then direct calculation shows that

baR

|ugld K ( f : aR)\s4h dr]
—= _dx| > Iog— —
[f XM (log 25 ] o)y (05

_{C(NT‘l—s)_q, if p="N42g+1andg<N,

00, if B< NT_lq +1,
N 2 -N(5t-9)
f [Vug| dx< N_ - ) (Iog 5) +C
N
for sclose toNT‘l. Thus we obtain
J, IVusN dx N-1

M -0 ass—»> ——.
q

( I oluft )
Q |xN(log &R 5

Hence the inequality (3) holds for alle Wé’N(Q) if and only if 8 is fulfilled (6).
O
In order to prove Theorem 1, we prepare the following Lemmas and Proposition.
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Lemma 1 (Compactness of the embedding) Let d, 2 c RN be a bounded do-
main with0 € Q, R = sup,IX,N > 2, and q8 > 1 satisfy (6). Setafs(X) =

Ix~N (Iog %{)_ﬂ. Then the continuous embeddingWQ) — LI(Q; f. 5(x)dX) is
(i) compact if g > Ntq + 1,
(i) non-compact if3 = 8tq + 1and g> N.

Proof of Lemma 1(i) Let (um)_, c Wo™(€) be a bounded sequence. Then there
exists a subsequenogq),”, such that

Um, — U in WyN(Q),
Un — Uin L'(Q) forany 1<r < . (15)

Leta satisfy™2q+ 1 < @ < 8. For alle > 0, there exists > 0 such that

a—p
(Iog %T) < ¢ forall x e B(6). (16)

From (15) and (16), we obtain

[Um, — [ |Um, — ul® N aR\#
L o= o e (005 it
2 9 B(o) 9

< &ClIV (Um, = W)l + Cllm, — UllLage)

< Ce+Cllum, — UllLae) = 0 ase — 0,k — co.

Therefore, the embedding;™(2) < LY(Q; fa 5(x)dX) is compact ifg > N1q + 1.
(i) Let ¢ > O satisfyB(e) c @, u € Wy™N(B(e)) be a positive radial function and
uy € WN(B(al"7 ) be defined by (9). For @ A < 1, we set

o fwx if xeB(@Te),
Ui = {o if xe Q\B(alie).

By applying Proposition 3 i§5 andg = NT*1q+ 1, we obtain the sequen(ﬁ%}ﬁbl c
W2N(@) such that

f VT (N dx = f VUM dy < co,
Q m B(e)

Uz (x)[ q
fm—Rdx:f Ry 17)
o [XN(log & B(e) [XIN(log

x| X
If we assume that the continuous embeddify)" (Q) — LI(&; fa 5(X)dx) is com-
pact, then there exist a subsequeln?z‘%’}ﬁ":1 andup € LYQ; fo3(X)dx) such that
G%’ — Up in LYQ; fas(X)dX). Thereforeﬁ%’ — Up a.e. inQ. By the definition of
G‘n%”, we haveup = 0. However this contradicts (17). Hence the continuous embedding
WN(©Q) & LI(; f, 5(X)dX) is non-compact.
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O

Lemma 2 (Positivity of minimizers) Let g N,a > 1, andg = NT’lq + 1 Ifue
W,N(B(R)) is a nonnegative minimizer of(B(R); a, g, 8), then ue C1(B(R) \ {0})
and u> 0in B(R) \ {0}.

Proof of Lemma 2Letu € WS‘N(B(R)) be a nonnegative minimizer G{(B(R); a, g, 8).
Then, by the method of Lagrange multiplier, there ex#stsR such thau is a weak
solution of the Euler-Lagrange equation

“Agu=A—""_  in B(R
{ CCT R

u=0 on 0B(R),
wheredyu := div(|VuN-2Vu). We observe thah > 0. Fore > 0,

@,

B
the function|x™N (Iog |x|) is bounded inB(R) \ B(¢). (18)

Furthermore the Sobolev inequality yields that
ue L"(B(R) forall 1 <r < oo. (29)

Thus we see thatyu € L"(B(R) \ B(g)) forall 1 < r < o0 by (18) and (19). If we take
larger , thenu € CY(B(R) \ B(¢)). (see [14]) Hence, by applying the strong maximum
principle for the distributional solution € C(B(R)\B(¢)) to the inequality-Ayu > 0
in B(R) \ B(¢), we obtainu > 0 in B(R) \ B(¢). (see [50] Theorem 2.5.1.) Sinee> 0
is arbitrary, we have proved thate C*(B(R) \ {0}) andu > 0 in B(R) \ {0}. Therefore
nonnegative minimizers @(B(R); &, g, 3) are positive inB(R) \ {0}.

O

Proposition 1 (Non-existence of radial minimizers) LetxjN,a > 1,R > 0, and
B="32q+1 ForRe (0,aR), set

B _ fB(ﬁ) [VulN dx
Grd(B(R);2.0.8) = inf_ T
UeWy .4 (B(R)\{O} ud d q
B(R) 1xN(log 2

[

Then G.a(B(R); &, g, B) is independent oR, and is not attained for ani € (0,aR)
and a> 1.

Proof of Proposition 1 Foru e Wy (B(R)), we consider the scaled function e

W&’r':d(B(al‘% R)) which is given by (9). Thanks to the quasi-scale invariance for radial

functions (see Proposition 3 §b), we have

N N
o VUM dx g VU dx

Juja Jua [
(fm mdx) (fa<a1-%R) de)

]

alz
alz
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which yields that

Grad(B(R); 2,0, 8) = Grad(B(R); & 0. ) (20)

for anyR € (0, aR). ThereforeG,a4(B(R); a, g, 8) is independent oR.

Next we shall show thaB.4(B(R); &, g, 8) is not attained by a contradiction. As-
sume that there exists a minimizere W,™(B(R)) of Grad(B(R); & g,). Then the
scaled functioru, € W&gd(B(al‘%li)) is also a minimizer of5,24(B(R); a, g, B) for

A € (0,1), because it holds thwg;gd(s(al-%fz)) C Wyr((B(R) for 4 € (0,1). Note

thatu, = 0 onB(R) \ B(a>~iR). This contradicts Lemma 2.
o

Proof of Theorem 1(i) If 8 > NT*1q + 1, we can easily show th& is attained from
Lemma 1 (i). We omit the proof.

(iii) [Step 1] First, we shall show th&(L; a, g, 8) is independent o if 8 = NT‘lq +
1,9 > N, anda > ev. Foru € WN(B(R)), it is known the lya-Szeg inequality
(see e.qg. [40]):

f |Vu|Ndxzf IVuN dx (21)
B(R) B(R)
and the Hardy-Littlewood inequality (see e.g. [40]):
#
q
f &dxs f __1 [u¥(x)|%d x (22)
BR [XN(log 5% BR XN (log &%

hold true. By the assumptian> e%, the potential functiox~N(log T‘—XFl*)‘ﬁ is radially
decreasing oB(R). Therefore it holds that

XN(log 2 )~ [xN(log =

1] X

#
[ 1 ] ! (x € B(R)). (23)

From (21), (22), and (23), we obtain

N H#IN
fB(R) [VuN dx N fB(R)|Vu| dx

u e
( BR) "(log %)ﬁdx) ( BR) [X"(og ?—xﬁ*wdx)

alz
alz

which yields that

G(B(R); &, a,5) = Grad(B(R); &, 0, ). (24)
Especially, if we take smalR > 0 such thaB(R) c @, then we obtain
Grad(B(R); 8,0.8) > G(2; 2,9, 8) > G(B(R); ., 8) (25)

by zero extension. From (24), (25), and Proposition 1, we observé&ilaaia, g, 3)
is independent af.
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[Step 2] In order to show thaB(R2; a, g,8) is not attained, assume that there ex-
ists a minimizeru e Wé’N(Q) of G(Q; a,q,8). We shall deduce a contradiction.
If @ ¢ B(R), then the zero-extended functiene W;N(B(R)) is a minimizer of
G(B(R); &, g, 8) sinceG(L2; a,q,p) is independent of2 from Step 1. However = 0

in B(R) \ Q. This contradicts Lemma 2. Therefore we supposeghatB(R). In this
caseu’ € Wy (B(R)) becomes a radial minimizer @(B(R); a,,8) from (24) in
Step 1. However this contradicts Proposition 1. HEG¢®; a, g, 8) is not attained.

(i) Now we consider the cage= g = N. Letx = rw (r = |x|, w € SN1) for x € B(R).
Foru e Wy™N(B(R)), we consider the following radial functida:

1
U(r):(w@l f |u(ra))|NdSw) ) (26)
SNfl
Then we can check that
1
u’(r) < ( f )
which yields that
N
f |VU|Ndxsf vu- 2| dx @7)
B(R) B(R) X

And also we have

U ™
— L __dx= [ — ___dx (28)
BR [XN(log 2N BR [XN(log 2N

for alla > 1. Therefore, from (27), (28), we obtain
G(B(R); &, N, N) = Grad(B(R); &, N, N),

for all a > 1. If we recall thatG(B(R); &, N, N) = (82N in [3] Lemma 2.5, the rest
of the proof is the same as (iii).
The proof of Theorem 1 is now complete.
O
From Theorem 1 (i), we obtain the following Corollary.

Corollary 2 G(2;1,N,N) = (NTfl)N is not attained for any bounded domai@svith
Oe Q.

Remark 41n the two dimensional cadd = 2, the above result is already known by
[21] Theorem 9.1.4.

Proof of Corollary 2 Since log§ < log 3% for any x € Bg(0) anda > 1, we
have('\‘—‘l)N < G(Q;1,N,N) < G(2;a,N,N). From Theorem 1 (ii), it holds that

G(@aN,N) = (82 1) . Therefore we obtaifs(Q; 1, N, N) = (NT‘l)N independent of
Q. Therefore we observe that if there exists a minimizef G(Q2; 1, N, N), thenu is
also a minimizer of5(Br(0); 1, N, N). However it is known thaG(Bg(0); 1, N, N) is
not attained (see [32]). This is a contradiction.

O
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3 Sharpcasea=1

In this section, we consider the sharp case. Key tools of the proof of Theorem 2 are
the test function method and the Hardy inequality on the half space.

Proof of Theorem 2

() Let I" be a neighborhood i6B(R), which satisfied” c dQ N dB(R). First we show
thatG(Q;1,q,8) = 0if g > Nlq+ 1. Setx = rw (r = [X|,w € SN1) for x € Q. Let
§ > 0 satisfy{(r, ) € [0,R) x SN1[R-26 <1 <R w € &'} c Q. Define

(logB)'y(w) if R-6<r<R
Us(X) = { smooth if R-26<r<R-6
0 if 0<r<R-25

wherey € C3(&I). Then we obtain

f IVug/Ndx = f f
BR) Sh-1

< 2N—1

Ous rN‘ldrdSa,

Rlou
—S 14 |V5N71US|N rt drdS,

SNl
R

R (s—1)N sN
<d'c (Iog ) ﬂ+C (Iog ) d—+C
R-6 R-6
Iog R3
<d'c t&Ndt 4+ C

s—N+1
) +C < oo.

-1
- R
= C— S— —— ( —_—
N ( N ) YR
Thusus € W™ (@) for all s> N2 However, direct calculation shows that

q R R\S5 ¢ log =5
dexch (Iog—) —rch " g8 it
2 |xN Bl)ﬁ R-6 r r 0

(log &
which implies that

|ugl? 3
Lﬁdx_m
XN (log &)

for sclose to ! sinceg > N*1q + 1. Therefore we proved that

G(2;1,0,8) =0 if ,8>N_1q+1. (29)

Next we show thaG(2;1,q,8) = 0 if 8 > N. Setx, = (R- 2¢)%. Note that
B.(x.) c 2 for smalle > 0. Then we define the test functiop as follows:

L) = {v('x-—f') if x € Be(x)
0 if xeQ\ B,(x),
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where

Vo v(l) = 1 if0<t<3i (30)
S |2@a- if St

Since log <t-1fort > 1, we obtain

f ViU ()N dx = f IVyv(yDIN dy < oo,
Q B(1)

q q
f Iug(x)IR Sdx > cf —(EE_(TBJDde
2 |xN (Iog M) By (%)
C

> — dx=C&"¥* 5
(3e) B (x)

ase —» 0 wheng > N. Hence we proved that
G(2;1,q9,8 =0 when 8> N. (31)

From (29), (31), and the assumption (6), we showed®{&x 1, g, 8) > 0 if and only
if g=8=N.

(i) Let 0 < @ < 1. Setx, = (R- 2¢)% andQ; := B)}(0) x (-R, —R + 6) for smalll
& > 0ands > 0. SincedQ is represented by the graph = ¢(x) for X' € BY~%(0)
and¢ satisfiesC,|X|* — R < ¢(x') < Co|x'|* — Rfor X' € B}"*(0), we obtain

{(X, %) € Qs xn = ColX|" =R} € 2N Qs c {(X, xn) € Qs | Xy = C1X|* - R}.
(32)
First we shall show thaB(2;1,q9,8) = 0 if 3 > N. From (32), we can observe

a”

that BAE% (%) c Qfor smalle, A > 0. Then we define the test functien as follows:

bxl)
Ws(X) = V( At ) it xe BA‘S% (XF)
0 if xeQ\B, 1(x),

wherev is given by (30). In the same way as (i), we have

f IV, W (XN dx < oo,
Q

f L T
R
2 |xN (log &

ase — 0if > Y. Therefore we obtain

G(92;1,q,8) =0 ifatleast B> N (33)
a
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Next we shall show thaB(2;1,q,4) > 0if g < %=1 4+ 1. Foru e WyN(@), we
divide the domain into three parts as follows:

q
I%dx:f +f +f =i+l +1s. (34)
2 |xN (Iog \_’i’l) onB(8)  Ja(B(Bugs) Jens

From Theorem A, we obtain

I3 < (:(fQ|Vu|No|x)ﬂ . (35)

Since the potential functiofx~N(log ‘—';’l)‘ﬁ does not have any singularity i \
(B(%) U Q(;), Sobolev inequality yields that

a
IzsCf|u|qus C(f |Vu|Ndx) . (36)
Q Q

Finally, we shall estimaté; as above. Since Idg> %(t -1)(1<t < 2), we obtain

|U(X)|q fZN=6 f [6(z, z)I4
I3<C x<C —d 37
* LQQ{S (R |Xl)ﬁ zy=0 n>CylZ | |zlﬁ z ( )

whereu(x) = 0(2) (z = x+ (O, - 0 R)). If 8 < N1 4 1 then there exists > 0
andp > Nl_s such thatg - g)p < == 141.By usmg Holder inequality and Sobolev
inequality, we obtain

sz:ﬁf Gz, 2
w=0 Jasczpe 2P
— |U| a—&5B8— ed

ECANEAE

N\ o\ .
<(f M—Ndz) (ff|ﬂ|(q‘5)ww—psdz) (ff|z|<ﬁs)sz)

N \W ® 5
_C(ff“’—'Ndz) (f |VC||Ndz)N ff 1 2 Pdz
|Zn| Q |Z|g LN ‘

A 2 [ [+

N _(B-g)p> -1, jﬁzs%_w_g)pdz,\, < co. Furthermore, applying the Hardy
inequality on the half spade!\:

— r r
(g) u dxsf Vufdx (L<r <o)
Y

r RN XN
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yields that

=6 Y q N
f f Molzs c(f |Vﬁ|Ndz) ) (38)
w=0 Jzscyze  |2P Q+(0. 0R)

By (37) and (38), we obtain

I3 < c(fg |Vu|Ndx)ﬂ : (39)

Therefore, from (34), (35), (36), and (39), the inequality

[u(x)[ K N
cl [ ™% gy < [ (vuMax

holds for allu e W;™(). Hence

G(2;1,0,8) >0 ifatleast B <

+1. (40)

From (33) and (40), there exists € [*=1 + 1, N] such thatG(2; 1,a,8) > 0 if B
satisfies (6) ang < 8*, on the other han®(2;1,q,8) = 0 if 8 > §*.

Lastly we shall show thas(€2; 1, g, 8) is attained ifNT*1q+ 1<pB<pB . Inorderto
show it, we should prove that the continuous embedWfj§ (2) — LI(€; f15(x)dX)

is compact ifNitq + 1 < B < B*, wherefag(x) = [X™N(log 55)”. Let (Um)m, C

Wg’N(Q) be a bounded sequence. Then there exist a subsequge, (such that

Um, — U in WyN(Q),
Un — uin L'(Q) forall 1<r < . (41)

We divide the domain into two parts as follows:

—yla
f N dx= f +f = Ji(Um —U) + Jo(Um —1). (42
Q |X|N (|og ﬁ) Q\Qs QnQs

Since logf > Clog &% in 2\ Q; for somea > 1 andC = C(a,6,R) > 0, it holds that

1

U, — U@ Umn, — ul@
i< [ MM o [ b ou
210 [« (1og ) @ " (log 3£

Note that the continuous embeddm@’p(g) — LI(Q; fap(x)dx) is compact from
Lemma 1 and the assumptipn> N51q + 1, we obtain

J1i(Um, —U) > 0 ask — co. (43)
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On the other hand, for any > 0, we takey > 0 which satisfieg < y < g* and
(log l—ffl)yfﬁ < g for x € Qs (If necessary, we take smalt> 0 again.). Then we have

q
— g N
p(Un, - U) < sf M Uy < ce (f V(U — U dx) <Cs. (44)
2nQs XN (log &) o

From (42), (43), and (44), we obtain

_yla
f|Um<—U|ﬁdX_>0 ask - oo.
9|x|“(|og§)

Therefore the continuous embeddig"(2) — LY(Q; fiz(x)dX) is compact if
NT‘lq + 1 < B < B* In conclusion, we have showed tha{Q; 1, g,8) is attained
if Mg+1<p<p.

O

4 Optimal constant and its minimizers

In this section, we discuss the explicit value of the optimal constant and its minimizers
of Grad(B(R); &, 0, 3). In order to show Theorem 3, we need some results about the
following type inequality:

b
C(f |x|"|u|qu)q stulpdx (45)
Q Q

for radial functions, wher@® is a domain inR", @ > —p, andq > 1. The necessary
and stficient condition for the validity of one-dimensional weighted inequality is
known as follows:

Theorem B ([6] Bradley, [45] Muckenhoupt) Let < p <o <o andletU and V
be measurable weights. Then there exists a constanbGuch that the inequality

(fom ‘U(t) jf |¢(S)Id5{(r dt)hlr < C(fooo IV(t)xp(t)l"dt)i (46)

holds for all measurable functions such that the integral on the right hand side of
(46) is finite if and only if

r 1 0o ) ,%’
SUp( f IU(t)I‘Tdt) ( f V()™ dt) < 400,
>0 0 r

n+a-1

o ,0=0,p=p,andV(t) =

Especially, if we takeu(t) = ftw lw(s)lds U(t) =t
t" in Theorem B, then we show that

1
p

r 1w R : b
sup( f |U(t)|“dt) ( f VO dt) =sup( f t“*"‘ldt)q( f tp%dt) < 4o
r>0 0 r r>0 0 r

ifn+a= % Thus we obtain the following Corollary.
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Corollary 3 LetQ = R". Then the inequality (45) hold for all @ W>"_(R") if and

O,rad
only if = p*(a) := p(n”f?.

Remark 5Note that even ify = p*(«), the inequality (45) can not hold for all
W, P(R") whena > 0 when@ = R" (see [9)]).

Set

p
J, IvulP dx

P 9
UG NOL ([ [ ulP (@)l x) 7

whereQ is a ball orR". For the minimization problem (47), the following is known.
We refer to [57], [39], [13], [26], [30].

Hrad( p’ a, n) = Inf (47)

Theorem C The following statements ((iii) hold.
() Hrag(p, @, n) is independent a®.
(i) WhenQ # R", Hiaq(p, @, n) is not attained. On the other hand, whén= R",
Hrag(p, @, n) is attained if and only ite > —p.
(iii) Whena > —p andQ = R", the explicit optimal constant kk(p, @, n) is given by
pra
_ o (n+a)n- pPE (p- 1R (1 () M (5R) )
Hrad(p, @, n) - 2(p+a) p(n+a) ’
(p+a) % (%)

and the minimizers are given by the family of functions

W(X) = CA (L+ |AX|#1) ", C e R\ {0}, 4 > 0.
WhenQ = R"anda = -p, Hrad(p, —p, N) = (”;pp)p is not attained, because the
function|x|‘n;pp which is the solution of the Euler-Lagrange equation

p |u|p—2u
IXP

—div (|VulP2vu) = (n_Tp)

nR"

is not in suitable functional spawé'p(R”), see also Remark 2.

In the radial case, the authors in [53] proved that the critical Hardy inequality (2)
on the baIIBg(O) c RN is equivalent to the subcritical Hardy inequality (45) with
exponentr = —p, p = N(< n) onR". Concretely, they showed the following.

Theorem D ([53] Sano-Takahashi) Let,N € N satisfy n> N > 2. Then for any
we CL,(BR(0)\ {0}) (resp. ue CL,(R"\ {0})), there exists & C (R" \ {0}) (resp.

rad rad rad

we CL (B3(0)\ {0})) such that the equality

rad

n—NyN ulN
VuNdx—( )f—dx 48
fRn| | ) | (48)

_ N-1 _1\N N
wn \N -1 BN(0) N BYO) |y|N (Iog ﬁ)

holds true.
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A key ingredient of their proof is the transformation (49) which connects two
Hardy inequalities. The transformation (49) also plays an important role on the gen-
eralized critical Hardy inequality (3). Indeed, the transformation (49) connects our
inequality (3) witha = 1 on the baIIBg(O) and the inequality (45) oR". Moreover
(52) also connects (3) with > 1 on the baIIBg(O) and (45) orB3(0).

Proof of Theorem 3First we consider the sharp case- 1. Letx € R, r = |X|,y €
RN,t = |yl andN < n. For a nonnegative radial function= w(y) € C*(B}(0) \ {0}),
we define a radial function = u(x) € Cé(R”) as follows:

N-1

u(r) = w(t), wherer =r(t) = (Iog TR) . (49)

Note thatr’(t) > O for anyt € [0,R) andr(0) = 0,r(R) = +oo. Also u(r) = 0 near
r = +oo sincew(t) = 0 neart = R. Furthermore we obtain

dr_N—l dt

= N E
r n-Ntlog?
Leta > —N satisfyq = M%) Direct calculation shows that
o dr
= wn [ e
RO 0 r

_ (N=-1)(+a) 1)(n+a) 1 gt

t

-N
_ wn N 1f [wi@
wnN=N BX(0) |Y|N(|09 M)ﬁ

(N-1)(n+a)
n-N

sinceg = Ntg+ 1=

n-=N N-1
fqu|Nd _—(N 1) f ivwiNdy.
Rr BY(O)

Therefore the following equality holds.

+ 1. In the same way as above, we have

fsg(O) [Vwi™ dy _ (ﬂ)l—ﬁ' (N _ 1)N—1+Z' Lo IVulN dx

(o )’ N (Leuea
BN(0) iyN(ilog X w)ﬂ K

Thus we obtain

wn

N-1
n-N

-4 N-1+%
Grad(B(R)u 17 qsﬁ) = (%) ( ) Hrad(Ns a" n)' (50)
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Concretely, by using equalities— N = N(n +a),N+a=(1- N)(n + a), and (iii)
in Theorem C, we have

Hrad(N, o, n)
N+a
Nte o e 2 N-1 — nra
_ oy (n+ a)(n- NNRE N - ) (0 (G 1 (RED)
(N+a) % r (%) ’

wﬁ‘%(n + @) (%(n + a)) -8 (N-1)% N
(I

By (50) and (51), we observe that

<—><—>] -

r (&)

aiN-1)

N-1+8
W) Hrad(N, @, n)

=
Grad(B(R); 1.0.58) = (%) (

~—

o)

WD) () 5
5

N A =3 (r
et ) (g

. r (&)

which is independent of exponemtsy. Also we obtain the minimizdd of G,,¢(B(R); 1, g, 8)
from the minimizerW of Hrag(N, @, n). Indeed, by the transformation (49) and the

equahtme T N, it holds

Z

N
-N

n— +a —nN q_T !
W0 = 2% (1 ) o [1+(ulog = ] - Uy

wherea™™N = 4N, Thus we have (iii) in Theorem 3.
On the other hand, in the caae- 1, if we modify the transformation (49) a little
as follows:

_N-1

_w(t), where ! =99} " 52
u(r) = w(t), where - = oga , (52)

then we also obtain a similar result as (50):

N-1
n-N

-2 N-1+8
Grac(BY (O)a,q,m—( ) ( ) HaoBYO): Noaur). (53)

Namely, we can observe th@t,q with a > 1 is equivalent tdH,4 on a ball. Hence
we can see that (i) in Theorem 3 follows from (50), (53), and (i) in Theorem C. And
also (ii) in Theorem 3 follows from (50), Corollary 3, (53), and (ii) in Theorem C.

O
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5 Appendix

First we shall show that on the generalized critical Hardy inequalities (3), we can not
replace the derivative terrf!\) |VuNdx by the radial derivative terrﬁ) [Vu- (x/|x])[Ndx
in general.

Proposition 2 Let2 c RN be a bounded domain withe Q2 and R= sup,, . If
g > N, then

I. ‘Vu- 1™ gy
inf 2L M _p
0£ueW;N(Q) ( ua q
fQ [xIN(log %)f’)
The proof is inspired by the idea of Musina [46].
Proof We use polar coordinate, @y, - - ,fn_1) € [0, o) x [0,7)N-2 x [0, 27) of x =
(X1, Xo, - -+, Xn) € RN as follows:
X1 =TI COSH1q,
Xo = r Sin#, c0SsH,,

Xn—1 = FSindysings - - - sindy_p COSON_1,
XN =rsind, sind, - - - Sinfn_> SiNfn_1.

Moreover its Jacobian is given by

(o) s [ Jsinay+ (54
a(r, 01, -+ ,On-1) i=1 | .

Let 6 > O satisfyB(5) c Q. Then we consider the following test functiep <
WM (B(6)) for all u > 1:

Uu(X) = Uy(r, On-1) == F(r)gu(On-1) (0 <1 <06,0<6On-1 < 2n)
where

9On-1)  if O <Oy <2,
0 if 37” < 6On-1 < 2m,

0u(On-1) = {

f € C5((0,6)) andg e CF((0, 2r)). Sinceq > N and the Jacobiad (5224 is
independent ofy_1, we obtain
N 2
dx _c o 19.(0n-1)IN don_1

X
b |vu. - &
N

(fg ﬁ) ’ (ﬁ)% 19, (On-1)17 d9N—1)

N
q
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Hence we have

N
I. 'Vu~ X dx
inf 2L M _pg
0¢UEW3‘N(Q) uja )E
( 2 [xN(log )¢

O
Let 2 c RN be a bounded domaia,> 1, andR := sup., [X. Under the suitable
setting concerning, 8, 22, andu (see Theorem 2, Corollary 1, Remark 3, Theorem 3,
Proposition 2), we can see that inequalities

X N |u|q %
fVu-— dszf—Rdx , (55)
ol M o [XN(log ¢
N
|ufd ‘
vuNdx> C f—dx 56
J, v (mN(Iog%‘? ) o

hold for allu Wé’N(.Q). In the next Proposition, we discuss the scale and the quasi-
scale invariance of the generalized critical Hardy inequalities (55), (56) under the
scaling (9).

Proposition 3 (i) If 8 = %q + 1, then the inequality (55) has the quasi-scale in-
variance under the scaling (9). Furthermore, in the case R if 2 = B(R) or Qis a

open cone, then (55) has the scale invariance under the scaling (9).

(ii) The inequality (56) does not have the quasi-scale invariance under the scaling
(9) for any gB, a, and Q. However, only for radial functions, (56) also satisfies (i).

Proof (i) Letr = [X,s = |,y = ((Li,‘?)d_lx e Qand@; = {x e RN |y € Q}.

Then we can easily check that= r‘(aR* and g—fr = As. Also we observe that

Q, c B(@*R) since® c B(R). Foru = u(y) € WiN(2) ¢ WAN(B(R)), we obtain
qu/l(x) : ﬁ

x [N 0
f dx=f —Uy(X)
a X B@-TR) 10r
1-N <R
=

Lo,
L[

sh-1 Jo

R

L.,

-1,

In the same manner as above, we have

q N-1 ;
f LX)LRdx: Aﬁ‘Tq‘lf L)'aRdy' (°8)
o, IXNN(log & a lyN(log

N
dx

0 N N-1
gu(&u) r—drdS,
Nds \M?!
(ar) dsdS,

N
sN1dsds,

0
a—SU(S‘U)

0
a—SU(Sw)
y N

vyu(y) -
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The assumptio = NTflq + 1, (57), and (58) yield that (55) has the quasi-scale
invariance under the scaling (9). Furthermore, in the easel, if Q = B(R) or Q
is a open cone, then we can easily check that= Q. Therefore (56) has the scale
invariance under the scaling (9).

(ii) In the same way as (i), we obtain

a iR
f IVup(Ndx = a+N f f
Q) SN-1. J0

R

Lo

SN-1. J0

R

= Jo

Therefore, ifuis a non-radial function, then we can see that

2u(sa))w + %Vsmu(sw)

N
r
or

N-1drds,.

N
0 ds \ ™ ds \M*
6—su(&u)w+(ar) Vsmu(&u)‘ (ar) dsds,.

0 1 N N-1
(9—Su(s<u)a)+ ﬂ—SVSN_lu(&u)‘ s dsds,.

IV, (0Nl # f 19, u(y)Ndy.
Q Q

for A # 1. Therefore (56) does not have the quasi-scale invariance under the scaling
(9) in general. However, only for radial functionsit holds

'Vu(x)- %' = |Vu(x)|.

Since inequalities (55), (56) are same in the radial case, (56) also satisfies (i) only for
radial functions.
O
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