ON A WEIGHTED TRUDINGER-MOSER TYPE INEQUALITY ON THE WHOLE SPACE AND RELATED MAXIMIZING PROBLEM

VAN HOANG NGUYEN AND FUTOSHI TAKAHASHI

Abstract

In this paper, we establish a weighted Trudinger-Moser type inequality with the full Sobolev norm constraint on the whole Euclidean space. Main tool is the singular Trudinger-Moser inequality on the whole space recently established by Adimurthi and Yang, and a transformation of functions. We also discuss the existence and non-existence of maximizers for the associated variational problem.

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}, N \geq 2$ be a domain with finite volume. Then the Sobolev embedding theorem assures that $W_{0}^{1, N}(\Omega) \hookrightarrow L^{q}(\Omega)$ for any $q \in[1,+\infty)$, however, as the function $\log (\log (e /|x|)) \in W_{0}^{1, N}(B), B$ the unit ball in \mathbb{R}^{N}, shows, the embedding $W_{0}^{1, N}(\Omega) \hookrightarrow$ $L^{\infty}(\Omega)$ does not hold. Instead, functions in $W_{0}^{1, N}(\Omega)$ enjoy the exponential summability:

$$
W_{0}^{1, N}(\Omega) \hookrightarrow\left\{u \in L^{N}(\Omega): \int_{\Omega} \exp \left(\alpha|u|^{\frac{N}{N-1}}\right) d x<\infty \quad \text { for any } \alpha>0\right\}
$$

see Yudovich [31], Pohozaev [26], and Trudinger [30]. Moser [22] improved the above embedding as follows, now known as the Trudinger-Moser inequality: Define

$$
T M(N, \Omega, \alpha)=\sup _{\substack{u \in W_{0}^{1, N}(\Omega) \\\|\nabla u\|_{L^{N}(\Omega)} \leq 1}} \frac{1}{|\Omega|} \int_{\Omega} \exp \left(\alpha|u|^{\frac{N}{N-1}}\right) d x
$$

Then we have

$$
T M(N, \Omega, \alpha) \begin{cases}<\infty, & \alpha \leq \alpha_{N} \\ =\infty, & \alpha>\alpha_{N}\end{cases}
$$

here and henceforth $\alpha_{N}=N \omega_{N-1}^{\frac{1}{N-1}}$ and ω_{N-1} denotes the area of the unit sphere S^{N-1} in \mathbb{R}^{N}. On the attainability of the supremum, Carleson-Chang [6], Flucher [13], and Lin [17] proved that $T M(N, \Omega, \alpha)$ is attained on any bounded domain for all $0<\alpha \leq \alpha_{N}$.

Date: April 26, 2017.
2010 Mathematics Subject Classification. Primary 35A23; Secondary 26D10.
Key words and phrases. Trudinger-Moser inequality, weighted Sobolev spaces, maximizing problem.

Later, Adimurthi-Sandeep [2] established a weighted (singular) Trudinger-Moser inequality as follows: Let $0 \leq \beta<N$ and put $\alpha_{N, \beta}=\left(\frac{N-\beta}{N}\right) \alpha_{N}$. Define

$$
\widetilde{T M}(N, \Omega, \alpha, \beta)=\sup _{\substack{u \in W_{0}^{1, N}(\Omega) \\\|\nabla u\|_{L^{N}(\Omega)} \leq 1}} \frac{1}{|\Omega|} \int_{\Omega} \exp \left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}
$$

Then it is proved that

$$
\widetilde{T M}(N, \Omega, \alpha, \beta) \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta} \\ =\infty, & \alpha>\alpha_{N, \beta}\end{cases}
$$

On the attainability of the supremum, recently Csató-Roy [10], [11] proved that $\widetilde{T M}(2, \Omega, \alpha, \beta)$ is attained for $0<\alpha \leq \alpha_{2, \beta}=2 \pi(2-\beta)$ for any bounded domain $\Omega \subset \mathbb{R}^{2}$. For other types of weighted Trudinger-Moser inequalities, see for example, [7], [8], [9], [14], [18], [28], [29], [32], to name a few.

On domains with infinite volume, for example on the whole space \mathbb{R}^{N}, the TrudingerMoser inequality does not hold as it is. However, several variants are known on the whole space. In the following, let

$$
\Phi_{N}(t)=e^{t}-\sum_{j=0}^{N-2} \frac{t^{j}}{j!}
$$

denote the truncated exponential function.
First, Ogawa [23], Ogawa-Ozawa [24], Cao [5], Ozawa [25], and Adachi-Tanaka [1] proved that the following inequality holds true, which we call Adachi-Tanaka type Trudinger-Moser inequality: Define

$$
\begin{equation*}
A(N, \alpha)=\sup _{\substack{u \in W^{1, N}\left(\mathbb{R}^{N}\right) \backslash\{0\} \\\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{\leq 1}}} \frac{1}{\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) d x \tag{1.1}
\end{equation*}
$$

Then

$$
A(N, \alpha) \begin{cases}<\infty, & \alpha<\alpha_{N} \tag{1.2}\\ =\infty, & \alpha \geq \alpha_{N}\end{cases}
$$

The functional in (1.1)

$$
F(u)=\frac{1}{\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) d x
$$

enjoys the scale invariance under the scaling $u(x) \mapsto u_{\lambda}(x)=u(\lambda x)$ for $\lambda>0$, i.e., $F\left(u_{\lambda}\right)=F(u)$ for any $u \in W^{1, N}\left(\mathbb{R}^{N}\right) \backslash\{0\}$. Note that the critical exponent $\alpha=\alpha_{N}$ is not allowed for the finiteness of the supremum. On the attainability of the supremum, Ishiwata-Nakamura-Wadade [16] proved that $A(N, \alpha)$ is attained for any $\alpha \in\left(0, \alpha_{N}\right)$. In this sense, Adachi-Tanaka type Trudinger-Moser inequality has a subcritical nature of the problem.

On the other hand, Ruf [27] and Li-Ruf [20] proved that the following inequality holds true: Define

$$
\begin{equation*}
B(N, \alpha)=\sup _{\substack{u \in W^{1, N\left(\mathbb{R}^{N}\right)} \\\|u\|_{W^{1, N}}\left(\mathbb{R}^{N} \leq 1\right.}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) d x . \tag{1.3}
\end{equation*}
$$

Then

$$
B(N, \alpha) \begin{cases}<\infty, & \alpha \leq \alpha_{N} \tag{1.4}\\ =\infty, & \alpha>\alpha_{N}\end{cases}
$$

Here $\|u\|_{W^{1, N}\left(\mathbb{R}^{N}\right)}=\left(\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}+\|u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}\right)^{1 / N}$ is the full Sobolev norm. Note that the scale invariance $\left(u \mapsto u_{\lambda}\right)$ does not hold for this inequality. Also the critical exponent $\alpha=\alpha_{N}$ is permitted to the finiteness of (1.3). Concerning the attainability of $B(N, \alpha)$, it is known that $B(N, \alpha)$ is attained for $0<\alpha \leq \alpha_{N}$ if $N \geq 3$ [27]. On the other hand when $N=2$, there exists an explicit constant $\alpha_{*}>0$ related to the Gagliardo-Nirenberg inequality in \mathbb{R}^{2} such that $B(2, \alpha)$ is attained for $\alpha_{*}<\alpha \leq \alpha_{2}(=4 \pi)$ [27], [15]. However, if $\alpha>0$ is sufficiently small, then $B(2, \alpha)$ is not attained [15]. The non-attainability of $B(2, \alpha)$ for α sufficiently small is attributed to the non-compactness of "vanishing" maximizing sequences, as described in [15].

In the following, we are interested in the weighted version of the Trudinger-Moser inequalities on the whole space. Let $N \geq 2,-\infty<\gamma<N$ and define the weighted Sobolev space $X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)$ as

$$
\begin{aligned}
& X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)=\dot{W}^{1, N}\left(\mathbb{R}^{N}\right) \cap L^{N}\left(\mathbb{R}^{N},|x|^{-\gamma} d x\right) \\
& =\left\{u \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right):\|u\|_{X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)}=\left(\|\nabla u\|_{N}^{N}+\|u\|_{N, \gamma}^{N}\right)^{1 / N}<\infty\right\},
\end{aligned}
$$

where we use the notation $\|u\|_{N, \gamma}$ for $\left(\int_{\mathbb{R}^{N}} \frac{|u|^{N}}{|x| \gamma} d x\right)^{1 / N}$. We also denote by $X_{\gamma, r a d}^{1, N}\left(\mathbb{R}^{N}\right)$ the subspace of $X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)$ consisting of radial functions. We note that a special form of the Caffarelli-Kohn-Nirenberg inequality in [4]:

$$
\begin{equation*}
\|u\|_{N, \beta} \leq C\|u\|_{N, \gamma}^{\frac{N-\beta}{N-\gamma}}\|\nabla u\|_{N}^{1-\frac{N-\beta}{N-\gamma}} \tag{1.5}
\end{equation*}
$$

implies that $X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right) \subset X_{\beta}^{1, N}\left(\mathbb{R}^{N}\right)$ when $\gamma \leq \beta$. From now on, we assume

$$
\begin{equation*}
N \geq 2, \quad-\infty<\gamma \leq \beta<N \tag{1.6}
\end{equation*}
$$

and put $\alpha_{N, \beta}=\left(\frac{N-\beta}{N}\right) \alpha_{N}$.
Recently, Ishiwata-Nakamura-Wadade [16] proved that the following weighted AdachiTanaka type Trudinger-Moser inequality holds true: Define

$$
\begin{equation*}
\tilde{A}_{r a d}(N, \alpha, \beta, \gamma)=\sup _{\substack{u \in X^{1, N}, \text { rad }\left(\mathbb{R}^{N}\right) \backslash\{0\} \\ \\\|\sim u\|_{L^{N}\left(\mathbb{R}^{N}\right) \leq 1}}} \frac{1}{\|u\|_{N, \gamma}^{N\left(\frac{N-\beta}{N-\gamma}\right)}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{1.7}
\end{equation*}
$$

Then for N, β, γ satisfying (1.6), we have

$$
\tilde{A}_{r a d}(N, \alpha, \beta, \gamma) \begin{cases}<\infty, & \alpha<\alpha_{N, \beta} \tag{1.8}\\ =\infty, & \alpha \geq \alpha_{N, \beta}\end{cases}
$$

Later, Dong-Lu [12] extends the result in the non-radial setting. Let

$$
\begin{equation*}
\tilde{A}(N, \alpha, \beta, \gamma)=\sup _{\substack{u \in X_{1}^{1, N}\left(\mathbb{R}^{N}\right) \backslash\{0\} \\\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1}} \frac{1}{\|u\|_{N, \gamma}^{N\left(\frac{N-\beta}{N-\gamma}\right)}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{1.9}
\end{equation*}
$$

Then the corresponding result holds true also for $\tilde{A}(N, \alpha, \beta, \gamma)$. Attainability of the best constant (1.7), (1.9) is also considered in [16] and [12]: $\tilde{A}_{\text {rad }}(N, \alpha, \beta, \gamma)$ and $\tilde{A}(N, \alpha, \beta, \gamma)$ are attained for any $0<\alpha<\alpha_{N, \beta}$.

First purpose of this note is to establish the weighted Li-Ruf type Trudinger-Moser inequality on the weighted Sobolev space $X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)$ with N, β, γ satisfying (1.6). Define

$$
\begin{align*}
& \tilde{B}_{r a d}(N, \alpha, \beta, \gamma)=\sup _{\substack{\left.u \in X_{1}^{1, N} \\
\| u\right)^{\left(\mathbb{R}^{N}\right)} \\
\|u\|_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}, \tag{1.10}\\
& \tilde{B}(N, \alpha, \beta, \gamma)=\sup _{\substack{u \in 1^{1, N}\left(\mathbb{R}^{N}\right) \\
\|u\|_{X_{\gamma}}^{1, N}\left(\mathbb{R}^{N}\right) \leq 1}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{1.11}
\end{align*}
$$

Theorem 1. (Weighted Li-Ruf type inequality) Assume (1.6) and put $\alpha_{N, \beta}=\left(\frac{N-\beta}{N}\right) \alpha_{N}$. Then we have

$$
\tilde{B}_{r a d}(N, \alpha, \beta, \gamma) \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta} \tag{1.12}\\ =\infty, & \alpha>\alpha_{N, \beta}\end{cases}
$$

Furthermore if $0 \leq \gamma \leq \beta<N$, we have

$$
\tilde{B}(N, \alpha, \beta, \gamma) \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta} \tag{1.13}\\ =\infty, & \alpha>\alpha_{N, \beta}\end{cases}
$$

We also study the existence and non-existence of maximizers for the weighted TrudingerMoser inequalities (1.12) and (1.13).

Theorem 2. Assume (1.6). Then the following statements hold.
(i) If $N \geq 3$ then $\tilde{B}_{r a d}(N, \alpha, \beta, \gamma)$ is attained for any $0<\alpha \leq \alpha_{N, \beta}$.
(ii) If $N=2$ then $\tilde{B}_{r a d}(2, \alpha, \beta, \gamma)$ is attained for any $0<\alpha \leq \alpha_{2, \beta}$ if $\beta>\gamma$, while there exists $\alpha_{*}>0$ such that $\tilde{B}_{r a d}(2, \alpha, \beta, \beta)$ is attained for any $\alpha_{*}<\alpha<\alpha_{2, \beta}$.
(iii) $\tilde{B}_{\text {rad }}(2, \alpha, \beta, \beta)$ is not attained for sufficiently small $\alpha>0$.

Theorem 3. Let $N \geq 2,0 \leq \gamma \leq \beta<N$. Then the following statements hold.
(i) If $N \geq 3$ then $\tilde{B}(N, \alpha, \beta, \gamma)$ is attained for any $0<\alpha \leq \alpha_{N, \beta}$.
(ii) If $N=2$ then $\tilde{B}(2, \alpha, \beta, \gamma)$ is attained for any $0<\alpha \leq \alpha_{2, \beta}$ if $\beta>\gamma$, while there exists $\alpha_{*}>0$ such that $\tilde{B}(2, \alpha, \beta, \beta)$ is attained for any $\alpha_{*}<\alpha<\alpha_{2, \beta}$.
(iii) $\tilde{B}(2, \alpha, \beta, \beta)$ is not attained for sufficiently small $\alpha>0$.

Next, we study the relation between the suprema of Adachi-Tanaka type and Li-Ruf type weighted Trudinger-Moser inequalities, along the line of Lam-Lu-Zhang [19]. Set $\tilde{B}_{r a d}(N, \beta, \gamma)=\tilde{B}_{r a d}\left(N, \alpha_{N, \beta}, \beta, \gamma\right)$ in (1.10), and $\tilde{B}(N, \beta, \gamma)=\tilde{B}\left(N, \alpha_{N, \beta}, \beta, \gamma\right)$ in (1.11), i.e.,
for N, β, γ satisfying (1.6). Then $\tilde{B}_{r a d}(N, \beta, \gamma)<\infty$, and $\tilde{B}(N, \beta, \gamma)<\infty$ if $\gamma \geq 0$, by Theorem 1.

Theorem 4. (Relation) Assume (1.6). Then we have

$$
\tilde{B}_{r a d}(N, \beta, \gamma)=\sup _{\alpha \in\left(0, \alpha_{N, \beta}\right.}\left(\frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \tilde{A}_{r a d}(N, \alpha, \beta, \gamma) .
$$

Furthermore if $\gamma \geq 0$, we have

$$
\tilde{B}(N, \beta, \gamma)=\sup _{\alpha \in\left(0, \alpha_{N, \beta}\right)}\left(\frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \tilde{A}(N, \alpha, \beta, \gamma) .
$$

Note that this implies $\tilde{A}_{\text {rad }}(N, \alpha, \beta, \gamma)<\infty$ for N, β, γ satisfying (1.6), and $\tilde{A}(N, \alpha, \beta, \gamma)<$ ∞ if $0 \leq \gamma \leq \beta<N$, by Theorem 1 .

Furthermore, we prove how $\tilde{A}_{\text {rad }}(N, \alpha, \beta, \gamma)$ and $\tilde{A}(N, \alpha, \beta, \gamma)$ behaves as α approaches to $\alpha_{N, \beta}$ from the below:
Theorem 5. (Asymptotic behavior of Adachi-Tanaka supremum) Assume (1.6). Then there exist positive constants C_{1}, C_{2} (depending on N, β, and γ) such that for α close enough to $\alpha_{N, \beta}$, the estimate

$$
\left(\frac{C_{1}}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \leq \tilde{A}_{r a d}(N, \alpha, \beta, \gamma) \leq\left(\frac{C_{2}}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}}
$$

holds. Corresponding estimates hold true for $\tilde{A}(N, \alpha, \beta, \gamma)$ if $\gamma \geq 0$.

Note that the estimate from the above follows from Theorem 4. On the other hand, we will see that the estimate from the below follows from a computation using the Moser sequence.

The organization of the paper is as follows: In section 2, we prove Theorem 1. Main tools are a transformation which relates a function in $X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)$ to a function in $W^{1, N}\left(\mathbb{R}^{N}\right)$, and the singular Trudinger-Moser type inequality recently proved by Adimurthi and Yang [3], see also de Souza and de O [29]. In section 3, we prove the existence part of Theorems 2, 3 (i) (ii). In section 4, we prove the nonexistence part of Theorem 2, 3 (iii). Finally in section 5 , we prove Theorem 4 and Theorem 5 . The letter C will denote various positive constant which varies from line to line, but is independent of functions under consideration.

2. Proof of Theorem 1.

In this section, we prove Theorem 1. We will use the following singular Trudinger-Moser inequality on the whole space \mathbb{R}^{N} : For any $\beta \in[0, N)$, define

$$
\begin{equation*}
\tilde{B}(N, \alpha, \beta, 0)=\sup _{\substack{u \in W^{1, N_{\left(\mathbb{R}^{N}\right)},} \\\|u\|_{W^{1, N}} \leq 1}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{2.1}
\end{equation*}
$$

Then it holds

$$
\tilde{B}(N, \alpha, \beta, 0) \begin{cases}<\infty, & \alpha \leq \alpha_{N, \beta} \tag{2.2}\\ =\infty, & \alpha>\alpha_{N, \beta}\end{cases}
$$

Here $\|u\|_{W^{1, N}}=\left(\|\nabla u\|_{N}^{N}+\|u\|_{N}^{N}\right)^{1 / N}$ denotes the full norm of the Sobolev space $W^{1, N}\left(\mathbb{R}^{N}\right)$. Note that the inequality (2.2) was first established by Ruf [27] for the case $N=2$ and $\beta=0$. It then was extended to the case $N \geq 3$ and $\beta=0$ by Li and Ruf [20]. The case $N \geq 2$ and $\beta \in(0, N)$ was proved by Adimurthi and Yang [3], see also de Souza and de O [29].

Proof of Theorem 1: We define the vector-valued function F by

$$
F(x)=\left(\frac{N-\gamma}{N}\right)^{\frac{N}{N-\gamma}}|x|^{\frac{\gamma}{N-\gamma}} x .
$$

Its Jacobian matrix is

$$
\begin{aligned}
D F(x) & =\left(\frac{N-\gamma}{N}\right)^{\frac{N}{N-\gamma}}|x|^{\frac{\gamma}{N-\gamma}}\left(I d_{N}+\frac{\gamma}{N-\gamma} \frac{x}{|x|} \otimes \frac{x}{|x|}\right) \\
& =\frac{N-\gamma}{N}|F(x)|^{\frac{\gamma}{N}}\left(I d_{N}+\frac{\gamma}{N-\gamma} \frac{x}{|x|} \otimes \frac{x}{|x|}\right) .
\end{aligned}
$$

where $I d_{N}$ denotes the $N \times N$ identity matrix and $v \otimes v=\left(v_{i} v_{j}\right)_{1 \leq i, j \leq N}$ denotes the matrix corresponding to the orthogonal projection onto the line generated by the unit vector $v=\left(v_{1}, \cdots, v_{N}\right) \in \mathbb{R}^{N}$, i.e., the map $x \mapsto(x \cdot v) v$. Since a matrix of the form $I+\alpha v \otimes v$,
$\alpha \in \mathbb{R}$, has eigenvalues 1 (with multiplicity $N-1$) and $1+\alpha$ (with multiplicity 1), we see that

$$
\begin{equation*}
\operatorname{det}(D F(x))=\left(\frac{N-\gamma}{N}\right)^{N-1}|F(x)|^{\gamma} \tag{2.3}
\end{equation*}
$$

Let $u \in X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)$ be such that $\|u\|_{X_{\gamma}^{1, N}} \leq 1$. We introduce a change of functions as follows.

$$
\begin{equation*}
v(x)=\left(\frac{N-\gamma}{N}\right)^{\frac{N-1}{N}} u(F(x)) \tag{2.4}
\end{equation*}
$$

A simple calculation shows that

$$
\begin{aligned}
\nabla v(x) & =\left(\frac{N-\gamma}{N}\right)^{\frac{N-1}{N}} D F(x)(\nabla u(F(x))) \\
& =\left(\frac{N-\gamma}{N}\right)^{\frac{2 N-1}{N}}|F(x)|^{\frac{\gamma}{N}}\left(\nabla u(F(x))+\frac{\gamma}{N-\gamma}\left(\nabla u(F(x)) \cdot \frac{x}{|x|}\right) \frac{x}{|x|}\right),
\end{aligned}
$$

and hence

$$
|\nabla v(x)|^{2}=\left(\frac{N-\gamma}{N}\right)^{\frac{2(2 N-1)}{N}}|F(x)|^{\frac{2 \gamma}{N}}\left(|\nabla u(F(x))|^{2}+\frac{\gamma(2 N-\gamma)}{(N-\gamma)^{2}}\left(\nabla u(F(x)) \cdot \frac{x}{|x|}\right)^{2}\right)
$$

Since $\left(\nabla u(F(x)) \cdot \frac{x}{|x|}\right)^{2} \leq|\nabla u(F(x))|^{2}$, we then have

$$
\begin{equation*}
|\nabla v(x)| \leq\left(\frac{N-\gamma}{N}\right)^{\frac{N-1}{N}}|F(x)|^{\frac{\gamma}{N}}|\nabla u(F(x))|=(\operatorname{det}(D F(x)))^{\frac{1}{N}}|\nabla u(F(x))| \tag{2.5}
\end{equation*}
$$

if $\gamma \geq 0$, with equality if and only if $\left(\nabla u(F(x)) \cdot \frac{x}{|x|}\right)^{2}=|\nabla u(F(x))|^{2}$ when $\gamma>0$. If $\gamma=0$ the inequality (2.5) is an equality. Note that the inequality (2.5) does not hold if $\gamma<0$ and u is not radial function. In fact, a reversed inequality occurs in this case. Moreover, (2.5) becomes an equality if u is a radial function for any $-\infty<\gamma<N$. Integrating both sides of (2.5) on \mathbb{R}^{N}, we obtain

$$
\begin{equation*}
\|\nabla v\|_{N} \leq\|\nabla u\|_{N} . \tag{2.6}
\end{equation*}
$$

Moreover, for any function G on $[0, \infty)$, using the change of variables, we get

$$
\begin{align*}
& \int_{\mathbb{R}^{N}} G\left(|u(x)|^{\frac{N}{N-1}}\right)|x|^{-\delta} d x \tag{2.7}\\
&=\left(\frac{N-\gamma}{N}\right)^{N-1+\frac{N(\gamma-\delta)}{N-\gamma}} \int_{\mathbb{R}^{N}} G\left(\frac{N}{N-\gamma}|v(y)|^{\frac{N}{N-1}}\right)|y|^{\frac{N(\gamma-\delta)}{N-\gamma}} d y .
\end{align*}
$$

Consequently, by choosing $G(t)=t^{N-1}$ and $\delta=\gamma$, we get $\|u\|_{N, \gamma}=\|v\|_{N}$ and hence

$$
\begin{equation*}
\|u\|_{X_{\gamma}^{1, N}}^{N}=\|\nabla u\|_{N}^{N}+\int_{\mathbb{R}^{N}}|u(x)|^{N}|x|^{-\gamma} d x \geq\|\nabla v\|_{N}^{N}+\|v\|_{N}^{N}=\|v\|_{W^{1, N}}^{N} . \tag{2.8}
\end{equation*}
$$

We remark again that (2.6) and (2.8) become equalities if u is radial function for any $\gamma<N$. Thus $\|v\|_{W^{1, N}} \leq 1$ if $\|u\|_{X_{\gamma}^{1, N}} \leq 1$. By choosing $G(t)=\Phi_{N}(\alpha t)$ and $\delta=\beta \geq \gamma$, we get

$$
\begin{align*}
& \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u(x)|^{\frac{N}{N-1}}\right)|x|^{-\beta} d x \tag{2.9}\\
&=\left(\frac{N-\gamma}{N}\right)^{N-1+\frac{N(\gamma-\beta)}{N-\gamma}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\frac{N}{N-\gamma} \alpha|v(y)|^{\frac{N}{N-1}}\right)|y|^{-\frac{N(\beta-\gamma)}{N-\gamma}} d y .
\end{align*}
$$

Denote

$$
\tilde{\beta}=\frac{N(\beta-\gamma)}{N-\gamma} \in[0, N) .
$$

By using (2.8) and (2.9) and applying the singular Trudinger-Moser inequality (2.2), we get

$$
\begin{aligned}
& \sup _{u \in X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right),\|u\|_{X_{\gamma}^{1, N} \leq 1}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u(x)|^{\frac{N}{N-1}}\right)|x|^{-\beta} d x \\
& \leq\left(\frac{N-\gamma}{N}\right)^{N-1+\frac{N(\gamma-\beta)}{N-\gamma}} \sup _{v \in W^{1, N}\left(\mathbb{R}^{N}\right),\|v\|_{W^{1, N}} \leq 1} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\frac{N}{N-\gamma} \alpha|v(y)|^{\frac{N}{N-1}}\right)|y|^{-\tilde{\beta}} d y \\
& =\left(\frac{N-\gamma}{N}\right)^{N-1+\frac{N(\gamma-\beta)}{N-\gamma}} \tilde{B}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right) \\
& <\infty,
\end{aligned}
$$

since $\frac{N}{N-\gamma} \alpha \leq \frac{N}{N-\gamma} \alpha_{N, \beta}=\frac{N-\beta}{N-\gamma} \alpha_{N}=\left(\frac{N-\tilde{\beta}}{N}\right) \alpha_{N}=\alpha_{N, \tilde{\beta}}$.
If u is radial then so is v. In this case, (2.5), (2.6) become equalities, and hence so does (2.8). Then the conclusion follows again from the singular Trudinger-Moser inequality (2.2).

We finish the proof of Theorem 1 by showing that $\tilde{B}(N, \alpha, \beta, \gamma)=\infty$ and $\tilde{B}_{r a d}(N, \alpha, \beta, \gamma)=$ ∞ when $\alpha>\alpha_{N, \beta}$. Since $\tilde{B}_{r a d}(N, \alpha, \beta, \gamma) \leq \tilde{B}(N, \alpha, \beta, \gamma)$, it is enough to prove that $\tilde{B}_{r a d}(N, \alpha, \beta, \gamma)=\infty$. Suppose the contrary that $\tilde{B}_{r a d}(N, \alpha, \beta, \gamma)<\infty$ for some $\alpha>\alpha_{N, \beta}$. Using again the transformation of functions (2.4) for radial functions $u \in X_{\gamma}^{1, N}$, we then have equalities in (2.5), (2.6), and hence in (2.8). Evidently, the transformation of functions (2.4) is a bijection between $X_{\gamma, \text { rad }}^{1, N}$ and $W_{\text {rad }}^{1, N}$ and preserves the equality in (2.8). Consequently, we have

$$
\tilde{B}_{r a d}(N, \alpha, \beta, \gamma)=\left(\frac{N-\gamma}{N}\right)^{N-1+\frac{N(\gamma-\beta)}{N-\gamma}} \tilde{B}_{r a d}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right),
$$

with $\tilde{\beta}=\frac{N(\beta-\gamma)}{N-\gamma} \in[0, N)$. Hence $\tilde{B}_{r a d}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right)<\infty$. By rearrangement argument, we have

$$
\tilde{B}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right)=\tilde{B}_{r a d}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right)<\infty
$$

which violates the result of Adimurthi and Yang since $\frac{N}{N-\gamma} \alpha>\alpha_{N, \tilde{\beta}}$.
For the later purpose, we also prove here directly $\tilde{B}_{r a d}(N, \alpha, \beta, \gamma)=\infty$ when $\alpha>\alpha_{N, \beta}$ by using the weighted Moser sequence as in [16], [19]: Let $-\infty<\gamma \leq \beta<N$ and for $n \in \mathbb{N}$ set

$$
A_{n}=\left(\frac{1}{\omega_{N-1}}\right)^{1 / N}\left(\frac{n}{N-\beta}\right)^{-1 / N}, \quad b_{n}=\frac{n}{N-\beta}
$$

so that $\left(A_{n} b_{n}\right)^{\frac{N}{N-1}}=n / \alpha_{N, \beta}$. Put

$$
u_{n}= \begin{cases}A_{n} b_{n}, & \text { if }|x|<e^{-b_{n}} \tag{2.10}\\ A_{n} \log (1 /|x|), & \text { if } e^{-b_{n}}<|x|<1, \\ 0, & \text { if } 1 \leq|x|\end{cases}
$$

Then direct calculation shows that

$$
\begin{align*}
& \left\|\nabla u_{n}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)}=1 \tag{2.11}\\
& \left\|u_{n}\right\|_{N, \gamma}^{N}=\frac{N-\beta}{(N-\gamma)^{N+1}} \Gamma(N+1)(1 / n)+o(1 / n) \tag{2.12}
\end{align*}
$$

as $n \rightarrow \infty$. Thus $u_{n} \in X_{\gamma, \text { rad }}^{1, N}\left(\mathbb{R}^{N}\right)$. In fact for (2.12), we compute

$$
\begin{aligned}
\left\|u_{n}\right\|_{N, \gamma}^{N} & =\omega_{N-1} \int_{0}^{e^{-b_{n}}}\left(A_{n} b_{n}\right)^{N} r^{N-1-\gamma} d r+\omega_{N-1} \int_{e^{-b_{n}}}^{1} A_{n}^{N}(\log (1 / r))^{N} r^{N-1-\gamma} d r \\
& =I+I I
\end{aligned}
$$

We see

$$
I=\omega_{N-1}\left(A_{n} b_{n}\right)^{N}\left[\frac{r^{N-\gamma}}{N-\gamma}\right]_{r=0}^{r=e^{-b_{n}}}=\omega_{N-1}\left(\frac{n}{\alpha_{N, \beta}}\right)^{N-1} \frac{e^{-\left(\frac{N-\gamma}{N-\beta}\right) n}}{N-\gamma}=o(1 / n)
$$

as $n \rightarrow \infty$. Also

$$
\begin{aligned}
I I & =\left(\frac{N-\beta}{n}\right) \int_{e^{-b_{n}}}^{1}(\log (1 / r))^{N} r^{N-1-\gamma} d r \\
& =\left(\frac{N-\beta}{n}\right) \int_{0}^{b_{n}} \rho^{N} e^{-(N-\gamma) \rho} d \rho=\frac{N-\beta}{(N-\gamma)^{N+1}}(1 / n) \int_{0}^{(N-\gamma) b_{n}} \rho^{N} e^{-\rho} d \rho \\
& =\frac{N-\beta}{(N-\gamma)^{N+1}}(1 / n) \Gamma(N+1)+o(1 / n) .
\end{aligned}
$$

Thus we obtain (2.12).

Now, put $v_{n}(x)=\lambda_{n} u_{n}(x)$ where u_{n} is the weighted Moser sequence in (2.10) and $\lambda_{n}>0$ is chosen so that $\lambda_{n}^{N}+\lambda_{n}^{N}\left\|u_{n}\right\|_{N, \gamma}^{N}=1$. Thus we have $\left\|\nabla v_{n}\right\|_{L^{N}}^{N}+\left\|v_{n}\right\|_{N, \gamma}^{N}=1$ for any $n \in \mathbb{N}$. By (2.12) with $\beta=\gamma$, we see that $\lambda_{n}^{N}=1-O(1 / n)$ as $n \rightarrow \infty$. For $\alpha>\alpha_{N, \beta}$, we calculate

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|v_{n}\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \geq \int_{\left\{0 \leq|x| \leq e^{-b_{n}}\right\}} \Phi_{N}\left(\alpha\left|v_{n}\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& =\int_{\left\{0 \leq|x| \leq e^{\left.-b_{n}\right\}}\right.}\left(e^{\alpha\left|v_{n}\right|^{N-1}}-\sum_{j=0}^{N-2} \frac{\alpha^{j}}{j!}\left|v_{n}\right|^{\frac{N j}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& \geq\left\{\exp \left(\frac{n \alpha}{\alpha_{N, \beta}} \lambda_{n}^{\frac{N}{N-1}}\right)-O\left(n^{N-1}\right)\right\} \int_{\left\{0 \leq|x| \leq e^{-b_{n}}\right\}} \frac{d x}{|x|^{\beta}} \\
& \geq\left\{\exp \left(\frac{n \alpha}{\alpha_{N, \beta}}\left(1-O\left(\frac{1}{n^{\frac{1}{N-1}}}\right)\right)\right)-O\left(n^{N-1}\right)\right\}\left(\frac{\omega_{N-1}}{N-\beta}\right) e^{-n} \rightarrow+\infty
\end{aligned}
$$

as $n \rightarrow \infty$. Here we have used that for $0 \leq|x| \leq e^{-b_{n}}$,

$$
\alpha\left|v_{n}\right|^{\frac{N}{N-1}}=\alpha \lambda_{n}^{\frac{N}{N-1}}\left(A_{n} b_{n}\right)^{\frac{N}{N-1}}=\frac{n \alpha}{\alpha_{N, \beta}} \lambda_{n}^{\frac{N}{N-1}}
$$

by definition of A_{n} and b_{n}. Also we used that for $0 \leq|x| \leq e^{-b_{n}}$,

$$
\left|v_{n}\right|^{\frac{N j}{N-1}}=\lambda_{n}^{\frac{N j}{N-1}}\left(A_{n} b_{n}\right)^{\frac{N j}{N-1}} \leq C n^{j} \leq C n^{N-1}
$$

for $0 \leq j \leq N-2$ and n is large. This proves Theorem 1 completely.

3. Existence of maximizers for the weighted Trudinger-Moser inequality

As explained in the Introduction, the existence and non-existence of maximizers for (2.1) is well known. Now, let us recall it here.
Proposition 1. The following statements hold,
(i) If $N \geq 3$ then $\tilde{B}(N, \alpha, 0,0)$ is attained for any $0<\alpha \leq \alpha_{N}$ (see [15, 20]).
(ii) If $N=2$, there exists $0<\alpha_{*}<\alpha_{2}=4 \pi$ such that $\tilde{B}(2, \alpha, 0,0)$ is attained for any $\alpha_{*}<\alpha \leq \alpha_{2}$ (see [15, 27]).
(iii) If $\beta \in(0, N)$ and $N \geq 2$ then $\tilde{B}(N, \alpha, \beta, 0)$ is attained for any $0<\alpha \leq \alpha_{N, \beta}$ (see [21]).
(iv) $\tilde{B}(2, \alpha, 0,0)$ is not attained for any sufficiently small $\alpha>0$ (see [15]).

The existence part (iii) of Proposition 1 is recently proved by X. Li, and Y. Yang [21] by a blow-up analysis.

Remark 1. By a rearrangement argument, the maximizers for (2.1), if exist, must be a decreasing spherical symmetric function if $\beta \in(0, N)$ and up to a translation if $\beta=0$.

The proofs of the existence part (i) (ii) of Theorem 2 and 3 are completely similar by using the formula of change of functions (2.4) and the results on the existence of maximizers
for (2.1). So we prove Theorem 3 only here. As we have seen from the proof of Theorem 1 that

$$
\tilde{B}(N, \alpha, \beta, \gamma) \leq\left(\frac{N-\gamma}{N}\right)^{N-1+\frac{N(\gamma-\beta)}{N-\gamma}} \tilde{B}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right)
$$

if $0 \leq \gamma \leq \beta<N$, where $\tilde{\beta}=N(\beta-\gamma) /(N-\gamma) \in[0, N)$. If N, α, β and γ satisfy the condition (i) and (ii) of Theorem 3, then $N, N \alpha /(N-\gamma)$ and $\tilde{\beta}$ satisfy the condition (i)(iii) of Proposition 1, hence there exists a maximizer $v \in W^{1, N}\left(\mathbb{R}^{N}\right)$ for $\tilde{B}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right)$ with $\|v\|_{N}^{N}+\|\nabla v\|_{N}^{N}=1$ and

$$
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\frac{N}{N-\gamma} \alpha|v(y)|^{\frac{N}{N-1}}\right)|y|^{-\tilde{\beta}} d y=\tilde{B}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right)
$$

As mentioned in Remark 1, we can assume that v is a radial function. Let $u \in X_{\gamma}^{1, N}$ be a function defined by (2.4). Note that u is also a radial function, hence (2.5) becomes an equality. So do (2.6) and (2.8). Hence, we get

$$
\|u\|_{X_{\gamma}^{1, N}}^{N}=\|\nabla v\|_{N}^{N}+\|v\|_{N}^{N}=1
$$

and by (2.9)

$$
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u(x)|^{\frac{N}{N-1}}\right)|x|^{-\beta} d x=\left(\frac{N-\gamma}{N}\right)^{N-1+\frac{N(\gamma-\beta)}{N-\gamma}} \tilde{B}\left(N, \frac{N}{N-\gamma} \alpha, \tilde{\beta}, 0\right)
$$

This shows that u is a maximizer for $\tilde{B}(N, \alpha, \beta, \gamma)$.

4. Non-existence of maximizers for the weighted Trudinger-Moser INEQUALITY

In this section, we prove the non-existence part (iii) of Theorem 3. The proof of (iii) of Theorem 2 is completely similar. We follow Ishiwata's argument in [15].

Assume $0 \leq \beta<2,0<\alpha \leq \alpha_{2, \beta}=2 \pi(2-\beta)$ and recall

$$
\tilde{B}(2, \alpha, \beta, \beta)=\sup _{\substack{u \in X_{1,2}^{1,2}\left(\mathbb{R}^{2}\right) \\\|u\|_{X_{\beta}^{\beta}}^{1,2}\left(\mathbb{R}^{2}\right)}} \int_{\mathbb{R}^{2}}\left(e^{\alpha u^{2}}-1\right) \frac{d x}{|x|^{\beta}} .
$$

We will show that $\tilde{B}(2, \alpha, \beta, \beta)$ is not attained if $\alpha>0$ sufficiently small. Set

$$
M=\left\{u \in X_{\beta}^{1,2}\left(\mathbb{R}^{2}\right):\|u\|_{X_{\beta}^{1,2}}=\left(\|\nabla u\|_{2}^{2}+\|u\|_{2, \beta}^{2}\right)^{1 / 2}=1\right\}
$$

be the unit sphere in the Hilbert space $X_{\beta}^{1,2}\left(\mathbb{R}^{2}\right)$ and

$$
J_{\alpha}: M \rightarrow \mathbb{R}, \quad J_{\alpha}(u)=\int_{\mathbb{R}^{2}}\left(e^{\alpha u^{2}}-1\right) \frac{d x}{|x|^{\beta}}
$$

be the corresponding functional defined on M. Actually, we will prove the stronger claim that J_{α} has no critical point on M when $\alpha>0$ is sufficiently small.

Assume the contrary that there existed $v \in M$ such that v is a critical point of J_{α} on M. Define an orbit on M through v as

$$
v_{\tau}(x)=\sqrt{\tau} v(\sqrt{\tau} x) \quad \tau \in(0, \infty), \quad w_{\tau}=\frac{v_{\tau}}{\left\|v_{\tau}\right\|_{X_{\beta}^{1,2}}} \in M
$$

Since $\left.w_{\tau}\right|_{\tau=1}=v$, we must have

$$
\begin{equation*}
\left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right)=0 \tag{4.1}
\end{equation*}
$$

Note that

$$
\left\|\nabla v_{\tau}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=\tau\|\nabla v\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}, \quad\left\|v_{\tau}\right\|_{p, \beta}^{p}=\tau^{\frac{p+\beta-2}{2}}\|v\|_{p, \beta}^{p}
$$

for $p>1$. Thus,

$$
\begin{aligned}
& J_{\alpha}\left(w_{\tau}\right)=\int_{\mathbb{R}^{2}}\left(e^{\alpha w_{\tau}^{2}}-1\right) \frac{d x}{|x|^{\beta}}=\int_{\mathbb{R}^{2}} \sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{v_{\tau}^{2 j}(x)}{\left\|v_{\tau}\right\|_{X_{\beta}^{1,2}}^{2 j}} \frac{d x}{|x|^{\beta}} \\
& =\sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{\left\|v_{\tau}\right\|_{2 j, \beta}^{2 j}}{\left(\left\|\nabla v_{\tau}\right\|_{2}^{2}+\left\|v_{\tau}\right\|_{2, \beta}^{2}\right)^{j}}=\sum_{j=1}^{\infty} \frac{\alpha^{j}}{j!} \frac{\tau^{j-1+\frac{\beta}{2}}\|v\|_{2 j, \beta}^{2 j}}{\left(\tau\|\nabla v\|_{2}^{2}+\tau^{\frac{\beta}{2}}\|v\|_{2, \beta}^{2}\right)^{j}}
\end{aligned}
$$

By using an elementary computation

$$
\begin{aligned}
& f(\tau)=\frac{\tau^{j-1+\frac{\beta}{2}} c}{\left(\tau a+\tau^{\frac{\beta}{2}} b\right)^{j}}, \quad a=\|\nabla v\|_{2}^{2}, b=\|v\|_{2, \beta}^{2}, c=\|v\|_{2 j, \beta}^{2 j}, \\
& f^{\prime}(\tau)=\left(1-\frac{\beta}{2}\right) \frac{\tau^{j-2+\frac{\beta}{2}} c}{\left(\tau a+\tau^{\frac{\beta}{2}} b\right)^{j+1}}\{-\tau a+(j-1) b\},
\end{aligned}
$$

we estimate $\left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right)$:

$$
\begin{align*}
& \left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right) \\
& =\sum_{j=1}^{\infty}\left[\frac{\alpha^{j}}{j!}\left(1-\frac{\beta}{2}\right) \frac{\tau^{j-2+\beta / 2}\|v\|_{2 j, \beta}^{2 j}}{\left(\tau\|\nabla v\|_{2}^{2}+\tau^{\beta / 2}\|v\|_{2, \beta}^{2}\right)^{j+1}}\left\{-\tau\|\nabla v\|_{2}^{2}+(j-1)\|v\|_{2, \beta}^{2}\right\}\right]_{\tau=1} \\
& =-\alpha\left(1-\frac{\beta}{2}\right)\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}+\sum_{j=2}^{\infty} \frac{\alpha^{j}}{j!}\left(1-\frac{\beta}{2}\right)\|v\|_{2 j, \beta}^{2 j}\left\{-\|\nabla v\|_{2}^{2}+(j-1)\|v\|_{2, \beta}^{2}\right\} \\
& \leq \alpha\left(1-\frac{\beta}{2}\right)\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}\left\{-1+\sum_{j=2}^{\infty} \frac{\alpha^{j-1}}{(j-1)!} \frac{\|v\|_{2 j, \beta}^{2 j}}{\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}}\right\}, \tag{4.2}
\end{align*}
$$

since $-\|\nabla v\|_{2}^{2}+(j-1)\|v\|_{2, \beta}^{2} \leq j$.
Now, we state a lemma. Unweighted version of the next lemma is proved in [15]:Lemma 3.1 , and the proof of the next is a simple modification of the one given there using the
weighted Adachi-Tanaka type Trudinger-Moser inequality:

$$
\tilde{A}(2, \alpha, \beta, \beta)=\sup _{\substack{\left.u \in X^{1,2} \mathbb{R}^{2}\right) \backslash\{0\} \\\|\nabla u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{\leq 1}}} \frac{1}{\|u\|_{2, \beta}^{2}} \int_{\mathbb{R}^{2}}\left(e^{\alpha u^{2}}-1\right) \frac{d x}{|x|^{\beta}}<\infty
$$

for $\alpha \in\left(0, \alpha_{2, \beta}\right)$ if $\beta \geq 0$, and the expansion of the exponential function.
Lemma 1. For any $\alpha \in\left(0, \alpha_{2, \beta}\right)$, there exists $C_{\alpha}>0$ such that

$$
\|u\|_{2 j, \beta}^{2 j} \leq C_{\alpha} \frac{j!}{\alpha^{j}}\|\nabla u\|_{2}^{2 j-2}\|u\|_{2, \beta}^{2}
$$

holds for any $u \in X_{\beta}^{1,2}\left(\mathbb{R}^{2}\right)$ and $j \in \mathbb{N}, j \geq 2$.
By this lemma, if we take $\alpha<\tilde{\alpha}<\alpha_{2, \beta}$ and put $C=C_{\tilde{\alpha}}$, we see

$$
\frac{\|v\|_{2 j, \beta}^{2 j}}{\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}} \leq C \frac{j!}{\tilde{\alpha}^{j}}\|\nabla v\|_{2 j}^{2 j-4} \leq C \frac{j!}{\tilde{\alpha}^{j}}
$$

for $j \geq 2$ since $v \in M$. Thus we have

$$
\sum_{j=2}^{\infty} \frac{\alpha^{j-1}}{(j-1)!} \frac{\|v\|_{2 j, \beta}^{2 j}}{\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}} \leq \sum_{j=2}^{\infty} \frac{C \alpha^{j-1}}{(j-1)!} \frac{j!}{\tilde{\alpha}^{j}}=\left(\frac{C \alpha}{\tilde{\alpha}^{2}}\right) \sum_{j=2}^{\infty}\left(\frac{\alpha}{\tilde{\alpha}}\right)^{j-2} j \leq \alpha C^{\prime}
$$

for some $C^{\prime}>0$. Inserting this into the former estimate (4.2), we obtain

$$
\left.\frac{d}{d \tau}\right|_{\tau=1} J_{\alpha}\left(w_{\tau}\right) \leq\left(1-\frac{\beta}{2}\right) \alpha\|\nabla v\|_{2}^{2}\|v\|_{2, \beta}^{2}\left(-1+C^{\prime} \alpha\right)<0
$$

when $\alpha>0$ is sufficiently small. This contradicts to (4.1).

5. Proof of Theorem 4 and 5.

In this section, we prove Theorem 4 and Theorem 5. As stated in the Introduction, we follow the argument by Lam-Lu-Zhang [19]. First, we prepare several lemmata.
Lemma 2. Assume (1.6) and set

$$
\begin{equation*}
\widehat{A}(N, \alpha, \beta, \gamma)=\sup _{\substack{u \in \mathcal{N}^{1, N}\left\|_{\left(\mathbb{R}^{N}\right) \backslash\{0\}}\\\right\| \nabla u_{L^{N}}\left(\mathbb{R}^{N} \leq 1 \\\|u\|_{N, \gamma}=1\right.}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} . \tag{5.1}
\end{equation*}
$$

Let $\tilde{A}(N, \alpha, \beta, \gamma)$ be defined as in (1.9). Then $\tilde{A}(N, \alpha, \beta, \gamma)=\widehat{A}(N, \alpha, \beta, \gamma)$ for any $\alpha>0$. Similarly, $\tilde{A}_{\text {rad }}(N, \alpha, \beta, \gamma)=\widehat{A}_{\text {rad }}(N, \alpha, \beta, \gamma)$ for any $\alpha>0$, where $\widehat{A}_{\text {rad }}(N, \alpha, \beta, \gamma)$ is defined similar to (5.1) and $\widehat{A}_{\text {rad }}(N, \alpha, \beta, \gamma)$ is defined in (1.7).
Proof. For any $u \in X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ and $\lambda>0$, we put $u_{\lambda}(x)=u(\lambda x)$ for $x \in \mathbb{R}^{N}$. Then it is easy to see that

$$
\left\{\begin{array}{l}
\left\|\nabla u_{\lambda}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}=\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N} \tag{5.2}\\
\left\|u_{\lambda}\right\|_{N, \gamma}^{N}=\lambda^{-(N-\gamma)}\|u\|_{N, \gamma}^{N}
\end{array}\right.
$$

Thus for any $u \in X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ with $\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1$, if we choose $\lambda=\|u\|_{N, \gamma}^{N /(N-\gamma)}$, then $u_{\lambda} \in X_{\gamma}^{1, N}\left(\mathbb{R}^{N}\right)$ satisfies

$$
\left\|\nabla u_{\lambda}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1 \quad \text { and } \quad\left\|u_{\lambda}\right\|_{N, \gamma}^{N}=1
$$

Thus

$$
\widehat{A}(N, \alpha, \beta, \gamma) \geq \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{\lambda}\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}=\frac{1}{\|u\|_{N, \gamma}^{\frac{N(N-\beta)}{N-\gamma}}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}
$$

which implies $\widehat{A}(N, \alpha, \beta, \gamma) \geq \tilde{A}(N, \alpha, \beta, \gamma)$. The opposite inequality is trivial.
Lemma 3. Assume (1.6) and set $\tilde{B}(N, \beta, \gamma)$ as in (1.15). Then we have

$$
\tilde{A}(N, \alpha, \beta, \gamma) \leq\left(\frac{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \tilde{B}(N, \beta, \gamma)
$$

for any $0<\alpha<\alpha_{N, \beta}$. The same relation holds for $\tilde{A}_{\text {rad }}(N, \alpha, \beta, \gamma)$ in (1.7) and $\tilde{B}_{\text {rad }}(N, \beta, \gamma)$ in (1.14).
Proof. Choose any $u \in X_{\gamma}^{1, N}$ with $\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1$ and $\|u\|_{N, \gamma}=1$. Put $v(x)=C u(\lambda x)$ where $C \in(0,1)$ and $\lambda>0$ are defined as

$$
C=\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{\frac{N-1}{N}} \quad \text { and } \quad \lambda=\left(\frac{C^{N}}{1-C^{N}}\right)^{1 /(N-\gamma)} .
$$

Then by scaling rules (5.2), we see

$$
\begin{aligned}
\|v\|_{X_{\gamma}^{1, N}}^{N} & =\|\nabla v\|_{N}^{N}+\|v\|_{N, \gamma}^{N}=C^{N}\|\nabla u\|_{N}^{N}+\lambda^{-(N-\gamma)} C^{N}\|u\|_{N, \gamma}^{N} \\
& \leq C^{N}+\lambda^{-(N-\gamma)} C^{N}=1 .
\end{aligned}
$$

Also we have

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}|v|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} & =\lambda^{-(N-\beta)} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta} C^{\frac{N}{N-1}}|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& =\lambda^{-(N-\beta)} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} .
\end{aligned}
$$

Thus testing $\tilde{B}(N, \beta, \gamma)$ by v, we see

$$
\tilde{B}(N, \beta, \gamma) \geq\left(\frac{1-C^{N}}{C^{N}}\right)^{\frac{N-\beta}{N-\gamma}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha|u|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}
$$

By taking the supremum for $u \in X_{\gamma}^{1, N}$ with $\|\nabla u\|_{L^{N}\left(\mathbb{R}^{N}\right)} \leq 1$ and $\|u\|_{N, \gamma}=1$, we have

$$
\tilde{B}(N, \beta, \gamma) \geq\left(\frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \widehat{A}(N, \alpha, \beta, \gamma)
$$

Finally, Lemma 2 implies the result. The proof of

$$
\tilde{B}_{r a d}(N, \beta, \gamma) \geq\left(\frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \widehat{A}_{r a d}(N, \alpha, \beta, \gamma)
$$

is similar.

Proof of Theorem 4: We prove the relation between $\tilde{B}(N, \beta, \gamma)$ and $\tilde{A}(N, \alpha, \beta, \gamma)$ only. The assertion that

$$
\tilde{B}(N, \beta, \gamma) \geq \sup _{\alpha \in\left(0, \alpha_{N, \beta}\right.}\left(\frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \tilde{A}(N, \alpha, \beta, \gamma)
$$

follows from Lemma 3. Note that $\tilde{B}(N, \beta, \gamma)<\infty$ when $0 \leq \gamma \leq \beta<N$ by Theorem 1 .
Let us prove the opposite inequality. Let $\left\{u_{n}\right\} \subset X_{\gamma}^{1, N}\left(\overline{\mathbb{R}^{N}}\right), u_{n} \neq 0,\left\|\nabla u_{n}\right\|_{L^{N}}^{N}+$ $\left\|u_{n}\right\|_{N, \gamma}^{N} \leq 1$, be a maximizing sequence of $\tilde{B}(N, \beta, \gamma)$:

$$
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}\left|u_{n}\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}}=\tilde{B}(N, \beta, \gamma)+o(1)
$$

as $n \rightarrow \infty$. We may assume $\left\|\nabla u_{n}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}<1$ for any $n \in \mathbb{N}$. Define

$$
\left\{\begin{array}{l}
v_{n}(x)=\frac{u_{n}\left(\lambda_{n} x\right)}{\left\|\nabla u_{n}\right\|_{N}}, \quad\left(x \in \mathbb{R}^{N}\right) \\
\lambda_{n}=\left(\frac{1-\left\|\nabla u_{n}\right\|_{N}^{N}}{\left\|\nabla u_{n}\right\|_{N}^{N}}\right)^{1 /(N-\gamma)}>0 .
\end{array}\right.
$$

Thus by (5.2), we see

$$
\begin{aligned}
& \left\|\nabla v_{n}\right\|_{L^{N}\left(\mathbb{R}^{N}\right)}^{N}=1 \\
& \left\|v_{n}\right\|_{N, \gamma}^{\frac{N(N-\beta)}{N-\gamma}}=\left(\frac{\lambda_{n}^{-(N-\gamma)}}{\left\|\nabla u_{n}\right\|_{N}^{N}}\left\|u_{n}\right\|_{N, \gamma}^{N}\right)^{\frac{N-\beta}{N-\gamma}}=\left(\frac{\left\|u_{n}\right\|_{N, \gamma}^{N}}{1-\left\|\nabla u_{n}\right\|_{N}^{N}}\right)^{\frac{N-\beta}{N-\gamma}} \leq 1,
\end{aligned}
$$

since $\left\|\nabla u_{n}\right\|_{N}^{N}+\left\|u_{n}\right\|_{N, \gamma}^{N} \leq 1$. Thus, setting

$$
\alpha_{n}=\alpha_{N, \beta}\left\|\nabla u_{n}\right\|_{N}^{\frac{N}{N-1}}<\alpha_{N, \beta}
$$

for any $n \in \mathbb{N}$, we may test $\tilde{A}\left(N, \alpha_{n}, \beta, \gamma\right)$ by $\left\{v_{n}\right\}$, which results in

$$
\begin{aligned}
& \tilde{B}(N, \beta, \gamma)+o(1)=\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}\left|u_{n}(y)\right|^{\frac{N}{N-1}}\right) \frac{d y}{|y|^{\beta}} \\
& =\lambda_{n}^{N-\beta} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{N, \beta}\left\|\nabla u_{n}\right\|_{N}^{\frac{N}{N-1}}\left|v_{n}(x)\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& =\lambda_{n}^{N-\beta} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{n}\left|v_{n}(x)\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& \leq \lambda_{n}^{N-\beta}\left(\frac{1}{\left\|v_{n}\right\|_{N, \beta}^{N}}\right)^{\frac{N-\beta}{N-\gamma}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha_{n}\left|v_{n}(x)\right|^{\frac{N}{N-1}}\right) \frac{d x}{|x|^{\beta}} \\
& \leq \lambda_{n}^{N-\beta} \tilde{A}\left(N, \alpha_{n}, \beta, \gamma\right)=\left(\frac{1-\left\|\nabla u_{n}\right\|_{N}^{N}}{\left\|\nabla u_{n}\right\|_{N}^{N}}\right)^{\frac{N-\beta}{N-\gamma}} \tilde{A}\left(N, \alpha_{n}, \beta, \gamma\right) \\
& =\left(\frac{1-\left(\frac{\alpha_{n}}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha_{n}}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \tilde{A}\left(N, \alpha_{n}, \beta, \gamma\right) \\
& \leq \sup _{\alpha \in\left(0, \alpha_{N, \beta}\right)}\left(\frac{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}{\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \tilde{A}(N, \alpha, \beta, \gamma) \text {. }
\end{aligned}
$$

Here we have used a change of variables $y=\lambda_{n} x$ for the second equality, and $\left\|v_{n}\right\|_{N, \gamma}^{\frac{N(N-\beta)}{N-\gamma}} \leq 1$ for the first inequality. Letting $n \rightarrow \infty$, we have the desired result.

Proof of Theorem 5: Again, we prove theorem for $\tilde{A}(N, \alpha, \beta, \gamma)$ only. The assertion that

$$
\tilde{A}(N, \alpha, \beta, \gamma) \leq\left(\frac{C_{2}}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}}
$$

follows form Theorem 4 and the fact that $\tilde{B}(N, \beta, \gamma)<\infty$ when $0 \leq \gamma \leq \beta<N$.
For the rest, we need to prove that there exists $C>0$ such that for any $\alpha<\alpha_{N, \beta}$ sufficiently close to $\alpha_{N, \beta}$, it holds that

$$
\begin{equation*}
\left(\frac{C}{1-\left(\frac{\alpha}{\alpha_{N, \beta}}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \leq \tilde{A}(N, \alpha, \beta, \gamma) \tag{5.3}
\end{equation*}
$$

For that purpose, we use the weighted Moser sequence (2.10) again. By (2.12), we have $N_{1} \in \mathbb{N}$ such that if $n \in \mathbb{N}$ satisfies $n \geq N_{1}$, then it holds

$$
\begin{equation*}
\left\|u_{n}\right\|_{N, \gamma}^{N} \leq \frac{2(N-\gamma) \Gamma(N+1)}{(N-\beta)^{N+1}}(1 / n) . \tag{5.4}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{n}\right|^{N /(N-1)}\right) \frac{d x}{|x|^{\beta}} & \geq \omega_{N-1} \int_{0}^{e^{-b_{n}}} \Phi_{N}\left(\alpha\left(A_{n} b_{n}\right)^{N /(N-1)}\right) r^{N-1-\beta} d r \\
& =\frac{\omega_{N-1}}{N-\beta} \Phi_{N}\left(\left(\alpha / \alpha_{N, \beta}\right) n\right)\left[r^{N-\beta}\right]_{r=0}^{r=e^{-b_{n}}} \\
& =\frac{\omega_{N-1}}{N-\beta} \Phi_{N}\left(\left(\alpha / \alpha_{N, \beta}\right) n\right) e^{-n}
\end{aligned}
$$

Note that there exists $N_{2} \in \mathbb{N}$ such that if $n \geq N_{2}$ then $\Phi_{N}\left(\left(\alpha / \alpha_{N, \beta}\right) n\right) \geq \frac{1}{2} e^{\left(\alpha / \alpha_{N, \beta}\right) n}$. Thus we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{n}\right|^{N /(N-1)}\right) \frac{d x}{|x|^{\beta}} \geq \frac{1}{2}\left(\frac{\omega_{N-1}}{N-\beta}\right) e^{-\left(1-\frac{\alpha}{\alpha_{N, \beta}}\right) n} \tag{5.5}
\end{equation*}
$$

Combining (5.4) and (5.5), we have $C_{1}(N, \beta, \gamma)>0$ such that

$$
\begin{equation*}
\frac{1}{\left\|u_{n}\right\|_{N, \gamma}^{\frac{N(N-\beta)}{N-\gamma}}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{n}\right|^{N /(N-1)}\right) \frac{d x}{|x|^{\beta}} \geq C_{1}(N, \beta, \gamma) n^{\frac{N-\beta}{N-\gamma}} e^{-\left(1-\frac{\alpha}{\alpha_{N, \beta}}\right) n} \tag{5.6}
\end{equation*}
$$

holds when $n \geq \max \left\{N_{1}, N_{2}\right\}$.
Note that $\lim _{x \rightarrow 1}\left(\frac{1-x^{N-1}}{1-x}\right)=N-1$, thus

$$
\frac{1-\left(\alpha / \alpha_{N, \beta}\right)^{N-1}}{1-\left(\alpha / \alpha_{N, \beta}\right)} \geq \frac{N-1}{2}
$$

if $\alpha / \alpha_{N, \beta}<1$ is very close to 1 . Now, for any $\alpha>0$ sufficiently close to $\alpha_{N, \beta}$ so that

$$
\left\{\begin{array}{l}
\max \left\{N_{1}, N_{2}\right\}<\left(\frac{2}{1-\alpha / \alpha_{N, \beta}}\right) \tag{5.7}\\
\frac{1-\left(\alpha / \alpha_{N, \beta}\right)^{N-1}}{1-\left(\alpha / \alpha_{N, \beta}\right)} \geq \frac{N-1}{2}
\end{array}\right.
$$

we can find $n \in \mathbb{N}$ such that

$$
\left\{\begin{array}{l}
\max \left\{N_{1}, N_{2}\right\} \leq n \leq\left(\frac{2}{1-\alpha / \alpha_{N, \beta}}\right) \tag{5.8}\\
\left(\frac{1}{1-\alpha / \alpha_{N, \beta}}\right) \leq n
\end{array}\right.
$$

We fix $n \in \mathbb{N}$ satisfying (5.8). Then by $1 \leq n\left(1-\alpha / \alpha_{N, \beta}\right) \leq 2$, (5.6) and (5.7), we have

$$
\begin{aligned}
& \frac{1}{\left\|u_{n}\right\|_{N, \beta}^{N}} \int_{\mathbb{R}^{N}} \Phi_{N}\left(\alpha\left|u_{n}\right|^{N /(N-1)}\right) \frac{d x}{\mid x x^{\beta}} \geq C_{1}(N, \beta, \gamma) n^{\frac{N-\beta}{N-\gamma}} e^{-2} \\
& \geq C_{2}(N, \beta, \gamma)\left(\frac{1}{1-\left(\alpha / \alpha_{N, \beta}\right)}\right)^{\frac{N-\beta}{N-\gamma}} \geq \frac{N-1}{2} C_{2}(N, \beta, \gamma)\left(\frac{1}{1-\left(\alpha / \alpha_{N, \beta}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}} \\
& =C_{3}(N, \beta, \gamma)\left(\frac{1}{1-\left(\alpha / \alpha_{N, \beta}\right)^{N-1}}\right)^{\frac{N-\beta}{N-\gamma}}
\end{aligned}
$$

where $C_{2}(N, \beta, \gamma)=e^{-2} C_{1}(N, \beta, \gamma)$ and $C_{3}(N, \beta, \gamma)=\frac{N-1}{2} C_{2}(N, \beta, \gamma)$. Thus we have (5.3) for some $C>0$ independent of α which is sufficiently close to $\alpha_{N, \beta}$.

Acknowledgments.

The first author (V. H. N.) was supported by CIMI's postdoctoral research fellowship. The second author (F.T.) was supported by JSPS Grant-in-Aid for Scientific Research (B), No.15H03631, and JSPS Grant-in-Aid for Challenging Exploratory Research, No. 26610030.

References

[1] S. Adachi, and K. Tanaka: A scale-invariant form of Trudinger-Moser inequality and its best exponent, Proc. Am. Math. Soc. 1102, (1999) 148-153.
[2] Adimurthi, and K. Sandeep: A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl. 13 (2007), no. 5-6, 585-603.
[3] Adimurthi, and Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in \mathbb{R}^{N} and its applications, Int. Math. Res. Not., IMRN 13 (2010) 2394-2426.
[4] L. Caffarelli, R. Kohn, and L. Nirenberg: First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259-275.
[5] D. M. Cao: Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^{2}, Commun. Partial Differ. Equ. 17, (1992) 407-435.
[6] L. Carleson, and S.-Y.A. Chang: On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. 2(110), (1986) 113-127.
[7] M. Calanchi: Some weighted inequalities of Trudinger-Moser type, Analysis and topology in nonlinear differential equations, Progr. Nonlinear Differential Equations Appl. 85, (2014) 163-174.
[8] M. Calanchi, and B. Ruf: On Trudinger-Moser type inequalities with logarithmic weights, J. Differential Equations, 258, no.6, (2015), 1967-1989.
[9] M. Calanchi, and B. Ruf: Trudinger-Moser type inequalities with logarithmic weights in dimension N, Nonlinear Anal., 121, (2015), 403-411.
[10] G. Csató, and P. Roy: Extremal functions for the singular Moser-Trudinger inequality in 2 dimensions, Calc. Var. Partial Differential Equations, 54 (2015), no. 2, 2341-2366.
[11] G. Csató, and P. Roy: Singular Moser-Trudinger inequality on simply connected domains, Comm. Partial Differential Equations, 41 (2016), no. 5, 838-847.
[12] M. Dong, and G. Lu: Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 88, 26 pp.
[13] M. Flucher: Extremal functions for the Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv. 67, (1992) 471-497.
[14] M. F. Furtado, E. S. Medeiros, and U. B. Severo: A Trudinger-Moser inequality in a weighted Sobolev space and applications, Math. Nachr. 287, (2014) 1255-1273.
[15] M. Ishiwata: Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in \mathbb{R}^{N}, Math. Ann. 351, (2011) 781-804.
[16] M. Ishiwata, M. Nakamura and H. Wadade: On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincare Anal. Non Lineaire. 31 (2014), no. 2, 297-314.
[17] K. C. Lin: Extremal functions for Moser's inequality, Trans. Am. Math. Soc. 348, (1996) 2663-2671.
[18] N. Lam, and G. Lu: Sharp singular Trudinger-Moser-Adams type inequalities with exact growth, Geometric Methods in PDE's, (G. Citti et al. (eds.)), Springer INdAM Series 13, (2015) 43-80.
[19] N. Lam, G. Lu, and L. Zhang: Equivalence of critical and subcritical sharp Trudinger-Moser-Adams inequalities, arXiv:1504.04858v1 (2015)
[20] Y. Li, and B. Ruf: A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{n}, Indiana Univ. Math. J. 57, (2008) 451-480.
[21] X. Li, and Y. Yang, Extremal functions for singular Trudinger-Moser inequalities in the entire Euclidean space, preprint, arXiv:1612.08241v1.
[22] J. Moser: A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20, (1970) 1077-1092.
[23] T. Ogawa: A proof of Trudinger's inequality and its application to nonlinear Schrodinger equation, Nonlinear Anal. 14, (1990) 765-769.
[24] T. Ogawa, and T. Ozawa: Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl. 155, (1991) 531-540.
[25] T. Ozawa: On critical cases of Sobolev's inequalities, J. Funct. Anal. 127, (1995) 259-269.
[26] S. Pohozaev: The Sobolev embedding in the case $p l=n$, Proceedings of the Technical Scientic Conference on Advances of Scientic Research (1964/1965). Mathematics Section, Moskov. Energetics Institute, Moscow, (1965) 158-170.
[27] B. Ruf: A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{2}, J. Funct. Anal. 219, (2005) 340-367.
[28] M. de Souza: On a class of singular Trudinger-Moser type inequalities for unbounded domains in \mathbb{R}^{N}, Appl. Math. Lett. 25 (2012), no. 12, 2100-2104.
[29] M. de Souza, and M. do Ó: On singular Trudinger-Moser type inequalities for unbounded domains and their best exponents, Potential Anal. 38 (2013), no. 4, 1091-1101.
[30] N. S. Trudinger: On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17, (1967) 473-483.
[31] V. I. Yudovich: Some estimates connected with integral operators and with solutions of elliptic equations, Dok. Akad. Nauk SSSR 138, (1961) 804-808.
[32] Y. Yuan: A weighted form of Moser-Trudinger inequality on Riemannian surface, Nonlinera Anal. 65 no. 3, (2006) 647-659.

Institut de Mathématiques de Toulouse, Université Paul Sabatier 118 route de Narbonne, 31062 Toulouse Cédex 09, France

E-mail address: van-hoang.nguyen@math.univ-toulouse.fr
Department of Mathematics, Osaka City University \& OCAMI, Sumiyoshi-ku, Osaka, 558-8585, JAPAN

E-mail address: futoshi@sci.osaka-cu.ac.jp

