TORIC MANIFOLDS OVER CYCLOHEDRA

SEONJEONG PARK

ABSTRACT. We study the action of the dihedral group on the (equivariant) cohomology of
the toric manifolds associated with cycle graphs.

1. INTRODUCTION

A graph G is an ordered pair (V,FE), where V is a set of vertices and E is a set of
unordered pairs of nodes, called edges. A path graph P,.; is a graph whose vertex set
is[n+1] :={1,...,n,n+ 1} and edge set is {(i,i+1) | i = 1,...,n}. A cycle graph is a
graph that consists of a single cycle through all vertices, in other words, the cycle graph Ci,41
is obtained from the path graph P, by adding the edge (1,n + 1).

A graph associahedron PG is a simple convex polytope whose facets correspond to the
connected proper subgraphs of G. The notion of a graph associahedron was introduced by
Carr and Devadoss ([1]) motivated by the associahedron. The associahedron As™ is the n-
dimensional simple convex polytope in which each vertex corresponds to a way of correctly
inserting opening and closing parentheses in a word of n + 2 letters and the edges correspond
to single application of the associativity rule, and it can be also constructed as the graph
associahedron corresponding to the path graph P,i;. Moreover, the permutohedron Pe",
the cyclohedron Cy™, and the stellohedron St™ are the graph associahedra corresponding
to the complete graph K, 1, the cycle graph (11, and the star graph K ,, respectively.
They have been studied in different contexts in mathematics such as algebraic combinatorics
([10, 2]), discrete geometry ([8]) and so on.

An n-dimensional simple convex polytope is called a Delzant polytope if the (outward)
primitive normal vectors to the facets meeting at each vertex form an integral basis of Z".
Every graph associahedron can be realized as a Delzant polytope in a canonical way; we will
give the canonical construction in Section 2, also see [3] for details. Hence, by the fundamental
theorem of toric geometry, there is a toric manifold associated with a graph. We denoted by
Mg the toric manifold associated with the graph G.

The actions of a finite group on toric manifolds have been also studied by many people,
especially for the symmetric group. Garsia and Stanton studied the action of the symmetric
group on Stanley-Reisner rings, see [5]. Note that the Stanley-Reisner ring of a Delzant poly-
tope is isomorphic to the equivariant cohomology ring of the toric manifold over the Delzant
polytope. Procesi studied the action of the Weyl group on the (equivariant) cohomology
of the toric manifold associated with Weyl chambers, see [7]. Note that the Weyl group of
Type A is the symmetric group.
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On the other hand, the automorphism group of the complete graph K,y is the symmetric
group Sp11 and the toric manifold Mg, , is the toric manifold associated with Weyl cham-
bers. In general, the automorphism group Aut(G) of a given graph G is a subgroup of the
symmetric group on V = [n + 1] and hence one can also study the action of Aut(G) on the
toric manifold Mg, and the dihedral group D, is the automorphism group of the cycle
graph Cn-i—l-

The purpose of this paper is to deduce an explicit formula for the representation of the
dihedral group on the equivariant cohomology of the toric manifold M¢,,, . It should be noted
that, for a toric manifold M, the equivariant cohomology ring H}.(M) := H*(ET xp M) is
isomorphic to H*(M) @ H*(BT') as an H*(BT)-module. Hence the explicit formula for the
representation on H7(M) gives the explicit formula for the representation on the ordinary
cohomology H*(Mc,_, ).

This paper is organized as follows: in Section 2, we review the definitions and properties
of graph associahedra. Section 3 deals with the dihedral group action on a cyclohedron. In
Section 3, we study the subring of H}.(Mc, _; C) determined by facial submanifold Mp, which
is stable under the isotropy group of the face F'. In Section 5, we deduce an explicit formula for
the representation of the dihedral group on the equivariant cohomology of M¢, .. Section 6
introduces a relationship between the faces of C'y" and annular non-crossing matchings.

2. GRAPH ASSOCIAHEDRA

In this section, we review the construction and properties of the graph associahedron PG,
the simple polytope associated with a graph G.

Let G be a connected graph on the vertex set [n + 1]. For a subset I C [n + 1], we denote
by G[I] the subgraph of G whose vertex set is I and whose edge set consists of all of the
edges of GG that have both endpoints in 1.

Let us review the construction of the graph associahedron PG. Let A™ be a standard
simplex whose facets are (outward) normal to the standard basis vectors —ey, ..., —e, and
the vector ) " ;e;. Then we denote by Fj the facet of A™ that is normal to the vector
—e; for 1 <4i < n and Fj, ;1 the facet normal to the vector 2?21 e;. Then there is a one-
to-one correspondence between the nonempty proper subsets of [n + 1] and the nonempty
proper faces of A". Then the graph associahedron PG is obtained from A™ by truncating
the faces corresponding to the connected proper induced subgraphs G[I] in increasing order
of dimension. We denote by F the facet of PG corresponding to the connected induced
subgraph G[I]. The graph associahedron PG is a simple polytope of dimension n and it can
be realized as a Delzant polytope, where the normal vector of the facet F7 is equal to the

vector
— D er€ ifn+1¢&1I, or
djgre ifn+1lel

Hence there is a complex n-dimensional toric manifold associated with a connected graph G
on [n + 1], and we will denote by M¢ the toric manifold associated with G.

Example 2.1. Consider the cycle graph Cjy, see Figure 1, the first. Then the connected
proper subgraphs of Cy4 are

1,2,3,4,12,23,34, 14,123,124, 134, 234.1

11f there is no confusion, we omit the curly braces or commas to save the space.
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FIGURE 1. Construction of Cy>

We first truncate the vertices corresponding to the subgraphs 123, 124, 134, and 234 from
A3, see Figure 1, the third. Now we truncate the edges corresponding to the subgraphs 12,
23, 34, and 14, so that we can obtain the cyclonhedron C? in Figure 1, the last.

Note that two facets F7 and Fy of PG intersect if and only if I C J, J C I, or the induced
subgraph G[I U.J] is disconnected. Hence a subset N C 2"\ [n + 1] corresponds to a face
of PG if and only if it satisfies the following three conditions.

(N1) If I € N, then G[I] is connected.

(N2) If I,J e N, then I C J, JC I, or INJ=0.

(N3) For any collection of k > 2 disjoint subsets Ji,...,Jx € N, their union J; U--- U Jj
does not induce a connected subgraph.

A subset N C 2[*H1\ [n41] is called a nested set of G if it satisfies (N1)~(N3). Let N'(G) be
the set of nested sets of G, and let N3(G) = {N € N(G) | IN| = k} for 0 < k < n. Then the
face poset F(P@) is isomorphic to the poset N'(G) ordered by reverse inclusion, and there is
one-to-one correspondence between N (G) and the set of codimension-k faces of PG. When
G is a special kind of graphs such as complete graphs, cycle graphs, path graphs, and star
graphs, the face numbers of PG is well-studied. Among them, we only introduce the case
when G is a cycle graph.

Proposition 2.2. [9] Fork = 1,...,n, the number of codimension-k faces of the n-dimensional

cyclohedron Cy" is equal to
n () (n+1

Consider the polynomial ring k[zr | I € N1(G)], where k is a commutative ring with unit.
Then the equivariant cohomology ring of the toric manifold Mg, H}(Mg; k) := H*(ET X
Mg; k), is the quotient of klz; | I € Ni(G)] by the Stanley-Reisner ideal of PG, the ideal
generated by square-free monomials xy, - -z, for {I1,..., I} € Nix(G). That is,

H;(Mg;k) = k[(L’] ’ Ie Nl(G)] /<(L‘[1 C Xy ’ {[1, .. ,Ik} gNk(G), 2<k< n)

and for each face Fiy € F(PG), the monomial [[;. =1 is a nonzero element of Hy(Mg) of
degree 2i for i = 1,...,n. Note that H}.(Mg;k) is isomorphic to the Stanley-Reisner ring
of PG. The ordinary cohomology ring of My is also described from the information of the
graph:

H*(Mg;k) = Hp(Ma: k) /(= > ap+ Y ar|i<i<n),

{i: i€, {i: igI
n+1¢I} n+1€l}

see [3] for details.
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3. DIHEDRAL GROUP ACTION ON THE CYCLOHEDRON Cy"

In this section, we introduce the terminologies and notations which we will use, review
the properties of dihedral groups as the automorphism groups of cyclic graphs, and then we
study the action of the dihedral group on the poset F(Cy") =2 N (Cp41)-

An automorphism of a graph G = (V, E) is a permutation ¢ on V such that (u,v) € E if
and only if (o(u),o(v)) € E. The automorphisms of G form a group of G, and we will denote
it by Aut(G).

The automorphism group Aut(C),41) is generated by a rotation and a reflection. For each
positive integer k, the rotation oy is the permutation on [n + 1] given by

op:n+1] = [n+1], i—i+k (modn+1),

such that o = (1) and the order of oy, is (n + 1)/gcd(k,n + 1), where ged(k,n + 1) is the
greatest common divisor of k and n + 1. The reflection 7 is the permutation on [n + 1] given
by

7:In+1]—=n+1], i~ —i (modn+1),
such 72 = e and TouT = a,;l. Then for each positive integer k, o, and o7 form the
automorphism group of the cycle graph C),+1, which is the dihedral group

Dn+1:{0k7 ok7'|1§k§n+1}.

Note that the face poset of Cy™ is isomorphic to the poset N (Cy+1) ordered by reverse
inclusion. Hence to study the action of D,,4; on Cy", it is enough to see the action of D1
on N(Cp1).

There is a natural action of Dy,4+1 on N (Cp,41) coming from the action of D, 1 on Cpiq;
for each ¢ € Dp1, if I = {i1,... 05} € Ni(Cpy1), then ¢-I = {p(i1),...,¢(ix)} € Ni(Cpi1),
and hence if N = {I1,...,Ij} € Ni(Cp41), then ¢ N ={¢-I1,...,¢- I;} € Np(Cpi1).

For each N € N(Cp+1), we denote by (Dy41)nv = {¢ € Dpy1 | - N = N}, the isotropy
group of N. If N = (), then (D,,11)n = Dp+1, and otherwise, (D,+1)x is a proper subgroup
of D,,+1. Note that the dihedral group D,,41 has two kinds of subgroups

(1) (og) for a divisor k of n + 1, and

(2) (ok,o,7) for a divisor k of n+1and 0 <7 < k.
Then the subgroup (o) is isomorphic to the cyclic group Cy4 of order d = (n+1)/ged(k,n+1),
and the subgroup (o, 0,7) is isomorphic to the dihedral group D,.

For a nested set N = {I1,..., I}, we set Cp1[N] := Cpy1[l1 U --- U I}, the induced
subgraph of C,, 1 by the union I;U- - -UI. Note that for ¢ € (Dy41)n, Cnyi1[o-N] = Cry1[N].

Lemma 3.1. For each N € Ni(Cpt1), (Dpy1)n is isomorphic to Cq or Dy for some common
divisor d of |[N| and k(Cy+1[N]), where K(Cp41[N]) is the number of the components of the
graph Cp1[N].

Proof. Note that (Dy41)N = Dy if and only if N = . If k(Cp,41[IN]) = 1, then a nontrivial
element ¢ fixing N must be a reflection. Hence (D,,11)n is (e) or Dj.

Now assume that x(Cp11[N]) = ¢ and (Dp41)n is not a subgroup of Dy. Then N can be
divided into the nested sets Ni,..., Ng such that [Nj| = --- = |Ng| and (0,)"!- Ny = N;
fort=1,...,d. Then x = ”T“ and each of Nq,..., Ny can be identified with each other.
Hence d should be a common divisor of k and ¢. We take d as big as possible. Then Cy4 is a
subgroup of (Dy,+1)n. If there is no reflection 7/ in D, 1 such that 7/- N = N, then (D, 41)n
is the cyclic group (o) = Cy.
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If the isotropy group (D,1)n has also a reflection 7" € D,, 11, then there exists an integer
i € [d] such that 7/ - N; = N; or 7/ - N; = N;1. If 7/ - N; = Nj;q, then there exists a
reflection 7/ such that 7/ - N; = N;. In fact, 7/ = (0,)~'7’. Hence (D,11)n is isomorphic to
(05,7") =2 Dy. Furthermore, (D,41)n, = D; for each 1 < i < d. O

Example 3.2. Consider the action of Dg on N (Cg), and the nested sets {12,45}, {1,4}, and
{1,12,4,45}, see Figure 2. Then {12,45} decomposes into two nested sets {12} and {45}
such that 03-{12} = {45} and 7-{12} = {45}. The nested set {1,4} also decomposes into two
nested sets {1} and {4} such that o3-{1} = {4} and (o57)-{1} = {4}. Hence the nested sets
{12,45} and {1,4} have the isotropy groups (o3, 7) and (o3, 027), respectively. Both (o3, 7)
and (o3, 097) are isomorphic to Dy. On the other hand, there is no reflection in Dg preserving
{1,12,4,45}, but {1,12,4,45} decomposes into two nested sets {1,12} and {4, 45} satisfying
o3 - {1,12} = {4,45}. Hence the nested set {1,12,4,45} has the isotropy group (o3) = Cs.

02T

FIGURE 2. Isotropy groups of nested sets

Given a cycle graph C),+1, we define
ans1(d k) = [{N € Ni(Cui1) | (Duyr)n = Ca}l, and
Brr1(d, k) = {N € Ni(Cps1) | (Dnsr)n = Da}l.

We can easily compute a,,+1(d, k) and S,41(d, k) in some special cases.

Lemma 3.3. We have the following.
(1) anti(d, k) = Bnyi1(d, k) =0ifdtk,dtn+1, ord+k>n+1;
(2) an-i—l(]-a 1) =0 and 571-&-1(17 1) = n(n + 1)!

(3) ant1(ZE, ) =0 and Byp1 (L, 2H) = 2 when n + 1 is even.

Proof. If (Dp+1)n is isomorphic to Cq or Dy, then it is clear that d | k and d | n + 1.
Furthermore, since k < n+1,if d | k and d | n + 1, then we have d + £ < n + 1. This
proves (1). If N = {I} is a singleton, then (D,4+1)n = Di, hence this proves (2). When

n + 1 is even, the proper maximal divisor of n 4+ 1 is ”T“ and there are only two nested sets
satisfying oo - N = N; {1,3,...,n} and {2,4,...,n+ 1}. This proves (3). O

Note that 3, (an+1(d; k) + Bni1(d, k)) is equal to the number of nested sets of cardinal-
ity k, where the summation is taken over all divisors of k, hence we have

(3. > @l + @) = () (")

d: dk
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from Proposition 2.2.

Note that each cycle graph Cy can be presented as ¢ dots equally spaced on a circle;
there is a one-to-one correspondence between the vertices i € [(] = V(Cy) and the dots
QK(Z[D ,sin 2”“[”) € 8. If ¢ is a divisor of n + 1, say p/ = n + 1, then there is a
p-to-1 covering : Cp4+1 — Cy via the correspondence:

Vg = (cos

1
{Un+1,iyvn+l,€+i7 e 7vn+1,(p71)f+i} A {W,i}-

Hence if N € Ny(Cp), then ¢ 1 (N) € Npi(Cry1) and (Dpi1),-1(ny is determined by (Dy) .
If (Dg)N = Cd, then (Dn—i-l)zp*l(N) = de; if (Dg)N = Dd, then (Dn—i-l)gp*l(]\[) = Dpd~ One can
easily see that the converse also holds.

Proposition 3.4. Let ¢ be a divisor of n+1, say pl = n+1. A nested set N € N(Cy41) has
the isotropy group Dpq (respectively, Cpq) if and only if there exists a nested set Ny € N (Cy)
such that N = o~ Y(Ng) and (D¢)n, = Dy (respectively, (Dy)n, = Cyq), where ¢ is the p-to-1
covering Cpy1 — Cy.

As we saw in Example 3.2, the nested sets {12,45} and {1,12,4,45} in N(Cs) have the
isotropy groups Dy and Ca, respectively. In fact, {12,45} and {1,12,4,45} are induced from
the nested sets {12} and {1, 12} in N (C3) whose isotropy groups are D; and (e), respectively.

The proposition above tells us the following.

Corollary 3.5. Given a positive integer n+ 1, if d is a common divisor of n+1 and k, then

k k
an+1(d, k) = omTH(l, g) and Bni1(d, k) = BnTH(l, 8)

Otherwise, any1(d, k) = Bpt1(d, k) = 0.
By using the Mobius inversion formula, we can compute v, +1(d, k) := ap41(d, k)+Fn+1(d, k)

from Proposition 2.2. We review the M&bius function and inversion formula briefly. A Mébius
function for a poset P is a map pu: P x P — Z inductively defined by the relation

1 forxz =1y
p(x,y) = =D wcaey M@, 2) forz <y
0 otherwise.

For a finite poset P with Md&bius function pu, if f and g are the real valued function on P,
then the Mobius inversion formula says that the following are equivalent:

f(z) = Zg(y), for all z € P

y<z

g(x) = Z,u(y,a:)f(y) for all x € P.

y<z

Lemma 3.6. The number of nested sets N € Ni(Cp11) such that (Cpi1)n s isomorphic to

Cq or Dy is
nzl_l n+']fi+1_1
wa@n = % o)),

ilged (251 k) id id

k
d
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where  is the classical Mébius function? in number theory.
Proof. Consider the poset P = {(p,q) € Z x Z | p > q > 0} ordered by
(p,q) < (p',q") & there exists d € Z such that p’ = dp and ¢’ = dg.

/

That is, < (p,q¢) if and only if (p,q) = (&, %) for some d | ged Define the
b,q p,q Yy b,q d ged(p', ¢
S (Ls) and glpg) = (771 (7F17Y),

d
integer valued functions f and g on P by f(r,s)
respectively. Then we can rewrite (3.1) as

n+k k n+1 k
g(n+1,k) = <k>( ) dowmnld k)= D> (Lo = > f(— )
dlk dlged(n+1,k) d|ged(n+1,k)

where the third identity comes from the fact v,4+1(d, k) = 0 for d 4 n + 1. From the M&bius
inversion formula, we get

(32) forik = Y o M ),
d|ged(n+1,k)

where p is the M&bius function of the poset P. Note that the closed interval [(%EL, &) (n +
1,k))] of P is isomorphic to the poset Q@ = {i: i | d} with i <g i’ < i | ¢ via the correspon-
dence (™t k) € P +»i € Q. Hence p((2t, g), (n+1,k)) is equal to u(Q) = p(d). Hence
from (3. 2) we get the following:

n+1 k n+1 k )
Mmer(d k) = fF(—— = > g(id ,Z,d> ().
ilged (™5, 5)
This proves the proposition. O
Hence if we know one of ay,+1(d, k) and B,+1(d, k), then the other follows from v,,11(d, k).
We will discuss the computation of 5,11(d, k) in Section 6.
4. HILBERT SERIES OF THE SUBRINGS OF H7}(Mg,  ,;C) DETERMINED BY NESTED SETS

n41)

In this section, we study the action of the dihedral group D, 41 on H}(Mc,,,; C). For each

nested set N € ./\f (Cr41), we first describe the subring of H7.(Mc,,,;C) determined by N,
and then compute its Hilbert series.

n+17
For simplicity, we set

Xn — [l;enzr  for N e N(Cnp1) \ 0,
N=3Y1 for N = 0.

Then there is a natural action of Dy,1; on H} (Mg, ,;C); for every ¢ € D11 and a nested

set N € N(Cpi1),
(H xr) = H:L‘¢.[.

IeN IEN
Then H} (Mg, ,;C) is isomorphic to

(4.1) P CulleNxy2 G P (=,

NGN(Cn+1) NGN(Cn+1) aE(Z>0)N IeN

2The classical Mébius function is defined on the set of positive integers by (n) = (—1)* if n is the product
of k distinct primes and p(n) = 0 if n is divisible by a square.
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where a = (a; | I € N) € (Z>o)". For simplicity, set x% := [];cy«}'. Then the action of
Dyy1 on Hp (Mg, ,;C) is defined by

¢ x\ = x5y, that is, ¢ H z} = H a:‘;fl for every ¢ € Dy 1.
IeN IeN
Hence Clzy | I € N]xy is (Dp+1)n-stable.
Let N be a nested set in N (Cj,41) whose isotropy group (Dp+1)n is isomorphic to Dy or
C4. Without loss of generality, it is enough to consider the cases

{ont1) if (Dpt1)n = Ca,
<U%,T> if (Dp41)n = Dy.

(Dpy1)n = {

For simplicity, we write oy := Tt Then d | |[N| and we can decompose N into the nested

sets N1,...,Ng such that (on)""!- N7 = N;. Hence when (D,4 1)y = Cgq, we label the
elements of each N; as follows:

Ni={Ai;|1<j<a}

such that (on)" ! - Ay ; = A; ;. Note that if (Dy41)n = Dy, then (Dy41)n, = Di1 and hence
there is a reflection 7" € (D,,41)n such that 7/ - Ny = Ny, and some of the elements in N are
fixed by the reflection 7/. Let a be the number of elements in N such that 7/ - I = I. Then
|N| — a is even, say 2b. Then we label the elements of each N; as

such that (GN)i_l ‘ALJ = AZ'J', (O'N)i_l ‘Bl,k = Bi,k, and 7/- Bl,k = Bl,2b+1—k for each 7 € [d],
j € la], and k € [2b)].

For simplicity, for each x% € Hj(Mg,,,;C) we denote by a;; (respectively, b;;) the
exponent of x4, ; (respectively, zp, ;). That is,

a ag,j by
X3 = | | z | | T
N Aij Bi;
1<i<d 1<i<d
1<55a 1<5<2b

Note that the exponents a; ; and b; ; are positive integers. Then we can compute the isotropy
group (Dy41)xs, for each x%; € Hj (Mg, ,,;C) as follows.

Lemma 4.1. For the action of Dny1 on Hp(Mc,,,;C), the isotropy group (Dny1)xa, is a

subgroup of the isotropy group (Dpi1)n with respect to the action of Dypy1 on N (Chyit).

Proof. Note that if ¢ & (Dp11)n, then ¢- N # N. Hence ¢ - X%, = X5 N 7 X

For a divisor £ of d, if a;j = ay j for i =4 (mod ¢), then (on)*

reflection 7" € (D,,41) N satisfying the condition

a __ a 3
-x% = x%,. If there is a

(4.3) ar = a..r for any I € N,
then 7/ - x3, = x%,.

Let ¢ be the smallest divisor of d satisfying

(4.4) aij=ayjand by = by for i =i (mod %)
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(C) og - X% =7 X% =xX%

FIGURE 3. Isotropy groups of N and x%’s

foreach1 <j<aand 1<k <2b Then fori=1,...,¢, we may set
i—1)d
Li:= {Ap,j, By k G-1)

L
Then (UN)%(i_l) <Ly = L; for 1 <i < {. For the monomial x%; satisfying (4.4), there exists
a reflection satisfying the condition (4.3) if and only if there exists a reflection 7" such that
7" x% =x} . Therefore, (Dy11)x3, = Dy if and only if the exponent a satisfies (4.4) and

d
+1§p§%,1§jga, and1§k§2b}.

XN
d
(4.5) Qi = Qi j and b@k = bi’,k for i + i = Z +1, k+ K =2b+1
for 1 < 4,7 < %. If a satisfies (4.4) but not (4.5), then (Dnﬂ)x}av = Cy. This proves that
(Dn+1)xs, is a subgroup of (Dp41)n in any case. O

Example 4.2. Let us consider the cycle graph Cy4 and a nested set
N={{i},{j—1,5,j+1}|ie{1,3,...,23} and j € {2,6,10,14,18,22}}.
Then (Dag)n = (04, 7) = Dg, see Figure 3-(a). We set

Ny Arn ={1,2,3}, Bii={1}, Bia2={3}
Ny : Az = {5,6,7}, By1 = {5}, B22={T7}
N3 : A371 = {9, 10, 11}, Bg}l = {9}, B372 = {11}
N4 . A471 == {13, 14, 15}, B4’1 == {13}, B472 == {15}
N5 : A571 = {17, 18, 19}, B5’1 = {17}, B572 = {19}

N : A1 ={21,22,23}, Bgi={21}, Bso = {23}
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(1) If al,l e CL6’1 and b171 R b671 = bg’l = = b6 2, then (D24) a — (D24) =
Ds.

(2) Assume that a1 =a31 =as,1, a21 = a4,1 = a6,1, b1,1 =b31 =bs1, b12 = bz 2 = bs 2,
ba,1 = by = bg1, and by o = byo = b3o. If b11 # ba 1, b12 # b2, Oor ay1 # ag;1, then
L1 = N{UNs, Ly = N3U Ny, Ly = NsU Ng, and (Dn—i-l)xiz = <6> Hence ('D24)x'§1\7 is

1

(og) = C3, see Figure 3-(b).

(3) Assume that 1,1 = aG2;1 = 431 = 44,1 = 451 = d4g,1 and b171 = b272 = b371 = b472 =
b571 = b672 and b172 = b271 = b372 = b471 = b572. If b171 75 blyg, then L1 = N1 U NQ,
Ly = N3 U Ny, Ly = N5 U Ng, and (DnJrl)xizl = D;. Hence (D24)x§‘v is <O'8,T> = Ds,
see Figure 3-(c).

(4) Assume that a1 = ae1, a21 = a1, a3 = aa1 b1 = b2, b2 = b1, ba1 = bs2,
bao = bs1, b31 = bao, and b3o = bsy. If a1 # ag1, a1 # asq, bij # by, or
by ; # bgj, then Ly = N and (Dayg)xs, is (1) = Dy, see Figure 3-(d).

Let us consider the representation of (Dy,11)ny on Clzr | I € N]xy. If (Dpy1)n is trivial,
IN]
L)

Clor | I € Nlxy = IndB'C(x% | (Dns1)xa = D1) & Ind%(C(x’j‘V | (Dpt1)xa, 22 {e)).

Let |[N| = a + 2b, where a is the number of elements I € N such that 7-I = I. Then the
Hilbert series of C(x% | (Dn+1)x3, = D1) and C(x%; | (Dn+1)xg, = (e)) are

() {6865 )

respectively. In general, if (D, +1)y = H < Dy, then

Clzs | I € Nlxy = @) Indf,C(x | (H)xs, = H).
H'<H

then (Dpy1)xg is also trivial, and the Hilbert series of Clz; | I € Nlxy is
(Dpt1)n = (1) = Dy, then (Dnﬂ)x;av is trivial or D;. Hence

N

That is, if (Dp4+1)n = Cq, then we have
Clar | I € Nlxy = P IndGCxy | (Ca)xa, = Co);
0d
if (Dp41)n = Dy, then we have
Clz; | I € Nlxy =P (Indgj(j(x?\, | (Da)xa, = Dy) & Indg C(xy | (Dy)xa, = c£>)
od

Lemma 4.3. When H := (Dy41)n s isomorphic to Cq, the Hilbert series of C{x%; | (H)x3, =
Co) is
IN|

tmf me
d Z 'u < —md ) ’

where u is the classical Mdébius functwn of number theory.
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Proof. Note that (H)xa = Cq if and only if a; ; = ay j for 1 < 4,4’ < d. Hence the Hilbert
) - ) b \INI/d
series of C(x% | (H)xa, = Cq) is (@> .

For two divisors ¢ and ¢’ of d, if £ | ¢, then a;; = ay ; for i =i’ (mod %) implies that
a;j = ay ; for i =i’ (mod %). Hence we need to use the inclusion-exclusion principle to find
the Hilbert series of C(x3; | (Ca)xs = Co).

Note that two divisors £ and ¢ of d satisfy ¢ | ¢ if and only if there is an integer m |

such that m¢ = ¢/. Hence the inclusion-exclusion principle says that the Hilbert series of
C(X?\, | (Dd)x}i\r >~ Cy) is

d
[

[N

tmf ‘me
o uom ()
m\d

O

For example, for the nested set N = {1,12,4,45} in Example 3.2, (Dg)ny = Co and the
Hilbert series of C(x% | (C2)x3, = (e)) is

) () )

Lemma 4.4. When H := (Dy41)n is isomorphic to Dy for d < n+ 1, the Hilbert series of

(C(X?V ‘ (H)X?\r = Dg> 18
ad bd
¢ tmé me t2m€ me
gzu(m) <1_tm£> <1_t2m2> ’

d

£

and the Hilbert series of C(x%; | (H)xs, = Cy) is

, gt N\ it gt N\ o/ g2ml N me
de@ <1_tm€) _<1_tm£> <1_t2m2>
m|§

Proof. First, (H)xa = Dy if and only if a;; = ay; and bij = by j = bjopr1-j = bir2p11-j
a b
for 1 < i,i" < d. Hence the Hilbert series of C(x}% | (H)x3, = Dg) is ( 2 ) (ﬂ> .

1—td 1—t2d
From (4.1), (H)xs, = C, for some £ | d if and only if the exponents a; ;s and b; ;’s satisfy
(4.4) and (4.5). Note that if two divisors ¢ and ¢’ of d satisfy ¢ | ¢’ and the exponents a; ;’s
and b; ;’s satisfy (4.4) and (4.5) with respect to ¢, then the exponents a; ;’s and b; ;s satisfy
(4.4) and (4.5) with respect to ¢. Hence, from the inclusion-exclusion principle, the Hilbert

series of C(x% | (H)xa, = Dy) is

tmz W/ 2ml N me
d Z M tmé 1 — ¢2me ’

Secondly, the Hilbert series of C(x | (H)xa =Cq) is

1 td a+2b td a th b
2 (1—td> _<1—td> <l—t2d>
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12

from the inclusion-exclusion principle. Consequently, the Hilbert series of C(x%; | (H)xa,

Cq) is
, gt N\ it gl N\ o/ g2ml N me
de@ <1_tm£) _<1_tm£> <1_t2m2>
m|g

Applying Lemmas 4.3 and 4.4 to (4.1), we can conclude the following.

Proposition 4.5. For a nested set N € N (Cpy1), if (Dny1)n =2 Cqy, then the Hilbert series
of Clxr | I € Nlxy is
IN|

me me
> g Y uim) (5 )

l|d m|%
if (Dpt1)n = Dg, then the Hilbert series of Clay | I € N]xy is

/¢ tm( ;ETCE t2m€ %
>G> nlm) (ma1) (1_tm£> (1_t2me>

l)d m|%

(a+2b)d

ad bd
N 1 , dDd ) tml me B th me t2m€ me
5 n Cy 1 — ¢ 1 — ¢t 1 — 2mft

5. DIHEDRAL GROUP REPRESENTATIONS ON H7 (Mg, ,;C)

In this section, we deduce explicit formulas for the dihedral group representation on
H;Zk—'(MCn+1)'
Note that from Lemmas 3.1 and 4.1, we have

Hi(Mc, O = @ @ ([«

NeN (Cnt1) a€(Zso)N IeN

B P  Wmdyt'Clay | I € Nxy,

H<Dpy1 NClzflIEN]xy
(Pny1)N=H

(5.1)

and we know the representation of (D,,4+1)n on the subring Clz; | I € N]xy. Now we are
ready to deduce the representation of D, 1 on H} (Mg, ).
Recall that we define the numbers

ant1(d, k) := {N € Ni(Cny1) | (Dns1)n = Ca}l,
Bri1(d k) := {N € Ni(Cny1) | (Dny1)n = Da}|, and
7n+1(d7 k) = an+1(d> k) + ﬁn+l (da k)

By using the definition of the sets A; ; and B; ; defined in (4.2), we also define
Pni1(d, k,a) := {N € Ni(Cnta) | (Pny1)y = Dy, |Aij| = a, and [Bij[ =k —a}].
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Theorem 5.1. The representation of Dypy1 on H} (Mg, ,;C) is
- Duirqy ! pme N\
XD P DEMICE) BT AIPED DI esary
k=1 dn+1 0d mld
d|k L
n k . / tmé chz t2m€ %
n+1
£330 S Al k) S ) s S o) (755 ) (o)
k=1 d‘;ﬁgl a=1 £)d m|%

where p is the classical Mobius function in number theory.

Proof. We can rewrite (5.1) as follows.

Hy(Mc,;C)=| @ P P hndyi'Cdy | (H)xa =H)

H<D7L+1 NGN(C'n-‘rl) H'<H
('Dn+1)N§H

Note that if N = ), then xxy = 1, (Dyt1)N = Dpy1, and Clzy | I € N]xy = C. Since

Imd?["+1 (Indg,l) = Ind%, 1, the theorem follows from the above by applying Proposition 4.5.
O

Considering the actions of the cyclic group C,4+1 on N(Cp1) and H}(Mc,,,;C), we get
the following representation.

Corollary 5.2. The representation of Cny1 on H} (Mg, ,;C) is

th %
1+Z 3 Yusi(d, k)Y (Indgr 1) +1Z“ (1_W> ,

=1 d|n+1 l|d
dlk | mlg

where p is the classical Mobius function in number theory.

6. RELATIONSHIP WITH ANNULAR NON-CROSSING MATCHINGS

In this section, we construct annular non-crossing matchings and then find a relationship
with nested sets. We also discuss the relationship between the number of annular non-crossing
matchings and the number (,,11(d, k).

Note that if n + 1 is even, then there are two kinds of reflections; one fixes two vertices of
Ch+1 and the other has no fixed vertices. If n+1 is odd, then every reflection fixes exactly one
vertex. Now we define annular non-crossing matchings related to a nested set N € N (C41)
which can be fixed under some reflection in D, ;1.3

Before we construct annular non-crossing matchings, we first consider an arrangements of
beads on a disjoint union of arcs on a unit cycle.

Arrangements of beads on a disjoint union of intervals. Let I'y,...,I'y be pairwise
disjoint arcs on a unit circle arranged in counterclockwise. We put k beads with colors blue
and white on I'y U - -- U T in the following rules.

3In fact, our annular non-crossing matchings are circular non-crossing matchings, non-crossing matchings
of curves embedded within a disk ([6]), but for convenience of explanation we use the idea of the annular non-
crossing matchings in [4], and they are slightly different from the original definition; we add more conditions.
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(R1) Put a blue (respectively, white) bead B; on I';;.
(R2) We put a bead By on I';,, depending on its color.

(R2-1) If both B; and By are blue (respectively, white), then is < i; (respectively,
i > i1), and we do not put on the intervals I'; for j > i (respectively, j < i;)
any more.

(R2-2) If B; and By have the different colors, that is, Bs is white (respectively, blue),
then iy > 41 (respectively, io < i1), and then we choose one of the union of
intervals I';, U---UI';,—1 or I';, 11 U--- UL, in order not to put any bead on it.

(R3) We put a bead B;, on some possible interval by comparing with the color of B;, in
the same rule (R2), and continue in this fashion until we arrange k beads.

Consider the annulus {(z,y) € R? | 1 < 2? + y? < 1} with dots v,41,; on the outer circle,
ntl ]

1 <i<n+1. Let I'; be the open arc between v,41; and v, 1141 fori=1,..., "3
Construction of annular non-crossing matchings of type 1. We put k£ beads with
colors blue and white on the arcs 'y U---U FLnTH | under the rules above.
By matching the beads in the following five steps, we obtain an annular non-crossing
matching, see Figure 4.
(S1) Identify all blue bead that lie directly right of a white bead.
(S2) Repeatedly apply the previous step.
(S3) If there is a blue bead which not lying right of a white bead, draw a line to the arc
{(2,0)| -1 <2< -1}
(S4) If there is a white bead which not connected to a blue bead, draw a line to the arc
{(z,0)| ; <z <1}
(S5) Reflect along the z-axis.

v3 v3
U2 V2
Va V4
R N R
\_/ i \_/
Vs Vs
v7 v7
Ve Ve

FIGURE 4. The annular non-crossing matching of type 1 corresponding to the
nested set {{1},{3},{6},{3,4,5,6}} € Ny(C7)

Let Anny1(k) be the set of all annular non-crossing matchings of type 1. It follows from
the construction that for even n we have [Ann,;(k)| = |Ann,(k)|.

Proposition 6.1. Let n+ 1 be odd. For each integer 1 < k < n, the sum of beta numbers,
>ajk Bn1(d, k), is equal to
(n+1) x [Anng, 1 (F)].
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Proof. For each annular non-crossing matching M € Ann(n + 1,k), we can find a nested
set Nag € Ni(Cpq1) which is fixed under the reflection o17. Note that o; 10’21'+17'O'i = 017
Hence, for each N € N(C),41), there is an annular non-crossing matching M € Ann(n+1, k)
such that N = g; - Noy, where N is fixed under the reflection o9;417. O

Given an annular non-crossing matching M, let b be the number of pairs of beads directly
connected to each other in Steps (S1) and (S2), and let a = k — 2b. Then we can see that

a=|{I €Ny |owm-I=1}and 20 =|{I € Ny | o171 # I}|.

We denote by Ann,yq(k,b) the set of annular non-crossing matchings in Ann,q(k) such
that there are b pairs of beads connecting to each other directly in Steps 1 and 2. Then
Ann, (k) :U’g:l Ann, 1 (k,b).

When n + 1 is even, we also consider another kind of construction of annular non-crossing
matchings.

Construction of annular non-crossing matchings of type 2. We put k£ beads on the

arcs 'y U--- U n1 satisfying rules (R1)~(R3), and we slightly change steps (S3)~(S5) as
2

follows.

(S3’) If there is a blue bead which not lying right of a white bead, draw a line to the left
arc of the intersection of the annulus and the straight line through the origin with
angle — 7.

(S4’) If there is a white bead which not connected to a blue bead, draw a line to the right
arc of the intersection of the annulus and the straight line through the origin with
angle — 7.

(S5') Reflect along the straight line through the origin with angle — 7.

Then we obtain an annular non-crossing matching corresponding to a nested set N €

N (Cp41) which is fixed under the reflection 7, see Figure 5.

v3 V2 v3 V2
Vg U1 V4 v1
Vs Ve Us Ve

FiGURE 5. The annular non-crossing matching of type 2 corresponding to the
nested set {{2},{5},{2,3,4,5}} € N3(Cp)

Let Ann/, (k) be the set of all annular non-crossing matchings of type 2. Since both
Ann, (k) and Ann, (k) are constructed from the same arrangements of beads, we can see
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that for odd n
(6.1) [Ann, ()] = [Ann (k).

Proposition 6.2. Let n + 1 be even. For an integer 1 < k < n, the sum of beta numbers,
2k Prt1(ds k), is equal to the number

n+1
2

Proof. If an annular non-crossing matching M is in Ann(n+1, k) (respectively, Ann’(n+1, k)),

then we reflect the matching along the y-axis (respectively, the straight line through the origin
(n—1)m
2(n+1)
beads. Let M’ be the resulting annular non-crossing matching. Then the nested set Ny
can be obtained from N by the reflection onis7 (respectively, oni1 7).

2 2

Since there is no nested set N such that 7- N = 017+ N = N, we get Ann(n + 1,k) N
Ann’(n +1,k) = (). From the similar argument to the proof of Proposition 6.1, we have

n+1
5 (|Anny 41 (k)| + [Anny, o (K)]) -

Therefore, the proposition follows from (6.1). O

(|Anny, 11 (k)| + |Anny, (k))]) -

with angle ), and then we change blues beads to white beads and white beads to blue

Recall that (,41(d, k) is the cardinality of the set
{N € Ni(Cpnt1) | (Dpt1)nv = Dy}

Hence we can compute 5,11(d, k) by using the same argument in the proof of Lemma 3.6,
if we know |Ann, (k)| for odd n + 1. Furthermore, if we know Ann,;(k,a), then we can
also count the nested sets N € Ni(Cyt1) such that (D,,41) = Dy and the number of elements
I € N fixed under some reflection 7/ € (Dy41)n is equal to a. We can explicitly compute
|Ann, 1 (k,a)| when k or k — a is small as follows.

a
i k k—2 k—4

1 2(L"3)

9 SEL"’ilJ; G
1&1 n+1 2 n+1

3 (30 iz 23

4 5“3 97 ) +o(-7) 2470 +2(45)

5 6(3) 16(15 ) +12(F) (5 + () +3(7)
' n+1 n41 n+1

E k() [ e-2E ) + - D=2

TABLE 1. Ann,(k,a)

ntl
Note that the coefficients of (L ) J) on Table 1 for 1 < £ < k are coming from the
number of arrangements of two letters B and W satisfying certain conditions, for example,
k+1= Zf:o 1 is the number of arrangements satisfying that there is no W lying on the

left side of B, (k — 1)? = Zf:_()? {% + z} is the number of arrangements satisfying
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that there is only one W lying on the left side of some B or there is only one B lying on

the right side of some W, and (k — 1)(k —2) = Zf:_g’ { (foll,) + 1(,? 2= Z)),} is the number of

arrangements satisfying that it contains the word W BB or WW B and also satisfying that
there is only one W lying on the left side of some B or there is only one B lying on the right
side of W.

Example 6.3. For the cycle graph C4, the representation of Dy on H}.(Mc, ,,;C) is

n+17
3t2 2t3 1 2 2
I D41 - —
+ (Ind, )[(1—@ + 1—t)3+2{(1—t)2 l—tQH

3 {2 t 12 1 13 t 12
IndB41 - —
+ (Indp, )[1—t+(1—t)2+1—t1—t2+2{(1—75)3 1—t1—t2}]

+ (Ind3!1) <1i2> .

By substituting % instead of (Ind% 1) in the above, we get the Poincaré series of Hz(Mc,; C)

12t N 302 N 20¢3
1—t (1-t2 (1-t3%

1+
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