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Abstract

We study the maximization problem of the Trudinger-Moser inequality. In
this study, we consider the effect of the Lebesgue norm on attainability of
the best constant. By the Lebesgue norm, there exists a borderline related
to existence and non-existence.
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1. Introduction

Assume that N ≥ 2, αN = Nω
1

N−1

N−1, where ωN−1 is the surface area of
(N − 1)-dimensional unit sphere. The classical Trudinger-Moser inequality
asserts that for any bounded domain Ω ⊂ RN ,

sup
u∈W 1,N

0 (Ω)
∥∇u∥N≤1

∫
Ω

eαN |u|
N

N−1
dx < +∞.

Due to [11], αN is the largest possible constant. In [3], they showed that
maximizer exists when Ω is a unit ball. In general bounded domain case, the
existence result was shown in 2-dimensional case by [6]. In theN -dimensional
general bounded domain case, existence of the maximizer was shown by [9].
Recently, [12] was proved the existence of the maximizer by using the blow
up analysis different from the technique in [3]. In addition to these, there
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are many researches on the Trudinger-Moser inequality. For example, whole
space case is due to [1, 14, 8, 7, 4], the Trudinger-Moser inequality onW 1,N(Ω)
is due to [15], and so on.

In this study, we consider the case when N = 2, Ω = B, where B is a
unit ball. We investigate existence and non-existence of maximizer for

C(λ, p) := sup
u∈H1

0 (B)
∥∇u∥2≤1

∫
B

(
eα2u2 − λ|u|p

)
dx,

where λ is a positive parameter and p ≥ 1. We can regard this problem as
the perturbed Trudinger-Moser inequality

Igα := sup
u∈H1

0 (B)

∥∇u∥22≤α

∫
B

(1 + g(u))eu
2

dx,

and our problem is the case when α = α2 and g(u) = −λ |u|p

α
p/2
2 eu2

. In [12], they

consider Igα under the following conditions:

α ≤ α2, g ∈ C1(R), inf
R
g > −1, g(t) = g(−t), lim

|t|→∞
g(t) = 0.

For example, g ≡ 0 satisfies the above conditions, and thus the maximization
problem on the classical Trudinger-Moser inequality is included this. They
studied the blow up analysis for H1

0 (B)-norm of the non-compact sequence
on the Trudinger-Moser functional. Their results are useful to study the
maximizing problem Igα. In our problem, the perturbation g does not satisfy
the condition infR g > −1. This fact causes the problem that there is the
possibility of Igα = Igα2

for some α < α2, because the function eα2|·|2 − λ| · |p
is not a increasing function.

In [5], they studied the case when p = 2. They showed existence of
maximizer for λ < α2 and they supposed that the maximizer does not exists
for λ ≥ α2. Here, we can see that this term α2| · |2 in their conjecture is the
second term of eα2|·|2 , that is, we observe

eα2|·|2 = 1 + α2| · |2 +
∞∑
k=2

αk2| · |2k

k!
,

and the term is appeared. We forecast that there is a relation between
this term and the attainability of the maximization problem. Therefore, we
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consider the maximization problem C(λ, p), and we study the effect of the
Lp-term. The main theorem is as follows:

Theorem 1.1. (I) If p > 2, then for any λ, there exists a maximizer of
C(λ, p).

(II) If p ∈ [1, 2], then there exists a positive constant λ∗ = λ∗(p) such that
(i) For λ < λ∗, there exists a maximizer of C(λ, p).
(ii) For λ > λ∗, maximizer of C(λ, p) does not exist.

(III) If p ∈ [1, 2), then there exists a maximizer of C(λ∗, p), where λ∗ is a
positive constant obtained in the part (II).

From these results, we can see that 2 is the borderline on the exponent p
essentially. In addition, we can show the conjecture of [5] partially. In order
to prove this theorem, we use the blow up analysis. We apply the techniques
in [8], [15], and [12]. The techniques of [8], [15] are similar. However, the
strategy of [12] are different from those of the others. In [8] and [15], they
study the behavior of the Trudinger-Moser functional on the concentrating
sequence. On the other hand, in [12], as we referred to before, they inves-
tigated the behavior of H1

0 (B)-norm of the concentrating sequence. We will
combine these two techniques.

This paper is organized as follows. In Section 2, we prepare some lemmas
and propositions. Especially, we investigate the properties of C(λ, p) on the
parameter λ. In Section 3, we prove the theorem. To prove this, we prepare
two important propositions. In Section 4, we show these two propositions by
applying the technique in [8], [15], and [12].

2. Preliminaries

First, we fix some notation. The Lq(B)-norm is written as ∥ · ∥q. The
constant C0 is defined by C(0, p). For simplicity, sometimes we write v(r)
as the radially symmetric function v(x) by supposing that r = |x|. For a
function v, we define v+ and v− as v+ := max{v, 0} and v− := min{v, 0}.

We prepare some lemmas and proposition to prove Theorem 1.1. We set

Crad(λ, p) = sup
u∈H1

0,rad(B)

∥∇u∥2≤1

∫
B

(
eα2u2 − λ|u|p

)
dx,

where H1
0,rad(B) is the set of radially symmetric functions in H1

0 (B). By the
symmetrization of function in H1

0 (B), we can see that C(λ, p) = Crad(λ, p)
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and existence of maximizer of C(λ, p) is equivalent to existence of maximizer
of Crad(λ, p).

We take a sequence {un} satisfying

{un} ⊂ H1
0,rad(B), ∥∇un∥2 ≤ 1, un ⇀ 0 weakly in H1

0 (B) (1)

lim
n→∞

∥∇un∥2 → 1, lim
n→∞

∥∇un∥L2(B\Bε) = 0 for any ε > 0. (2)

We call {un} satisfying (1), (2) a normalized concentrating sequence. Then
we have the following upper bound:

Proposition 2.1 ([3]). For any normalized concentrating sequence {un}, we
have

lim sup
n→∞

∫
B

eα2u2ndx ≤ |B|+ eπ.

Proposition 2.2 ([5]). There exists a normalized concentrating sequence
{yn} such that

lim
n→∞

∫
B

eα2y2ndx = |B|+ eπ.

More precisely, for sufficiently large n, yn satisfies∫
B

eα2y2ndx = |B|+ eπ + εn,

where εn is a positive constant such that εn → 0 as n→ ∞.

The following lemma follows from the definition of C(λ, p) and Proposi-
tion 2.2.

Lemma 2.3. (i) C(λ, p) is continuous and non-increasing with respect to
λ.

(ii) We have C(λ, p) ≥ |B|+ eπ for any λ and p.

Proposition 2.4. For any t ∈ [0, 1), we have

sup
u∈H1

0 (B)
∥∇u∥2≤t

∫
B

(
eα2u2 − λ|u|p

)
dx < C(λ, p).
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Proof. By the part (ii) of Lemma 2.3, we can see that 0 is not maximizer.
Set

Ct(λ, p) = sup
u∈H1

0 (B)
∥∇u∥2≤t

∫
B

(
eα2u2 − λ|u|p

)
dx

and assume that Ct(λ, p) = C(λ, p). We take a maximizing sequence {un} ⊂
H1

0 (B), that is,

∥∇un∥2 ≤ t, lim
n→∞

∫
B

(
eα2u2n − λ|un|p

)
dx = C(λ, p).

Then we have un ⇀ u∞ weakly in H1
0 (B) and ∥∇u∞∥2 = t̃ ≤ t. More-

over, by the compactness of the Trudinger-Moser functional and the Sobolev
embedding, it follows that∫

B

(
eα2u2∞ − λ|u∞|p

)
dx = lim

n→∞

∫
B

(
eα2u2n − λ|un|p

)
dx = C(λ, p).

In addition, we may assume that u∞ ≥ 0. Since u∞ is also the maximizer of

sup
u∈H1

0 (B)

∥∇u∥2=t̃

∫
B

(
eα2u2 − λ|u|p

)
dx,

there exists the Lagrange multiplier L such that

L

∫
B

∇u∞∇ϕdx−
∫
B

(
α2u∞e

α2u2∞ − p

2
λup−1

∞

)
ϕdx = 0

for any ϕ ∈ H1
0 (B). On the other hand, for s ∈ [0, 1/t̃] we set

f(s) :=

∫
B

[
eα2(su∞)2 − λ(s|u∞|)p

]
dx.

Then since f ′(s)|s=1 = 0 we have∫
B

(
2α2u

2
∞e

α2u2∞ − pλup∞

)
dx = 0,

and hence L = 0. From this, it follows that

eα2u2∞ − p

2α2

λup−2
∞ = 0.

for any x ∈ B. However, for any λ and p, this equality does not hold for x
near ∂B since u∞|∂B = 0.
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Lemma 2.5. (i) If C(λ, p) > |B|+ eπ, then maximizer of C(λ, p) exists.

(ii) If there exists λ∗ such that C(λ∗, p) = |B|+ eπ, then for λ > λ∗ maxi-
mizer does not exist.

Proof. We prove (i). Assume that {un} is a maximizing sequence of C(λ, p),
namely, {un} satisfies

{un} ⊂ H1
0,rad(B), ∥∇un∥2 ≤ 1, lim

n→∞

∫
B

(
eα2u2n − λ|un|p

)
dx = C(λ, p).

Since {un} is bounded sequence, there exists u∞ such that up to a subse-
quence un ⇀ u∞ weakly in H1

0 (B), and ∥∇u∞∥2 ≤ 1. By the assumption
and Proposition 2.1, we can see that {un} is not normalized concentrating
sequence. Therefore by the theorem in [10] and the Sobolev embedding, we
have

lim
n→∞

∫
B

(
eα2u2n − λ|un|p

)
dx =

∫
B

(
eα2u2∞ − λ|u∞|p

)
dx.

Consequently u∞ is the maximizer.
We prove (ii). Assume that λ > λ∗ and uλ ∈ H1

0,rad(B) is a maximizer of
C(λ, p). Then we have

|B|+ eπ ≤ C(λ, p) =

∫
B

(
eα2u2λ − λ|uλ|p

)
dx

<

∫
B

(
eα2u2λ − λ∗|uλ|p

)
dx ≤ C(λ∗, p) = |B|+ eπ.

This is a contradiction.

Proposition 2.6 (Proposition B.1 in [2]). We define the function with pos-
itive parameter t, which is introduced in [11] originally.

mt(r) = t
1
2m1(r

1
t ) = ω

− 1
2

1 (log 2)
1
2 t

1
2 min

{
log 1

r

t(log 2)
, 1

}
,

where

m1(r) := ω
− 1

2
1 (log 2)

1
2 min

{
log 1

r

log 2
, 1

}
.

Assume that un ∈ H1
0,rad(B) satisfying ∥∇un∥ ≤ 1, un ⇀ 0 weakly in H1

0 (B).
In addition, un satisfies

lim inf
n→∞

∫
B

eα2u2ndx > |B|.
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Then, there exists a sequence {tn} ⊂ (0, 1) such that

un −mtn → 0 strongly in H1
0 (B).

Remark 2.1. In [2], they wrote that this proposition holds for all dimension.
However, the author can confirm the validity of this proposition only when
N = 2.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We prepare the following two
propositions. We will prove these in the next section.

Proposition 3.1. We assume that p ∈ [1, 2], and that there exists a maxi-
mizer of C(λ, p) for sufficiently large λ. We write uλ as the maximizer for
λ. Then, there exist positive constants C1 = C1(p), C2 = C2(p) such that for
sufficient large λ we have

∥∇uλ∥22 ≤ 1− λ
C1

∥uλ∥p+2
∞

+
C2

∥uλ∥4∞
+ o(∥uλ∥−4

∞ ).

Proposition 3.2. We fix λ and p. Assume that uk is a maximizer of

Ck(λ, p) := sup
u∈H1

0 (B)
∥∇u∥2≤1

∫
B

(
eαku

2 − λ|u|p
)
dx,

where αk is a sequence of real numbers such that αk ↗ α2 as k → ∞. If
supx∈B uk(x) = u(0) → ∞ as k → ∞, then there exists a positive constant
C = C(p) such that

∥∇uk∥22 ≥
α2

αk

(
1 +

1

α2
2

1

∥uk∥4∞
− λ

C

∥uk∥p+2
∞

)
+ o(∥uk∥−4

∞ ).

First, we prove the part (I). Since it follows that

lim
ε→0

sup
u∈H1

0 (B)
∥∇u∥2≤1

∫
B

(
e(α2−ε)u2 − λ|u|p

)
dx = C(λ, p),

uk defined in Proposition 3.2 is a maximizing sequence of C(λ, p). In addition,
since ∥∇uk∥2 ≤ 1, there exists u∞ ∈ H1

0 (B) such that up to a subsequence
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un ⇀ u∞ weakly in H1
0 (B), and ∥∇u∞∥2 ≤ 1. For p > 2, if supx∈B uk(x) →

∞ as k → ∞, then ∥∇uk∥22 > 1 for sufficient large k by Proposition 3.2,
which contradicts that ∥∇uk∥2 ≤ 1. Thus supx∈B uk(x) is bounded for k
uniformly. By the dominated convergence theorem, we have∫
B

(
eα2u2∞ − λ|u∞|p

)
dx = lim

k→∞

∫
B

(
eαku

2
k − λ|uk|p

)
dx = lim

k→∞
Ck(λ, p) = C(λ, p).

Consequently u∞ is the maximizer of C(λ, p).
Next, we prove the part (II). In order to show existence of λ∗ we show

nonexistence of maximizer for large λ. For p ∈ [1, 2], we assume that uλ is a
maximizer for sufficiently large λ. By Proposition 2.4, we have ∥∇uλ∥2 = 1.
However, by Proposition 3.1 we have ∥∇uλ∥2 < 1 for sufficiently large λ,
which is a contradiction. Therefore maximizer does not exists for sufficiently
large λ. By part (i) of Lemma 2.5 we can find that C(λ, p) = |B| + eπ for
sufficiently large λ. We define λ∗ ∈ [0,∞) as

λ∗ := inf {λ > 0|C(λ, p) = |B|+ eπ} .

By Lemma 2.3, we can see that C(λ, p) = |B|+ eπ for λ ≥ λ∗ and C(λ, p) >
|B|+ eπ for λ ∈ (0, λ∗). Consequently, this λ∗ is the borderline of the result
of part (II) by Lemma 2.5. To finish the proof of the part (II), we have to
confirm that λ∗ > 0. By Proposition 2.2, we have C0 > |B| + eπ. Thus we
have C(λ, p) > |B|+ eπ for sufficiently small λ and hence λ∗ > 0.

Finally, we prove the part (III). We set a sequence λn such that λn ↗ λ∗
as n → ∞. By the part (II), maximizer of C(λn, p) exists and we write this
as un. By the part of (i) of Lemma 2.3, we can see that un is a maximizing
sequence of C(λ∗, p). If supx∈B un(x) → ∞ as λ → ∞, we can show that
∥∇un∥2 < 1 for sufficiently large n by preparing similar proposition to Propo-
sition 3.1. This contradicts that ∥∇un∥2 = 1. Consequently supx∈B un(x) is
bounded uniformly for sufficiently large n, and by the dominated convergence
theorem we can show existence of maximizer.

4. Proof of Proposition 3.1 and 3.2

Since the proof of Proposition 3.2 is close to the proof of Proposition 3.1
we only prove Proposition 3.1. Fix p ∈ [1, 2] and set a sequence λk such that
λk → ∞ as k → ∞ (a suitable subsequence is also written by λk). Assume
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that uk := uλk ∈ H1
0 (B) is the maximizer of C(λk, p). From Proposition 2.4,

we have

∥∇uk∥2 = 1, uk ∈ H1
0,rad(B), uk ≥ 0,

∂uk
∂r

is a decreasing function.

By the part (ii) of Lemma 2.3 we have

|B|+ eπ ≤ lim
k→∞

∫
B

(
eα2u2k − λk|uk|p

)
dx ≤ C(0, p)− lim

k→∞
λk

∫
B

|uk|pdx.

Thus up to a subsequence∫
B

|uk|pdx = O(λ−1
k ), uk(x) → 0 for x ∈ B \ {0}.

In addition, since

|B|+ eπ ≤ lim
k→∞

∫
B

(
eα2u2k − λk|uk|p

)
dx ≤ lim

k→∞

∫
B

eα2u2kdx (3)

we have
lim
k→∞

sup
x∈B

uk = lim
k→∞

uk(0) = ∞.

By the Lagrange multiplier theorem, uk is a solution of{
−∆u = α2

Mk

(
ueα2u2 − p

2α2
λku

p−1
)
, u > 0, in B,

u = 0 on ∂B,

where

Mk := α2

∫
B

(
u2ke

α2u2k − p

2α2

λku
p
k

)
dx.

By setting vk := α
1/2
2 uk, vk satisfies−∆vk =
α2

Mk

(
vke

v2k − p

2α
p/2
2

λkv
p−1
k

)
, vk > 0, in B,

vk = 0 on ∂B,
(4)

and

∥∇vk∥22 = α2, Mk =

∫
B

(
v2ke

v2k − p

2α
p/2
2

λkv
p
k

)
dx. (5)

We note that limk→∞ vk = 0 in B\{0} and limk→∞ vk(0) = ∞. For simplicity,
we set

ck := vk(0) = sup
x∈B

vk(x).
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Lemma 4.1. We have

lim
k→∞

λk

∫
B

vpkdx = 0.

Proof. We show that limk→∞ λk
∫
B
upkdx = 0. By the part (ii) of Lemma 2.3

and (3), we can find that uk is a normalized concentrating sequence. Thus
by Proposition 2.1, it follows that

lim
k→∞

∫
B

eα2u2kdx = |B|+ eπ.

This observation and (3) yield the equality of the lemma.

Lemma 4.2. For sufficient large k, we have

Mk > α2eπ + o(1).

Proof. By the part (ii) of Lemma 2.3 and Lemma 4.1, we have

|B|+ eπ ≤
∫
B

(
eα2u2k − λku

p
k

)
dx

≤
∫
[uk≤1]

eα2u2kdx+

∫
[uk>1]

eα2u2kdx− λk

∫
B

upkdx

≤ |B|+ o(1) +

∫
[uk>1]

u2ke
α2u2kdx− λk

∫
B

upkdx

≤ |B|+ Mk

α2

+ o(1).

Lemma 4.3. For sufficiently large k, we have

Mk ≤ c2k (|B|+ eπ + o(1)) .

Proof. By Lemma 4.1, we have

Mk =

∫
B

(
v2ke

v2k − p

2α
p/2
2

λkv
p
k

)
dx

≤ c2k

∫
B

ev
2
kdx+ o(1)

= c2k (|B|+ eπ + o(1)) .
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We set

rk :=

√
Mk√
πck

e−
c2k
2 ,

and {
ϕk(y) := ck(vk(rky)− ck),

ψk(y) := c−1
k vk(rky).

Then, we have

−∆ϕk = 4

[
ψke

ϕk(1+ψk) − p

2α
p/2
2

cp−2
k e−c

2
kλψp−1

k

]
in B1/rk (6)

−∆ψk =
4

c2k

[
ψke

c2k(ψk−1) − p

2α
p/2
2

cp−2
k e−c

2
kλkψk

]
in B1/rk (7)

Multiplying (7) by c2kψk, integrating on B1/rk , and we have

α2 = 4

[∫
B1/rk

ψ2
ke
c2k(ψ

2
k−1)dx− p

2α
p/2
2

cp−2
k e−c

2
kλk

∫
B1/rk

ψ2
kdx

]
,

and thus

2p

α
p/2
2

cp−2
k e−c

2
kλk =

4
∫
B1/rk

ψ2
ke
c2k(ψ

2
k−1)dx− α2∫

B1/rk

ψ2
kdx

≤ 4− α2∫
B1/rk

ψ2
kdx

. (8)

Thus we can use the elliptic regularity theory. We have

ψk → 1 in C2
loc(R2). (9)

On the other hand, in (8), by Lemma 4.1 we have

4

∫
B1/rk

ψ2
ke
c2k(ψ

2
k−1)dx =

α2

Mk

∫
B

v2ke
v2kdx = α2+

α2

Mk

p

2α
p/2
2

λk

∫
B

vpk = α2+o(1),

and by (9)

lim
k→∞

∫
B1/rk

ψ2
kdx ≥ lim

R→∞
lim
k→∞

∫
BR

ψ2
kdx = lim

R→∞
|BR| = ∞.
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Hence
p

2α
p/2
2

cp−2
k e−c

2
kλk = o(1).

Concerning the equation (6), by the elliptic regularity theory,

ϕk → ϕ∞ = − log(1 + |x|2) in C2
loc(R2),

−∆ϕ∞ = 4e2ϕ∞ in R2.

For a constant ρ > 1 we set

vk,ρ := min

{
ck
ρ
, vk

}
. (10)

Lemma 4.4.

lim
k→∞

∫
B

|∇vk,ρ|2dx =
α2

ρ

The strategy is same as the proof of Lemma 3.3 in [8] and the proof of
Lemma 3.6 in [15].

Lemma 4.5. We have

lim inf
k→∞

Mk

c2k
≥ eπ.

Proof. By Lemma 4.4 we have∫
B

ev
2
kdx =

∫
[vk<ck/ρ]

ev
2
kdx+

∫
[vk≥ck/ρ]

ev
2
kdx

≤
∫
B

ev
2
k,ρ +

ρ2

c2k

∫
B

v2ke
v2kdx

= |B|+ ρ2

c2λ

Mk

α2

[
α2

Mk

∫
B

(
v2ke

v2kdx− p

2α
p/2
2

λkv
p
k

)
dx+

α2

Mk

p

2α
p/2
2

λk

∫
B

vpkdx

]
+ o(1)

= |B|+ ρ2

c2λ
Mk + o(1).

On the left hand side, we have∫
B

ev
2
kdx =

∫
B

eα2u2kdx = |B|+ eπ + o(1).

Hence we obtain the inequality of the lemma.
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Combining Lemma 4.3 and 4.5, for sufficiently large k

eπ + o(1) ≤ Mk

c2k
≤ |B|+ eπ + o(1). (11)

Lemma 4.6. For any ϕ ∈ C∞(B) we have

lim
k→∞

1

Mk

∫
B

ckvke
v2kϕdx = ϕ(0).

We can prove in the same way as the proof of Lemma 3.6 in [8] and the
proof of Lemma 3.9 in [15].

Proposition 4.7. There exists positive constants C1, C2 such that for suffi-
ciently large k we have

C1

cpk
≤
∫
B

vpkdx ≤ C2

cpk

Proof. We consider the equation:−∆(ckvk) =
α2

Mk

[
(ckvk)e

v2k − p

2α
p/2
2

λkckv
p−1
k

]
in B,

vk = 0 on ∂B.

It follows that∫
B

(∆ckvk)+dx = − α2

Mk

∫
[∆ckvk>0]

(
ckvke

v2k − p

2α
p/2
2

λkckv
p
k

)
dx

≤ α2

Mk

∫
B

p

2α
p/2
2

λkckv
p−1
k dx

= α2 + o(1)− α2

Mλ

(∫
B

ckvke
v2kdx−

∫
B

p

2α
p/2
2

λkckv
p−1
k dx

)
= α2 + o(1) +

∫
B

∆(ckvk)dx

= α2 + o(1) + ck

∫
∂B

∂vk
∂ν

dσ

≤ α2 + o(1),

13



and

−
∫
B

(∆ckvk)−dx =
α2

Mλ

∫
[∆ckvk≤0]

(
ckvke

v2k − p

2α
p/2
2

λkckv
p−1
k

)
dx

≤ α2

Mk

∫
B

ckvke
v2kdx

= α2 + o(1).

Thus we have
∫
B
|∆cλvk|dx < 2α2+o(1) and hence there exists w ∈ W 2,1(B)

such that
ckvk ⇀ w weakly in W 2,1(B).

From this,
ckvk → w weakly in W 1,q(B)

for any q ∈ [1, 2), and we have∫
B

(ckvk)
pdx→

∫
B

wpdx. (12)

Moreover, the compact embedding yields that

ckvk → w strongly in C0,α(B1 \Bε) (13)

for any ε > 0. To end the proof, we show that w ̸= 0.
By Proposition 2.6 there exists a sequence {tk} such that∫

B

∣∣∇(vk − α
1/2
2 mtk)

∣∣2dx→ 0,

where mtk is defined as in Proposition 2.6. In addition, since H1
0 -norm has

the scaling invariance, it follows that∫
B

∣∣∣∣∇(t− 1
2

k vk(|x|tk)− α
1/2
2 m1(|x|)

) ∣∣∣∣2dx→ 0.

Thus we have
t
− 1

2
k vk(r

tk)− α
1/2
2 ω

− 1
2

1 (log 2)
1
2 → 0

for each r ∈ (0, 1/2). Since vk is a radially decreasing function, we can find
that tk = O(c2k). We go back to Proposition 2.6 and it follows that∫

B

∣∣∣∣∇(α1/2
2 m̃tk(|x|)− t

1
2
k vk(r

1
tk )
) ∣∣∣∣2dx→ 0,

14



where

m̃tk(r) = t
1
2
kmtk(r

1
tk ) = tkm1(r

1

t2
k ).

From this, we have

t
1
2
k vk(r

1
tk )− α

1/2
2 ω

− 1
2

1 (log 2)−
1
2 t−1
k

(
log

1

r

)
→ 0,

for each r ∈ (e−(log 2)t2k , 1). Especially, this convergence holds for r ∈ (e−Ktk , 1)
with a positive constant K. Setting r1/tk = s, and we have

t
1
2
k vk(s)− α

1/2
2 ω

− 1
2

1 (log 2)−
1
2

(
log

1

s

)
→ 0 (14)

for each s ∈ (e−K , 1), in the sense of the pointwise convergence on r = stk .
If tk = o(c2k) holds, then

o(1)ckvk(s)− α
1/2
2 ω

− 1
2

1 (log 2)−
1
2

(
log

1

s

)
→ 0.

This contradicts (13). Hence it follows that

tk = c2k (C + o(1)) . (15)

Combining (12), (14) and (15), we have

tk = c2k
(
α−1
2 ω1(log 2)

−1 + o(1)
)
, and w = α

1/2
2 ω−1

1

(
log

1

|x|

)
.

Consequently, we show that w ̸= 0.

We note that
λk
cpk

→ 0. (16)

Indeed, from Lemma 4.1 we have

o(1) = λk

∫
vpkdx =

λk
cpk

∫
B

(ckvk)
pdx =

λk
cpk

[∫
B

wpdx+ o(1)

]
.

We set δk ∈ (0, 1) as the point such that

evk(δk)
2 − p

2α
p/2
2

λkvk(δk)
p−2 = 0.

15



Since vk is decreasing function with respect to r, this point δk is unique and

evk(r)
2 − p

2α
p/2
2

λkvk(r)
p−2 ≥ 0 for r ∈ [0, δk]

evk(r)
2 − p

2α
p/2
2

λkvk(r)
p−2 < 0 for r ∈ (δk, 1).

We observe that

α2

Mk

∫
B

v2ke
v2kdx =

α2

Mk

∫
Bδk

v2ke
v2kdx+

α2

Mk

∫
B1\Bδk

v2ke
v2kdx = I1 + I2. (17)

First, we show that

I2 ≤
C

c4k
(18)

for some positive constant C. For θ > 1, we have

e(
ck
θ )

2

− p

2α
p/2
2

λk

(ck
θ

)p−2

> e(
ck
θ )

2

− p

2α
p/2
2 θp−2

c
2(p−1)
k → ∞

as k → ∞, where we used (16). Thus we have vk(δk) ≤ ck/θ. We define vk,θ
in the same way as (10). Then by using Lemma 4.4, we have

I2 ≤
α2

Mk

∫
B

v2k,θe
v2k,θdx ≤ α2

Mk

(∫
B

v
2θ
1−θ

k,θ

) 1−θ
θ
(∫

B

eθv
2
k,θdx

) 1
θ

≤ C

c4k
.

Next, we show that

I1 ≤ 4π +
6π

c4k
+ o(c−4

k ). (19)

In order to prove this we apply the strategy of blow up analysis in [12].
We go back to the equation (4). Recall that as follows:
The function ϕk is defined by ϕk(y) := ck(vk(rky)− ck) and ϕk satisfies

−∆yϕk = 4

(
1 +

ϕk
c2k

)
e
ϕk

(
2+

ϕk
c2
k

)
− 2p

α
p/2
2

cp−2
k e−c

2
kλk

(
1 +

ϕk
c2k

)p−1

in B1/rk .

(20)
Then ϕk → ϕ∞ := − log(1 + |x|2) in C2

loc(R2) and ϕ∞ satisfies

−∆ϕ∞ = 4e2ϕ∞ in R2.

From the following lemma to Proposition 4.11, since the proofs are same
as those in [13] and [12], we introduce only the statements.
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Lemma 4.8. Set ηk := c2k(ϕk−ϕ∞). Then there exists η∞ such that ηk → η∞
in C2

loc(RN), η∞ is written by

η∞(r) = ϕ∞(r) +
2r2

1 + r2
− 1

2
ϕ2
∞(r) +

1− r2

1 + r2

∫ 1+r2

1

log t

1− t
dt,

and η∞ is the unique solution of{
−∆w = 4e2ϕ∞ (ϕ∞ + ϕ2

∞ + 2w) in R2,

w(0) = w′(0) = 0.

Moreover, η∞ = ϕ∞ +O(1) as r → ∞ and
∫
R2 −∆η∞dx = 4π.

We write
ϕk = ϕ∞ +

η∞
c2k

+
zk
c4k

On the second term in the right hand side, we have

2p

α
p/2
2

cp−2
k e−c

2
kλk = o(c2p−2

k e−c
2
k).

Thus we have

−∆ϕk = 4

(
1 +

ϕk
c2k

)
e
ϕk

(
2+

ϕk
c2
k

)
+ o(c2p−2

k e−c
2
k)

= 4e2ϕ∞
[
1 +

ϕ∞ + ϕ2
∞ + 2η∞
c2k

+
η∞ + 2η2∞ + 4ϕ∞η∞ + 2η∞ϕ

2
∞ + ϕ3

∞ + 1
2
ϕ4
∞ + 2zk

c4k

]
+O(c−6

k ).

From this, we have zk → z∞ in C2
loc(R2) and{

−∆z∞ = 4e2ϕ∞
(
η∞ + 2η2∞ + 4ϕ∞η∞ + 2η∞ϕ

2
∞ + ϕ3

∞ + 1
2
ϕ4
∞ + 2zk

)
in R2,

z∞(0) = z′∞(0) = 0.

We can observe that

z∞(r) = β log(r) +O(1) as r → ∞,

where β is represented by

β =
1

2π

∫
R2

−∆z∞dx = 6 +
π2

3
.

We rewrite
ϕk = ϕ∞ +

η∞
c2k

+
z∞
c4k

+
τk
c6k
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Lemma 4.9. Let 0 ≤ S ≤ sk ≤ eck and τ : [S, sk → R] be given so that
τ = o(c6k) uniformly on [S, sk]. Set

ϕ = ϕ∞ +
η∞
c2k

+
z∞
c4k

+
τ

c6k
,

and

Tk(r, τ) := c6k

[
4

(
1 +

ϕ

c2k
e
2ϕ+ ϕ

c2
k

)
+∆ϕ∞ +

∆η∞
c2k

+
∆z∞
c4k

]
.

Then
Tk(r, τ) = 4e2ϕ∞

(
2τ + o(1)τ +O(c−2

k ξ2)τ +O(ξ6)
)

uniformly for r ∈ [S, sk], where

ξ(r) := 1 + log(1 + r) (21)

Proposition 4.10. There exist M > 0, T > 0, and large constant K(M,T )
such that

|τk| ≤Mξ(r) for r ∈ [0, eck ], |τ ′k(r)| ≤
M

r
for r ∈ [T, eck ],

for any k ≥ K(M,T ), where ξ is defined in (21).

Proposition 4.11. Given a sequence {sk} with sk ∈ [cqk, e
ck ] for some q > 2,

we have
α2

Mk

∫
Bskrk

v2ke
v2kdx = 4π +

4π

c4k
+ o(c−4

k ). (22)

Lemma 4.12. We have

ϕk ≤ ϕ∞ in [µ2
k, δkr

−1
k ]

for sufficient large k.

Proof. By Lemma 4.8 we have

η∞(c2k) ≤ −1, and

∫
R2

∆η∞dx < 0.

Moreover, by the definition of Tk in Lemma 4.9 we can see that

−∆τk(r) = Tk(r, τk),
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and thus we have

sup
(0,c2k)

∣∣∣∣z∞c4k +
τk
c6k

∣∣∣∣ = o(µ−2
k ), and

∫
B

c2
k

∣∣∣∣∆(z∞c4k +
τk
c6k

) ∣∣∣∣dx = o(c−2
k )

by Proposition 4.10. From these facts, it follows that∫
B

c2
k

∆ϕkdx =

∫
B

c2
k

∆ϕ∞dx+
1

c2k

∫
B

c2
k

∆η∞dx+ o(c−2
k )

= −4π − c

c2k
+ o(c−2

k )

< −4π.

Since ∆ϕk ≤ 0 in [0, δkr
−1
k ], for r ∈ [c2, δkr

−1
k ] it follows that∫

Br

∆ϕkdx ≤
∫
B

c2
k

∆ϕkdx < −4π <

∫
Br

∆ϕ∞dx.

By this inequality and ϕk(c
2
k) < ϕ∞(c2k), we have ϕk ≤ ϕ∞.

We can calculate in the same way as the proof of Proposition 14 in [12].
Therefore for sk given in Proposition 4.11 we have

α2

Mk

∫
Bδk

\Bskrk

≤ 2π

c4k
+ o(c−4

k ). (23)

Hence combining Proposition 4.11 and (23), we finish the estimate of (19).
Finally, by (11), Proposition 4.7, (17), (18), and (19) we prove the Propo-

sition 3.1.
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