CLASSIFICATION OF A FAMILY OF RIBBON 2-KNOTS
WITH TRIVIAL ALEXANDER POLYNOMIAL

TAIZO KANENOBU AND TOSHIO SUMI

ABSTRACT. We consider a family of ribbon 2-knots with trivial Alexander polynomial.
We give nonabelian SL(2, C)-representations from the groups of these knots, and then
calculate the twisted Alexander polynomials associated to these representations, which
allows us to classify this family of knots.

1. INTRODUCTION

A ribbon 2-knot is an embedded 2-sphere in S* obtained by adding r 1-handles to
a trivial 2-link with r + 1 components for some r, which is called a ribbon 2-knot of
r-fusion; cf. [14, 15]. Yasuda [16-20] has been studying an enumeration of ribbon 2-knot
with ribbon crossing number up to 4, where the Alexander polynomial of each ribbon
2-knot is given but it is not referred about the classification of the knots so much.
Takahashi [12] classified ribbon 2-knots of 1-fusion with small ribbon crossing number
using the Alexander polynomial, representations of the knot group into SL(2,C), and
twisted Alexander polynomial. Recently, Kanenobu and Komatsu [2] have enumerated
ribbon 2-knots based on the virtual arc presentation of ribbon 2-knots, and Kanenobu
and Sumi [3] have attempted the classification of these ribbon 2-knots, where they used
the Alexander polynomial, homology of double branched covering space, representations
of the knot group into SL(2,F), F a finite field, and twisted Alexander polynomial.

In order to classify ribbon 2-knots the Alexander polynomial is a very useful invariant.
However, it is difficult to distinguish ribbon 2-knots sharing the same Alexander poly-
nomial. In this paper, we show the effectiveness of the twisted Alexander polynomial in
classifying the ribbon 2-knots, which was first achieved by Takahashi [12], and then by
the authors [3] as mentioned above. The twisted Alexander polynomial was introduced
by Lin [6] for knots in S® and by Wada [13] for finitely presentable groups, which is a
generalization of the classical Alexander polynomial and has many applications. In this
paper, we classify a family of ribbon 2-knots of 1-fusion with trivial Alexander polyno-
mial K,, = R(1,n,—n — 1,1), n € Z; see Sec. 2 for the definition of R(1,n,—n — 1,1).
First, we show the number of irreducible representations p : m1(S* — K,,) — SL(2,C)
up to conjugate is 2n (Proposition 3.5), where n > 0, classifying the knots K,, n > 0.
Next, we distinguish K,, and K_,,_1, which are mirror images one another, by Wada’s
twisted Alexander polynomials (Proposition 4.1). Our main theorem is the following.
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Theorem 1.1. For the family of ribbon 2-knots of 1-fusion K,, n € Z, we have the
following:
(i) Ky, has trivial Alezander polynomial.
(ii) The mirror image of K, is isotopic to K_,_1.
(i) K, is trivial if and only if n =0 or —1.
(iv) Form, ne€ Z —{-1,0}, K,, and K,, are isotopic if and only if m = n.

This paper is organized as follows: In Sect. 2 we define a ribbon 2-knot of 1-fusion and
give some properties. In Sect. 3 we decide irreducible representations of the group of the
knot K, into SL(2,C) up to conjugate. In Sect. 4 we calculate the twisted Alexander
polynomial of K, associated to the representations given in Sect. 3.

2. RIBBON 2-KNOT OF 1-FUSION

We define a ribbon 2-knot of 1-fusion R(p1,q1,- .., Pn,qn) as follows. Let Ly = S} uSt
be a trivial link with 2 components in R>. We add a band B to Ly as shown in
Fig. 1, where 7, ..., Tp,, Oqy, - - - ,0g, are pairs (D3, aU ) of a 3-ball D? and a properly
embedded arc a and band 3 as shown in Fig. 2.

1
St { ,,,,,,,,,,,,,, }
Tp1  — — Tp
a1 3 3 Ogn
1 e
Sy

FIGURE 1. Adding a band B to a trivial link Lo = S} U S}.

S S
R e

FIGURE 2. 7, and oy.
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Regard the band B as the image of an embedding b : I x I — R?, B = b(I x I), so that
SINb(I x I)=b(I x {i}), i =0, 1, where [ is the unit interval [0,1]. We take disjoint
2-disks Do U Dy in R? so that S} = 0D;, i =0, 1. Let Ko = (Lo —b(I x 9I))Ub(OI x I).
Then we obtain a ribbon 2-knot of 1-fusion R(p1,qi,...,Pn, ) in S* = R* U {cc} by
the moving pictures:

;

Ky for |t] < 1;

KouB=LyUB for|t|:1;
(1) Rrau. o pw ) 0 R x (1)) =4 Lo for 1< ] <2

Dy U Dy for |t| = 2;

0 for |t] > 2.

\

Any ribbon 2-knot of 1-fusion is represented in this form.

Note that a ribbon 2-knot is negative-amphicheiral, that is, a ribbon 2-knot K is
ambient isotopic to —K!, which is obtained from K by taking the mirror image and then
reversing the orientation; see [11, Theorem 2.18], [10, Proposition 4.1]. So, we show the
knot K,, n > 0, is non-positive-amphicheiral and non-invertible. If a ribbon 2-knot has
a non-reciprocal Alexander polynomial, that is, A (t) # A (t™1) up to t*, then it is
non non-positive-amphicheiral and non-invertible; cf. [11, Proposition 3.26].

Example 2.1. Figure 3 shows the ribbon 2-knot Ky = R(1,2,-3,1).

R LHW X X r

A, N ’ \ﬁ%} S 1 ‘ ’ ‘ ’
[t| <1 |t| =1 1<t <2 It| =2
FIGURE 3. The ribbon 2-knot R(1,2,—-3,1).
Note that R(p1,qi,.--,Pn,qn) is isotopic to R(—qn, —pn,--., —q1, —p1), which is the

mirror image of R(qn,Pn,---,q1,P1)-
The group of K, 1K = m1(S* — K), has a Wirtinger presentation

(2) < T,y ’ xilwilyw >, w = gPry? ... gPrydn

where x and y are meridians of Sg and S?, respectively.

The Alexander polynomial of a ribbon 2-knot K, Ak (t) € Z[t*!], is defined up to
+t", which we normalize so that Ag (1) = 1 and (d/dt)Ag(1) = 0; cf. [1, 4, 7]. For a
ribbon 2-knot of 1-fusion we have the following.
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Proposition 2.2. The normalized Alexander polynomial of the ribbon 2-knot of 1-fusion
R(pla q1,---,Pn, Qn) 18
2= —an (1 —th 4 tp1+lJ1 _ tp1+q1+p2 4.
—thrtaittpn +tp1+q1+-~~+pn+qn)
_ tp7z+pn—1+"'+p1 (1 _ t_Qn _|_ t_Qn_pn _ t_Qn_pn_CInfl + .

e L t*qn*pn*anlf"‘*(Il*pl) .

3. REPRESENTATION TO SL(2,C)

Let G be a finitely presented group. Two representations, namely homomorphisms,
p, P+ G — SL(2,C) are called conjugate if p(g) = Cp'(g)C~! for some C € SL(2,C)
and for any g € G. A representation p : G — SL(2,C) is said to be abelian if p(G) is
an abelian subgroup of SL(2,C). A representation p is called reducible if there exists a
proper invariant subspace of C? under the action of p(G). This is equivalent to saying
that p can be conjugate to a representation whose image consists of upper triangular
matrices. It is easy to see that every abelian representation is reducible, but the converse
does not hold. When p is not reducible, it is called irreducible.

The following is due to Riley [8, 9].

Proposition 3.1. If two matrices X, Y are conjugate in SL(2,C) and XY # Y X,
then there exists a matriz C € SL(2,C) such that:

(3) cxc _<03_1>’ cycC _<us_1>’
where s, u € C with s # 0 and (s,u) # (£1,0).
Furthermore, if there exists a matriz D € SL(2,C) such that:

_ s 1 _ s 0
(4) DXD1:<O 8/1>> DYD1:<U/ S/1>,
where ', u' € C with s’ # 0 and (s',u') # (£1,0), then (s',u’) = (s,u) or (s~1 u).
Let us consider the presentatin Eq. (2) of the group of the ribbon 2-knot of 1-fusion

R(p1,q1,---,Pn,qn). Then since x and y are conjugate, by Proposition 3.1 any non-
abelian representation G — SL(2; C) is conjugate to a representation p : G — SL(2; C)
given by

o) s =x=(5 L) sw=r=(5 ).

u s

for some s, u € C with s # 0 and (s, u) # (£1,0); such a representation p is parametrized
by the trace s + s~! and w. Furthermore, it is easy to prove the following.

Lemma 3.2. A nonabelian representation p in Eq. (5) is reducible if and only if either
u=—(s—s12% oru=0.

From now on we focus on the family of ribbon 2-knots of 1-fusion K,, = R(1,n,—n —
1,1),n € Z. Let G, = m(S* — K,,). Then
n, . —n—1

(6) Gp = (29| wr =ywy ), wp,=2y"x Y.
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We define a nonabelian representation
(7) p:G, — SL(2,C)

by the correspondence Eq. (5), where s, v € C with s # 0 and (s,u) # (£1,0). Then,
we have the following.

Proposition 3.3. Suppose n > 0. The parameters s and u satisfy:
(8) s=& (k=1,2,...,2n,2n+2,2n+3,...,4n + 1);
9) w+ (p° —4)ut+ep+2=0,

!
2n +

We use the following lemma in the proof of Proposition 3.3.

where &, = exp ,p=s+s"1 and e = (€F)2nF1 = (—1)k,

Lemma 3.4. Fori € Z, we have:

i (s fi i (st 0
(10) X —( 0 S—i >7 Y _<uf7, S—i >7
where
st—g7t
(11) P S if s # +1;

isi1 if s = +1.
Proof. Induction on 1. O

Proof of Proposition 3.3. Let

o e ()

Then using Lemma 3.4, we have:

(13) Wi =s+u(s+s"fn+ Sn+1f_n_1) +ul fofon_1
= s+ u(l — %) fufurr — 0 fofora;

(14) (Wahi2 =14 8"fn1+us ' fon_1fn
= =" fo —us™ fufuins

(15) (Wp)or =u+us "1, +u?s™ f 1 fn
= us™ " frp1 — U™ s

(16) W)z = s +us ™ fufn
=5 —us? fufur1,

where we use f_j = —fx and s*frp1 — sFT1f =1 for k € Z.

Let

) Ro=wox = (G s )
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Then

(18) (Rp)11 = 0;

(19) (Ru)12 = W) — (s — s~ 1) (Wai2;
(20) (Ra)a1 = (s = s~ ) (Wa)21 — u(Wa)11;
(21) (Rn)2z = (Wn)21 — w(Wh)r2.

From the relation w,z = yw,, it should hold that R, = W, X — YW, = O. Using

Eqgs. (14) and (15), we have (W,)21 — u(Wy)12 = ufont1. Then from (Ry)22 = 0,

Eq. (21) yields either uw = 0 or fop,41 = 0. If u = 0, then by Egs. (13) and (14)

(Wy)11 = s and (W,)12 = —s"T1f,,. Substituting them into Eq. (19) we have (R,,)12 =

s—(s—s ) (=s"f,) =52 £0, and so u # 0. From fa,41 = 0 we obtain Eq. (8).
Next, using Egs. (13) and (14), we have

(22) (Wai1 = (s = s (Wa)iz = ™" —u(s — s7)2 fafusr — U fafarr.
Then from (R,)21 = 0, Eq. (20) yields Eq. (9). In fact, if s = &¢, then s2"*! = ¢ and
fofor1 = —s/(s+€)?=—1/(s+ 571+ 2e). O

For a group G we denote by r(G) the number of irreducible representations to SL(2, C)
up to conjugate. Then, by Lemmas 3.6 and 3.7 below, we obtain the following.

Proposition 3.5. For n > 0, we have r(G,) = 4n.

Lemma 3.6. The nonabelian representations p : G,, — SL(2,C) defined as above are
irreducible.

Proof. Assume the representation p in Eq. (5) is reducible. Then by Lemma 3.2, u =
4 —p? or u = 0. Then Eq. (9) implies ep + 2 = 0, which contradicts Eq. (8). O

Lemma 3.7. If s =¢F (k=1,2,...,2n,2n +2,2n +3,...,4n + 1), then the quadratic
equation (9) does not have a double root.

Proof. From Eq. (9) we have
(23) 2u=—(p? —4) + /pt — 8p% — dep + 8
= —(p+26)(p — 2¢) £ /(p + 2¢)(p® — 2p? — 4p + 4e).

So, we have only to prove p3 — 2ep? — 4p + 4e # 0. Suppose p> — 2ep? — 4p + 4e = 0.
Letting v(t) = t5 — 2t> —t* — 2 — 2t + 1, we have p> — 2ep? — 4p + 4e = s~ 37(es), and so
~v(es) = 0. Note that €s is a primitive dth root of unity for some d, which is a divisor of
4n + 2. Let F4(t) be the dth cyclotomic polynomial, which is an irreducible polynomial
with integer coefficients. So, Fy(t) is a factor of y(t). Then since deg Fy(t) < 6 and
s # £1, we obtain d € {3,5,6,7,9,10,14,18}. For each d, we see that Fy(t) is not a
factor of (t) (see Table 1), a contradiction. O

Example 3.8. For Gy, we have p = s + s~ = 2cos(kr/3) = (=1)*7! (k = 1, 2), and
there are 4 irreducible representations p; : G — SL(2,C) up to conjugate, 1 < j < 4;
in Table 2 we list the parameters p, u for each p;.
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Fqy(t)

1+t+¢2

1+t+24+34+t4

1—t+¢t2

1+t+24+3+t4+t2 416
9 1+4+1¢3+1¢6

10 1—t+2—-3+t4

14 1—t+2—t3+t*—t°+1¢8
18 1—t3+1¢6

TABLE 1. Cyclotomic polynomials.

O Ut W| X

Representation p U
p1 1 3+T‘/5
09 1 3—2\/5
03 1 3+2\/5
4 1 3—2x/5

TABLE 2. Parameters for the representations p; : G — SL(2,C).

Remark 3.9. Takahashi [12] condidered K; = R(1,1,-2,1) and R(—2,1,1,—2); both
of which have trivial Alexander polynomial. He has distinguished their knot groups by
the representations to SL(2,C). In fact, the knot group of R(—2,1, 1, —2) has infinitely
many representations p as in Eq. (5) for s € C — {0,+1} and u = ug, where

—(1—82)2(1+ %) £ /(1 — 52— 283 — st + 50)(1 — 52 + 253 — 5% + s0)

(24)  uo = 252(1 4 s?)

Note that R(—2,1,1, —2) is positive-amphicheiral.

S

Example 3.10. For Ga, we have p = s+ s7' = 2cos(kr/5) (k = 1,2,3,4) = 2

_1‘2“/5, 1_2‘/5, _1;‘/5, and there are 8 irreducible representations p; : Go — SL(2,C)
up to conjugate, 1 < j < 8; in Table 3 we list the parameters p, u for each p;.

4. TWISTED ALEXANDER POLYNOMIAL OF K,

Let a : Gy, — (t) = Z be an abelianization defined by a(z) = a(y) = ¢, which induces
the ring homomorphism & : ZG, — Z[t,t~!]. For an SL(2;C) representation of G,
p: Gp, — SL(2;C) the ring homomorphism p : ZG,, — M (2;C) is brought out from
p. For the free group (x,y) with free basis {z,y} let ¢ : (x,y) — G, be the canonical
homomorphism, which induces the ring homomorphism ¢ : Z (x,y) — ZG,. Now, we
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Representation P U
o1 1+2\/5 1
P2 1+2\/5 372\/5
p3 715\/5 1
P4 7145\/5 3+2\/5
P5 1_2\/‘?’ 1
Pe # 3+2\/5
P _15\/5 1
P8 - 15\/5 3_2\/5

TABLE 3. Parameters for the representations p; : Go — SL(2,C).

define a ring homomorphism ® = (5 ® &) o ¢ as follows.

¢ PR

(25) O Z(x,y) ZG,, M(2;Ct, t_l])
a;; Y g Y v(g)a(g),

where r, = wpx — ywy,, 0/0y denotes the Fox derivation, g € Gy, and vy, € Z. Let
A,y = ®(0r,/0y). Then the twisted Alexander polynomial of G, associated to the
representation p [13] is defined to be a rational function

__detdy,
~det®(z—1)°
Note that if two representations p, p' are conjugate, then Ag, ,(t) = Ag,, p(t).
The remainder of this section will be devoted to the proof of the following proposition,

where the breadth of a Laurent polynomial is the difference between the highest and
lowest degrees.

(26) AGy,p(t)

Proposition 4.1. Suppose n > 0. For the irreducible representation p defined in Sect. 3
the twisted Alexander polynomial of Gy, Ag,, ,(t) in Eq. (26), is a Laurent polynomial
of breadth 2n such that the coefficients of the highest degree term and lowest degree term
are 1 and u/(ep + 2), respectively.

Since
or,  Owy, owy,
2 -_n _ =" _1
we have

(28) &oé(%?;):(l—t) <aoq§(88“;")>—1.
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For w, = zy"2 " 1y we have
dwy, 2 n—1 —1
(29) By =x4+xzy+ay’+---+ay" +wuy .
Thus, we obtain
(30)
Orn 21,2 n—1ly n—1 -1
Apy = ) = (E—tY)(tX(E+tY + Y+ +t" 'Y )+ W, Y ') - E.
Yy
On the other hand,
(31) det ®(z — 1) =det(tX — E)t* —t(s+s ) +1=(t—s)(t—s ).

We can prove the following by induction.

Lemma 4.2.

g 0
+tY +1¢ +-- = u ’ )
32 E Y 2y2 n 1yn 1 b b
m(gn —hn) by
where
1— (st) 1—(s71t)n
33 = Y  p = 7
(33) In 1—st = " 1—s71t
Put
(34) det Apy = o + p1u + pou?,
where p; € C[t,t71].
Then,
(35) Qo = 1212
(36) (82 o 1)2()01 — t28—2n—1 (Sn—l—ltn o sn+3tn _ S3n+3tn 4 S3n+5tn

+282n+3 _ S4n+5 _ 8) _ S—Qn—l (28271-1—3 _ S4n+3 _ 33)
_ t8_2n_1 (_Sn+2tn + Sn+4tn + 83n+2tn . 83n+4tn
)

_52n+2 _ 82n+4 _ 82n+6 + S4n+2 + s4n+6 _ 82n + 84 + 1)

(37> (82 o 1)2()02 — tSanfl (_$2n+2 _ $2n+4 + S4n+4 + 82) )
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Substituting s?"*1 = e = (—1)*, we obtain:

38
( (252 —1)2%p; = — et? (s”“t” — T s s 4 2es” — 53 — s)
—€ (2682 —5— 53) — et (—s"+2t" + s
+ es"THT — s — s — €53 — €5 + 2+ 25" — es_l)
=—et® (1 — s* —es+es)s" 1" — s(e — 5)?) + es(e — s5)°
—et ((—s+5° +e—es?)s"TH" —esTH(s? + s + 50 — 2es — 2e5” + 1)
= —et® (e(e — ) (1 — 8%)s" " — s(€ — 5)?) + es(e — 5)?
—et ((e— )( s%)s" T — esHe — 5)*(1 4 s%))
39
( (,>92—1) o= —et(—¢ €s — €55 + 2s ) = st(e — s)%

Since s — 1 = (s — €)(s + €), we have:
(40) (e + 5)%p; = — et? (e(e+ s)s" T — s)+es—et((e+ $)s"TH —esTH(1 + 84))
— (e+5)s" T (e + )" +est? +es+ 571+ st
= — (727 4 5)s" T e + )" est® +es + 571 (1 4 M)t
(41) (e + s)%pq =st.
Since (e + s)? = s(s + s~ + 2¢), we have:
(42)  (s+s ' +2)01 == (s 4" e+ )T fet? F e+ ((s+ 5712 - 2)t;
(43) (s + s+ 2€)p0 =t.

Putting p = s + s~ ! and ¢, (p) = s~ + s"*! € Z[p], we obtain:

(44) (p+26)p1 = = Yu(p)(e + )" + et® + e + (p* — 2)t;
(45) (p+2€¢)p2 =

Thus, we have:

(46)

(p+2¢)det A,y = (p+ 26072 + (—hn(p) (e + " + et® + e + (p> — 2)t) u + u’t
= eu+ ((p* = 2)u +u?) t + eut® — Py (p)ule + )" + (p + 26)t" 2.
Since u? + (p? — 4)u + ep + 2 = 0 from Eq. (9), this becomes:

(47)
(p+2¢)det A, = eu+ (2u — ep — 2)t + eut® — Y (p)ule + )" + (p + 2¢)12" 2,

Lemma 4.3. For the irreducible representation p defined in Sect. 3 the twisted Alexander
polynomial of G, Ag, p(t) in Eq. (26), is a Laurent polynomial.
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Proof. Let P(t) be the right-hand side polynomial of Eq. (47). Then by Eq. (31) the
result follows from P(s) = P(s~!) = 0. In fact,
(48) P(s) =eu + (2u — ep — 2)s + eus® — ¥, (p)u(e + 5)s" L + (p + 2¢)s>+2
—eu + (2u — ep — 2)s + eus® — (es + Du(e + s) + (p + 2€)es
—eu + (2u)s + eus® — u(2s + € + es?) = 0;
P(s71) = 0 is similar. O

Remark 4.4. Tt is known [5] that the twisted Alexander polynomial of a knot in S3
for any nonabelian representation into SL(2,F) over a field F' is always a Laurent
polynomial. For a reducible representation p : 7K — SL(2,C) and for a representation
p:mK — SL(2,F,) over a prime field F', there are ribbon 2-knots of 1-fusion K whose
twisted Alexander polynomial are not Laurent polynomials; see [3].

Proof of Proposition 4.1. By Egs. (31), (47) and Lemma 4.3 we obtain Proposition 4.1.
O

Example 4.5. For n = 1, we give explicit forms of the twisted Alexander polynomials
Ag, p(t). Since p = —e and 91 (p) = —1, Egs. (31) and (47) become

(49) det ®(x — 1) = 1 + et + %
(50) det A,y = u + €(2u — 1)t + 2ut® + eut® + t*
= (1+et+t3)(u+e(u—1)t+1t2),

from which we obtain

(51) Ay p(t) = u+e(u— 1)t + ¢
= (eu — t)(e — t).

For each representation p; we list the polynomial in Table 4.5.

Representation Ag, p(t)

P S5 4 LBy g2
P2 35 4 1t g2
p3 345 _ 14354 4 42
p1 55 1By g2

TABLE 4. Twisted Alexander polynomials of G;.

Remark 4.6. The twisted Alexander polynomial of R(—2, 1,1, —2) associated to the rep-
resentation p given in Remark 3.9 is ug(1 + ¢2).

Example 4.7. For n = 2, we give explicit forms of the twisted Alexander polynomials
Ag, p(t) in Table 5.
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Represenl ation AG27p(t)
3+\/€) 1+\/5 3 4

P1

P2 14 =15y g g2 4 153 4 g4
ps S R

P4 14 1604 442 4 —LVE3 4 4
ps S5 4 1ohy3 4 ¢t

p6 14 =158 4 g2 4 163 4 gt
pr S5 4 =Lo/Byd 4 g

P 14+ 1505 42 4 1553 4 g

TABLE 5. Twisted Alexander polynomials of Gs.

Proof of Theorem 1.1. Part (i) follows from Proposition 2.2. Since the mirror image of
K, is isotopic to R(1,—n—1,n, 1), which is K_,_1; this implies Part (ii). By Lemma 3.7
(or also Proposition 4.1), the knot groups G, and G,, are isomorphic if and only if either
m =mn or m+n = —1. This implies Part (iii) since Ky and K_; are trivial.

In order to prove Part (iv) we prove K,, and K_,,_; are not isotopic. Suppose n > 0.
By Proposition 4.1 the coefficients of the highest degree term and lowest degree term of
the twisted Alexander polynomials of K, Ag, ,(t), are 1 and u/(ep + 2), respectively.
Since K_,,_1 is the mirror image of K, the set of the twisted Alexander polynomials of
K_,_1 consists of Ag, ,(t7), and so the coefficients of their highest degree terms are
u/(ep+2), where p = 2cos(kn/(2n+ 1)) and u is a root of Eq. (9). For p = pg there are
double roots u = uy, ug for Eq. (9) by Lemma 3.7, and so at least one of u1 /(epp+2) and
ua/(epo +2) does not equal to 1. Thus, K, and K_,,_; have different twisted Alexander
polynomials. ([

Remark 4.8. Part (iii) of Theorem 1.1, the non-triviality of K,, (n # 0, —1), also follows
from [7].
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