Bicomplex extensions of zero mean curvature surfaces

in R*! and R%?2
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Abstract. In this paper, we construct zero mean curvature complex surfaces in
CV with a various type of standard metric, each of which changes its type from
positive definite to neutral, by means of bicomplex numbers. By applying them
as bicomplex extensions, we describe the correspondence between fold singularities
and type-changing of zero mean curvature real surfaces in R*»! and R?2. In partic-
ular, we show that any fold singularity consists of branch points of the bicomplex
extension. We also show that type-changing across a lightlike line segment occurs
on an incomplete end on a fold singularity.

1 Introduction

Spacelike maximal surfaces in the Lorentzian 3-space R*! are correspondents to minimal
surfaces in the Euclidean 3-space R3 as zero mean curvature surfaces. They have quite
similar natures to each others. One of the essential differences is the fact that spacelike
maximal surfaces have singularities in general. Among these, we are interested in double
surfaces with fold singularities. Here we say a surface has a fold singularity if the surface
can be expressed locally by an analytic map F : R? D U — RN+"= satisfying F(z,y) =
F(z,—y) for a suitable coordinate system. In particular, we mainly consider the case
that the fold singularity is nondegenerate in the sense that F,(z,0) # (0,...,0) holds
on each, or at least generic, point on the singularity. Although fold singularities do not
appear on spacelike maximal surfaces in usual, they are not so rare and many examples
are known. Recently they are studied actively by focusing on analytic extensions of
spacelike maximal surfaces to timelike minimal surfaces across their fold singularities
since such type-changing occurs only across a null curve of fold singularities or a lightlike
line segment ([13], [12], [8], [4], [5], [6], [7], [9], [20], [1], etc.).

One of the strong tools to analyze these surfaces is the Weierstrass type of represen-

tation formula. By this formula, each zero mean curvature surface is presented locally



as a real part of the integral of a C*-valued (resp. D?-valued) holomorphic 1-form on a
suitable domain in C in the case of spacelike maximal surfaces (resp. in D, the algebra of
paracomplez numbers, in the case of timelike minimal surfaces). In this paper, we unify
the formulas on these surfaces by considering the extensions to B, the algebra of bicom-
plex numbers. B is the Clifford algebra isomorphic to Cly in [15], which includes both
C and D as subalgebras. B was first introduced essentially by Cockle [3] as tessarines,
and later, defined formally by Segre [18] as bicomplex numbers. B has been investigated
itself, and used for analyzing various subjects by many authors. However it seems that
there are not so many studies on geometry of submanifolds by using B, for instance, as
Baird-Wood [2] which treats representation formulas of harmonic morphisms, etc..

In §2, we summarize basic facts on B and bicomplex holomorphic functions in a form
suitable for our purpose, and in §3, consider zero mean curvature complex surfaces in CV
which are given by projections of bicomplex holomorphic maps, and give a generic results
for such maps to have fold singularities. In §§4-5, we observe bicomplex extensions of zero
mean curvature surfaces in R*!, and as an application, give a transformation formula of
the Weierstrass data for spacelike maximal and timelike minimal surfaces in R*! extended
analytically to each other across their fold singularities. In §§6-7, we observe bicomplex
extensions of zero mean curvature surfaces in R%?, and as an application, give a degenerate
result of negative definite domains which appear in deformations of “spacelike” maximal
surfaces in R*2. In §8, we observe cross sections including the degenerate directions of
spacelike maximal and/or timelike minimal surfaces around fold singularities, incomplete
ends and cuspidal edges. In §9, we discuss the flux around zero-devisors and a global

meaning of timelike minimal surfaces.

2 Basic facts on bicomplex numbers

The algebra of bicomplex numbers is a 4-dimensional real vector space
B = {Z =11+ 129 +iox3 + jrg | 11,22, 23,74 € R}
equipped with the multiplication defined by

i12 = iy2 = —1, j = i14s = i9i1, and hence j* = 1.



Set

C(Zl) = {C =T + 1129 | T1,T2 € R},
C(Zg) = {Z = T + 1923 | T1,T3 € R},
D = {221’1 + jxy |[L’1,ZL‘4€R}.

Both C(i;) and C(iy) are the fields of complex numbers, and D is the algebra of para-

complez numbers. We can regard B as a complexification of C(iy) (resp. D) in the sense

that B = C(iz) ®@r C(i1) (resp. D ®gr C(i1)). Three conjugations are defined on B as

follows:

where gl? <27 C3 € C(Zl) and

Z+zh
Z 42
Z 42

31

Z3te

zZ'"3

1+ 11T2 + 1973 + JT4
T — 11X + 123 — JTy
T+ il.TQ — i2133 — jx4
Shits

T1 — 11Ty — 12T3 + J Ty

2(ZL'1 —|— 7:2{E3) - C(lg),
2(ZL’1 + 7:1{E2) € C(Z1>,

2(%’1 —|—jl’4> € D,

T1 + iox3)? + (29 + iaxy)?

G+ 122

G+ 12

C1 — 1262

G — 2o

is the usual conjugation of C(iy).

G+ 733,

E_jgu

G — JG3,

C1+ G,
It holds that

5171 + 372 — Ig — T4 ) + 2i2($1$3 + $2$4> S C(’lg),

Qfl — .1’2 -+ $3 — T4 ) -+ Qil(iCll'Q + .CC3£IZ'4) S C(’ll),

T+ jra)® + (w2 — jas)?

(
(
(21 + i122)* + (33 + i124)°
(
(
(

2% + 29 + 23 + 14°) + 2 (0124 — 2273) € D.

The real part and the three imaginary parts of a bicomplex number Z = x1+i1T5+i0x3+ )24

are calculated by

1
T = Z(g—i_gh _i_gTz_i_gTs)?
1
— > _ 3N sto _ i3
To = —(z— 2"+ 2z Z'3),
2 4@1( )



1

I £~ N~ R~ PR~

T3 42,2(2%—2 z z13),
1

— (5 _ 3T _ 3t “’Ts'

Ty 4j(z z Z2  ZTs)

We denote these parts also by (2)1, (2)2, (2)3, (2)4 or {Z}1,{Z}2, {Z}3, {Z}4
In usual, the absolute values and arguments of bicomplex numbers are defined for each
conjugation, and they take complex or paracomplex values in general. In this paper, we

use the nonnegative real absolute value |Z| and the Euclidean norm ||Z|| given by
12|t = zhEhEt = {(z)— 24)? 4 (20 + 23) (21 + 74)* + (22 — 73)°},
H:7,VH2 = Re(EZT3) = 1'12 + 1'22 + 1’32 + 3342.
For z = 1 + isw3 € C(iz) and Z = z1 + jzy € D, we also use the notation |z|%(i2) =
21® + 23° and |Z[§, = 21® — x,® respectively. Tt holds that [2|* = 221 [g,,) = [227:]}.
B has zero-divisors, and we denote the set of zero-divisors by S. It is easy to see that
S = {z]lz=0}
= {Z|:B1—x4:x2+x3:00rx1+x4=x2—x3:O}
= {(1 +])($1 + il.TQ) ‘ X1, T € R} U {(1 — j)(ﬂfl + ilxz) ’ T1,T2 € R}
= (1+))Cli) U1 —4)Ci) = (1+,)BU(1—j)B.
Let |Z]+ be a nonnegative number given by

]5\1 = Re(EET3) T ImD(EET3) = (x1 F :1:4)2 + (2o + x3)2.

Then it holds that |Z|*> = |Z]|z|_ and (1 + j)B = {Z | |Z|l+ = 0}. For any z ¢ S, its
tnverse is given by

1 ng gTz §T3

ERRET

Now, it is natural to consider three arguments 6., 6, 65 satisfying

37 — peitfitizta+ios

for 2 ¢ S, where r = |Z| and

e = cosl +i1sinfy, €22 = cosfy +igsinby, €% = cosh O + 7 sinh 65.
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These arguments are calculated by
r2e?f = zzha  p2eef2 — Ehi o 20200 — 33
In particular (6q,62) is well-defined modulo (7, 7)Z + (7, —m)Z. Note here that |j| = 1

and j = dyiy = ™Mt/ Fien(Ne+1/2) (N} N, € Z, Ny + N, : even) under our definition.

Now, let
’(E(:Zv) - Ul(l‘l, x2,$3,$4) + ilUQ(I’l, $2,$37$4) + 7;2’1],3(:1:1,&32,5173, ZU4) +jU4<QU1, x2,$3,x4)

be a bicomplex function defined on an open subset €2 of B. Then the bicomplex derivative
wy of w(Z) is defined as a natural extension of the complex derivative of a complex function
so that Wy = Wy, = Wy, /i1 = Wy, /la = Wy,/j, and W(Z) is bicomplez differentiable or

bicomplex holomorphic if and only if it satisfies the following bicomplex Cauchy-Riemann

equations:
(ul)xl = (Ug)m = (u3)x3 = (u4)a?47
(2.1) (u2)$1 = _(ul)wz = (u4)x3 = _<u3)$47
<u3)$1 = (u4)$2 = _(ul)fb‘?, = _<u2)$4’
<u4)$1 = _(u3>12 = _(UZ)OCS = (ul)M‘

Note here that any bicomplex holomorphic function satisfies

Up ) zq 21 + (u zore — \We)zszs + (u T4T4
(2.2) (1) (1) (ue) (e (6 =1,2,3,4)
= (uf)wlxs + (u5)1224 = (u5>$1$4 - (uf)ml‘s =0
and
(2'3) (Ue)zy2y + (ué)zgm = (uf)mm — (U)eses = 0 (0=1,2,3,4).

3 Zero mean curvature complex surfaces and f, equiv-
ariance

Let ¢"(Z) be a bicomplex holomorphic functions defined on an open subset Q of B for

n=12,...,N. Set

d = (0N

Y

and denote the projection of ® to C(i1)" by F, namely
F : B>Q—C(i)V
Ze @1(2) +0102(2) = (o1 + i1, 01 + i, 00 +ingy ) (3),

5



where we denote (®), and (¢™), by ®, and ¢} respectively (¢ = 1,2,3,4). Set (3 :=
1+ 129 and (o 1= x3 +i124 as in §2. Then Z = (z1 +i129) +io(xg +i124) = (G + 12(o,
and F can be regarded as the map from  C C(i;)? into C(i;)". By (2.1), we see that F
is holomorphic with respect to the variables ((i, (2).
Now, regard C(i;)" as R*¥+2Y= (N, + N_ = N), and denote the standard metric by
ds?, namely
Ni+N_

Z{ dul duQ) b - Z {( du1 du2) }

n= N++1

Set h := F*(ds?), and

o = (o) = @2 (G o) (=123,

Oxy’ Oz, 0z’ Oy,

Then it holds that

a O c d
(hém)e,m:1,2,3,4 = (c] _Z _Z g
d c 0 b
with
a = (P, (P1)ay) + {(P2)ay, (P2)sy ),
(3.1) b= ((Ps)ar, (Pa)ar) + ((Pa)o: (Pa)a);
| ¢ = <((I)1)$17((I)3)w1> <(q)2)$17<q)4)x1>7

d = {(®1)ar; (Pa)ar) = ((P2)ar, (D)),

where we use (2.1), and denote the standard inner product on R¥+"= by (-, -), namely

Ny N{+N_
((ulyou™) ) = Y = YT
n=1 n=Ny+1
In particular, it holds that
det (hem) = (ab— c* — d*)2.
Since
b 0 —c —d
1 0O b d —c
ml _ -1 _
<h ) - (hzm) - ab - 02 - d2 —c d a 0 ’
—d —c 0 a



by direct computation, we can show that the Laplacian with respect to h is of the following

I 1 (PN, (P,
T ab— e — a2 0x12  0xy2 “ 032 Ox42
0? 02 0? 0?
—e <8x18933 + 81'28904) —2d <8$18$4 B (9:):28903)

0 0
+ {(bm = Cgy — dm)aixl + (bxz — Cxy + dwa)%

form:

0 0
+(ax3 — Cgy T dm)aimg + (a:r:4 — Cgy — dm)m}] .

Applying (2.1), we see that each coefficient of the term of the differential operator of the

first order vanishes. By using this fact and (2.2), we get the following

Theorem 3.1. The mean curvature vector field of F' vanishes on the reqular point set of

F', namely it holds that A F' = 0.

Denote the restriction of F' to QN C(iz) (resp. QND) by F|c(y,) (resp. F|p). By (2.3),
F|c(s,) (resp. F|p) is a harmonic map with respect to the metric dz? + da3 on QN C(is)

(resp. dx? — dz? on Q N D).

Theorem 3.2. Suppose that @ satisfies the condition
(3.2) ®(zh2) = ()2 +C

for some constant vector C' € BY. Then Flc@y) and Flp have a common fold singularity
on F(QNR)N{a # 0}, and Fl|p is an analytic extension of F|cu,) across the fold
singularity. The image of the extension is nondegenerate on any point F(x1) on the fold

singularity such that ®(x1) and & (xy) are linear independent.

Proof. Under the assumption, we see that
(G +ia(=C)) = (G —ixG) = P((G +i2)?) = B +iage)? +C
for (1, € C(iy) such that ¢; +45( € QN Qf2, and hence
(G +1i2(=C)) = () = (B(G1+ia) — B(C))™.
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Therefore F' = ®; + 7, D, satisfies

F(G +i(—C)) — F(G) = F(G +1i262) — F(G),

namely F((; + i2(2) is even with respect to (3. On the other hand, by (3.2), we also see
that (®3),, = (P4)s, =0 0on QN C(iy) and hence b=c=d =0 on QN C(iy). Therefore
both F|c,) and F|p are double surfaces with fold singularities on F'(2 N R) N {a # 0},
and F(z1 + jz4) = F(x1 + 42 - i124) is an analytic extension of F'(zy + igx3) in the sense
that

F(s +i9\/1) (t>0, s+is/t € Q),

F(s+ jv—t) (t<0, s+jvV—t€Q)

is analytic with respect to (s,t). Note here that ia®3(¢1) + jP4(¢1) is independent of

(3.3) Fpa(s,t) = {

¢1 € 2N C(ip) under the assumption (3.2). Since

Fra(s,t) = —(ia®s(s) + ja(s)) + (s) — ;@;;(s)t 1O

holds around (s,0) for any s € QN R, the image of Fjq is nondegenerate on (s,0) for any

F F 1
0 jd(s, 0) = ®(s) and 0 ﬂd(s, 0) = —=P(s) are linear independent. 0

s such that > =
ot 2

Theorem 3.3. Suppose that ® satisfies (3.2). In addition, assume that Q = Q. \ (§+S)
for some domain Qo C B and q¢ € Qo N R, and that ® has a pole of order K with only

odd ordered terms at q, namely, ® can be written as

K
B(3) — k:§odd<s—1q~>l«0k+¢h°l<g>’

where Cy € C(i1)Y (k= 1,...,K;k : odd), Cx # Y(0,...,0) and Py, is a bicomplex
holomorphic map from Q. to BY satisfying (3.2). Then F|p is an analytic extension of
Flciy) across a subset of a line parallel to C. The image of the extension is nondegen-
erate on an open subset of the line if Cx and either (Pno)=(q) or

{ (Pra):(@) (K =1),
Cr_o (K > 3; K :o0dd)

are linear independent.



Proof. We may assume ¢ = 0 without loss of generality. In this case, F'is of the following

form:

K k—1 _ANT/2(k\F k=T s T
F(Gi+1i6) = ). { > V7RG G }Ck+Fhol<Cl+i2<2)a

k=1;k0dd | 7=0;m:even (G2 + G2)F
where Fio = (Ppo1)1 + 41(Pror)2 is holomorphic with respect to (1, ¢2), and even with
respect to (o. Now, for any s € R such that sG* 1 44, € Qo holds for ¢, € C(iy) near
to 0, it holds that

K k—1 VT/2(kY k7 (K—Dk—KT
F(sC2K+1+i2C2): Z { Z (1) (T)S G2 }Ck

k=1:k:0dd (s26°% + 1)k

+ Bl (sGT 4 da(y)

7=0;7T:even

1

= Fha(0) — 5(‘1%01)’;;(0)(22 +0(¢"
N (s — G701 + G2 (Pro)5(0) (K =1),
(—D)ED2KsCr + (—1)E32(K —2)s¢*Cx_o (K > 3; K : odd),

and hence F((—1)FE+D/ 250, K+ 4 5a,) = F(s(iy24) 5T 4 iy -i124) is an analytic extension
of F(sz3®*! +iyx3) in the sense that
F(stEFD/2 44,0/t (t >0, stEHD/2 L ip\/t € Q),
(—D)ED2KsCx + Fra(0)  (t=0),

F(stBE+D/2 4 5 /1)
(=728 <t <0, stEHD2 4 5./~ € Q)

(34)  Fua(s,t) =

is analytic with respect to (s,t). The image of F,.,q is nondegenerate at least on the

following subset of the borderline:

{(—1)(K_1)/2KSCK + Fhol(o) | S € R,

1 —83C + 5(Ppot)z(0) (K =1),
— 5 (Phot)z=(0) + { (—D)E2K - 2)sCk_y (K > 3;K : odd)

and Cf are linear independent. }.

For any real analytic map from an open interval into R, its bicomplex extension

satisfies (3.2) with C' € R", and hence we can apply Theorems 3.2 and 3.3.



We note here that the first examples of analytic extensions across lightlike line seg-
ments were given in [5, Theorem 1.1]. In Example 9.3, we give another family of such

extensions by applying Theorem 3.3.

4 Bicomplex extensions of zero mean curvature sur-
faces in R*!

In this paper, we are interested in the case that the holomorphic map F' = &, + 1,5
we defined in §3 is a bicomplex extension of some spacelike minimal or timelike maximal
immersion into R*! or R*?. In §§4-5, we restrict our attention to the case that (N, N_) =

(2,1) and ® = (', 2, ©?) satisfies

(1) + (¥3)? — (¥H* = 0.

Set
. pr+ ol
: o
_ 02 —pr + 2
g = = .
oy + ¢l 2

Then f (resp. §) is a bicomplex holomorphic function on Q (resp. Q\ {|f| = 0}), and
® = & + 1Py + 19P3 + Py is rewritten as follows:

(4.1) () = [0 =g .27 (1+ ) )z

In this case, we use the notation X = ®; + i;®, instead of F. Conversely, for any pair
(g, f ) of bicomplex holomorphic functions on a domain 2 C B, the map X = & +4,D,
with (4.1) is locally well-defined. We note here that this form of representation formula
can be found in [14, Theorem 3.2] for timelike minimal surfaces, and in [17, Theorem 1]
for null curves.

By (2.1), it holds that

X:B1 - ((D1>I1 + il(q)Q)wu 5(/333 - _(q)3)$1 - i1<q)4)$1'
Since
- - B B - ggb -1
XCl X XC2 - X:B1 X XCUB = Z2(§ - gJFQ)ffJf2 _<§+ §T2) ,
—(gg™ + 1)
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where x is the outer product of type (2,1), the Gauss map of X with respect to the

complex inner product of C(i;)? regarded as C(i;)*>! = R*! @r C(i) is given by

" 1 §§T2 —1
G == ~—~T _<§+§T2) )
—12(9 ) 2) _(§~T2 + 1)

and the Gauss map of X with respect to the real inner product of C(i;)? regarded as R*2

- ) ghghs —1
GTl — _(ng + §T3)

—iz(gh — g's) —(ghgts +1)

is given by

in the sense that the normal vector space at any point is GT1C(iy).
Denote the metric & induced by X from the standard metric on C(4;)? regarded as R*?

(resp. R®) by h_ (resp. hy), and (g), and (f)¢ by g¢ and f, respectively (¢ = 1,2,3,4).

Then we get the following

Proposition 4.1. For any point in Q '\ {f = 0}, the metric h_ induced by R** satisfies
the following:

(1) h_ is positive definite if |f| # 0, § & C(iy) and 22> + g4% < gs2.

(2) h_ is rank-2 positive semidefinite if (i) or (ii) holds:

(i) [f] #£0, g€ Clir) \R or 2g2° + g4 = g3% ; (ii) |f]l« = 0 and g> F g3 # 0.
(3) h— is 0 if (i) or (ii) holds:

(i) || #0 and g € R ; (ii) |f]+ = 0 and g2 F g5 = 0.
(4) h_ is neutral if |f] # 0, § & C(i1) and 2922 + g4 > g52.
Proof. Note here that the characteristic polynomial of (hg,,) is given by

(4.2) (A2 —(a+ b+ (ab—* —d*)}?

in general. The coefficients a, b, ¢, d of the metric (h— g,)rm=1.23.4 induced by R*? is given

by (3.1) with

(®0)ars (Pm)er) = 2{2G0)e@ )m = (Del@ P = (T De( P}
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and hence
a = —{@—g)2 M —{@G—g=)>ffl},
b= {(G—g)2ffih = {(@—gh)>fflah,

(4.3)
¢ = {(g-g")fM)s,
d = —{(g—g")ffl}a.
Since
ab—c*—d* = {|g—§%p — |9 - §"cu /T
= —16(g5" + 94°) (200" — 5> + 97| f1",
ab— ¢ —d® > 0 (resp. =, <) holds if and only if |f| # 0 and gs> + g, > 0 and

295%+ 4% < gs* (vesp. |f| =0or g5 = gy = 0 or 29>+ g4* = gs*, | f| # 0 and g5>+ 4> > 0
and 2¢22 + g4% > g3?). On the other hand, since
at+b = —2{(G-g")*f
= 8{(g2— g3l FI1* + 200051712 }
= 8{(g2+ g3)’lIf1I* — 29205/ FI* }

0,

v

if |f| # 0 and a + b = 0 holds, then g, = g3 = 0. Combining these conditions, we get our

conclusion. O

Proposition 4.2. For any point in Q\ {f = 0}, the metric h, induced by RS is rank-2

positive semidefinite if g € C(iy) or |f| = 0. Otherwise h is positive definite.

Proof. Recall (4.2). The coefficients a, b, ¢, d of the metric (hy gm)em=1,234 induced by
R is given by (3.1) with

(@0)ars (Pr)ar) = 2{2)e@ )m + (el + @ 1)o@}

and hence

a = {(L+gg)ffih+{(1+gg=)fflah,
b= —{(1+gg")f b+ {1 +agh)*f
¢ = —{(L+3g")>ffM}a,

d = {(1+gg")ffl}s.

12
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Since

ab—c* —d* = {|1+G5%[H — |1+ 35" & H I
= 8(g5° + g:){(91? — 94D + (92 — g3%)?
+2(g192 + 9394) + 2(g193 + 9294)% + 2(9.% + g2°) + 1}| f|*

> 0,
ab — ¢ — d? = 0 holds if and only if g3 = g4 = 0 or | f| = 0. On the other hand, since

a+b = 2{(1+3g")’ffh
= 2{(L+ 3122/ fII* — 49194 — g295) (L + ||GIP)I F12}
= 2{(1+|2)2If11* + 4(9194 — g293) (1 + || FI2}

> 0,

we get our conclusion. 0O

Combining Propositions 4.1 and 4.2, we see that the map X is degenerate only on

{Z | §(2) € C(i) or |f(Z)] = 0} and changes its type on {Z | 2¢2(3)? + gu(3)? =

g3(2)2,1f(2)| # 0} without singularities.

5 Transformation of Weilerstrass data

Let X, § and f be as in §4. Denote the restriction of X to QN C(iy) (resp. QND, QNR)

by X lc(iz) (resp. X Ip, X |r) etc. as before. Suppose that (g, f) satisfies the condition
(5.1) gzt = g@h,  fEh) = fEh (vEeQnQh ¢ B).

Then it holds that

(5.2) 3(2), f(z) € Clin) (V2 =1 + isxs € QN C(iy)),

and (the projection of) Xv|c(i2) = 1|c(,) = Re P|cpy) (to R*!) is a spacelike maximal
immersion from QN C(iy) into R*! € C(4;)3. By (4.3) (resp. (4.4)) and (5.2), the induced
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metric is given by

holoty = A0mea)d) [l dzlee = 405> (A% + f37)(das® + das®),
(vesp. hylogn = (1+19060)° 1 F 166|426 w) + Re {(1 +3%)° F7d="}

= 2[2{Re(§fdz)}* + {Re(fdz)}* + {Re(3*fdz)}"] ).

By (5.2), it holds that § = g™ and g2 = g's on 2N C(iy), and hence the Gauss map of

X lc(iz) 1 given by

CﬁL1 = ; (~ ~t ) _(g + §T2) = 21 ~ —2Re g
—ia(g — g 2 me(; .
299 (19183, + 1) Clia) 9 —(9l&6) + 1)

By using the M&bius transformation of g|c,), we can describe the correspondence between

this representation and the usual one (cf. [13, Theorem 1.1])
N t

(53) Xmax(z) = Re / ((1 + gmaxz)fmaxa 7/2(1 - gmax2>fmaX7 _2gmaxfmax)dz

as follows:

Lemma 5.1. Let (g, f) be as above. Set

_ —(g+i)? 5
) fmax = ff

C(iz2) C(i2)

g — 12
g+

Jmax =

Then (Gmax, fmax) gives a representation of the same immersion by the usual Enneper-

Weierstrass representation formula (5.3). Conversely, for any Weierstrass data (gmax, fmax)

for (5.3), set
. gmaX 1

Jmax — 1 2
g _17 f = Qfmaxa

g = 5

and denote the bicomplex extensions of g and f by g and f. Then (g, f) = (§lc)s Flow))

gives a representation 5(/|C(Z-2) = Re ®@|c(,) with (4.1) for the same immersion.

Suppose that (g, f) satisfies the condition

(5.4) gz = g®),  fEh) = f&)B (vZeQnQls cB).
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Then it holds that

(5.5) G2, f(5)eD (V=1 +jos € QN D),

and (the projection of) X|p = ®1|p = Re ®|p (to R*!) is a timelike minimal immersion
from 2 N D into R*' € C(i;)®. By (4.3) (resp. (4.4)) and (5.5), the induced metric is

given by

holp = —4(Impg)?|f3ldzh = —4g.2(fi* — fi°)(dai® — dz?),
(resp. hilp = (1+3[b)2fHldz]b + Re {(1 + §°)*f*dz*}

= 2[2{Re(g/d2)}* + {Re(fd2)}* + {Re(g° d2)}?] ).

By (5.5), it holds that § = §'s and §™* = g™ on QN D, and hence the Gauss map of )?|D

is given by
GO = Famgm | 2T ) T e |l
—(lglb + 1) —(lglb + 1)

In this case also, by using the Mobius transformation of g|p, we can describe the corre-

spondence between this representation and another type of ones (cf. [19], [1, Fact A.7])

(56:|:> Xﬂliﬂ(z) = Re/ t(2gminfmin7:|: ( gmm)fmlm ( gmm)fmln)

as follows:

Lemma 5.2. Let (g, f) be as above. Set

g=*J

Foun = _(§¢j)2f
IFJilp

2

Jmin =

D
Then (gmin,fmm) gives a representation of the same tmmersion by the usual Enneper-

Weierstrass type representation formula (5.6i). Conversely, for any Weierstrass data
(Gmin, frnin) for (5.64), set

Fo._ _(gmin_ 1)2 F
f T #fmim

Vmin 1
= gy T
9min — 1

NaYl

15



and denote the bicomplex extensions of § and f by § and f. Then (9, f) = (§|D,f|D)
gives a representation X|p = Re ®|p with (4.1) for the same immersion.

Suppose that (g, f) satisfies the condition
(5.7) gzt) = g@)t,  fER) = fEF  (vZeanqlcB).

Then, since ®(z72) = ®(2)™2 + C holds for some constant vector C € B?, as we have
already observed in the proof of Theorem 3.2, X (1 + 12¢2) is even with respect to (o,
both X lc(ip) and X|p are double surfaces with fold singularities on Q N R, and X|p is
an analytic extension of X lciy) even if we do not assume that X lc(i) (resp. X|p) is
maximal (resp. minimal). The image of this extension is nondegenerate on any point on
the fold singularities such that f # 0 and g # 0.

The map Xy : (Cliz) D)Q — R?*! defined by (5.3) is a double surface with fold

singularities if its Weierstrass data (gmax, fmax) Satisfies

G 0 1(2) = gl()T Fanx 0 1(2) = (G2 ()7 (V2 € Q).

for some antiholomorphic involution I(z) of C(iy). This condition with I(z) = 272 is
equivalent with the condition (5.7) for the corresponding (g, f). On the other hand, the
map X, : (D D)Q — R?! defined by (5.6) is a double surface with fold singularities if

its Weierstrass data (gmin, fmin) satisfies

§ . 1 : 2 L2 e §
YGmin © I(Z> = M7 Jmin © I(Z> = (grnin('75)2frnin(z))Jr2 (VZ S QO)

for some antiparaholomorphic involution I(%) of D. This condition with I(2) = T2 is
also equivalent with the condition (5.7) for the corresponding (g, f) Conversely, if (g, f )
satisfies (5.1), (5.4) and hence (5.7) also, then it does not only satisfy both (5.2) and (5.5)

but also satisfies

(5.8) g(x), f(x) eR (Ve =2, € QNR),

and hence both corresponding X,,.x and X, are double surfaces with fold singularities

on QN R and Qy N R respectively. Now, by combining Lemmas 5.1 and 5.2, we get the

16



following formula of the transformation of Weierstrass data:

Theorem 5.3. Let Xpax @ Qo — R>*! be a spacelike maximal immersion defined by
(5.3) with Weierstrass data (gmax, fmax)- Suppose that Xiax is a double surface with fold
singularities on QoNR C C(iz) and satisfies |gmax(®)|ci) = 1 (Vo € QoNR). Denote the
bicomplex extension of (Gmax, fmax) 0Y (Gmax, fmax). Then the Weierstrass data (Gmin, fmin)
of a timelike minimal immersion X,y defined by (5.6) with the common fold singularities

18 given by

- j:iZj.amax + 1 F (gmax j: in)Q ra
Jmin = —= 7 ) fmin = T A& - Jmax

gmax + 22.] D j:27“2'] D .

It is well known that X, satisfies

o Xmin Xmin -
(59) Xmin(xl + jiL'4) = (xl ha x4) —; (xl $4)7

and we can derive the same assertion as above also by using this formula with the condition
Xonin = Xomax 00 N R. As we shall see later, we can regard Xonin aS a global extension of
Xmax by considering the bicomplex extension X , and hence (i, fmin) also has a global

meaning.

Example 5.4. For any polynomial ¢(2) = 37_(ag +1428:)2* on C(iy) such that ay, 8 €
R (k= 0,...,n), set ¥(2) = (z2)2 = S7_ (cp — i26)2*, and denote 1E|D by ),
namely w(é) = Y7 _o(ap + i28) 2%, Moreover, set z@(i) = 37 _o(ap F jBe)Z*. Then

A~

P(2) = 0o (g £ 76k) 2%, Note here that

Lo () 4 0(2) = > {Hiag(an + iaB) + (an + iaB))

= (i) Y07 = (1% ])0(2),
D) £ ifi(5) = S {(an+ i)l £ in(c + iaB)}
k=0
C (i) Y (e F B = (1L iaf)d(2).
k=0

17



In particular, if 1 = ¢, then ¥(z) = X0_, az¥ and hence ¥(2) = S0_, a2 = (2).
Let Xpax be as in Theorem 5.3. Consider the case that both gy, and fi., are rational

functions on C(is). Let ga, gb, fa, fo be polynomials on C(is) satisfying gmax = ga/g» and

fmax = fa/fb' By gmax(sz) = 1/gmax<Z>T2 and fmax(zb) = (gmax(z)2fmax(z))ba we have

9a(z") _ g(2)" fa(z) _ (ga(2)*fal2))"
9s(2%2) ga(2)27 fo(z12) (g6(2)2fo(2))T2

Hence we can choose g, and g, so that g,(z) = g»(22)"2 = G5(2) and hence gunax = G5/

Now we have
falz2) — _ fa(z2)P _ fal?)
a(2)2fo(2)  (@(2)2f(2) e G(2)2fe(2)
and hence we can also choose f, and fy, so that f,(2) = f.(2) and g,(2)2f5(2) = %(2)%fo(2).

By applying Theorem 5.3, we see that the Weierstrass data of Xy, is given by
tiojgy + o _ (1E02))% _ Ga
96 £ 0270 (1 £ i25)3 9
(G £ i2jgs)° fo _ (LE£02)°Gp fo _ fa
2] g3 fe 205 Gofe o

Gmin

f min —

This formula is valid also for the case that both ¢n.. and fun.x are meromorphic
functions on a domain in C(iy).

However, if we employ the representation X = ®; + i, ®, with (4.1), then we do not
need such a transformation, and both X,., and X, are expressed as Xax = X ]C(i2)

and X, = X |p by using the common data.

6 Bicomplex extensions of zero mean curvature sur-
faces in R??

In §§6-7, we restrict our attention to the case that (N, N_) = (2,2) and ® = (¢!, 2, 03, p?)

satisfies
(027 + (¥3?* = (¥D)? = (¢D* = 0.
By the quite similar calculation and consideration as in §§4-5, we can show the corre-

sponding results for this case. Set
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Then f (resp. g, §is) is a bicomplex holomorphic function on Q (resp. Q\ {|f] = 0}),
and & = & + 119y + ixP3 + jP, is rewritten as follows:

61) @) = [ =§@0f G+ 3 f U+ 55 G- ) Pz

In this case also, we use the notation X = ®, + 11D, instead of F. Conversely, for
any triplet (gr, g, f ) of bicomplex holomorphic functions on a domain  C B, the map
X = &, 4 i1 P, with (6.1) is locally well-defined.

Denote the metric A induced by X from the standard metric on C(i;)* regarded as

R** (resp. R®) by hy (vesp. hy), and (G1)e, (Grr)e and (f)e by g1, 9110 and f, respectively
(¢ =1,2,3,4). Then we get the following

Proposition 6.1. Set Ay := (912> — 91,3%) (9112 — 911,5%) — (912> + 91.4%)(9r1.2% + 911.47),
Ao := 9129112 + 9139113 and Ag = 9129113 + 9r,3911,2. For any point in '\ {f =0}, the
metric h, induced by R** satisfies the following:
(1) hy is positive (resp. negative) definite if |f| #0, Ay >0 and Ay >0 (resp. <0 ).
(2) hy is rank-2 positive (resp. negative) semidefinite if (i) or (ii) holds:
(1) [f| #0, Ay =0 and Ay > 0 (resp. <0 ) ; (ii) [flo =0 and Ay F As # 0.
(3) hy is 0 if (i) or (ii) holds:
(i) |f| #0, A1 =0 and Ay = 0, in another word, satisfying one of the following
conditions: g € R ; gir € R ; g1 € Clia) and g;; € D 5 gr € D and g1 € C(is) ;
(ii) [fle = 0 and Ay F Ag = 0.
(4) hy is neutral if | f| # 0 and A, < 0.

Proof. Recall (4.2). The coefficients a, b, ¢, d of the metric (hy gm)rm=1,234 induced by
R** is given by

(P0)ars (Pr)ar) = 20G1)e(Grrf)m + @Grrf)e(Gr S )m — () e(Grgirf)m — (G111 f)e(f)m},
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and hence

a = —{(@ - 3" G — g =@ = 3@ — g S h,
b= {@ — )@ = a1 =@ = 3@ - g f

¢ = {@—a"@Gn - g,

d = —{(3 = 31") @ — G f 1),

(6.2)

Since

ab—c*—d* = {|(gr— )G — a)lb — 1@ — 91" Grr — 510 |G HA
= 8A;-|f]%
ab— ¢ — d®> > 0 (resp. =, <) holds if and only if | f| # 0 and A; > 0 (resp. |f| =0 or
A =0, |f] # 0 and Ay < 0). In particular, if ab— ¢ — d2 > 0, then it holds that

Azz - A32 = (91,22 - 91,32)(911,22 - 911,32)

> (912> + gra®)(gr12> + gr1.4%) > 0.

On the other hand, since

a+b = =2{@r—37) @G — ) [
= S{A|IfI]* = 283(f1fs = fofs)}
= 8{(2; = DI fIP + Al f 13}
= 8{(As + M) FIP — Aslf2Y,
if |f| # 0 and a4+ b = 0 holds, then Ay = Ay = 0. If Ay > 0 (resp. < 0), then

Ay > |Az]| > 0 or Ay = |As] >0 (resp. Ay < —|A3] <0 or Ay = —|A3| < 0) and hence

a+b>0 (resp. a+ b < 0). Combining these conditions, we get our conclusion. 0

Proposition 6.2. For any point in Q\ {f = 0}, the metric hy induced by R® is rank-2

positive semidefinite if gr, grr € C(iy) or |f| = 0. Otherwise hy is positive definite.

Proof. Recall (4.2). The coefficients a, b, c,d of the metric (hyem)em=1234 induced by
R? is given by

(P0)ays (Prn)ar) = 20(Gr)e(G1 S )im + (Gr1f)e(Grrf)m + (el f)m + (Grgrr f)e(Grgrr f)m}
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and hence

o = {0 +ga) A+ gugi) FF + {0+ 3a) (1 + grgi) Fish,
b= —{+aa) @+ guan) Fih + {0+ @a) (@ + gugi) f i h,
(6.3) - R
¢ = —{(L+grgr" )1+ grrgrp) f 1},
d = {(1+3g") (L +3ugi) [
Since

ab—c—d* = {|(1+Ga") 1+ gugilb — 1(1+Gg1) (1 + §H§E)|2C(i2)}|ﬂ4
= 4[(91,32 + 91,42){(911,12 - 911,42)2 + (911,22 - 911,32)2
+2(gr11911,2 + 91173911,4)2 +2(9rr19113 + 911,2911,4)2 + 2(911,12 + 911,22) +1}
+(gn,32 + 911,42){(91,12 - 91,42)2 + (91,22 - 91,32)2

+2(gr1912 + 91,391,4)2 +2(911913 + 91,291,4)2 + 2(91,12 + 91,22) + 1}] |ff|4

> 0,

ab—c® —d? =0 holds if and only if 973 = gr4 = 9113 = grra = 0 or ]ﬂ = 0. On the other

hand, since

a+b = 2{(1+ §I§}3)(1 + §H§FI’)J?F3}1
= 2((1+ (g + g DIAP
—2{(g11914 — 912918) L+ [Gr1|1”) + (929104 — grr29103) (1 + 121} FI3]
= 201+ g2+ (gl DI
+2{(9r.191.4 — 91.291.3) 1+ Grr|?) + (91119114 — grragrrs) (1 + a1 H 2]

> 0,

we get our conclusion. O

Combining Propositions 6.1 and 6.2, we see that the map X is degenerate only on

{Z | 31(2), g1u(2) € C(4y) or \f(%)\ = 0} and changes its type on {Z | A; = 0,Ay #

0,|f(2)| # 0} without singularities.
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7 Degeneration of negative definite domains and sin-
gularities

Let X, Gs, gir and f be as in §6. Denote the restriction of X to €N C(iz) (resp. 2N D,
QNR) by Y|C(i2) (resp. X|p, X|r) etc. as before. If (Gr, G, f) satisfies the condition
(5.1) with g = gy, gr1, then (5.2) holds with g = gr, g7, and (the projection of) )?|C(i2) =
®1]ci,) = Re Plcuy) (to R*?) is a spacelike maximal immersion from © N C(iz) into

R?? C C(i1)*. By (6.2) (resp. (6.3)) and (5.2), the induced metric is given by

hylci,) = 4(ImC(i2)§I)<ImC(i2)§H)|f|%}(i2)|dz|%}(i2)
= 491,3911,3(f12 + f3°)(day® + das?),
(vesp. hylciy = (14 1Gr16) (14 180 &0m)) | o) 4216 ) + Re {(1+ 1) (1 + g7,) f2d="}
= 2[{Re(grfd=)}* + {Re(Gir fd=)}* + {Re(fdz)}* + {Re(g:Girfd=)}7] ).
On the other hand, if (g7, sy, f) satisfies the condition (5.4) with § = g7, gr7, then
(5.5) holds with § = g7, §r7, and (the projection of) X|p = ®;|p = Re ®|p (to R??) is a
timelike minimal immersion from Q2 N D into R?*? C C(i;)*. By (6.2) (resp. (6.3)) and

(5.5), the induced metric is given by

o = —4(Impgr)(Impgr)|f[pld2[
= —491,4911,4(f12 - f42)(05$12 - d9042),
(resp. hylp = (1+ [g1lB) (1 + Guld) 1 FD 121 + Re {(1 +g7)(1 + g7,) f2d=*}
= 2[{Re(g1fd2)}* + {Re(grr fd2)}* + {Re(fd2)}* + {Re(grgri fd2)}?] ).
Now, if (§I,§H,f) satisfies (5.1), (5.4) and hence (5.7) also with § = gr, g7, then it

does not only satisfy both (5.2) and (5.5) but also satisfies (5.8) with § = gy, grs. Since
®(z12) = ®(2)"2 4 C holds for some constant vector C' € B?, as we have already observed
in the proof of Theorem 3.2, X (¢; +12(,) is even with respect to ¢y, both )N(|C(Z~2) and X|p
are double surfaces with fold singularities on 2 N R, and X |p is an analytic extension of
X |c(iz)- The image of this extension is nondegenerate on any point on the fold singularities
such that f # 0 and either (§;)s # 0 or (§r7)z # 0.

In general, if there exists a nonzero constant vector V € R*\ {0} satisfying
VLA = gigm) G+ G, U+ Gigmn) £ (ar = g)f) - o 9,
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then both )N(|C(Z-2) and )7|D are not full in R?2. In particular, if g; = ¢;; holds on €, then
their 4-th components are constant functions, in another word, they coincide with X |C(i2)

and X |p given by (4.1). By this observation, we get the following

Theorem 7.1. Let X, be a 1-parameter family of deformation of maps on € each of
which is given by (6.1). Suppose that X, satisfies gr = grr on 2. Then, if € goes near
to 0, then the image of the set grsgirs < 0 (resp. gragrra < 0 ) degenerates to the set
gr3 = grr3 = 0 (resp. gra = grra = 0) that is the set of singularities of j(vlc(m (resp.
X|p ).

Example 7.2. Define X, by the following Weierstrass data:

- . ~ I = 1
gr = —(Z — i), gir = —(Z + 1), [ = =
By direct computation, we have
P (2) = / "1 = 91911, 1 + 911, 1 + G191, 91 — 9ur) |
_ /zt (_1 ;ez +1,%’_1+e B 2226>
z z z2
1— 1 + €2 21
_ < NE 26) C
z z
for some C' € B%. Here we set C := %(0,0,0,0). Since
1 . X1 — i2$3 1 . X1 — jI4
T+ i2$3 N $12 + 1’327 T+ j.’IJ4 N (1312 — $42’
its spacelike maximal part is given by the following:
~ , (1— ey (1+ ey 2i9€x3
Xe + = —— + ) lO + [ U sy 9 o
(.771 22‘7:3) ( xl + ZL’3 1 g<x1 3 ) I12 + ZE32 = 1’12 + I32

((z1,23) # (0,0)),

Xo(x1 + ipx3) is called the helicoid of the 2-nd kind in R21(= R2! x {0} c R%2) that is
the correspondent to the catenoid in R?, and )A(l(:vl + isx3) is a l-parameter deformation

in R?>2. By using some other parametrizations, it can be expressed also by the following:

2

— 1—é 1
X(r(cosfy +igsinby)) = t<( ‘ + 1) cosfy, 2logr, ( e
r

2
— 1) cos 03, 2 sin 6’2>
r
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=1 ({eR + (1 —€e*)e ™} cosby, 2R, {—e™ + (1 +€*)e "} cosby, 2ee " sin 02)
(ReR, 0< 0y <2m).
Since
(XOr? = |(X)a,|? = 4(sin?y — 2e™2) = de72F (252 — 2),

X:G’C(iz) is positive (resp. negative) indefinite on the set |x3| > € (resp. |z3] < €). However,
by Theorem 6.2, it does not degenerate with respect to the metric hy on the set |z3| = €.
If € goes near to 0, then the image of the set |z3] < e converges to the fold singularities of
Xo=X.

Figure 7.1 shows some samples of the projections (X}, X2,0.8X? + 0.6X2)|c(y) of

5(/€|C(i2). Each thick line means a null curve of type-changing.

8 Cross sections including degenerate directions

In this section, we observe the behaviour of the bicomplex extension X around the sin-
gularities.

First, suppose that (g, f) satisfies (5.1), (5.4) and hence (5.7) also. Then, by (4.4) and

(5.8), the restriction of the metric hy to the singular set 2 N R is given by

20 00
0 fi2 00
(hewl = 20+g27| 0 7000
0 0 00

Since
Ker (hiem)|lr = “(0,0,1,0)0R +0,0,0,1)R = ;R + jR = i,C(iy),
x1+12C(41) is a cross section around x; € QN R including the degenerate directions. Set

Y(¢) := X(x1+ () (V¢ € C(iy) s.t. 1 +1i2C € Q).

Then Y is an even holomorphic map of ¢ as we have already seen in §3.
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e =0.85 e=1

FIGURE 7.1.

If ( f, g f~ . G? f) has a pole of order K 4+ 1 with even ordered terms only at 0 € 2

additionally, then
Yoa(€) o= X(s¢" " +iQ)  (VC € Cin) st s¢"H +in( € Q)

is also an even holomorphic map of (.

Also in the case that (g;, g7, f) satisfies (5.1), (5.4) and (5.7) with g = g7, g11, by (6.3)
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and (5.8), the restriction of the metric hy to the singular set 2 N R is given by

20 00

0 200
(heom)lr = 214 g11°) (1 + grr1”) 0 fé 00|’

0 0 0 0

and hence we get the same conclusion as for (g, f) above.

Now, consider the case that (g, f) satisfies (5.1) only. We may assume that g(z) € R
(Vz € QN R) without loss of generality by changing coordinate if necessary. Then, by
(4.4) and (5.2), the restriction of the metric hy to the singular set 2 N R is given by

fi? 0 —fif3 0

0 fi? 0  —fifs
—fifs 0 f3? 0

0 —fifs 0 £

(heum)lr = 2(1+g1%)°

Since

Ker (h+,€m)|R = t(f3707f170)R+t(07f3707f1)R

= (fs+iaf) R+ (irfs+ifi)R = (fs+i2f1)C(i1)

on QN R and

fa(@)) +infi(x1) = da(fu(xr) +i1-0 —dafa(zr) —j-0) = inf(xy)2,

T +i2f(a:1)T2C(z'1) is a cross section around x; € QNR including the degenerate directions.
Set

Y(C) == X(zy +iof(x1)20) (V¢ € C(iy) st 21 + i f (21)2¢ € Q),

and denote {-}; +i1{-}2 by {-}12. Then Y is a holomorphic map of ¢ and satisfies

YIQ) = X+ iaf@)o)
= {iaf(z1)"2 - @' (21 + iaf(21)2) b

— {iof(z) -t — 32,25, 1 + EQ)f\;:mmﬂm)hC}u’

Y'(0) = CZ X (21 + o f(21)12()
¢=0

= {iaf(x)™ - '(1 = G(a1)? 2G(21), 1 + Gl21)?) f (1) o
= {i2|f(I1)|20(i2) (1= gi(21)?,201(21), 1+ g1(21)%)

= %(0,0,0).
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Since ®(Z11) = ®(2)™ + C holds for some constant vector C' € B3, we see that

O(zy +iaf(21)2¢1) = O((z1 +iaf(21)20)1) = 2y +iof(21) Q) + C

for ¢ € C(4y) such that z; + i f(x1)2¢ € QN QM and hence
O(xy +iaf(21)2M) = (21) = (B2 + iaf(21)12¢) — (x1))M.
Therefore X = ®, + 1,P4 satisfies

Oy (21 +inf(21)2¢M) — @y (z1) = Py(ay +iaf(21)2¢) — Oy(21),

Oy(wy + o f(21)2C1) — Pa(w1) = —(Pa(a1 + o f(21)2C) — Pa(21)),

namely (Y (z}) —Y(0))2 =0, (Y (i12}) — Y (0)); is even, and (Y (i;2)) — Y(0))2 is odd for
x4, !y € R such that z, —I—igf(:L‘l)T2x’3 € Qor x 4—2'2]?(931)“2'1:762L =1 +]']F(:161)T2xﬁ1 cQ. In
another word, Y'(z4) — Y(0) € R and “the even (resp. odd) part of Y (iy2}) — Y (0)"e R
(resp. i1R) for x4,2), € R as above. Hence X (21 + jf(z1)2v/—t) (t < 0) is only a
nonanalytic C1* extension of X (2 + iaf(21)12v/1) (= X|cy) = Re ®|cgy) (t > 0) with
respect to the parameter ¢, but “the even part of X (z; 4 jf(x1)2v/=1) (= Re ®(x; +
jf(z)2/=1)) (t < 0) is an analytic extension of “that of X (1 4 iaf(z1)12v/2) 7(t > 0).

Also in the case that (g, f) satisfies (5.4) only, we may assume that g(z) € R (Vz €
QNR) as above. Then, by (4.4) and (5.5), the restriction of the metric h, to the singular

set QN R is given by

f12 0 0 f1f4

_ 0 £ —Afi O
(o)l = 20495 | —f11f4 f4124 0

fifs 0 0 fi?

Since

Ker (h+,€m)|R = t(f4707 07_f1)R+t(07f47f170)R
= (fa—ji)R+ (infa+isfi)R = (fs—jf1)C(i1)

on 2N R and
fa(@y) —jfila) = —j(fi(x1) +i1-0—idz- 0 — jfa(z1)) = —jf(z1)'2
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21— f(21)12C(iy) is a cross section around z; € QNR including the degenerate directions.

Set

Y(C) = X(z1—jf(z1)™Q) (V¢ € C(i) s.t. 21 — jf(x1)2¢ € Q).

Then Y is a holomorphic map of {, and we get the same conclusion as above.

9 Flux around zero-devisors

Let X : Qy — R?>! (resp. R??) be a timelike minimal immersion. Even if the Weierstrass
data (g, f) (vesp. (g1, d11, f)) of X is given by rational functions on D, the domain of (g, f)
(vesp. (g1, i1, f)) is not connected, and X cannot be defined globally on D\ (P +S) only
by the integral of Weierstrass type of representation formula, where P is the set of poles
of f and/or ¢*f (vesp. (grf, Grrf, G1G11f)), and S is the set of zero-devisors. Suppose that
(9, f) (resp. (g1, d11, f)) be the bicomplex extension of (g, f) (resp. (g1, grr, f)) defined
on Q0 C B. It satisfies (5.4), and the principal part of the Laurent expansion of each of
f, §f and gjzf (resp. §1f, §Hf and glgnf) around each pole has the term of the form

(a1 + jay)/Z with a1, a4 € R in general. Since

/Z B _I_N]a4d5 = (a1 + jay)logz
z
= (a1 —+ ja4)(logr —+ ilgl + ngQ + j@g)
= (a1 lOgT —+ CL483) + il (a191 — CL492) + ig(a162 — CL4¢91)

+j(a103 + aylogr),

it holds for any loop v in Q\ (P 4+ S) that

/Wdz — (@ Ny — agNom) + is(a1 Nom — asNywr) € iR+ iR
v z

for some Nj, Ny € Z such that Ny + N, is even, and, in particular,
Re / wd,% = 0.
¥ z

Hence &, = Re ® = Re X is well-defined on Q\ (P + &) though the bicomplex extension
X itself is not well-defined. Now, it is clear that Re (X (%) — X (%)) is independent of the

choice of the path for any 2,2, € (2ND) \ (P + ). At the same time, this observation
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justifies (5.9) in a global meaning, and we get the following

Theorem 9.1. X extends “analytically” beyond P + S of the Weierstrass data (g, f) or

(91, 911, f)-

Example 9.2. Let us observe the bicomplex extension of the helicoid of the 2nd kind in

R?! again. Its Weierstrass data is given by the following:

By direct computation, we have

() = [0-g%21+ 50 dz

z 1
. t
B / <_z2+

2 1
y = —,\/2—1>d:2v
z z

1 1
= t<~+fz', 2log Z, N—E)—I—C
Z Z

for some C' € B3. Set C' := %(0,0,0). Then its spacelike maximal part and timelike
minimal parts are given by the following:

€

~ . x
Ko+ = ot

1 2 2
PR

- $1> ((IE17$3) - (070))7

— . T
X(wy +jag) = t<$2 -
1

2 2 1
ey + xq, log|z1” — x4, 12— 22 —56'1) (|z1] # |z4l)-

It is clear that the image of X (z1 + J%4)|{je1|>|za} 15 an analytic extension of that of

X (@1 4 1223)|{(21,25)#(0,0)} i the sense that

s
s2 4+t

Xua(s,t) = t< + 5, log(s* + ), 32i—t —s> (s> +t>0)

is analytic with respect to (s,t). On the other hand, we can also regard the image of
)A(/(xl +J4)|{jz1|<|zq|} @5 an “analytic” extension of the other parts in the sense of Theorem
9.1.

Figure 9.1 shows X |c(iy) and X |p. Each thick line means a null curve of type-changing.
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FIGURE 9.1.

Example 9.3. Let us observe the bicomplex extension of a spacelike maximal surface
in R?! which has a simple end of zero flux on a fold singularity (cf. [10], [11]). This is
a typical case of Theorem 3.3. We may assume that both the end and the stereographic
image of the limit normal at the end are 0 without loss of generality. Then the Weierstrass

data of the surface around the end is of the following form in general:

~ ~m s

g = z Jr2§h017 f = +ﬁ1017

N[\gl o)

where gy, and f;lol are bicomplex holomorphic functions on a domain €2, including 0
satisfying (5.1), (5.4) and (5.7), m € NU{0}, « € R\ {0} and 5 = gna(0) € R\ {0}. By

direct computation, we have
-~ -~ . ~ N _ (07 I ~
() = / H(1 =220, 22" 2 o, 1 4 22 g0 (? + fhol) dz
z a a ~ e
= / {t (?’ 0, ?) + “(fhol> 202" Ghiol, fno1)
~m+2 t/ —m=2 27 ~ 7 m=2 27 ~
+2" (=2 Ghot(@ + 27 frol) s 2Gnol frols 2" Ghor (¢ + 2 fhol))} dz
Q@ Q@ _
= <_T7 07 _:) + (I)hol(z)a
z z

where @y, is a bicomplex holomorphic map satisfying (3.2). Hence

t ( ac a—C1> + Kol (G + 12C),

X (€1 +12C2) TEr oY 0, Y
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where X/hol = (Ppo1)1 + 71(Ppo1)2 is holomorphic with respect to ((i,(2), and even with
respect to (5. Then its spacelike maximal part and timelike minimal parts are given by

the following:

~ ' ( axy axy

X(xl +i2$3) = —m, s _.1'2—|—£L‘2> +yh01(3?1 +igl’3)
1 3 1 3

((5131,1'3) 7é (0,0),.T1 —+ i2$3 c Qoo);

~ ' (_ axy axy

X(z1 +jog) = 72 — 12 _&312—3342> + j(vhol(xl + jaa)

(lz1| # |za], 21 + joa € Qo).

It is clear that the image of X (z; + J%4)|{je1|>|za} 15 an analytic extension of that of
X(x, +i223)|{(21,2)(0,0)} iD the sense that Xaa(s, t) defined by (3.3) with F' = X is analytic
with respect to (s,t). Also in this case, we can regard the image of X (z; + JT4)| (21| <|zal}
as an “analytic”extension of the other parts in the sense of Theorem 9.1.

On the other hand, for any s € R, it holds that

L o, s as
X(sw3” +igr3) = <_52m32—|—1’ 0 232 + 1

) + Xpoi(s252 + da23)
(ZE3 7é 0, 81‘32 + ’iQIL‘g c Qoo)a

—~ as as
X(—szs® + jag) = * (— 0, ——% 5
(=524 + ja) —s2z,2 41" 7 —s2p,2 41

) + Yhol(_sxf + jx4)
(|szy| # 1, —sxa + jas € Qoo).

Note here that

X(szs® +iyrs) = Y(—as,0,—as) + Xpo(0) + 235°C(s) + O(zs"),
X(—szs® + jarg) = ‘(—as,0,—as) + Xpo(0) — 2.2C(s) + O(z4)
hold for C(s) = (C'(s),C*(s),C?(s)) € R?, where

C'(s) = C*(s) = as* + fun(0)s — 5 (u)2(0),

a{2Gn01(0)s = (9no1)z(0)} (m = 0),
C%(s) = {3 —agna(0) (m=1),
0 (m > 2).
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Now, if . = 0 or 1, then the image of X(z; + J%4)|{jz1|<|za]} Can be regarded as an
analytic extension of that of X (x; + 19%3) |{(21,25)4(0,0)} across the subset of a lightlike line
{t(—as,0,—as) | s € R,C%(s) # 0} in the sense that Xena(s,t) defined by (3.4) with
F = X is analytic with respect to (s,t) and nondegenerate on the subset above.

The most simple example is given by (Gnol, ﬁlol) = (—1,0) and « = —1. In this case,

if m = 0, then we have

— 1 1
Xaa(s, t) = t( i + = (s* — 3st), 2s, i —(83—38t)> (s*+t>0),

s24+t 3 s2+t 3

~ s 1 s 1
Xepa(s, t) = t( —(s3t3 — 3st?), 2st, —— — = 3t3—3t2> 2t4+1>0
d(87) 82t+1+3(8 S )7 S, 82t+1 3(8 S ) (S + )7

and if m = 1, then we have

1 1
821 ; + 5(35 — 108t + 5st?), s* — t, szi—l—t — 5(35 — 105t + 5st2)>
(s +t>0),

Xaa(s,t) = ° (

_ 1
Xena(s,t) =1 <82t5+ ot g(55155 — 103" + 5st?), s** — ¢,

s Lo s 3.4 3 2
where we set Xp,,,(0) := £(0,0,0).
Figure 9.2 shows X |c(,) and X|p with (Ghet; fue) = (—1,0) and @ = —1. Each thick

line means a null curve of type-changing. Each slit means a lightlike line segment of

incomplete end.

Acknowledgements
The authors thank Profs. S. Akamine and A. Honda for useful informations. They

also thank Prof. M. Umehara for informing about Takahashi’s master thesis [19], and

Prof. O. Kobayashi for helpful advices.

32



FIGURE 9.2.
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