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Abstract. We give a necessary and sufficient condition for the nonsingular
projective toric variety associated to a building set to be weak Fano in terms

of the building set.

1. Introduction

A toric Fano variety is a nonsingular projective toric variety over C whose anti-
canonical divisor is ample. It is known that there are a finite number of isomorphism
classes of toric Fano varieties in any given dimension. The classification problem of
toric Fano varieties has been studied by many researchers. In particular, Øbro [2]
gave an explicit algorithm that classifies all toric Fano varieties for any dimension.

A nonsingular projective algebraic variety is said to be weak Fano if its anti-
canonical divisor is nef and big. Sato [5] classified toric weak Fano 3-folds that are
not Fano but are deformed to Fano under a small deformation, which are called
toric weakened Fano 3-folds.

We can construct a nonsingular projective toric variety from a building set. Since
a finite simple graph defines a building set, which is called the graphical building set,
we can also associate to the graph a toric variety (see, for example [8]). The author
[6, 7] characterized finite simple graphs whose associated toric varieties are Fano
or weak Fano, and building sets whose associated toric varieties are Fano. In this
paper, we characterize building sets whose associated toric varieties are weak Fano
(see Theorem 2.4). Our theorem is proved combinatorially by using the fact that
the intersection number of the anticanonical divisor with a torus-invariant curve
can be computed in terms of the building set.

A toric weak Fano variety defines a reflexive polytope. Higashitani [1] con-
structed integral convex polytopes from finite directed graphs and gave a necessary
and sufficient condition for the polytope to be terminal and reflexive. We also dis-
cuss a difference between the class of reflexive polytopes defined by toric weak Fano
varieties associated to building sets, and that of reflexive polytopes associated to
finite directed graphs.

The structure of the paper is as follows: In Section 2, we review the construction
of a toric variety from a building set and state the characterization of building sets
whose associated toric varieties are weak Fano. In Section 3, we consider reflexive
polytopes associated to building sets and finite directed graphs. In Section 4, we
give a proof of the main theorem.
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2. The main result

Let S be a nonempty finite set. A building set on S is a finite set B of nonempty
subsets of S satisfying the following conditions:

(1) I, J ∈ B with I ∩ J ̸= ∅ implies I ∪ J ∈ B.
(2) {i} ∈ B for every i ∈ S.

We denote by Bmax the set of all maximal (by inclusion) elements of B. An element
of Bmax is called a B-component and B is said to be connected if Bmax = {S}. For
a nonempty subset C of S, we call B|C = {I ∈ B | I ⊂ C} the restriction of B to
C. B|C is a building set on C. Note that B|C is connected if and only if C ∈ B.
For any building set B, we have B =

⊔
C∈Bmax

B|C . In particular, any building set
is a disjoint union of connected building sets.

Definition 2.1. Let B be a building set. A nested set of B is a subset N of
B \Bmax satisfying the following conditions:

(1) If I, J ∈ N , then we have either I ⊂ J or J ⊂ I or I ∩ J = ∅.
(2) For any integer k ≥ 2 and for any pairwise disjoint I1, . . . , Ik ∈ N , the

union I1 ∪ · · · ∪ Ik is not in B.

Note that the empty set is a nested set for any building set. The set N (B) of all
nested sets of B is called the nested complex. N (B) is in fact an abstract simplicial
complex on B \Bmax.

Proposition 2.2 ([8, Proposition 4.1]). Let B be a building set on S. Then every
maximal (by inclusion) nested set of B has the same cardinality |S| − |Bmax|. In
particular, if B is connected, then the cardinality of every maximal nested set of B
is |S| − 1.

We are now ready to construct a toric variety from a building set. First, suppose
that B is connected and S = {1, . . . , n+ 1}. We denote by e1, . . . , en the standard
basis for Rn and we put en+1 = −e1 − · · · − en. For a nonempty subset I of S, we
denote eI =

∑
i∈I ei. Note that eS = 0. For N ∈ N (B) \ {∅}, we denote by R≥0N

the |N |-dimensional cone
∑

I∈N R≥0eI in Rn, where R≥0 is the set of nonnegative
real numbers, and we define R≥0∅ to be {0} ⊂ Rn. Then ∆(B) = {R≥0N | N ∈
N (B)} forms a fan in Rn and thus we have an n-dimensional toric varietyX(∆(B)).
If B is not connected, then we define X(∆(B)) =

∏
C∈Bmax

X(∆(B|C)).

Theorem 2.3 ([8, Corollary 5.2 and Theorem 6.1]). Let B be a building set. Then
the associated toric variety X(∆(B)) is nonsingular and projective.

The following is our main result:

Theorem 2.4. Let B be a building set. Then the following are equivalent:

(1) The associated toric variety X(∆(B)) is weak Fano.
(2) For any B-component C and for any I1, I2 ∈ B|C such that I1∩I2 ̸= ∅, I1 ̸⊂

I2 and I2 ̸⊂ I1, we have at least one of the following:
(i) I1 ∩ I2 ∈ B|C .
(ii) I1 ∪ I2 = C and |(B|I1∩I2)max| ≤ 2.
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Remark 2.5. In a previous paper [6], we proved that the toric variety associated
to a graphical building set is weak Fano if and only if every connected component of
the graph does not have a cycle graph of length ≥ 4 or a diamond graph as a proper
induced subgraph. However, it is unclear whether this result can be obtained from
Theorem 2.4.

Example 2.6. Theorem 2.4 implies that if |S| ≤ 4, then the toric variety X(∆(B))
is weak Fano for any connected building set B on S. Any building set is a disjoint
union of connected building sets, and the disjoint union corresponds to the product
of toric varieties associated to the connected building sets. Since the product of
toric weak Fano varieties is also weak Fano, it follows that all toric varieties of
dimension ≤ 3 associated to building sets are weak Fano.

We recall a description of the intersection number of the anticanonical divisor
with a torus-invariant curve, see [3] for details. Let ∆ be a nonsingular complete
fan in Rn and let X(∆) be the associated toric variety. For 0 ≤ r ≤ n, we denote
by ∆(r) the set of r-dimensional cones in ∆. For τ ∈ ∆(n − 1), the intersection
number of the anticanonical divisor −KX(∆) with the torus-invariant curve V (τ)
corresponding to τ can be computed as follows:

Proposition 2.7. Let ∆ be a nonsingular complete fan in Rn and τ = R≥0v1 +
· · · + R≥0vn−1 ∈ ∆(n − 1), where v1, . . . , vn−1 are primitive vectors in Zn. Let v
and v′ be the distinct primitive vectors in Zn such that τ +R≥0v and τ +R≥0v

′ are
in ∆(n). Then there exist unique integers a1, . . . , an−1 such that v + v′ + a1v1 +
· · ·+an−1vn−1 = 0. Furthermore, the intersection number (−KX(∆).V (τ)) is equal
to 2 + a1 + · · ·+ an−1.

Proposition 2.8 ([4, Proposition 6.17]). Let X(∆) be an n-dimensional nonsingu-
lar projective toric variety. Then X(∆) is weak Fano if and only if (−KX(∆).V (τ))
is nonnegative for every (n− 1)-dimensional cone τ in ∆.

Example 2.9. Let S = {1, 2, 3, 4, 5} and

B = {{1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}.
Then the nested complex N (B) consists of

{{1}, {2}, {3}, {1, 2, 3, 4}}, {{1}, {2}, {4}, {1, 2, 3, 4}},
{{1}, {3}, {4}, {1, 2, 3, 4}}, {{2}, {3}, {4}, {1, 2, 3, 4}},
{{2}, {3}, {4}, {2, 3, 4, 5}}, {{2}, {3}, {5}, {2, 3, 4, 5}},
{{2}, {4}, {5}, {2, 3, 4, 5}}, {{3}, {4}, {5}, {2, 3, 4, 5}},
{{1}, {2}, {3}, {5}}, {{1}, {2}, {4}, {5}}, {{1}, {3}, {4}, {5}}

and their subsets. The pair I1 = {1, 2, 3, 4} and I2 = {2, 3, 4, 5} does not satisfy
the condition (2) in Theorem 2.4. Hence the 4-dimensional toric variety X(∆(B))
is not weak Fano. In fact, there exists a 3-dimensional cone τ in ∆(B) such that
(−KX(∆(B)).V (τ)) ≤ −1. Let

N1 = {{2}, {3}, {4}, {1, 2, 3, 4}}, N2 = {{2}, {3}, {4}, {2, 3, 4, 5}}.
Then we have

R≥0N1 = R≥0e2 + R≥0e3 + R≥0e4 + R≥0(e1 + e2 + e3 + e4),

R≥0N2 = R≥0e2 + R≥0e3 + R≥0e4 + R≥0(−e1).
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Let us consider τ = R≥0N1∩R≥0N2 = R≥0e2+R≥0e3+R≥0e4. Since (e1+e2+e3+
e4)+(−e1)−e2−e3−e4 = 0, Proposition 2.7 gives (−KX(∆(B)).V (τ)) = 2−3 = −1.
Therefore X(∆(B)) is not weak Fano by Proposition 2.8.

3. Reflexive polytopes associated to building sets

An n-dimensional integral convex polytope P ⊂ Rn is said to be reflexive if 0
is in the interior of P and the dual P ∗ = {u ∈ Rn | ⟨u, v⟩ ≥ −1 for any v ∈ P} is
also an integral convex polytope, where ⟨·, ·⟩ denotes the standard inner product
in Rn. Let ∆ be a nonsingular complete fan in Rn. If the associated toric variety
X(∆) is weak Fano, then the convex hull of primitive generators of rays in ∆(1)
is a reflexive polytope. For a building set B such that the associated toric variety
X(∆(B)) is weak Fano, we denote by PB the corresponding reflexive polytope.

Higashitani [1] gave a construction of integral convex polytopes from finite di-
rected graphs (with no loops and no multiple arrows). We describe his con-
struction briefly. Let G be a finite directed graph whose node set is V (G) =
{1, . . . , n+1} and whose arrow set is A(G) ⊂ V (G)×V (G). For −→e = (i, j) ∈ A(G),
we define ρ(−→e ) ∈ Rn+1 to be ei − ej . We define PG to be the convex hull of
{ρ(−→e ) | −→e ∈ A(G)} in Rn+1. PG is an integral convex polytope in the hyperplane
H = {(x1, . . . , xn+1) ∈ Rn+1 | x1 + · · ·+ xn+1 = 0}. In a previous paper we proved
that if X(∆(B)) is Fano, then PB can be obtained from a finite directed graph:

Theorem 3.1 ([7, Theorem 4.1]). Let B be a building set. If the associated toric
variety X(∆(B)) is Fano, then there exists a finite directed graph G such that PB

is equivalent to PG, that is, there exists a linear isomorphism f : Rn → H such
that f(Zn) = H ∩ Zn+1 and f(PB) = PG.

However, there exist infinitely many reflexive polytopes associated to building
sets that cannot be obtained from finite directed graphs. The following proposition
provides such examples:

Proposition 3.2. Let S = {1, . . . , n + 1} and B = 2S \ {∅}. Then X(∆(B)) is
weak Fano by Theorem 2.4 but the reflexive polytope PB cannot be obtained from
any finite directed graph for n ≥ 3.

Proof. Suppose that there exists a finite directed graph G such that PB is equivalent
to PG. Since 0 ∈ PG, there exists a nonempty subset A′ of A(G) and positive real
numbers a−→e for −→e ∈ A′ such that

∑
−→e ∈A′ a−→e ρ(

−→e ) = 0. If (i1, i2) ∈ A′, then we
must have (i2, i3) ∈ A′ for some i3 ∈ V (G). Continuing this process, eventually
we obtain a directed cycle of G. In general, if G has a nonhomogeneous cycle (a
directed cycle is a nonhomogeneous cycle), then the dimension of PG is |V (G)| − 1
(see [1, Proposition 1.3]). Hence we have |V (G)| = n + 1. Since G has at most
n(n + 1) arrows, PG has at most n(n + 1) vertices. On the other hand, PB has
2n+1 − 2 vertices. Thus we have the inequality 2n+1 − 2 ≤ n(n + 1), but this
inequality does not hold for n ≥ 3. This is a contradiction. Thus we proved the
proposition. □

Example 3.3. There also exists a reflexive polytope associated to a finite directed
graph that cannot be obtained from any building set. Let G be the finite directed
graph defined by

V (G) = {1, 2, 3, 4}, A(G) = {(1, 2), (2, 3), (3, 1), (1, 4), (4, 3)}.
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Then PG cannot be obtained from any building set. PG is a reflexive 3-polytope
with six lattice points. However, there are only three types of reflexive 3-polytopes
with six lattice points that are obtained from building sets. They are realized by
the following building sets:

{{1}, {2}, {3}, {4}, {1, 2}, {1, 2, 3, 4}},
{{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 3, 4}},
{{1}, {2}, {3}, {1, 2, 3}, {4}, {5}, {4, 5}}.

All the building sets yield reflexive polytopes not equivalent to PG.

Figure 1. the directed graph G whose reflexive polytope cannot
be obtained from any building set.

4. Proof of Theorem 2.4

First we introduce some notation.

Definition 4.1. Let B be a building set on S.

(1) We denote by N (B)max the set of all maximal (by inclusion) nested sets of
B. N (B)max is a subset of N (B).

(2) For C ∈ B \Bmax, we call

N (B)C = {N ⊂ (B \Bmax) \ {C} | N ∪ {C} ∈ N (B)}
the link of C in N (B). N (B)C is an abstract simplicial complex on

{I ∈ (B \Bmax) \ {C} | {I, C} ∈ N (B)}.
(3) For a nonempty proper subset C of S, we call

C \B = {I ⊂ S \ C | I ̸= ∅; I ∈ B or C ∪ I ∈ B}
the contraction of C from B. C \B is a building set on S \ C.

The symmetric difference of two sets X and Y is defined by X△Y = (X ∪ Y ) \
(X ∩ Y ).

Lemma 4.2. Let B be a connected building set on S and let I1, I2 ∈ B with
I1 ∩ I2 ̸= ∅, I1 ̸⊂ I2, I2 ̸⊂ I1 and |I1△I2| ≥ 3. Suppose that

i1 ∈ I1 \ I2, i2 ∈ I2 \ I1,
N ∈ N (B|I1∩I2)max, N

′ ∈ N (B|(I1△I2)\{i1,i2})max

such that

(4.1) {Ik} ∪N ∪ (B|I1∩I2)max ∪N ′ ∪ (B|(I1△I2)\{i1,i2})max

is not a nested set of B for some k = 1, 2. Then there exist I ′1, I
′
2 ∈ B such that

I ′1 ⊃ I1, I
′
2 ⊃ I2, i1 ∈ I ′1 \ I ′2, i2 ∈ I ′2 \ I ′1, I ′1 ∩ I ′2 ⊋ I1 ∩ I2 and I ′1 ∪ I ′2 = I1 ∪ I2.
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Proof. The proof is similar to a part of the proof of [7, Lemma 3.4 (1)].
Without loss of generality, we may assume k = 1. Note that {I1} ∪ N ∪

(B|I1∩I2)max and N ′ ∪ (B|(I1△I2)\{i1,i2})max are nested sets of B. Thus (4.1) falls
into the following three cases.

Case 1. Suppose that (4.1) does not satisfy the condition (1) in Definition 2.1.
Then there exist

K ∈ {I1} ∪N ∪ (B|I1∩I2)max, L ∈ N ′ ∪ (B|(I1△I2)\{i1,i2})max

such that K ̸⊂ L,L ̸⊂ K and K ∩L ̸= ∅. If K ∈ N ∪ (B|I1∩I2)max, then K ∩L = ∅,
a contradiction. Thus we must have K = I1. Then I1 ∪L ∈ B. We put I ′1 = I1 ∪L
and I ′2 = I2. Since L ⊂ I1△I2, it follows that L \ I1 ⊂ (I ′1 ∩ I ′2) \ (I1 ∩ I2). Thus
I ′1 ∩ I ′2 ⊋ I1 ∩ I2.

Case 2. Suppose that (4.1) does not satisfy the condition (2) in Definition 2.1,
and there exist

K1, . . . ,Kr ∈ N ∪ (B|I1∩I2)max, L1, . . . , Ls ∈ N ′ ∪ (B|(I1△I2)\{i1,i2})max

for r, s ≥ 1 such that K1, . . . ,Kr, L1, . . . , Ls are pairwise disjoint and K1 ∪ · · · ∪
Kr ∪L1 ∪ · · · ∪Ls ∈ B. Then we have Ik ∪L1 ∪ · · · ∪Ls ∈ B for each k = 1, 2. We
put I ′k = Ik ∪ L1 ∪ · · · ∪ Ls for k = 1, 2. L1 ∪ · · · ∪ Ls ⊂ I1△I2 implies Ik ⊊ I ′k for
some k = 1, 2. Since I ′k \ Ik ⊂ (I ′1 ∩ I ′2) \ (I1 ∩ I2), we have I ′1 ∩ I ′2 ⊋ I1 ∩ I2.

Case 3. Suppose that (4.1) does not satisfy the condition (2) in Definition 2.1,
and there exist

L1, . . . , Ls ∈ N ′ ∪ (B|(I1△I2)\{i1,i2})max

such that I1, L1, . . . , Ls are pairwise disjoint and I1 ∪ L1 ∪ · · · ∪ Ls ∈ B. We put
I ′1 = I1 ∪ L1 ∪ · · · ∪ Ls and I ′2 = I2. Since L1 ∪ · · · ∪ Ls ⊂ I2, it follows that
L1 ∪ · · · ∪ Ls ⊂ (I ′1 ∩ I ′2) \ (I1 ∩ I2). Thus I

′
1 ∩ I ′2 ⊋ I1 ∩ I2.

In every case, we have i1 ∈ I ′1 \ I ′2, i2 ∈ I ′2 \ I ′1 and I ′1 ∪ I ′2 = I1 ∪ I2. This
completes the proof. □

Lemmas 4.3 and 4.5 play key roles in the proof of Theorem 2.4.

Lemma 4.3. Let B be a connected building set on S and let I1, I2 ∈ B with
I1 ∩ I2 ̸= ∅, I1 ̸⊂ I2, I2 ̸⊂ I1 and I1 ∩ I2 /∈ B. Then there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,
N ∈ N (B|J1∩J2)max, N

′ ∈ N (B|(J1△J2)\{j1,j2})max

such that J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B, J1 ∪ J2 ⊂ I1 ∪ I2 and

{Jk} ∪N ∪ (B|J1∩J2
)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

is a nested set of B for each k = 1, 2. If J1△J2 = {j1, j2}, then N ′ and (B|(J1△J2)\{j1,j2})max

are understood to be empty.

Proof. We use induction on |I1△I2|. We have |I1△I2| ≥ 2. Suppose |I1△I2| = 2.
We put J1 = I1 and J2 = I2. Then J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B and J1 ∪ J2 = I1 ∪ I2.
We pick N ∈ N (B|J1∩J2)max. Then {Jk} ∪N ∪ (B|J1∩J2)max is a nested set of B
for each k = 1, 2.

Suppose |I1△I2| ≥ 3. We pick i1 ∈ I1 \ I2, i2 ∈ I2 \ I1, N ∈ N (B|I1∩I2)max and
N ′ ∈ N (B|(I1△I2)\{i1,i2})max. If

{Ik} ∪N ∪ (B|I1∩I2)max ∪N ′ ∪ (B|(I1△I2)\{i1,i2})max
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is a nested set of B for each k = 1, 2, then there is nothing to prove. Otherwise,
by Lemma 4.2, there exist I ′1, I

′
2 ∈ B such that I ′1 ⊃ I1, I

′
2 ⊃ I2, i1 ∈ I ′1 \ I ′2, i2 ∈

I ′2 \ I ′1, I ′1 ∩ I ′2 ⊋ I1 ∩ I2 and I ′1 ∪ I ′2 = I1 ∪ I2.
Case 1. Suppose I ′1 ∩ I ′2 /∈ B. We have |I ′1△I ′2| = |I ′1 ∪ I ′2| − |I ′1 ∩ I ′2| <

|I1 ∪ I2| − |I1 ∩ I2| = |I1△I2|. By the hypothesis of induction, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,
N ∈ N (B|J1∩J2)max, N

′ ∈ N (B|(J1△J2)\{j1,j2})max

such that J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B, J1 ∪ J2 ⊂ I ′1 ∪ I ′2 = I1 ∪ I2 and

{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

is a nested set of B for each k = 1, 2.
Case 2. Suppose I ′1 ∩ I ′2 ∈ B. We may assume that I1 ⊊ I ′1.
Subcase 2.1. Suppose I ′1∩I2 ∈ B. We put I ′′1 = I1 and I ′′2 = I ′1∩I2. Then we have

I ′′1 ∩I ′′2 = I1∩I2 /∈ B, i1 ∈ I ′′1 \I ′′2 and I ′1\I1 ⊂ I ′′2 \I ′′1 . Since i2 ∈ (I1∪I2)\(I ′′1 ∪I ′′2 ),
we have I ′′1 ∪ I ′′2 ⊊ I1 ∪ I2.

Subcase 2.2. Suppose I ′1 ∩ I2 /∈ B. We put I ′′1 = I ′1 and I ′′2 = I2. Then we have
I ′′1 ∩ I ′′2 = I ′1 ∩ I2 /∈ B, i1 ∈ I ′′1 \ I ′′2 , i2 ∈ I ′′2 \ I ′′1 and I ′′1 ∪ I ′′2 = I ′1 ∪ I2 = I1 ∪ I2.
Since I ′1 \ I1 ⊂ (I ′′1 ∩ I ′′2 ) \ (I1 ∩ I2), we have I1 ∩ I2 ⊊ I ′′1 ∩ I ′′2 .

In every subcase, we have |I ′′1△I ′′2 | = |I ′′1 ∪ I ′′2 | − |I ′′1 ∩ I ′′2 | < |I1 ∪ I2| − |I1 ∩ I2| =
|I1△I2|. By the hypothesis of induction, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,
N ∈ N (B|J1∩J2)max, N

′ ∈ N (B|(J1△J2)\{j1,j2})max

such that J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B, J1 ∪ J2 ⊂ I ′′1 ∪ I ′′2 ⊂ I1 ∪ I2 and

{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

is a nested set of B for each k = 1, 2.
Therefore the assertion holds for |I1△I2|. □

Example 4.4. Let S = {1, 2, 3, 4, 5, 6} and

B = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6},
{1, 2, 3, 4, 5}, {2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}.

Let us consider I1 = {1, 2, 3, 4} and I2 = {3, 4, 5, 6}. We pick i1 = 1 and i2 = 6.
Then

B|I1∩I2 = {{3}, {4}}, B|(I1△I2)\{i1,i2} = {{2}, {5}}.
The only maximal nested set of each is the empty set. However,

{I1} ∪ ∅ ∪ (B|I1∩I2)max ∪ ∅ ∪ (B|(I1△I2)\{i1,i2})max

= {{1, 2, 3, 4}, {3}, {4}, {2}, {5}}

is not a nested set because {3} ∪ {4} ∪ {2} ∪ {5} = {2, 3, 4, 5} ∈ B (Lemma 4.2,
Case 2). Thus we put

I
(1)
1 = I1 ∪ {2, 3, 4, 5} = {1, 2, 3, 4, 5}, I

(1)
2 = I2 ∪ {2, 3, 4, 5} = {2, 3, 4, 5, 6}.

We have I
(1)
1 ∩ I

(1)
2 = {2, 3, 4, 5} ∈ B (Lemma 4.3, Case 2) and I1 ⊊ I

(1)
1 . Since

I
(1)
1 ∩ I2 = {3, 4, 5} /∈ B (Subcase 2.2), we put

I
(2)
1 = I

(1)
1 = {1, 2, 3, 4, 5}, I

(2)
2 = I2 = {3, 4, 5, 6}.
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We pick i
(2)
1 = 1 and i

(2)
2 = 6. Then

B|
I
(2)
1 ∩I

(2)
2

= {{3}, {4}, {5}}, B|
(I

(2)
1 △I

(2)
2 )\{i(2)1 ,i

(2)
2 } = {{2}}.

The only maximal nested set of each is the empty set.

{I(2)1 } ∪ ∅ ∪ (B|
I
(2)
1 ∩I

(2)
2

)max ∪ ∅ ∪ (B|
(I

(2)
1 △I

(2)
2 )\{i(2)1 ,i

(2)
2 })max

= {{1, 2, 3, 4, 5}, {3}, {4}, {5}, {2}}

is not a nested set because {3} ∪ {4} ∪ {5} ∪ {2} = {2, 3, 4, 5} ∈ B (Lemma 4.2,
Case 2). Thus we put

I
(3)
1 = I

(2)
1 ∪ {2, 3, 4, 5} = {1, 2, 3, 4, 5}, I

(3)
2 = I

(2)
2 ∪ {2, 3, 4, 5} = {2, 3, 4, 5, 6}.

We have I
(3)
1 ∩ I

(3)
2 = {2, 3, 4, 5} ∈ B (Lemma 4.3, Case 2) and I

(2)
2 ⊊ I

(3)
2 . Since

I
(2)
1 ∩ I

(3)
2 = {2, 3, 4, 5} ∈ B (Subcase 2.1), we put

I
(4)
1 = I

(2)
1 ∩ I

(3)
2 = {2, 3, 4, 5}, I

(4)
2 = I

(2)
2 = {3, 4, 5, 6}.

Then

B|
I
(4)
1 ∩I

(4)
2

= {{3}, {4}, {5}}, |I(4)1 △I
(4)
2 | = 2.

The only maximal nested set of B|
I
(4)
1 ∩I

(4)
2

is the empty set and

{I(4)1 } ∪ ∅ ∪ (B|
I
(4)
1 ∩I

(4)
2

)max = {{2, 3, 4, 5}, {3}, {4}, {5}},

{I(4)2 } ∪ ∅ ∪ (B|
I
(4)
1 ∩I

(4)
2

)max = {{3, 4, 5, 6}, {3}, {4}, {5}}

are nested sets of B.

Lemma 4.5. Let B be a connected building set on S and let I1, I2 ∈ B with
I1 ∩ I2 ̸= ∅, I1 ̸⊂ I2, I2 ̸⊂ I1 and |(B|I1∩I2)max| ≥ 3. Then there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,
N ∈ N (B|J1∩J2)max, N

′ ∈ N (B|(J1△J2)\{j1,j2})max

such that J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B and

{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

is a nested set of B for each k = 1, 2. Furthermore, we have J1 ∪ J2 ⊊ I1 ∪ I2
or |(B|J1∩J2)max| ≥ 3. If J1△J2 = {j1, j2}, then N ′ and (B|(J1△J2)\{j1,j2})max are
understood to be empty.

Proof. We use induction on |I1△I2|. We have |I1△I2| ≥ 2. Suppose |I1△I2| = 2.
We put J1 = I1 and J2 = I2. Then J1 ∩ J2 ̸= ∅ and |(B|J1∩J2)max| ≥ 3. We pick
N ∈ N (B|J1∩J2)max. Then {Jk} ∪ N ∪ (B|J1∩J2)max is a nested set of B for each
k = 1, 2.

Suppose |I1△I2| ≥ 3. We pick i1 ∈ I1 \ I2, i2 ∈ I2 \ I1, N ∈ N (B|I1∩I2)max and
N ′ ∈ N (B|(I1△I2)\{i1,i2})max. If

{Ik} ∪N ∪ (B|I1∩I2)max ∪N ′ ∪ (B|(I1△I2)\{i1,i2})max

is a nested set of B for each k = 1, 2, then there is nothing to prove. Otherwise,
by Lemma 4.2, there exist I ′1, I

′
2 ∈ B such that I ′1 ⊃ I1, I

′
2 ⊃ I2, i1 ∈ I ′1 \ I ′2, i2 ∈

I ′2 \ I ′1, I ′1 ∩ I ′2 ⊋ I1 ∩ I2 and I ′1 ∪ I ′2 = I1 ∪ I2.
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Case 1. Suppose |(B|I′
1∩I′

2
)max| ≥ 3. We have |I ′1△I ′2| = |I ′1 ∪ I ′2| − |I ′1 ∩ I ′2| <

|I1 ∪ I2| − |I1 ∩ I2| = |I1△I2|. By the hypothesis of induction, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,
N ∈ N (B|J1∩J2)max, N

′ ∈ N (B|(J1△J2)\{j1,j2})max

such that J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B and

{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

is a nested set of B for each k = 1, 2. Furthermore, we have J1∪J2 ⊊ I ′1∪I ′2 = I1∪I2
or |(B|J1∩J2)max| ≥ 3.

Case 2. Suppose |(B|I′
1∩I′

2
)max| ≤ 2. For any K ∈ (B|I1∩I2)max, there exists

unique LK ∈ (B|I′
1∩I′

2
)max such that K ⊂ LK . Hence there exists L ∈ (B|I′

1∩I′
2
)max

that contains more than one element of (B|I1∩I2)max. LetK1, . . . ,Kr be all elements
of (B|I1∩I2)max contained in L. Note that I1 ∩ I2 ∩ L is the disjoint union of
K1, . . . ,Kr. If L ⊂ I1 ∩ I2, then B ∋ L = I1 ∩ I2 ∩ L = K1 ∪ · · · ∪ Kr /∈ B, a
contradiction. Thus L ̸⊂ I1 ∩ I2. We may assume L ̸⊂ I1.

Subcase 2.1. Suppose I1 ∩ L ∈ B. If L ⊂ I2, then B ∋ I1 ∩ L = I1 ∩ I2 ∩ L =
K1 ∪ · · · ∪Kr /∈ B, a contradiction. Thus L ̸⊂ I2. We put I ′′1 = I1 ∩L and I ′′2 = I2.
Then we have I ′′1 ∩ I ′′2 = I1 ∩ I2 ∩ L /∈ B,L \ I2 ⊂ I ′′1 \ I ′′2 and i2 ∈ I ′′2 \ I ′′1 . Since
i1 ∈ (I1 ∪ I2) \ (I ′′1 ∪ I ′′2 ), we have I ′′1 ∪ I ′′2 ⊊ I1 ∪ I2.

Subcase 2.2. Suppose I1 ∩ L /∈ B. We put I ′′1 = I1 and I ′′2 = L. Then we have
I ′′1∩I ′′2 = I1∩L /∈ B, i1 ∈ I ′′1 \I ′′2 and I ′′2 \I ′′1 = L\I1 ̸= ∅. Since i2 ∈ (I1∪I2)\(I ′′1∪I ′′2 ),
we have I ′′1 ∪ I ′′2 ⊊ I1 ∪ I2.

In every subcase, by Lemma 4.3, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,
N ∈ N (B|J1∩J2

)max, N
′ ∈ N (B|(J1△J2)\{j1,j2})max

such that J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B, J1 ∪ J2 ⊂ I ′′1 ∪ I ′′2 ⊊ I1 ∪ I2 and

{Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

is a nested set of B for each k = 1, 2.
Therefore the assertion holds for |I1△I2|. □

Example 4.6. Let S = {1, 2, 3, 4, 5, 6, 7} and

B = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {2, 4, 6}, {2, 3, 4, 5}, {1, 2, 3, 4, 5},
{2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

Let us consider I1 = {1, 2, 3, 4, 5} and I2 = {3, 4, 5, 6, 7}. We pick i1 = 1 and i2 = 7.
Then

B|I1∩I2 = {{3}, {4}, {5}}, B|(I1△I2)\{i1,i2} = {{2}, {6}}.
The only maximal nested set of each is the empty set. However,

{I1} ∪ ∅ ∪ (B|I1∩I2)max ∪ ∅ ∪ (B|(I1△I2)\{i1,i2})max

= {{1, 2, 3, 4, 5}, {3}, {4}, {5}, {2}, {6}}

is not a nested set because {4} ∪ {2} ∪ {6} = {2, 4, 6} ∈ B (Lemma 4.2, Case 2).
Thus we put

I
(1)
1 = I1 ∪ {2, 4, 6} = {1, 2, 3, 4, 5, 6}, I

(1)
2 = I2 ∪ {2, 4, 6} = {2, 3, 4, 5, 6, 7}.
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We have I
(1)
1 ∩ I

(1)
2 = {2, 3, 4, 5, 6} ∈ B (Lemma 4.5, Case 2) and L = {2, 3, 4, 5, 6}.

Since L ̸⊂ I1 and I1 ∩ L = {2, 3, 4, 5} ∈ B (Subcase 2.1), we put

I
(2)
1 = I1 ∩ L = {2, 3, 4, 5}, I

(2)
2 = I2 = {3, 4, 5, 6, 7}.

We pick i
(2)
1 = 2 and i

(2)
2 = 7. Then

B|
I
(2)
1 ∩I

(2)
2

= {{3}, {4}, {5}}, B|
(I

(2)
1 △I

(2)
2 )\{i(2)1 ,i

(2)
2 } = {{6}}.

The only maximal nested set of each is the empty set.

{I(2)1 } ∪ ∅ ∪ (B|
I
(2)
1 ∩I

(2)
2

)max ∪ ∅ ∪ (B|
(I

(2)
1 △I

(2)
2 )\{i(2)1 ,i

(2)
2 })max

= {{2, 3, 4, 5}, {3}, {4}, {5}, {6}}
is not a nested set because {2, 3, 4, 5} ∪ {6} = {2, 3, 4, 5, 6} ∈ B (Lemma 4.2, Case
3). Thus we put

I
(3)
1 = {2, 3, 4, 5, 6}, I

(3)
2 = I

(2)
2 = {3, 4, 5, 6, 7}.

We have I
(3)
1 ∩ I

(3)
2 = {3, 4, 5, 6} /∈ B (Lemma 4.3, Case 1) and

B|
I
(3)
1 ∩I

(3)
2

= {{3}, {4}, {5}, {6}}, |I(3)1 △I
(3)
2 | = 2.

The only maximal nested set of B|
I
(3)
1 ∩I

(3)
2

is the empty set and

{I(3)1 } ∪ ∅ ∪ (B|
I
(3)
1 ∩I

(3)
2

)max = {{2, 3, 4, 5, 6}, {3}, {4}, {5}, {6}},

{I(3)2 } ∪ ∅ ∪ (B|
I
(3)
1 ∩I

(3)
2

)max = {{3, 4, 5, 6, 7}, {3}, {4}, {5}, {6}}

are nested sets of B. Furthermore, we have I
(3)
1 ∪ I

(3)
2 ⊊ I1 ∪ I2.

Example 4.7. Let S = {1, 2, 3, 4, 5, 6, 7} and

B = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {2, 6}, {4, 5, 6}, {2, 4, 5, 6}, {1, 2, 3, 4, 5},
{2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

Let us consider I1 = {1, 2, 3, 4, 5} and I2 = {3, 4, 5, 6, 7}. We pick i1 = 1 and i2 = 7.
Then

B|I1∩I2 = {{3}, {4}, {5}}, B|(I1△I2)\{i1,i2} = {{2}, {6}, {2, 6}}.
The only maximal nested set of B|I1∩I2 is the empty set. We choose N ′ = {{2}} ∈
N (B|(I1△I2)\{i1,i2})max.

{I1} ∪ ∅ ∪ (B|I1∩I2)max ∪N ′ ∪ (B|(I1△I2)\{i1,i2})max

= {{1, 2, 3, 4, 5}, {3}, {4}, {5}, {2}, {2, 6}}
is not a nested set because {1, 2, 3, 4, 5} ∩ {2, 6} = {2} ̸= ∅ (Lemma 4.2, Case 1).
Thus we put

I
(1)
1 = I1 ∪ {2, 6} = {1, 2, 3, 4, 5, 6}, I

(1)
2 = I2 = {3, 4, 5, 6, 7}.

We have I
(1)
1 ∩ I

(1)
2 = {3, 4, 5, 6} = {3} ∪ {4, 5, 6} (Lemma 4.5, Case 2) and L =

{4, 5, 6}. Since L ̸⊂ I1 and I1 ∩ L = {4, 5} /∈ B (Subcase 2.2), we put

I
(2)
1 = I1 = {1, 2, 3, 4, 5}, I

(2)
2 = L = {4, 5, 6}.

We pick i
(2)
1 = 1 and i

(2)
2 = 6. Then

B|
I
(2)
1 ∩I

(2)
2

= {{4}, {5}}, B|
(I

(2)
1 △I

(2)
2 )\{i(2)1 ,i

(2)
2 } = {{2}, {3}}.
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The only maximal nested set of each is the empty set.

{I(2)2 } ∪ ∅ ∪ (B|
I
(2)
1 ∩I

(2)
2

)max ∪ ∅ ∪ (B|
(I

(2)
1 △I

(2)
2 )\{i(2)1 ,i

(2)
2 })max

= {{4, 5, 6}, {4}, {5}, {2}, {3}}
is not a nested set because {4, 5, 6} ∪ {2} ∪ {3} = {2, 3, 4, 5, 6} ∈ B (Lemma 4.2,
Case 3). Thus we put

I
(3)
1 = I

(2)
1 = {1, 2, 3, 4, 5}, I

(3)
2 = {2, 3, 4, 5, 6}.

We have I
(3)
1 ∩ I

(3)
2 = {2, 3, 4, 5} /∈ B (Lemma 4.3, Case 1) and

B|
I
(3)
1 ∩I

(3)
2

= {{2}, {3}, {4}, {5}}, |I(3)1 △I
(3)
2 | = 2.

The only maximal nested set of B|
I
(3)
1 ∩I

(3)
2

is the empty set and

{I(3)1 } ∪ ∅ ∪ (B|
I
(3)
1 ∩I

(3)
2

)max = {{1, 2, 3, 4, 5}, {2}, {3}, {4}, {5}},

{I(3)2 } ∪ ∅ ∪ (B|
I
(3)
1 ∩I

(3)
2

)max = {{2, 3, 4, 5, 6}, {2}, {3}, {4}, {5}}

are nested sets of B. Furthermore, we have I
(3)
1 ∪ I

(3)
2 ⊊ I1 ∪ I2.

Proposition 4.8 ([8, Proposition 3.2]). Let B be a building set on S and let C ∈
B \Bmax. Then the correspondence

I 7→
{

I \ C (C ⊂ I),
I (C ̸⊂ I)

induces an isomorphism N (B)C → N (B|C ∪ (C \B)) of simplicial complexes.

Lemma 4.9. Let J1, J2 ∈ B with J1 ∩ J2 ̸= ∅, J1 ̸⊂ J2, J2 ̸⊂ J1 and J1 ∪ J2 ⊊ S.
Let N ′′ ∈ N (B|J1∪J2) such that {Jk} ∪ N ′′ ∈ N (B|J1∪J2)max for each k = 1, 2.
Then there exists M ∈ N (B) such that {Jk, J1∪J2}∪N ′′∪M ∈ N (B)max for each
k = 1, 2.

Proof. We pick M ′ ∈ N ((J1 ∪ J2) \B)max. Then

{Jk} ∪N ′′ ∪M ′ ∈ N (B|J1∪J2 ∪ ((J1 ∪ J2) \B))max

for each k = 1, 2. Hence by Proposition 4.8, there exists M ∈ N (B) such that
{Jk}∪N ′′∪M are maximal simplices of N (B)J1∪J2 . Hence {Jk, J1∪J2}∪N ′′∪M ∈
N (B)max for each k = 1, 2. □
Proposition 4.10 ([8, Proposition 4.5]). Let B be a building set on S and let
I1, I2 ∈ B with I1 ̸= I2 and N ∈ N (B) such that N ∪ {I1}, N ∪ {I2} ∈ N (B)max.
Then the following hold:

(1) We have I1 ̸⊂ I2 and I2 ̸⊂ I1.
(2) If I1 ∩ I2 ̸= ∅, then (B|I1∩I2)max ⊂ N .
(3) There exists {I3, . . . , Ik} ⊂ N such that I1 ∪ I2, I3, . . . , Ik are pairwise dis-

joint and I1 ∪ · · · ∪ Ik ∈ N ∪Bmax ({I3, . . . , Ik} can be empty).

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. The disjoint union of connected building sets yields the
product of toric varieties associated to the connected building sets. Since the
product of nonsingular projective toric varieties is weak Fano if and only if ev-
ery factor is weak Fano, it suffices to show that, for any connected building set B
on S = {1, . . . , n+ 1}, the following are equivalent:
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(1′) The associated toric variety X(∆(B)) is weak Fano.
(2′) For any I1, I2 ∈ B such that I1 ∩ I2 ̸= ∅, I1 ̸⊂ I2 and I2 ̸⊂ I1, we have at

least one of the following:
(i′) I1 ∩ I2 ∈ B.
(ii′) I1 ∪ I2 = S and |(B|I1∩I2)max| ≤ 2.

(1′) ⇒ (2′): Let I1, I2 ∈ B such that I1∩I2 ̸= ∅, I1 ̸⊂ I2, I2 ̸⊂ I1 and I1∩I2 /∈ B.
We show that if I1 ∪ I2 ⊊ S or |(B|I1∩I2)max| ≥ 3, then the toric variety X(∆(B))
is not weak Fano.

Case 1. Suppose I1 ∪ I2 ⊊ S. By Lemma 4.3, there exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,
N ∈ N (B|J1∩J2)max, N

′ ∈ N (B|(J1△J2)\{j1,j2})max

such that J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B, J1 ∪ J2 ⊂ I1 ∪ I2 ⊊ S and

(4.2) {Jk} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

is a nested set of B for each k = 1, 2. Since the cardinality of (4.2) is |J1 ∪ J2| − 1,
(4.2) is a maximal nested set of B|J1∪J2 . By Lemma 4.9, there exists M ∈ N (B)
such that

{Jk, J1 ∪ J2} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪M ∈ N (B)max

for k = 1, 2. Let

τ = R≥0({J1 ∪ J2} ∪N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max ∪M).

Clearly

eJ1 + eJ2 −
∑

C∈(B|J1∩J2
)max

eC − eJ1∪J2 = 0.

Since |(B|J1∩J2)max| ≥ 2, Proposition 2.7 gives

(−KX(∆(B)).V (τ)) = 2− |(B|J1∩J2)max| − 1 ≤ 2− 2− 1 = −1.

Therefore X(∆(B)) is not weak Fano by Proposition 2.8.
Case 2. Suppose that I1 ∪ I2 = S and |(B|I1∩I2)max| ≥ 3. By Lemma 4.5, there

exist

J1, J2 ∈ B, j1 ∈ J1 \ J2, j2 ∈ J2 \ J1,
N ∈ N (B|J1∩J2)max, N

′ ∈ N (B|(J1△J2)\{j1,j2})max

such that J1 ∩ J2 ̸= ∅, J1 ∩ J2 /∈ B and

(4.3) {Jk} ∪N ∪ (B|J1∩J2
)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max

is a nested set of B for each k = 1, 2. Furthermore, we have J1 ∪ J2 ⊊ I1 ∪ I2 = S
or |(B|J1∩J2)max| ≥ 3. If J1 ∪ J2 ⊊ S, then a similar augment shows that X(∆(B))
is not weak Fano. Suppose that J1 ∪ J2 = S and |(B|J1∩J2)max| ≥ 3. Then (4.3) is
a maximal nested set of B. Let

τ = R≥0(N ∪ (B|J1∩J2)max ∪N ′ ∪ (B|(J1△J2)\{j1,j2})max).

Since eJ1∪J2 = eS = 0, it follows that

eJ1 + eJ2 −
∑

C∈(B|J1∩J2
)max

eC = 0.
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Proposition 2.7 gives

(−KX(∆(B)).V (τ)) = 2− |(B|J1∩J2)max| ≤ 2− 3 = −1.

Therefore X(∆(B)) is not weak Fano by Proposition 2.8.
(2′) ⇒ (1′): Let I1, I2 ∈ B with I1 ̸= I2 and N ∈ N (B) such that N ∪ {I1}, N ∪

{I2} ∈ N (B)max. We need to show that (−KX(∆(B)).V (R≥0N)) ≥ 0.
Case 1. Suppose I1∩I2 = ∅. By Proposition 4.10 (3), there exists {I3, . . . , Ik} ⊂

N such that I1 ∪ I2, I3, . . . , Ik are pairwise disjoint and I1 ∪ · · · ∪ Ik ∈ N ∪Bmax =
N ∪ {S}. Since

eI1 + eI2 + eI3 + · · ·+ eIk − eI1∪···∪Ik = 0,

Proposition 2.7 gives

(−KX(∆(B)).V (R≥0N)) =

{
k − 1 (I1 ∪ · · · ∪ Ik ∈ N),
k (I1 ∪ · · · ∪ Ik = S).

Hence (−KX(∆(B)).V (R≥0N)) ≥ 1.
Case 2. Suppose I1 ∩ I2 ̸= ∅. By Proposition 4.10 (1), we have I1 ̸⊂ I2 and

I2 ̸⊂ I1.
(i′) Suppose I1 ∩ I2 ∈ B. By Proposition 4.10 (2), we have {I1 ∩ I2} =

(B|I1∩I2)max ⊂ N . By Proposition 4.10 (3), there exists {I3, . . . , Ik} ⊂ N such
that I1∪ I2, I3, . . . , Ik are pairwise disjoint and I1∪ · · ·∪ Ik ∈ N ∪Bmax = N ∪{S}.
Since

eI1 + eI2 − eI1∩I2 + eI3 + · · ·+ eIk − eI1∪···∪Ik = 0,

Proposition 2.7 gives

(−KX(∆(B)).V (R≥0N)) =

{
k − 2 (I1 ∪ · · · ∪ Ik ∈ N),
k − 1 (I1 ∪ · · · ∪ Ik = S).

Hence (−KX(∆(B)).V (R≥0N)) ≥ 0.

(ii′) Suppose that I1 ∪ I2 = S and |(B|I1∩I2)max| ≤ 2. By Proposition 4.10 (2),
we have (B|I1∩I2)max ⊂ N . Since eI1∪I2 = eS = 0, it follows that

eI1 + eI2 −
∑

C∈(B|I1∩I2 )max

eC = 0.

Proposition 2.7 gives

(−KX(∆(B)).V (R≥0N)) = 2− |(B|I1∩I2)max| ≥ 2− 2 = 0.

Therefore X(∆(B)) is weak Fano by Proposition 2.8. This completes the proof
of Theorem 2.4. □
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