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Abstract. The R-space is a compact homogeneous space obtained as an
orbit of the isotropy representation of a Riemannian symmetric space. It
is known that each R-space has the canonical embedding into a Kähler
C-space as a real form, and thus a compact embedded totally geodesic
Lagrangian submanifold. The minimal Maslov number of Lagrangian sub-
manifolds in symplectic manifolds is one of invariants under Hamiltonian
isotopies and very fundamental to study the Floer homology for intersec-
tions of Lagrangian submanifolds. In this paper we show a Lie theoretic
formula for the minimal Maslov number of R-spaces canonically embedded
in Einstein-Kähler C-spaces, and provide some examples of the calculation
by the formula.

Introduction

The minimal Maslov number of a Lagrangian submanifold in a symplectic
manifold is one of invariants under Hamiltonian isotopies and very funda-
mental to study the Floer homology for intersections of Lagrangian subman-
ifolds, especially monotone Lagrangian submanifolds ([9]). It is known that
any compact minimal Lagrangian submanifold of an Einstein-Kähler manifold
with positive Einstein constant is monotone ([4], [13]) and a nice formula of
minimal Maslov number for a monotone Lagrangian submanifold of a simply
connected positive Einstein-Kähler manifold was shown by H.Ono [13].

The R-space is a compact homogeneous space obtained as an orbit of the
isotropy representation of a Riemannian symmetric space. It is known that
each R-space can be canonical embedded into a Kähler C-space as a real
form which is by definition the fixed point subset by an anti-holomorphic
involutive isometry. R-spaces constitute a nice class of compact embedded
totally geodesic Lagrangian submanifolds of Kähler manifolds. Any R-space
can be canonically embedded in an Einstein-Kähler C-space and particularly
it is a compact embedded monotone Lagrangian submanifold.

Y.-G. Oh has worked on the Floer homology of (CP n;RP n) ([10]) and real
forms of Hermitian symmetric spaces of compact type ([11]), which are noth-
ing but canonically embedded symmetric R-spaces. Recently the intersection
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theory and Floer homology for two real forms of Hermitian symmetric spaces
of compact type are intensively studied by [22], [6], [19], [20], [21], and more
recently its generalization to general R-spaces is discussed in [7], [5].

The purpose of this paper is to provide a Lie theoretic formula (see Theorem
3.1) for the minimal Maslov number of R-spaces canonically embedded in
Einstein-Kähler C-spaces and to discuss some examples of the calculation by
our formula.

This paper is organized as follows: In Section 1 we recall basic definitions
and related properties for the minimal Maslov number and the monotonic-
ity of Lagrangian submanifolds in symplectic geometry and the formula of
H.Ono for monotone Lagrangian submanifolds of Einstein-Kähler manifolds.
In Section 2 we explain the construction of the canonical embedding of an
R-space into a Kähler C-space from a given compact Riemannian symmetric
pair. We describe the induced invariant symplectic structure, complex struc-
ture and Kähler structure and related properties. The canonical embedding
of an R-space into an Einstein-Kähler C-space is characterized in terms of
the root system. In Section 3 as a main theorem we show the Lie theoretic
formula for minimal Maslov number of R-spaces canonically embedded canon-
ically embedded in Einstein-Kähler C-spaces. In Section 4 we provide some
examples calculated by that formula, including a list of the minimal Maslov
number for all irreducible symmetric R-spaces canonically embedded in irre-
ducible Hermitian symmetric spaces of compact type. More related examples
will be discussed in the forthcoming paper.

1. Minimal Maslov number of Lagrangian submanifolds in
symplectic manifolds

Let (M,ω) be a symplectic manifold of dimension 2n with a symplectic form
ω. A smooth immersion (resp. embedding) ι : L → M is called a Lagrangian
immersion (resp. Lagrangian embedding) if dimL = n and ι∗ω = 0. Then L
is a Lagrangian submanifold immersed (resp. embedded) in M .

Let L be a Lagrangian submanifold immersed in a symplectic manifold
(M,ω). Define two kinds of group homomorphisms

Iµ,L : π2(M,L) → Z and Iω,L : π2(M,L) → R.

For a smooth map u : (D2, ∂D2) → (M,L) with A = [u] ∈ π2(M,L),
choose a trivialization of the pull-back bundle as a symplectic vector bundle
(which is unique up to the homotopy) u−1TM ∼= D2 × Cn. This gives a
smooth map ũ : S1 = ∂D2 → Λ(Cn). Here Λ(Cn) denotes the Grassmann
manifold of Lagrangian vector subspaces of Cn. Using the Moslov class µ ∈
H1(Λ(Cn),Z) ∼= Z, we define a group homomorphism Iµ,L : π2(M,L) → Z by
Iµ,L(A) := µ(ũ).

Definition 1.1. If Iµ,L = 0, we define ΣL = 0. Assume that Iµ,L ̸= 0.
The we denote by ΣL ∈ Z+ the positive generator of an additive subgroup
Im(Iµ,L) ⊂ Z. Then such an integer ΣL is called the minimal Maslov number
of L．
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Another group homomorphism Iω,L : π2(M,L) → R is defined by Iω,L(A) :=∫
D2 u

∗ω. It is known that Iµ,L is invariant under symplectic isotopies and Iω,L
is invariant under Hamiltonian isotopies but not invariant under symplectic
isotopies.

Definition 1.2. A Lagrangian submanifold L of (M2n, ω) is called monotone
if Iµ,L = λ Iω,L for some λ > 0.

Based on Floer’s works, Y.-G.Oh ([9], [10], [11]) introduced the concept of
the monotonicity for Lagrangian submanifolds and developed the Floer the-
ory for the intersection of monotone Lagrangian submanifolds. For monotone
Lagrangian submanifolds of ΣL ≥ 3 or ΣL = 2, the Floer homology and its
Hamiltonian invariance were established by Y.-G. Oh. The minimal Maslov
number ΣL play a crucial role in the theory. If a given monotone Lagrangian
submanifold L is Hamiltonian deformed in a Weinstein neighborhood by a
suitable Morse-Smale function on L, then the Floer boundary operator ∂J can
be decomposed into by ∂0 the Morse boundary operator as

∂J = ∂0 + ∂1 + · · ·+ ∂ν , where ν =

[
n+ 1

ΣL

]
and it constructs the spectral sequence of Floer homology for monotone La-
grangian submanifolds. ([12], [1]).

Cieliebak-Goldstein [4] and Hajime Ono [13] showed useful results on the
monotonicity and minimal Maslov number of Lagrangian submanifolds in Kähler
manifolds as follows:

Proposition 1.1 ([4], [13]). Assume that (M,ω, J, g) is an Einstein-Kähler
manifold with positive Einstein constant. Then any compact minimal La-
grangian submanifold L of M is monotone

Proposition 1.2 ([13]). Assume that (M,ω, J, g) is simply connected Einstein-
Kähler manifold with positive Einstein constant. Then the minimal Maslov
number of a compact monotone Lagrangian submanifold L of M is given by
the formula

(1.1) nLΣL = 2γc1 .

Here

γc1 := min{c1(M)(A) | A ∈ H2(M ;Z), c1(M)(A) > 0},
nL := min{k ∈ Z+ | ⊗kE|L is trivial as a flat complex line bundle}.

E cplx. line bdle.

flat πEπL U(1)-connection ∇

M Einstein-Kähler mfd.

-E|L

? ?
L

Lag.
-

and E is equipped with a U(1)-connection such that 1
γ
ω = c1(E,∇) for some

γ > 0.
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2. R-spaces canonically embedded in Einstein-Kähler C-spaces

In this section we review fundamental geometric properties on R-spaces
and their canonical embeddings into Kähler C-spaces. We use some related
arguments and notations from [2], [14], [15], [16], [17], [18] and so on.

Let (G,K, θ) be a Riemannian symmetric pair with an involutive automor-
phism θ. Suppose that G is a connected compact Lie group with Lie algebra
g and K is a connected compact Lie subgroup of G with Lie algebra k. We
choose an AdG- and θ-invariant inner product ⟨ , ⟩ of g.

We begin with the preparation of the Lie algebraic setting related to R-
spaces. Let

g = k+ p

be the canonical decomposition of g with respect to (G,K, θ). Let a be a
maximal abelian subspace of p. Choose a maximal abelian subalgebra t of g
containing a. Then we know that

t = b+ a, b = t ∩ k, a = t ∩ p

and t is invariant by θ. Let ( , ) denote an inner product of t which is a
restriction of ⟨ , ⟩ to t. The root space decomposition of gC with respect to t
is given as

gC = tC +
∑

α∈Σ(g)

gα,

where
gα := {X ∈ gC | adξ(X) =

√
−1(α, ξ)X (∀ξ ∈ t)}

and Σ(g) ⊂ t denotes the set of all roots of gC with respect to t. Set

Σ0(g) := Σ(g) ∩ b.

We define an involutive orthogonal transformation σ ∈ O(t) by

σ(Hb +Ha) := −Hb +Ha, (Hb ∈ b, Ha ∈ a).

Note that −σ = θ|t. We choose a σ-order > on t, that is, a linear order of
t lexicographical along a and b, so that if α ∈ Σ(g) \ Σ0(g) and α > 0, then
σα > 0 and thus θα = −σα < 0 ([14]). Set Σ+(g) := {α ∈ Σ(g) | α > 0} and
Σ+

0 (g) := Σ0(g) ∩ Σ+(g). We choose Eα ∈ gα for α ∈ Σ(g) such that

[Eα, E−α] =
√
−1α, ⟨Eα, E−α⟩ = 1, Eα = E−α for α ∈ Σ(g)

and let {ωα | α ∈ Σ(g)} be the linear forms on gC dual to {Eα | α ∈ Σ(g)} so
that

ωα(tC) = {0}, ωα(Eβ) = δαβ for α, β ∈ Σ(g).

We fix an arbitrary element H ∈ a of a. H is called reqular if (H,α) ̸= 0 for
all α ∈ Σ(g) \ Σ0(g). Define closed subgroups GH and KH of G by

GH := CG(H) = {a ∈ G | Ad(a)(H) = H}
and

KH := CK(H) = {a ∈ K | Ad(a)(H) = H} = K ∩GH .

Denote by gH and kH Lie algebras of GH and KH , respectively. It is well-know
that GH is always connected.
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Definition 2.1. The compact homogeneous space L := K/KH is called an
R-space, and it has the standard imbedding into p

(2.1) φH : L = K/KH ∋ aKH 7−→ Ad(a)(H) ∈ Ad(K)(H) ⊂ p.

If H is a regular element of a, then L := K/KH is called a regular R-space. Set
another compact homogeneous spaceM := G/GH , which is called a generalized
flag manifold or Kähler C-space, and it also has the standard imbedding into
g

(2.2) ψH :M = G/GH ∋ aGH 7−→ Ad(a)(H) ∈ Ad(G)(H) ⊂ g.

As mentioned in the next section it is known that M = G/GH admits a G-
invariant Kähler metric. We can regard each Kähler C-spaceM = G/GH as an
R-space ∆G/∆G(H,−H) associated to a compact symmetric pair (G×G,∆G).

Definition 2.2. The canonical embedding of K/KH into G/GH is a smooth
map defined by

(2.3) ιH : L = K/KH ∋ aKH 7−→ aGH ∈ G/GH =M.

We take the orthogonal direct sum decompositions of g and k as

g = gH +m, m ∼= TeGH
M,

k = kH + l, l ∼= TeKH
L.

Note that kH = k ∩ gH . We observe that

(2.4) θ(GH) = GH and θ(gH) = gH .

Thus we have an orthogonal direct sum decomposition of g as

g =(gH ∩ k) + (gH ∩m) + (m ∩ k) + (m ∩ p)

= kH + l+ (gH ∩ p) + (m ∩ p)

We have m = m ∩ k+m ∩ p, l = m ∩ k. Since

(adH) : m ∩ k −→ m ∩ p, (adH) : m ∩ p −→ m ∩ k

are injective and thus dimm ∩ k = dimm ∩ p. Hence we obtain

(2.5) 2 dimL = dimM.

For such H, we define a skew-symmetric bilinear form ωH on g by

ωH(X,Y ) := ⟨[H,X], Y ⟩ for each X,Y ∈ g.

Then it induces a G-invariant symplectic form on M = G/GH , which is de-
noted also by ωH , and ωH has expression

ωH = −
√
−1

∑
α∈Σ+(g)\ΣH(g)

(H,α)ω−α ∧ ω−α.

For each X,Y ∈ l, since ωH(X,Y ) = ⟨[H,X], Y ⟩ = 0, we have ι∗HωH = 0.
Hence we know that

Proposition 2.1. The canonical embedding

(2.6) ιH : L = K/KH ∋ aKH 7−→ aGH ∈ G/GH =M.

is a Lagrangian embedding with respect to ωH .
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Since θ(GH) = GH , the involution automorphism θ of G induces an involu-
tion diffeomorphism

(2.7) θ̂H :M = G/GH ∋ aGH 7−→ θ(a)GH ∈ G/GH =M

which is equivariant with respect to the Lie group automorphism θ : G → G.
Since

ωH(θ(X), θ(Y )) = −ωH(X,Y )

for each X,Y ∈ m, we have

Proposition 2.2. θ̂H : G/GH → G/GH is anti-symplectic with respect to ωH ,
that is,

θ̂∗HωH = −ωH .

Define the fixed point subset of M by θ̂H as

(2.8) Fix(M, θ̂H) := {p ∈M | θ̂H(p) = p}.

Then we have

(2.9) ιH(K/KH) ⊂ Fix(M, θ̂H)

which is a connected component of Fix(M, θ̂H).
We give attention to the moment maps of the actions of G and K on G/GH

relative to ωH . The natural left action of G on a symplectic manifold (M =
G/GH , ωH) is Hamiltonian with the moment map

(2.10) µG := ψH : G/GH −→ g ∼= g∗.

Moreover the natural left action of K ⊂ G on a symplectic manifold (M =
G/GH , ωH) is also Hamiltonian with the moment map

µK := πk ◦ µG = πk ◦ ψH : G/GH −→ k ∼= k∗.

Here πk : g = k⊕ p −→ k denotes the orthogonal projection of g onto k.
The relations of the anti-symplectic involution θ̂H are the moment maps µG

and µK are as follows:

Proposition 2.3.

µG ◦ θ̂H = −θ ◦ µG, µK ◦ θ̂H = −µK .

Proof. For each point aGH ∈ G/GH we compute

µG(θ̂H(aGH)) =ψH(θ(a)GH)

=Ad(θ(a))(H)

=θ(Ad(a)θ(H))

=− θ(Ad(a)H)

=− θ(ψH(aGH))

=− θ(µG(aGH))
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and

µK(θ̂H(aGH)) =(πk ◦ ψH)(θ(a)GH)

=− (πk ◦ θ)(µG(aGH))

=− (πk ◦ µG)(aGH))

=− µK(aGH).

□

It follows from Proposition 2.3 that

Lemma 2.1.

Fix(M, θ̂H) = µ−1
K (0).

Proof. For any point aGH ∈ G/GH we have

aGH ∈ Fix(M, θ̂H) ⇐⇒ θ(ψH(aGH)) = −ψH(aGH)
⇐⇒ ψH(aGH) ∈ p
⇐⇒ µG(aGH) ∈ p
⇐⇒ aGH ∈ µ−1

K (0).

□

Since K and M are compact, by a result of Kirwan ([8, p.549, (3.1)]) we see

that µ−1
K (0) is connected. Thus Fix(M, θ̂H) is also connected. Therefore we

obtain

Proposition 2.4.

ιH(K/KH) = Fix(M, θ̂H) = µ−1
K (0).

By the action of the Weyl group W (G,K) = NK(a)/CK(a), we may assume
that H ∈ a ⊂ t satisfies

(α,H) ≥ 0 for ∀α ∈ Σ+(g).

Set

ΣH(g) := {α ∈ Σ(g) | (α,H) = 0},
Σ+

H(g) := ΣH(g) ∩ Σ+(g),

ΠH(g) := Π(g) ∩ Σ+
H(g).

We describe an invariant complex structure on G/GH corresponding to H.
The Lie algebra gH of GH is nothing but the centralizer cg(H) of g to H. By
the maximality of t the center c(gH) of gH satisfies the inclusions

H ∈ c(gH) ⊂ t ⊂ gH .
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Then using the root decomposition we express their complexifications as fol-
lows:

gC =gCH +mC

=

tC +
∑

α∈ΣH(g)

gα

+
∑

α∈Σ(g)\ΣH(g)

gα

=

tC +
∑

α∈ΣH(g)

gα

+

 ∑
α∈Σ+(g)\ΣH(g)

g−α +
∑

α∈Σ+(g)\ΣH(g)

gα

 .

Here

gCH = tC +
∑

α∈ΣH(g)

gα,

TeGH
(G/GH)

C ∼=mC =
∑

α∈Σ+(g)\ΣH(g)

g−α +
∑

α∈Σ+(g)\ΣH(g)

gα

Note that gα = g−α. Then we see that∑
α∈Σ+(g)\ΣH(g)

g−α and
∑

α∈Σ+(g)\ΣH(g)

gα

are invariant under AdGH , respectively. Thus we can define a G-invariant
complex structure JH on G/GH such that

TeGH
(G/GH)

1,0 ∼=
∑

α∈Σ+(g)\ΣH(g)

g−α,

TeGH
(G/GH)

0,1 ∼=
∑

α∈Σ+(g)\ΣH(g)

gα.

We observe that if α ∈ Σ+(g)\ΣH(g), then −θα ∈ Σ+(g)\ΣH(g) and θ(g
−α) =

g−θα. Here note that −θα = σα > 0 and −θα(H) = α(H) > 0. Hence we get

Lemma 2.2.

θ

 ∑
α∈Σ+(g)\ΣH(g)

g−α

 =
∑

α∈Σ+(g)\ΣH(g)

gα.

By Lemma 2.2 we have

Proposition 2.5. The involutive diffeomorphism θ̂H : G/GH → G/GH is
anti-holomorphic with respect to JH , that is,

JH ◦ dθ̂H = −dθ̂H ◦ JH .

Moreover ωH becomes a (−1)times Kähler form with respect to the invariant
complex structure JH , because of (H,α) > 0 for α ∈ Σ+(g) \ ΣH(g), and the
corresponding G-invariant Kähler metric gH on M = G/GH is defined by

ωH(X,Y ) = (−1)gH(JHX,Y ) for each X,Y ∈ m.
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or
gH =

∑
α∈Σ+(g)\Σ+

H(g)

(H,α)ω−α · ω−α.

Since we compute gH(θ(JH(X)), θ(Y )) = gH(JHX,Y ) for each X,Y ∈ m, the

diffeomorphism θ̂H :M →M preserves the Kähler metric gH . Hence we have

Proposition 2.6. The diffeomorphism θ̂ :M →M is an isometry of M with
respect to gH .

Let
Π = Π(g) = {α1, · · · , αℓ}

be the fundamental root system of g with respect to the σ-order <. Set

Π0 := Π(g)0 := Π(g)0 ∩ b.

For the above H, set

ΠH := ΠH(g) := {αi ∈ Π(G) | (αi, H) = 0}.
Note that Π0 ⊂ ΠH and thus Π \ ΠH ⊂ Π \ Π0.

Let
{Λ1, · · · ,Λl} ⊂ t

be the fundamental weight system of g corresponding to Π defined by

2(Λi, αj)

(αj, αj)
= δi j (i, j = 1, · · · , l).

Then we have

ΣH(g) = Σ(g) ∩ (
⊕

αi∈ΠH

Zαi),

Σ+
H(g) = Σ(g)+ ∩ (

⊕
αi∈ΠH

Z≥0αi),

where Z≥0 denotes the set of all nonnegative integers. Then we have

Σ(g) \ ΣH(g) = {α ∈ Σ(g) | (α,H) ̸= 0},
Σ(g)+ \ ΣH(g) = {α ∈ Σ(g)+ | (α,H) > 0}.

Note that

Σ0(g) ⊂ ΣH(g), Σ0(g) ⊂ ΣH(g),

Σ(g) \ ΣH(g) ⊂ Σ(g) \ Σ0(g), Σ(g)+ \ ΣH(g) ⊂ Σ(g)+ \ Σ0(g).

Then we have

gCH = tC +
∑

α∈ΣH(g)

gα and mC =
∑

α∈Σ(g)\Σ(g)H

gα.

Now we set

cH :=
⊕

αi∈Π\ΠH

RΛi ⊂ t =
⊕
αi∈Π

RΛi,

ZcH :=
⊕

αi∈Π\ΠH

ZΛi ⊂ Z :=
⊕
αi∈Π

ZΛi ⊂ t.
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Then ZcH ⊂ cH and cH coincides with the center c(gH) of gH . Define

c+H :=
⊕

αi∈Π\ΠH

R+Λi ⊂ c(gH) ⊂ t,

Z+
cH

:=
⊕

αi∈Π\ΠH

Z+Λi ⊂ c+ ⊂ c(gH) ⊂ t,

where R±, R+ and Z+ denote the sets of all nonzero real numbers, all positive
real numbers and all positive integers, respectively. Note that H ∈ c+H .

For each ξ ∈ c+H , since Πξ = ΠH , Σξ(g) = ΣH(g), we have

gCξ = tC +
∑

α∈Σξ(g)

gα = tC +
∑

α∈ΣH(g)

gα = gCH

and thus gξ = gH . By the connectedness of Gξ and GH , we obtain Gξ = GH

and G/Gξ = G/GH =M . In particular ωξ is a G-invariant symplectic form on
M = G/GH = G/Gξ. However ξ and H define the same G-invariant complex
structure Jξ = JH on M = G/GH = G/Gξ.

From now we assume that G is semisimple. Let G̃ be the universal covering
group of G, that is, a connected simply connected compact Lie group with Lie

algebra g, and ϕ : G̃ → G be the natural covering map which is a surjective
Lie group homomorphism. Set G̃H := ϕ−1(GH). Then we know that G̃H

is also a connected compact Lie subgroup of G̃ with Lie algebra gH and we

have a natural diffeomorphism G̃/G̃H = G̃/ϕ−1(GH) ∼= G/GH = M . Let

K̃ be a connected compact Lie subgroup of G̃ with Lie algebra k. Then K̃
is the identity component of ϕ−1(K) and we have natural covering maps ϕ :

K̃ ⊂ ϕ−1(K) −→ K and G̃/K̃ −→ G̃/ϕ−1(K) ∼= G/K. Set K̃H := K̃ ∩
G̃H = K̃ ∩ ϕ−1(GH) = (ϕ|K̃)−1(K ∩ GH) = (ϕ|K̃)−1(KH). Then we have

K̃/K̃H = K̃/(K̃ ∩ ϕ−1(GH)) ∼= K/KH = L. Let T̃ be the maximal torus of G̃

with Lie algebra t. Then we have T̃ = ϕ−1(T ).
We know the following diagram of linear isomorphisms and Z-module iso-

morphisms:

H2(M,R)
τ -

H2(M,Z)

H1(G̃H ,R)� ι∗
1

2π
√
−1

cH

6 6

1
2π

√
−1
ZcH

τ
H1(G̃H ,Z)� ι∗

6

-

Let I2
G(M) denote the real vector space of all G-invariant closed 2-forms on

M = G/GH . Then we know that the natural linear map

w : I2
G(M) ∋ ω 7−→ [ω] ∈ H2(M,R).
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is a linear isomorphism and there is a linear isomorphism

ω :
1

2π
√
−1

cH −→ I2
G(M)

defined by

ω

(
1

2π
√
−1

λ

)
:=− 1

2π
√
−1

∑
α∈Σ+

m

(λ, α)ω−α ∧ ω̄−α

or equivalently

ω

(
1

2π
√
−1

λ

)
(X,Y ) := − 1

2π
⟨[λ,X], Y ⟩ (X,Y ∈ m)

for λ ∈ c. Moreover we know that the linear isomorphism

τ = w ◦ ω :
1

2π
√
−1

cH −→ I2
G(M) −→ H2(M,R)

is restricted to a Z-module isomorphism

w ◦ ω :
1

2π
√
−1

ZcH −→ H2(M,Z).

For each λ ∈ cH , define a G-invariant symmetric tensor field on M = G/GH

by

g

(
1

2π
√
−1

λ

)
:=

1

2π

∑
α∈Σ+(g)\ΣH(g)

(λ, α)ω−α · ω̄−α.

Then it holds

ω

(
1

2π
√
−1

λ

)
(X,Y ) = g

(
1

2π
√
−1

λ

)
(JHX,Y ).

If λ ∈ c+H , then g
(

1
2π

√
−1
λ
)

is a G-invariant Kähler metric on a complex

manifold (M = G/GH , JH) whose Kähler form coincides with ω
(

1
2π

√
−1
λ
)
.

Therefore the map

c+H ∋ λ 7−→ g

(
1

2π
√
−1

λ

)
∈ I2

G(M)

parametrizes all G-invariant Kähler metrics on M = G/GH relative to the
complex structure JH .
For each λ ∈ c+H ∩ a, the diffeomorphism θ̂H : M = G/GH → M = G/GH

preserves a G-invariant Kähler metric g
(

1
2π

√
−1
λ
)
on M , that is, θ̂H : M =

G/GH →M = G/GH is an isometry with respect to g
(

1
2π

√
−1
λ
)
.

For each H ′ ∈ c+H ∩ a, since GH′ = GH and G/GH′ = G/GH , we have
KH′ = K ∩ GH′ = K ∩ GH = KH and thus K/KH′ = K/KH = L. Hence all
H ′ ∈ c+H ∩ a correspond to the same R-space L = K/KH and the convex set
c+H ∩ a parametrizes orbits of the same type KH .
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Next we discuss the characterization of a G-invariant Einstein-Kähler metric
on M = G/GH . Set

δm :=
1

2

∑
α∈Σ(g)+\ΣH(g)

α ∈ t.

We use the following results due to Borel-Hirzebruch and M. Takeuchi.

Lemma 2.3 ([2]).

(2.11) 2δm =
∑

α∈Σ(g)+\ΣH(g)

α ∈ Z+
cH

=
⊕

α∈Π\ΠH

Z+Λα.

and it corresponds to the first Chern class of the complex manifold (M,JH):

c1(M) =

[
ω

(
1

2π
√
−1

2δm

)]
= τ

(
1

2π
√
−1

2δm

)
.

Proposition 2.7 ([17]). The G-invariant Kähler metric g = g
(

1
2π

√
−1
λ
)
on

M is Einstein if and only if λ = b δm for some b > 0.

Since θ(gH) = gH and thus θ(c(gH)) = c(gH), note that we have a direct
sum decomposition

c(gH) = cH = (cH ∩ b) + (cH ∩ a).

Then we show

Lemma 2.4.
2δm ∈ a.

Proof. We compute

θ(2δm) =− σ(2δm)

=− σ

 ∑
α∈Σ(g)+\ΣH(g)

α


=−

∑
α∈Σ(g)+\ΣH(g)

σα

=−
∑

α∈Σ(g)+\ΣH(g)

α

=− 2δm.

Because, α ∈ Σ(g)+ \ ΣH(g) if and only if σα ∈ Σ(g)+ \ ΣH(g). □
Therefore we obtain

Proposition 2.8. The element

Hein := 2δm ∈ Z+
cH

∩ a ⊂ c+H ∩ a

corresponds to the canonical embedding ιHein of the same R-space L = K/KH

into an Einstein-Kähler C-space
(
M = G/GH , ωHein , JH , g

(
1

2π
√
−1
Hein

))
. More-

over, the element Hein is such a unique element of c+H ∩ a up to the multipli-
cation by a positive constant.

12



By the above argument we can choose H = 2δm. Then ιH : L = K/KH →
M = G/GH is the canonical embedding of an R-space into an Einstein-Kähler
C-space.

Set

ki(M) :=
2(2δm, αi)

(αi, αi)
=

∑
β∈Σ(g)+\ΣH(g)

2(β, αi)

(αi, αi)
∈ Z+

for αi ∈ Π(g) \ ΠH(g). Let κ(M) be the greatest common divisor of {ki(M) |
αi ∈ Π(g) \ ΠH(g)} and set

κi(M) :=
ki(M)

κ(M)
∈ Z+

for αi ∈ Π \ ΠH . Then {κi(M) | αi ∈ Π(g) \ ΠH(g)} are relatively prime and
we have expression

(2.12) 2δm =
∑

αi∈Π(g)\ΠH(g)

kα(M)Λα = κ(M)
∑

α∈Π(g)\ΠH(g)

κα(M)Λα.

Then the invariant γc1 in Proposition 1.2 is given as follows:

Lemma 2.5.

(2.13) γc1 = κ(M).

Proof. For each

A =
∑

αi∈Π\ΠH

mi
2αi

(αi, αi)
∈ H2(M,Z) ∼= H1(G̃H ,Z) ∼=

⊕
αi∈Π\ΠH

Z
2αi

(αi, αi)
,

we have
c1(M)(A) = κ(M)

∑
αi∈Π\ΠH

κimi.

Since {κi} are relatively prime, it attains
∑

αi∈Π\ΠH
κimi = 1 for some integers

{mi}. Hence the positive minimum γc1 of c1(M)(A) is equal to κ(M). □

3. Minimal Maslov number of R-spaces

Suppose that H = Hein = 2δm. Then, as discussed in the last section, the
corresponding canonical embedding of an R-space

ι = ιH : L = K̃/K̃H −→ (M = G̃/G̃H , ω

(
1

2π
√
−1

2δm

)
)

is a compact totally geodesic Lagrangian submanifold embedded in an Einstein-
Kähler C-space and thus it is monotone by Proposition 1.1. By means of the
formula (1.1) in Proposition 1.2, we shall calculate the minimal Maslov number
ΣL of such an R-space.

We take an orthogonal direct sum decomposition of gH into ideals as follows:

gH = RH ⊕ g′H .
13



Let G̃′
H be a connected compact Lie subgroup of G̃H with Lie algebra g′H . Then

G̃/G̃′
H is a simply connected compact homogeneous space with the natural

projection

π : G̃/G̃′
H −→ G̃/G̃H .

It is a G̃-homogeneous principal fiber bundle P = G̃/G̃′
H overM = G̃/G̃H with

structure group G̃H/G̃
′
H
∼= U(1) such that the curvature form of the standard

U(1)-connection is equal to 2π
√
−1ωH = 2π

√
−1ω2δm . It is known that there

is a homogeneous Einstein-Sasakian contact structure on G̃/G̃′
H induced from

the Einstein-Kähler structure ω2δm on G̃/G̃H =M .

Set K̃ ′
H := K̃ ∩ G̃′

H and define a compact homogeneous space L̂ := K̃/K̃ ′
H .

Then we have the following diagram of the natural inclusions and projections
of those compact homogeneous spaces:

G̃/G̃′
H = P

πP

?

U(1)

L̂ = K̃/K̃ ′
H

πL̃ K̃H/K̃
′
H

?
L = K̃/K̃H

ι̂H -

ιH - G̃/G̃H =M

Let E be the complex line bundle over M dual to the associated bundle
P×GH/G′

H
CvΛ, where vΛ denotes a (nonzero) highest weight vector of the repre-

sentation space of G̃ corresponding to 2δm ∈ Z+
cH
. Then c1(E) = τ( 1

2π
√
−1

2δm) =

c1(M) and the pull-back bundle π−1
P E is trivial as a complex line bundle over

P .

?

π−1
P E

πP

P = G̃/G̃′
H

?
M = G̃/G̃H

�

�
E

The Lagrangian property of ι : L → M is equivalent to the flatness of the
pull-back connection of the pull-back principal bundle ι−1P by ι : L → M .

L̂ = K̃/K̃ ′
H ⊂ G̃/G̃′

H = P is the horizontal lift of L to ι−1P with respect to
the flat connection. The image of the holonomy homomorphism ρ : π1(L) →
U(1) ∼= G̃H/G̃

′
H of the flat connection is isomorphic to K̃H/K̃

′
H , which must

be a cyclic group of finite order ♯(K̃H/K̃
′
H) and the pull-back flat connection of

the pull-back principal bundle of ι−1P over through the covering map L̂→ L is
trivial. Therefore, since ι−1E has the holonomy group equal to a cyclic group

of order ♯(K̃H/K̃
′
H), we obtain

(3.1) nL = ♯(K̃H/K̃
′
H).

We also observe that L̂ = K̃/K̃ ′
H −→ G̃/G̃′

H = P is a compact totally geodesic

Legendrian submanifold embedded in a Sasakian contact manifold G̃/G̃′
H = P .
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Therefore by (2.13) and (3.1) we obtain

Theorem 3.1. The minimal Maslov number ΣL of an R-space L canonically
embedded in an Einstein-Kähler C-space M is given by the formula

(3.2) ΣL =
2κ(M)

♯(K̃H/K̃ ′
H)
.

4. Some examples

In this section we use some notations from the table of root systems in [3].

4.1. G̃ = G = SU(n + 1), K̃ = K = SO(n + 1), θ(A) = Ā (A ∈ SU(n + 1)).
In this case, g = su(n+ 1), k = o(n+ 1), p =

√
−1Sym0(Rn+1),

t = a =


√
−1


ξ1 0 0 · · · 0
0 ξ2 0 · · · 0
0 0 ξ3 · · · 0
...

...
... · · · ...

0 0 0 · · · ξn+1

 | ξ1, · · · , ξn+1 ∈ R,
n+1∑
i=1

ξi = 0

 .

Π(g) = {α1 = ε1 − ε2, · · · , αn = εn − εn+1},

Σ+(g) = {εi − εj =
∑
i≤k<j

αk | 1 ≤ i < j ≤ n+ 1}.

4.1.1. The case when L = RP n and M = CP n. For

H =
√
−1


ξ1 0 0 · · · 0
0 ξ2 0 · · · 0
0 0 ξ2 · · · 0
...

...
... · · · ...

0 0 0 · · · ξ2

 ∈ a = t.

with ξ1 > ξ2, we have

ΠH(g) = {α2, · · · , αn}, Π(g) \ ΠH(g) = {α1},

Σ+
H(g) =

{
εi − εj =

∑
i≤k<j

αk | 2 ≤ i < j ≤ n+ 1

}
,

Σ+(g) \ Σ+
H(g) =

{
ε1 − εj =

∑
1≤k<j

αk | 1 < j ≤ n+ 1

}

2δm =
∑
α∈Σ+

m

α = (n+ 1)

(
ε1 −

1

n+ 1

n+1∑
j=1

εj

)
= κ(M)Λ1.

Thus we have κ(M) = n+ 1. Choose

Hein = 2δm =

√
−1

n+ 1


n 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
... · · · ...

0 0 0 · · · −1

 ∈ a = t.
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Then

GH = S(U(1)× U(n)),

M = G/GH = SU(n+ 1)/S(U(1)× U(n)) = CP n+1,

KH = S(O(1)×O(n)),

L = K/KH = SO(n+ 1)/S(O(1)×O(n)) = RP n+1.

Moreover

c(gH) = RΛ1 = RH, g′H = {0} ⊕ su(n),

G′
H = {1} × SU(n), G/G′

H = SU(n+ 1)/({1} × SU(n)) ∼= S2n+1,

K ′
H = K ∩G′

H = {1} × SO(n),

K/K ′
H = SO(n+ 1)/({1} × SO(n)) ∼= Sn.

Thus

KH/K
′
H = S(O(1)×O(n))/({1} × SO(n)) ∼= Z2

and hence ♯(K̃H/K̃
′
H) = ♯(KH/K

′
H) = 2. Therefore by formula (3.2) we obtain

ΣL = 2(n+1)
2

= n+ 1.

4.1.2. The case when L is a regular R-space. For a regular element

H =
√
−1


ξ1 0 0 · · · 0
0 ξ2 0 · · · 0
0 0 ξ3 · · · 0
...

...
... · · · ...

0 0 0 · · · ξn+1

 ∈ a = t

with ξ1 > · · · > ξn+1,

GH =



e
√
−1η1 0 · · · 0

0 e
√
−1η2 · · · 0

...
...

...
...

0 0 · · · e
√
−1ηn+1

 | ηi ∈ R,
n+1∑
i=1

ηi = 0

 ∼= T n

KH =



e
√
−1πl1 0 · · · 0

0 e
√
−1πl2 · · · 0

...
...

...
...

0 0 · · · e
√
−1πln+1

 | li ∈ Z,
n+1∑
i=1

li = 0


and the corresponding canonical embedding of an R-space is

ιH : L =
SO(n+ 1)

S(O(1)× · · · ×O(1))
=: F1,··· ,1(Rn+1)

−→M =
SU(n+ 1)

S(U(1)× · · · × U(1))
=: F1,··· ,1(Cn+1).

Moreover we have

ΠH(g) = ∅, Π(g) \ ΠH(g) = Π(g),

Σ+
H(g) = ∅, Σ+(g) \ Σ+

H(g) = Σ+(g)
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and

2δm =
∑

α∈Σ+\ΣH

α =
∑
α∈Σ+

α =
n+1∑
i=1

(n− 2i+ 2)εi =
n∑

i=1

2Λi

=
√
−1


n 0 · · · 0
0 n− 2 · · · 0
...

...
...

...
0 0 · · · −n

 ∈ Z+
c .

Thus we have κ(M) = 2.
Choose

H = Hein = 2δm =
√
−1


n 0 · · · 0
0 n− 2 · · · 0
...

...
...

...
0 0 · · · −n

 ∈ a ⊂ p.

which is also a regular element of a. Then

G′
H =



e
√
−1η1 0 · · · 0

0 e
√
−1η2 · · · 0

...
...

...
...

0 0 · · · e
√
−1ηn+1

 | ηi ∈ R,
n+1∑
i=1

ηi = 0,
n+1∑
i=1

(n− 2i+ 2)ηi = 0

 ,

K ′
H =KH ∩G′

H

=



e
√
−1πl1 0 · · · 0

0 e
√
−1πl2 · · · 0

...
...

...
...

0 0 · · · e
√
−1πln+1

 | li ∈ Z,
n+1∑
i=1

li = 0,
n+1∑
i=1

ili = 0


Then we have

KH/K
′
H
∼= Z2

and thus ♯(K̃H/K̃
′
H) = ♯(KH/K

′
H) = 2. Therefore by formula (3.2) we obtain

ΣL =
2 · 2
2

= 2.

4.2. The case when maximal flag manifolds L = K/F . Let K be a
connected compact semisimple Lie group and F be a maximal torus of K. In
this case G = K ×K, K = ∆K. We equip a maximal flag manifold L = K/F
with an K-invariant Einstein-Kähler metric. The canonical embedding of L =
K/F as an R-space is given by

ιH : L = K/F −→M = K/F ×K/F,

where K/F denotes the conjugate manifold of K/F . Then κ(M) = 2 by the

root system computation and ♯(K̃H/K̃
′
H) = 1 by the simply connectedness of

L = K/F . Hence by formula (3.2) we obtain ΣL = 4.
17



4.3. The case when L is a symmetric R-space. By the formula (3.2) we
can compute the minimal Maslov number for each irreducible symmetric R-
spaces L canonically embedded in a symmetric Einstein-Kähler C-space M .
An Irreducible symmetric R-space means a symmetric R-space L with simple
G. Symmetric Einstein-Kähler C-spaces are nothing but irreducible Hermit-
ian symmetric space of compact type. The number γc1 for each irreducible
Hermitian symmetric space M of compact type is given in [2, p.521].

M = G/GH L = K/KH dimL γc1 nL ΣL

Gp,q(C), p ≤ q Gp,q(R) pq p+ q 2 p+ q
G2p,2q(C), p ≤ q Gp,q(H) 4pq 2p+ 2q 1 4(p+ q)

Gm,m(C) U(m) m2 2m 2 2m
SO(2m)

U(m)
SO(m),m ≥ 5

m(m− 1)

2
2m− 2 2 2(m− 1)

SO(4m)

U(2m)
,m ≥ 3

U(2m)

Sp(m)
m(2m− 1) 2(2m− 1) 2 2(2m− 1)

Sp(2m)

U(2m)
Sp(m),m ≥ 2 m(2m+ 1) 2m+ 1 1 2(2m+ 1)

Sp(m)

U(m)

U(m)

O(m)

m(m+ 1)

2
m+ 1 2 m+ 1

Qp+q−2(C) Qp,q(R), p ≥ 2 p+ q − 2 p+ q − 2 2 p+ q − 2
Qq−1(C), q ≥ 3 Q1,q(R) q − 1 q − 1 1 2(q − 1)

E6

T · Spin(10)
P2(K) 16 12 1 24

E6

T · Spin(10)
G2,2(H)/Z2 16 12 2 12

E7

T · E6

SU(8)

Sp(4)Z2

27 18 2 18

E7

T · E6

T · E6

F4

27 18 1 36

where Gp,q(F): Grassmanian manifold of all p-dimensional subspaces of Fp+q,
for each F = R,C,H. P2(K): Cayley projective plane. Qn(C): complex
hyperquadric of complex dimension n.
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