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Abstract. Regular semisimple Hessenberg varieties are subvarieties of the flag variety Flag(Cn)

arising naturally in the intersection of geometry, representation theory, and combinatorics. Re-

cent results of Abe-Horiguchi-Masuda-Murai-Sato and Abe-DeDieu-Galetto-Harada relate the
volume polynomials of regular semisimple Hessenberg varieties to the volume polynomial of the

Gelfand-Zetlin polytope GZ(λ) for λ = (λ1, λ2, . . . , λn). The main results of this manuscript

use and generalize tools developed by Anderson-Tymoczko, Kiritchenko-Smirnov-Timorin, and
Postnikov, in order to derive an explicit formula for the volume polynomials of regular semisim-

ple Hessenberg varieties in terms of the volumes of certain faces of the Gelfand-Zetlin polytope,

and also exhibit a manifestly positive, combinatorial formula for their coefficients with respect
to the basis of monomials in the αi := λi−λi+1. In addition, motivated by these considerations,

we carefully analyze the special case of the permutohedral variety, which is also known as the
toric variety associated to Weyl chambers. In this case, we obtain an explicit decomposition of

the permutohedron (the moment map image of the permutohedral variety) into combinatorial

(n − 1)-cubes, and also give a geometric interpretation of this decomposition by expressing the
cohomology class of the permutohedral variety in Flag(Cn) as a sum of the cohomology classes

of a certain set of Richardson varieties.
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1. Introduction

In this manuscript we study the volume polynomials of Hessenberg varieties and other subva-
rieties of the flag variety Flag(Cn), with particular attention to the relationship between these
polynomials and the volume polynomials of related polytopes. The terminology used in this circle
of ideas can be confusing, so we take a moment to clarify the meaning of these terms. The main
point is that, on the one hand, there is a notion (made precise in Section 4) of a volume poly-
nomial of a cohomology class or, in the context of this paper, a subvariety Y of Flag(Cn). This
notion is closely related to that of degree in the sense of algebraic geometry, and thus encodes
information about the topology of Y . For the purpose of this introduction only, we refer to this
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concept as the geometric volume polynomial. 1 On the other hand, given a convex polytope ∆
in a Euclidean space Rn, we also have the usual notion of the (Euclidean, or more accurately, an
appropriately normalized integral Euclidean) volume of ∆. For the purpose of this introduction
only, we refer to this as the combinatorial volume. A priori, these two notions of volume are unre-
lated. However, when the ambient space is the flag variety Flag(Cn) and the polytope in question
is the Gelfand-Zetlin polytope GZ(λ), then there are beautiful relationships between the geometric
volume polynomials of various subvarieties of Flag(Cn) and the combinatorial volumes of certain
faces of GZ(λ). We are not the first to observe or exploit these relationships; indeed, part of the
motivation for this paper was the work of Kiritchenko, Smirnov, and Timorin and others (cf. [15]
and references therein) which relate the cohomology classes of Schubert varieties and products of
Schubert varieties with certain faces of GZ(λ). The new direction explored in this manuscript is
the focus on the Hessenberg (sub)varieties in Flag(Cn).

Hessenberg varieties are a family of subvarieties of the flag variety that arise naturally in combi-
natorics, geometry, and representation theory, and is an active area of current research, in part due
to the connections between the regular semisimple Hessenberg varieties Hess(S, h) (defined pre-
cisely in Section 2) and the famous Stanley-Stembridge conjecture in graph theory and the theory
of symmetric functions (see e.g. [21, 6, 9, 10]). Most recently, volume polynomials also appeared in
the study of Hessenberg varieties through the work of the second and third authors together with
Abe, Murai, and Sato [2], in which they use the theory of hyperplane arrangements to derive ex-
plicit generators and relations for the cohomology rings of regular nilpotent Hessenberg varieties in
certain Lie types. In related work, the first author together with Abe, DeDieu, and Galetto studied
the volume polynomials of both regular semisimple and regular nilpotent Hessenberg varieties in
relation to the study of Newton-Okounkov bodies [1]. It can be seen from the explicit formula for
the volume polynomials of regular nilpotent Hessenberg varieties given in [2] that it is intimately
related to the volume of Gelfand-Zetlin polytopes. Therefore, the time seemed ripe for a careful
study of the volume polynomials of Hessenberg and related subvarieties. In this manuscript, we
focus exclusively on the case of the regular semisimple Hessenberg varieties Hess(S, h).

We now explain the results contained in this manuscript in some more detail. Since the notation
and terminology is technical, we only give rough statements here; precise statements can be found
in the body of the manuscript. Let λ = (λ1, λ2, · · · , λn) ∈ Rn, where λ1 > λ2 > · · · > λn. The
Gelfand-Zetlin polytope GZ(λ) is a polytope in Rn(n−1)/2 defined by certain inequalities depending
on the parameter λ (see Section 2). Thus, the combinatorial volume of GZ(λ) may be viewed as
a polynomial in the variables λ1, . . . , λn. It turns out that the geometric volume polynomial
Volλ(Hess(S, h)) of a regular semisimple Hessenberg variety in Flag(Cn) can be obtained by taking
certain derivatives, with respect to the λi’s, of the combinatorial volume polynomial Vol(GZ(λ)) of
GZ(λ) [1, 2]. Straightforward computations in small-n cases lead us to believe that this geometric
volume Volλ(Hess(S, h)) can alternately be expressed as a non-negative linear combination of the
combinatorial volumes of certain faces of GZ(λ). We were thus lead to ask:

• Is there an explicit formula expressing Volλ(Hess(S, h)) as a sum of volumes of faces of
GZ(λ)?

• Is there a manifestly positive, combinatorial formula for the coefficients of Volλ(Hess(S, h))
when expressed in the basis of monomials in the αi := λi − λi+1?

We record positive answers to the above two questions in Section 4. It turns out that the answer
to the first question can be obtained as a straightforward consequence of results of Anderson-
Tymoczko and Kiritchenko-Smirnov-Timorin [3, 15], as we record in Theorem 4.7. In addition, we
prove the following.

(1) In Section 3 we prove two combinatorial results about the faces of Gelfand-Zetlin polytopes.
The first result is a generalization of a result of Postnikov [20], and is a manifestly positive,
combinatorial formula for the coefficients of the combinatorial volume of any face F of
GZ(λ) in the basis of monomials in the αi = λi−λi+1 (Proposition 3.3). The second result

1As far as we are aware, this is not standard terminology, so we avoid use of this term elsewhere in the manuscript.
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is a generalization of a formula of Kiritchenko, Timorin, and Smirnov, and is a linear
relation between the volumes of several closely related faces of GZ(λ) (Proposition 3.5).

(2) In Section 4 we use the results in Section 3 to answer the second question above, namely,
we give a manifestly positive formula for the coefficients of Volλ(Hess(S, h)) with respect
to the basis of monomials in the αi’s (Theorem 4.8).

(3) Our considerations in Section 4 motivated us to look at the special case of the permu-
tohedral variety, which is a special case of a regular semisimple Hessenberg variety and
which is also known as the toric variety associated to the Weyl chambers. From standard
symplectic geometry it is well-known that the moment map image of the permutohedral
variety is the so-called permutohedron. In Section 5 we use a certain well-chosen subset of
the faces of GZ(λ) to give a decomposition of the permutohedron into combinatorial cubes
(Theorem 5.4).

(4) As noted above, the permutohedron has a geometric counterpart, namely, the permuto-
hedral variety. In Section 6 we show that our combinatorial result in Section 5 has a
geometric interpretation, namely, that the cohomology class of the permutohedral variety
in Flag(Cn) is a sum of classes, where the summands are in one-to-one correspondence
with the cubes appearing in the decomposition given in Theorem 5.4.

We now outline the contents of the paper. In Section 2 we briefly recount the necessary back-
ground: Hessenberg varieties, Schubert varieties, and some combinatorics associated to Gelfand-
Zetlin polytopes. In Section 3 we derive some combinatorial results concerning the faces of Gelfand-
Zetlin polytopes. In addition to being of interest in their own right, these results will be used in
the arguments in the next sections. In Section 4 we define the (geometric) volume polynomial and
answer the two questions – as noted above – which motivated this paper. The considerations of the
special case of the permutohedral variety are contained in the last two sections: the combinatorial
view is given in Section 5, and the geometric perspective is discussed in Section 6.
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Science Research Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Science, ICT & Future Planning (NRF-2018R1A6A3A11047606).

2. Background on Hessenberg and Schubert varieties

This section contains the necessary background for the remainder of the paper. We begin with
a brief outline of its contents. We first introduce the main geometric characters appearing in
this manuscript, namely, the regular semisimple Hessenberg varieties and the Schubert varieties.
Both are subvarieties of the flag variety Flag(Cn). We also record a result of Anderson-Tymoczko
[3] which expresses the cohomology2 class associated to (i.e., the Poincaré dual of) a regular
semisimple Hessenberg variety in terms of those of Schubert varieties. We then introduce the main
combinatorial object of the paper, namely, the Gelfand-Zetlin polytope and its faces. Next, we
recall the results of Kiritchenko, Smirnov, and Timorin which relates the cohomology classes of
(products of) Schubert varieties with certain faces of the Gelfand-Zetlin polytope. Finally, we state
in Corollary 2.7 a formula relating the Poincaré dual of the regular semisimple Hessenberg variety
to a certain subset of faces of the Gelfand-Zetlin polytope, which we analyze further in Section 4.

2Throughout this document (unless explicitly stated otherwise) we work with cohomology rings with coefficients

in R.

3



We begin with the definition of regular semisimple Hessenberg varieties. Let n be a positive
integer. The (full) flag variety Flag(Cn) in Cn is the collection of nested linear subspaces

V• := (V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn)

where each Vi is an i-dimensional subspace in Cn. Hessenberg varieties are subvarieties of Flag(Cn)
defined as follows. Let us fix the notation

[n] := {1, 2, . . . , n}.
A Hessenberg function is a function h : [n]→ [n] satisfying h(i+1) ≥ h(i) for all i with 1 ≤ i ≤ n−1
and h(i) ≥ i for all i with 1 ≤ i ≤ n. We frequently denote a Hessenberg function by listing its
values in sequence, i.e., h = (h(1), h(2), . . . , h(n)). We also visualize Hessenberg functions as a
collection of boxes as follows. Consider the set of n × n many boxes arranged as in a square
matrix. We color the (i, j)-th box if i ≤ h(j), or in other words, for each j with 1 ≤ j ≤ n, we
color h(j) many boxes in the j-th column starting from the top. The colored boxes are then a
visual representation of h.

Example 2.1. Let n = 5 and let h = (3, 3, 4, 5, 5). The corresponding set of colored boxes is
illustrated in Figure 1.

Figure 1. Colored boxes for h = (3, 3, 4, 5, 5).

Let X : Cn → Cn be a linear operator on Cn. The (type A) Hessenberg variety Hess(X,h)
associated to the choice of X and h is defined as the following subvariety of Flag(Cn):

(2.1) Hess(X,h) := {V• ∈ Flag(Cn) | XVi ⊂ Vh(i) for i = 1, 2, . . . , n} ⊆ Flag(Cn).

In this manuscript we focus on the case when X = S is a (choice of) regular semisimple operator,
i.e., a diagonalizable matrix with distinct eigenvalues. In this situation we call Hess(S, h) a regular
semisimple Hessenberg variety. From [7, Theorem 6] we know that Hess(S, h) is smooth
and equidimensional, and dimC(Hess(S, h)) =

∑n
j=1(h(j) − j). From the definition (2.1) it is

straightforward to see that when h = (n, n, . . . , n) is the maximal Hessenberg function, then the
conditions given in (2.1) are automatically satisfied and thus Hess(S, (n, n, . . . , n)) = Flag(Cn).
On the other hand, when h = (2, 3, 4, . . . , n, n) is the minimal Hessenberg function satisfying
h(j) ≥ j + 1 for 1 ≤ j ≤ n − 1, then it is known that Hess(S, h) is the toric variety associated to
the fan of the type A Weyl chambers [7, Theorem 11]. This regular semisimple Hessenberg variety
is also known as the permutohedral variety. The permutohedral variety is a central object of
interest in Sections 5 and 6.

Now we recall the definition of Schubert and opposite Schubert varieties and some of their basic
properties. Let G = GLn(C) the general linear group and let B and B− be the subgroups of upper-
triangular and lower-triangular matrices in G respectively. It is well-known that the flag variety
Flag(Cn) can be identified with the homogeneous space G/B. Let Sn denote the permutation
group on n letters. For an element w ∈ Sn we denote its one-line notation by either

w(1)w(2) · · · w(n) or [w(1), w(2), · · · , w(n)].

For w ∈ Sn, we let Xw denote the Schubert variety associated to w, defined to be the closure of
the B-orbit of the permutation flag wB/B and let Xw denote the opposite Schubert variety,
defined to be the closure of the B−-orbit of wB/B. Since B− = w0Bw0 where w0 is the longest
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element in Sn, we have the relation Xw = w0(Xw0w). It is well-known that any opposite Schubert
variety Xw is irreducible and the codimension of Xw in the flag variety Flag(Cn) is the length
`(w) of w. Similarly Xw is irreducible and its dimension is `(w) for any w ∈ Sn. The Poincaré
dual of the Schubert variety Xw considered as a cycle of Flag(Cn), which we denote by [Xw] ∈
H2`(w)(Flag(Cn)), is called the Schubert class corresponding to w. It is known that [Xw] =
[w0(Xw0w)] = [Xw0w], and also that the Schubert classes form an additive basis of the cohomology
H∗(Flag(Cn)). (This result is also valid for the cohomology with coefficients in Z.)

We are now in a position to state a result of Anderson and Tymoczko [3] which gives a formula for
the cohomology class (i.e. Poincaré dual) of Hess(S, h) in terms of those of Schubert varieties. To
state the precise result, we first need to define a certain permutation associated to each Hessenberg
function h as follows. As the base case we define

wh(1) := n− h(1) + 1.

We then inductively define

wh(i) = (n− h(i) + 1)-th number of a set [n] \ {wh(1), . . . , wh(i− 1)}.(2.2)

Anderson and Tymoczko show that the Poincaré dual of a regular semisimple Hessenberg variety
Hess(S, h) considered as a cycle in the flag variety Flag(Cn), which we denote as [Hess(S, h)], can
be written in terms of opposite Schubert classes [Xw] as follows.

Theorem 2.2. ([3, Corollary 3.3 (a) and equation (14)]) Let Hess(S, h) be a regular semisimple
Hessenberg variety and let {Xw}w∈Sn denote the opposite Schubert varieties. Then the class
[Hess(S, h)] can be expressed as

(2.3) [Hess(S, h)] =
∑

u,v∈Sn

v−1u=wh

`(u)+`(v)=`(wh)

[Xu][Xw0vw0 ] ∈ H∗(Flag(Cn)),

where w0 is the longest element in Sn and wh is the permutation defined above.

We illustrate the above theorem in the case of some small-n permutohedral varieties.

Example 2.3. Let h = (2, 3, 4, . . . , n, n). This corresponds to the case of the permutohedral
variety mentioned above. In this case, it is straightforward to see that the permutation wh defined
above is the longest element in the subgroup Sn−1 of Sn, i.e.,

wh = [n− 1, n− 2 , · · · 2, 1, n]

in one-line notation. We now compute the cohomology classes [Hess(S, h)] in the cases n = 3 and
n = 4.

(a) Suppose n = 3. Then h = (2, 3, 3) and wh = [2, 1, 3] = s1. According to Theorem 2.2 we
need to find pairs v, u ∈ S3 such that v−1u = s1 and `(u) + `(v) = `(wh) = `(s1) = 1, but
there are only two such choices: v = s1 and u = id, or, v = id and u = s1. Therefore, by
Theorem 2.2 we conclude, in this case, that

[Hess(S, h)] = [Xs1 ][X id] + [X id][Xs2 ] = [X213] + [X132].

(b) Now suppose n = 4. Consider h = (2, 3, 4, 4). It is straightforward to compute wh =
[3, 2, 1, 4] = s1s2s1 = s2s1s2. Using Theorem 2.2 again we have

[Hess(S, h)] =[X id][Xw0(s1s2s1)
−1w0 ] + [Xs1 ][Xw0(s1s2)

−1w0 ] + [Xs2 ][Xw0(s2s1)
−1w0 ]

+ [Xs2s1 ][Xw0(s1)
−1w0 ] + [Xs1s2 ][Xw0(s2)

−1w0 ] + [Xs1s2s1 ][X id]

=[X1432] + [Xs1 ][X1342] + [Xs2 ][X1423] + [X3124][Xs3 ] + [X2314][Xs2 ] + [X3214].
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Using Monk’s formula [19] (cf. also [8, p.180]) we obtain

[Xs1 ][X1342] =[X3142] + [X2341]

[Xs2 ][X1423] =[X2413]

[Xs3 ][X3124] =[X4123] + [X3142]

[Xs2 ][X2314] =[X2413]

which therefore yields the simplified formula

[Hess(S, h)] = [X1432] + [X2341] + 2[X2413] + 2[X3142] + [X3214] + [X4123].

Next, we recall the fundamental combinatorial objects considered in this manuscript, namely,
the Gelfand-Zetlin polytope and its faces. Let λ = (λ1, λ2, · · · , λn) ∈ Rn with λ1 > λ2 > · · · > λn.
The Gelfand–Zetlin polytope GZ(λ) in Rm, where m = n(n−1)/2, consists of the set of points
(xi,j)i,j ∈ Rm satisfying the inequalities defined by the following diagram:

(2.4)

λ1 x1,2 x1,3 · · · x1,n−1 x1,n

λ2 x2,3
. . . x2,n−1 x2,n

. . .
. . .

...
...

λn−2 xn−2,n−1 xn−2,n
λn−1 xn−1,n

λn

where any set of three variables found in a triangular arrangement as follows

(2.5)
a b

c

in the diagram (2.4) must satisfy a ≥ b ≥ c. Here, we set xj,j := λj for all j = 1, 2, . . . , n.
We will represent faces of GZ(λ) by face diagrams. This representation was first introduced

by [16] and we will use the modified version given in [15], which we now review. Recall that a face
of GZ(λ) is specified by a collection of equations, each of which is of the form either a = b or b = c,
where a, b, c are three variables appearing in (2.4) in a triangular arrangement as in (2.5). With
this in mind, we define face diagrams as follows. Firstly, we replace each symbol (either λj = xj,j
or xi,j) appearing in (2.4) by a dot. Secondly, given an equation a = b (respectively b = c) as
above, we graphically represent this a = b by drawing a line segment connecting the corresponding
dots; note that since a and b are adjacent in a row (respectively a column), this line segment is
horizontal (respectively vertical), or in other words, “east-west” (respectively “north-south”). A
system of such equations, defining a face of GZ(λ), is hence represented by a collection of east-
west and north-south line segments. We call this collection the face diagram (of that face). See
Figure 2 for examples.

λ1 = x1,2 x3,4 = λ4 λ1 = x1,2 = x1,3; x3,4 = λ4

Figure 2. Examples of face diagrams when n=4

It may be helpful to the reader to explicitly visualize the facets on the polytope itself. In the
example below we illustrate all 6 facets of the n = 3 Gelfand-Zetlin polytope as both a face diagram
and as a 2-dimensional facet on the 3-dimensional Gelfand-Zetlin polytope.
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Example 2.4. Let n = 3 and λ1 > λ2 > λ3. In this small case we use notation x = x1,2, y = x2,3
and z = x1,3, and the polytope GZ(λ) ⊆ R3 is given by the set of (x, y, z) ∈ R3 satisfying the
inequalities associated to the diagram

(2.6)
λ1 x z

λ2 y
λ3.

In Figure 3 we have drawn both the dot diagram and a shading of the corresponding facet on the
Gelfand-Zetlin polytope for all 6 facets of GZ(λ).

λ1 = x x = λ2

λ2 = y y = λ3

x = z z = y

Figure 3. Facets of GZ(λ) for n = 3 with λ1 > λ2 > λ3.

With the above notation in place, we can now understand the RHS of (2.3) in terms of certain
faces of the Gelfand-Zetlin polytope. The discussion below is a summary of results of Kiritchenko-
Smirnov-Timorin [15]; we refer the reader to [15, Section 3.3, 4.3] for more details. A Kogan
face is a face of GZ(λ) obtained via equations of the form xi,j = xi,j+1. In the language of face
diagrams, these are the east-west line segments. A dual Kogan face is a face of the Gelfand–Zetlin
polytope given by equations of the type xi,j = xi+1,j . These are the north-south line segments in
the face diagram. To each Kogan face F we associate to it a permutation w(F ) as follows. To
each line segment connecting (i, j) and (i, j + 1) in the face diagram of F , we assign the simple
transposition sj = (j, j+1). To construct w(F ), we now successively compose those transpositions
corresponding to those line segments by reading the transpositions as follows: we read along the
diagonals, going (diagonally) down along each diagonal, and starting from the outermost (shortest)
diagonal and ending at the main (longest) diagonal. The resulting permutation is denoted w(F ).
See Figure 4 for an example. We say that a Kogan face is reduced if the decomposition for w(F )
obtained by the procedure above is reduced.

There is a similar procedure which we apply to each dual Kogan face F ∗. To each line segment
connecting (i, j) and (i + 1, j) in the face diagram of F ∗, we associate the simple transposition
sn−i. Now we successively compose those transpositions which appear in the face diagram of
F ∗ by reading them along the diagonals, going (diagonally) up along each diagonal, and starting
from the outermost (shortest) diagonal and ending at the main (longest) diagonal. The resulting

7



sb sa

sc

Figure 4. In the figure above, the corresponding permutation w(F ) is w =
sasbsc. We start by reading along the “outermost” (shortest) diagonal, read-
ing (diagonally) downwards, and then proceed to the next diagonal on its left,
again reading (diagonally) downwards.

permutation is denoted w(F ∗). We say that a dual Kogan face F ∗ is reduced if the decomposition
for w(F ∗) obtained in this way is reduced.

Example 2.5. Let n = 3. We list all the reduced Kogan faces and reduced dual Kogan faces in
Figures 5 and 6.

s1 s2

s2

w = s2s1s2

s1 s2

w = s2s1

s1

s2

w = s1s2

s1

w = s1

s2

w = s2

s2

w = s2 w = id

Figure 5. Reduced Kogan faces when n = 3

s1

s2s2

w = s2s1s2

s1

s2

w = s2s1

s1

s2

w = s1s2

s1

w = s1

s2

w = s2

s2

w = s2 w = id

Figure 6. Reduced dual Kogan faces when n = 3

In what follows, we will use a special case of [15, Corollary 4.6], stated below. Since we do
not require the full details of this theorem, we do not recall precise definitions of all the notation
that is used. Briefly, the expressions [F ∩ F ∗] appearing below are elements of a polytope ring
corresponding to a certain resolution of the Gelfand-Zetlin polytope, and the map π identifies the
sum shown below with an element in the polytope ring corresponding to GZ(λ), which is known
to be isomorphic to the Chow (cohomology) ring of Flag(Cn). For details, see [15].
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Theorem 2.6. ([15, Corollary 4.6]) Let the notation be as above. Then

[Xu][Xw0vw0 ] = π

( ∑
F : reduced Kogan face

F∗: reduced dual Kogan face
w(F )=u, w(F∗)=v

[F ∩ F ∗]
)
.

Putting Theorems 2.2 and 2.6 together we immediately obtain the following explicit expression of
the Poincaré dual [Hess(S, h)] of a regular semisimple Hessenberg variety as an expression involving
a sum of certain faces of the Gelfand-Zetlin polytope.

Corollary 2.7. Following the notation above, we have

(2.7) [Hess(S, h)] = π

( ∑
u,v∈Sn

v−1u=wh

`(u)+`(v)=`(wh)

∑
F : reduced Kogan face

F∗: reduced dual Kogan face
w(F )=u, w(F∗)=v

[F ∩ F ∗]
)
.

Here is a simple example.

Example 2.8. Let n = 4 and h = (2, 4, 4, 4). Then wh = 3124 = s2s1. From Corollary 2.7 it
follows that we are looking for faces of the form F ∩ F ∗ where F is a reduced Kogan face, F ∗ is a
reduced dual Kogan face, w(F ∗)−1w(F ) = wh, and `(w(F )) + `(w(F ∗)) = 2. There are four faces
F ∩F ∗ satisfying these conditions; see Figure 7. The leftmost face in Figure 7 satisfies w(F ) = s2s1
and w(F ∗) = id. The middle two faces satisfy w(F ) = s1 and w(F ∗) = s2. The rightmost face
satisfies w(F ) = id and w(F ∗) = s1s2. Thus [Hess(S, h)] is the sum of these four faces.

s1 s2

x1,2 = x1,3 = λ1

s1

s2

x1,2 = λ1, x2,3 = λ3

s1

s2

x1,2 = λ1, x3,4 = x2,4

s2

s1

x2,3 = λ3, x3,4 = λ4

Figure 7. Faces corresponding to [Hess(S, h)] for h = (2, 4, 4, 4)

3. Combinatorial formulas for the volume of faces of GZ(λ)

The two results of this section are as follows; we will use these results in the next section
on volume polynomials. First, we give a combinatorial formula for the volume of a face of the
Gelfand-Zetlin polytope which is explicitly expressed as a polynomial in the αi = λi − λi+1,
i = 1, . . . , n − 1, and whose coefficients count certain combinatorial objects (Proposition 3.3). In
particular, the coefficients are manifestly positive. Our approach is based on the work of Postnikov
in [20] in which he gives a similar formula for the volume of the Gelfand-Zetlin polytope in terms
of standard shifted Young tableau. Thus, our formula can be viewed as a generalization of
Postnikov’s work to the faces of the Gelfand-Zetlin polytope. Second, we generalize a result of
Kiritchenko, Smirnov, and Timorin, which gives a linear relation between the volumes of four faces
of GZ(λ) which are obtained by intersecting a larger face with four closely related hyperplanes.

We begin with the terminology required to state Postnikov’s result. A standard shifted
Young tableau of triangular shape (n, n − 1, . . . , 1) is a bijective map T : {(i, j) | 1 ≤ i ≤ j ≤
n} → {1, . . . ,

(
n+1
2

)
}, which is increasing in the rows and the columns, i.e. T ((i, j)) < T ((i, j + 1))

and T ((i, j)) < T ((i + 1, j)) whenever the entries are defined. We say that the diagonal vector
of such a tableau T is the vector obtained by reading the entries along the main diagonal, i.e.
diag(T ) = (d1, . . . , dn) := (T (1, 1), T (2, 2), ..., T (n, n)). See Figure 8.
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1 2 4 7

3 5 8

6 9

10

Figure 8. Example of a standard shifted Young tableau. The diagonal vector is
(1, 3, 6, 10).

In [20], Postnikov showed that GZ(λ) can be divided into products of simplices each of which
corresponds to a standard shifted Young tableau of triangular shape (n, n− 1, . . . , 2, 1).

Theorem 3.1. ([20, Theorem 15.1]) The volume of the Gelfand–Zetlin polytope GZ(λ) is

Vol(GZ(λ)) =
∑

p1,...,pn−1≥0

N(p1, . . . , pn−1)
αp11
p1!

αp22
p2!
· · ·

α
pn−1

n−1
pn−1!

,

where αj = λj − λj+1 for j = 1, . . . , n − 1, and the coefficient N(p1, . . . , pn−1) is equal to the
number of standard shifted Young tableaux T of triangular shape (n, n− 1, . . . , 2, 1) with diagonal
vector equal to diag(T ) = (1, p1 + 2, p1 + p2 + 3, . . . , p1 + · · ·+ pn−1 + n).

Note that each coordinate xi,j corresponds to the box on the i-th row and the j-th column in
the shifted Young diagram of the triangular shape (n, n− 1, . . . , 1). It is useful to see an example.

Example 3.2. Let n = 3. The Gelfand-Zetlin polytope GZ(λ1, λ2, λ3) can be divided into two
regions

{λ1 ≥ x1,2 ≥ λ2 ≥ x1,3 ≥ x2,3 ≥ λ3} and {λ1 ≥ x1,2 ≥ x1,3 ≥ λ2 ≥ x2,3 ≥ λ3}
which are the products of two simplices (λ1−λ2)∆1× (λ2−λ3)∆2 and (λ1−λ2)∆2× (λ2−λ3)∆1,
respectively. Hence we have

Vol(GZ(λ1, λ2, λ3)) =
(λ1 − λ2)2(λ2 − λ3)

2
+

(λ1 − λ2)(λ2 − λ3)2

2
.

Furthermore, each of the regions corresponds to a standard shifted Young tableau of the triangular
shape (3, 2, 1). See Figure 9.

1 2 3

4 5

6

1 2 4

3 5

6

Figure 9. Standard shifted Young tableaux of the triangular shape (3, 2, 1) and
their corresponding regions

It turns out that Theorem 3.1 can be generalized: every face of GZ(λ) can be divided into
products of simplices and we can relate them to shifted tableaux, as follows. For a face F of
GZ(λ), we let

H(F ) = {(i, j, k, `) | xi,j = xk,` in F and (k, `) is (i+ 1, j) or (i, j + 1)}.
Recall that each box (i, j) of a shifted Young diagram corresponds to a variable, namely xi,j .
We say a function T : {(i, j) | 1 ≤ i ≤ j ≤ n} → {1, 2, . . . , n + dimF} is a shifted Young
tableau associated to F if the assignment T is weakly increasing along both rows and columns,
and T ((i, j)) = T ((i, j + 1)) if and only if (i, j, i, j + 1) ∈ H(F ) (i.e. xi,j = xi,j+1 in F ), and

10



T ((i, j)) = T ((i+ 1, j)) if and only if (i, j, i+ 1, j) ∈ H(F ) (i.e. xi,j = xi+1,j in F ). See Figure 10
for an example.

F

1 1 1 3

2 4 6

5 7

7

T

Figure 10. Example of a shifted tableaux T associated with a face F of GZ(λ1, . . . , λ4)

Using ideas similar to those for [20, Theorem 15.1] we can prove the following.

Proposition 3.3. The volume of a face F of the Gelfand–Zetlin polytope GZ(λ) is given by

Vol(F ) =
∑

p1,...,pn−1≥0

NF (p1, . . . , pn−1)
αp11
p1!
· · ·

α
pn−1

n−1
pn−1!

where NF (p1, . . . , pn−1) is the number of shifted tableaux T associated to F with the diagonal vector
diag(T ) = (1, p1 + 2, p1 + p2 + 3, . . . , p1 + · · · + pn−1 + n). In particular, Vol(F ) is a polynomial
with nonnegative coefficients in the variables α1, . . . , αn−1.

Proof. Let us subdivide F into parts by the hyperplanes xi,j = xk,`, for all (i, j, k, `) 6∈ H(F ).
A region of this subdivision of the face F corresponds to a choice of a total ordering of the xi,j
compatible with all inequalities. Such orderings are in one-to-one correspondence with shifted
tableaux associated with the face F of GZ(λ). That is, for a given region, the elements equal to
λ1 correspond to the boxes containing a 1, and they are the maximal elements in the region. The
second maximal elements in the region correspond to the boxes containing a 2, and so on. For a
tableau T with the diagonal vector diag(T ) = (d1, . . . , dn), the region of F associated with T is
isomorphic to

(3.1) YT = {(y1 > · · · > ynF
) | ydi = λi for i = 1, . . . , n} ,

where nF = n + dimF . Note that each xi,j corresponds to yT (i,j), and xi,j ≥ xk,` if and only if
T (i, j) ≤ T (k, `). Since YT is isomorphic to the direct product of simplices α1∆p1×· · ·×αn−1∆pn−1 ,

where αi = λi − λi+1 and pi = di+1 − di − 1, the volume of YT equals
α

pi
1

p1!
· · · α

pn−1
n−1

pn−1!
. Thus the

volume Vol(F ) can be written as the sum of these expressions over shifted tableaux associated
with the face F . �

Example 3.4. Let n = 4 and F be the face of GZ(λ) defined by x1,1 = x1,2 = x1,3 and x3,4 = x4,4.
Then nF = n+ dimF = 7 and there are seven shifted tableaux associated with F of the triangular
shape (4, 3, 2, 1) as in Figure 11. By Proposition 3.3, we can compute the volume of the region
associated with T [i] for i = 1, . . . , 7 as follows.

Vol(YT [1]) =
α1
2α

2
3

2!
, Vol(YT [2]) = Vol(YT [3]) =

α2
2α3

2!

Vol(YT [4]) = Vol(YT [5]) =
α3
2

3!
, Vol(YT [6]) = α1α2α3, Vol(YT [7]) =

α1α
2
2

2!

Also note that T [2] and T [3] have the same diagonal entries, as do T [4] and T [5]; hence they
contribute to the same monomial term in the formula. Putting this together, we obtain that the
volume of the face F is equal to

Vol(F ) =
α1
2α

2
3

2!
+ 2

α2
2α3

2!
+ 2

α3
2

3!
+ α1α2α3 +

α1α
2
2

2!
.
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F

1 1 1 5

2 3 6

4 7

7

T [1]

1 1 1 3

2 4 6

5 7

7

T [2]

1 1 1 4

2 3 6

5 7

7

T [3]

1 1 1 3

2 4 5

6 7

7

T [4]

1 1 1 4

2 3 5

6 7

7

T [5]

1 1 1 2

3 4 6

5 7

7

T [6]

1 1 1 2

3 4 5

6 7

7

T [7]

Figure 11. Shifted tableaux associated with F of triangular shape (4, 3, 2, 1)

We now state and prove our second combinatorial result. We need some preliminaries. Let F be
a face of GZ(λ), specified by equations tabulated in the set H(F ) as above. We say that a variable
xi,j is isolated in F if xi,j does not appear in any of the equations as given in H(F ) which specify
F (or, equivalently, the dot at location (i, j) is not contained in any edge of the face diagram of F ).
Recall that our variables are {xi,j} where 1 ≤ i < j ≤ n and we denote λi := xi,i for 1 ≤ i ≤ n. In
what follows, if a pair (i′, j′) of integers do not satisfy the condition 1 ≤ i′ ≤ j′ ≤ n then we say
that the indices are “out of range”.

Proposition 3.5. Let F be a face of GZ(λ). Let xi,j for 1 ≤ i < j ≤ n be isolated in F . Assume
also that each of the four variables xi,j−1, xi−1,j, xi+1,j and xi,j+1 is either isolated or its indices
are out of range. Then

Vol(F ∩ {xi,j = xi,j−1}) + Vol(F ∩ {xi,j = xi−1,j})
= Vol(F ∩ {xi,j = xi+1,j}) + Vol(F ∩ {xi,j = xi,j+1}),

where a term should be set to 0 if it involves indices that are out of range.

The above is a generalization of [15, Proposition 3.2], which is the special case of Proposition 3.5
when F = GZ(λ) is the whole Gelfand-Zetlin polytope.

Before proving the proposition we give the idea of what is happening. Let F be a face of GZ(λ).
Suppose, as stated in the hypothesis above, that we have a collection of isolated variables xi,j
and its four “neighbors” xi,j−1, xi,j+1, xi−1,j and xi+1,j . These five variables can be visualized
as appearing in an arrangement (within the full arrangement of Gelfand-Zetlin variables indicated
in (2.4)) as indicated in the figure below, where we have drawn both the variables as well as the
piece of the face diagram corresponding to them. Note that there are no edges in the face diagram,
since xi,j is assumed to be isolated; moreover, these five dots also do not touch any other edge of
the face diagram. See Figure 12.

xi,jxi,j−1

xi−1,j

xi+1,j

xi,j+1

Figure 12. An isolated variable xi,j and its (isolated) neighbors.
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We may now consider four different faces of GZ(λ), obtained by intersecting F with an additional
hyperplane corresponding to the equations xi,j = xi,j−1, xi,j = xi−1,j , xi,j = xi,j+1, and xi,j =
xi+1,j . We can think of these pictorially as well; for instance, the equation xi,j = xi,j−1 can be
represented by the picture in Figure 13.

Figure 13. The equation xi,j = xi,j−1 represented as a piece of a face diagram.

With these ideas in place, we can give the idea of the proposition. We consider the sum of
the volumes of the faces obtained by intersecting F with the two hyperplanes {xi,j = xi,j−1} and
{xi,j = xi−1,j}, corresponding to the two edges which lie ‘to the northwest’ of the dot at (i, j).
We can do the same for the two hyperplanes corresponding to {xi,j = xi,j+1} and {xi,j = xi+1,j},
which correspond to the two edges lying ‘to the southeast’ of (i, j). The point of our proposition is
that these two quantities are the same. The argument also works, with minor adjustments, when
some of the variables are ‘out of range’, provided that xi,j is not on the main diagonal in the
triangle (2.4).

Proof of Proposition 3.5. We first deal with the case when all variables are defined, i.e., none of
the indices are out of range. From Proposition 3.3 it follows that, in order to prove the claim, it
would suffice to show that for any fixed p1, p2, . . . , pn−1 ≥ 0, we have that the two quantities

(3.2) NF∩{xi,j=xi,j−1}(p1, p2, . . . , pn−1) +NF∩{xi,j=xi−1,j}(p1, p2, . . . , pn−1)

and

(3.3) NF∩{xi,j=xi+1,j}(p1, p2, . . . , pn−1) +NF∩{xi,j=xi,j+1}(p1, p2, . . . , pn−1)

are equal. For this purpose we define the set ShYT(F, p1, p2, . . . , pn−1) to be the set of all shifted
Young tableau T associated to F with diag(T ) = (1, p1 + 2, p1 + p2 + 3, . . . , p1 + · · ·+ pn−1 +n). In
fact, for the duration of this argument the parameters p1, p2, . . . , pn−1 are fixed, so for simplicity
we suppress the pi from the notation and we denote ShYT(F ) := ShYT(F, p1, p2, . . . , pn−1). So it
follows immediately that the integer NF ′(p1, . . . , pn−1) for a face F ′ is by definition

NF ′(p1, . . . , pn−1) = |ShYT(F ′)|.
Next, note that from the definition of shifted Young tableaux associated to faces, and because
each of the four faces appearing in (3.2) and (3.3) have distinct defining equations, the four sets
ShYT(F ∩ {xi,j = xi,j−1}) etc. are all (pairwise) disjoint. From this it follows that to prove
that (3.2) is equal to (3.3), it suffices to prove that there is a bijection between

(3.4) ShYT(F ∩ {xi,j = xi,j−1})
⊔

ShYT(F ∩ {xi,j = xi−1,j})

and

(3.5) ShYT(F ∩ {xi,j = xi,j+1})
⊔

ShYT(F ∩ {xi,j = xi+1,j}).

Let T be a shifted Young tableau in ShYT(F ∩ {xi,j = xi,j−1}), ShYT(F ∩ {xi,j = xi−1,j}),
ShYT(F ∩ {xi,j = xi,j+1}), or ShYT(F ∩ {xi,j = xi+1,j}). We focus on the entries of T in the
five locations (i, j), (i− 1, j), (i, j − 1), (i+ 1, j) and (i, j + 1), which we represent as in the figure
below.

xa

b

c

d
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From the definition of shifted tableaux, and from the assumption that the variables xi,j−1,
xi−1,j , xi+1,j and xi,j+1 are isolated, it follows that the integers a, b, c, d are pairwise distinct and
x is equal to one of a, b, c, and d. In particular we know a < d, b < c, b < d, and a < c. On
the other hand, the relationships between a and b, as well as c and d, are not determined by the
conditions on shifted tableau. Therefore there are four possible cases to consider:

Case 1: a > b and c < d.
Case 2: a > b and c > d.
Case 3: a < b and c < d.
Case 4: a < b and c > d.

It is not hard to check the following:

• T belongs to ShYT(F ∩ {xi,j = xi,j−1}) if and only if x = a and T satisfies cases 1 or 2;
• T belongs to ShYT(F ∩ {xi,j = xi−1,j}) if and only if x = b and T satisfies cases 3 or 4;
• T belongs to ShYT(F ∩ {xi,j = xi+1,j}) if and only if x = c and T satisfies cases 1 or 3;

and
• T belongs to ShYT(F ∩ {xi,j = xi,j+1}) if and only if x = d and T satisfies cases 2 or 4.

See Figures 14 and 15.

aa

b

c

d

(a) x = a

ba

b

c

d

(b) x = b

Figure 14. Pieces of shifted tableau associated to F ∩ {xi,j = xi,j−1} and F ∩
{xi,j = xi−1,j}.

ca

b

c

d

(a) x = c

da

b

c

d

(b) x = d

Figure 15. Pieces of shifted tableau associated to F ∩ {xi,j = xi+1,j} and F ∩
{xi,j = xi,j+1}

Hence for each T ∈ ShYT(F ∩ {xi,j = xi,j−1})
⊔

ShYT(F ∩ {xi,j = xi−1,j}), if c < d, then T
can be transformed into a shifted tableau in ShYT(F ∩ {xi,j = xi+1,j}) by changing x = c, and if
c > d, then T can be transformed into a shifted Young tableau in ShYT(F ∩ {xi,j = xi,j+1}) by
changing x = d. Therefore,

|ShYT(F ∩ {xi,j = xi,j−1})|+ |ShYT(F ∩ {xi,j = xi−1,j})|
≤ |ShYT(F ∩ {xi,j = xi,j+1})|+ ShYT(F ∩ {xi,j = xi+1,j})|.

Similarly, we can show that each T ∈ ShYT(F∩{xi,j = xi,j+1})
⊔

ShYT(F∩{xi,j = xi+1,j}) can be
transformed into a shifted Young tableau in ShYT(F∩{xi,j = xi,j−1})

⊔
ShYT(F∩{xi,j = xi−1,j})

and hence we get

|ShYT(F ∩ {xi,j = xi,j−1})|+ |ShYT(F ∩ {xi,j = xi−1,j})|
≥ |ShYT(F ∩ {xi,j = xi,j+1})|+ ShYT(F ∩ {xi,j = xi+1,j})|.

Finally, it is not difficult to make minor adjustments to the considerations above to cover the
cases in which either b or d is out of range. We leave details to the reader. �
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Remark 3.6. In fact, Proposition 3.5 can be further generalized. Suppose F is a face of GZ(λ) and
suppose that xi,j is isolated for F . Let Ca, Cb, Cc and Cd be the connected components containing
the four vertices (i, j−1), (i−1, j), (i+1, j) and (i, j+1) in the face diagram of F . Note that since
xi−1,j−1 ≥ xi−1,j ≥ xi,j and xi−1,j−1 ≥ xi,j−1 ≥ xi,j , if xi′,j′ = xi,j for i′ < i and j′ < j, then
xk,` = xi,j for i′ ≤ k ≤ i and j′ ≤ ` ≤ j. It is not difficult to adjust the proof of Proposition 3.5 to
cover the case when each of the four vertices (i−1, j−1), (i−1, j+1), (i+1, j−1) and (i+1, j+1)
is not contained in any of the sets Ca, Cb, Cc and Cd.

4. Volume polynomials of regular semisimple Hessenberg varieties

In this section we analyze the volume polynomials of regular semisimple Hessenberg varieties.
We first introduce the volume polynomial of a subvariety of Flag(Cn) and then consider the special
case when the subvariety is the regular semisimple Hessenberg variety. In this case, some of our
previous results [2, 1] links the volume polynomial of Hess(S, h) to the volume polynomial of the
Gelfand-Zetlin polytope GZ(λ). Some explicit computations in small-n cases led us to believe that,
firstly, the volume polynomial for Hess(S, h) should be an appropriate linear combination of the
volumes of faces of GZ(λ). Secondly, we suspected that the volume polynomial, when expressed in
terms of monomials in the αi := λi − λi+1, should have non-negative coefficients. The discussion
in this section shows that both of the above are true. We take a somewhat expository approach
in this section: although not strictly logically necessary, we use suggestive small-n examples to
illustrate our motivation for studying these phenomena. After the expository detour we answer in
the affirmative the two questions posed above.

We begin with the definition of the volume polynomial associated to a subvariety of Flag(Cn).
We need some preliminaries. Let Ei denote the i-th tautological vector bundle over Flag(Cn);
namely, Ei is the sub-bundle of the trivial vector bundle Flag(Cn)×Cn over Flag(Cn) whose fiber
over a point V• is exactly Vi. Let Li := Ei/Ei−1 be the quotient line bundle and let L∗i be the
dual line bundle. We let xi denote the first Chern class of L∗i , or equivalently, the negative of the
first Chern class of Li over Flag(Cn):

xi := −c1(Ei/Ei−1) = −c1(Li) = c1(L∗i ) for i = 1, 2, . . . , n.

To each λ = (λ1, λ2, · · · , λn) ∈ Rn and a cohomology class α ∈ H2(m−d)(Flag(Cn)), m =
dimC Flag(Cn), we can assign the real number 1

d!

∫
Flag(Cn)

(λ1x1+· · ·+λnxn)dα, where (λ1x1+· · ·+
λnxn)d is an element of the cohomology ring H2d(Flag(Cn)) and

∫
Flag(Cn)

denotes the operator

which takes the cap product with the fundamental class of Flag(Cn). Then the volume poly-
nomial of a cohomology class α ∈ H2(m−d)(Flag(Cn)), viewed as a function of the variables
λ1, λ2, · · · , λn, is defined by the formula

(4.1) Volλ(α) :=
1

d!

∫
Flag(Cn)

(λ1x1 + · · ·+ λnxn)dα.

Note that Volλ(α) is a homogeneous polynomial of degree d in the variables λ1, λ2, · · · , λn. Then for
an irreducible subvariety Y of Flag(Cn), we define Volλ(Y ) = Volλ([Y ]), where [Y ] is the Poincaré
dual of the cycle of Y in H∗(Flag(Cn)). We refer to Volλ(Y ) as the volume polynomial of (the
subvariety) Y ⊂ Flag(Cn). See e.g. [4] for more discussion related to volume polynomials.

We now recall the relation between the volume polynomials Volλ(Flag(Cn)) and Volλ(Hess(S, h))
of the flag variety and the Hessenberg variety, and the volume of the Gelfand-Zetlin polytope GZ(λ).
It should be noted that there are other, classical, approaches to the computation of Volλ(Flag(Cn))
but the focus of this manuscript is in the relation between Volλ(Flag(Cn)) and Gelfand-Zetlin
polytopes, so we restrict our discussion accordingly. Indeed, when all of the λi are integers, there
exists a line bundle Lλ over the flag variety Flag(Cn) such that c1(Lλ) =

∑n
i=1 λixi. In fact,

we can construct such an Lλ explicitly by the formula Lλ := (L∗1)λ1 ⊗ · · · ⊗ (L∗n)λn . Moreover,
if λ1 > λ2 > · · · > λn, then Lλ is known to be very ample, and it follows readily from the
formula (4.1) that, in this case, the quantity Volλ(Y ) is the degree of Y (in the standard sense of
algebraic geometry) with respect to its embedding given by Lλ multiplied by 1

d! where d := dimC Y .
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This degree, multiplied by 1
d! , is in turn equal to the (normalized Euclidean) volume3 of a Newton-

Okounkov body associated with the line bundle Lλ|Y restricted to Y , by the standard theory of
Newton-Okounkov bodies [13, Section 1.3, cf. also Theorem 3.1 and Corollary 3.2]. Finally, in the
case of the full flag variety Y = Flag(Cn), Kaveh has shown that the Gelfand-Zetlin polytope arises
as a Newton–Okounkov body of Flag(Cn) (for an appropriate choice of valuation) [12]. Hence, in
this case, the volume polynomial Volλ(Flag(Cn)) is linked through the theory of Newton-Okounkov
bodies to the volume of Gelfand-Zetlin polytopes. From this discussion it follows that

(4.2) Volλ(Flag(Cn)) = Vol(GZ(λ)).

On the other hand, from [20, Section 15] we know that the volume of the Gelfand-Zetlin polytope
is given by the formula

(4.3) Vol(GZ(λ)) =
∏

1≤i<j≤n

λi − λj
j − i

=
1

1!2! · · · (n− 1)!

∏
1≤i<j≤n

(λi − λj).

Putting (4.2) and (4.3) together yields the following formula for the volume polynomial for the flag
variety:

(4.4) Volλ(Flag(Cn)) =
1

1!2! · · · (n− 1)!

∏
1≤i<j≤n

(λi − λj).

As mentioned above, we are also interested in expressing the volume polynomial Volλ(Hess(S, h))
in terms of the volume Volλ(Flag(Cn)) of the flag variety. For this purpose we introduce the
following notation. For each i, 1 ≤ i ≤ n, we view λi as a variable and set

∂i :=
∂

∂λi
to be the partial derivative operator with respect to λi. We can now state the following, which is
a consequence of [2, Theorem 11.3] (cf. also [1, Corollary 6.1, Theorem 6.2]).

Theorem 4.1. ([2, Theorem 11.3], [1, Corollary 6.1, Theorem 6.2]) The volume polynomials
Volλ(Hess(S, h)) and Volλ(Flag(Cn)) are related as follows:

(4.5) Volλ(Hess(S, h)) =

n−1∏
j=1

n∏
i=h(j)+1

(∂j − ∂i)

Volλ(Flag(Cn))

where we take the convention that if h(j) = n then
∏n
i=h(j)+1(∂j − ∂i) = 1.

Remark 4.2. The discussion in [2] is given in the language of Poincaré duality algebras, and
[2, Theorem 11.3] is not stated in exactly the form as given above. The volume polynomial as
discussed in [2, Section 11] is the polynomial whose annihilator is equal to the ideal defining the
cohomology ring H∗(Hess(S, h)) of the regular semisimple Hessenberg variety; it is only determined
up to a scalar multiple. In particular, the polynomial PI as written in [2, Section 11] does not
include the scalar multiple 1

1!2!···(n−1)! given in the formula (4.4). The version used in the proof of

[1, Theorem 6.2], on the other hand, does include this scalar multiple; its proof was based on the
ideas of [2, Theorem 11.3].

It immediately follows from Theorem 4.1 and (4.2) that

(4.6) Volλ(Hess(S, h)) =

n−1∏
j=1

n∏
i=h(j)+1

(∂j − ∂i)

Vol(GZ(λ)).

From (4.3) we can see that (4.6) expresses Volλ(Hess(S, h)) as a result of a sequence of partial
derivatives applied to a polynomial which has non-negative coefficients when written in the basis
of monomials in the αi = λi − λi+1. Thus, it was natural for us to ask the following questions.

3Here we fix a (translation-invariant) volume form on Rd. If an integer lattice Zd ⊂ Rd is fixed, we will always

choose this volume form to take value 1 on the fundamental parallelepiped of Zd. See [15].

16



• Can we explicitly compute the RHS of (4.6) in terms of the (volumes of the) faces of
GZ(λ)?

• Is the RHS of (4.6) a non-negative linear combination of monomials in the αi := λi−λi+1’s?

The formula in Corollary 2.7 will provide an answer to the first question, and a generalization
of a result of Postnikov will answer the second. We discuss this in more detail in the next sections.

Before proceeding, however, we take a moment to note that the partial derivative operators
appearing in (4.6) have a visual interpretation in terms of the box diagram corresponding to h
as in Figure 1. Specifically, the (i, j) for which the operator ∂i − ∂j appears in (4.6) correspond
precisely to the boxes which are not colored in the box diagram of h.

Example 4.3. Continuing with the setup of Example 2.1, the boxes that are not colored in
Figure 1 are the ones corresponding to the indices (4, 1), (4, 2), (5, 1), (5, 2), and (5, 3). Accordingly
it can be seen from (4.5) that in this case we have

Volλ(Hess(S, h)) = (∂1 − ∂4)(∂1 − ∂5)(∂2 − ∂4)(∂2 − ∂5)(∂3 − ∂5) Volλ(Flag(C5)).

Moreover, it turns out that the results of the partial derivative operations in the RHS of (4.6)
can, at least in small-n cases, be interpreted very concretely in terms of the faces of GZ(λ). We
illustrate some examples below; these gave us the idea for this paper.

Example 4.4. Let n = 3 and consider the Hessenberg function h = (2, 3, 3). In this case (4.6)
implies that we have

Volλ(Hess(S, h)) = (∂1 − ∂3) Vol(GZ(λ)) = ∂1 Vol(GZ(λ))− ∂3 Vol(GZ(λ)).

The above formula can be understood directly and geometrically in terms of the polytope, as
follows. Note that for ε > 0 sufficiently small and for λ′ = (λ1 + ε, λ2, λ3), the difference between
the volume of the polytope GZ(λ′) and GZ(λ) is the volume (area) of the facet of GZ(λ) specified
by x = λ1 multiplied by ε. Thus, ∂1(GZ(λ)) is the area of the facet {x = λ1}. A similar
straightforward argument yields that −∂3(GZ(λ)) is the area of the facet {y = λ3}. Thus, we
obtain that Volλ(Hess(S, h)) is equal to the sum of the areas of the two facets {x = λ1} and
{y = λ3}, which are two of the six facets illustrated in Figure 3.

Example 4.5. Let n = 4 and λ1 > λ2 > λ3 > λ4. Then the coordinates are organized as follows:

(4.7)

λ1 x1,2 x1,3 x1,4
λ2 x2,3 x2,4

λ3 x3,4
λ4.

For the Hessenberg function h = (3, 4, 4, 4), an argument similar to Example 2.4 yields that
Volλ(Hess(S, h)) is the sum of the areas of the facets {x1,2 = λ1} and {x3,4 = λ4}. See Fig-
ure 16.

λ1 = x1,2 x3,4 = λ4

Figure 16. Face diagrams corresponding to Volλ(Hess(S, h)) when h = (3, 4, 4, 4)

We take a moment to note that the results of Section 3 additionally allows us to explicitly and
directly interpret the results of the partial derivative operations in the RHS of (4.6) in terms of
the faces of GZ(λ), in a manner independent of Theorem 4.7.
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Example 4.6. Let n = 4 and suppose h = (2, 4, 4, 4). For the purpose of the next computation we
denote by S1 and S2 the volumes of the areas of the facets {x1,2 = λ1} and {x3,4 = λ4} respectively.
From (4.6) and from the computation in Example 4.5 we can conclude

Volλ(Hess(S, h)) = (∂1 − ∂3) Volλ(Hess(S, (3, 4, 4, 4)))

= ∂1(S1) + ∂1(S2)− ∂3(S1)− ∂3(S2).

Again, an argument similar to Example 2.4 shows that ∂1(S1) gives the area of the codimension-2
face {x1,2 = x1,3 = λ1} and ∂1(S2) gives the area of {x1,2 = λ1, x3,4 = λ4}. In the same way we
can compute that −∂3(S2) is the volume of the face {x2,3 = λ3, x3,4 = λ4}. The description of
the term −∂3(S1) is slightly more involved. First, an argument similar to the previous ones shows
that −∂3(S1) is the difference

−∂3(S1) = Vol({x1,2 = λ1, x2,3 = λ3})−Vol({x1,2 = λ1, x3,4 = λ3}).
Now, applying Proposition 3.5 we obtain the relation

−Vol({x1,2 = λ1, x3,4 = λ3}) = Vol({x1,2 = λ1, x3,4 = x2,4})−Vol({x1,2 = λ1, x3,4 = λ4}).
Combining the above equations, we conclude that Volλ(Hess(S, h)) is the sum of the volumes of the
four faces of GZ(λ) depicted in Figure 7, which is consistent with what we obtained in Example 2.8.

We can now answer the two questions posed earlier. Firstly, from Corollary 2.7 we obtain the
following.

Theorem 4.7. Let Hess(S, h) be a regular semisimple Hessenberg variety. Then

Volλ(Hess(S, h)) =
∑

u,v∈Sn

v−1u=wh

`(u)+`(v)=`(wh)

∑
F : reduced Kogan face

F∗: reduced dual Kogan face
w(F )=u, w(F∗)=v

Vol(F ∩ F ∗)

where Vol(F ∩F ∗) denotes the (m− d)-dimensional volume of F ∩F ∗, where m = n(n− 1)/2 and
d = `(u) + `(v).

Proof. It follows from Theorem 2.6 and the argument given in [15, Proof of Theorem 4.3] that

(4.8) Volλ([Xu][Xw0vw0 ]) =
∑

F : reduced Kogan face
F∗: reduced dual Kogan face

w(F )=u, w(F∗)=v

Vol(F ∩ F ∗).

Since Volλ is linear on cohomology classes by definition, the claim now follows immediately from
Theorem 2.2 and (4.8). �

The above theorem provides an answer to the first question posed above, namely, we have
expressed the RHS of (4.6) explicitly in terms of volumes of faces of GZ(λ).

Next, we answer the second question posed above. Indeed, by applying Proposition 3.3, we also
immediately obtain the following, which is a manifestly positive and combinatorial formula for the
volume polynomial of regular semisimple Hessenberg varieties, expressed in terms of αi’s.

Theorem 4.8. Let Hess(S, h) be a regular semisimple Hessenberg variety. Then

Volλ(Hess(S, h)) =∑
u,v∈Sn

v−1u=wh

`(u)+`(v)=`(wh)

∑
F : reduced Kogan face

F∗: reduced dual Kogan face
w(F )=u, w(F∗)=v

∑
p1,...,pn−1≥0

NF∩F∗(p1, . . . , pn−1)
αp11
p1!
· · ·

α
pn−1

n−1
pn−1!

where NF∩F∗(p1, . . . , pn−1) is the number of shifted tableaux T associated with F ∩ F ∗ with the
diagonal vector diag(T ) = (1, p1 + 2, p1 + p2 + 3, . . . , p1 + · · ·+ pn−1 + n).

We illustrate the formula above in a simple example.
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Example 4.9. Continuing with the setup of Example 4.6, let F1, . . . , F4 denote the four faces
(from left to right) in Figure 7. Then we can compute the volume of each of the faces F1, . . . , F4

by Proposition 3.3 and we obtain:

Vol(F1) = α1
α2
2

2!
α3 + 2

α3
2

3!
α3 + α1α2

α2
3

2!
+ 2

α2
2

2!

α2
3

2!
+ α2

α3
3

3!

Vol(F2) =
α2
1

2!

α2
3

2!
+ α1α2

α2
3

2!
+
α2
2

2!

α2
3

2!
+ α1

α3
3

3!
+ α2

α3
3

3!

Vol(F3) =
α2
1

2!
α2α3 + 2α1

α2
2

2!
α3 + 2

α3
2

3!
α3 + α1α2

α2
3

2!
+
α2
2

2!

α2
3

2!

Vol(F4) =
α3
1

3!
α3 +

α2
1

2!
α2α3 + α1

α2
2

2!
α3 +

α2
1

2!

α2
3

2!
+ α1α2

α2
3

2!

Hence, when n = 4 and h = (2, 4, 4, 4), the volume of Hess(S, h) is

α3
1

3!
α3 + 2

α2
1

2!
α2α3 + 4α1

α2
2

2!
α3 + 4

α3
2

3!
α3 + 2

α2
1

2!

α2
3

2!
+ 4α1α2

α2
3

2!
+ 4

α2
2

2!

α2
3

2!
+ α1

α3
3

3!
+ 2α2

α3
3

3!
.

5. A decomposition of the permutohedron into cubes

In this section we prove a combinatorial result about the permutohedron, which is of in-
dependent interest, but which were inspired by considerations in the previous sections. Let
λ = (λ1, λ2, · · · , λn) where λ1 > λ2 > · · · > λn, and let Perm(λ) denote the polytope obtained
as the convex hull of the n! vertices in Rn obtained by permuting the entries of λ. The poly-
tope Perm(λ) is (n− 1)-dimensional, and is the moment map image of the permutohedral variety
Hess(S, h1) where h1 := (2, 3, · · · , n, n). In the arguments below, we use the relationship between
the Gelfand-Zetlin polytope GZ(λ) and Perm(λ) in order to show that the polytope Perm(λ) can
be decomposed into (n− 1)! many subpolytopes, each of which is combinatorially an (n− 1)-cube.

We first recall that the one-to-one correspondence between the set of simple vertices in GZ(λ) and
the permutation group Sn [14, Section 5]. For each integer i with 0 ≤ i ≤ n− 1, choose an integer
di satisfying 1 ≤ di ≤ n − i. There are n! many possible such sequences d = (d0, d1, . . . , dn−1).
Moreover, each such d corresponds to a set of equalities

(5.1) xi,i+j = xi,i+j+1 for 1 ≤ i < dj , and xi,i+j = xi−1,i+j for dj < i ≤ n− j.

The above set of equalities specifies a single simple vertex of GZ(λ), which we denote vd. Conversely,
it is known that any simple vertex of GZ(λ) is vd for some d as above. It is also useful to visualize
this in terms of the face diagrams as in Figure 2. Indeed, the face diagram for a set of equations of
the form (5.1) is a collection of n paths (possibly of length 0). For each integer k with 1 ≤ k ≤ n,
let wd(k) denote the number of vertices in the face diagram contained in the path which contains
the vertex corresponding to λk.

d=(1,1,1,1)
wd=[1,2,3,4]

d=(1,1,2,1)
wd=[1,2,4,3]

d=(1,2,2,1)
wd=[1,4,2,3]

d=(3,1,1,1)
wd=[2,3,1,4]

Figure 17. Examples of vd and wd when n = 4

Then wd := (wd(k))nk=1 defines a permutation in Sn, and the correspondence vd 7→ wd is the
bijection between the set of simple vertices of GZ(λ) and Sn.
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Next, we briefly recall the relation between GZ(λ) and Perm(λ). For a point (xi,j) ∈ GZ(λ) ⊆
Rn(n−1)/2 let us define

(5.2) yk :=

n−k∑
i=1

xi,i+k

for k an integer with 0 ≤ k ≤ n− 1. Since xi,i = λi by definition, we conclude that y0 :=
∑n
i=1 λi

is a constant. Define the map

(5.3) Φ((xi,j)) := (y0 − y1, y1 − y2, · · · , yn−2 − yn−1, yn−1)

from Rn(n−1)/2 → Rn. Then it follows that Φ(GZ(λ)) = Perm(λ) [15, Section 5]. It is straightfor-
ward to check that if we let pw denote the simple vertex of GZ(λ) corresponding to the permutation
w ∈ Sn, then Φ(pw) = (λw−1(1), λw−1(2), · · · , λw−1(n)).

The following technical lemma will be useful in what follows.

Lemma 5.1. Let a1 > a2 > · · · > am be real numbers. Suppose b1, b2, · · · , bm−1 are real numbers
satisfying the inequalities

a1 b1
a2 b2

. . .
. . .

am−2 bm−2
am−1 bm−1

am

where we take the convention of (2.5). Then there exists an integer k with 1 ≤ k ≤ m − 1 and a
unique real number b′k with ak ≥ b′k ≥ ak+1 such that for the collection of real numbers b′j (j 6= k)
defined by

b′1 := a1, · · · , b′k−1 := ak−1, b
′
k+1 := ak+2, · · · , b′m−1 = am

we have

(5.4)

m−1∑
j=1

bj =

m−1∑
j=1

b′j .

Proof. It is clear from the definition of the b′j and the property (5.4) that if such real numbers

b′j exist then the choice is unique. So it suffices to prove existence. Set A :=
∑m
j=1 aj and

B :=
∑m−1
j=1 bj . Then from the inequality ai+1 ≤ bi we obtain A − a1 ≤ B. From the inequality

bi ≤ ai we obtain B ≤ A− am. Moreover, from the assumption a1 > a2 > · · · > am we obtain

A− a1 < A− a2 < · · · < A− am.

Therefore, there must exist a k such that A−ak ≤ B ≤ A−ak+1. Define b′k := B−(A−ak−ak+1) for

this k, and define b′j for j 6= k as given in the claim. Then ak ≥ b′k ≥ ak+1 and
∑m−1
j=1 bj =

∑m−1
j=1 b′j .

The claim follows. �

In order to state the next result, we introduce some notation for certain faces of GZ(λ). First
we define

(5.5) Fn := {r = (r1, . . . , rn−1) ∈ Zn−1 | 1 ≤ rj ≤ n− j, for 1 ≤ j ≤ n− 1}.

For an element r = (r1, . . . , rn−1) ∈ Fn, we let F (r) denote the face of GZ(λ) defined by the
(n− 1)(n− 2)/2 many equalities

(5.6) xi,j+i = xi,j+i−1 for 1 ≤ i < rj , and xi,j+i = xi+1,j+i for rj < i ≤ n− j.

(Note that rn−1 = 1 by definition so when j = n−1 the corresponding equation in (5.6) is vacuous.)
In Figure 18 we illustrate some examples.

We have the following.
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F (1, 1, 1) F (2, 1, 1) F (3, 1, 1)

F (1, 2, 1) F (2, 2, 1) F (3, 2, 1)

Figure 18. Example for n = 4

Proposition 5.2. Let Φ:
⋃

r∈Fn
F (r) → Perm(λ) be the restriction to

⋃
r∈Fn

F (r) ⊆ GZ(λ) of

the map Φ defined in (5.3). Then Φ is a bijection between
⋃

r∈Fn
F (r) and Perm(λ), and Φ is

volume-preserving on each face F (r). In particular, Vol(Perm(λ)) =
∑

r∈Fn
Vol(F (r)).

Proof. Let (xi,j) ∈ GZ(λ). Define

(5.7) Ψ((xi,j)) := (y0, y1, . . . , yn−1) ∈ Rn.

It is then clear from (5.3) that Φ and Ψ are related by a matrix multiplication, i.e.

Φ((xi,j)) = Ψ((xi,j))A for some A ∈ SLn(Z).

Since we know Φ(GZ(λ)) = Perm(λ), to prove the first claim of the proposition it suffices to show
that the restriction Ψ of Ψ to

⋃
r∈Fn

F (r)

Ψ :
⋃

r∈Fn

F (r)→ Ψ(GZ(λ)) ⊆ Rn

is a bijection. We do this using Lemma 5.1 repeatedly, as follows.
We start with surjectivity. Suppose given a point Ψ((xi,j)) for (xi,j) ∈ GZ(λ). We construct a

point (x′i,j) ∈
⋃

r∈Fn
F (r) which lies in the preimage of (xi,j) as follows, by repeatedly applying

Lemma 5.1. First, take ai = λi for 1 ≤ i ≤ n and bi = xi,i+1 for 1 ≤ i ≤ n−1 and apply Lemma 5.1
to obtain values b′i satisfying

∑
b′i =

∑
xi,i+1 = y1. Now set x′i,i+1 := b′i for 1 ≤ i ≤ n− 1. Next,

redefine ai := x′i,i+1 for 1 ≤ i ≤ n−1 and bi := xi,i+2 for 1 ≤ i ≤ n−2 and apply Lemma 5.1 again
to obtain (new) values b′i with

∑
b′i =

∑
xi,i+2 = y2. Set x′i,i+2 := b′i for 1 ≤ i ≤ n−2. Proceeding

similarly we obtain (x′i,j) which, by construction, maps to Ψ((xi,j)) = (y1, y2, . . . , yn−1) and which

lies in a face F (r) of GZ(λ) for some r. Hence, Ψ is surjective. It follows from the second claim of
Lemma 5.1 that Ψ is injective.

Next we prove the second claim of the proposition. From the fact that Φ = Ψ ·A for A ∈ SLn(Z)
it follows that it suffices to show that Ψ preserves volume when restricted to each F (r). For
the remainder of this argument we may therefore fix an r ∈ Fn. For each such r, the map
(xi,j) 7→ (xrj ,j+rj )1≤j≤n−1 naturally identifies the (n− 1)-dimensional subspace spanned by F (r)

with Rn−1. In what follows, we take as coordinates in Rn−1 the variables zj := xrj ,j+rj and identify

F (r) with its image in Rn−1 under the map above. With respect to these coordinates we have

Ψ(z1, . . . , zn−1) = (z1, . . . , zn−1)B (B ∈ SLn−1(Z)).

Here we have dropped the coordinate y0 =
∑n
j=1 λj since it is just a constant and we are ignoring

the parallel translation by y0 since this is clearly volume-preserving. In the above equality, B can
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be seen to be an upper-triangular matrix with 1’s on the diagonal, so it preserves volume. Hence
Ψ preserves volume, as desired. �

Since F (r) is a face of GZ(λ), we can compute Vol(F (r)) using Proposition 3.3 in the language
of shifted Young tableau. From Proposition 5.2 we also obtain a computation of Vol(Perm(λ)) =∑

r∈Fn
Vol(F (r)) in the same language. Below we illustrate some examples.

Example 5.3. For (q1, q2, . . . , qn−1) ∈ Zn−1≥0 we introduce notation

α(q1,...,qn−1) :=
αq11
q1!
· · ·

α
qn−1

n−1
qn−1!

.

Let n = 4. By definition we have F4 = {r = (r1, r2, r3) ∈ Z3 | 1 ≤ r1 ≤ 3, 1 ≤ r2 ≤ 2, r3 = 1}
which contains 6 elements. From Proposition 3.3 we obtain the formulas

Vol(F (1, 1, 1)) = α(3,0,0) + α(2,1,0) + α(2,0,1) + α(1,2,0) + α(1,1,1)

Vol(F (2, 1, 1)) = α(2,1,0) + 2α(1,2,0) + α(1,1,1) + 2α(0,3,0) + α(0,2,1)

Vol(F (1, 2, 1)) = α(2,0,1) + α(1,1,1) + α(1,0,2)

Vol(F (3, 1, 1)) = α(2,0,1) + α(1,1,1) + α(1,0,2)

Vol(F (2, 2, 1)) = α(1,2,0) + α(1,1,1) + 2α(0,3,0) + 2α(0,2,1) + α(0,1,2)

Vol(F (3, 2, 1)) = α(1,1,1) + α(0,2,1) + α(1,0,2) + α(0,1,2) + α(0,0,3)

(5.8)

which we can tabulate as follows. The columns correspond to elements of F4 notated for simplicity
as r1r2r3 instead of (r1, r2, r3). The entries of the tables are coefficients of the corresponding
α(r1,r2,r3), where we leave an entry blank if the coefficient is 0.

face \ exponent 300 210 201 120 111 030 021 102 012 003

F (1, 1, 1) 1 1 1 1 1
F (2, 1, 1) 1 2 1 2 1
F (1, 2, 1) 1 1 1
F (3, 1, 1) 1 1 1
F (2, 2, 1) 1 1 2 2 1
F (3, 2, 1) 1 1 1 1 1

Table 1

We can go further. Using Proposition 3.5 we can write Vol(F (r1, r2, r3)) in terms of Volλ(Xw)
as follows:

Vol(F (1, 1, 1)) = Volλ(X1432), Vol(F (2, 1, 1)) = Volλ(X2341) + Volλ(X3142),

Vol(F (1, 2, 1)) = Volλ(X2413) = Vol(F (3, 1, 1)),

Vol(F (2, 2, 1)) = Volλ(X4123) + Volλ(X3142),

Vol(F (3, 2, 1)) = Volλ(X3214).

(5.9)

Combining this with (5.8) we get expressions for Volλ(Xw) with `(w) = 3, tabulated following the
conventions for Table 1 above. We have labelled the rows, each of which correspond to a Schubert
variety Xw, using the one-line notation of w. In the last row we record the volume Vol(Perm(λ))
of the permutohedron.

From Table 2 we obtain

Vol(Perm(λ)) = Volλ([X1432]) + Volλ([X2341]) + 2 Volλ([X2413])

+ 2 Volλ([X3142]) + Volλ([X3214]) + Volλ([X4123])

which corresponds to the computation in Example 2.3 (b).

Finally, we show that the permutohedron Perm(λ) can be decomposed into combinatorial (n−1)-
cubes. We have the following.
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permutation \ exponent 300 210 201 120 111 030 021 102 012 003

1432 1 1 1 1 1
2341 1 1
2413 1 1 1
3142 1 1 2 1
3214 1 1 1 1 1
4123 1 1

Perm(λ) 1 2 3 4 6 4 4 3 2 1

Table 2

Theorem 5.4. The permutohedron Perm(λ) decomposes into (n−1)! many subpolytopes Φ(F (r)),
r ∈ Fn, where the vertices of the subpolytopes are all vertices of Perm(λ) (i.e. no extra vertices
are added). Moreover, each subpolytope Φ(F (r)) is combinatorially an (n− 1)-cube.

Proof. From Proposition 5.2 it follows that Perm(λ) decomposes into the (n − 1)! many images
Φ(F (r)). Moreover, the discussion before Lemma 5.1 shows that the vertices of Φ(F (r)) are vertices
of Perm(λ), so no new vertices are added. Thus the only remaining claim that needs to be shown is
the following: for any r ∈ Fn, the face F (r) corresponding to r is combinatorially an (n− 1)-cube.
To see this, observe that from the definition of F (r) (and from the description of the faces of GZ(λ)
above) it follows that the facets of F (r) are given by a constraint of the form

(5.10) either xrj ,j+rj = xrj ,j+rj−1 or xrj ,j+rj = xrj+1,j+rj

for each 1 ≤ j ≤ n− 1. Therefore there are 2(n− 1) many facets of F (r). Moreover, the vertices
of F (r), being intersections of facets, must be simple vertices of GZ(λ) of the form described at
the beginning of the section. Then each vertex of F (r), being a simple vertex in GZ(λ), is also a
simple vertex in the face F (r) of GZ(λ). Since this holds for all vertices of F (r), we conclude F (r)
is a simple polytope.

Observe that any 2-face of F (r) is an intersection of (n − 3) many facets of F (r); moreover, it
is not hard to see that every 2-face contains 4 vertices. For a simple polytope of ≥ 3 dimensions,
it is known from [18, Lemma 4.6] and [22, Exercise 0.1] that if every 2-face is a 4-gon, then the
polytope is combinatorially a cube. If the polytope is 2-dimensional, the claim is obvious. This
concludes the proof. �

6. The permutohedral variety and Richardson varieties

As we saw in Theorem 5.4, the permutohedron Perm(λ) decomposes into (n − 1)! many com-
binatorial (n − 1)-cubes F (r), r ∈ Fn. On the other hand, it is well-known that Perm(λ) is also
the moment map image of the permutohedral variety Hess(S, h1) where h1 = (2, 3, 4, . . . , n, n),
with respect to the standard maximal torus action on Flag(Cn) (restricted to Hess(S, h1)). In this
section we show that the combinatorial results obtained in Section 5, namely, the decomposition of
Perm(λ) into combinatorial (n− 1)-cubes, has a geometric interpretation in terms of Hess(S, h1).
Specifically, we consider a Richardson variety X(r) corresponding to each F (r) and show that the
cohomology class [Hess(S, h1)] in H∗(Flag(Cn)), is a sum of the (n− 1)! many cohomology classes
[X(r)] (Theorem 6.4).

We begin by recalling the key fact needed for this argument, namely, the result (2.3) of Anderson
and Tymoczko. Taking h = h1 in their result, we obtain

(6.1) [Hess(S, h1)] =
∑

u,v∈Sn

v−1u=wh1

`(u)+`(v)=`(wh1
)

[Xu][Xw0vw0 ].

To further our study of this equation we first analyze the pairs (u, v) appearing in the summation
on the RHS of (6.1). First recall from Example 2.3 that wh = [n−1, n−2, . . . , 2, 1, n]. In particular,
w−1h1

= wh1 , so v−1u = wh1 if and only if v = uwh1 .
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Lemma 6.1. Let u ∈ Sn. Then

`(u) + `(uwh1) = `(wh1)⇐⇒ u(n) = n.

In particular, there are exactly (n−1)! many pairs (u, v) satisfying the conditions in the summation
on the RHS of (6.1).

Proof. Since wh1
= [n − 1, n − 2, . . . , 2, 1, n], if u = [u(1), u(2), . . . , u(n − 1), u(n)] then uwh1

=
[u(n− 1), . . . , u(2), u(1), u(n)].

First suppose u(n) = n. We need to show `(u) + `(uwh1
) = `(wh1

). For any i ∈ Z, 1 ≤ i ≤
n − 1, the number of inversions in u with u(i) as the larger element is the number of elements
in {u(i + 1), . . . , u(n − 1)} which are smaller than u(i). Since wh1 inverts the first n − 1 entries
of u, the number of inversions in uwh1 with u(i) as the larger entry is the number of elements in
{u(i−1), . . . , u(2), u(1)} which are smaller than u(i). Hence, the sum of the number of inversions in
u and uwh1

with u(i) as the larger entry is exactly u(i)− 1. By assumption {u(1), . . . , u(n− 1)} =
{1, 2, . . . , n− 1}, so

(6.2) `(u) + `(uwh1
) =

n−1∑
i=1

(u(i)− 1) = (n− 1)(n− 2)/2 = `(wh1
).

Now suppose `(u)+`(uwh1) = `(wh1). We need to show u(n) = n, so suppose for a contradiction
that u(n) 6= n, i.e., u(n) < n. Reasoning similar to the above yields that if u(i) < u(n) then the
sum of the inversions in u and in uwh with u(i) as the larger entry is u(i)− 1, and if u(i) > u(n),
then it is u(i). Since u(n) < n, we additionally know that there does exist an i, 1 ≤ i ≤ n − 1,
with u(i) > u(n). Hence by a computation similar to (6.2) we conclude

`(u) + `(uwh1) >
(n− 1)(n− 2)

2
= `(wh1)

which is a contradiction. Hence u(n) = n as desired. �

Remark 6.2. In fact, the proof of Lemma 6.1 can be straightforwardly generalized to the case
when the Hessenberg function is in “k-banded form”, i.e.,

hk = (k + 1, k + 2, . . . , n, . . . , n)

for some k. From this we obtain:

`(u) + `(uwhk
) = `(whk

)⇐⇒ u(i) = i

for n− k + 1 ≤ i ≤ n.

Let r = (r1, . . . , rn−1) ∈ Fn. Following the methods outlined in Section 5, we can identify the
vertices of F (r) with a subset of Sn, and the Bruhat-maximal element rmax in the image of F (r)
is the one which specifies (in addition to the equations already given in (5.6)) the equations

xrj ,j+rj = xrj ,j+rj−1 for 1 ≤ j ≤ n− 1.

Correspondingly, the Bruhat-minimal element rmin is the one specifying

xrj ,j+rj = xrj+1,j+rj for 1 ≤ j ≤ n− 1.

Lemma 6.3. We have rmin(n) = n and rmax = rmin(sn−1sn−2 · · · s1). In terms of the one-line
notation

(6.3) rmin = [a1, · · · , an−1, n] and rmax = [n, a1, · · · , an−1]

where {a1, . . . , an−1} = [n− 1] as sets. Moreover, the association Fn → Sn−1 given by r 7→ rmin
is a bijective correspondence.
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Proof. We induct on n. For the base case n = 2, the claim is obvious. Now suppose by induction
that the claim is true for n− 1. Define an element r′ ∈ Fn−1 by setting r′ = (r2, r3, . . . , rn−1), or
in other words, r′i := ri+1 for 1 ≤ i ≤ n− 2. (Visually, this corresponds to “deleting the vertices in
the bottom diagonal” in the dot diagram corresponding to r, deleting any edges adjacent to those
vertices, and then interpreting what remains as the diagram for r′.) By induction we know that

r′min = [a1, . . . , an−2, n− 1], r′max = [n− 1, a1, . . . , an−2]

where {a1, . . . , an−2} = {1, 2, . . . , n−2} = [n−2]. From the definition of rmin and rmax given above
and the correspondence between face diagrams and permutations as explained at the beginning of
Section 5 it now follows that, using the notation r1 = k, we have

rmin = [a1 + 1, . . . , ak−1 + 1, 1, ak + 1, . . . , an−2 + 1, n],

rmax = [n, a1 + 1, . . . , ak−1 + 1, 1, ak + 1, . . . , an−2 + 1],

where the 1 in the one-line notation of rmax is in the k + 1-st spot. In particular, (6.3) holds.
Finally, since we have seen that rmin(n) = n we may view it as an element in Sn−1. Moreover,

from the construction of the elements rmin it follows that any element in Sn−1 can be realized as
rmin for some r. From this we conclude that the association r 7→ rmin is a bijection between Fn
and Sn−1. This completes the proof. �

Also note that since rmin < rmax in Bruhat order, it makes sense to define the corresponding
Richardson variety

(6.4) X(r) := Xrmin ∩Xrmax
.

These varieties play a role in our description of the cohomology class corresponding to the permu-
tohedral variety, as below.

Theorem 6.4. Let Hess(S, h1) be the permutohedral variety in Flag(Cn). Then, considered as a
cohomology class in H∗(Flag(Cn)), we have

(6.5) [Hess(S, h1)] =
∑
r∈Fn

[X(r)].

Proof. Starting from the result of Anderson and Tymoczko given in (6.1), Lemma 6.1 together
with the remark before Lemma 6.1 imply that

[Hess(S, h1)] =
∑

u∈Sn−1

[Xu][Xw0uwh1
w0 ].

Recall also that, in general, we have [Xw0vw0 ] = [Xvw0 ] for any v ∈ Sn. Applying this to the case
v = uwh1 in the equation above we obtain

[Hess(S, h1)] =
∑

u∈Sn−1

[Xu][Xuwh1
w0

].

Now recall that wh1
is the full inversion in Sn−1, i.e. wh1

= [n− 1, n− 2, . . . , 2, 1, n], so

wh1
w0 = [n, 1, 2, . . . , n− 2, n− 1] = sn−1sn−2 · · · s1.

From Lemma 6.3 it now follows that

[Hess(S, h1)] =
∑
r∈Fn

[Xrmin ][Xrmax
]

=
∑
r∈Fn

[Xrmin ∩Xrmax
]

=
∑
r∈Fn

[X(r)]

where the second equality is a well-known fact about Schubert varieties (see e.g. [5]) and the last
equality is by the definition of X(r). This completes the proof. �
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Remark 6.5. It is known that the Richardson variety X(r) defined above is in fact a compact
smooth toric variety which is a Bott tower (Bott manifold) [17]. It is also not hard to see that
Volλ(X(r)) = Vol(F (r)). Indeed, when expanding [Xrmin ][Xrmax

] in terms of the formula of
Theorem 2.6, it is straightforward to see that the faces F ∩ F ∗ appearing on the RHS of the
equation include the F (r); thus, it follows that Volλ(X(r)) ≥ Vol(F (r)). On the other hand, we
also know

Volλ(Hess(S, h1)) =
∑
r∈Fn

Volλ(X(r))

from Theorem 6.4. The fact that Hess(S, h1) is a toric variety with moment map image precisely
Perm(λ) implies that Volλ(Hess(S, h1)) = Vol(Perm(λ)). Thus from Proposition 5.2 we obtain

Volλ(Hess(S, h1)) =
∑
r∈Fn

Vol(F (r))

and hence ∑
r∈Fn

Volλ(X(r)) =
∑
r∈Fn

Vol(F (r))

from which it follows that Volλ(X(r)) = Vol(F (r)). From this we can see that Theorem 6.4 is a
precise geometric analogue of Proposition 5.2, since by taking volume of both sides of (6.5), we
obtain the equality Vol(Perm(λ)) =

∑
r∈Fn

Vol(F (r)).

We conclude with a problem which naturally arises out of the considerations above. It is well-
known [8, Exercise 12, p.180] that there exist non-negative integers aw ≥ 0 such that

(6.6) [Hess(S, h1)] =
∑
w∈Sn

`(w)=n−1

aw[Xw0w]

where w0 is the longest element in Sn. We can consider the following.

Problem 6.6. Are the coefficients in (6.6) strictly positive?

Remark 6.7. It can be checked that the answer to Problem 6.6 is “Yes” when n = 3 and n = 4.
Let Y3, respectively Y4, denote the permutohedral varieties in Flag(C3), respectively Flag(C4).
Then

[Y3] = [X213] + [X132]

[Y4] = [X1432] + [X2341] + 2[X2413] + 2[X3142] + [X3214] + [X4123]

where we use the simplified one-line notation w = w(1)w(2) . . . w(n) for permutations in Sn.
In fact, we have computer-based evidence [11] that Problem 6.6 is true when n ≤ 6. We can
also consider Problem 6.6 for other Lie types. Again, we have computational evidence [11] the
coefficients are strictly positive for the Lie types B3, B4, B5, C3, D4, F4, G2.
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