CLASSIFICATION OF A FAMILY OF RIBBON 2-KNOTS WITH TRIVIAL ALEXANDER POLYNOMIAL

TAIZO KANENOBU AND TOSHIO SUMI

ABSTRACT. We consider a family of ribbon 2-knots with trivial Alexander polynomial. We give nonabelian $SL(2, \mathbb{C})$ -representations from the groups of these knots, and then calculate the twisted Alexander polynomials associated to these representations, which allows us to classify this family of knots.

1. INTRODUCTION

A ribbon 2-knot is an embedded 2-sphere in S^4 obtained by adding r 1-handles to a trivial 2-link with r + 1 components for some r, which is called a ribbon 2-knot of r-fusion; cf. [14, 15]. Yasuda [16–20] has been studying an enumeration of ribbon 2-knot with ribbon crossing number up to 4, where the Alexander polynomial of each ribbon 2-knot is given but it is not referred about the classification of the knots so much. Takahashi [12] classified ribbon 2-knots of 1-fusion with small ribbon crossing number using the Alexander polynomial, representations of the knot group into $SL(2, \mathbf{C})$, and twisted Alexander polynomial. Recently, Kanenobu and Komatsu [2] have enumerated ribbon 2-knots based on the virtual arc presentation of ribbon 2-knots, and Kanenobu and Sumi [3] have attempted the classification of these ribbon 2-knots, where they used the Alexander polynomial, homology of double branched covering space, representations of the knot group into $SL(2,\mathbb{F})$, \mathbb{F} a finite field, and twisted Alexander polynomial.

In order to classify ribbon 2-knots the Alexander polynomial is a very useful invariant. However, it is difficult to distinguish ribbon 2-knots sharing the same Alexander polynomial. In this paper, we show the effectiveness of the twisted Alexander polynomial in classifying the ribbon 2-knots, which was first achieved by Takahashi [12], and then by the authors [3] as mentioned above. The twisted Alexander polynomial was introduced by Lin [6] for knots in S^3 and by Wada [13] for finitely presentable groups, which is a generalization of the classical Alexander polynomial and has many applications. In this paper, we classify a family of ribbon 2-knots of 1-fusion with trivial Alexander polynomial $K_n = R(1, n, -n - 1, 1), n \in \mathbb{Z}$; see Sec. 2 for the definition of R(1, n, -n - 1, 1). First, we show the number of irreducible representations $\rho : \pi_1(S^4 - K_n) \to SL(2, \mathbb{C})$ up to conjugate is 2n (Proposition 3.5), where $n \ge 0$, classifying the knots $K_n, n \ge 0$. Next, we distinguish K_n and K_{-n-1} , which are mirror images one another, by Wada's twisted Alexander polynomials (Proposition 4.1). Our main theorem is the following.

Date: May 25, 2017

²⁰¹⁰ Mathematics Subject Classification. Primary 57Q45; Secondary 57M05.

Key words and phrases. Ribbon 2-knot, Alexander polynomial, knot group, twisted Alexander polynomial.

Theorem 1.1. For the family of ribbon 2-knots of 1-fusion K_n , $n \in \mathbb{Z}$, we have the following:

- (i) K_n has trivial Alexander polynomial.
- (ii) The mirror image of K_n is isotopic to K_{-n-1} .
- (iii) K_n is trivial if and only if n = 0 or -1.
- (iv) For $m, n \in \mathbb{Z} \{-1, 0\}$, K_m and K_n are isotopic if and only if m = n.

This paper is organized as follows: In Sect. 2 we define a ribbon 2-knot of 1-fusion and give some properties. In Sect. 3 we decide irreducible representations of the group of the knot K_n into $SL(2, \mathbb{C})$ up to conjugate. In Sect. 4 we calculate the twisted Alexander polynomial of K_n associated to the representations given in Sect. 3.

2. RIBBON 2-KNOT OF 1-FUSION

We define a ribbon 2-knot of 1-fusion $R(p_1, q_1, \ldots, p_n, q_n)$ as follows. Let $L_0 = S_0^1 \cup S_1^1$ be a trivial link with 2 components in \mathbf{R}^3 . We add a band B to L_0 as shown in Fig. 1, where $\tau_{p_1}, \ldots, \tau_{p_n}, \sigma_{q_1}, \ldots, \sigma_{q_n}$ are pairs $(D^3, a \cup \beta)$ of a 3-ball D^3 and a properly embedded arc a and band β as shown in Fig. 2.

FIGURE 1. Adding a band B to a trivial link $L_0 = S_0^1 \cup S_1^1$.

FIGURE 2. τ_p and σ_q .

Regard the band *B* as the image of an embedding $b: I \times I \to \mathbb{R}^3$, $B = b(I \times I)$, so that $S_i^1 \cap b(I \times I) = b(I \times \{i\})$, i = 0, 1, where *I* is the unit interval [0, 1]. We take disjoint 2-disks $D_0 \cup D_1$ in \mathbb{R}^3 so that $S_i^1 = \partial D_i$, i = 0, 1. Let $K_0 = (L_0 - b(I \times \partial I)) \cup b(\partial I \times I)$. Then we obtain a ribbon 2-knot of 1-fusion $R(p_1, q_1, \ldots, p_n, q_n)$ in $S^4 = \mathbb{R}^4 \cup \{\infty\}$ by the moving pictures:

(1)
$$R(p_1, q_1, \dots, p_n, q_n) \cap (R^3 \times \{t\}) = \begin{cases} K_0 & \text{for } |t| < 1; \\ K_0 \cup B = L_0 \cup B & \text{for } |t| = 1; \\ L_0 & \text{for } 1 < |t| < 2; \\ D_0 \cup D_1 & \text{for } |t| = 2; \\ \emptyset & \text{for } |t| > 2. \end{cases}$$

Any ribbon 2-knot of 1-fusion is represented in this form.

Note that a ribbon 2-knot is negative-amphicheiral, that is, a ribbon 2-knot K is ambient isotopic to -K!, which is obtained from K by taking the mirror image and then reversing the orientation; see [11, Theorem 2.18], [10, Proposition 4.1]. So, we show the knot K_n , n > 0, is non-positive-amphicheiral and non-invertible. If a ribbon 2-knot has a non-reciprocal Alexander polynomial, that is, $\Delta_K(t) \neq \Delta_K(t^{-1})$ up to $\pm t^k$, then it is non non-positive-amphicheiral and non-invertible; cf. [11, Proposition 3.26].

Example 2.1. Figure 3 shows the ribbon 2-knot $K_2 = R(1, 2, -3, 1)$.

FIGURE 3. The ribbon 2-knot R(1, 2, -3, 1).

Note that $R(p_1, q_1, \ldots, p_n, q_n)$ is isotopic to $R(-q_n, -p_n, \ldots, -q_1, -p_1)$, which is the mirror image of $R(q_n, p_n, \ldots, q_1, p_1)$.

The group of K, $\pi K = \pi_1 (S^4 - K)$, has a Wirtinger presentation

(2)
$$\langle x, y | x^{-1}w^{-1}yw \rangle, \quad w = x^{p_1}y^{q_1}\cdots x^{p_n}y^{q_n},$$

where x and y are meridians of S_0^2 and S_1^2 , respectively.

The Alexander polynomial of a ribbon 2-knot K, $\Delta_K(t) \in \mathbb{Z}[t^{\pm 1}]$, is defined up to $\pm t^n$, which we normalize so that $\Delta_K(1) = 1$ and $(d/dt)\Delta_K(1) = 0$; cf. [1, 4, 7]. For a ribbon 2-knot of 1-fusion we have the following.

Proposition 2.2. The normalized Alexander polynomial of the ribbon 2-knot of 1-fusion $R(p_1, q_1, \ldots, p_n, q_n)$ is

$$t^{-q_1-q_2-\cdots-q_n} \left(1-t^{p_1}+t^{p_1+q_1}-t^{p_1+q_1+p_2}+\cdots -t^{p_1+q_1+p_2}+\cdots -t^{p_1+q_1+\cdots+p_n}+t^{p_1+q_1+\cdots+p_n+q_n}\right)$$

= $t^{p_n+p_{n-1}+\cdots+p_1} \left(1-t^{-q_n}+t^{-q_n-p_n}-t^{-q_n-p_n-q_{n-1}}+\cdots -t^{-q_n-p_n-q_{n-1}-\cdots-q_1}+t^{-q_n-p_n-q_{n-1}-\cdots-q_1-p_1}\right).$

3. Representation to $SL(2, \mathbf{C})$

Let G be a finitely presented group. Two representations, namely homomorphisms, $\rho, \rho': G \to SL(2, \mathbb{C})$ are called *conjugate* if $\rho(g) = C\rho'(g)C^{-1}$ for some $C \in SL(2, \mathbb{C})$ and for any $g \in G$. A representation $\rho: G \to SL(2, \mathbb{C})$ is said to be *abelian* if $\rho(G)$ is an abelian subgroup of $SL(2, \mathbb{C})$. A representation ρ is called *reducible* if there exists a proper invariant subspace of \mathbb{C}^2 under the action of $\rho(G)$. This is equivalent to saying that ρ can be conjugate to a representation whose image consists of upper triangular matrices. It is easy to see that every abelian representation is reducible, but the converse does not hold. When ρ is not reducible, it is called *irreducible*.

The following is due to Riley [8, 9].

Proposition 3.1. If two matrices X, Y are conjugate in $SL(2, \mathbb{C})$ and $XY \neq YX$, then there exists a matrix $C \in SL(2, \mathbb{C})$ such that:

(3)
$$CXC^{-1} = \begin{pmatrix} s & 1 \\ 0 & s^{-1} \end{pmatrix}, \quad CYC^{-1} = \begin{pmatrix} s & 0 \\ u & s^{-1} \end{pmatrix},$$

where $s, u \in \mathbb{C}$ with $s \neq 0$ and $(s, u) \neq (\pm 1, 0)$.

Furthermore, if there exists a matrix $D \in SL(2, \mathbb{C})$ such that:

(4)
$$DXD^{-1} = \begin{pmatrix} s' & 1 \\ 0 & s'^{-1} \end{pmatrix}, \quad DYD^{-1} = \begin{pmatrix} s' & 0 \\ u' & s'^{-1} \end{pmatrix},$$

where $s', u' \in C$ with $s' \neq 0$ and $(s', u') \neq (\pm 1, 0)$, then (s', u') = (s, u) or (s^{-1}, u) .

Let us consider the presentatin Eq. (2) of the group of the ribbon 2-knot of 1-fusion $R(p_1, q_1, \ldots, p_n, q_n)$. Then since x and y are conjugate, by Proposition 3.1 any non-abelian representation $G \to SL(2; \mathbb{C})$ is conjugate to a representation $\rho : G \to SL(2; \mathbb{C})$ given by

(5)
$$\rho(x) = X = \begin{pmatrix} s & 1 \\ 0 & s^{-1} \end{pmatrix}, \quad \rho(y) = Y = \begin{pmatrix} s & 0 \\ u & s^{-1} \end{pmatrix},$$

for some $s, u \in \mathbb{C}$ with $s \neq 0$ and $(s, u) \neq (\pm 1, 0)$; such a representation ρ is parametrized by the trace $s + s^{-1}$ and u. Furthermore, it is easy to prove the following.

Lemma 3.2. A nonabelian representation ρ in Eq. (5) is reducible if and only if either $u = -(s - s^{-1})^2$ or u = 0.

From now on we focus on the family of ribbon 2-knots of 1-fusion $K_n = R(1, n, -n - 1, 1)$, $n \in \mathbb{Z}$. Let $G_n = \pi_1(S^4 - K_n)$. Then

(6)
$$G_n = \langle x, y \mid w_n x = y w_n \rangle, \quad w_n = x y^n x^{-n-1} y.$$

We define a nonabelian representation

(7)
$$\rho: G_n \to SL(2, \mathbb{C})$$

by the correspondence Eq. (5), where $s, u \in C$ with $s \neq 0$ and $(s, u) \neq (\pm 1, 0)$. Then, we have the following.

Proposition 3.3. Suppose n > 0. The parameters s and u satisfy:

(8)
$$s = \xi_n^k \ (k = 1, 2, \dots, 2n, 2n + 2, 2n + 3, \dots, 4n + 1);$$

(9) $u^{2} + (p^{2} - 4) u + \epsilon p + 2 = 0,$

where $\xi_n = \exp \frac{\pi \sqrt{-1}}{2n+1}$, $p = s + s^{-1}$, and $\epsilon = (\xi_n^k)^{2n+1} = (-1)^k$.

We use the following lemma in the proof of Proposition 3.3.

Lemma 3.4. For $i \in \mathbb{Z}$, we have:

(10)
$$X^{i} = \begin{pmatrix} s^{i} & f_{i} \\ 0 & s^{-i} \end{pmatrix}, \quad Y^{i} = \begin{pmatrix} s^{i} & 0 \\ uf_{i} & s^{-i} \end{pmatrix},$$

where

(11)
$$f_i = \begin{cases} \frac{s^i - s^{-i}}{s - s^{-1}} & \text{if } s \neq \pm 1; \\ is^{i-1} & \text{if } s = \pm 1. \end{cases}$$

Proof. Induction on i.

Proof of Proposition 3.3. Let

(12)
$$W_n = XY^n X^{-n-1}Y = \begin{pmatrix} (W_n)_{11} & (W_n)_{12} \\ (W_n)_{21} & (W_n)_{22} \end{pmatrix}.$$

Then using Lemma 3.4, we have:

(13)
$$(W_n)_{11} = s + u \left(s + s^{-n} f_n + s^{n+1} f_{-n-1} \right) + u^2 f_n f_{-n-1}$$
$$= s + u (1 - s^2) f_n f_{n+1} - u^2 f_n f_{n+1};$$

(14)
$$(W_n)_{12} = 1 + s^n f_{-n-1} + u s^{-1} f_{-n-1} f_n$$
$$= -s^{n+1} f_n - u s^{-1} f_n f_{n+1};$$

(15)
$$(W_n)_{21} = u + us^{-n-1}f_n + u^2s^{-1}f_{-n-1}f_n$$
$$= us^{-n}f_{n+1} - u^2s^{-1}f_nf_{n+1};$$

(16)
$$(W_n)_{22} = s^{-1} + us^{-2}f_n f_{-n-1}$$
$$= s^{-1} - us^{-2}f_n f_{n+1},$$

where we use $f_{-k} = -f_k$ and $s^k f_{k+1} - s^{k+1} f_k = 1$ for $k \in \mathbb{Z}$. Let

(17)
$$R_n = W_n X - Y W_n = \begin{pmatrix} (R_n)_{11} & (R_n)_{12} \\ (R_n)_{21} & (R_n)_{22} \end{pmatrix}.$$

Then

(18)
$$(R_n)_{11} = 0;$$

(19)
$$(R_n)_{12} = (W_n)_{11} - (s - s^{-1})(W_n)_{12};$$

(20)
$$(R_n)_{21} = (s - s^{-1})(W_n)_{21} - u(W_n)_{11}$$

(21)
$$(R_n)_{22} = (W_n)_{21} - u(W_n)_{12}$$

From the relation $w_n x = y w_n$, it should hold that $R_n = W_n X - Y W_n = O$. Using Eqs. (14) and (15), we have $(W_n)_{21} - u(W_n)_{12} = u f_{2n+1}$. Then from $(R_n)_{22} = 0$, Eq. (21) yields either u = 0 or $f_{2n+1} = 0$. If u = 0, then by Eqs. (13) and (14) $(W_n)_{11} = s$ and $(W_n)_{12} = -s^{n+1} f_n$. Substituting them into Eq. (19) we have $(R_n)_{12} = s - (s - s^{-1})(-s^{n+1}f_n) = s^{2n+1} \neq 0$, and so $u \neq 0$. From $f_{2n+1} = 0$ we obtain Eq. (8). Next, using Eqs. (13) and (14), we have

(22)
$$(W_n)_{11} - (s - s^{-1})(W_n)_{12} = s^{2n+1} - u(s - s^{-1})^2 f_n f_{n+1} - u^2 f_n f_{n+1} + u^2 f_n f_n f_{n+1} + u^2 f_n f_{n+1} + u^2 f_n f_{n+1} + u^2 f_n f_n f_n + u^2 f_n + u^2$$

Then from $(R_n)_{21} = 0$, Eq. (20) yields Eq. (9). In fact, if $s = \xi_n^k$, then $s^{2n+1} = \epsilon$ and $f_n f_{n+1} = -s/(s+\epsilon)^2 = -1/(s+s^{-1}+2\epsilon)$.

For a group G we denote by r(G) the number of irreducible representations to $SL(2, \mathbb{C})$ up to conjugate. Then, by Lemmas 3.6 and 3.7 below, we obtain the following.

Proposition 3.5. For n > 0, we have $r(G_n) = 4n$.

Lemma 3.6. The nonabelian representations $\rho : G_n \to SL(2, \mathbb{C})$ defined as above are *irreducible*.

Proof. Assume the representation ρ in Eq. (5) is reducible. Then by Lemma 3.2, $u = 4 - p^2$ or u = 0. Then Eq. (9) implies $\epsilon p + 2 = 0$, which contradicts Eq. (8).

Lemma 3.7. If $s = \xi_n^k$ (k = 1, 2, ..., 2n, 2n + 2, 2n + 3, ..., 4n + 1), then the quadratic equation (9) does not have a double root.

Proof. From Eq. (9) we have

(23)
$$2u = -(p^2 - 4) \pm \sqrt{p^4 - 8p^2 - 4\epsilon p + 8} \\ = -(p + 2\epsilon)(p - 2\epsilon) \pm \sqrt{(p + 2\epsilon)(p^3 - 2\epsilon p^2 - 4p + 4\epsilon)}.$$

So, we have only to prove $p^3 - 2\epsilon p^2 - 4p + 4\epsilon \neq 0$. Suppose $p^3 - 2\epsilon p^2 - 4p + 4\epsilon = 0$. Letting $\gamma(t) = t^6 - 2t^5 - t^4 - t^2 - 2t + 1$, we have $p^3 - 2\epsilon p^2 - 4p + 4\epsilon = s^{-3}\gamma(\epsilon s)$, and so $\gamma(\epsilon s) = 0$. Note that ϵs is a primitive *d*th root of unity for some *d*, which is a divisor of 4n + 2. Let $F_d(t)$ be the *d*th cyclotomic polynomial, which is an irreducible polynomial with integer coefficients. So, $F_d(t)$ is a factor of $\gamma(t)$. Then since deg $F_d(t) \leq 6$ and $s \neq \pm 1$, we obtain $d \in \{3, 5, 6, 7, 9, 10, 14, 18\}$. For each *d*, we see that $F_d(t)$ is not a factor of $\gamma(t)$ (see Table 1), a contradiction.

Example 3.8. For G_1 , we have $p = s + s^{-1} = 2\cos(k\pi/3) = (-1)^{k-1}$ (k = 1, 2), and there are 4 irreducible representations $\rho_j : G_1 \to SL(2, \mathbb{C})$ up to conjugate, $1 \le j \le 4$; in Table 2 we list the parameters p, u for each ρ_j . $\begin{array}{rrrr} \frac{d & F_d(t) \\ \hline 3 & 1+t+t^2 \\ 5 & 1+t+t^2+t^3+t^4 \\ \hline 6 & 1-t+t^2 \\ 7 & 1+t+t^2+t^3+t^4+t^5+t^6 \\ 9 & 1+t^3+t^6 \\ 10 & 1-t+t^2-t^3+t^4 \\ 14 & 1-t+t^2-t^3+t^4 \\ 14 & 1-t+t^2-t^3+t^6 \end{array}$

TABLE 1. Cyclotomic polynomials.

Representation	p	u
$ ho_1$	1	$\frac{3+\sqrt{5}}{2}$
$ ho_2$	1	$\frac{3-\sqrt{5}}{2}$
$ ho_3$	-1	$\frac{3+\sqrt{5}}{2}$
$ ho_4$	-1	$\frac{3-\sqrt{5}}{2}$

TABLE 2. Parameters for the representations $\rho_i : G_1 \to SL(2, \mathbb{C})$.

Remark 3.9. Takahashi [12] condidered $K_1 = R(1, 1, -2, 1)$ and R(-2, 1, 1, -2); both of which have trivial Alexander polynomial. He has distinguished their knot groups by the representations to $SL(2, \mathbb{C})$. In fact, the knot group of R(-2, 1, 1, -2) has infinitely many representations ρ as in Eq. (5) for $s \in \mathbb{C} - \{0, \pm 1\}$ and $u = u_0$, where

(24)
$$u_0 = \frac{-(1-s^2)^2(1+s^2) \pm \sqrt{(1-s^2-2s^3-s^4+s^6)(1-s^2+2s^3-s^4+s^6)}}{2s^2(1+s^2)}$$

Note that R(-2, 1, 1, -2) is positive-amplicheiral.

Example 3.10. For G_2 , we have $p = s + s^{-1} = 2\cos(k\pi/5)$ $(k = 1, 2, 3, 4) = \frac{1+\sqrt{5}}{2}$, $\frac{-1+\sqrt{5}}{2}$, $\frac{1-\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$, $\frac{-1-\sqrt{5}}{2}$, and there are 8 irreducible representations $\rho_j : G_2 \to SL(2, \mathbb{C})$ up to conjugate, $1 \le j \le 8$; in Table 3 we list the parameters p, u for each ρ_j .

4. Twisted Alexander Polynomial of K_n

Let $\alpha: G_n \to \langle t \rangle \cong \mathbb{Z}$ be an abelianization defined by $\alpha(x) = \alpha(y) = t$, which induces the ring homomorphism $\tilde{\alpha}: \mathbb{Z}G_n \to \mathbb{Z}[t, t^{-1}]$. For an $SL(2; \mathbb{C})$ representation of G_n $\rho: G_n \to SL(2; \mathbb{C})$ the ring homomorphism $\tilde{\rho}: \mathbb{Z}G_n \to M(2; \mathbb{C})$ is brought out from ρ . For the free group $\langle x, y \rangle$ with free basis $\{x, y\}$ let $\phi: \langle x, y \rangle \to G_n$ be the canonical homomorphism, which induces the ring homomorphism $\tilde{\phi}: \mathbb{Z}\langle x, y \rangle \to \mathbb{Z}G_n$. Now, we

Representation	p	u
ρ_1	$\frac{1+\sqrt{5}}{2}$	1
$ ho_2$	$\frac{1+\sqrt{5}}{2}$	$\frac{3-\sqrt{5}}{2}$
$ ho_3$	$\frac{-1+\sqrt{5}}{2}$	1
$ ho_4$	$\frac{-1+\sqrt{5}}{2}$	$\frac{3+\sqrt{5}}{2}$
$ ho_5$	$\frac{1-\sqrt{5}}{2}$	1
$ ho_6$	$\frac{1-\sqrt{5}}{2}$	$\frac{3+\sqrt{5}}{2}$
$ ho_7$	$\frac{-1-\sqrt{5}}{2}$	1
$ ho_8$	$\frac{-1-\sqrt{5}}{2}$	$\frac{3-\sqrt{5}}{2}$

TABLE 3. Parameters for the representations $\rho_j : G_2 \to SL(2, \mathbb{C})$.

define a ring homomorphism $\Phi = (\tilde{\rho} \otimes \tilde{\alpha}) \circ \tilde{\phi}$ as follows.

(25)
$$\Phi: \mathbb{Z}\langle x, y \rangle \xrightarrow{\phi} \mathbb{Z}G_n \xrightarrow{\tilde{\rho} \otimes \tilde{\alpha}} M(2; \mathbb{C}[t, t^{-1}])$$
$$\xrightarrow{\partial r_n} \longmapsto \sum \nu_g g \longmapsto \sum \nu_g \rho(g) \alpha(g),$$

where $r_n = w_n x - y w_n$, $\partial/\partial y$ denotes the Fox derivation, $g \in G_n$, and $\nu_g \in \mathbb{Z}$. Let $A_{\rho,y} = \Phi(\partial r_n/\partial y)$. Then the twisted Alexander polynomial of G_n associated to the representation ρ [13] is defined to be a rational function

(26)
$$\Delta_{G_n,\rho}(t) = \frac{\det A_{\rho,y}}{\det \Phi(x-1)}.$$

Note that if two representations ρ , ρ' are conjugate, then $\Delta_{G_n,\rho}(t) = \Delta_{G_n,\rho'}(t)$.

The remainder of this section will be devoted to the proof of the following proposition, where the *breadth* of a Laurent polynomial is the difference between the highest and lowest degrees.

Proposition 4.1. Suppose n > 0. For the irreducible representation ρ defined in Sect. 3 the twisted Alexander polynomial of G_n , $\Delta_{G_n,\rho}(t)$ in Eq. (26), is a Laurent polynomial of breadth 2n such that the coefficients of the highest degree term and lowest degree term are 1 and $u/(\epsilon p + 2)$, respectively.

Since

(27)
$$\frac{\partial r_n}{\partial y} = \frac{\partial w_n}{\partial y} - y \frac{\partial w_n}{\partial y} - 1,$$

we have

(28)
$$\tilde{\alpha} \circ \tilde{\phi}\left(\frac{\partial r_n}{\partial y}\right) = (1-t)\left(\tilde{\alpha} \circ \tilde{\phi}\left(\frac{\partial w_n}{\partial y}\right)\right) - 1.$$

For $w_n = xy^n x^{-n-1}y$ we have

(29)
$$\frac{\partial w_n}{\partial y} = x + xy + xy^2 + \dots + xy^{n-1} + w_n y^{-1}.$$

Thus, we obtain (30)

$$A_{\rho,y} = \Phi\left(\frac{\partial r_n}{\partial y}\right) = (E - tY)\left(tX(E + tY + t^2Y^2 + \dots + t^{n-1}Y^{n-1}) + W_nY^{-1}\right) - E.$$

On the other hand,

(31)
$$\det \Phi(x-1) = \det(tX-E)t^2 - t(s+s^{-1}) + 1 = (t-s)(t-s^{-1}).$$

We can prove the following by induction.

Lemma 4.2.

(32)
$$E + tY + t^2Y^2 + \dots + t^{n-1}Y^{n-1} = \begin{pmatrix} g_n & 0\\ u \\ \overline{s - s^{-1}}(g_n - h_n) & h_n \end{pmatrix},$$

where

(33)
$$g_n = \frac{1 - (st)^n}{1 - st}, \quad h_n = \frac{1 - (s^{-1}t)^n}{1 - s^{-1}t}.$$

Put

(34)
$$\det A_{\rho,y} = \varphi_0 + \varphi_1 u + \varphi_2 u^2,$$

where $\varphi_i \in \boldsymbol{C}[t, t^{-1}]$. Then,

$$(35) \qquad \qquad \varphi_0 = t^{2n+2};$$

$$(36) \qquad (s^{2}-1)^{2}\varphi_{1} = -t^{2}s^{-2n-1}\left(s^{n+1}t^{n} - s^{n+3}t^{n} - s^{3n+3}t^{n} + s^{3n+5}t^{n} + 2s^{2n+3} - s^{4n+5} - s\right) - s^{-2n-1}\left(2s^{2n+3} - s^{4n+3} - s^{3}\right) - ts^{-2n-1}\left(-s^{n+2}t^{n} + s^{n+4}t^{n} + s^{3n+2}t^{n} - s^{3n+4}t^{n} - s^{2n+2} - s^{2n+4} - s^{2n+6} + s^{4n+2} + s^{4n+6} - s^{2n} + s^{4} + 1\right);$$

$$(37) \qquad (s^{2}-1)^{2}\varphi_{2} = -ts^{-2n-1}\left(-s^{2n+2} - s^{2n+4} + s^{4n+4} + s^{2}\right).$$

Substituting $s^{2n+1} = \epsilon = (-1)^k$, we obtain:

$$(38) (s^{2}-1)^{2}\varphi_{1} = -\epsilon t^{2} \left(s^{n+1}t^{n} - s^{n+3}t^{n} - \epsilon s^{n+2}t^{n} + \epsilon s^{n+4}t^{n} + 2\epsilon s^{2} - s^{3} - s\right) -\epsilon \left(2\epsilon s^{2} - s - s^{3}\right) - \epsilon t \left(-s^{n+2}t^{n} + s^{n+4}t^{n} + \epsilon s^{n+1}t^{n} - \epsilon s^{n+3}t^{n} - \epsilon s - \epsilon s^{3} - \epsilon s^{5} + 2 + 2s^{4} - \epsilon s^{-1}\right) = -\epsilon t^{2} \left((1 - s^{2} - \epsilon s + \epsilon s^{3})s^{n+1}t^{n} - s(\epsilon - s)^{2}\right) + \epsilon s(\epsilon - s)^{2} -\epsilon t \left((-s + s^{3} + \epsilon - \epsilon s^{2})s^{n+1}t^{n} - \epsilon s^{-1}(s^{2} + s^{4} + s^{6} - 2\epsilon s - 2\epsilon s^{5} + 1)\right) = -\epsilon t^{2} \left(\epsilon(\epsilon - s)(1 - s^{2})s^{n+1}t^{n} - s(\epsilon - s)^{2}\right) + \epsilon s(\epsilon - s)^{2} -\epsilon t \left((\epsilon - s)(1 - s^{2})s^{n+1}t^{n} - \epsilon s^{-1}(\epsilon - s)^{2}(1 + s^{4})\right);$$

(39)

$$(s^2 - 1)^2 \varphi_2 = -\epsilon t \left(-\epsilon s - \epsilon s^3 + 2s^2\right) = s t (\epsilon - s)^2.$$

Since $s^2 - 1 = (s - \epsilon)(s + \epsilon)$, we have:

$$(40) \quad (\epsilon+s)^2 \varphi_1 = -\epsilon t^2 \left(\epsilon(\epsilon+s) s^{n+1} t^n - s \right) + \epsilon s - \epsilon t \left((\epsilon+s) s^{n+1} t^n - \epsilon s^{-1} (1+s^4) \right) \\ = -(\epsilon+s) s^{n+1} (\epsilon+t) t^{n+1} + \epsilon s t^2 + \epsilon s + s^{-1} (1+s^4) t \\ = -(s^{-2n-1}+s) s^{n+1} (\epsilon+t) t^{n+1} + \epsilon s t^2 + \epsilon s + s^{-1} (1+s^4) t;$$

$$(41) \quad (\epsilon+s)^2\varphi_2 = st.$$

Since $(\epsilon + s)^2 = s(s + s^{-1} + 2\epsilon)$, we have:

(42)
$$(s+s^{-1}+2\epsilon)\varphi_1 = -(s^{-n-1}+s^{n+1})(\epsilon+t)t^{n+1} + \epsilon t^2 + \epsilon + ((s+s^{-1})^2 - 2)t;$$

(43)
$$(s+s^{-1}+2\epsilon)\varphi_2 = t.$$

Putting $p = s + s^{-1}$ and $\psi_n(p) = s^{-n-1} + s^{n+1} \in \mathbb{Z}[p]$, we obtain:

(44)
$$(p+2\epsilon)\varphi_1 = -\psi_n(p)(\epsilon+t)t^{n+1} + \epsilon t^2 + \epsilon + (p^2-2)t;$$

(45)
$$(p+2\epsilon)\varphi_2 = t.$$

$$(45) \qquad (p+2\epsilon)\varphi_2 =$$

Thus, we have:

$$(p+2\epsilon) \det A_{\rho,y} = (p+2\epsilon)t^{2n+2} + \left(-\psi_n(p)(\epsilon+t)t^{n+1} + \epsilon t^2 + \epsilon + (p^2-2)t\right)u + u^2t$$
$$= \epsilon u + \left((p^2-2)u + u^2\right)t + \epsilon ut^2 - \psi_n(p)u(\epsilon+t)t^{n+1} + (p+2\epsilon)t^{2n+2}.$$

Since $u^2 + (p^2 - 4)u + \epsilon p + 2 = 0$ from Eq. (9), this becomes:

$$(p+2\epsilon) \det A_{\rho,y} = \epsilon u + (2u - \epsilon p - 2)t + \epsilon u t^2 - \psi_n(p) u(\epsilon + t) t^{n+1} + (p+2\epsilon) t^{2n+2}.$$

Lemma 4.3. For the irreducible representation ρ defined in Sect. 3 the twisted Alexander polynomial of G_n , $\Delta_{G_n,\rho}(t)$ in Eq. (26), is a Laurent polynomial.

Proof. Let P(t) be the right-hand side polynomial of Eq. (47). Then by Eq. (31) the result follows from $P(s) = P(s^{-1}) = 0$. In fact,

(48)
$$P(s) = \epsilon u + (2u - \epsilon p - 2)s + \epsilon u s^{2} - \psi_{n}(p)u(\epsilon + s)s^{n+1} + (p + 2\epsilon)s^{2n+2}$$
$$= \epsilon u + (2u - \epsilon p - 2)s + \epsilon u s^{2} - (\epsilon s + 1)u(\epsilon + s) + (p + 2\epsilon)\epsilon s$$
$$= \epsilon u + (2u)s + \epsilon u s^{2} - u(2s + \epsilon + \epsilon s^{2}) = 0;$$

 $P(s^{-1}) = 0$ is similar.

Remark 4.4. It is known [5] that the twisted Alexander polynomial of a knot in S^3 for any nonabelian representation into $SL(2, \mathbf{F})$ over a field \mathbf{F} is always a Laurent polynomial. For a reducible representation $\rho : \pi K \to SL(2, \mathbf{C})$ and for a representation $\rho : \pi K \to SL(2, \mathbf{F}_p)$ over a prime field \mathbf{F}_p there are ribbon 2-knots of 1-fusion K whose twisted Alexander polynomial are not Laurent polynomials; see [3].

Proof of Proposition 4.1. By Eqs. (31), (47) and Lemma 4.3 we obtain Proposition 4.1. \Box

Example 4.5. For n = 1, we give explicit forms of the twisted Alexander polynomials $\Delta_{G_{1,\rho}}(t)$. Since $p = -\epsilon$ and $\psi_1(p) = -1$, Eqs. (31) and (47) become

(49)
$$\det \Phi(x-1) = 1 + \epsilon t + t^2;$$

(50)
$$\det A_{\rho,y} = u + \epsilon (2u - 1)t + 2ut^2 + \epsilon ut^3 + t^4$$
$$= (1 + \epsilon t + t^2)(u + \epsilon (u - 1)t + t^2),$$

from which we obtain

(51)
$$\Delta_{G_{1,\rho}}(t) = u + \epsilon(u-1)t + t^{2}$$
$$= (\epsilon u - t)(\epsilon - t).$$

For each representation ρ_i we list the polynomial in Table 4.5.

Representation	n $\Delta_{G_1, ho}(t)$
ρ_1	$\frac{3+\sqrt{5}}{2} + \frac{1+\sqrt{5}}{2}t + t^2$
$ ho_2$	$\frac{3-\sqrt{5}}{2} + \frac{1-\sqrt{5}}{2}t + t^2$
$ ho_3$	$\frac{3+\sqrt{5}}{2} - \frac{1+\sqrt{5}}{2}t + t^2$
$ ho_4$	$\frac{3-\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}t + t^2$
TABLE 4. Twisted A	dexander polynomials of G_1 .

Remark 4.6. The twisted Alexander polynomial of R(-2, 1, 1, -2) associated to the representation ρ given in Remark 3.9 is $u_0(1 + t^2)$.

Example 4.7. For n = 2, we give explicit forms of the twisted Alexander polynomials $\Delta_{G_{2,\rho}}(t)$ in Table 5.

Representation	$\Delta_{G_2,\rho}(t)$
ρ_1	$\frac{3+\sqrt{5}}{2} + \frac{1+\sqrt{5}}{2}t^3 + t^4$
$ ho_2$	$1 + \frac{-1 + \sqrt{5}}{2}t + t^2 + \frac{1 + \sqrt{5}}{2}t^3 + t^4$
$ ho_3$	$\frac{3-\sqrt{5}}{2} + \frac{-1+\sqrt{5}}{2}t^3 + t^4$
$ ho_4$	$1 + \frac{1 + \sqrt{5}}{2}t + t^2 + \frac{-1 + \sqrt{5}}{2}t^3 + t^4$
$ ho_5$	$\frac{3-\sqrt{5}}{2} + \frac{1-\sqrt{5}}{2}t^3 + t^4$
$ ho_6$	$1 + \frac{-1 - \sqrt{5}}{2}t + t^2 + \frac{1 - \sqrt{5}}{2}t^3 + t^4$
$ ho_7$	$\frac{3+\sqrt{5}}{2} + \frac{-1-\sqrt{5}}{2}t^3 + t^4$
$ ho_8$	$1 + \frac{1 - \sqrt{5}}{2}t + t^2 + \frac{-1 - \sqrt{5}}{2}t^3 + t^4$
TABLE 5. Twiste	ed Alexander polynomials of G_2 .

Proof of Theorem 1.1. Part (i) follows from Proposition 2.2. Since the mirror image of K_n is isotopic to R(1, -n-1, n, 1), which is K_{-n-1} ; this implies Part (ii). By Lemma 3.7 (or also Proposition 4.1), the knot groups G_m and G_n are isomorphic if and only if either m = n or m + n = -1. This implies Part (iii) since K_0 and K_{-1} are trivial.

In order to prove Part (iv) we prove K_n and K_{-n-1} are not isotopic. Suppose n > 0. By Proposition 4.1 the coefficients of the highest degree term and lowest degree term of the twisted Alexander polynomials of K_n , $\Delta_{G_n,\rho}(t)$, are 1 and $u/(\epsilon p + 2)$, respectively. Since K_{-n-1} is the mirror image of K_n , the set of the twisted Alexander polynomials of K_{-n-1} consists of $\Delta_{G_n,\rho}(t^{-1})$, and so the coefficients of their highest degree terms are $u/(\epsilon p + 2)$, where $p = 2\cos(k\pi/(2n+1))$ and u is a root of Eq. (9). For $p = p_0$ there are double roots $u = u_1, u_2$ for Eq. (9) by Lemma 3.7, and so at least one of $u_1/(\epsilon p_0+2)$ and $u_2/(\epsilon p_0+2)$ does not equal to 1. Thus, K_n and K_{-n-1} have different twisted Alexander polynomials.

Remark 4.8. Part (iii) of Theorem 1.1, the non-triviality of K_n $(n \neq 0, -1)$, also follows from [7].

Acknowledgements

The first author was partially supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (No. 17K05259), Japan Society for the Promotion of Science. The second author was partially supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (No. 16K05151), Japan Society for the Promotion of Science.

References

- Kazuo Habiro, Taizo Kanenobu, and Akiko Shima, *Finite type invariants of ribbon 2-knots*, Lowdimensional topology (Funchal, 1998), Contemp. Math., vol. 233, Amer. Math. Soc., Providence, RI, 1999, pp. 187–196.
- [2] Taizo Kanenobu and Seiya Komatsu, Enumeration of ribbon 2-knots presented by virtual arcs with up to four crossings, J. Knot Theory Ramifications 26 (2017), 1750042 (41 pages).

- [3] Taizo Kanenobu and Toshio Sumi, Classification of ribbon 2-knots presented by virtual arcs with up to 4 crossings, in preparation (2017).
- [4] Shin'ichi Kinoshita, On the Alexander polynomials of 2-spheres in a 4-sphere, Ann. of Math. (2) 74 (1961), 518–531.
- [5] Teruaki Kitano and Takayuki Morifuji, Divisibility of twisted Alexander polynomials and fibered knots, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 1, 179–186.
- [6] Xiao Song Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 3, 361–380.
- [7] Yoshihiko Marumoto, On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ. 5 (1977), no. 1, 59–68.
- [8] Robert Riley, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 138, 191–208.
- [9] _____, Holomorphically parameterized families of subgroups of SL(2, C), Mathematika 32 (1985), no. 2, 248–264 (1986).
- [10] Shin Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), no. 4, 531–542.
- Shin'ichi Suzuki, Knotting problems of 2-spheres in 4-sphere, Math. Sem. Notes Kobe Univ. 4 (1976), no. 3, 241–371.
- [12] Kota Takahashi, Classification of ribbon -knot groups by using twisted Alexander polynomial, Master's thesis, Osaka City University, 2014, (in Japanese).
- [13] Masaaki Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), no. 2, 241–256.
- [14] Takeshi Yajima, On simply knotted spheres in R⁴, Osaka J. Math. 1 (1964), 133–152.
- [15] Takaaki Yanagawa, On ribbon 2-knots. The 3-manifold bounded by the 2-knots, Osaka J. Math. 6 (1969), 447–464.
- [16] Tomoyuki Yasuda, Crossing and base numbers of ribbon 2-knots, J. Knot Theory Ramifications 10 (2001), no. 7, 999–1003.
- [17] _____, *Ribbon 2-knots with ribbon crossing number four*, Research reports of Nara Technical College (2008), no. 44, 69–72, (in Japanese).
- [18] _____, Ribbon 2-knots with ribbon crossing number four, II, Research reports of Nara Technical College (2009), no. 45, 59–62, (in Japanese).
- [19] _____, Ribbon 2-knots with ribbon crossing number four, III, Research reports of Nara Technical College (2010), no. 46, 45–48, (in Japanese).
- [20] _____, Ribbon 2-knots with ribbon crossing number four, IV, Research reports of Nara Technical College (2011), no. 47, 37–40, (in Japanese).

Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

E-mail address: kanenobu@sci.osaka-cu.ac.jp

FACULTY OF ARTS AND SCIENCE, KYUSHU UNIVERSITY, MOTOOKA 744, NISHI-KU, FUKUOKA, 819-0395, JAPAN

E-mail address: sumi@artsci.kyushu-u.ac.jp