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Abstract

We consider on compactness for the embedding from radial Sobolev wé@@@‘)

to variable exponentebesgue spacdS®(RN). In particular, we point out that
the behavior ofy(x) at infinity plays an essential role on compactness. As an ap-
plication we prove the existence of solutions of the quasi-linear elliptic equation
with a variable critical exponent.
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1. Introduction and main results

Sobolev-type embedding has been studied by many researchers so far. As
well known result there is a continuous embedding fiAP(RN) to LY(RN) for
N >2 1< p< N, andqg € [p, p‘], wherep* is pN/(N — p). In addition,
this embedding is not compact since these two function spaces have a property
of invariance on translation. On the other hand, the embeddingWé@QRN) to
LI®RN) is compact forg € (p, p*) (see [13], [17]), wherdV-P(RN) is the set of
radially symmetric functions iWw:P(RN). Note that even radial Sobolev spaces
era’tg(RN), it is not compact foq = p andq = p*. Related results are obtained in
[6], [8], and so on.
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Generalized Sobolev spada& P (Q) with variable exponentp(x) have also
studied so far. For a domaid c RN and a functiorp € L*(Q2) with p(x) > 1 we

set
flu(x)lp(x)dx< oo},
Q

WEP(Q) = {u e LPY(Q) | D u e LPY(Q), |o] < k.

LPM(Q) = {u is a real measurable function €n

Thesel P¥(Q) andWkPX(Q) are Banach spaces with the following norms:

p(x)

fu
ald

WhenQ is a bounded domain with the cone property, some results concerning
WKPX(Q) are obtained by [12], [9], and [14]. One of the results in [9] is the
existence of the compact embedding. They consider the situation p(xgims
uniformly continuous o and 1< essinf p(X) < esssug p(x) < N/k. Under

this situation there exists a compact embedding fhtP®(Q) to LI (Q) for

q(x) satisfyingp(x) < q(x) a.e. inQ and ess irg p*(x) — q(x) > 0, wherep*(x) =

N p(x)/(N=kp(x)). On the other hand, fal/*-P(Q2) Kurata and Shioji [12] consider

the critical case, that is ess sp(x) = p*. They showed that if there exisg €
Q,Co>0,n7>0,and O0< ¢ < 1 such that ess SH, (o) q(x) < p* and

dx < 1}, lullweso = 1Ullogy + . DUl

lal<k

Co

m for a.exeQn Br](XO)a

9 < p -

then the embedding froW-P(Q) to LIY(Q) is compact. Conversely, if

S
| Tog|X — Xl |

then the embedding froM-P(Q) to LIY(Q) is not compact.

WhenQ = RN and conditions of(x) are same as those of bounded domain
case, the compact embedding fraktP™(RV) to LIW(RN) is obtained forg(x)
satisfying ess infv q(X)—p(X) > 0 and essinfv p*(x)—q(x) > 0 by [10]. However,
the critical case, that is essinfg(x) — p(x) = 0 or essinfn p*(X) — q(X) = 0, is
not treated even ip(x) = p.

In this paper, we fiyp(X) = p and we investigate the case when esgig{x) =
p and ess su@ q(x) = p*. Our first purpose is to obtain affigiently condition of
compactness and non-compactness.

qx) > p* — for a.e.x € QN B,(xo),
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Before introducing main results, we fix several notatioBg.denote a open
ball centered O with radiuR. wy_; is an area of the unit sphef@-! in RN.
Throughout this paper we assume tijad) € L=(RN) andqg(x) > 1 fora.e.x € RN.
A letter C denotes various positive constant.ulfs a radial function irRN, then
we can write asi(x) = 0(]x]) by some functioru™ T(r) in R,. For simplicity we
write u(x) = u(|x]) with admitting some ambiguity.

Theorem 1. (Non-compactness) If there exist positive constBn@ and a open
setl" in SN~ such that

Co

| log x|

aqx) < p+ for x € (R, +00) X T, (1)

then the embedding froM:2(RN) to LI®¥(RN) is not compact.

Theorem 2. (Compactness) If there exist positive constansCy, Cq, andk, | €
(0, 1) such that

gq(x) < p* - for x € By, (2)

0
|logix| ¢

ax) > p+ for x e RN\ Bg, (3)

1
|loglx| |
then the embedding fro:2(RN) to LI®¥(RN) is compact.

Remark 1. In Theorem 2, we don’t need the constrgint g(x) < p. era;g(RN) C
LI®(RN) holds wheneveq(x) satisfiesg(x) < p* in B, andq(x) > pin RN\ Bg.
Concerning the continuous embedding fr\Nf;g(RN) to L4(RN) for a constang,

the constraing € [p, p*] comes from (2) and (3).

As an application of Theorem 2, we discuss the existence of a weak solution of
the following nonlinear elliptic equation under the hypotheses (2), (3) in Theorem
2.

(4)

—Apu+UuP =yt y>0 in RN,
ue WEPRN),

rad

whereApu = div (|VulP-2Vu) is p—Laplacian. Note that in the non-critical case,
thatis essinfgn q(X) > p, existence of solutions to a quasi-linear equation similar
type to (4) has already studied by [2]. Howeveltatient from [2], there is a
possibility of ess infzn q(X) = p under the hypothesis (3). This condition causes
some dificulties to show the existence of solution to (4). Before introducing our
result, we state severalfficulties of our problem.
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Mountain pass method which has been introduced by Ambrosetti and Rabi-
nowitz [1] is useful to show the existence of nonlinear elliptic equations. How-
ever, in (4) with the case essjafn q(X) = p, we cannot confirm whether the en-
ergy functionald (see Section 4) corresponding to (4) satisfies the “Palais-Smale
condition” or not. Besides that, satisfying the mountain pass structuré i®r
not trivial since we can not apply the fibering map method directly. To overcome
these dificulties, in Section 3, we construct a solution of (4) as a limit of mountain
pass solutions of some elliptic equations approaching (4) in the sense of energy
functional. In Section 4, we show an another proof by using the variant of the
mountain pass theorem. More precisely, by introducing the condition (C) (see
Section 4) defined in [5] or [3] instead of the “Palais-Smale condition”, we obtain
a solution of (4) in a dferent way from Section 3.

Theorem 3. Assume that)(x) satisfies the hypotheses (2), (3) in Theorem 2 and
essinfes, d(X) > p. Then there exists a nontrivial weak solutiow ere’lg(RN) of
(4) in the sense of

f (|Vu|p-ZVuV¢ +uPlg - uq(X>—1¢) dx=0 (5)
RN

for any¢ € W-R(RN).

rad

Remark 2. If g(x) is radially symmetric satisfying the hypotheses of Theorem
3, then we can show that the weak solutiobtained in Theorem 3 satisfies
ue C9(RN \ {0}) andu(x) > O for all x € RN\ {0}. Indeed, since1 andq(x) are

loc

radially symmetric, it follows that for alp € ereig(RN)

[ (w@P2ues) + i - wo-ig)i-iar = o
0

wherer = |x. If for anyy € CX(RN) we consider the radial functio®(r) =
[ w1 ¥(rw) dS,, then we have

f (IVulp‘ZVuw +uPty - uq<x>—1¢) dx

RN

:f (I (r)P2 () (r) + uP ¥ — uaO-1y) N1dr = 0,
0

Therefore we see thatsatisfies (5) even for non-radial functiops Finally, by
Corollary of Theorem 2 in [7] we have € C:*(RN \ {0}). And also, by Theorem

loc

2.5.1in [15] we haveu(x) > O for all x € RN\ {0}.
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2. Compactness and non-compactness of the embedding

We prove Theorem 1 and Theorem 2. Before beginning the proof we recall
the pointwise estimate and the compactness theorem introduced in [13], and [17]
(p = 2). For the reader’s convenience, the proofs are in Appendix.

Proposition 1. For anyu € Wé;g(RN) we have

P \P 5 5
1091 < () 5l 90 ©)
Proposition 2. The embedding froridvgg(RN) to LY(RN) is compact forq €

(p. p*)-

Proof of Theorem 1. We shall show Theorem 1 in the same way as [12]. Set
r(x) = q(x) — pfor x e RN. Letp € CX(RN) be a radial function satisfying = 1

on B% and supp c B;. Form € N, we definep(X) = m‘%gb(né). Then for any

m e N we obtain

mllLony = l19lloeys  IV@mllie@ny = M IVAllLa,-

Since{¢m}_, is a bounded sequence\mrﬁg(RN) anderz;g(RN) is reflexive (see

e.g. Proposition 3.20. in [4]), there exist a weakly convergent subsequence
{¢m )32, and e € WLERN) such thatpn, — e in W(RN) asj — . By
compactness of the embedding frwtg(RN) to L"(RN) for p < r < p*, we have

$m — ¢ In L'(RY) andem, — ¢o, a.e. inR" which yields thaip,, = 0. On the

f|¢m(x)|q(x)dX:f m—%(p+r(x))
RN B,

= f m 5" ™| (y) 9™ dly

B

> f m e ™ gy,
B1\Bg
3 7

Sincer is open inSN-1, there exists a open didk ¢ SN-! such thatD c I'. By
using the polar coordinates gs- sw (s> 0, w € SN-1) we obtain

1
f |pm(X)199 dx > f f m e (M) N-14gqg
RN S=;11 weD

5

a(x)
dx




By the assumption (1), we obtai{msv) < C,| logms|™ for largem, s €
(1/4,1/2), andw € D c I'. Moreover fors € (1/4,1/2) and largem, it holds
logms= logm+ logs > 2 logmwhich yields that

2Cy
logm’

r(msw) <

Therefore we obtain

1
2 2C,
f|¢m(x)|Q(X)def f e p'°9Mn N-19sdS,
R S=% weD

N _ 4N
= LNY(D) e % >0

for large m, where £¢ is the d—dimensional Lebesgue measure. Thus, if we

assume the embedding fro:F(RN) to LIW(RN) is compact, then we have

i 1099 dx > 0 which contradicts., = 0. Hence the embedding frov{;5(R")
to LI(RN) is not compact. O

Proof of Theorem 2. We assume that < R without loss of generality. Let
{Um}_, be a bounded sequenceWtS(RN). We shall show the existence of a
strongly convergence subsequencdupft™_, in L¥9(RN). By the reflexivity of
WR(RN), there exist a subsequeri(es, 2, anduo € W:P(RN) such thaty, — U
in W-R(RN) asj — co. Especially it also holds that, — up in W-P(RY) as
j — . And also, by Proposition 2 we haug, — U in L4R") for anyq € (p, p*)
and

Un, — Up a.e. inRY asj — oo, (7)

Furthermore,{umj|Br}‘j>‘;1 c WLP(B,) is a bounded sequence and the embedding

from WLP(B,) to LIY(B,) is compact by the assumption (2) (see Remark 2 in
[12]). Thus there exist a subsequencewf g, Yo (we US€{Umlg, }2; again for
simplicity) andvp € LI (B;) such that the followings hold true:

Unls, — Vo in WHP(B),

Um s — Vo in LY9(By),

Unls, — Vo in LP(B),

Unlg, — Vo a.e. inByasj — oo. (8)



By (7) and (8), we can check thag|g. = Vo a.e. inB; which yields that

Umlg, — Uolg, 1IN LIY(B) asj — . 9)
In the similar way as above, we also obtain the followings
Um B\, — Uolgeg, 1N W;S(BK \ Br),
Um BB — Uolgos,  iN L9(Bk \ Br), (10)
a.e. inBk \ B

Um, B¢ \B, — Uoley\B,

W-P(By \ Br)

foranyK > 0 and anyq > 1 asj — oo since the embedding frohV.

to LBk \ By) is compact for an¥, g.
SetVy, = Um — Up. In order to make good use of (9) and (10) we divide

fRN Vm, ()9 dx into three terms as follows:

| m0orax (11)
RN

= [Vim, (91 d X + f [Vim, (91 d X + f [Vim, (X)%®dI

B Bk \B RN\Bx

=0 11(j) + 12(], K) + 15(], K),

whereK is suficiently large.
Firstly, by (9) we have
(12)

[1(j) =0(1) asj — co.

Next, forl,(j, K) we have

20K = [ N ®Idxs [ 0oldx [ (9o d
Bk \Br Bk \Br Bk \B;

Thus, by (10) we obtain

I2(j, K) = 0(1) asj — oo for fixedK > 0. (13)

Finally we shall estimatégs(j, K). Since

1

p \° N1 N1
Vi, (X)] < (w— [V llweo@ny X~ P < CIX|™ P
1



by Proposition 1 and the boundednesss\Q{}‘J?‘;l, we can assum@, (X)| < 1 for
x € RN\ Bk with largeK. Therefore by the assumption (3) we obtain

i -t
151, K) = f [Viny | ¥ x < f [Vigy | P C1199P07 ¢
RN\Bg RN\By

o0

-
SZf |ij|p+C1(n|ogK) dx
n=2 BK”\BKn—l

(9

_ N-1,Ca(nlogK)~¢
st [Vin P (CIX ) dx
n=2 v Bkn\Byn-1

—¢ — _N-1— | -t
< CCu(2logK) ||ij||5v1,p(RN) Z K~ "5+ (-1)Ca(nlogK)
n=2

- (n-1)+-¢ - ni-¢
<cy o =c) o
n=2 n=1
it

wheres; = 6;(K) 1= K7 ©(09K)™ _, 0 ask — oo. Sinceys, 67" = 6, +
7 ¢ dx < oo for eachs; € (0, 1), we have

[e9)

Z(SQH — 0 asK — c.

n=1

Hence we have
13(], K) = o(1) uniformly inj asK — co. (14)
We go back (11) and by (12), (13), and (14) we have

lim f [Vim, (X)|%¥dx = 0.
Jﬁoo RN
As a consequence we obtaif — Up in LYO(RN). O

3. Approximation method : Proof of Theorem 3

In this section, we show Theorem 3 by using Theorem 2. First, we prepare
the mountain pass theorem (Theorem 4) introduced in [16], [18], and so on which
are based on [1]. Le¥ be a Banach space aide C1(V,R). We define a Palais-
Smale sequence fdE as{u,} c V satisfying|E(uy)| < ¢ uniformly in m, and
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E’'(un) — 0 in V*, whereE'(-) is Frechet derivative an¥* is the dual space of
V. We say that satisfies (P.-S.) condition if any Palais-Smale sequence has a
strongly convergent subsequence.

Theorem 4([16], [18]). Supposé& € CY(V, R) satisfies (P.-S.) condition. Assume
that

(i) E(0)x=0
(i) There exisp > 0, a > 0 such thatE(u) > a for anyu € V with ||ul| = p.
(i) There existsl; € V such that|u,|| > p andE(u,) < a.

Define
P={peC([0,1],V) | p(0) =0, p(1) = u }.
Then
B = inf SUDE(p()

O<t<1

is a critical value.

Proof of Theorem 3. Step 1.We may assume th& in the hypotheses of Theo-
rem 2 is sdficiently large such that ess ip§, q(x) = p + Cy1(logR)~* without loss
of generality. Fom € N let {R,,} be a sequence such tHat = R, R, —» ~ as
m — oo. Then we set functions as

a(x) it q(x) > p+ Cy(logRn)™",

Om(X) = {p +Cy(logRn) ¢ if  q(X) < p+ Ci(logRn) .

Define a functionaly, from W-"(RN) to R by

rad

1 f 1 )
Jn(u) = = [VulP + ulP dx—f —u¥dx
m( ) p RN( ) RN qm(X) +
We can check thal,, € Cl(Wé;S(RN),R). Moreover, for eachm, J;,, satisfies as
follows:

(i) Jn, satisfies (P.-S.) condition.
(i) Im(0) =0,
(i) There exist positive constantsp such thatl,(u) > a for anyu e W;S(RN)
with [ullwze@yy = o,
(iv) There existv e Wi;g(RN) such thatiVilweegny = p, In(V) < a.



By Theorem 4 there exists a critical poim € W-P(RN) of J., such that

rad
Jm(um) = ,Bm,

whereg,, is defined in the same way gdn Theorem 4. Thusl,, is a nontrivial
weak solution of
AW+ WP 2w = WO in RN, (15)

We can also see that, > 0 by multiplying both sides of (15) byuf)-.
Proposition 3. {um} is bounded inV:P(RN).

rad

We will prove this proposition at last of this section.
Step 2.Since{un} is a bounded sequence, there exists W-"(RN) such that

rad
Um — Up weakly inW:P(RN). Put

G = (|VUnl” 2Vt = [VUo| "2V U, Vi — VUO>RN + (U = UP ) (U — W)

Then we have
f G dx= f (IVum|P + up) dx - f (IVUnlP2VUuVuo + uPtug) dx + hi,
RN ]RN ]RN

wherehy, = [, [|Vuo|P‘2Vuo(Vu0 — V) + U§ ™ (Uo — Uy | dx = 0(1) asm — co.
Moreover, from (22) and (23) in the proof of Proposition 3 it follows that

f (IVup|® + uP) dx — f (IVURP2VUunVug + U ug) dx
RN RN

m(X)-1
- [ (. - o) ax
R
< Cu U™ 1] oo, l1tm = ollagy
= Ch llUmllgeo Um = Uollgexs

whereCy is a positive constant due to the generalizedddr inequality (see e.qg.
[11] Theorem 2.1). By the boundedness{af} in ereig(RN) and Theorem 2 we
have||umllgxllUm — Uollqx = 0(1) asm — co. Hence

f Gmdx = 0(1) (16)
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asm — co. Recall that forp > 1, a, b € RY we have

22-Ph — g|P if p>2,

blP2b—|a”2a. b-a)> -2
( 8”2 b - a) {(p_l)|b—a12(1+|a|2+IbIZ)p2 if 1<p<2

From this inequality and (16) it follows that
(lvum - VUo|p + |Um - UOlp)dX = 0(1)
RN
which is equivalent tai,, — Ug strongly inW*P(RN). Thusu, satisfies

~Aplo + U = Ul >0 in RV

Step 3. Finally, we have to show, # 0. From the boundedness ff,} and
Proposition 1, we see that, < 1 inRN \ B, for largeL. Therefore we have

* lldlll oo
f (IVum|P+urE1)dx:f qum(X)dXSf U,E]dx+f Ur?]dx“‘f Ul g
£ RN RN r BL\Br

17)
By the Sobolev inequality it follows that

o
fu,ﬁ’fdxsf uPdx<Sp (f |Vum|pdx)p. (18)
B RN RN

Moreover, we have

) 19, (e Ny
llafl oo
f Up = 0dx < Cf (|Vum|p+|um|p)dx]
BL\Br | JBL\Br
Il
i » LD(I;(RN)
N P _p
< C f |Vum|p+(f |Um|P dx) 1B\ BV 7
| BL\Br BL\Br
19, &Ny
p
< C f |Vum|p) . (29)
RN

Putd. := min{p*, l|gll.~&~}. From (17), (18), and (19), we obtain

RN

11

9«—p
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where we used that, # 0. By Theorem 2 we have

C < lim |VUum|Pdx
m—oo RN
= lim | (=uP+u®)dx
m—oo RN
a(x)
< f Uy dx
RN
Consequently we haug # 0. O

Proof of Proposition 3. We take a smooth radial functian>"0 onRN. Since

KP KA
Im(K s—f VTP + [0 dx—f ——0%™gx
(KO < 75 )L ¢ e e

K P+Ca(logR)!

———— | 0¥dx— -0
esssup, a(x) Je,

KP
< —f (VP + [0°) dx -
P Jrn
asK — +oo, there existK > 0 independent af such thatl,(Kd) < 0. If we set
p(t) = tKhfor t € [0, 1], then we see that
peP={peC(0 1], Wz5R") | p(0) =0, p(1) = Ka}.

Moreover, we have

Bm

'pQI‘» E'Qt"i‘id"‘(p(t)) < EQ&‘i‘Jm(p(t»

max
O<t<K

Ef (|V0|p+|0|p)dx—f ﬂ0‘“”dx]<c (20)
P Jrn B A(X) -

On the other hand, sineg, is a critical point ofJ,, at3, we have

1 f 1 )
m= = IVUnP + [Um|P) dX — f Um) ™ d x 21
s P ]RN( ) RN cIm()()( ) (1)

and for anyp € W-"(RN),

rad

f (VP 2V U0V + Ul Uit dX— f U lpdx=0.  (22)
RN RN

In particular,

f (VU + [UlP) dX— f (Un)Pdx = 0. (23)
RN RN

12



From (20), (21), and (23), it follows that

1 1 ()
L5 g emraxse

Furthermore, by(x) < gm(X) we have

fR ) (% - Tlx)) (Um)™¥dx < C. (24)

Thus for anyL > 0 there exists a positive constail_) such that

f (Um)Mdx < C(L). (25)
BL

Here, we take a constaR, > R suficiently large (ThisRy will be chosen
again later) and we have

ey < CR)+ [ (un)x (26)
RN\Bg,

by (23) and (25). Sef = Cy(logRo)~ andA, := Bgr \ Br-1. Then we obtain

[, wax

RN\BRO

- [ s [ (¥ x
{am(x)>p+6} {am(X)<p+6}

<[ s [ otax
{am(X)>p+6} {q()<p+6}

<[ e Y [ e ) [ i x
{am(x)>p+6} n=2 v An n=2 vAn

=L+ L+ Ly,

where third inequality comes from the assumption (3). We shall estimats,,
andLs. ForLy, by (24) we have

O S N A S L D ey
Lls(p p+6) fR(p qm(x))(um)+ dx=C. @7
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In order to estimatéd., andLs, we prepare an estimate (i/lw.ra,). FOr each
ne€ N and smalk > 0, we taket, = &,, € C2(RN) such that

0<é& <1inRY, & =1inA,, & =0InRV\A, |V§g|s9,
E

whereA,. = {xe A, | dist(x, Ay) > €}. In (22), by replacingp with u, ¢, and
lettinge — 0, we have

IIUmII\r,J\,l,p(An) = f (Um)"dx for eachn e N.
An

From this equality and (24), we have

1 1 1 11 0
C (logRp)". (28)

ForL,, by using (28) and Proposition 1, we have

N-1 -t
Ci(nl (n—1)C1(nlogRyo)
C E ||Um||W11(2((I§NF\;O) ( ) ' fuﬁdx
An

Cy(nl ‘N5t CalogRo) ! (n-1)+
CZH%H@S{@? S A A [T

IA

L>

IA

IA

O (-2 Cy(nl -t
Cllunl sy 05 Il
n=2

IA

= _1)1-¢ Gyt -t
CllUnl ey 05 (nlogRo) 7 10

n=2
wheres, = 62(R) = Ry M5/ | the same way as the proof of Theorem
2, we observe that?, 5(2”‘1)” — 0 asRy — . Moreover, since

< (nlogRo)
(nlogRo) — 1 asn— oo or Ry = o,

there exists a positivg consta@twhich is independent of and Ry such that
(nlogRy)Cx4MogR) /e < €. Hence, for stliciently largeR, we have
1
L ”umllwl p(RN) (29)
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In the same way als,, we obtain the estimate &k as follows.
=y (N1 n-1)s
L3 < CHUm”fNLP(RN)ZR(O p) f ur%dx
n=2 An
= -N=1)n-1)5 ¢
< ClunlBpeny DR 7 (nlogRy)
n=2
& - _(n— _ S
= Cllumllpury 10gR6) # Y (R VM)
n=2

% - (o i e
= Cllunllsvl,p(RN)(logRo) z Z [né’RO(n D R--D z)]p
n=2

IA

N-2
Cllunlsogy D03
n=1

whereds = 63(Rg) = R,”P. We can easily check tha&y, 632 < co which
yields thaty>, si™? — 0 asRy — co. Therefore for sfiiciently largeR, we
have

1
Ls < §||Um||p (30)

WLP(RN)*

From (26), (27), (29), and (30) we have

2
Il sgeny < C + Sl

As a consequenag, is bounded. O

4. Mountain pass theorem under the condition (C) : Proof of Theorem 3

In this section, we show Theorem 3 by #&drent method from Section 3.

Cerami [5] and Bartolo-Benci-Fortunato [3] have proposed a variant of (P.-S.)
condition. In this paper, we use the condition (C) introduced by [5] and [3] and
the mountain pass theorem under the condition (C) (Theorem 6) beta real
Banach space an € C1(V,R). First, we define the condition (C) based on [5]
and [3].

Definition 5 ([5], [3] Definition 1.1.) We say thak satisfies the condition (C) in
(C]_, Cz), (—00 < <G <L +00), if
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(i) every bounded sequengg} c E1((cy, ¢y)), for which {E(uy)} is bounded
andE’(uy) — 0, possesses a convergent subsequence, and

(i) for anyc € (cy, ¢,) there existr, p, @ > 0 such that¢ — o, c + o] C (¢, C)
and for anyu € E7Y([c — o, ¢ + o]) with ||ul| > p, [|IE"(WI.]|ull > a.

Theorem 6 (Mountain pass theorem under the condition (@)@t E satisfy the
condition (C) in(0, +o0). Assume that

() E(0)x=0
(i) There exisp > 0, a > 0 such thate(u) > a for anyu € V with |jul| = p.
(iif) There existsl; € V such that|u,|| > p andE(u;) < a.

Define
P={peC(0,1],V) | p(0) =0, p(1) = uL}.
Then
B= LQ; SUpE(p(t)) =

O<t<1
is a critical value.

Forc e R, we set
Ec={ueV|Eu) <c}, Kc={ueV|E'(u=0E()=c}

Note that Theorem 6 can be shown in the same way as the proof of Theorem
6.1 in p.109 in [18] by substituting the following deformation theorem under the
condition (C) for Theorem 3.4 in p.83 in [18].

Theorem 7 ([3] Theorem 1.3.) Let E satisfy the condition (C) itficy, C,). If B €
(c1,c2) and N is any neighborhood df;, there exist a bounded homeomorphism
n of V ontoV and constants > ¢ > Osuchtha{ 8—¢,8+¢] c (¢, ¢,), satisfying
the following properties

(I) n(E,B+£ \ N) - Eﬁ—s
(”) n(Eﬁ+£) c E,B—a if K/:I' =
(1) ) =uif [E(U) -8l >

We set a energy functional froWé;S(RN) toR as

1 1
J(u) = —f IVUlP + |ulP —f —u™dx
) p RN( ) =N 0(X)

We can check that € CLW:P(RV), R).

rad

0
.
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Proposition 4. Assume that(x) satisfies the hypotheses (2), (3) in Theorem 2 and
essinfes, q(X) > p. ThenJ satisfies the condition (C) dr.

Proof. We takec,,c, € R with ¢; < ¢, arbitrary. First, we shall show thait

satisfies (i) in Definition 5. Lefuy,} W;S(RN) be a bounded sequence satisfying

that J(un) € (¢, ) and||J (um)ll. = 0 asm — +co. Then the following holds
true for anyp € W-D(RM):

f (IVURP2VUnV + [UnnlP U ) dX — f Un P pdx=0(1).  (31)
RN RN

In particular, sincgup} is bounded it follows that

f (9 tnl? + U X~ f (Um)®dx = (1), (32)

Likewise since{u} is bounded, there exists a subsequence writtefugsfor
simplicity andug € W:P(RN) such thati, — up weakly inW-P(RN). Put

rad
Gin = (|VUnl” >V — [Vl Vo, Vi — VUo)_,, + (U™ = uF ™) (U — Uo)

as in Section 3. In the same way as Step 2 in the proof of Theorem 3 in Section 3
by substituting (31), (32) for (22), (23) respectively we have

fRN Gmdx=0(1)

asm — oo by Theorem 2. Recalling that

22-Ph — g|P if p>2,

blP2b — |a]”2a,b - 7
(Ibl" b — 2™ Za, a>2{(p—l)lb—a]2(1+|a|2+|b|2)pz it 1<ps<2

and consequently we have

lim f (IV(Um — Ug)|P + |um — UglP) dx < C lim f Gnhdx=0.
RN m—eo JrN

m—oo

This implies thaty, — up strongly inWSP(RN).

Next, we shall show (ii). For ang € (c;,Cy), we take somer with [c —
o,C+ o] C (¢, ). We will choose suitable > 0 again later. By deriving a
contradiction, we show that there exists- 0 such that for any € J"*([c— o, c+
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o) with [Jul] = p, [IJ(WI.]ull > a. We assume that there exigts,} C Wl’p(RN)

rad
such thati, € J7}([c—o, c+0o7]) with lUmllwee@yy = o, andl|d’ (Um)lll[Umnllwzogny =:

am — 0 asm — +o0. SinceJ’(Up)uy — 0 asm — +oo, we have

1By = [ (2 x| <
RN

which yields that

C+o > J(upy)

I 1 ) gy o

Moreover, in the same way as the proof of Proposition 3, we have
Ul < (€ + 0+ ) (p+ Ca(2logRo)) (logR}Y,  (34)
WLP(A) = C, ’

whereA, = Bro \ BRg—l for n > 2 andRy is the same as the proof of Proposition 3.
By substituting (33), (34) for (24), (28), we obtain the following estimates:

”Umllsvl,p(RN) —am < (Um)i(x)dX+ f (um)‘i(’()dx
BRO RN\BRO
2

<C(R)(C+ o +am) + §”“m||5v1.p (RN

whereC(Ry) is a positive constant independenioofTherefore we have

||Um||5V1.p(RN) < 3{am+C(Ry) (C+ 0 +am) }
<3{1+C(Ry)(c,+1)} (35)

for largem. If we choose sfiiciently largep satisfyingp > 3YP{ 1 + C(Ry)(c, +
1)}/, then we see that (35) contradifjtsillwegny > p-
The proof of Proposition 4 is now complete. |

Proposition 5. Assume thadg(x) satisfies the hypotheses (2), (3) in Theorem 2 and
essinfes, d(X) > p. ThenJ has the mountain pass geometry, thal satisfies (i),
(i) and (iii) in Theorem 6.

Proof. (i) is obvious. We prove (ii). LeS be the best constant of the Sobolev in-

equality :S||v||Ep*(RN) < ||Vv||fp(RN) forve CX(RN). Setq” = maxp’, p?, llqllL-cn)}-
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Note thatg® > p* > pN/(N — 1). Foru € W-P(RN) with llUllwzegyy = 7, it follows

rad
that
1
_f |u|p+ —_
P Jrn

v g(x) -
p
f|UIpdx+—( fquIpdx) +||u||Lp(RN)||Vu||Lp(RN)K(r)
1 v o
< 5 | rde o [ wupdx(sTE P+ K(0y ).

RN RN

IA

IA

whereK(r) = (p/wn- 1)“/pr IX|"9(N-1/Pdx < oo and the second inequality
comes from Proposition 1. From thisyifis suficiently small, we have

I > % f |Vu|pdx[1— SH PP K(r)y‘f-p] > 0. (36)
RN

For {Um} ¢ WXP(RN) andy satisfying|lunllwzeeyy = ¥ and (36), we assume that

rad

J(un) — 0 and derive a contradiction. From (36) it follows ttf@; [VUn|PdXx — 0.
In addition, for stficiently largeR we have

1
Um) 2 ¥dx —( lu |q<x)dx+f lu |q(x>dx+f lu |q<x)dx)
f CI(X)( - p\Js Be\B BMBR

1 * * )
p Br Br RN\B, RN\Bg

1
= B(Hl + Hz + H3 + H4)

IA

IA

By using the estimates in the calculationflgj(u)‘i(x)/q(x)dxto show (36) we have
H; = o(1) andH3 = o(1) asm — co. ForH, we have

Hy < Bt £ S f Vunl® = o(2).
RN

We can show thaltl, is bounded uniformly fomandH; — 0 asR — o in the
same way as the estimatelgfj, K) in the proof of Theorem 2. Therefore

1
—— |um|®dx — 0
f a(x)
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asm — oo, and which impliegjuy|lwzeey — 0 sinced(u,) — 0 asm — co. This
contradictg|Um|lweegny = .

Finally, we prove (iii). We take a smooth radial functiwauch thaf|vijw.sgny =
v,V > 0in Bg, whereRis in the hypothesis (3). Recalling thgt= ess inf.g, q(x) >
p. By taking suficiently larget we have B

ow = [ v wPax- [ 1 g
V) = — VIP + [VP)dx - —v;dX
P Jgrn =N 0(X)
< — | (VP +MP)dx—1t2 | ——vI¥dx
P Jgrn Br A(X)
< 0.
Since|[tvllweegny > ¥ we prove (iii). O

Proof of Theorem 3. From Proposition 4, Proposition 5, and Theorem 6, we can
show the existence of a nontrivial critical poimte W;g(RN) which is a weak
solution to—Apu + |u[P~2u = u¥1in RN. Then we also see that> 0 inRN. o

5. Appendix
In this section we show Proposition 1 and Proposition 2.

Proof of Proposition 1. It is sufficiently to show (6) holds fof € C(RN) with
radially symmetric. We have that

* d
PN ()P = —fr d—s(sN-1|f(s)|P)ds
By direct calculation we have
(SHESIP) = (N = 1) f(9)P + ps (9P *f (9 F(9).

Thus it follows

N E(n)P

e 1)f SR pf (9P 2 f(9)f(s)ds
' r
- pf SRS (S)'Ids
P _
= E”fHEpéRN)”Vf”LP(RN).

Consequently (6) follows immediately. m|
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Proof of Proposition 2. By (6) we have

f u%x < Cuf |x—“p'lqzcuf r~N-D(3-Ygr,
RN\Br RN\Br R

whereC, = (W‘)l)q/p||u||Q(p‘1)/p||Vu||q/'° When N - 1)@@/p - 1) > 1, that is,

LPRN) LP@®RN)"

q> pN/(N - 1) we have

f lul%dx < C,R-N-D(E-1+1,
RN\Bgr

Let {u} be a sequence such thet — 0 weakly inW>h(RN). Firstly we show

that the case af € (pN/(N — 1), p*). In this case we have
f Unlfdx < [ Jupl%dx+ Cy, R N-DE-2),
RN Br

SinceC,,, is bounded from above uniformly, letting — co andR — co we have
Un — O strongly inL9(RN).
Next, forg € (p, pN/(N — 1)] using interpolation of.9 space, we have

Pl 1-2
”um”Lq(RN) S ||um||Lp(RN)”um”Lr(RN)’

wherer € (pN/(N — 1), p*). Since||uyllirgyy — 0 and||umll ey is bounded we
havellum”Lq(RN) — 0. O
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