LAGRANGIAN GEOMETRY OF THE GAUSS IMAGES
OF ISOPARAMETRIC HYPERSURFACES IN SPHERES

REIKO MIYAOKA AND YOSHIHIRO OHNITA

ABSTRACT. The Gauss images of isoparametric hypersufaces of
the standard sphere S™*! provide a rich class of compact minimal
Lagrangian submanifolds embedded in the complex hyperquadric
@, (C). This is a survey article based on our joint work [17] to
study the Hamiltonian non-displaceability and related properties
of such Lagrangian submanifolds.

1. INTRODUCTION

This is a survey article based on our joint work [17]. The aim of
our work is to build a bridge between the symplectic geometry and
the submanifold theory. Here by symplectic geometry, we mean the
Floer theory for Lagrangian intersections, and by submanifold theory,
1soparametric hypersurface theory. The isoparametric hypersurface has
been well-investigated in submanifold theory and it has several nice
structures and properties not only in differential geometry but also from
the viewpoint of differential topology, Lie theory, partial differential
equations, integrable systems and mathematical physics.

The Floer theory has been well-developed, but not much is known
in concrete cases. The Gauss images (the images of the Gauss map)
of isoparametric hypersurfaces in the standard sphere S™*! supply a
rich class of compact minimal Lagrangian submanifolds embedded in
the complex hyperquadric @,(C). When n = 1 such a Gauss image
is nothing but a great circle of the standard 2-sphere. We study the
Lagrangian intersection theory on this class.
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For a Lagrangian submanifold L of a symplectic manifold (M, w),
consider a Hamiltonian diffeomorphism ¢ of M with transverse inter-
section L N¢(L). To give a lower bound of the number §(L N ¢(L)) of
intersection points is an important and difficult problem, which is the
so-called Arnold inequality. Floer has invented the Floer (co)homology
to solve this problem. In this artcle a symplectic manifold, which we
are concerned with, is the complex hyperquadrics

Qu(C):={[z2] e CP"™ | 25+ 2+ +22,, =0} cCP""!
or the real Grassmann manifolds of oriented 2-planes

@2(Rn+2) (C AZR™2)

.= {[W] | oriented 2-dimensional vector subspaces of R"**}

which are identified through the diffeomorphism
Gro(R"?) 5 [W] =aAb «— [a+v/—1b] € Q,(C)

where {a, b} is an orthonormal basis of [W] compatible with its orien-
tation. This manifold has the homogeneous space expression

Qn(C) = Gry(R™2) =2 SO(n + 2)/S0(2) x SO(n)

which is a compact Hermitian symmetric space of rank 2. Our La-
grangian submanifolds in @, (C) is the image of the Gauss map of an
oriented hypersurface immersed in the unit standard sphere S"*! =
Sn+1(1)

N" e 8" c R"2,
where the Gauss map is defined by

G:N"3pr—x(p) An(p) = [2(p) + vV—-1n(p)] € Qun(C),
for the position vector @ of points on N™ and the unit normal vector
field m of N™ in S"™'(1). We remark the following properties (cf. [34],
[19]):

Proposition 1.1. The Gauss map G of N s a Lagrangian immersion.

Proposition 1.2 ([19]). A deformation of N in S™™ gives a Hamil-
tonian deformation of G. Conversely a small Hamiltonian deformation
of G is given by a deformation of N™ in S™1(1).

In this article we consider isoprametric hypersurfaces of S™** as ori-
ented hypersurfaces N.

This article is organized as follows: In Section 2 we recall the fun-
damental theory of isoparametric hypersurfaces in the standard sphere
and the properties of the Gauss images of such isoparametric hypersur-
faces as Lagrangian submanifolds in complex hyperquadrics. In Section
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3 we review some fundamental materials from symplectic geometry and
Morse homology. In Section 4 we briefly explain Floer’s theory of La-
grangian intersection and in Section 5 we mention the generalization
of Floer homology by Y.G. Oh to monotone Lagrangian submanifolds.
In Section 6 we explain our results of [17] which discuss the Floer ho-
mology of the Gauss images of isoparametric hypersurfaces and study
their Hamiltonian non-displaceability. In Section 7 we give the strategy
of our proof and remark some related results. In Section 8 we men-
tion a relation of our work to the FOOO theory and Z.Z. Tang’s result
determining the existence of spin structures on the Gauss images of
isoparametric hypersurfaces. In Section 9 we provide some open prob-
lems and conjecture.

2. ISOPARAMETRIC HYPERSURFACES IN SPHERES

[soparametric hypersurfaces have its origin in the geometric optics in
the early 20th century in Italy (Somigliana, Segre, Levi-Civita). They
are wave fronts developing according to the Huygens principle.

Let M be a Riemannian manifold with the Levi-Civita connection
V and the Laplace operator A

Definition. A C? function f : M — R is called an isoparametric
function when f satisfies

(1) [VFI? = p(f)

(2) Af = g(f)
for some functions p,q on R. A regular level set of an isoparametric
function is called an isoparametric hypersurface.

Here, (1) means that the level sets are mutually parallel, and under this
condition, (2) means that each level set has constant mean curvature.

Theorem 2.1 ([3]). (1) An isoparametric hypersurface N in the
space forms R"L S+l and H™ is a hypersurface with con-
stant principal curvatures, and the converse also holds.

(2) An isoparametric hypersurface in R™ or H™™ is either to-
tally umbilic or a tube over a totally geodesic submanifold. The
number g of distinct principal curvatures is either 1 or 2.

(3) In S™, there happen more examples.

In fact, let k1 > -+ > K, be the principal curvatures of N in S™*! and
denote by my, ..., m, their multiplicities, respectively.

Theorem 2.2 ([25]). (1) g €{1,2,3,4,6} andm; = m;is (imod g).
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(2) N is given as a level set in S™ of the so-called Cartan-Miinzner
polynomial F' on R™"*2 of degree g, which is a real homogeneous
polynomial of degree g satisfying two PDE’s:

IVFP _ 92T2g—2
AF = cr9—?

_ 2
where ¢ = (mg—ml)g7 r = |z| for x € R"™, and V and A

2
are Fuclidean operators.

Thus, any isoparametric hypersurface in the standard sphere is alge-
braic. Among the level sets, there always exist two lower dimensional
level sets, called the focal submanifolds and denoted by N..

A submanifold of S™*! or Q,,(C) is called homogeneous if it is given
as an orbit under a Lie subgroup of the isometry group SO(n + 2).

Example 2.3 :

e Principal orbits of the isotropy representations of Riemannian
symmetric pairs (U, K) of rank 2. These exhaust all homoge-
neous isoparametric hypersurfaces in spheres ([15], [35]).

e Algebraic construction of Cartan-Miinzner polynomials by rep-
resentations of Clifford algebras in the case g = 4 ([33], [11]).
These are called of OT-FKM type, among which there exist
infinitely many non-homogeneous isoparametric hypersurfaces.

2.1. Classification of isoparametric hypersurfaces. The Classifi-
cation of isoparametric hypersurfaces in spheres has been completed as
follows (2019) :
g=1:. N*" = 5", hyperspheres
g=2: N"=.8"(ry) x S™(ry), Clifford hypersurfaces
(n=my+my, 1 <my <my<n—117+7r5=1)

n SO S S
g=3 N"= f;l, %3)7 Sﬁ(fs)s, sz%(S)’ Cartan hypersurfaces ([3]).

g =4: N"™ is either homogeneous or OT-FKM type ([4], [5],[6],[7])-
g =06t (my,my) = (1,1): N* = 225 ([10)).
(mryma) = (2.2) : N* = & (23], [24]),

2.2. Cohomology of isoparametric hypersurface N". Let N be
the focal submanifolds of N". Here let the ring of coefficients be

R Z it Ny and N_ are both orientable,
| Zy otherwise.

Let = mq 4+ ms.
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Theorem 2.4 ([25]).

R forq=0 (mod pu),0<g<n
HYNy,R) =< R forq=mz (mod u),0 <qg<n
0  otherwise.

Furthermore,

R forq=0orn

HIN, B) = { HY(N,)® HY(N_) forl<q<n-—1.

2.3. Gauss images of isoparametric hypersurfaces. We shall con-
sider an isoparametric hypersurface N in S"™! as an oriented hyper-
surface, and consider its Gauss map

G:N3p— [2(p) +V=In(p)] € Gra(R™?) = Q,(C).

Proposition 2.5 ([34], [19], [29]). Suppose that N is an isoparametric
hypersurface of S"*(1). Then the following properties hold:

(1) The Gauss map of N
G: N — Gry(R") = Qu(C)

is a minimal Lagrangian immersion into @, (C).

(2) Moreover the Gauss image L = G(N) is a compact minimal
Lagrangian submanifold embedded in Q,,(C) and the Gauss map
gives a covering map onto the Gauss image

G:N+— L=G(N)~N/Z,

with the covering transformation group Z,.

(3) N C S™ is homogeneous if and only if the Gauss image
L = G(N™) is homogeneous.
2

(4) 2 s even (resp. odd) if and only if its Gauss image L = G(N™)
g
is orientable (resp. non-orientable).

Some problems such as classification of homogeneous Lagrangian
submanifolds, Hamiltonian stability and so on were studied in [19],
20], [21], [22] for the Gauss images of isoparametric hypersurfaces.

Here we refer

Proposition 2.6 ([8], [32]). Let (M,w,J,g) be an Einstein-Kdihler
manifold of Finstein constant > 0. Then any compact minimal La-
grangian submanifold L of M is monotone.
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The definition of the monotonicity for Lagrangian submanifolds is
given in Section 5. By this result we see that the Gauss image of an
isoparametric hypersurface is always a monotone Lagranagian subman-
ifold of @, (C).

Now we discuss the intersection theory of those minimal Lagrangian
submanifolds L = G(N) in Q,(C).

3. A REVIEW OF SYMPLECTIC GEOMETRY

Let (M?",w) be a symplectic manifold, namely, w is a non-degenerate
closed 2-form on M. Let ¢+ : L — M be a Lagrangian submanifold,
namely, dim L = n and t*w = 0.

Example 3.1 :

(1) For any manifolds X, the cotangent vector bundle 7*X is a
symplectic manifold with canonical coordinate system (z,¢),
and w?™ = S"dx A d€'. The zero section L = X and each
fiber L = 77!(z) (x € X) both are Lagrangian submanifolds of
T X.

(2) Any Kéhler manifold and so any oriented Riemannian surface
are symplectic manifolds. On such surfaces, any curve is a
Lagrangian submanifold.

3.1. Weinstein neighborhood. A Lagrangian submanifold L in (M, w)
is also a Lagrangian submanifold of T*L as the zero section at the
same time. It is well-known that there exist a tubular neighborhood
(W(L),w|w(z)) of Lin M and a tubular neighborhood (U (0y,), w" *|y(0,,))
of the zero section Oy in T*L, which are symplectomorphic to each
other.

Definition. We call W (L) a Weinstein neighborhood of L in M.

3.2. Hamiltonian diffeomorphisms. In the following, let (M,w) be
a closed (i.e. compact without boundary) symplectic manifold.

Definition.
(1) {&f } ey is called a Hamiltonian isotopy of M, when for a

time dependent Hamiltonian function H : [0,1] x M — R, ¢/
is a Hamiltonian flow associated with Xp,,

d¢§t(p) = (Xm)p oH(p)=p (¥pe M),

where Xp, is the Hamiltonian vector field corresponding to H,
defined by dH, = w(, Xg,).

(2) The time 1 map ¢ = ¢! is called a Hamiltonian diffeomorphism
of M.
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Denote the Hamiltonian diffeomorphism group of (M, w) by

Ham (M, w) := {Hamiltonian diffeomorphisms of M}
C Sym"(M,w) = {symplectomorphisms isotopic to the identity map}.
Sometimes we call ¢ € Ham(M,w) a Hamiltonian isotopy or a Hamil-

tonian deformation. Any ¢ € Ham(M,w) maps Lagrangian submani-
folds to Lagrangian submanifolds.

Question. If L is a closed embedded Lagrangian submanifold of M,
does it hold the inequality
#(L N (L)) > SB(L,Zy)(=sum of the Betti numbers of L)?

In general, this FAILS as a large isometry ¢ for a small circle L in
S? gives a counter-example. On the other hand, a great circle of S?
satisfies it. Therefore, the Lagrangian intersection is considered as not
only a topological matter, but also a symplectic matter.

3.3. Lagrangian graph. A simple case: For any manifold L™ and
feC=L), Ly = {(z,(df))} C T*L is a Lagrangian submanifold,
because df = fida' and so w™ L, = > dat Adf; = Y dat A fijdad = 0.
Definition. Ly is called a Lagrangian graph in T L.

Since LN Ly = {(2,0)} N Ly is nothing but the critical point set of
f, when L is closed and f is a Morse function, the Morse inequality
implies the Arnold inequality

4(LNL;) > SB(L,Zy).
Let L be a Lagrangian submanifold of a symplectic manifold (M, w).
When ¢ eHam(M,w) is small, (L) C W(L) where W (L) is the We-
instein neighborhood. However in general ¢(L) outgrows W (L).

Now the Floer theory plays an important role. This is a Morse theory
on infinite dimensional spaces. Let us briefly review the Morse theory
on finite dimensional manifold.

Let M be a closed manifold and f € C*(M) be a Morse-Smale
function. Let

Crit(f) := {critical points of f}
and
Crity(f) := {critical points of f of index k}.
Define the Morse complex by a vector space over Z, with a grading

o ::éC,{, where C’,f = @ Zo.

k=0 2€Crity (f)
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For p, ¢ € Crit(f) = U;_, Crit(f), define
M(p.q) =

d . .
{7(8) ‘R — M| d—7 = —gradf, lim ~(s) =p, lim y(s) = C]} [ ~,
S S——00 S—00

where ~ is a parameter shift s — s+ a.
The Morse boundary operator 97 : C’,f — 01{71 is defined by

p= > tM(pq)q,

q€Ck—1

for each p € C',f , where the number of elements §M(p, q) is counted
modulo 2. Then &/ 0 8/ = 0, and so the Morse homology H(CY,07) =

Ker 9/
Ier o7 is defined and it is isomorphic to H(M,Z,). The Morse ho-
m

mology over the coefficient Z, is elementary. The Morse homology is
usually constructed over the coefficient Z, under the setup together
with the orientations.

4. FLOER HOMOLOGY OF LAGRANGIAN INTERSECTION

Let L C (M,w) be a closed Lagrangian submanifold, and ¢ = ¢; €
Ham (M, w). We suppose that

[C] / v*w=0 for all smooth v: (D* dD*) — (M,L).
D

Fix a base point x¢ € L. Set
Q:={z:[0,1] - M | 2(0) € L, 2(1) € (L), isotopic to ¢(zo)}.

and define a 1-form on €2 as

1
ax(€) = [ wanfE(0), o)
0
Then we observe that « is closed.

Theorem 4.1 ([12]). Under the condition [C], the following hold:

(1) There exists a functional A locally defined on Q2 such that o =
dA.

(2) z € Qs a critical point of A if and only if 2(t) = 0, namely, z is
a constant path z(t) = x € LN @(L). Moreover, a critical point
z of A is non-degenerate if and only if L and p(L) transversally
intersect at z,

(3) For J = {Ji}o<i<1, a time-dependent family of almost complex
structures on M compatible with w, we have

(gradA).(t) = (Ji).2(t) (¢ €[0,1]).
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Definition. For p,q € L N (L), define the moduli space
M(p,q) =

{u:]RX [0,1]—>M|@:—gradu4, lim u=p, limu:q}/w
as §——00 §—00

Each element u € M(p, q) is called a J-holomorphic strip. In fact, if we
put u(s,t) = zs(t), then it satisfies a kind of Cauchy-Riemann equation
Ju(s,t) Ju(s,t)
J,
os o
Suppose that the intersection L N (L) is transversal. Then the
following properties of the moduli space M(p, q) hold:

= 0.

Theorem 4.2 ([37], [12]). Under the condition [C], the following hold:

(1) Fora generic J = {Ji}o<i<1, the Maslov-Viterbo index p,(p, q) €
Z is defined for each p,q € LN (L) and each u € M(p,q), so
that a neighborhood around u in the moduli space M(p,q) is a
(tu(p, q) — 1)-dimensional smooth manifold.

(2) The 0-dimensional component M°(p,q) of M(p,q) is compact.

(3) The boundary OM™(p, q) of the 1-dimensional component M (p, q)
of M(p,q) is given by

U Mp.r) x MO(r,g).
reLNp(L)
Define the Floer complex by a vector space over Zs
CF(L790> = @ ng,
pELNY(L)
and the Floer boundary operator 0y : CF(L,¢) — CF(L, ) by
op= Y tM@paq
qELND(L)

where the number of elements £M(p, q) is counted modulo 2. Com-
bining this with (3), we obtain d; 0 d; = 0, and the Floer homology is
a vector space over Zs defined by

Kero
HF(L) := Ima}]‘

By definition it obviously holds the inequality
#(L N (L)) > rankg, HF(L).
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Choose a base intersection point zy € L N ¢(L). Using the Maslov-
Viterbo index i, (x, zo), and minimal Maslov number ¥, (see the next
section for the definition), one can define a Z /Y -grading on the Floer
complex C'F" as

Yr—1

CF<L7 (;0) = @ CE mod ZL(L7SOax0)'
i=0

and then 0 : CF; moa s, (L, 9, 20) = CFi_1 moa v, (L, ¢, xy). Hence we
have a Z /% -grading on the Floer homology

Yr—1

HF(L) = @ HE mod ZL(L7907x0)‘
1=0

Theorem 4.3 ([12]). Under the condition [C], the following hold:
(1) HF(L) is well-defined and independent of the choice of H; and

generic Jy. In particular, HF (L) is invariant under any Hamil-
tonian diffeomorphism and its Z/% -grading is also preserved
under any Hamiltonian diffeomorphism.

(2) If (M, L) =0, then HF(L) = H,(L,Z,).

5. GENERALIZATION OF FLOER HOMOLOGY BY Y.G.OH

Y.G. Oh weakened the condition [C] to monotone Lagrangian sub-
manifolds, and showed that all results in Section 4 except for Theorem
4.3 (2) hold.

Definition. A group homomorphism I, : mo(M, L) — R is defined by

LL(A) = /D wtw

for each smooth map u : (D,0D) — (M, L) with [u] = A € m(M, L).
On the other hand, another group homomorphism I,, ;, : mo(M, L) —
7 is defined by

L0 (A) = p(a),
where set @ := u|sp : S — A(C"), A(C") is the Lagrangian Grassmann

manifold consisting of all Lagrangian vector subspaces of C", and u €
H'(A(C™),Z) = Z is the Maslov class of A(C").

Definition. The positive generator X, of the image of I, 1, is called
the minimum Maslov number of L. When I, ;, = 0, we define X1 = 0.

Definition. L is said to be monotone if there exists A > 0 such that

I = M.
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Theorem 5.1 ([26], [27], [28]). When L is monotone and has minimal
Maslov number ¥y > 2, the homology HF (L) := H,(CF(L),0;) is
well-defined for a generic choice of (H,J). This is called the Floer ho-
mology of L with Zy-coefficient, and this is invariant under the Hamil-
tonian isotopies of L.

Suppose that L is monotone and ¥;, > 2. We consider a Morse-Smale
function f on L so that a Hamiltonian isotopy ¢:(L) = (d(tf)). (t €
[0,1]) is contained in a Weinstein neighborhood of L identified with a
tubular neighborhood of the zero section of T*L. In such a setting,
LN ¢y (L) coincides with Crit(f) (see Subsection 3.3). We may assume
that a base intersection point zy is a unique relative minimum point
of f on L. Then we know that the Maslov-Viterbo index p,(x,zo)
coincide with the Morse index of f at a critical point z and we have

C—FimodEL<L7¢17x0> = @ Clic

k€Z,k=i mod X,

Set CF}, := C’l{ . Moreover the Floer boundary operator can be decom-
posed as

8J:ao+al+"'+ay7 al:CI%CI,1+lEL7

where 0y is the Morse boundary operator and the other 9; (j =1,--- ,v)
dimL + 1
makes indices jump, where v := [1rnz—+ . By this decomposition
L

of the Floer boundary operator, the spectral sequence for the Floer
homology were constructed by Oh [28] and Biran [2]. The calculation
of HF (L) is easier if v is small, but more difficult if v is large.

Remark 5.2 : When Y = 2, the bubbling of J-holomorphic strips
may occur, and the calculation becomes difficult.

The Gauss image L = G(N) of an isoparametric hypersurface N is a
monotone Lagrangian submanifold in @, (C), and so we can apply Oh’s
argument to it.

Definition.
(1) When there exists ¢ €Ham(M,w) such that L N (L) = 0, we
say L is Hamiltonian displaceable.

(2) When L N (L) # 0 for any ¢ € Ham(M,w), we say L is
Hamiltonian non-displaceable.

Since the Floer homology is generated by intersection points, it is
obvious that if L C (M,w) is Hamiltonian displaceable, then we have
HF(L) =0.
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6. RESuULTS

Let N be an isoparametric hypersurface with ¢ distinct principal
curvatures, and set L = G(N) C @,(C) as its Gauss image. First the
following proposition is known and elementary in submanifold theory:

Proposition 6.1. g = 1 or 2 if and only if L = G(N) is a real form,
(equivalently, a totally geodesic Lagrangian submanifold) of Q,(C).

(1) g=1(N=S8") = L=25"C QnC) is a real form of Q,(C).
(2) g=2(N=SkxS"*1<k<n-1)=L=(5"xS"%)/Z, C
Qn(C) (1 <k <n—1) are real forms of Q,(C).

Proposition 6.2 ([28], [18]). In these cases, HF (L) = H,(L,Zy) # 0
and thus L is Hamiltonian non-displaceable.

Question. How about the case g > 27

As for the minimal Maslov number ¥, of the Gauss image L = G(NV)
of an isoparametric hypersurface, it holds

Lemma 6.3 ([21], [29)).

> _2_n_ mi + ms if g is even,
L= g | 2m if ¢ is odd,

(see Theorem 2.2 (1)).

Now for g > 2, we state our main result.

Main Theorem ([17]).

[1] g =3 = L =G(N) is a Zy-homology sphere.
Ifm=m; >2 = HF(L)= H.(L,Zs), and in particular,
L is Hamiltonian non-displaceable, and
#(LNy(L)) > SB(L,Z,) = 2.
2] g =4 and 2 < my; < my = L is Hamiltonian non-displaceable.

[3] g =6 and m = m; = 2 = L is Hamiltonian non-displaceable.

Remark 6.4 : We need ¥; > 3 for the proof which restricts m; > 2.
In our case, X, = 2 is taken only when m; = my = 1. Including these,
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the remaining cases are

SO
(g’n’ml’mQ) = (3737 17 1)7 N = Zz-ﬁ-(;)gu
(g,n,ml,mg) = (47 2k + 27 17k)7 N = %‘SOO((:;_Q)’
(k>1,%,=k+1),
SO(4
(g’n’ml’mQ) = (6767 L, 1)7 N = Zz-&-(Z)z'

It is known that all isoparametric hypersurfaces of such (g, n, my.ms)
are homogeneous.

7. STRATEGY OF THE PROOF

The (co)homology H (N : Zs) of an isoparametric hypersurface N is
determined by Miinzner (in Subsection 2.2). On the other hand, the
Gauss map G : N — @, (C) is a covering map onto N/Z, = L.

Now we use Damian’s lifted Floer homology HEF*(L) for a covering
map L — L ([9]). This is also shown to be invariant under Hamiltonian
isotopies of L. We apply it to L = N in our case. For the proof of
2] and [3] of Main Theorem, supposing that HEF™(L) = 0, we show
by Damian’s spectral sequence that Hy(N;Zs) = 0 holds for certain
k, which contradicts Miinzner’s result stated in Subsection 2.2. In this
way, we conclude

HFN(L) # 0 and so LN (L) # (0, L is Hamiltonian non-displaceable.

We give a little more details below.

Let L be a compact monotone Lagrangian submanifold embedded
in a compact symplectic manifold M with minimal Maslov number
Y1 > 3. Suppose that L — L is a covering map. For A = Zy[T, T,
let A® C A be the subspace of homogeneous elements of degree i.

Proposition 7.1 ([9]). There exists a spectral sequence {EP4,d,} sat-
isfying the following properties:

(1) B* = CFlLy e, @ A0, dy = [0F] ® 1.

(2) BV = Hpiq-ps, (E, Zy) @ AP=r, dy = [0F] @ T~>F, where

[aﬂ : Hp+q—p2L (I_/, Z2) — Hp+q717(p71)2L(L§ ZQ)

is induced by O
(3) For anyr > 1, EP9 = VPi @ APEL with d, = 6, @ T">L, where
VP4 4s a vector space over Zy and 6, : VP4 — VP=ratr=l 4g g
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homomorphism defined for every p,q and satisfies 9, o o, = 0.
More precisely,

_ Ker(o, : VP4 — vyt

vaq —
i Im(3, : VP ype)
Vot = CFpL+q —pEpL> VP = Hpiqps, (L; Zs), 01 = {alL]

(4) EP9 collapses at (v + 1)-step and for any p € Z, @yezER =

7 dim L +1
HFY(L), where v = [&] :
XL

dimL+1] [(n+1)g
ZL N 2n

Back to the Gauss image, v = [ } implies:

Lemma 7.2. For a Gauss image L" = G(N") C Q,(C), g > 3 and
any p,q € Z, we have
(1) ESY = EPY if and only if g = 3 and (mq,me) = (2,2), (4,4), (8,8).
(2) qu EP9if and only if g = 3, (m1,me) = (1,1) or g = 4.
(3) qu qu if and only if g =6, (mq,ms) = (1,1) or )

Using these, we give a sketch of the proof for ¢ = 4. The case g =6
is similarly obtained although a bit longer.

When g = 4, suppose HFL(L) = 0. Then by Lemma 7.2 (2) we have
0 = Ey? and so it follows from Proposition 7.1 (3) that

2,4-1 0, —2.g+1
Vit s Vo Vs exact.

Since
V27q_1 _ Ker([ %] : Hq+1 22L<E'Z2) — Hq EL(E.ZQ>>
2 —_ =
([ f] q+2 SEL(L Z2) - Hq+1 2EL<L Z2))
V_Q’(H—l _ Ker([ 1L] q— 1+22L(L Z2> — Hq 2+32L(L Zg))
2 - )

Im([0F] : Hys, (L3 Z2) — Hy-1405, (L; Z5))

VAt =y — 0 when 2 < g <n—2.
Then it follows
Ker(0F] : Hy(L3Z2) > Hy 15, (1 %))

0=V% = 1 _ -
m([0F] : Hyr s, (L; Zo) = Hqy(L; Zo))

for 2 < g < n — 2. Putting ¢ = ¥, = my + msg, we know

Hl(ia ZQ) — Hm1+m2 (I_/y Z’Q) — H2(m1+m2)—1(f/; ZQ)
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is exact, but this contradicts Miinzner’s result (L = NN, see Subsection
2.2)

Lo, for k =0, mq1, ma, 2mq + mo, my + 2mo, n,
Hk(N,ZQ) = ZQ@ZQ, for k:m1+m2,
0, otherwise.

This implies HF*(L) # 0, and we conclude that L is Hamiltonian
non-displaceable.

Remark 7.3 : Here in general HFY(L) # 0 does not imply
HF(L) # 0 and it is an open problem to determine whether H F(L) # 0
or not in our case.

We shall mention some results related to Main Theorem. It is also
interesting to study extrinsic topology of the Gauss images of isopara-
metric hypersurfaces in complex hyperquadrics. The following result of
Albers gives a sufficient condition on extrinsic topology for monotone
Lagrangian submanifolds to be Hamiltonian non-displaceable.

Theorem 7.4 ([1]). Let (M?",w) be a monotone closed symplectic
manifold. Let L be a monotone compact Lagrangian submanifold of M
with minimal Maslov number Xy, > 3. If L is Hamiltonian displaceable,
then the induced homology homomorphism v, : Hy(L; Zo) — Hy(M; Zs)
vanishes for degrees k > dim L + 1 — X1, and in particular v,[L] =0 in

However it does not give any new information in our cases, as we
observed in [31, Propositions 4.6, 4.8].

Proposition 7.5 ([31]). (1) Assume that M = Q,(C) and L™ =
G(N™) is the Gauss image of an isoparametric hypersurface N™
except for the case when g = 1 and n > 2. Then the induced
Z-homology homomorphism

b Hy(L; Z) — Hp(M;7Z)
and the induced Zo-homology homomorphism
Lo : Hy(L; Zo) — Hp(M; Zs)

vanish for degrees dimL > k > dimL +1—%,. Ifg=1 and
n > 2, then fork =0>1—n=dimL+ 1— X, the corre-
sponding homology homomorphisms do not vanish (and thus L
is Hamiltonian non-displaceable).

(2) The induced Zy-homology homomorphism

Lot Hy (L Zo) — Hp(Qn(C); Zy)



16 REIKO MIYAOKA AND YOSHIHIRO OHNITA

vanishes if L = G(N™) is the Gauss image of an isoparametric
hypersurface N™ in the following list:

g=1, n s odd.
g=2, n=myi+my, my ormy is odd.
SO(3
g=3, (mi,mp)=(1,1),N° = Zng(%lo’(Q) SO(k+2)
X
g = 47 (mlva) = (17k)7N2k+2 = W’ <k > 1)?
SO(4
g= 67 (m17m2) = (17 1)7N6 = Zer(Z)z'

8. RELATION TO FOOO THEORY

Fukaya-Oh-Ohta-Ono deeply investigate the Floer theory on La-
grangian intersections ([14]). We note some parts related to our work.

Theorem 8.1 ([14], Theorem H). Let L be a closed Lagrangian sub-
manifold in a closed symplectic manifold M, and let L be spin (or, more
generally, relatively spin). If the natural map H,(L,Q) — H.(M,Q)
15 injective, then for any Hamiltonian diffeomorphism ¢ such that L is
transversal to (L), it holds

(LN @(L) > rankHy(L, Q).

Because they use the Q-coefficient, it is important to know if the
moduli space M(p, q) is orientable or not. Since we used Zs-coefficient,
we needed not to care about that point.

However, it is an interesting question whether the Gauss image L
of an isoparametric hypersurface is spin or not. This is completely
determined by Z.Z. Tang.

Proposition 8.2 ([36]). The existence of a spin structure on its Gauss

image L™ = G(N™) is as follows:
g (m1,ma) L
1 n spin
2 n: even spin
n: odd not spin
3 m=1,2,4,8 spin
/ (1,1) spin
my + meo > 3: odd | not relatively spin
otherwise not spin
6 (1,1) spin
(2,2) not spin
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From this result, at least when ¢ = 4 and m; + mo > 3 is odd,
we cannot apply FOOQO’s result with Q coefficient, even if the other
conditions are satisfied.

Although L is spin when (mq, my) = (1,1), we do not know yet the
homology H,.(L,Q), nor H.(L,Q) — H,(Q,(C),Q) is injective or not.
Our next task is to consider these problems.

By the way, any isoparametric hypersurface N™ in the standard
sphere S™*! is a spin manifold.

9. OPEN PROBLEMS AND CONJECTURE

Problems.
(1) Determine HF(L) for g =3, m
(2) When g = 4 and (mq,my) =
displaceable?
(3) When g = 6 and m = 1, is L Hamiltonian non-displaceable?
(4) Determine HF'(L) for all the remaining cases.
(5) Consider the Lagrangian intersection for any two Ly, Ls.

=1
(1,k), is L Hamiltonian non-

Congecture by Hajime Ono and IMMO([17]):

In an irreducible Hermitian symmetric space of compact type,
any compact minimal Lagrangian submanifolds are
Hamiltonian non-displaceable.
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