CLASSIFICATION OF A FAMILY OF RIBBON 2-KNOTS WITH TRIVIAL ALEXANDER POLYNOMIAL

TAIZO KANENOBU AND TOSHIO SUMI

Abstract

We consider a family of ribbon 2-knots with trivial Alexander polynomial. We give nonabelian $S L(2, \boldsymbol{C})$-representations from the groups of these knots, and then calculate the twisted Alexander polynomials associated to these representations, which allows us to classify this family of knots.

1. Introduction

A ribbon 2-knot is an embedded 2 -sphere in S^{4} obtained by adding r 1-handles to a trivial 2 -link with $r+1$ components for some r, which is called a ribbon 2 -knot of r-fusion; cf. [14, 15]. Yasuda [16-20] has been studying an enumeration of ribbon 2-knot with ribbon crossing number up to 4 , where the Alexander polynomial of each ribbon 2-knot is given but it is not referred about the classification of the knots so much. Takahashi [12] classified ribbon 2-knots of 1 -fusion with small ribbon crossing number using the Alexander polynomial, representations of the knot group into $S L(2, \boldsymbol{C})$, and twisted Alexander polynomial. Recently, Kanenobu and Komatsu [2] have enumerated ribbon 2-knots based on the virtual arc presentation of ribbon 2-knots, and Kanenobu and Sumi [3] have attempted the classification of these ribbon 2-knots, where they used the Alexander polynomial, homology of double branched covering space, representations of the knot group into $S L(2, \mathbb{F}), \mathbb{F}$ a finite field, and twisted Alexander polynomial.

In order to classify ribbon 2-knots the Alexander polynomial is a very useful invariant. However, it is difficult to distinguish ribbon 2-knots sharing the same Alexander polynomial. In this paper, we show the effectiveness of the twisted Alexander polynomial in classifying the ribbon 2 -knots, which was first achieved by Takahashi [12], and then by the authors [3] as mentioned above. The twisted Alexander polynomial was introduced by Lin [6] for knots in S^{3} and by Wada [13] for finitely presentable groups, which is a generalization of the classical Alexander polynomial and has many applications. In this paper, we classify a family of ribbon 2 -knots of 1 -fusion with trivial Alexander polynomial $K_{n}=R(1, n,-n-1,1), n \in \boldsymbol{Z}$; see Sec. 2 for the definition of $R(1, n,-n-1,1)$. First, we show the number of irreducible representations $\rho: \pi_{1}\left(S^{4}-K_{n}\right) \rightarrow S L(2, \boldsymbol{C})$ up to conjugate is $2 n$ (Proposition 3.5), where $n \geq 0$, classifying the knots $K_{n}, n \geq 0$. Next, we distinguish K_{n} and K_{-n-1}, which are mirror images one another, by Wada's twisted Alexander polynomials (Proposition 4.1). Our main theorem is the following.

[^0]Theorem 1.1. For the family of ribbon 2-knots of 1 -fusion $K_{n}, n \in \boldsymbol{Z}$, we have the following:
(i) K_{n} has trivial Alexander polynomial.
(ii) The mirror image of K_{n} is isotopic to K_{-n-1}.
(iii) K_{n} is trivial if and only if $n=0$ or -1 .
(iv) For $m, n \in \boldsymbol{Z}-\{-1,0\}, K_{m}$ and K_{n} are isotopic if and only if $m=n$.

This paper is organized as follows: In Sect. 2 we define a ribbon 2-knot of 1-fusion and give some properties. In Sect. 3 we decide irreducible representations of the group of the knot K_{n} into $S L(2, \boldsymbol{C})$ up to conjugate. In Sect. 4 we calculate the twisted Alexander polynomial of K_{n} associated to the representations given in Sect. 3.

2. Ribbon 2-knot of 1-FUsion

We define a ribbon 2-knot of 1-fusion $R\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)$ as follows. Let $L_{0}=S_{0}^{1} \cup S_{1}^{1}$ be a trivial link with 2 components in \boldsymbol{R}^{3}. We add a band B to L_{0} as shown in Fig. 1, where $\tau_{p_{1}}, \ldots, \tau_{p_{n}}, \sigma_{q_{1}}, \ldots, \sigma_{q_{n}}$ are pairs $\left(D^{3}, a \cup \beta\right)$ of a 3 -ball D^{3} and a properly embedded arc a and band β as shown in Fig. 2.

Figure 1. Adding a band B to a trivial link $L_{0}=S_{0}^{1} \cup S_{1}^{1}$.

Figure 2. τ_{p} and σ_{q}.

Regard the band B as the image of an embedding $b: I \times I \rightarrow \boldsymbol{R}^{3}, B=b(I \times I)$, so that $S_{i}^{1} \cap b(I \times I)=b(I \times\{i\}), i=0,1$, where I is the unit interval $[0,1]$. We take disjoint 2-disks $D_{0} \cup D_{1}$ in \boldsymbol{R}^{3} so that $S_{i}^{1}=\partial D_{i}, i=0,1$. Let $K_{0}=\left(L_{0}-b(I \times \partial I)\right) \cup b(\partial I \times I)$. Then we obtain a ribbon 2 -knot of 1-fusion $R\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)$ in $S^{4}=R^{4} \cup\{\infty\}$ by the moving pictures:

$$
R\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right) \cap\left(R^{3} \times\{t\}\right)= \begin{cases}K_{0} & \text { for }|t|<1 ; \tag{1}\\ K_{0} \cup B=L_{0} \cup B & \text { for }|t|=1 ; \\ L_{0} & \text { for } 1<|t|<2 ; \\ D_{0} \cup D_{1} & \text { for }|t|=2 ; \\ \emptyset & \text { for }|t|>2\end{cases}
$$

Any ribbon 2-knot of 1 -fusion is represented in this form.
Note that a ribbon 2-knot is negative-amphicheiral, that is, a ribbon 2-knot K is ambient isotopic to $-K$!, which is obtained from K by taking the mirror image and then reversing the orientation; see [11, Theorem 2.18], [10, Proposition 4.1]. So, we show the knot $K_{n}, n>0$, is non-positive-amphicheiral and non-invertible. If a ribbon 2-knot has a non-reciprocal Alexander polynomial, that is, $\Delta_{K}(t) \neq \Delta_{K}\left(t^{-1}\right)$ up to $\pm t^{k}$, then it is non non-positive-amphicheiral and non-invertible; cf. [11, Proposition 3.26].

Example 2.1. Figure 3 shows the ribbon 2-knot $K_{2}=R(1,2,-3,1)$.

Figure 3. The ribbon 2 -knot $R(1,2,-3,1)$.

Note that $R\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)$ is isotopic to $R\left(-q_{n},-p_{n}, \ldots,-q_{1},-p_{1}\right)$, which is the mirror image of $R\left(q_{n}, p_{n}, \ldots, q_{1}, p_{1}\right)$.

The group of $K, \pi K=\pi_{1}\left(S^{4}-K\right)$, has a Wirtinger presentation

$$
\begin{equation*}
\left\langle x, y \mid x^{-1} w^{-1} y w\right\rangle, \quad w=x^{p_{1}} y^{q_{1}} \cdots x^{p_{n}} y^{q_{n}} \tag{2}
\end{equation*}
$$

where x and y are meridians of S_{0}^{2} and S_{1}^{2}, respectively.
The Alexander polynomial of a ribbon 2 -knot $K, \Delta_{K}(t) \in Z\left[t^{ \pm 1}\right]$, is defined up to $\pm t^{n}$, which we normalize so that $\Delta_{K}(1)=1$ and $(d / d t) \Delta_{K}(1)=0 ;$ cf. [1, 4, 7]. For a ribbon 2 -knot of 1 -fusion we have the following.

Proposition 2.2. The normalized Alexander polynomial of the ribbon 2-knot of 1 -fusion $R\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)$ is

$$
\begin{aligned}
& t^{-q_{1}-q_{2}-\cdots-q_{n}}\left(1-t^{p_{1}}+t^{p_{1}+q_{1}}-t^{p_{1}+q_{1}+p_{2}}+\cdots\right. \\
& \left.\quad-t^{p_{1}+q_{1}+\cdots+p_{n}}+t^{p_{1}+q_{1}+\cdots+p_{n}+q_{n}}\right) \\
& =t^{p_{n}+p_{n-1}+\cdots+p_{1}}\left(1-t^{-q_{n}}+t^{-q_{n}-p_{n}}-t^{-q_{n}-p_{n}-q_{n-1}}+\cdots\right. \\
& \left.\quad-t^{-q_{n}-p_{n}-q_{n-1}-\cdots-q_{1}}+t^{-q_{n}-p_{n}-q_{n-1}-\cdots-q_{1}-p_{1}}\right) .
\end{aligned}
$$

3. Representation to $S L(2, \boldsymbol{C})$

Let G be a finitely presented group. Two representations, namely homomorphisms, $\rho, \rho^{\prime}: G \rightarrow S L(2, \boldsymbol{C})$ are called conjugate if $\rho(g)=C \rho^{\prime}(g) C^{-1}$ for some $C \in S L(2, \boldsymbol{C})$ and for any $g \in G$. A representation $\rho: G \rightarrow S L(2, \boldsymbol{C})$ is said to be abelian if $\rho(G)$ is an abelian subgroup of $S L(2, \boldsymbol{C})$. A representation ρ is called reducible if there exists a proper invariant subspace of C^{2} under the action of $\rho(G)$. This is equivalent to saying that ρ can be conjugate to a representation whose image consists of upper triangular matrices. It is easy to see that every abelian representation is reducible, but the converse does not hold. When ρ is not reducible, it is called irreducible.

The following is due to Riley $[8,9]$.
Proposition 3.1. If two matrices X, Y are conjugate in $S L(2, \boldsymbol{C})$ and $X Y \neq Y X$, then there exists a matrix $C \in S L(2, \boldsymbol{C})$ such that:

$$
C X C^{-1}=\left(\begin{array}{cc}
s & 1 \tag{3}\\
0 & s^{-1}
\end{array}\right), \quad C Y C^{-1}=\left(\begin{array}{cc}
s & 0 \\
u & s^{-1}
\end{array}\right)
$$

where $s, u \in \boldsymbol{C}$ with $s \neq 0$ and $(s, u) \neq(\pm 1,0)$.
Furthermore, if there exists a matrix $D \in S L(2, \boldsymbol{C})$ such that:

$$
D X D^{-1}=\left(\begin{array}{cc}
s^{\prime} & 1 \tag{4}\\
0 & s^{\prime-1}
\end{array}\right), \quad D Y D^{-1}=\left(\begin{array}{cc}
s^{\prime} & 0 \\
u^{\prime} & s^{\prime-1}
\end{array}\right)
$$

where $s^{\prime}, u^{\prime} \in \boldsymbol{C}$ with $s^{\prime} \neq 0$ and $\left(s^{\prime}, u^{\prime}\right) \neq(\pm 1,0)$, then $\left(s^{\prime}, u^{\prime}\right)=(s, u)$ or $\left(s^{-1}, u\right)$.
Let us consider the presentatin Eq. (2) of the group of the ribbon 2-knot of 1-fusion $R\left(p_{1}, q_{1}, \ldots, p_{n}, q_{n}\right)$. Then since x and y are conjugate, by Proposition 3.1 any nonabelian representation $G \rightarrow S L(2 ; \boldsymbol{C})$ is conjugate to a representation $\rho: G \rightarrow S L(2 ; \boldsymbol{C})$ given by

$$
\rho(x)=X=\left(\begin{array}{cc}
s & 1 \tag{5}\\
0 & s^{-1}
\end{array}\right), \quad \rho(y)=Y=\left(\begin{array}{cc}
s & 0 \\
u & s^{-1}
\end{array}\right)
$$

for some $s, u \in \boldsymbol{C}$ with $s \neq 0$ and $(s, u) \neq(\pm 1,0)$; such a representation ρ is parametrized by the trace $s+s^{-1}$ and u. Furthermore, it is easy to prove the following.

Lemma 3.2. A nonabelian representation ρ in Eq. (5) is reducible if and only if either $u=-\left(s-s^{-1}\right)^{2}$ or $u=0$.

From now on we focus on the family of ribbon 2-knots of 1-fusion $K_{n}=R(1, n,-n-$ $1,1), n \in Z$. Let $G_{n}=\pi_{1}\left(S^{4}-K_{n}\right)$. Then

$$
\begin{equation*}
G_{n}=\left\langle x, y \mid w_{n} x=y w_{n}\right\rangle, \quad w_{n}=x y^{n} x^{-n-1} y \tag{6}
\end{equation*}
$$

We define a nonabelian representation

$$
\begin{equation*}
\rho: G_{n} \rightarrow S L(2, \boldsymbol{C}) \tag{7}
\end{equation*}
$$

by the correspondence Eq. (5), where $s, u \in \boldsymbol{C}$ with $s \neq 0$ and $(s, u) \neq(\pm 1,0)$. Then, we have the following.

Proposition 3.3. Suppose $n>0$. The parameters s and u satisfy:

$$
\begin{gather*}
s=\xi_{n}^{k} \quad(k=1,2, \ldots, 2 n, 2 n+2,2 n+3, \ldots, 4 n+1) \tag{8}\\
u^{2}+\left(p^{2}-4\right) u+\epsilon p+2=0 \tag{9}
\end{gather*}
$$

where $\xi_{n}=\exp \frac{\pi \sqrt{-1}}{2 n+1}, p=s+s^{-1}$, and $\epsilon=\left(\xi_{n}^{k}\right)^{2 n+1}=(-1)^{k}$.
We use the following lemma in the proof of Proposition 3.3.
Lemma 3.4. For $i \in Z$, we have:

$$
X^{i}=\left(\begin{array}{cc}
s^{i} & f_{i} \tag{10}\\
0 & s^{-i}
\end{array}\right), \quad Y^{i}=\left(\begin{array}{cc}
s^{i} & 0 \\
u f_{i} & s^{-i}
\end{array}\right)
$$

where

$$
f_{i}= \begin{cases}\frac{s^{i}-s^{-i}}{s-s^{-1}} & \text { if } s \neq \pm 1 ; \tag{11}\\ i s^{i-1} & \text { if } s= \pm 1 .\end{cases}
$$

Proof. Induction on i.
Proof of Proposition 3.3. Let

$$
W_{n}=X Y^{n} X^{-n-1} Y=\left(\begin{array}{ll}
\left(W_{n}\right)_{11} & \left(W_{n}\right)_{12} \tag{12}\\
\left(W_{n}\right)_{21} & \left(W_{n}\right)_{22}
\end{array}\right)
$$

Then using Lemma 3.4, we have:

$$
\begin{align*}
\left(W_{n}\right)_{11} & =s+u\left(s+s^{-n} f_{n}+s^{n+1} f_{-n-1}\right)+u^{2} f_{n} f_{-n-1} \tag{13}\\
& =s+u\left(1-s^{2}\right) f_{n} f_{n+1}-u^{2} f_{n} f_{n+1} \\
\left(W_{n}\right)_{12} & =1+s^{n} f_{-n-1}+u s^{-1} f_{-n-1} f_{n} \tag{14}\\
& =-s^{n+1} f_{n}-u s^{-1} f_{n} f_{n+1} \\
\left(W_{n}\right)_{21} & =u+u s^{-n-1} f_{n}+u^{2} s^{-1} f_{-n-1} f_{n} \tag{15}\\
& =u s^{-n} f_{n+1}-u^{2} s^{-1} f_{n} f_{n+1} ; \\
\left(W_{n}\right)_{22} & =s^{-1}+u s^{-2} f_{n} f_{-n-1} \tag{16}\\
& =s^{-1}-u s^{-2} f_{n} f_{n+1}
\end{align*}
$$

where we use $f_{-k}=-f_{k}$ and $s^{k} f_{k+1}-s^{k+1} f_{k}=1$ for $k \in \boldsymbol{Z}$.
Let

$$
R_{n}=W_{n} X-Y W_{n}=\left(\begin{array}{ll}
\left(R_{n}\right)_{11} & \left(R_{n}\right)_{12} \tag{17}\\
\left(R_{n}\right)_{21} & \left(R_{n}\right)_{22}
\end{array}\right) .
$$

Then

$$
\begin{align*}
& \left(R_{n}\right)_{11}=0 \tag{18}\\
& \left(R_{n}\right)_{12}=\left(W_{n}\right)_{11}-\left(s-s^{-1}\right)\left(W_{n}\right)_{12} \tag{19}\\
& \left(R_{n}\right)_{21}=\left(s-s^{-1}\right)\left(W_{n}\right)_{21}-u\left(W_{n}\right)_{11} \tag{20}\\
& \left(R_{n}\right)_{22}=\left(W_{n}\right)_{21}-u\left(W_{n}\right)_{12} \tag{21}
\end{align*}
$$

From the relation $w_{n} x=y w_{n}$, it should hold that $R_{n}=W_{n} X-Y W_{n}=O$. Using Eqs. (14) and (15), we have $\left(W_{n}\right)_{21}-u\left(W_{n}\right)_{12}=u f_{2 n+1}$. Then from $\left(R_{n}\right)_{22}=0$, Eq. (21) yields either $u=0$ or $f_{2 n+1}=0$. If $u=0$, then by Eqs. (13) and (14) $\left(W_{n}\right)_{11}=s$ and $\left(W_{n}\right)_{12}=-s^{n+1} f_{n}$. Substituting them into Eq. (19) we have $\left(R_{n}\right)_{12}=$ $s-\left(s-s^{-1}\right)\left(-s^{n+1} f_{n}\right)=s^{2 n+1} \neq 0$, and so $u \neq 0$. From $f_{2 n+1}=0$ we obtain Eq. (8).

Next, using Eqs. (13) and (14), we have

$$
\begin{equation*}
\left(W_{n}\right)_{11}-\left(s-s^{-1}\right)\left(W_{n}\right)_{12}=s^{2 n+1}-u\left(s-s^{-1}\right)^{2} f_{n} f_{n+1}-u^{2} f_{n} f_{n+1} \tag{22}
\end{equation*}
$$

Then from $\left(R_{n}\right)_{21}=0$, Eq. (20) yields Eq. (9). In fact, if $s=\xi_{n}^{k}$, then $s^{2 n+1}=\epsilon$ and $f_{n} f_{n+1}=-s /(s+\epsilon)^{2}=-1 /\left(s+s^{-1}+2 \epsilon\right)$.

For a group G we denote by $r(G)$ the number of irreducible representations to $S L(2, \boldsymbol{C})$ up to conjugate. Then, by Lemmas 3.6 and 3.7 below, we obtain the following.

Proposition 3.5. For $n>0$, we have $r\left(G_{n}\right)=4 n$.
Lemma 3.6. The nonabelian representations $\rho: G_{n} \rightarrow S L(2, \boldsymbol{C})$ defined as above are irreducible.

Proof. Assume the representation ρ in Eq. (5) is reducible. Then by Lemma 3.2, $u=$ $4-p^{2}$ or $u=0$. Then Eq. (9) implies $\epsilon p+2=0$, which contradicts Eq. (8).

Lemma 3.7. If $s=\xi_{n}^{k}(k=1,2, \ldots, 2 n, 2 n+2,2 n+3, \ldots, 4 n+1)$, then the quadratic equation (9) does not have a double root.

Proof. From Eq. (9) we have

$$
\begin{align*}
2 u & =-\left(p^{2}-4\right) \pm \sqrt{p^{4}-8 p^{2}-4 \epsilon p+8} \tag{23}\\
& =-(p+2 \epsilon)(p-2 \epsilon) \pm \sqrt{(p+2 \epsilon)\left(p^{3}-2 \epsilon p^{2}-4 p+4 \epsilon\right)}
\end{align*}
$$

So, we have only to prove $p^{3}-2 \epsilon p^{2}-4 p+4 \epsilon \neq 0$. Suppose $p^{3}-2 \epsilon p^{2}-4 p+4 \epsilon=0$. Letting $\gamma(t)=t^{6}-2 t^{5}-t^{4}-t^{2}-2 t+1$, we have $p^{3}-2 \epsilon p^{2}-4 p+4 \epsilon=s^{-3} \gamma(\epsilon s)$, and so $\gamma(\epsilon s)=0$. Note that ϵs is a primitive d th root of unity for some d, which is a divisor of $4 n+2$. Let $F_{d}(t)$ be the d th cyclotomic polynomial, which is an irreducible polynomial with integer coefficients. So, $F_{d}(t)$ is a factor of $\gamma(t)$. Then since $\operatorname{deg} F_{d}(t) \leq 6$ and $s \neq \pm 1$, we obtain $d \in\{3,5,6,7,9,10,14,18\}$. For each d, we see that $F_{d}(t)$ is not a factor of $\gamma(t)$ (see Table 1), a contradiction.

Example 3.8. For G_{1}, we have $p=s+s^{-1}=2 \cos (k \pi / 3)=(-1)^{k-1}(k=1,2)$, and there are 4 irreducible representations $\rho_{j}: G_{1} \rightarrow S L(2, \boldsymbol{C})$ up to conjugate, $1 \leq j \leq 4$; in Table 2 we list the parameters p, u for each ρ_{j}.

d	$F_{d}(t)$
3	$1+t+t^{2}$
5	$1+t+t^{2}+t^{3}+t^{4}$
6	$1-t+t^{2}$
7	$1+t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}$
9	$1+t^{3}+t^{6}$
10	$1-t+t^{2}-t^{3}+t^{4}$
14	$1-t+t^{2}-t^{3}+t^{4}-t^{5}+t^{6}$
18	$1-t^{3}+t^{6}$

TABLE 1. Cyclotomic polynomials.

Representation	p	u
ρ_{1}	1	$\frac{3+\sqrt{5}}{2}$
ρ_{2}	1	$\frac{3-\sqrt{5}}{2}$
ρ_{3}	-1	$\frac{3+\sqrt{5}}{2}$
ρ_{4}	-1	$\frac{3-\sqrt{5}}{2}$

Table 2. Parameters for the representations $\rho_{j}: G_{1} \rightarrow S L(2, \boldsymbol{C})$.

Remark 3.9. Takahashi [12] condidered $K_{1}=R(1,1,-2,1)$ and $R(-2,1,1,-2)$; both of which have trivial Alexander polynomial. He has distinguished their knot groups by the representations to $S L(2, \boldsymbol{C})$. In fact, the knot group of $R(-2,1,1,-2)$ has infinitely many representations ρ as in Eq. (5) for $s \in \boldsymbol{C}-\{0, \pm 1\}$ and $u=u_{0}$, where

$$
\begin{equation*}
u_{0}=\frac{-\left(1-s^{2}\right)^{2}\left(1+s^{2}\right) \pm \sqrt{\left(1-s^{2}-2 s^{3}-s^{4}+s^{6}\right)\left(1-s^{2}+2 s^{3}-s^{4}+s^{6}\right)}}{2 s^{2}\left(1+s^{2}\right)} . \tag{24}
\end{equation*}
$$

Note that $R(-2,1,1,-2)$ is positive-amphicheiral.
Example 3.10. For G_{2}, we have $p=s+s^{-1}=2 \cos (k \pi / 5)(k=1,2,3,4)=\frac{1+\sqrt{5}}{2}$, $\frac{-1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$, and there are 8 irreducible representations $\rho_{j}: G_{2} \rightarrow S L(2, \boldsymbol{C})$ up to conjugate, $1 \leq j \leq 8$; in Table 3 we list the parameters p, u for each ρ_{j}.

4. Twisted Alexander polynomial of K_{n}

Let $\alpha: G_{n} \rightarrow\langle t\rangle \cong \boldsymbol{Z}$ be an abelianization defined by $\alpha(x)=\alpha(y)=t$, which induces the ring homomorphism $\tilde{\alpha}: \boldsymbol{Z} G_{n} \rightarrow \boldsymbol{Z}\left[t, t^{-1}\right]$. For an $S L(2 ; \boldsymbol{C})$ representation of G_{n} $\rho: G_{n} \rightarrow S L(2 ; \boldsymbol{C})$ the ring homomorphism $\tilde{\rho}: \boldsymbol{Z} G_{n} \rightarrow M(2 ; \boldsymbol{C})$ is brought out from ρ. For the free group $\langle x, y\rangle$ with free basis $\{x, y\}$ let $\phi:\langle x, y\rangle \rightarrow G_{n}$ be the canonical homomorphism, which induces the ring homomorphism $\tilde{\phi}: \boldsymbol{Z}\langle x, y\rangle \rightarrow \boldsymbol{Z} G_{n}$. Now, we

Representation	p	u
ρ_{1}	$\frac{1+\sqrt{5}}{2}$	1
ρ_{2}	$\frac{1+\sqrt{5}}{2}$	$\frac{3-\sqrt{5}}{2}$
ρ_{3}	$\frac{-1+\sqrt{5}}{2}$	1
ρ_{4}	$\frac{-1+\sqrt{5}}{2}$	$\frac{3+\sqrt{5}}{2}$
ρ_{5}	$\frac{1-\sqrt{5}}{2}$	1
ρ_{6}	$\frac{1-\sqrt{5}}{2}$	$\frac{3+\sqrt{5}}{2}$
ρ_{7}	$\frac{-1-\sqrt{5}}{2}$	1
ρ_{8}	$\frac{-1-\sqrt{5}}{2}$	$\frac{3-\sqrt{5}}{2}$

Table 3. Parameters for the representations $\rho_{j}: G_{2} \rightarrow S L(2, \boldsymbol{C})$.
define a ring homomorphism $\Phi=(\tilde{\rho} \otimes \tilde{\alpha}) \circ \tilde{\phi}$ as follows.

$$
\begin{align*}
\Phi: \boldsymbol{Z}\langle x, y\rangle \xrightarrow{\tilde{\phi}} \boldsymbol{Z} G_{n} \xrightarrow{\tilde{\rho} \otimes \tilde{\alpha}} M\left(2 ; \boldsymbol{C}\left[t, t^{-1}\right]\right) \tag{25}\\
\frac{\partial r_{n}}{\partial y} \longmapsto \gg \sum \nu_{g} g \longmapsto \gg \nu_{g} \rho(g) \alpha(g)
\end{align*}
$$

where $r_{n}=w_{n} x-y w_{n}, \partial / \partial y$ denotes the Fox derivation, $g \in G_{n}$, and $\nu_{g} \in \boldsymbol{Z}$. Let $A_{\rho, y}=\Phi\left(\partial r_{n} / \partial y\right)$. Then the twisted Alexander polynomial of G_{n} associated to the representation ρ [13] is defined to be a rational function

$$
\begin{equation*}
\Delta_{G_{n}, \rho}(t)=\frac{\operatorname{det} A_{\rho, y}}{\operatorname{det} \Phi(x-1)} \tag{26}
\end{equation*}
$$

Note that if two representations ρ, ρ^{\prime} are conjugate, then $\Delta_{G_{n}, \rho}(t)=\Delta_{G_{n}, \rho^{\prime}}(t)$.
The remainder of this section will be devoted to the proof of the following proposition, where the breadth of a Laurent polynomial is the difference between the highest and lowest degrees.

Proposition 4.1. Suppose $n>0$. For the irreducible representation ρ defined in Sect. 3 the twisted Alexander polynomial of $G_{n}, \Delta_{G_{n}, \rho}(t)$ in Eq. (26), is a Laurent polynomial of breadth $2 n$ such that the coefficients of the highest degree term and lowest degree term are 1 and $u /(\epsilon p+2)$, respectively.

Since

$$
\begin{equation*}
\frac{\partial r_{n}}{\partial y}=\frac{\partial w_{n}}{\partial y}-y \frac{\partial w_{n}}{\partial y}-1 \tag{27}
\end{equation*}
$$

we have

$$
\begin{equation*}
\tilde{\alpha} \circ \tilde{\phi}\left(\frac{\partial r_{n}}{\partial y}\right)=(1-t)\left(\tilde{\alpha} \circ \tilde{\phi}\left(\frac{\partial w_{n}}{\partial y}\right)\right)-1 \tag{28}
\end{equation*}
$$

For $w_{n}=x y^{n} x^{-n-1} y$ we have

$$
\begin{equation*}
\frac{\partial w_{n}}{\partial y}=x+x y+x y^{2}+\cdots+x y^{n-1}+w_{n} y^{-1} \tag{29}
\end{equation*}
$$

Thus, we obtain
(30)

$$
A_{\rho, y}=\Phi\left(\frac{\partial r_{n}}{\partial y}\right)=(E-t Y)\left(t X\left(E+t Y+t^{2} Y^{2}+\cdots+t^{n-1} Y^{n-1}\right)+W_{n} Y^{-1}\right)-E
$$

On the other hand,

$$
\begin{equation*}
\operatorname{det} \Phi(x-1)=\operatorname{det}(t X-E) t^{2}-t\left(s+s^{-1}\right)+1=(t-s)\left(t-s^{-1}\right) \tag{31}
\end{equation*}
$$

We can prove the following by induction.

Lemma 4.2.

$$
E+t Y+t^{2} Y^{2}+\cdots+t^{n-1} Y^{n-1}=\left(\begin{array}{cc}
g_{n} & 0 \tag{32}\\
\frac{u}{s-s^{-1}}\left(g_{n}-h_{n}\right) & h_{n}
\end{array}\right)
$$

where

$$
\begin{equation*}
g_{n}=\frac{1-(s t)^{n}}{1-s t}, \quad h_{n}=\frac{1-\left(s^{-1} t\right)^{n}}{1-s^{-1} t} . \tag{33}
\end{equation*}
$$

Put

$$
\begin{equation*}
\operatorname{det} A_{\rho, y}=\varphi_{0}+\varphi_{1} u+\varphi_{2} u^{2} \tag{34}
\end{equation*}
$$

where $\varphi_{i} \in \boldsymbol{C}\left[t, t^{-1}\right]$.
Then,

$$
\begin{align*}
\varphi_{0}= & t^{2 n+2} \tag{35}\\
\left(s^{2}-1\right)^{2} \varphi_{1}= & -t^{2} s^{-2 n-1}\left(s^{n+1} t^{n}-s^{n+3} t^{n}-s^{3 n+3} t^{n}+s^{3 n+5} t^{n}\right. \\
& \left.+2 s^{2 n+3}-s^{4 n+5}-s\right)-s^{-2 n-1}\left(2 s^{2 n+3}-s^{4 n+3}-s^{3}\right) \\
& -t s^{-2 n-1}\left(-s^{n+2} t^{n}+s^{n+4} t^{n}+s^{3 n+2} t^{n}-s^{3 n+4} t^{n}\right. \\
& \left.-s^{2 n+2}-s^{2 n+4}-s^{2 n+6}+s^{4 n+2}+s^{4 n+6}-s^{2 n}+s^{4}+1\right) \\
\left(s^{2}-1\right)^{2} \varphi_{2}= & -t s^{-2 n-1}\left(-s^{2 n+2}-s^{2 n+4}+s^{4 n+4}+s^{2}\right) \tag{37}
\end{align*}
$$

Substituting $s^{2 n+1}=\epsilon=(-1)^{k}$, we obtain:

$$
\begin{align*}
\left(s^{2}-1\right)^{2} \varphi_{1}= & -\epsilon t^{2}\left(s^{n+1} t^{n}-s^{n+3} t^{n}-\epsilon s^{n+2} t^{n}+\epsilon s^{n+4} t^{n}+2 \epsilon s^{2}-s^{3}-s\right) \tag{38}\\
& -\epsilon\left(2 \epsilon s^{2}-s-s^{3}\right)-\epsilon t\left(-s^{n+2} t^{n}+s^{n+4} t^{n}\right. \\
& \left.+\epsilon s^{n+1} t^{n}-\epsilon s^{n+3} t^{n}-\epsilon s-\epsilon s^{3}-\epsilon s^{5}+2+2 s^{4}-\epsilon s^{-1}\right) \\
= & -\epsilon t^{2}\left(\left(1-s^{2}-\epsilon s+\epsilon s^{3}\right) s^{n+1} t^{n}-s(\epsilon-s)^{2}\right)+\epsilon s(\epsilon-s)^{2} \\
& -\epsilon t\left(\left(-s+s^{3}+\epsilon-\epsilon s^{2}\right) s^{n+1} t^{n}-\epsilon s^{-1}\left(s^{2}+s^{4}+s^{6}-2 \epsilon s-2 \epsilon s^{5}+1\right)\right. \\
= & -\epsilon t^{2}\left(\epsilon(\epsilon-s)\left(1-s^{2}\right) s^{n+1} t^{n}-s(\epsilon-s)^{2}\right)+\epsilon s(\epsilon-s)^{2} \\
& -\epsilon t\left((\epsilon-s)\left(1-s^{2}\right) s^{n+1} t^{n}-\epsilon s^{-1}(\epsilon-s)^{2}\left(1+s^{4}\right)\right)
\end{align*}
$$

$$
\begin{equation*}
\left(s^{2}-1\right)^{2} \varphi_{2}=-\epsilon t\left(-\epsilon s-\epsilon s^{3}+2 s^{2}\right)=s t(\epsilon-s)^{2} \tag{39}
\end{equation*}
$$

Since $s^{2}-1=(s-\epsilon)(s+\epsilon)$, we have:
(40) $\quad(\epsilon+s)^{2} \varphi_{1}=-\epsilon t^{2}\left(\epsilon(\epsilon+s) s^{n+1} t^{n}-s\right)+\epsilon s-\epsilon t\left((\epsilon+s) s^{n+1} t^{n}-\epsilon s^{-1}\left(1+s^{4}\right)\right)$

$$
\begin{aligned}
& =-(\epsilon+s) s^{n+1}(\epsilon+t) t^{n+1}+\epsilon s t^{2}+\epsilon s+s^{-1}\left(1+s^{4}\right) t \\
& =-\left(s^{-2 n-1}+s\right) s^{n+1}(\epsilon+t) t^{n+1}+\epsilon s t^{2}+\epsilon s+s^{-1}\left(1+s^{4}\right) t
\end{aligned}
$$

(41) $(\epsilon+s)^{2} \varphi_{2}=s t$.

Since $(\epsilon+s)^{2}=s\left(s+s^{-1}+2 \epsilon\right)$, we have:

$$
\begin{align*}
& \text { (42) } \quad\left(s+s^{-1}+2 \epsilon\right) \varphi_{1}=-\left(s^{-n-1}+s^{n+1}\right)(\epsilon+t) t^{n+1}+\epsilon t^{2}+\epsilon+\left(\left(s+s^{-1}\right)^{2}-2\right) t ; \tag{42}\\
& \text { (43) } \quad\left(s+s^{-1}+2 \epsilon\right) \varphi_{2}=t
\end{align*}
$$

Putting $p=s+s^{-1}$ and $\psi_{n}(p)=s^{-n-1}+s^{n+1} \in \boldsymbol{Z}[p]$, we obtain:

$$
\begin{align*}
& (p+2 \epsilon) \varphi_{1}=-\psi_{n}(p)(\epsilon+t) t^{n+1}+\epsilon t^{2}+\epsilon+\left(p^{2}-2\right) t \tag{44}\\
& (p+2 \epsilon) \varphi_{2}=t \tag{45}
\end{align*}
$$

Thus, we have:

$$
\begin{align*}
(p+2 \epsilon) \operatorname{det} A_{\rho, y} & =(p+2 \epsilon) t^{2 n+2}+\left(-\psi_{n}(p)(\epsilon+t) t^{n+1}+\epsilon t^{2}+\epsilon+\left(p^{2}-2\right) t\right) u+u^{2} t \tag{46}\\
& =\epsilon u+\left(\left(p^{2}-2\right) u+u^{2}\right) t+\epsilon u t^{2}-\psi_{n}(p) u(\epsilon+t) t^{n+1}+(p+2 \epsilon) t^{2 n+2}
\end{align*}
$$

Since $u^{2}+\left(p^{2}-4\right) u+\epsilon p+2=0$ from Eq. (9), this becomes:

$$
\begin{equation*}
(p+2 \epsilon) \operatorname{det} A_{\rho, y}=\epsilon u+(2 u-\epsilon p-2) t+\epsilon u t^{2}-\psi_{n}(p) u(\epsilon+t) t^{n+1}+(p+2 \epsilon) t^{2 n+2} \tag{47}
\end{equation*}
$$

Lemma 4.3. For the irreducible representation ρ defined in Sect. 3 the twisted Alexander polynomial of $G_{n}, \Delta_{G_{n}, \rho}(t)$ in Eq. (26), is a Laurent polynomial.

Proof. Let $P(t)$ be the right-hand side polynomial of Eq. (47). Then by Eq. (31) the result follows from $P(s)=P\left(s^{-1}\right)=0$. In fact,

$$
\begin{align*}
P(s) & =\epsilon u+(2 u-\epsilon p-2) s+\epsilon u s^{2}-\psi_{n}(p) u(\epsilon+s) s^{n+1}+(p+2 \epsilon) s^{2 n+2} \tag{48}\\
& =\epsilon u+(2 u-\epsilon p-2) s+\epsilon u s^{2}-(\epsilon s+1) u(\epsilon+s)+(p+2 \epsilon) \epsilon s \\
& =\epsilon u+(2 u) s+\epsilon u s^{2}-u\left(2 s+\epsilon+\epsilon s^{2}\right)=0
\end{align*}
$$

$P\left(s^{-1}\right)=0$ is similar.
Remark 4.4. It is known [5] that the twisted Alexander polynomial of a knot in S^{3} for any nonabelian representation into $S L(2, \boldsymbol{F})$ over a field \boldsymbol{F} is always a Laurent polynomial. For a reducible representation $\rho: \pi K \rightarrow S L(2, \boldsymbol{C})$ and for a representation $\rho: \pi K \rightarrow S L\left(2, \boldsymbol{F}_{p}\right)$ over a prime field \boldsymbol{F}_{p} there are ribbon 2-knots of 1-fusion K whose twisted Alexander polynomial are not Laurent polynomials; see [3].

Proof of Proposition 4.1. By Eqs. (31), (47) and Lemma 4.3 we obtain Proposition 4.1.

Example 4.5. For $n=1$, we give explicit forms of the twisted Alexander polynomials $\Delta_{G_{1}, \rho}(t)$. Since $p=-\epsilon$ and $\psi_{1}(p)=-1$, Eqs. (31) and (47) become

$$
\begin{align*}
\operatorname{det} \Phi(x-1) & =1+\epsilon t+t^{2} \tag{49}\\
\operatorname{det} A_{\rho, y} & =u+\epsilon(2 u-1) t+2 u t^{2}+\epsilon u t^{3}+t^{4} \\
& =\left(1+\epsilon t+t^{2}\right)\left(u+\epsilon(u-1) t+t^{2}\right)
\end{align*}
$$

from which we obtain

$$
\begin{align*}
\Delta_{G_{1}, \rho}(t) & =u+\epsilon(u-1) t+t^{2} \tag{51}\\
& =(\epsilon u-t)(\epsilon-t)
\end{align*}
$$

For each representation ρ_{j} we list the polynomial in Table 4.5.

$$
\begin{array}{cc}
\hline \text { Representation } & \Delta_{G_{1}, \rho}(t) \\
\hline \rho_{1} & \frac{3+\sqrt{5}}{2}+\frac{1+\sqrt{5}}{2} t+t^{2} \\
\rho_{2} & \frac{3-\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2} t+t^{2} \\
\rho_{3} & \frac{3+\sqrt{5}}{2}-\frac{1+\sqrt{5}}{2} t+t^{2} \\
\rho_{4} & \frac{3-\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2} t+t^{2} \\
\hline
\end{array}
$$

Table 4. Twisted Alexander polynomials of G_{1}.

Remark 4.6. The twisted Alexander polynomial of $R(-2,1,1,-2)$ associated to the representation ρ given in Remark 3.9 is $u_{0}\left(1+t^{2}\right)$.

Example 4.7. For $n=2$, we give explicit forms of the twisted Alexander polynomials $\Delta_{G_{2}, \rho}(t)$ in Table 5.

Representation	$\Delta_{G_{2}, \rho}(t)$
ρ_{1}	$\frac{3+\sqrt{5}}{2}+\frac{1+\sqrt{5}}{2} t^{3}+t^{4}$
ρ_{2}	$1+\frac{-1+\sqrt{5}}{2} t+t^{2}+\frac{1+\sqrt{5}}{2} t^{3}+t^{4}$
ρ_{3}	$\frac{3-\sqrt{5}}{2}+\frac{-1+\sqrt{5}}{2} t^{3}+t^{4}$
ρ_{4}	$1+\frac{1+\sqrt{5}}{2} t+t^{2}+\frac{-1+\sqrt{5}}{2} t^{3}+t^{4}$
ρ_{5}	$\frac{3-\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2} t^{3}+t^{4}$
ρ_{6}	$1+\frac{-1-\sqrt{5}}{2} t+t^{2}+\frac{1-\sqrt{5}}{2} t^{3}+t^{4}$
ρ_{7}	$\frac{3+\sqrt{5}}{2}+\frac{-1-\sqrt{5}}{2} t^{3}+t^{4}$
ρ_{8}	$1+\frac{1-\sqrt{5}}{2} t+t^{2}+\frac{-1-\sqrt{5}}{2} t^{3}+t^{4}$

$\overline{\text { TABLE 5. Twisted Alexander polynomials of } G_{2}}$.

Proof of Theorem 1.1. Part (i) follows from Proposition 2.2. Since the mirror image of K_{n} is isotopic to $R(1,-n-1, n, 1)$, which is K_{-n-1}; this implies Part (ii). By Lemma 3.7 (or also Proposition 4.1), the knot groups G_{m} and G_{n} are isomorphic if and only if either $m=n$ or $m+n=-1$. This implies Part (iii) since K_{0} and K_{-1} are trivial.

In order to prove Part (iv) we prove K_{n} and K_{-n-1} are not isotopic. Suppose $n>0$. By Proposition 4.1 the coefficients of the highest degree term and lowest degree term of the twisted Alexander polynomials of $K_{n}, \Delta_{G_{n}, \rho}(t)$, are 1 and $u /(\epsilon p+2)$, respectively. Since K_{-n-1} is the mirror image of K_{n}, the set of the twisted Alexander polynomials of K_{-n-1} consists of $\Delta_{G_{n}, \rho}\left(t^{-1}\right)$, and so the coefficients of their highest degree terms are $u /(\epsilon p+2)$, where $p=2 \cos (k \pi /(2 n+1))$ and u is a root of Eq. (9). For $p=p_{0}$ there are double roots $u=u_{1}, u_{2}$ for Eq. (9) by Lemma 3.7, and so at least one of $u_{1} /\left(\epsilon p_{0}+2\right)$ and $u_{2} /\left(\epsilon p_{0}+2\right)$ does not equal to 1 . Thus, K_{n} and K_{-n-1} have different twisted Alexander polynomials.

Remark 4.8. Part (iii) of Theorem 1.1, the non-triviality of $K_{n}(n \neq 0,-1)$, also follows from [7].

Acknowledgements

The first author was partially supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (No. 17K05259), Japan Society for the Promotion of Science. The second author was partially supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (No. 16K05151), Japan Society for the Promotion of Science.

References

[1] Kazuo Habiro, Taizo Kanenobu, and Akiko Shima, Finite type invariants of ribbon 2-knots, Lowdimensional topology (Funchal, 1998), Contemp. Math., vol. 233, Amer. Math. Soc., Providence, RI, 1999, pp. 187-196.
[2] Taizo Kanenobu and Seiya Komatsu, Enumeration of ribbon 2-knots presented by virtual arcs with up to four crossings, J. Knot Theory Ramifications 26 (2017), 1750042 (41 pages).
[3] Taizo Kanenobu and Toshio Sumi, Classification of ribbon 2-knots presented by virtual arcs with up to 4 crossings, in preparation (2017).
[4] Shin'ichi Kinoshita, On the Alexander polynomials of 2-spheres in a 4-sphere, Ann. of Math. (2) 74 (1961), 518-531.
[5] Teruaki Kitano and Takayuki Morifuji, Divisibility of twisted Alexander polynomials and fibered knots, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 1, 179-186.
[6] Xiao Song Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 3, 361-380.
[7] Yoshihiko Marumoto, On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ. 5 (1977), no. 1, 59-68.
[8] Robert Riley, Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford Ser. (2) 35 (1984), no. 138, 191-208.
[9] , Holomorphically parameterized families of subgroups of $\mathrm{SL}(2, \mathbf{C})$, Mathematika 32 (1985), no. 2, 248-264 (1986).
[10] Shin Satoh, Virtual knot presentation of ribbon torus-knots, J. Knot Theory Ramifications 9 (2000), no. 4, 531-542.
[11] Shin'ichi Suzuki, Knotting problems of 2-spheres in 4-sphere, Math. Sem. Notes Kobe Univ. 4 (1976), no. 3, 241-371.
[12] Kota Takahashi, Classification of ribbon -knot groups by using twisted Alexander polynomial, Master's thesis, Osaka City Universtiy, 2014, (in Japanese).
[13] Masaaki Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), no. 2, 241-256.
[14] Takeshi Yajima, On simply knotted spheres in R^{4}, Osaka J. Math. 1 (1964), 133-152.
[15] Takaaki Yanagawa, On ribbon 2-knots. The 3-manifold bounded by the 2-knots, Osaka J. Math. 6 (1969), 447-464.
[16] Tomoyuki Yasuda, Crossing and base numbers of ribbon 2-knots, J. Knot Theory Ramifications 10 (2001), no. 7, 999-1003.
[17] , Ribbon 2-knots with ribbon crossing number four, Research reports of Nara Technical College (2008), no. 44, 69-72, (in Japanese).
[18] , Ribbon 2-knots with ribbon crossing number four, II, Research reports of Nara Technical College (2009), no. 45, 59-62, (in Japanese).
[19] \qquad , Ribbon 2-knots with ribbon crossing number four, III, Research reports of Nara Technical College (2010), no. 46, 45-48, (in Japanese).
[20] , Ribbon 2-knots with ribbon crossing number four, IV, Research reports of Nara Technical College (2011), no. 47, 37-40, (in Japanese).

Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, JAPAN

E-mail address: kanenobu@sci.osaka-cu.ac.jp
Faculty of Arts and Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 8190395, JAPAN

E-mail address: sumi@artsci.kyushu-u.ac.jp

[^0]: Date: May 25, 2017
 2010 Mathematics Subject Classification. Primary 57Q45; Secondary 57M05.
 Key words and phrases. Ribbon 2-knot, Alexander polynomial, knot group, twisted Alexander polynomial.

