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Abstract. In this paper, we construct zero mean curvature complex surfaces in

CN with a various type of standard metric, each of which changes its type from

positive definite to neutral, by means of bicomplex numbers. By applying them

as bicomplex extensions, we describe the correspondence between fold singularities

and type-changing of zero mean curvature real surfaces in R2,1 and R2,2. In partic-

ular, we show that any fold singularity consists of branch points of the bicomplex

extension. We also show that type-changing across a lightlike line segment occurs

on an incomplete end on a fold singularity.

1 Introduction

Spacelike maximal surfaces in the Lorentzian 3-space R2,1 are correspondents to minimal

surfaces in the Euclidean 3-space R3 as zero mean curvature surfaces. They have quite

similar natures to each others. One of the essential differences is the fact that spacelike

maximal surfaces have singularities in general. Among these, we are interested in double

surfaces with fold singularities. Here we say a surface has a fold singularity if the surface

can be expressed locally by an analytic map F : R2 ⊃ U → RN+,N− satisfying F (x, y) =

F (x,−y) for a suitable coordinate system. In particular, we mainly consider the case

that the fold singularity is nondegenerate in the sense that Fx(x, 0) ̸= t(0, . . . , 0) holds

on each, or at least generic, point on the singularity. Although fold singularities do not

appear on spacelike maximal surfaces in usual, they are not so rare and many examples

are known. Recently they are studied actively by focusing on analytic extensions of

spacelike maximal surfaces to timelike minimal surfaces across their fold singularities

since such type-changing occurs only across a null curve of fold singularities or a lightlike

line segment ([13], [12], [8], [4], [5], [6], [7], [9], [20], [1], etc.).

One of the strong tools to analyze these surfaces is the Weierstrass type of represen-

tation formula. By this formula, each zero mean curvature surface is presented locally
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as a real part of the integral of a C3-valued (resp. D3-valued) holomorphic 1-form on a

suitable domain in C in the case of spacelike maximal surfaces (resp. in D, the algebra of

paracomplex numbers, in the case of timelike minimal surfaces). In this paper, we unify

the formulas on these surfaces by considering the extensions to B, the algebra of bicom-

plex numbers. B is the Clifford algebra isomorphic to Cl1 in [15], which includes both

C and D as subalgebras. B was first introduced essentially by Cockle [3] as tessarines,

and later, defined formally by Segre [18] as bicomplex numbers. B has been investigated

itself, and used for analyzing various subjects by many authors. However it seems that

there are not so many studies on geometry of submanifolds by using B, for instance, as

Baird-Wood [2] which treats representation formulas of harmonic morphisms, etc..

In §2, we summarize basic facts on B and bicomplex holomorphic functions in a form

suitable for our purpose, and in §3, consider zero mean curvature complex surfaces in CN

which are given by projections of bicomplex holomorphic maps, and give a generic results

for such maps to have fold singularities. In §§4-5, we observe bicomplex extensions of zero

mean curvature surfaces in R2,1, and as an application, give a transformation formula of

the Weierstrass data for spacelike maximal and timelike minimal surfaces inR2,1 extended

analytically to each other across their fold singularities. In §§6-7, we observe bicomplex

extensions of zero mean curvature surfaces inR2,2, and as an application, give a degenerate

result of negative definite domains which appear in deformations of “spacelike”maximal

surfaces in R2,2. In §8, we observe cross sections including the degenerate directions of

spacelike maximal and/or timelike minimal surfaces around fold singularities, incomplete

ends and cuspidal edges. In §9, we discuss the flux around zero-devisors and a global

meaning of timelike minimal surfaces.

2 Basic facts on bicomplex numbers

The algebra of bicomplex numbers is a 4-dimensional real vector space

B := {z̃ = x1 + i1x2 + i2x3 + jx4 | x1, x2, x3, x4 ∈ R}

equipped with the multiplication defined by

i1
2 = i2

2 = −1, j = i1i2 = i2i1, and hence j2 = 1.
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Set

C(i1) := {ζ = x1 + i1x2 | x1, x2 ∈ R},

C(i2) := {z = x1 + i2x3 | x1, x3 ∈ R},

D := {ž = x1 + jx4 | x1, x4 ∈ R}.

Both C(i1) and C(i2) are the fields of complex numbers, and D is the algebra of para-

complex numbers. We can regard B as a complexification of C(i2) (resp. D) in the sense

that B = C(i2) ⊗R C(i1) (resp. D ⊗R C(i1)). Three conjugations are defined on B as

follows:
z̃ = x1 + i1x2 + i2x3 + jx4 = ζ1 + i2ζ2 = ζ1 + jζ3,

z̃†1 := x1 − i1x2 + i2x3 − jx4 = ζ1 + i2ζ2 = ζ1 − jζ3,

z̃†2 := x1 + i1x2 − i2x3 − jx4 = ζ1 − i2ζ2 = ζ1 − jζ3,

z̃†3 := z̃†1†2

= x1 − i1x2 − i2x3 + jx4 = ζ1 − i2ζ2 = ζ1 + jζ3,

where ζ1, ζ2, ζ3 ∈ C(i1) and · is the usual conjugation of C(i1). It holds that

z̃ + z̃†1 = 2(x1 + i2x3) ∈ C(i2),

z̃ + z̃†2 = 2(x1 + i1x2) ∈ C(i1),

z̃ + z̃†3 = 2(x1 + jx4) ∈ D,

z̃z̃†1 = (x1 + i2x3)
2 + (x2 + i2x4)

2

= (x1
2 + x2

2 − x3
2 − x4

2) + 2i2(x1x3 + x2x4) ∈ C(i2),

z̃z̃†2 = (x1 + i1x2)
2 + (x3 + i1x4)

2

= (x1
2 − x2

2 + x3
2 − x4

2) + 2i1(x1x2 + x3x4) ∈ C(i1),

z̃z̃†3 = (x1 + jx4)
2 + (x2 − jx3)

2

= (x1
2 + x2

2 + x3
2 + x4

2) + 2j(x1x4 − x2x3) ∈ D.

The real part and the three imaginary parts of a bicomplex number z̃ = x1+i1x2+i2x3+jx4

are calculated by

x1 =
1

4
(z̃ + z̃†1 + z̃†2 + z̃†3),

x2 =
1

4i1
(z̃ − z̃†1 + z̃†2 − z̃†3),
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x3 =
1

4i2
(z̃ + z̃†1 − z̃†2 − z̃†3),

x4 =
1

4j
(z̃ − z̃†1 − z̃†2 + z̃†3).

We denote these parts also by (z̃)1, (z̃)2, (z̃)3, (z̃)4 or {z̃}1, {z̃}2, {z̃}3, {z̃}4.

In usual, the absolute values and arguments of bicomplex numbers are defined for each

conjugation, and they take complex or paracomplex values in general. In this paper, we

use the nonnegative real absolute value |z̃| and the Euclidean norm ||z̃|| given by

|z̃|4 = z̃z̃†1 z̃†2 z̃†3 = {(x1 − x4)
2 + (x2 + x3)

2}{(x1 + x4)
2 + (x2 − x3)

2},

||z̃||2 = Re(z̃z̃†3) = x1
2 + x2

2 + x3
2 + x4

2.

For z = x1 + i2x3 ∈ C(i2) and ž = x1 + jx4 ∈ D, we also use the notation |z|2C(i2)
:=

x1
2 + x3

2 and |ž|2D := x1
2 − x4

2 respectively. It holds that |z̃|4 = |z̃z̃†1|2C(i2)
= |z̃z̃†3|2D.

B has zero-divisors, and we denote the set of zero-divisors by S. It is easy to see that

S = {z̃ | |z̃| = 0}

= {z̃ | x1 − x4 = x2 + x3 = 0 or x1 + x4 = x2 − x3 = 0}

= {(1 + j)(x1 + i1x2) | x1, x2 ∈ R} ∪ {(1− j)(x1 + i1x2) | x1, x2 ∈ R}

= (1 + j)C(i1) ∪ (1− j)C(i1) = (1 + j)B ∪ (1− j)B.

Let |z̃|± be a nonnegative number given by

|z̃|2± = Re(z̃z̃†3)∓ ImD(z̃z̃
†3) = (x1 ∓ x4)

2 + (x2 ± x3)
2.

Then it holds that |z̃|2 = |z̃|+|z̃|− and (1 ± j)B = {z̃ | |z̃|± = 0}. For any z̃ ̸∈ S, its

inverse is given by

1

z̃
=

z̃†1 z̃†2 z̃†3

|z̃|4
.

Now, it is natural to consider three arguments θ1, θ2, θ3 satisfying

z̃ = rei1θ1+i2θ2+jθ3

for z̃ ̸∈ S, where r = |z̃| and

ei1θ1 = cos θ1 + i1 sin θ1, ei2θ2 = cos θ2 + i2 sin θ2, ejθ3 = cosh θ3 + j sinh θ3.
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These arguments are calculated by

r2e2i1θ1 = z̃z̃†2 , r2e2i2θ2 = z̃z̃†1 , r2e2jθ3 = z̃z̃†3 .

In particular (θ1, θ2) is well-defined modulo (π, π)Z + (π,−π)Z. Note here that |j| = 1

and j = i1i2 = ei1π(N1+1/2)+i2π(N2+1/2) (N1, N2 ∈ Z, N1+N2 : even) under our definition.

Now, let

w̃(z̃) = u1(x1, x2, x3, x4) + i1u2(x1, x2, x3, x4) + i2u3(x1, x2, x3, x4) + ju4(x1, x2, x3, x4)

be a bicomplex function defined on an open subset Ω of B. Then the bicomplex derivative

w̃z̃ of w̃(z̃) is defined as a natural extension of the complex derivative of a complex function

so that w̃z̃ = w̃x1 = w̃x2/i1 = w̃x3/i2 = w̃x4/j, and w̃(z̃) is bicomplex differentiable or

bicomplex holomorphic if and only if it satisfies the following bicomplex Cauchy-Riemann

equations:

(2.1)



(u1)x1 = (u2)x2 = (u3)x3 = (u4)x4 ,

(u2)x1 = −(u1)x2 = (u4)x3 = −(u3)x4 ,

(u3)x1 = (u4)x2 = −(u1)x3 = −(u2)x4 ,

(u4)x1 = −(u3)x2 = −(u2)x3 = (u1)x4 .

Note here that any bicomplex holomorphic function satisfies

(2.2)
(uℓ)x1x1 + (uℓ)x2x2 = (uℓ)x3x3 + (uℓ)x4x4

= (uℓ)x1x3 + (uℓ)x2x4 = (uℓ)x1x4 − (uℓ)x2x3 = 0
(ℓ = 1, 2, 3, 4)

and

(2.3) (uℓ)x1x1 + (uℓ)x3x3 = (uℓ)x1x1 − (uℓ)x4x4 = 0 (ℓ = 1, 2, 3, 4).

3 Zero mean curvature complex surfaces and †2 equiv-
ariance

Let φn(z̃) be a bicomplex holomorphic functions defined on an open subset Ω of B for

n = 1, 2, . . . , N . Set

Φ := t(φ1, φ2, . . . , φN),

and denote the projection of Φ to C(i1)
N by F , namely

F : B ⊃ Ω → C(i1)
N

z̃ 7→ Φ1(z̃) + i1Φ2(z̃) = t(φ1
1 + i1φ

1
2, φ

2
1 + i1φ

2
2, . . . , φ

N
1 + i1φ

N
2 )(z̃),
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where we denote (Φ)ℓ and (φn)ℓ by Φℓ and φn
ℓ respectively (ℓ = 1, 2, 3, 4). Set ζ1 :=

x1 + i1x2 and ζ2 := x3 + i1x4 as in §2. Then z̃ = (x1 + i1x2) + i2(x3 + i1x4) = ζ1 + i2ζ2,

and F can be regarded as the map from Ω ⊂ C(i1)
2 into C(i1)

N . By (2.1), we see that F

is holomorphic with respect to the variables (ζ1, ζ2).

Now, regard C(i1)
N as R2N+,2N− (N+ +N− = N), and denote the standard metric by

ds2, namely

ds2 :=
N+∑
n=1

{(dun1 )2 + (dun2 )
2} −

N++N−∑
n=N++1

{(dun1 )2 + (dun2 )
2}.

Set h := F ∗(ds2), and

hℓm := h

(
∂

∂xℓ
,
∂

∂xm

)
= ds2

(
∂F

∂xℓ
,
∂F

∂xm

)
(ℓ,m = 1, 2, 3, 4).

Then it holds that

(hℓm)ℓ,m=1,2,3,4 =


a 0 c d
0 a −d c
c −d b 0
d c 0 b


with

(3.1)



a = ⟨(Φ1)x1 , (Φ1)x1⟩+ ⟨(Φ2)x1 , (Φ2)x1⟩,
b = ⟨(Φ3)x1 , (Φ3)x1⟩+ ⟨(Φ4)x1 , (Φ4)x1⟩,
c = −⟨(Φ1)x1 , (Φ3)x1⟩ − ⟨(Φ2)x1 , (Φ4)x1⟩,
d = ⟨(Φ1)x1 , (Φ4)x1⟩ − ⟨(Φ2)x1 , (Φ3)x1⟩,

where we use (2.1), and denote the standard inner product on RN+,N− by ⟨·, ·⟩, namely

⟨t(u1, . . . , uN), t(v1, . . . , vN)⟩ :=
N+∑
n=1

unvn −
N++N−∑
n=N++1

unvn.

In particular, it holds that

det (hℓm) = (ab− c2 − d2)2.

Since

(hmℓ) = (hℓm)
−1 =

1

ab− c2 − d2


b 0 −c −d
0 b d −c

−c d a 0
−d −c 0 a

 ,
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by direct computation, we can show that the Laplacian with respect to h is of the following

form:

△h =
1

ab− c2 − d2

[
b

(
∂2

∂x12
+

∂2

∂x22

)
+ a

(
∂2

∂x32
+

∂2

∂x42

)

−2c

(
∂2

∂x1∂x3
+

∂2

∂x2∂x4

)
− 2d

(
∂2

∂x1∂x4
− ∂2

∂x2∂x3

)

+

{
(bx1 − cx3 − dx4)

∂

∂x1
+ (bx2 − cx4 + dx3)

∂

∂x2

+(ax3 − cx1 + dx2)
∂

∂x3
+ (ax4 − cx2 − dx1)

∂

∂x4

}]
.

Applying (2.1), we see that each coefficient of the term of the differential operator of the

first order vanishes. By using this fact and (2.2), we get the following

Theorem 3.1. The mean curvature vector field of F vanishes on the regular point set of

F , namely it holds that △hF ≡ 0.

Denote the restriction of F to Ω∩C(i2) (resp. Ω∩D) by F |C(i2) (resp. F |D). By (2.3),

F |C(i2) (resp. F |D) is a harmonic map with respect to the metric dx21 + dx23 on Ω ∩C(i2)

(resp. dx21 − dx24 on Ω ∩D).

Theorem 3.2. Suppose that Φ satisfies the condition

(3.2) Φ(z̃†2) = Φ(z̃)†2 + C

for some constant vector C ∈ BN . Then F |C(i2) and F |D have a common fold singularity

on F (Ω ∩ R) ∩ {a ̸= 0}, and F |D is an analytic extension of F |C(i2) across the fold

singularity. The image of the extension is nondegenerate on any point F (x1) on the fold

singularity such that Φz̃(x1) and Φz̃z̃(x1) are linear independent.

Proof. Under the assumption, we see that

Φ(ζ1 + i2(−ζ2)) = Φ(ζ1 − i2ζ2) = Φ((ζ1 + i2ζ2)
†2) = Φ(ζ1 + i2ζ2)

†2 + C

for ζ1, ζ2 ∈ C(i1) such that ζ1 + i2ζ2 ∈ Ω ∩ Ω†2 , and hence

Φ(ζ1 + i2(−ζ2))− Φ(ζ1) = (Φ(ζ1 + i2ζ2)− Φ(ζ1))
†2 .
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Therefore F = Φ1 + i1Φ2 satisfies

F (ζ1 + i2(−ζ2))− F (ζ1) = F (ζ1 + i2ζ2)− F (ζ1),

namely F (ζ1 + i2ζ2) is even with respect to ζ2. On the other hand, by (3.2), we also see

that (Φ3)x1 = (Φ4)x1 = 0 on Ω ∩C(i1) and hence b = c = d = 0 on Ω ∩C(i1). Therefore

both F |C(i2) and F |D are double surfaces with fold singularities on F (Ω ∩R) ∩ {a ̸= 0},

and F (x1 + jx4) = F (x1 + i2 · i1x4) is an analytic extension of F (x1 + i2x3) in the sense

that

(3.3) Ffld(s, t) :=

 F (s+ i2
√
t) (t ≥ 0, s+ i2

√
t ∈ Ω),

F (s+ j
√
−t) (t ≤ 0, s+ j

√
−t ∈ Ω)

is analytic with respect to (s, t). Note here that i2Φ3(ζ1) + jΦ4(ζ1) is independent of

ζ1 ∈ Ω ∩C(i1) under the assumption (3.2). Since

Ffld(s, t) = −(i2Φ3(s) + jΦ4(s)) + Φ(s)− 1

2
Φz̃z̃(s)t+O(t2)

holds around (s, 0) for any s ∈ Ω∩R, the image of Ffld is nondegenerate on (s, 0) for any

s such that
∂Ffld

∂s
(s, 0) = Φz̃(s) and

∂Ffld

∂t
(s, 0) = −1

2
Φz̃z̃(s) are linear independent.

Theorem 3.3. Suppose that Φ satisfies (3.2). In addition, assume that Ω = Ω∞ \ (q̃+S)

for some domain Ω∞ ⊂ B and q̃ ∈ Ω∞ ∩R, and that Φ has a pole of order K with only

odd ordered terms at q̃, namely, Φ can be written as

Φ(z̃) =
K∑

k=1;k:odd

1

(z̃ − q̃)k
Ck + Φhol(z̃),

where Ck ∈ C(i1)
N (k = 1, . . . , K; k : odd), CK ̸= t(0, . . . , 0) and Φhol is a bicomplex

holomorphic map from Ω∞ to BN satisfying (3.2). Then F |D is an analytic extension of

F |C(i2) across a subset of a line parallel to CK. The image of the extension is nondegen-

erate on an open subset of the line if CK and either (Φhol)z̃z̃(q̃) or (Φhol)z̃(q̃) (K = 1),

CK−2 (K ≥ 3;K : odd)

are linear independent.
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Proof. We may assume q̃ = 0 without loss of generality. In this case, F is of the following

form:

F (ζ1 + i2ζ2) =
K∑

k=1;k:odd


k−1∑

τ=0;τ :even

(−1)τ/2(kτ )ζ1
k−τζ2

τ

(ζ1
2 + ζ2

2)k

Ck + Fhol(ζ1 + i2ζ2),

where Fhol := (Φhol)1 + i1(Φhol)2 is holomorphic with respect to (ζ1, ζ2), and even with

respect to ζ2. Now, for any s ∈ R such that sζ2
K+1 + i2ζ2 ∈ Ω∞ holds for ζ2 ∈ C(i1) near

to 0, it holds that

F (sζ2
K+1 + i2ζ2) =

K∑
k=1;k:odd


k−1∑

τ=0;τ :even

(−1)τ/2(kτ )s
k−τζ2

(K−1)k−Kτ

(s2ζ2
2K + 1)k

Ck

+Fhol(sζ2
K+1 + i2ζ2)

= Fhol(0)−
1

2
(Φhol)z̃z̃(0)ζ2

2 +O(ζ2
4)

+

 (s− s3ζ2
2)C1 + sζ2

2(Φhol)z̃(0) (K = 1),

(−1)(K−1)/2KsCK + (−1)(K−3)/2(K − 2)sζ2
2CK−2 (K ≥ 3;K : odd),

and hence F ((−1)(K+1)/2sx4
K+1+ jx4) = F (s(i1x4)

K+1+ i2 · i1x4) is an analytic extension

of F (sx3
K+1 + i2x3) in the sense that

(3.4) Fend(s, t) :=



F (st(K+1)/2 + i2
√
t) (t > 0, st(K+1)/2 + i2

√
t ∈ Ω∞),

(−1)(K−1)/2KsCK + Fhol(0) (t = 0),

F (st(K+1)/2 + j
√
−t)

(−s−2/K < t < 0, st(K+1)/2 + j
√
−t ∈ Ω∞)

is analytic with respect to (s, t). The image of Fend is nondegenerate at least on the

following subset of the borderline:

{(−1)(K−1)/2KsCK + Fhol(0) | s ∈ R,

−1

2
(Φhol)z̃z̃(0) +

{
−s3C1 + s(Φhol)z̃(0) (K = 1),
(−1)(K−3)/2(K − 2)sCK−2 (K ≥ 3;K : odd)

and CK are linear independent.}.

For any real analytic map from an open interval into RN , its bicomplex extension

satisfies (3.2) with C ∈ RN , and hence we can apply Theorems 3.2 and 3.3.
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We note here that the first examples of analytic extensions across lightlike line seg-

ments were given in [5, Theorem 1.1]. In Example 9.3, we give another family of such

extensions by applying Theorem 3.3.

4 Bicomplex extensions of zero mean curvature sur-

faces in R2,1

In this paper, we are interested in the case that the holomorphic map F = Φ1 + i1Φ2

we defined in §3 is a bicomplex extension of some spacelike minimal or timelike maximal

immersion intoR2,1 orR2,2. In §§4-5, we restrict our attention to the case that (N+, N−) =

(2, 1) and Φ = t(φ1, φ2, φ3) satisfies

(φ1
z̃)

2 + (φ2
z̃)

2 − (φ3
z̃)

2 = 0.

Set

f̃ :=
φ1
z̃
+ φ3

z̃

2
,

g̃ :=
φ2
z̃

φ1
z̃
+ φ3

z̃

=
−φ1

z̃
+ φ3

z̃

φ2
z̃

.

Then f̃ (resp. g̃) is a bicomplex holomorphic function on Ω (resp. Ω \ {|f̃ | = 0}), and

Φ = Φ1 + i1Φ2 + i2Φ3 + jΦ4 is rewritten as follows:

(4.1) Φ(z̃) =
∫ z̃

t((1− g̃2)f̃ , 2g̃f̃ , (1 + g̃2)f̃)dz̃.

In this case, we use the notation X̃ = Φ1 + i1Φ2 instead of F . Conversely, for any pair

(g̃, f̃) of bicomplex holomorphic functions on a domain Ω ⊂ B, the map X̃ = Φ1 + i1Φ2

with (4.1) is locally well-defined. We note here that this form of representation formula

can be found in [14, Theorem 3.2] for timelike minimal surfaces, and in [17, Theorem 1]

for null curves.

By (2.1), it holds that

X̃x1 = (Φ1)x1 + i1(Φ2)x1 , X̃x3 = −(Φ3)x1 − i1(Φ4)x1 .

Since

X̃ζ1 × X̃ζ2 = X̃x1 × X̃x3 = i2(g̃ − g̃†2)f̃ f̃ †2

 g̃g̃†2 − 1
−(g̃ + g̃†2)
−(g̃g̃†2 + 1)

 ,
10



where × is the outer product of type (2, 1), the Gauss map of X̃ with respect to the

complex inner product of C(i1)
3 regarded as C(i1)

2,1 = R2,1 ⊗R C(i1) is given by

G̃ =
1

−i2(g̃ − g̃†2)

 g̃g̃†2 − 1
−(g̃ + g̃†2)
−(g̃g̃†2 + 1)

 ,
and the Gauss map of X̃ with respect to the real inner product of C(i1)

3 regarded as R4,2

is given by

G̃†1 =
1

−i2(g̃†1 − g̃†3)

 g̃†1 g̃†3 − 1
−(g̃†1 + g̃†3)
−(g̃†1 g̃†3 + 1)


in the sense that the normal vector space at any point is G̃†1C(i1).

Denote the metric h induced by X̃ from the standard metric onC(i1)
3 regarded asR4,2

(resp. R6) by h− (resp. h+), and (g̃)ℓ and (f̃)ℓ by gℓ and fℓ respectively (ℓ = 1, 2, 3, 4).

Then we get the following

Proposition 4.1. For any point in Ω \ {f̃ = 0}, the metric h− induced by R4,2 satisfies

the following:

(1) h− is positive definite if |f̃ | ̸= 0, g̃ ̸∈ C(i1) and 2g2
2 + g4

2 < g3
2.

(2) h− is rank-2 positive semidefinite if (i) or (ii) holds:

(i) |f̃ | ̸= 0, g̃ ∈ C(i1) \R or 2g2
2 + g4

2 = g3
2 ; (ii) |f̃ |± = 0 and g2 ∓ g3 ̸= 0.

(3) h− is 0 if (i) or (ii) holds:

(i) |f̃ | ̸= 0 and g̃ ∈ R ; (ii) |f̃ |± = 0 and g2 ∓ g3 = 0.

(4) h− is neutral if |f̃ | ̸= 0, g̃ ̸∈ C(i1) and 2g2
2 + g4

2 > g3
2.

Proof. Note here that the characteristic polynomial of (hℓm) is given by

(4.2) {λ2 − (a+ b)λ+ (ab− c2 − d2)}2

in general. The coefficients a, b, c, d of the metric (h−,ℓm)ℓ,m=1,2,3,4 induced by R4,2 is given

by (3.1) with

⟨(Φℓ)x1 , (Φm)x1⟩ = 2{2(g̃f̃)ℓ(g̃f̃)m − (f̃)ℓ(g̃
2f̃)m − (g̃2f̃)ℓ(f̃)m},
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and hence

(4.3)



a = −{(g̃ − g̃†1)2f̃ f̃ †1}1 − {(g̃ − g̃†3)2f̃ f̃ †3}1,

b = {(g̃ − g̃†1)2f̃ f̃ †1}1 − {(g̃ − g̃†3)2f̃ f̃ †3}1,

c = {(g̃ − g̃†1)2f̃ f̃ †1}3,

d = −{(g̃ − g̃†3)2f̃ f̃ †3}4.
Since

ab− c2 − d2 = {|g̃ − g̃†3|4D − |g̃ − g̃†1|4C(i2)
}|f̃ |4

= −16(g3
2 + g4

2)(2g2
2 − g3

2 + g4
2)|f̃ |4,

ab − c2 − d2 > 0 (resp. =, <) holds if and only if |f̃ | ̸= 0 and g3
2 + g4

2 > 0 and

2g2
2+g4

2 < g3
2 (resp. |f̃ | = 0 or g3 = g4 = 0 or 2g2

2+g4
2 = g3

2, |f̃ | ̸= 0 and g3
2+g4

2 > 0

and 2g2
2 + g4

2 > g3
2). On the other hand, since

a+ b = −2{(g̃ − g̃†3)2f̃ f̃ †3}1

= 8{(g2 − g3)
2||f̃ ||2 + 2g2g3|f̃ |2+}

= 8{(g2 + g3)
2||f̃ ||2 − 2g2g3|f̃ |2−}

≥ 0,

if |f̃ | ̸= 0 and a+ b = 0 holds, then g2 = g3 = 0. Combining these conditions, we get our

conclusion.

Proposition 4.2. For any point in Ω \ {f̃ = 0}, the metric h+ induced by R6 is rank-2

positive semidefinite if g̃ ∈ C(i1) or |f̃ | = 0. Otherwise h+ is positive definite.

Proof. Recall (4.2). The coefficients a, b, c, d of the metric (h+,ℓm)ℓ,m=1,2,3,4 induced by

R6 is given by (3.1) with

⟨(Φℓ)x1 , (Φm)x1⟩ = 2{2(g̃f̃)ℓ(g̃f̃)m + (f̃)ℓ(f̃)m + (g̃2f̃)ℓ(g̃
2f̃)m},

and hence

(4.4)



a = {(1 + g̃g̃†1)2f̃ f̃ †1}1 + {(1 + g̃g̃†3)2f̃ f̃ †3}1,

b = −{(1 + g̃g̃†1)2f̃ f̃ †1}1 + {(1 + g̃g̃†3)2f̃ f̃ †3}1,

c = −{(1 + g̃g̃†1)2f̃ f̃ †1}3,

d = {(1 + g̃g̃†3)2f̃ f̃ †3}4.

12



Since

ab− c2 − d2 = {|1 + g̃g̃†3|4D − |1 + g̃g̃†1|4C(i2)
}|f̃ |4

= 8(g3
2 + g4

2){(g12 − g4
2)2 + (g2

2 − g3
2)2

+2(g1g2 + g3g4)
2 + 2(g1g3 + g2g4)

2 + 2(g1
2 + g2

2) + 1}|f̃ |4

≥ 0,

ab− c2 − d2 = 0 holds if and only if g3 = g4 = 0 or |f̃ | = 0. On the other hand, since

a+ b = 2{(1 + g̃g̃†3)2f̃ f̃ †3}1

= 2{(1 + |g̃|2−)2||f̃ ||2 − 4(g1g4 − g2g3)(1 + ||g̃||2)|f̃ |2+}

= 2{(1 + |g̃|2+)2||f̃ ||2 + 4(g1g4 − g2g3)(1 + ||g̃||2)|f̃ |2−}

> 0,

we get our conclusion.

Combining Propositions 4.1 and 4.2, we see that the map X̃ is degenerate only on

{z̃ | g̃(z̃) ∈ C(i1) or |f̃(z̃)| = 0} and changes its type on {z̃ | 2g2(z̃)
2 + g4(z̃)

2 =

g3(z̃)
2, |f̃(z̃)| ̸= 0} without singularities.

5 Transformation of Weierstrass data

Let X̃, g̃ and f̃ be as in §4. Denote the restriction of X̃ to Ω∩C(i2) (resp. Ω∩D, Ω∩R)

by X̃|C(i2) (resp. X̃|D, X̃|R) etc. as before. Suppose that (g̃, f̃) satisfies the condition

(5.1) g̃(z̃†1) = g̃(z̃)†1 , f̃(z̃†1) = f̃(z̃)†1 (∀z̃ ∈ Ω ∩ Ω†1 ⊂ B).

Then it holds that

(5.2) g̃(z), f̃(z) ∈ C(i2) (∀z = x1 + i2x3 ∈ Ω ∩C(i2)),

and (the projection of) X̃|C(i2) = Φ1|C(i2) = Re Φ|C(i2) (to R2,1) is a spacelike maximal

immersion from Ω∩C(i2) into R
2,1 ⊂ C(i1)

3. By (4.3) (resp. (4.4)) and (5.2), the induced
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metric is given by

h−|C(i2) = 4(ImC(i2)g̃)
2|f̃ |2C(i2)

|dz|2C(i2)
= 4g3

2(f1
2 + f3

2)(dx1
2 + dx3

2),

(resp. h+|C(i2) = (1 + |g̃|2C(i2)
)2|f̃ |2C(i2)

|dz|2C(i2)
+Re {(1 + g̃2)2f̃ 2dz2}

= 2[2{Re(g̃f̃dz)}2 + {Re(f̃dz)}2 + {Re(g̃2f̃dz)}2] ).

By (5.2), it holds that g̃ = g̃†1 and g̃†2 = g̃†3 on Ω ∩C(i2), and hence the Gauss map of

X̃|C(i2) is given by

G̃†1 =
1

−i2(g̃ − g̃†2)

 |g̃|2C(i2)
− 1

−(g̃ + g̃†2)
−(|g̃|2C(i2)

+ 1)

 =
1

2ImC(i2) g̃

 |g̃|2C(i2)
− 1

−2Re g̃
−(|g̃|2C(i2)

+ 1)

 .

By using the Möbius transformation of g̃|C(i2), we can describe the correspondence between

this representation and the usual one (cf. [13, Theorem 1.1])

(5.3) Xmax(z) = Re
∫ z

t((1 + gmax
2)fmax, i2(1− gmax

2)fmax,−2gmaxfmax)dz

as follows:

Lemma 5.1. Let (g̃, f̃) be as above. Set

gmax :=
g̃ − i2
g̃ + i2

∣∣∣∣∣
C(i2)

, fmax :=
−(g̃ + i2)

2

2
f̃

∣∣∣∣∣
C(i2)

.

Then (gmax, fmax) gives a representation of the same immersion by the usual Enneper-

Weierstrass representation formula (5.3). Conversely, for any Weierstrass data (gmax, fmax)

for (5.3), set

g := −i2
gmax + 1

gmax − 1
, f :=

(gmax − 1)2

2
fmax,

and denote the bicomplex extensions of g and f by g̃ and f̃ . Then (g, f) = (g̃|C(i2), f̃ |C(i2))

gives a representation X̃|C(i2) = Re Φ|C(i2) with (4.1) for the same immersion.

Suppose that (g̃, f̃) satisfies the condition

(5.4) g̃(z̃†3) = g̃(z̃)†3 , f̃(z̃†3) = f̃(z̃)†3 (∀z̃ ∈ Ω ∩ Ω†3 ⊂ B).

14



Then it holds that

(5.5) g̃(ž), f̃(ž) ∈ D (∀ž = x1 + jx4 ∈ Ω ∩D),

and (the projection of) X̃|D = Φ1|D = Re Φ|D (to R2,1) is a timelike minimal immersion

from Ω ∩ D into R2,1 ⊂ C(i1)
3. By (4.3) (resp. (4.4)) and (5.5), the induced metric is

given by

h−|D = −4(ImDg̃)
2|f̃ |2D|dž|2D = −4g4

2(f1
2 − f4

2)(dx1
2 − dx4

2),

(resp. h+|D = (1 + |g̃|2D)2|f̃ |2D|dž|2D +Re {(1 + g̃2)2f̃ 2dž2}

= 2[2{Re(g̃f̃dž)}2 + {Re(f̃dž)}2 + {Re(g̃2f̃dž)}2] ).

By (5.5), it holds that g̃ = g̃†3 and g̃†1 = g̃†2 on Ω ∩D, and hence the Gauss map of X̃|D

is given by

(i1G̃)
†1 =

1

j(g̃ − g̃†2)

 |g̃|2D − 1
−(g̃ + g̃†2)
−(|g̃|2D + 1)

 =
1

2ImD g̃

 |g̃|2D − 1
−2Re g̃

−(|g̃|2D + 1)

 .

In this case also, by using the Möbius transformation of g̃|D, we can describe the corre-

spondence between this representation and another type of ones (cf. [19], [1, Fact A.7])

(5.6±) X̌min(z) = Re
∫ ž

t(2ǧminf̌min,±j(1− ǧ2min)f̌min,−(1 + ǧ2min)f̌min)dž

as follows:

Lemma 5.2. Let (g̃, f̃) be as above. Set

ǧmin :=
g̃ ± j

g̃ ∓ j

∣∣∣∣∣
D

, f̌min :=
−(g̃ ∓ j)2

2
f̃

∣∣∣∣∣
D

.

Then (ǧmin, f̌min) gives a representation of the same immersion by the usual Enneper-

Weierstrass type representation formula (5.6±). Conversely, for any Weierstrass data

(ǧmin, f̌min) for (5.6±), set

ǧ := ±j ǧmin + 1

ǧmin − 1
, f̌ :=

−(ǧmin − 1)2

2
f̌min,
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and denote the bicomplex extensions of ǧ and f̌ by g̃ and f̃ . Then (ǧ, f̌) = (g̃|D, f̃ |D)

gives a representation X̃|D = Re Φ|D with (4.1) for the same immersion.

Suppose that (g̃, f̃) satisfies the condition

(5.7) g̃(z̃†2) = g̃(z̃)†2 , f̃(z̃†2) = f̃(z̃)†2 (∀z̃ ∈ Ω ∩ Ω†2 ⊂ B).

Then, since Φ(z̃†2) = Φ(z̃)†2 + C holds for some constant vector C ∈ B3, as we have

already observed in the proof of Theorem 3.2, X̃(ζ1 + i2ζ2) is even with respect to ζ2,

both X̃|C(i2) and X̃|D are double surfaces with fold singularities on Ω ∩ R, and X̃|D is

an analytic extension of X̃|C(i2) even if we do not assume that X̃|C(i2) (resp. X̃|D) is

maximal (resp. minimal). The image of this extension is nondegenerate on any point on

the fold singularities such that f̃ ̸= 0 and g̃z̃ ̸= 0.

The map Xmax : (C(i2) ⊃)Ω0 → R2,1 defined by (5.3) is a double surface with fold

singularities if its Weierstrass data (gmax, fmax) satisfies

gmax ◦ I(z) =
1

gmax(z)†2
, fmax ◦ I(z) = (gmax(z)

2fmax(z))
†2 (∀z ∈ Ω0).

for some antiholomorphic involution I(z) of C(i2). This condition with I(z) = z†2 is

equivalent with the condition (5.7) for the corresponding (g̃, f̃). On the other hand, the

map X̌min : (D ⊃)Ω̌0 → R2,1 defined by (5.6) is a double surface with fold singularities if

its Weierstrass data (ǧmin, f̌min) satisfies

ǧmin ◦ Ǐ(ž) =
1

ǧmin(ž)†2
, f̌min ◦ Ǐ(ž) = (ǧmin(ž)

2f̌min(ž))
†2 (∀ž ∈ Ω̌0)

for some antiparaholomorphic involution Ǐ(ž) of D. This condition with Ǐ(ž) = ž†2 is

also equivalent with the condition (5.7) for the corresponding (g̃, f̃). Conversely, if (g̃, f̃)

satisfies (5.1), (5.4) and hence (5.7) also, then it does not only satisfy both (5.2) and (5.5)

but also satisfies

(5.8) g̃(x), f̃(x) ∈ R (∀x = x1 ∈ Ω ∩R),

and hence both corresponding Xmax and X̌min are double surfaces with fold singularities

on Ω0 ∩R and Ω̌0 ∩R respectively. Now, by combining Lemmas 5.1 and 5.2, we get the
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following formula of the transformation of Weierstrass data:

Theorem 5.3. Let Xmax : Ω0 → R2,1 be a spacelike maximal immersion defined by

(5.3) with Weierstrass data (gmax, fmax). Suppose that Xmax is a double surface with fold

singularities on Ω0∩R ⊂ C(i2) and satisfies |gmax(x)|C(i2) = 1 (∀x ∈ Ω0∩R). Denote the

bicomplex extension of (gmax, fmax) by (g̃max, f̃max). Then the Weierstrass data (ǧmin, f̌min)

of a timelike minimal immersion X̌min defined by (5.6) with the common fold singularities

is given by

ǧmin =
±i2jg̃max + 1

g̃max ± i2j

∣∣∣∣∣
D

, f̌min =
(g̃max ± i2j)

2

±2i2j
f̃max

∣∣∣∣∣
D

.

It is well known that X̌min satisfies

(5.9) X̌min(x1 + jx4) =
X̌min(x1 + x4) + X̌min(x1 − x4)

2
,

and we can derive the same assertion as above also by using this formula with the condition

X̌min = Xmax on Ω̌0∩R. As we shall see later, we can regard X̌min as a global extension of

Xmax by considering the bicomplex extension X̃, and hence (ǧmin, f̌min) also has a global

meaning.

Example 5.4. For any polynomial ψ(z) =
∑n

k=0(αk+ i2βk)z
k on C(i2) such that αk, βk ∈

R (k = 0, . . . , n), set ψ(z) := ψ(z†2)†2 =
∑n

k=0(αk − i2βk)z
k, and denote ψ̃|D by ψ̌,

namely ψ̌(ž) :=
∑n

k=0(αk + i2βk)ž
k. Moreover, set ψ̂(ž) :=

∑n
k=0(αk ∓ jβk)ž

k. Then

ψ̂(ž) :=
∑n

k=0(αk ± jβk)ž
k. Note here that

±i2jψ̌(ž) + ψ̌(ž) =
n∑

k=0

{±i2j(αk + i2βk)
†2 + (αk + i2βk)}žk

= (1± i2j)
n∑

k=0

(αk ± jβk)ž
k = (1± i2j)ψ̂(ž),

ψ̌(ž)± i2jψ̌(ž) =
n∑

k=0

{(αk + i2βk)
†2 ± i2j(αk + i2βk)}žk

= (1± i2j)
n∑

k=0

(αk ∓ jβk)ž
k = (1± i2j)ψ̂(ž).
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In particular, if ψ = ψ, then ψ(z) =
∑n

k=0 αkz
k and hence ψ̂(ž) =

∑n
k=0 αkž

k = ψ̌(ž).

Let Xmax be as in Theorem 5.3. Consider the case that both gmax and fmax are rational

functions on C(i2). Let ga, gb, fa, fb be polynomials on C(i2) satisfying gmax = ga/gb and

fmax = fa/fb. By gmax(z
†2) = 1/gmax(z)

†2 and fmax(z
†2) = (gmax(z)

2fmax(z))
†2 , we have

ga(z
†2)

gb(z†2)
=

gb(z)
†2

ga(z)†2
,

fa(z
†2)

fb(z†2)
=

(ga(z)
2fa(z))

†2

(gb(z)2fb(z))†2
.

Hence we can choose ga and gb so that ga(z) = gb(z
†2)†2 = gb(z) and hence gmax = gb/gb.

Now we have
fa(z)

gb(z)2fb(z)
=

fa(z
†2)†2

(gb(z†2)2fb(z†2))†2
=

fa(z)

gb(z)2fb(z)
,

and hence we can also choose fa and fb so that fa(z) = fa(z) and gb(z)
2fb(z) = gb(z)

2fb(z).

By applying Theorem 5.3, we see that the Weierstrass data of X̌min is given by

ǧmin =
±i2jǧb + ǧb
ǧb ± i2jǧb

=
(1± i2j)ĝb
(1± i2j)ĝb

=
ĝa
ĝb
,

f̌min =
(ǧb ± i2jǧb)

2

±2i2j

f̌a

ǧ2b f̌b
=

(1± i2j)
2ĝ2b

±2i2j

f̂a

ĝ2b f̂b
=

f̂a

f̂b
.

This formula is valid also for the case that both gmax and fmax are meromorphic

functions on a domain in C(i2).

However, if we employ the representation X̃ = Φ1 + i1Φ2 with (4.1), then we do not

need such a transformation, and both Xmax and X̌min are expressed as Xmax = X̃|C(i2)

and X̌min = X̃|D by using the common data.

6 Bicomplex extensions of zero mean curvature sur-

faces in R2,2

In §§6-7, we restrict our attention to the case that (N+, N−) = (2, 2) and Φ = t(φ1, φ2, φ3, φ4)

satisfies

(φ1
z̃)

2 + (φ2
z̃)

2 − (φ3
z̃)

2 − (φ4
z̃)

2 = 0.

By the quite similar calculation and consideration as in §§4-5, we can show the corre-

sponding results for this case. Set

f̃ :=
φ1
z̃
+ φ3

z̃

2
,
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g̃I :=
φ2
z̃
+ φ4

z̃

φ1
z̃
+ φ3

z̃

=
−φ1

z̃
+ φ3

z̃

φ2
z̃
− φ4

z̃

,

g̃II :=
φ2
z̃
− φ4

z̃

φ1
z̃
+ φ3

z̃

=
−φ1

z̃
+ φ3

z̃

φ2
z̃
+ φ4

z̃

.

Then f̃ (resp. g̃I , g̃II) is a bicomplex holomorphic function on Ω (resp. Ω \ {|f̃ | = 0}),

and Φ = Φ1 + i1Φ2 + i2Φ3 + jΦ4 is rewritten as follows:

(6.1) Φ(z̃) =
∫ z̃

t((1− g̃I g̃II)f̃ , (g̃I + g̃II)f̃ , (1 + g̃I g̃II)f̃ , (g̃I − g̃II)f̃)dz̃.

In this case also, we use the notation X̃ = Φ1 + i1Φ2 instead of F . Conversely, for

any triplet (g̃I , g̃II , f̃) of bicomplex holomorphic functions on a domain Ω ⊂ B, the map

X̃ = Φ1 + i1Φ2 with (6.1) is locally well-defined.

Denote the metric h induced by X̃ from the standard metric on C(i1)
4 regarded as

R4,4 (resp. R8) by h♭ (resp. h♯), and (g̃I)ℓ, (g̃II)ℓ and (f̃)ℓ by gI,ℓ, gII,ℓ and fℓ respectively

(ℓ = 1, 2, 3, 4). Then we get the following

Proposition 6.1. Set ∆1 := (gI,2
2 − gI,3

2)(gII,2
2 − gII,3

2)− (gI,2
2 + gI,4

2)(gII,2
2 + gII,4

2),

∆2 := gI,2gII,2 + gI,3gII,3 and ∆3 := gI,2gII,3 + gI,3gII,2. For any point in Ω \ {f̃ = 0}, the

metric h♭ induced by R4,4 satisfies the following:

(1) h♭ is positive (resp. negative) definite if |f̃ | ̸= 0, ∆1 > 0 and ∆2 > 0 (resp. < 0 ).

(2) h♭ is rank-2 positive (resp. negative) semidefinite if (i) or (ii) holds:

(i) |f̃ | ̸= 0, ∆1 = 0 and ∆2 > 0 (resp. < 0 ) ; (ii) |f̃ |± = 0 and ∆2 ∓∆3 ̸= 0.

(3) h♭ is 0 if (i) or (ii) holds:

(i) |f̃ | ̸= 0, ∆1 = 0 and ∆2 = 0, in another word, satisfying one of the following

conditions: g̃I ∈ R ; g̃II ∈ R ; g̃I ∈ C(i2) and g̃II ∈ D ; g̃I ∈ D and g̃II ∈ C(i2) ;

(ii) |f̃ |± = 0 and ∆2 ∓∆3 = 0.

(4) h♭ is neutral if |f̃ | ̸= 0 and ∆1 < 0.

Proof. Recall (4.2). The coefficients a, b, c, d of the metric (h♭,ℓm)ℓ,m=1,2,3,4 induced by

R4,4 is given by

⟨(Φℓ)x1 , (Φm)x1⟩ = 2{(g̃I f̃)ℓ(g̃II f̃)m + (g̃II f̃)ℓ(g̃I f̃)m − (f̃)ℓ(g̃I g̃II f̃)m − (g̃I g̃II f̃)ℓ(f̃)m},
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and hence

(6.2)



a = −{(g̃I − g̃
†1
I )(g̃II − g̃

†1
II)f̃ f̃

†1}1 − {(g̃I − g̃
†3
I )(g̃II − g̃

†3
II)f̃ f̃

†3}1,

b = {(g̃I − g̃
†1
I )(g̃II − g̃

†1
II)f̃ f̃

†1}1 − {(g̃I − g̃
†3
I )(g̃II − g̃

†3
II)f̃ f̃

†3}1,

c = {(g̃I − g̃
†1
I )(g̃II − g̃

†1
II)f̃ f̃

†1}3,

d = −{(g̃I − g̃
†3
I )(g̃II − g̃

†3
II)f̃ f̃

†3}4.

Since

ab− c2 − d2 = {|(g̃I − g̃
†3
I )(g̃II − g̃

†3
II)|2D − |(g̃I − g̃

†1
I )(g̃II − g̃

†1
II)|2C(i2)

}|f̃ |4

= 8∆1 · |f̃ |4,

ab − c2 − d2 > 0 (resp. =, <) holds if and only if |f̃ | ̸= 0 and ∆1 > 0 (resp. |f̃ | = 0 or

∆1 = 0, |f̃ | ̸= 0 and ∆1 < 0). In particular, if ab− c2 − d2 ≥ 0, then it holds that

∆2
2 −∆3

2 = (gI,2
2 − gI,3

2)(gII,2
2 − gII,3

2)

≥ (gI,2
2 + gI,4

2)(gII,2
2 + gII,4

2) ≥ 0.

On the other hand, since

a+ b = −2{(g̃I − g̃
†3
I )(g̃II − g̃

†3
II)f̃ f̃

†3}1

= 8{∆2||f̃ ||2 − 2∆3(f1f4 − f2f3)}

= 8{(∆2 −∆3)||f̃ ||2 +∆3|f̃ |2+}

= 8{(∆2 +∆3)||f̃ ||2 −∆3|f̃ |2−},

if |f̃ | ̸= 0 and a + b = 0 holds, then ∆2 = ∆3 = 0. If ∆2 > 0 (resp. < 0), then

∆2 > |∆3| ≥ 0 or ∆2 = |∆3| > 0 (resp. ∆2 < −|∆3| ≤ 0 or ∆2 = −|∆3| < 0) and hence

a+ b > 0 (resp. a+ b < 0). Combining these conditions, we get our conclusion.

Proposition 6.2. For any point in Ω \ {f̃ = 0}, the metric h♯ induced by R8 is rank-2

positive semidefinite if g̃I , g̃II ∈ C(i1) or |f̃ | = 0. Otherwise h♯ is positive definite.

Proof. Recall (4.2). The coefficients a, b, c, d of the metric (h♯,ℓm)ℓ,m=1,2,3,4 induced by

R8 is given by

⟨(Φℓ)x1 , (Φm)x1⟩ = 2{(g̃I f̃)ℓ(g̃I f̃)m + (g̃II f̃)ℓ(g̃II f̃)m + (f̃)ℓ(f̃)m + (g̃I g̃II f̃)ℓ(g̃I g̃II f̃)m},
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and hence

(6.3)



a = {(1 + g̃I g̃
†1
I )(1 + g̃II g̃

†1
II)f̃ f̃

†1}1 + {(1 + g̃I g̃
†3
I )(1 + g̃II g̃

†3
II)f̃ f̃

†3}1,

b = −{(1 + g̃I g̃
†1
I )(1 + g̃II g̃

†1
II)f̃ f̃

†1}1 + {(1 + g̃I g̃
†3
I )(1 + g̃II g̃

†3
II)f̃ f̃

†3}1,

c = −{(1 + g̃I g̃
†1
I )(1 + g̃II g̃

†1
II)f̃ f̃

†1}3,

d = {(1 + g̃I g̃
†3
I )(1 + g̃II g̃

†3
II)f̃ f̃

†3}4.

Since

ab− c2 − d2 = {|(1 + g̃I g̃
†3
I )(1 + g̃II g̃

†3
II)|2D − |(1 + g̃I g̃

†1
I )(1 + g̃II g̃

†1
II)|2C(i2)

}|f̃ |4

= 4[(gI,3
2 + gI,4

2){(gII,12 − gII,4
2)2 + (gII,2

2 − gII,3
2)2

+2(gII,1gII,2 + gII,3gII,4)
2 + 2(gII,1gII,3 + gII,2gII,4)

2 + 2(gII,1
2 + gII,2

2) + 1}

+(gII,3
2 + gII,4

2){(gI,12 − gI,4
2)2 + (gI,2

2 − gI,3
2)2

+2(gI,1gI,2 + gI,3gI,4)
2 + 2(gI,1gI,3 + gI,2gI,4)

2 + 2(gI,1
2 + gI,2

2) + 1}]|f̃ |4

≥ 0,

ab− c2− d2 = 0 holds if and only if gI,3 = gI,4 = gII,3 = gII,4 = 0 or |f̃ | = 0. On the other

hand, since

a+ b = 2{(1 + g̃I g̃
†3
I )(1 + g̃II g̃

†3
II)f̃ f̃

†3}1

= 2[(1 + |g̃I |2−)(1 + |g̃II |2−)||f̃ ||2

−2{(gI,1gI,4 − gI,2gI,3)(1 + ||g̃II ||2) + (gII,1gII,4 − gII,2gII,3)(1 + ||g̃I ||2)}|f̃ |2+]

= 2[(1 + |g̃I |2+)(1 + |g̃II |2+)||f̃ ||2

+2{(gI,1gI,4 − gI,2gI,3)(1 + ||g̃II ||2) + (gII,1gII,4 − gII,2gII,3)(1 + ||g̃I ||2)}|f̃ |2−]

> 0,

we get our conclusion.

Combining Propositions 6.1 and 6.2, we see that the map X̃ is degenerate only on

{z̃ | g̃I(z̃), g̃II(z̃) ∈ C(i1) or |f̃(z̃)| = 0} and changes its type on {z̃ | ∆1 = 0,∆2 ̸=

0, |f̃(z̃)| ̸= 0} without singularities.
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7 Degeneration of negative definite domains and sin-

gularities

Let X̃, g̃I , g̃II and f̃ be as in §6. Denote the restriction of X̃ to Ω ∩C(i2) (resp. Ω ∩D,

Ω ∩R) by X̃|C(i2) (resp. X̃|D, X̃|R) etc. as before. If (g̃I , g̃II , f̃) satisfies the condition

(5.1) with g̃ = g̃I , g̃II , then (5.2) holds with g̃ = g̃I , g̃II , and (the projection of) X̃|C(i2) =

Φ1|C(i2) = Re Φ|C(i2) (to R2,2) is a spacelike maximal immersion from Ω ∩ C(i2) into

R2,2 ⊂ C(i1)
4. By (6.2) (resp. (6.3)) and (5.2), the induced metric is given by

h♭|C(i2) = 4(ImC(i2)g̃I)(ImC(i2)g̃II)|f̃ |2C(i2)
|dz|2C(i2)

= 4gI,3gII,3(f1
2 + f3

2)(dx1
2 + dx3

2),

(resp. h♯|C(i2) = (1 + |g̃I |2C(i2)
)(1 + |g̃II |2C(i2)

)|f̃ |2C(i2)
|dz|2C(i2)

+Re {(1 + g̃2I )(1 + g̃2II)f̃
2dz2}

= 2[{Re(g̃I f̃dz)}2 + {Re(g̃II f̃dz)}2 + {Re(f̃dz)}2 + {Re(g̃I g̃II f̃dz)}2] ).

On the other hand, if (g̃I , g̃II , f̃) satisfies the condition (5.4) with g̃ = g̃I , g̃II , then

(5.5) holds with g̃ = g̃I , g̃II , and (the projection of) X̃|D = Φ1|D = Re Φ|D (to R2,2) is a

timelike minimal immersion from Ω ∩ D into R2,2 ⊂ C(i1)
4. By (6.2) (resp. (6.3)) and

(5.5), the induced metric is given by

h♭|D = −4(ImDg̃I)(ImDg̃II)|f̃ |2D|dž|2D

= −4gI,4gII,4(f1
2 − f4

2)(dx1
2 − dx4

2),

(resp. h♯|D = (1 + |g̃I |2D)(1 + |g̃II |2D)|f̃ |2D|dž|2D +Re {(1 + g̃2I )(1 + g̃2II)f̃
2dž2}

= 2[{Re(g̃I f̃dž)}2 + {Re(g̃II f̃dž)}2 + {Re(f̃dž)}2 + {Re(g̃I g̃II f̃dž)}2] ).

Now, if (g̃I , g̃II , f̃) satisfies (5.1), (5.4) and hence (5.7) also with g̃ = g̃I , g̃II , then it

does not only satisfy both (5.2) and (5.5) but also satisfies (5.8) with g̃ = g̃I , g̃II . Since

Φ(z̃†2) = Φ(z̃)†2 +C holds for some constant vector C ∈ B4, as we have already observed

in the proof of Theorem 3.2, X̃(ζ1+ i2ζ2) is even with respect to ζ2, both X̃|C(i2) and X̃|D

are double surfaces with fold singularities on Ω ∩R, and X̃|D is an analytic extension of

X̃|C(i2). The image of this extension is nondegenerate on any point on the fold singularities

such that f̃ ̸= 0 and either (g̃I)z̃ ̸= 0 or (g̃II)z̃ ̸= 0.

In general, if there exists a nonzero constant vector V ∈ R4 \ {0} satisfying

V ⊥ t((1− g̃I g̃II)f̃ , (g̃I + g̃II)f̃ , (1 + g̃I g̃II)f̃ , (g̃I − g̃II)f̃) on Ω,
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then both X̃|C(i2) and X̃|D are not full in R2,2. In particular, if g̃I = g̃II holds on Ω, then

their 4-th components are constant functions, in another word, they coincide with X̃|C(i2)

and X̃|D given by (4.1). By this observation, we get the following

Theorem 7.1. Let X̃ϵ be a 1-parameter family of deformation of maps on Ω each of

which is given by (6.1). Suppose that X̃0 satisfies g̃I = g̃II on Ω. Then, if ϵ goes near

to 0, then the image of the set gI,3gII,3 ≤ 0 (resp. gI,4gII,4 ≤ 0 ) degenerates to the set

gI,3 = gII,3 = 0 (resp. gI,4 = gII,4 = 0 ) that is the set of singularities of X̃|C(i2) (resp.

X̃|D ).

Example 7.2. Define X̃ϵ by the following Weierstrass data:

g̃I = −(z̃ − i2ϵ), g̃II = −(z̃ + i2ϵ), f̃ = − 1

z̃2
.

By direct computation, we have

Φϵ(z̃) =
∫ z̃

t(1− g̃I g̃II , g̃I + g̃II , 1 + g̃I g̃II , g̃I − g̃II)f̃dz̃

=
∫ z̃

t

(
−1− ϵ2

z̃2
+ 1,

2

z̃
,−1 + ϵ2

z̃2
− 1,−2i2ϵ

z̃2

)
dz̃

= t

(
1− ϵ2

z̃
+ z̃, 2 log z̃,

1 + ϵ2

z̃
− z̃,

2i2ϵ

z̃

)
+ C

for some C ∈ B4. Here we set C := t(0, 0, 0, 0). Since

1

x1 + i2x3
=

x1 − i2x3
x12 + x32

,
1

x1 + jx4
=

x1 − jx4
x12 − x42

,

its spacelike maximal part is given by the following:

X̃ϵ(x1 + i2x3) = t

(
(1− ϵ2)x1
x12 + x32

+ x1, log(x1
2 + x3

2),
(1 + ϵ2)x1
x12 + x32

− x1,
2i2ϵx3

x12 + x32

)
((x1, x3) ̸= (0, 0)),

X̃0(x1 + i2x3) is called the helicoid of the 2-nd kind in R2,1(= R2,1 × {0} ⊂ R2,2) that is

the correspondent to the catenoid in R3, and X̃ϵ(x1 + i2x3) is a 1-parameter deformation

in R2,2. By using some other parametrizations, it can be expressed also by the following:

X̃ϵ(r(cos θ2 + i2 sin θ2)) = t

(
(
1− ϵ2

r
+ r) cos θ2, 2 log r, (

1 + ϵ2

r
− r) cos θ2,

2ϵ

r
sin θ2

)
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= t
(
{eR + (1− ϵ2)e−R} cos θ2, 2R, {−eR + (1 + ϵ2)e−R} cos θ2, 2ϵe

−R sin θ2
)

(R ∈ R, 0 ≤ θ2 < 2π).

Since

|(X̃ϵ)R|2 = |(X̃ϵ)θ2|2 = 4(sin2 θ2 − ϵ2e−2R) = 4e−2R(x3
2 − ϵ2),

X̃ϵ|C(i2) is positive (resp. negative) indefinite on the set |x3| > ϵ (resp. |x3| < ϵ). However,

by Theorem 6.2, it does not degenerate with respect to the metric h♯ on the set |x3| = ϵ.

If ϵ goes near to 0, then the image of the set |x3| ≤ ϵ converges to the fold singularities of

X̃0 = X̃.

Figure 7.1 shows some samples of the projections t(X̃1
ϵ , X̃

2
ϵ , 0.8X̃

3
ϵ + 0.6X̃4

ϵ )|C(i2) of

X̃ϵ|C(i2). Each thick line means a null curve of type-changing.

8 Cross sections including degenerate directions

In this section, we observe the behaviour of the bicomplex extension X̃ around the sin-

gularities.

First, suppose that (g̃, f̃) satisfies (5.1), (5.4) and hence (5.7) also. Then, by (4.4) and

(5.8), the restriction of the metric h+ to the singular set Ω ∩R is given by

(h+,ℓm)|R = 2(1 + g1
2)2


f1

2 0 0 0
0 f1

2 0 0
0 0 0 0
0 0 0 0

 .

Since

Ker (h+,ℓm)|R = t(0, 0, 1, 0)R+ t(0, 0, 0, 1)R = i2R+ jR = i2C(i1),

x1+ i2C(i1) is a cross section around x1 ∈ Ω∩R including the degenerate directions. Set

Y (ζ) := X̃(x1 + i2ζ) (∀ζ ∈ C(i1) s.t. x1 + i2ζ ∈ Ω).

Then Y is an even holomorphic map of ζ as we have already seen in §3.
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ϵ = 0 ϵ = 0.15 ϵ = 0.5

ϵ = 0.85 ϵ = 1

Figure 7.1.

If (f̃ , g̃f̃ , g̃2f̃) has a pole of order K + 1 with even ordered terms only at 0 ∈ Ω∞

additionally, then

Yend(ζ) := X̃(sζK+1 + i2ζ) (∀ζ ∈ C(i1) s.t. sζ
K+1 + i2ζ ∈ Ω∞)

is also an even holomorphic map of ζ.

Also in the case that (g̃I , g̃II , f̃) satisfies (5.1), (5.4) and (5.7) with g̃ = g̃I , g̃II , by (6.3)
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and (5.8), the restriction of the metric h♯ to the singular set Ω ∩R is given by

(h♯,ℓm)|R = 2(1 + gI,1
2)(1 + gII,1

2)


f1

2 0 0 0
0 f1

2 0 0
0 0 0 0
0 0 0 0

 ,
and hence we get the same conclusion as for (g̃, f̃) above.

Now, consider the case that (g̃, f̃) satisfies (5.1) only. We may assume that g̃(x) ∈ R

(∀x ∈ Ω ∩ R) without loss of generality by changing coordinate if necessary. Then, by

(4.4) and (5.2), the restriction of the metric h+ to the singular set Ω ∩R is given by

(h+,ℓm)|R = 2(1 + g1
2)2


f1

2 0 −f1f3 0
0 f1

2 0 −f1f3
−f1f3 0 f3

2 0
0 −f1f3 0 f3

2

 .
Since

Ker (h+,ℓm)|R = t(f3, 0, f1, 0)R+ t(0, f3, 0, f1)R

= (f3 + i2f1)R+ (i1f3 + jf1)R = (f3 + i2f1)C(i1)

on Ω ∩R and

f3(x1) + i2f1(x1) = i2(f1(x1) + i1 · 0− i2f3(x1)− j · 0) = i2f̃(x1)
†2 ,

x1+i2f̃(x1)
†2C(i1) is a cross section around x1 ∈ Ω∩R including the degenerate directions.

Set

Y (ζ) := X̃(x1 + i2f̃(x1)
†2ζ) (∀ζ ∈ C(i1) s.t. x1 + i2f̃(x1)

†2ζ ∈ Ω),

and denote {·}1 + i1{·}2 by {·}12. Then Y is a holomorphic map of ζ and satisfies

Y ′(ζ) =
d

dζ
X̃(x1 + i2f̃(x1)

†2ζ)

= {i2f̃(x1)†2 · Φ′(x1 + i2f̃(x1)
†2ζ)}12

= {i2f̃(x1)†2 · t(1− g̃2, 2g̃, 1 + g̃2)f̃ |
z̃=x1+i2f̃(x1)†2ζ

}12,

Y ′(0) =
d

dζ

∣∣∣∣∣
ζ=0

X̃(x1 + i2f̃(x1)
†2ζ)

= {i2f̃(x1)†2 · t(1− g̃(x1)
2, 2g̃(x1), 1 + g̃(x1)

2)f̃(x1)}12

= {i2|f̃(x1)|2C(i2)
· t(1− g1(x1)

2, 2g1(x1), 1 + g1(x1)
2)}12

= t(0, 0, 0).
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Since Φ(z̃†1) = Φ(z̃)†1 + C holds for some constant vector C ∈ B3, we see that

Φ(x1 + i2f̃(x1)
†2ζ†1) = Φ((x1 + i2f̃(x1)

†2ζ)†1) = Φ(x1 + i2f̃(x1)
†2ζ)†1 + C

for ζ ∈ C(i1) such that x1 + i2f̃(x1)
†2ζ ∈ Ω ∩ Ω†1 , and hence

Φ(x1 + i2f̃(x1)
†2ζ†1)− Φ(x1) = (Φ(x1 + i2f̃(x1)

†2ζ)− Φ(x1))
†1 .

Therefore X̃ = Φ1 + i1Φ2 satisfies

Φ1(x1 + i2f̃(x1)
†2ζ†1)− Φ1(x1) = Φ1(x1 + i2f̃(x1)

†2ζ)− Φ1(x1),

Φ2(x1 + i2f̃(x1)
†2ζ†1)− Φ2(x1) = −(Φ2(x1 + i2f̃(x1)

†2ζ)− Φ2(x1)),

namely (Y (x′3)− Y (0))2 = 0, (Y (i1x
′
4)− Y (0))1 is even, and (Y (i1x

′
4)− Y (0))2 is odd for

x′3, x
′
4 ∈ R such that x1 + i2f̃(x1)

†2x′3 ∈ Ω or x1 + i2f̃(x1)
†2i1x

′
4 = x1 + jf̃(x1)

†2x′4 ∈ Ω. In

another word, Y (x′3)− Y (0) ∈ R and “the even (resp. odd) part of Y (i1x
′
4)− Y (0)”∈ R

(resp. i1R) for x′3, x
′
4 ∈ R as above. Hence X̃(x1 + jf̃(x1)

†2
√
−t) (t ≤ 0) is only a

nonanalytic C1,α extension of X̃(x1 + i2f̃(x1)
†2
√
t)(= X̃|C(i2) = Re Φ|C(i2)) (t ≥ 0) with

respect to the parameter t, but “the even part of X̃(x1 + jf̃(x1)
†2
√
−t) ”(= Re Φ(x1 +

jf̃(x1)
†2
√
−t)) (t ≤ 0) is an analytic extension of “that of X̃(x1 + i2f̃(x1)

†2
√
t) ”(t ≥ 0).

Also in the case that (g̃, f̃) satisfies (5.4) only, we may assume that g̃(x) ∈ R (∀x ∈

Ω∩R) as above. Then, by (4.4) and (5.5), the restriction of the metric h+ to the singular

set Ω ∩R is given by

(h+,ℓm)|R = 2(1 + g1
2)2


f1

2 0 0 f1f4
0 f1

2 −f1f4 0
0 −f1f4 f4

2 0
f1f4 0 0 f4

2

 .

Since

Ker (h+,ℓm)|R = t(f4, 0, 0,−f1)R+ t(0, f4, f1, 0)R

= (f4 − jf1)R+ (i1f4 + i2f1)R = (f4 − jf1)C(i1)

on Ω ∩R and

f4(x1)− jf1(x1) = −j(f1(x1) + i1 · 0− i2 · 0− jf4(x1)) = −jf̃(x1)†2 ,
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x1−jf̃(x1)†2C(i1) is a cross section around x1 ∈ Ω∩R including the degenerate directions.

Set

Y (ζ) := X̃(x1 − jf̃(x1)
†2ζ) (∀ζ ∈ C(i1) s.t. x1 − jf̃(x1)

†2ζ ∈ Ω).

Then Y is a holomorphic map of ζ, and we get the same conclusion as above.

9 Flux around zero-devisors

Let X̌ : Ω̌0 → R2,1 (resp. R2,2) be a timelike minimal immersion. Even if the Weierstrass

data (ǧ, f̌) (resp. (ǧI , ǧII , f̌)) of X̌ is given by rational functions onD, the domain of (ǧ, f̌)

(resp. (ǧI , ǧII , f̌)) is not connected, and X̌ cannot be defined globally on D\ (P+S) only

by the integral of Weierstrass type of representation formula, where P is the set of poles

of f̌ and/or ǧ2f̌ (resp. (ǧI f̌ , ǧII f̌ , ǧI ǧII f̌)), and S is the set of zero-devisors. Suppose that

(g̃, f̃) (resp. (g̃I , g̃II , f̃)) be the bicomplex extension of (ǧ, f̌) (resp. (ǧI , ǧII , f̌)) defined

on Ω ⊂ B. It satisfies (5.4), and the principal part of the Laurent expansion of each of

f̃ , g̃f̃ and g̃2f̃ (resp. g̃I f̃ , g̃II f̃ and g̃I g̃II f̃) around each pole has the term of the form

(a1 + ja4)/z̃ with a1, a4 ∈ R in general. Since

∫ z̃ a1 + ja4
z̃

dz̃ = (a1 + ja4) log z̃

= (a1 + ja4)(log r + i1θ1 + i2θ2 + jθ3)

= (a1 log r + a4θ3) + i1(a1θ1 − a4θ2) + i2(a1θ2 − a4θ1)

+j(a1θ3 + a4 log r),

it holds for any loop γ in Ω \ (P + S) that

∫
γ

a1 + ja4
z̃

dz̃ = i1(a1N1π − a4N2π) + i2(a1N2π − a4N1π) ∈ i1R+ i2R

for some N1, N2 ∈ Z such that N1 +N2 is even, and, in particular,

Re
∫
γ

a1 + ja4
z̃

dz̃ = 0.

Hence Φ1 = Re Φ = Re X̃ is well-defined on Ω \ (P + S) though the bicomplex extension

X̃ itself is not well-defined. Now, it is clear that Re (X̃(ž)− X̃(ž0)) is independent of the

choice of the path for any ž, ž0 ∈ (Ω ∩D) \ (P + S). At the same time, this observation
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justifies (5.9) in a global meaning, and we get the following

Theorem 9.1. X̌ extends “analytically” beyond P + S of the Weierstrass data (ǧ, f̌) or

(ǧI , ǧII , f̌).

Example 9.2. Let us observe the bicomplex extension of the helicoid of the 2nd kind in

R2,1 again. Its Weierstrass data is given by the following:

g̃ = −z̃, f̃ = − 1

z̃2
.

By direct computation, we have

Φ(z̃) =
∫ z̃

t(1− g̃2, 2g̃, 1 + g̃2)f̃dz̃

=
∫ z̃

t
(
− 1

z̃2
+ 1,

2

z̃
, − 1

z̃2
− 1

)
dz̃

= t
(
1

z̃
+ z̃, 2 log z̃,

1

z̃
− z̃

)
+ C

for some C ∈ B3. Set C := t(0, 0, 0). Then its spacelike maximal part and timelike

minimal parts are given by the following:

X̃(x1 + i2x3) = t
(

x1
x12 + x32

+ x1, log(x1
2 + x3

2),
x1

x12 + x32
− x1

)
((x1, x3) ̸= (0, 0)),

X̃(x1 + jx4) = t
(

x1
x12 − x42

+ x1, log |x12 − x4
2|, x1

x12 − x42
− x1

)
(|x1| ̸= |x4|).

It is clear that the image of X̃(x1 + jx4)|{|x1|>|x4|} is an analytic extension of that of

X̃(x1 + i2x3)|{(x1,x3 )̸=(0,0)} in the sense that

X̃fld(s, t) = t
(

s

s2 + t
+ s, log(s2 + t),

s

s2 + t
− s

)
(s2 + t > 0)

is analytic with respect to (s, t). On the other hand, we can also regard the image of

X̃(x1+jx4)|{|x1|<|x4|} as an “analytic”extension of the other parts in the sense of Theorem

9.1.

Figure 9.1 shows X̃|C(i2) and X̃|D. Each thick line means a null curve of type-changing.
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Figure 9.1.

Example 9.3. Let us observe the bicomplex extension of a spacelike maximal surface

in R2,1 which has a simple end of zero flux on a fold singularity (cf. [10], [11]). This is

a typical case of Theorem 3.3. We may assume that both the end and the stereographic

image of the limit normal at the end are 0 without loss of generality. Then the Weierstrass

data of the surface around the end is of the following form in general:

g̃ = z̃m+2g̃hol, f̃ =
α

z̃2
+ f̃hol,

where g̃hol and f̃hol are bicomplex holomorphic functions on a domain Ω∞ including 0

satisfying (5.1), (5.4) and (5.7), m ∈ N∪ {0}, α ∈ R \ {0} and β = g̃hol(0) ∈ R \ {0}. By

direct computation, we have

Φ(z̃) =
∫ z̃

t(1− z̃2m+4g̃2hol, 2z̃
m+2g̃hol, 1 + z̃2m+4g̃2hol)

(
α

z̃2
+ f̃hol

)
dz̃

=
∫ z̃ {

t
(
α

z̃2
, 0,

α

z̃2

)
+ t(f̃hol, 2αz̃

mg̃hol, f̃hol)

+z̃m+2 t(−z̃mg̃2hol(α + z̃2f̃hol), 2g̃holf̃hol, z̃
mg̃2hol(α + z̃2f̃hol))

}
dz̃

= t
(
−α
z̃
, 0, −α

z̃

)
+ Φhol(z̃),

where Φhol is a bicomplex holomorphic map satisfying (3.2). Hence

X̃(ζ1 + i2ζ2) = t

(
− αζ1

ζ1
2 + ζ2

2 , 0, −
αζ1

ζ1
2 + ζ2

2

)
+ X̃hol(ζ1 + i2ζ2),
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where X̃hol := (Φhol)1 + i1(Φhol)2 is holomorphic with respect to (ζ1, ζ2), and even with

respect to ζ2. Then its spacelike maximal part and timelike minimal parts are given by

the following:

X̃(x1 + i2x3) = t
(
− αx1
x12 + x32

, 0, − αx1
x12 + x32

)
+ X̃hol(x1 + i2x3)

((x1, x3) ̸= (0, 0), x1 + i2x3 ∈ Ω∞),

X̃(x1 + jx4) = t
(
− αx1
x12 − x42

, 0, − αx1
x12 − x42

)
+ X̃hol(x1 + jx4)

(|x1| ̸= |x4|, x1 + jx4 ∈ Ω∞).

It is clear that the image of X̃(x1 + jx4)|{|x1|>|x4|} is an analytic extension of that of

X̃(x1+i2x3)|{(x1,x3 )̸=(0,0)} in the sense that X̃fld(s, t) defined by (3.3) with F = X̃ is analytic

with respect to (s, t). Also in this case, we can regard the image of X̃(x1 + jx4)|{|x1|<|x4|}

as an “analytic”extension of the other parts in the sense of Theorem 9.1.

On the other hand, for any s ∈ R, it holds that

X̃(sx3
2 + i2x3) = t

(
− αs

s2x32 + 1
, 0, − αs

s2x32 + 1

)
+ X̃hol(sx3

2 + i2x3)

(x3 ̸= 0, sx3
2 + i2x3 ∈ Ω∞),

X̃(−sx42 + jx4) = t
(
− αs

−s2x42 + 1
, 0, − αs

−s2x42 + 1

)
+ X̃hol(−sx42 + jx4)

(|sx4| ̸= 1,−sx42 + jx4 ∈ Ω∞).

Note here that

X̃(sx3
2 + i2x3) = t(−αs, 0,−αs) + X̃hol(0) + x3

2C(s) +O(x3
4),

X̃(−sx42 + jx4) = t(−αs, 0,−αs) + X̃hol(0)− x4
2C(s) +O(x4

4)

hold for C(s) = t(C1(s), C2(s), C3(s)) ∈ R3, where

C1(s) = C3(s) = αs3 + f̃hol(0)s−
1

2
(f̃hol)z̃(0),

C2(s) =


α{2g̃hol(0)s− (g̃hol)z̃(0)} (m = 0),

−αg̃hol(0) (m = 1),

0 (m ≥ 2).
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Now, if m = 0 or 1, then the image of X̃(x1 + jx4)|{|x1|<|x4|} can be regarded as an

analytic extension of that of X̃(x1 + i2x3)|{(x1,x3 )̸=(0,0)} across the subset of a lightlike line

{t(−αs, 0,−αs) | s ∈ R, C2(s) ̸= 0} in the sense that X̃end(s, t) defined by (3.4) with

F = X̃ is analytic with respect to (s, t) and nondegenerate on the subset above.

The most simple example is given by (g̃hol, f̃hol) = (−1, 0) and α = −1. In this case,

if m = 0, then we have

X̃fld(s, t) = t
(

s

s2 + t
+

1

3
(s3 − 3st), 2s,

s

s2 + t
− 1

3
(s3 − 3st)

)
(s2 + t > 0),

X̃end(s, t) = t
(

s

s2t+ 1
+

1

3
(s3t3 − 3st2), 2st,

s

s2t+ 1
− 1

3
(s3t3 − 3st2)

)
(s2t+ 1 > 0),

and if m = 1, then we have

X̃fld(s, t) = t
(

s

s2 + t
+

1

5
(s5 − 10s3t+ 5st2), s2 − t,

s

s2 + t
− 1

5
(s5 − 10s3t+ 5st2)

)
(s2 + t > 0),

X̃end(s, t) = t
(

s

s2t+ 1
+

1

5
(s5t5 − 10s3t4 + 5st3), s2t2 − t,

s

s2t+ 1
− 1

5
(s5t5 − 10s3t4 + 5st3)

)
(s2t+ 1 > 0),

where we set X̃hol(0) :=
t(0, 0, 0).

Figure 9.2 shows X̃|C(i2) and X̃|D with (g̃hol, f̃hol) = (−1, 0) and α = −1. Each thick

line means a null curve of type-changing. Each slit means a lightlike line segment of

incomplete end.
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