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Abstract. A weakly reflective submanifold is a minimal submanifold of a Riemannian manifold

which has a certain symmetry at each point. In this paper we introduce this notion into a class of

proper Fredholm (PF) submanifolds in Hilbert spaces and show that there exists so many infinite

dimensional weakly reflective PF submanifolds in Hilbert spaces. In particular each fiber of the

parallel transport map is shown to be weakly reflective. These imply that in infinite dimensional

Hilbert spaces there exist so many homogeneous minimal submanifolds which are not totally geodesic,

unlike in the finite dimensional Euclidean case.

Introduction

In [7] Ikawa, Sakai and Tasaki introduced a concept of weakly reflective subman-

ifolds, which constitute a special class of minimal submanifolds in finite dimensional

Riemannian manifolds. This class is related to other classes of minimal submanifolds

as follows:

totally geodesic
⇒ ⇒

reflective austere ⇒ minimal⇒ ⇒weakly reflective

Let M̃ be a finite dimensional Riemannian manifold. A reflective submanifold of M̃

is defined as a connected component of the fixed point set of an involutive isometry

of M̃ . An immersed submanifold M of M̃ is called weakly reflective ([7]) if for each

p ∈ M and each ξ ∈ T⊥
p M , there exists an isometry νξ of M̃ which satisfies

νξ(p) = p, (dνξ)pξ = −ξ, νξ(M) = M.

Here we call such an isometry νξ a reflection of M at p with respect to ξ. An immersed

submanifold M of M̃ is called austere ([4]) if for each ξ ∈ T⊥M the set of eigenvalues

with their multiplicities of the shape operator Aξ is invariant under the multiplication

by (−1).
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It is an interesting problem to study submanifold geometry of orbits under isomet-

ric actions of Lie groups and to determine their weakly reflective orbits. Podestà ([16])

essentially proved that any singular orbit of a cohomogeneity one action is weakly re-

flective. Ikawa, Sakai and Tasaki ([7]) classified weakly reflective orbits and austere

orbits of s-representations. Ohno ([13]) gave sufficient conditions for orbits of Her-

mann actions to be weakly reflective. Recently Enoyoshi ([3]) showed that there exists

a unique weakly reflective orbit among the principal orbits of the cohomogeneity one

action of the exceptional Lie group G2 on a Grassmann manifold G̃r3(ImO). Notice

that at present all known examples of weakly reflective submanifolds are homogeneous,

that is, orbits of isometric actions by certain Lie groups.

The purpose of this paper is to introduce the concept of weakly reflective subman-

ifolds into a class of proper Fredholm (PF) submanifolds in Hilbert spaces and show

that many infinite dimensional weakly reflective PF submanifolds are obtained from

finite dimensional weakly reflective submanifolds in compact normal homogeneous

spaces through the parallel transport map.

The study of submanifolds in Hilbert spaces was initiated by Terng ([18]). In

order to apply infinite dimensional Morse theory to submanifolds in Hilbert spaces,

she introduced a class of proper Fredholm (PF) submanifolds (cf. Section 1) and studied

isoparametric PF submanifolds. In particular she gave examples of PF submanifolds

which are orbits of the gauge transformations. Such examples were extended by Pinkall

and Thorbergsson ([15]) and eventually reformulated by Terng as P (G,H)-actions

([18]). More generally, PF submanifolds can be obtained through the parallel transport

map ΦK : Vg → G/K ([10], [20]), which is a Riemannian submersion of a Hilbert

space Vg := H0([0, 1], g) onto a compact normal homogeneous space G/K (see (5) in

Section 2). It is known that if N is a closed submanifold of G/K, then the inverse

image Φ−1
K (N) is a PF submanifold of Vg. Nowadays the parallel transport map is

known as a precious tool for obtaining PF submanifolds.

In this paper we first define weakly reflective PF submanifolds similarly to the

finite dimensional case. Then under suitable assumptions we show that ifN is a weakly

reflective submanifold of G/K, then the inverse image Φ−1
K (N) is a weakly reflective

PF submanifold of Vg (Theorems 5, 6, 7, 8). From these results and examples of

weakly reflective submanifolds in G/K, we obtain many examples of homogeneous

weakly reflective PF submanifolds (Examples 1, 2, 3, 4, 5, 6). Moreover we see that

these weakly reflective PF submanifolds are not totally geodesic at all except for rare

cases clarified in Theorem 3. As a consequence those show (Remark 2) that in infinite

dimensional Hilbert spaces there exist so many homogeneous minimal submanifolds

which are not totally geodesic, unlike in the finite dimensional Euclidean case ([17]).

This paper is organized as follows. In Section 1 we introduce weakly reflective

PF submanifolds and related notions. In Section 2 we prepare the setting of P (G,H)-

actions and the parallel transport map ΦK . In Section 3 we study the second funda-



ON WEAKLY REFLECTIVE PF SUBMANIFOLDS IN HILBERT SPACES 3

mental form and the shape operator of a PF submanifold obtained through ΦK . In

Section 4 we give some criteria for so obtained PF submanifolds to be totally geodesic.

In Section 5 we define the canonical reflection of Vg and prove that each fiber of ΦK is

a weakly reflective PF submanifold of Vg. In Section 6 under suitable assumptions we

show that a submanifold N of a compact normal homogeneous space G/K is weakly

reflective if and only if the inverse image Φ−1
K (N) is a weakly reflective PF submanifold

of Vg. In Section 7 supposing that G/K is a Riemannian symmetric space of compact

type we show that for any weakly reflective submanifold N of G/K the inverse image

Φ−1
K (N) is a weakly reflective PF submanifold of Vg.

1. Weakly reflective PF submanifolds and their minimality

Let V be a separable Hilbert space over R. An immersed submanifold M of finite

codimension in V is called proper Fredholm (PF) ([18]) if the restriction of the end

point map T⊥M → V , (p, ξ) 7→ p + ξ to a normal disk bundle of any finite radius

is proper and Fredholm. As in the following, weakly reflective PF submanifolds and

related notions are defined similarly to the finite dimensional case, except for minimal

submanifolds. Note that ([18, p. 16]) for a PF submanifold M , its shape operator in

the direction of each normal vector is a self-adjoint compact operator on a Hilbert

space, which is not of trace class in general.

Definition 1. Let M be a PF submanifold of V . M is called reflective if it is

a connected component of the fixed point set of an involutive isometry of V . M is

called totally geodesic if its second fundamental form is identically zero. M is called

weakly reflective if for each p ∈ M and each ξ ∈ T⊥
p M , there exists an isometry νξ of

V which satisfies

νξ(p) = p, (dνξ)pξ = −ξ, νξ(M) = M.

Here we call such an isometry νξ a reflection of M at p ∈ M with respect to ξ. M is

called austere if for each ξ ∈ T⊥M the set of eigenvalues with their multiplicities of

the shape operator Aξ is invariant under the multiplication by (−1).

At present, three kinds of definitions of ‘minimal’ PF submanifolds are known

(King-Terng [10], Heintze-Liu-Olmos [5], Koike [9]).

Let Aξ be the shape operator of M in the direction of ξ ∈ T⊥M . We denote

by µ1 ≤ µ2 ≤ · · · < 0 < · · · ≤ λ2 ≤ λ1 its non-zero eigenvalues repeated with

multiplicities. Aξ is called ζ-regularizable ([10]) if
∑

k λ
s
k +

∑
k |µk|s < ∞ for all s > 1

and trζ Aξ := lims↘1(
∑

k λ
s
k −

∑
k |µk|s) exists. Then we call trζ Aξ the ζ-regularized

mean curvature in the direction of ξ. M is called ζ-regularizable if Aξ is ζ-regularizable

for all ξ ∈ T⊥M . If M is ζ-regularizable and trζ Aξ vanishes for all ξ ∈ T⊥M , we say

that M is ζ-minimal.
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Aξ is called regularizable ([5]) if trA2
ξ < ∞ and trr Aξ :=

∑∞
k=1(λk + µk) con-

verges, where we regard λk or µk as zero if there are less than k positive or negative

eigenvalues, respectively. Then we call trr Aξ the regularized mean curvature in the

direction of ξ. M is called regularizable if Aξ is regularizable for all ξ ∈ T⊥M . If M

is regularizable and trr Aξ vanishes for all ξ ∈ T⊥M , we say that M is r-minimal.

M is called formally minimal ([9]) (shortly, f-minimal) if trf Aξ :=
∑∞

k=1 mkκk

converges to zero for each unit normal vector ξ ∈ T⊥M , where {κk}∞k=1 denotes

the set of all distinct non-zero eigenvalues of Aξ arranged so that |κk| > |κk+1| or
κk = −κk+1 ≥ 0, and mk is the multiplicity of κk.

Note that each isometry of V is written by x 7→ Px+ q, where P is an orthogonal

transformation of V and q ∈ V . Note also that if M is connected, then the following

are equivalent: (i) M is reflective, (ii) M is totally geodesic, (iii) M is an affine

subspace of V . Moreover we have the following relation for PF submanifolds.

totally geodesic ζ-minimal
⇔ ⇒ - ?

-

reflective austere - ? - r-minimal⇒ ⇒ - ? -weakly reflective f-minimal

We do not know whether an austere PF submanifold is ζ-minimal, r-minimal or f-

minimal in the infinite dimensional case. It is clear that regularizable austere PF sub-

manifolds are r-minimal. It also follows easily from the definition that ζ-regularizable

austere PF submanifolds are both ζ-minimal and r-minimal.

2. P (G,H)-actions and the parallel transport map

In this section we prepare the setting of P (G,H)-actions and the parallel transport

map.

Let G be a Hilbert Lie group, M a Hilbert manifold. A G-action on M is called

proper Fredholm (PF) ([14]) if a map G×M → M×M, (g , p) 7→ (g · p, p) is proper,
and for each p ∈ M a map G → M, g 7→ g · p is Fredholm. If an infinite dimensional

Hilbert Lie group action on a separable Hilbert space V is isometric and PF, then

each of its orbits is a PF submanifold of V ([14, Theorem 7.1.6]).

Let G be a connected compact Lie group with Lie algebra g. Fix an Ad(G)-

invariant inner product of g and equip the corresponding bi-invariant Riemannian

metric with G. For simplicity of notation, we regard G as a subgroup of a general

linear group.

We denote by Vg := H0([0, 1], g) a Hilbert space of all Sobolev H0-paths (i.e.

L2-paths) in g parametrized by t ∈ [0, 1]. Also denote by G := H1([0, 1], G) a Hilbert

Lie group of all Sobolev H1-paths in G parametrized by t ∈ [0, 1]. We use ˆ to denote

a map which corresponds to each x ∈ g (resp. a ∈ G) the constant path x̂ ∈ Vg (resp.
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â ∈ G). G acts on Vg via the left gauge transformations:

g ∗ u := gug−1 − g ′g−1, g ∈ G, u ∈ Vg.

The differential d(g∗) of the transformation g∗ : V → V , u 7→ g ∗ u is given by

d(g∗)(X) = gXg−1 for X ∈ T0̂Vg
∼= Vg. We know that the G-action on Vg is isometric,

transitive and PF ([18, p. 24]).

Let H be a closed subgroup of G×G with Lie algebra h. Define a Lie subgroup

P (G,H) of G by

P (G,H) := {g ∈ G | (g(0), g(1)) ∈ H}.

with Lie algebra LieP (G,H) := {Z ∈ H1([0, 1], g) | (Z(0), Z(1)) ∈ h}. The induced

action of P (G,H) on Vg is called the P (G,H)-action ([19]). Note that P (G,H) is an

inverse image of H under the Lie group homomorphism

Ψ : G → G×G, g 7→ (g(0), g(1)).

Since Ψ is a submersion, it follows that the P (G,H)-action on Vg is isometric and PF

([19, p. 132]). It also follows that if H = {e} × G, then P (G, {e} × G) acts on Vg

transitively and freely ([20, p. 685]). Similarly P (G,G × {e}) acts on Vg transitively

and freely (see also (13) in Section 5).

The natural left action of H on G is defined by

(b1, b2) · a := b1ab
−1
2 , a ∈ G, (b1, b2) ∈ H. (1)

The P (G,H)-action is closely related to this H-action through the parallel transport

map ([10]), which is defined as follows. Let E : Vg → P (G, {e} × G), u 7→ Eu be a

map defined by a unique solution to the linear ordinary differential equation{
E−1

u E′
u = u,

Eu(0) = e.

The parallel transport map Φ : Vg → G is defined by

Φ(u) := Eu(1), u ∈ Vg.

It follows ([19, p. 133]) that for g ∈ G and u ∈ Vg,

(i) Φ(g ∗ u) = Ψ(g) · Φ(u), (ii) P (G,H) ∗ u = Φ−1(H · Φ(u)). (2)

In other words, the following commutative diagram holds.

G ⊃ P (G,H) ↷ Vg ⊃ P (G,H) ∗ u = Φ−1(H · Φ(u))

Ψ ↓ Ψ ↓ Φ ↓ Φ ↓

G×G ⊃ H ↷ G ⊃ H · Φ(u)
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The differential of a map

P (G, {e} ×G) → Vg, g 7→ g−1 ∗ 0̂ (3)

is given by TêP (G, {e}×G) → T0̂Vg, Z 7→ Z ′. We know ([10, Proposition 3.2]) that (3)

is an isometric diffeomorphism with respect to the right invariant Riemannian metric

⟨·, ·⟩ on P (G, {e} ×G) defined by

⟨Z,W ⟩ := ⟨Z ′,W ′⟩L2 , Z,W ∈ TêP (G, {e} ×G).

Since (3) is the inverse map of E, the differential (dΦ)0̂ : T0̂Vg → g of Φ at 0̂ ∈ Vg is

given by

(dΦ)0̂(X) =

∫ 1

0

X(t)dt, X ∈ T0̂Vg
∼= Vg.

Hence the following orthogonal direct sum decomposition holds.

T0̂Vg = ĝ⊕Ker(dΦ)0̂, X =
(∫ 1

0
X(t)dt

)
⊕
(
X −

∫ 1

0
X(t)dt

)
. (4)

Moreover the following facts are known ([20, p. 686], [20, Lemma 5.1]).

Proposition 1.

(i) Φ is a Riemannian submersion.

(ii) P (G, {e} × {e}) acts on each fiber of Φ transitively and freely.

(iii) Φ is a principal P (G, {e} × {e})-bundle.
(iv) Any two fibers of Φ are congruent under the isometries on Vg.

(v) If N is a closed submanifold of G, then Φ−1(N) is a PF submanifold of Vg.

Furthermore the following properties are known ([10, Theorem 4.12], [5, Lemma 5.2]).

Proposition 2. Let N be a closed submanifold of G. Then

(i) Φ−1(N) is both ζ-regularizable and regularizable.

(ii) For each X ∈ T⊥Φ−1(N) the following coincide:

(a) The ζ-regularized mean curvature of Φ−1(N) in the direction of X,

(b) The regularized mean curvature of Φ−1(N) in the direction of X,

(c) The mean curvature of N in the direction of dΦ(X) ∈ T⊥N .

(iii) The following are equivalent:

(a) Φ−1(N) is ζ-minimal, (b) Φ−1(N) is r-minimal, (c) N is minimal.

Let K be a closed subgroup of G with Lie algebra k. Denote by g = k + m the

orthogonal direct sum decomposition. Restricting the Ad(G)-invariant inner product

of g to m we define the induced G-invariant Riemannian metric on a homogeneous

space G/K. Thus G/K is a compact normal homogeneous space. We denote by
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π : G → G/K the natural projection, which is a Riemannian submersion with to-

tally geodesic fiber. For each x ∈ g, xk and xm denote the k- and m-components,

respectively.

The parallel transport map ΦK over G/K is defined by

ΦK := π ◦ Φ : Vg → G → G/K. (5)

Note that if K = {e}, then ΦK = Φ. Note also that ΦK has the same properties as in

Propositions 1 and 2.

In the rest of this section, we mention several facts which will be used later. By

(2) (i), the following diagram commutes for each g ∈ P (G,G× {e}).

Vg
g∗−−−−→ Vg

Φ

y Φ

y
G

(g(0), e)−−−−−→ G

(6)

Let G, K be as above. For a ∈ G we denote by la the left translation by a and

La an isometry on G/K defined by La(bK) := abK for b ∈ G. Then a diagram

G
la−−−−→ G

π

y π

y
G/K

La−−−−→ G/K

(7)

commutes. Combining (6) with (7), the following diagram commutes for g ∈ P (G,G×
{e}) and a := g(0).

Vg
g∗−−−−→ Vg

ΦK

y ΦK

y
G/K

La−−−−→ G/K

(8)

Let G, H be as above. For each a ∈ G, set Ha := (a, e)−1H(a, e). We have

H · a = la(H
a · e). Then it follows from (2) (ii) and (6) that for g ∈ P (G,G × {e}),

u := g ∗ 0̂ and a := Φ(u) = g(0),

P (G,H) ∗ u = g ∗ (P (G,Ha) ∗ 0̂).

The following are Lie algebraic expressions of the tangent spaces of orbits. Since
d
ds

∣∣
s=0

(exp sZ) ∗ 0̂ = −Z ′ for Z ∈ LieP (G,H), we have

T0̂(P (G,H) ∗ 0̂) = {−Z ′ ∈ T0̂Vg | Z ∈ LieP (G,H)},
Te(H · e) = {x− y ∈ g | (x, y) ∈ h}.

(9)
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3. Second fundamental forms and shape operators

In this section we study the second fundamental form and the shape operator of

a PF submanifold obtained through the parallel transport map.

Let G, Vg, Φ be as in Section 2. Let F := Φ−1(e) be a fiber of Φ at e ∈ G. Denote

by ι : F → Vg the inclusion map and regard F as a submanifold Vg. Recall that

P (G, {e} × {e}) acts on F transitively and freely. Let E : T0̂Vg → Γ (ι∗TVg) denote a

map of the extension to a P (G, {e} × {e})-equivariant vector filed along F , i.e.,

E(X)g∗0̂ := gXg−1, X ∈ T0̂Vg, g ∈ P (G, {e} × {e}). (10)

By (9) we have

T0̂F = {−Q′ ∈ Vg | Q ∈ H1([0, 1], g), Q(0) = Q(1) = 0}, (11)

and by (4) we have T⊥
0̂
F = ĝ.

Lemma 1. The Levi-Civita connection ∇TF , the second fundamental form αF ,

the shape operator AF , and the normal connection ∇T⊥F of F satisfy the following.

For −Q′,−R′ ∈ T0̂F，ξ̂ ∈ T⊥
0̂
F ,

(i) ∇TF
−Q′ E(−R′) = [Q,−R′]−

∫ 1

0
[Q,−R′](t)dt,

(ii) αF (−Q′,−R′) =
∫ 1

0
[Q,−R′](t)dt,

(iii) AF
ξ̂
(−Q′) = −[Q, ξ̂] +

[∫ 1

0
Q(t)dt, ξ

]
,

(iv) ∇T⊥F
−Q′ E(ξ̂) =

[∫ 1

0
Q(t)dt, ξ

]
.

Proof. Since Vg is flat, it follows from (10) that

∇ι∗TVg

−Q′ E(−R′) = d
ds

∣∣
s=0

E(−R′)(exp sQ)∗0̂ = [Q,−R′],

∇ι∗TVg

−Q′ E(ξ̂) = d
ds

∣∣
s=0

E(ξ̂)(exp sQ)∗0̂ = [Q, ξ̂].

By (4) our claim follows. □

The following theorem gives Lie algebraic formulas for the second fundamental

form and the shape operator of a PF submanifold obtained through Φ.

Theorem 1. Let N be a closed submanifold of G through e ∈ G. Denote respec-

tively by αN and AN the second fundamental form and the shape operator of N , and by

αΦ−1(N) and AΦ−1(N) those of Φ−1(N). For X,Y ∈ T0̂Φ
−1(N), ξ̂ ∈ T⊥

0̂
Φ−1(N)(⊂ ĝ),

(i) αΦ−1(N)(X,Y ) = αN
(∫ 1

0
X(t)dt,

∫ 1

0
Y (t)dt

)
+1

2

[∫ 1

0
X(t)dt,

∫ 1

0
Y (t)dt

]⊥
−
(∫ 1

0

[∫ t

0
X(s)ds, Y (t)

]
dt
)⊥

,
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(ii) A
Φ−1(N)

ξ̂
(X)(t) = AN

ξ

(∫ 1

0
X(t)dt

)
−1

2

[∫ 1

0
X(t)dt, ξ

]⊤
+
[∫ t

0
X(s)ds, ξ

]
−
[∫ 1

0

∫ t

0
X(s)dsdt, ξ

]⊥
,

where ⊤ and ⊥ denote the projections of g onto TeN and T⊥
e N , respectively.

Proof. (i) Recall that Φ is a Riemannian submersion with decomposition (4).

We use superscripts h and v to denote the projections of T0̂Vg onto ĝ and T0̂F ,

respectively. Set N̄ := Φ−1(N). Then

αN̄ (X,Y ) = αN̄ (Xh, Y h) + αN̄ (Xh, Y v) + αN̄ (Xv, Y h) + αN̄ (Xv, Y v)

= αN (dΦ(X), dΦ(Y ))

+ (∇T⊥F
Y v E(Xh))T⊥

0̂
N̄ + (∇T⊥F

Xv E(Y h))T⊥
0̂
N̄ + αF (Xv, Y v)T⊥

0̂
N̄ .

Define Q,R ∈ H1([0, 1], g) by{
Xv = −Q′,

Q(0) = Q(1) = 0,

{
Y v = −R′,

Y (0) = Y (1) = 0.

Explicitly Q and R are

Q = tXh −
∫ t

0
X(s)ds, R = tY h −

∫ t

0
Y (s)ds.

By Lemma 1 we have

αN̄ (X,Y )− αN (dΦ(X), dΦ(Y ))

=
[∫ 1

0
R(t)dt,Xh

]⊥
+
[∫ 1

0
Q(t)dt, Y h

]⊥
+
(∫ 1

0
[Q,−R′](t)dt

)⊥
.

Let us calculate each term above.[∫ 1

0
R(t)dt,Xh

]
= 1

2 [Y
h, Xh]−

[∫ 1

0

∫ t

0
Y (s)dsdt,Xh

]
,[∫ 1

0
Q(t)dt, Y h

]
= 1

2 [X
h, Y h]−

[∫ 1

0

∫ t

0
X(s)dsdt, Y h

]
.

For the third term, note that integrating by parts we have∫ 1

0
tY (t)dt =

[
t
∫ t

0
Y (s)ds

]1
0
−
∫ 1

0

∫ t

0
Y (s)dsdt = Y h −

∫ 1

0

∫ t

0
Y (s)dsdt.

Using this we have∫ 1

0
[Q,−R′](t)dt=

∫ 1

0

[
tXh −

∫ t

0
X(s)ds, Y (t)− Y h

]
dt

=
[
Xh,

∫ 1

0
tY (t)dt

]
− 1

2 [X
h, Y h]

−
∫ 1

0

[∫ t

0
X(s)ds, Y (t)

]
dt+

[∫ 1

0

∫ t

0
X(s)dsdt, Y h

]
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= 1
2

[
Xh, Y h

]
−

[
Xh,

∫ 1

0

∫ t

0
Y (s)dsdt

]
−
∫ 1

0

[∫ t

0
X(s)ds, Y (t)

]
dt+

[∫ 1

0

∫ t

0
X(s)dsdt, Y h

]
.

From these calculations we obtain (i).

(ii) By (i) and Ad(G)-invariance of the inner product of g, we have

⟨AN̄
ξ̂
(X), Y ⟩L2= ⟨αN̄ (X,Y ), ξ̂⟩L2

=
⟨
AN

ξ (Xh)− 1
2 [X

h, ξ] +
[∫ t

0
X(s)ds, ξ

]
, Y

⟩
L2
.

This proves (ii). □

Remark 1. Let G, K, π, ΦK be as in Section 2. Let N be a closed submanifold

of G/K through eK ∈ G/K. It follows that for x, y ∈ Teπ
−1(N), ξ ∈ T⊥

eKN ∼=
T⊥
e π−1(N),

(i) απ−1(N)(x, y) = αN (xm, ym) +
1

2
[xk, ym]

⊥ − 1

2
[xm, yk]

⊥,

(ii) A
π−1(N)
ξ (x) = AN

ξ (xm) +
1

2
[xm, ξ]k −

1

2
[xk, ξ]

⊤,

where αN and AN are respectively the second fundamental form and shape operator

of N , and απ−1(N), Aπ−1(N) are those of π−1(N). By using these formulas we can

easily generalize Theorem 1 to the case of the parallel transport map ΦK over G/K.

The following corollary can be obtained easily from Theorem 1 (ii).

Corollary 1. Let N be as in Theorem 1. Decompose T0̂Φ
−1(N) = TeN⊕T0̂F .

For ξ ∈ T⊥
e N , x ∈ TeN , −Q′ ∈ T0̂F with expression (11),

(i) A
Φ−1(N)

ξ̂
(x̂)(t)= AN

ξ (x) +
(
t− 1

2

)
[x, ξ],

(ii) A
Φ−1(N)

ξ̂
(−Q′)= −[Q, ξ̂] +

[∫ 1

0
Q(t)dt, ξ

]⊥
.

Here we mention second fundamental forms and shape operators of P (G,H)-

orbits. The following formulas generalize Lemma 1 (ii) and (iii). Recall the Lie

algebraic expressions of the tangent spaces (9).

Theorem 2. Let H be as in Section 2. The second fundamental form αP (G,H)∗0̂

and the shape operator AP (G,H)∗0̂ of an orbit P (G,H) ∗ 0̂ through 0̂ ∈ Vg are given by

the following. For −Z ′,−W ′ ∈ T0̂(P (G,H) ∗ 0̂), ξ̂ ∈ T⊥
0̂
(P (G,H) ∗ 0̂),

(i) αP (G,H)∗0̂(−Z ′,−W ′) =
∫ 1

0
{[Z,−W ′](t)}⊥dt,

(ii) A
P (G,H)∗0̂
ξ̂

(−Z ′) = −[Z, ξ̂] +
[∫ 1

0
Z(t)dt, ξ

]⊥
,
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where ⊤ and ⊥ denote the projections of g onto Te(H · e) and T⊥
e (H · e), respectively.

In order to prove Theorem 2, we use the following formulas for H-orbits. These

formulas can be proved independently by straightforward computations.

Proposition 3. Let H be as in Section 2. The second fundamental form αH·e

and the shape operator AH·e of an orbit H ·e through e ∈ G are given by the following.

For x− y, z − w ∈ Te(H · e)，ξ ∈ T⊥
e (H · e),

(i) αH·e(x− y, z − w) = −1

2
[x− y, z + w]⊥ = −1

2
([x,w]− [y, z])

⊥
,

(ii) AH·e
ξ (x− y) = −1

2
[x+ y, ξ]⊤.

Proof of Theorem 2. Set N := H · e and N̄ := P (G,H) ∗ 0̂ so that N̄ =

Φ−1(N). By Theorem 1 (i)，Proposition 3 (i) and the fact that αN is a symmetric

bilinear form, we have

αN̄ (−Z ′,−W ′)= αN (W (0)−W (1), Z(0)− Z(1)) + 1
2 [Z(0)− Z(1),W (0)−W (1)]

⊥

−
(∫ 1

0
[Z(0)− Z(t),−W ′(t)] dt

)⊥

= −1
2 [W (0)−W (1), Z(0) + Z(1)]⊥ + 1

2 [Z(0)− Z(1),W (0)−W (1)]
⊥

−
([

Z(0),
∫ 1

0
−W ′(t)dt

]
−
∫ 1

0
[Z,−W ′] (t)dt

)⊥

=
(∫ 1

0
[Z,−W ′] (t)dt

)⊥
.

This proves (i). (ii) follows from Theorem 1 (ii) and Proposition 3 (ii). □

4. Totally geodesic properties

The purpose of this section is to give criteria for a PF submanifold Φ−1(N) to be

totally geodesic (Theorem 3), where Φ is the parallel transport map and N is a closed

connected submanifold of G through e ∈ G. From these criteria we see that Φ−1(N)

is not totally geodesic except for rare cases. This leads us to a remarkable property

of homogeneous minimal submanifolds in Hilbert spaces (Remark 2).

Let gss = [g, g] denote the semisimple part and c(g) the center of g. We know the

orthogonal direct sum decomposition g = gss ⊕ c(g). We write Gss for a connected

subgroup of G generated by gss.

Theorem 3. Let G, Vg, Φ be as in Section 2 and N a closed connected sub-

manifold of G through e ∈ G. The following are equivalent.

(i) Φ−1(N) is a totally geodesic PF submanifold of Vg.

(ii) N is a closed subgroup of G such that gss ⊂ TeN .
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(iii) N is a closed subgroup of G such that T⊥
e N ⊂ c(g).

(iv) N is a closed subgroup of G which contains Gss.

Proof. Equivalence of (ii), (iii) and (iv) is clear. (iii) ⇒ (i): Since N is totally

geodesic and T⊥
e N ⊂ c(g), it follows from Theorem 1 (ii) that Φ−1(N) is totally

geodesic at 0̂ ∈ Vg. Since N is a closed subgroup of G, we have Φ−1(N) = Φ−1(({e}×
N) · e) = P (G, e×N) ∗ 0̂ and in particular Φ−1(N) is homogeneous. Thus Φ−1(N) is

a totally geodesic PF submanifold of Vg. (i) ⇒ (iii): Let ξ ∈ T⊥
e N and x ∈ g. Since Φ

is a Riemannian submersion, N is totally geodesic. Thus by Corollary 1 (i) we have

0 = A
Φ−1(N)

ξ̂
(x̂)(t) = (t− 1

2 )[x, ξ].

for all t ∈ [0, 1]. This shows [x, ξ] = 0 and thus we obtain T⊥
e N ⊂ c(g), which is

equivalent to gss ⊂ TeN . Then TeN is a Lie subalgebra of g because gss = [g, g].

Since N is connected and totally geodesic, N is identical to a connected Lie subgroup

of G generated by TeN . Hence N is a closed subgroup of G and (iii) follows. □

Corollary 2.

(i) If G is abelian, then Φ−1(N) is a totally geodesic submanifold of Vg for any

closed connected submanifold N of G.

(ii) Suppose that G is semisimple. Let N be a closed connected submanifold of G.

Then the following are equivalent. (a) Φ−1(N) is a totally geodesic submanifold

of Vg. (b) N = G. (c) Φ−1(N) = Vg.

Proof. (i) Choose a ∈ N and set N ′ := a−1N . Then Φ−1(N ′) is totally

geodesic and thus the assertion follows from commutativity of (6). (ii) is clear. □

Remark 2. It is known that any homogeneous minimal submanifold in a finite

dimensional Euclidean space must be totally geodesic ([17]). From Theorem 3 and

examples of homogeneous weakly reflective PF submanifolds given Sections 5, 6 and

7, we see that in infinite dimensional Hilbert spaces, there exists so many homogeneous

minimal submanifolds which are not totally geodesic.

For fibers of the parallel transport map, we have the following.

Corollary 3.

(i) Let G, K, ΦK be as in Section 2. The following are equivalent. (a) The fiber of

ΦK at eK ∈ G/K is a totally geodesic submanifold of Vg. (b) Each fiber of ΦK

is a totally geodesic submanifold of Vg. (c) gss ⊂ k. (d) m ⊂ c(g). (e) Gss ⊂ K.

(ii) Let G, Φ be as in Section 2. The following are equivalent. (a) The fiber of Φ at

e ∈ G is a totally geodesic submanifold of Vg. (b) Each fiber of Φ is a totally

geodesic submanifold of Vg. (c) G is a torus.
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Remark 3. Recall that Φ : Vg → G is a principal P (G, {e}×{e})-bundle which
is not trivial in general. Corollary 3 (ii) shows that Φ is a Hilbert space bundle if and

only if G is a torus. In this case Φ is a trivial bundle. This agrees with Kuiper’s

theorem ([1, p. 67]), stating that any Hilbert space bundle must be trivial.

5. The canonical reflection of the Hilbert space Vg

In this section we focus on intrinsic symmetry of the parallel transport map and

show that each fiber of the parallel transport map is weakly reflective.

Let G, G, Vg, Φ be as in Section 2. Denote by # a map which corresponds to each

u ∈ Vg (resp. g ∈ G) the inverse path u# (resp. g# ∈ G):

u#(t) := u(1− t), g#(t) := g(1− t).

Definition 2. The canonical reflection r of Vg is an involutive linear orthogonal

transformation of Vg defined by

r(u) := −u#, u ∈ Vg.

Since (g#)
′ = −(g ′)# for each g ∈ G, we have

r(g ∗ 0̂) = g# ∗ 0̂, g ∈ G.

Thus by (2) (i), we obtain a commutative diagram

Vg
r−−−−→ Vg

Φ

y Φ

y
G

i−−−−→ G

(12)

where i is an isometry of G defined by i(a) = a−1 for each a ∈ G. It also follows that

the following diagram commutes.

G ⊃ P (G, {e} ×G) ↷ Vg

# ↓ # ↓ r ↓

G ⊃ P (G,G× {e}) ↷ Vg

(13)

For each g ∈ P (G, {e} ×G) we can easily see that

g#g(1)
−1 ∈ P (G, {e} ×G) and ((g#)g(1)

−1) ∗ 0̂ = g# ∗ 0̂.

Hence via an isometry (3), r induces an involutive isometry r̃ of P (G, {e}×G), which

is defined by

r̃(g) = g(1)−1g#, g ∈ P (G, {e} ×G).

The reflective submanifold associated to r is described as follows.
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Proposition 4. Let W denote the fixed point set of r. Then

(i) W is a closed linear subspace of Vg,

(ii) W is isomorphic to the Hilbert space H0([0, 1/2], g),

(iii) W is contained in the fiber of Φ at e ∈ G.

Proof. (i) follows from linearity of r. (ii) is clear by the expression W = {u ∈
Vg | ∀t ∈ [0, 1], u(t) = −u(1− t)}. (iii) follows from (12). □

One application of the canonical reflection is the following.

Theorem 4. Let N be a closed totally geodesic submanifold of G. Then Φ−1(N)

is an austere PF submanifold of Vg.

Proof. Let (u,X) ∈ T⊥Φ−1(N). Denote by AX the corresponding shape op-

erator of Φ−1(N). Choose g ∈ P (G,G× {e}) so that u = g ∗ 0̂. Set a := Φ(u) = g(0),

N ′ := a−1N and ξ := a−1(dΦ(X)) ∈ T⊥
e N ′. The horizontal lift of ξ at 0̂ ∈ Vg is

the constant path ξ̂ ∈ T⊥
0̂
Φ−1(N). By commutativity of (6) we have g ∗ (Φ−1(N ′)) =

Φ−1(N) and (dg∗)ξ̂ = X. Thus in order to show the invariance of the set of eigenvalues

of AX by the multiplication by (−1), it suffices to prove this for the shape operator

Aξ̂ of Φ−1(N ′) in the direction of ξ̂. Since N ′ is also totally geodesic, it follows from

Corollary 1 that the diagram

T0̂Φ
−1(N ′)

Aξ̂−−−−→ T0̂Φ
−1(N ′)

r

y r

y
T0̂Φ

−1(N ′)
−Aξ̂−−−−→ T0̂Φ

−1(N ′)

commutes. This implies that the set of eigenvalues of Aξ̂ is invariant under the mul-

tiplication by (−1). Thus our claim follows. □

Corollary 4. Let G, H be as in Section 2. If an orbit H · a through a ∈ G is

totally geodesic submanifold of G, then the orbit P (G,H) ∗ u through u ∈ Φ−1(a) is

an austere PF submanifold of Vg.

For the study of weakly reflective submanifolds later, we now introduce the fol-

lowing lemma.

Lemma 2. Let M and B be Riemannian Hilbert manifolds and π : M → B be a

Riemannian submersion. Let N be a closed submanifold of B and (p, ξ) ∈ T⊥π−1(N).

Suppose that νξ and νdπ(ξ) are isometries of M and B, respectively. Suppose also that
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νξ(p) = p, νdπ(ξ)(π(p)) = π(p) and the following diagram commutes.

M νξ−−−−→ M

π

y π

y
B

νdπ(ξ)−−−−→ B

(14)

Then the following are equivalent:

(i) νξ is a reflection of π−1(N) with respect to ξ,

(ii) νdπ(ξ) is a reflection of N with respect to dπ(ξ).

Proof. It is easy to see that the condition νξ(π
−1(N)) = π−1(N) is equivalent

to the condition νdπ(ξ)(N) = N . Then by commutativity of the diagram

T⊥
p π−1(N)

dνξ−−−−→ T⊥
p π−1(N)

dπ

y dπ

y
T⊥
π(p)N

dνdπ(ξ)−−−−−→ T⊥
π(p)N

dνξ(ξ) = −ξ if and only if dνdπ(ξ)(dπ(ξ)) = −dπ(ξ). This proves the lemma. □

Another application of the canonical reflection is the following.

Theorem 5. Let G, H be as in Section 2. Suppose that an orbit H · e through

e ∈ G satisfies the condition (H · e)−1 = H · e. Then

(i) H · e is a weakly reflective submanifold of G,

(ii) P (G,H) ∗ 0̂ is a weakly reflective PF submanifold of Vg.

Proof. (i) It is easy to see that i is a reflection of H · e with respect to any

normal vector at e ∈ G. By homogeneity, H ·e is a weakly reflective submanifold of G.

(ii) By (12) and Lemma 2, r is a reflection of P (G,H) ∗ 0̂ with respect to any normal

vector at 0̂. Since P (G,H) ∗ 0̂ is homogeneous, our claim follows. □

A typical example of H satisfying the condition (H · e)−1 = H · e is that H =

{e} × K or K × {e}, where K is a closed subgroup of G. The following is another

example such that H · e is not a subgroup of G.

Example 1. For each automorphism σ of G, G(σ) := {(a, σ(a)) | a ∈ G} is

a closed subgroup of G × G. The G(σ)-action on G defined by (1) is called the

Conlon’s σ-action ([2]). From now on we suppose that σ2 = id. It easily follows that

H := G(σ) satisfies (H · e)−1 = H · e. Thus by Theorem 5, G(σ) · e is a weakly

reflective submanifold of G, and P (G,G(σ)) ∗ 0̂ is a weakly reflective PF submanifold

of Vg. Note that G(σ) · e is not a subgroup of G in general. Note also that G(σ) · e is
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a totally geodesic submanifold of G since it is given by the Cartan immersion ([6, p.

347]) G/K → G, aK 7→ aσ(a)−1, where K is the fixed point set of σ. On the other

hand P (G,G(σ)) ∗ 0̂ is not totally geodesic in most cases by Theorem 3.

It was essentially proved ([10, Theorem 4.11], [5, Corollary 6.3]) that each fiber of

the parallel transport map is an austere PF submanifold of Vg. The following corollary

asserts that the fibers have higher symmetry.

Corollary 5. Let G, Vg, K, ΦK be as in Section 2. Each fiber of ΦK : Vg →
G/K is a weakly reflective PF submanifold of Vg.

Proof. By Theorem 5 the fiber of ΦK at eK is a weakly reflective PF subman-

ifold of Vg. Since any two fibers of ΦK are congruent under the isometry on Vg, each

fiber of ΦK is a weakly reflective PF submanifold of Vg. □

Remark 4. Corollary 5 shows that for each a ∈ G and each closed subgroup K

of G, the inverse image Φ−1(aK) is weakly reflective. This should be also compared

with Theorem 4, stating that if N is totally geodesic then Φ−1(N) is austere.

Corollary 6. Let G, Vg, Φ be as in Section 2. Each fiber of Φ : Vg → G is a

weakly reflective PF submanifold of Vg.

6. Weakly reflective submanifolds via the parallel transport map I

In this section under suitable assumptions we show that a submanifold of a com-

pact normal homogeneous space is weakly reflective if and only if its inverse image

under the parallel transport map ΦK is a weakly reflective PF submanifold of Vg.

Let G, Vg, G, K be as in Section 2. We consider the following three actions.

1. G acts on Vg by g ∗ u := gug−1 − g ′g−1 for g ∈ G and u ∈ Vg.

2. G×G acts on G by (b1, b2) · a := b1ab
−1
2 for a, b1, b2 ∈ G.

3. G acts on G/K by b · (aK) := (ba)K for a, b ∈ G.

If a closed subgroup of G, G×G or G is given, then we consider the induced action.

Let Ĝ := {b̂ ∈ G | b ∈ G} be the set of constant paths in G and ∆G := {(b, b) | b ∈ G}.

1. Gu = gĜg−1 denotes the isotropy subgroup of G at u = g ∗ 0̂ ∈ Vg, where g ∈ G.
2. (G×G)a = (a, e)∆G(a, e)−1 denotes the isotropy subgroup of G×G at a ∈ G.

3. GaK = aKa−1 denotes the isotropy subgroup of G at aK ∈ G/K.

Theorem 6. Let G, Vg, G, Φ, K, ΦK be as in Section 2.

(i) Let N be a closed submanifold of G. The following are equivalent.

(a) N is a weakly reflective submanifold of G such that for each (a, ξ) ∈ T⊥N ,

a reflection νξ of N with respect to ξ belongs to (G×G)a.



ON WEAKLY REFLECTIVE PF SUBMANIFOLDS IN HILBERT SPACES 17

(b) Φ−1(N) is a weakly reflective PF submanifold of Vg such that for each

(u,X) ∈ T⊥Φ−1(N), a reflection νX of Φ−1(N) with respect to X belongs

to Gu.

(ii) Let N be a closed submanifold of G/K. The following are equivalent:

(a) N is a weakly reflective submanifold of G/K such that for each (aK,w) ∈
T⊥N , a reflection νw of N with respect to w belongs to GaK .

(b) π−1(N) is a weakly reflective submanifold of G such that for each

(a, ξ) ∈ T⊥π−1(N), a reflection νξ of N with respect to ξ belongs to

(a, e)∆K(a, e)−1(⊂ (a, e)∆G(a, e)−1 = (G×G)a).

(c) Φ−1
K (N) is a weakly reflective PF submanifold of Vg such that for each

(u,X) ∈ T⊥Φ−1
K (N) a reflection νX of Φ−1

K (N) with respect to X belongs

to gK̂g−1(⊂ gĜg−1 = Gu), where g ∈ G satisfies u = g ∗ 0̂.

Proof. (i) (a) ⇒ (b): Let (u,X) ∈ T⊥Φ−1(N). Choose g ∈ P (G,G× {e}) so
that u = g ∗ 0̂. Set a := Φ(u) = g(0), N ′ := a−1N and η := a−1(dΦ(X)) ∈ T⊥

e N ′. The

horizontal lift of η at 0̂ ∈ Vg is the constant path η̂ ∈ T⊥
0̂
Φ−1(N). By commutativity

of (6) we have g ∗ (Φ−1(N ′)) = Φ−1(N) and (dg∗)η̂ = X. Thus in order to show the

existence of a reflection νX of Φ−1(N) with respect to X as an element of Gu = gĜg−1,

it suffices to construct a reflection νη̂ of Φ−1(N ′) with respect to η̂ as an element of

G0̂ = Ĝ. Let νdΦ(X) be a reflection of N with respect to dΦ(X) which is given by

νη(c) = b′cb−1 for some (b′, b) ∈ (G×G)a. Then a reflection νη of N ′ with respect to

η is defined by νη := (a, e)−1 ◦ νdΦ(X) ◦ (a, e), that is, νη(c) := bcb−1 for c ∈ G. Note

that νη ∈ (G×G)e. Define a linear orthogonal transformation νη̂ of Vg by

νη̂(u) := dνη ◦ u = bub−1 = b̂ ∗ u, u ∈ Vg.

Note that νη̂ ∈ G0̂. Further by (2) (i) the following diagram commutes.

Vg
νη̂−−−−→ Vg

Φ

y Φ

y
G

νη−−−−→ G

Thus by Lemma 2, νη̂ is a reflection of Φ−1(N ′) with respect to η̂ and (b) follows.

(i) (b) ⇒ (a): Let (a, ξ) ∈ T⊥N . Set N ′ := a−1N , η := a−1ξ ∈ T⊥
e N ′. Fix

u ∈ Φ−1(a). Choose g ∈ P (G,G × e) so that u = g ∗ 0̂. Let X ∈ T⊥
u Φ−1(N) be the

horizontal lift of ξ at u. Let νX be a reflection of Φ−1(N) with respect to X such that

νX ∈ Gu. By commutativity of (6) we have g ∗ Φ−1(N ′) = Φ−1(N) and d(g∗)η̂ = X.

Thus a reflection νη̂ of Φ−1(N ′) with respect to η̂ is defined by νη̂ := (g∗)−1◦νX ◦(g∗).
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Since νη̂ ∈ G0̂ there exists b ∈ G such that νη̂(u) = bub−1. Thus if we define an isometry

νξ of G by νη(c) := bcb−1 for c ∈ G, then it follows by Lemma 2 that νη is a reflection

of N ′ with respect to η and νη ∈ (G×G)e. Therefore a reflection νξ of N with respect

to ξ is defined by νξ := la ◦ νη ◦ l−1
a so that νξ ∈ (G×G)a. This proves (a).

(ii) (a) ⇒ (b): Let (a, ξ) ∈ T⊥π−1(N). Let νdπ(ξ) be a reflection of N which is

given by νdπ(ξ)(cK) = (bc)K for some b ∈ GaK . Since GaK = aKa−1, there is k ∈ K

such that b = aka−1. Define an isometry νξ of G by

νξ(c) := (aka−1, k) · c, c ∈ G.

Note that νξ ∈ (a, e)∆K(a, e)−1. Moreover the following diagram commutes.

G
νξ−−−−→ G

π

y π

y
G/K

νdπ(ξ)−−−−→ G/K

Thus by Lemma 2, νξ is a reflection of π−1(N) with respect to ξ. This proves (b).

(ii) (b) ⇒ (a): Let (aK,w) ∈ T⊥N . Let ξ ∈ T⊥
a π−1(N) be the horizontal

lift of w. Choose a reflection νξ of π−1(N) with respect to ξ which is given by

νξ(c) = (aka−1, k) · c for some (aka−1, k) ∈ (a, e)∆K(a, e)−1. Define an isometry νw

of G/K by νw(cK) := aka−1cK. Then by Lemma 2, νw is a reflection of N with

respect to w. Since aka−1 ∈ GaK , (a) follows.

The equivalence of (b) and (c) of (ii) follows by the similar arguments to (i). □

For our purpose of obtaining weakly reflective PF submanifolds, we give a corol-

lary of Theorem 6 as follows.

Corollary 7. Let G, H, K be as in Section 2 and K ′ a closed subgroup of G.

(i) Suppose that an orbit H · a through a ∈ G is a weakly reflective submanifold of

G such that for each ξ ∈ T⊥
a (H · a), a reflection νξ of H · a with respect to ξ

belongs to (G×G)a. Then the orbit P (G,H) ∗u through u ∈ Φ−1(a) is a weakly

reflective PF submanifold of Vg satisfying the condition in Theorem 6 (i) (b).

(ii) Suppose that an orbit K ′ ·aK through aK ∈ G/K is a weakly reflective subman-

ifold of G/K such that for each ξ ∈ T⊥
a (K ′ · aK), a reflection νξ of K ′ · aK with

respect to ξ belongs to GaK . Then the orbit (K ′ × K) · a is a weakly reflective

submanifold of G satisfying the condition in Theorem 6 (ii) (b). Moreover the

orbit P (G,K ′×K)∗u through u ∈ Φ−1(a) is a weakly reflective PF submanifold

of Vg satisfying the condition in Theorem 6 (ii) (c).

Compared to Corollary 7, the following theorem covers a somewhat different kind

of weakly reflective orbits.
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Theorem 7. Let G, H be as in Section 2. Suppose that an orbit H · e through

e ∈ G is a weakly reflective submanifold of G such that for each ξ ∈ T⊥
e (H · e), a

reflection νξ of H · e with respect to ξ is an automorphism of G. Then the orbit

P (G,H) ∗ 0̂ through 0̂ ∈ Vg is a weakly reflective PF submanifold of Vg.

Proof. Let νξ be a reflection of H · e with respect to ξ ∈ T⊥
e (H · e) which is an

automorphism of G. Define a linear orthogonal transformation νξ̂ of Vg by

νξ̂(u) := dνξ ◦ u, u ∈ Vg. (15)

Since νξ is an automorphism of G, we have νξ̂(g ∗ 0̂) = (νξ ◦ g) ∗ 0̂ for all g ∈ G. This
shows that the following diagram commutes.

Vg

νξ̂−−−−→ Vg

Φ

y Φ

y
G

νξ−−−−→ G

Since νξ̂ fixes 0̂ ∈ Vg, it follows by Lemma 2 that νξ̂ is a reflection of P (G,H) ∗ 0̂ with

respect to ξ̂. By homogeneity of P (G,H) ∗ 0̂, our claim follows. □

In the rest of this section, we see examples of Corollary 7 and Theorem 7.

Example 2. It was proved ([7, p. 442], [16]) that any singular orbit of a coho-

mogeneity one action is weakly reflective. In this case each reflection is given by the

action of the isotropy subgroup. Thus by Corollary 7 we have the following examples.

(i) Let G, H be as in Section 2. Suppose that the H-action is of cohomogeneity

1. If an orbit H · a through a ∈ G is singular, then H · a is a weakly reflective

submanifold of G, and the orbit P (G,H) ∗ u through u ∈ Φ−1(a) is a weakly

reflective PF submanifold of Vg.

(ii) Let G, K, K ′ be as in Corollary 7. Suppose that the K ′-action is of cohomo-

geneity 1. If an orbit K ′ ·aK through aK ∈ G/K is singular, then orbits K ′ ·aK
and (K ′ ×K) · a are weakly reflective submanifolds of G/K and G, respectively.

Moreover the orbit P (G,K ′ ×K) ∗ u through u ∈ Φ−1(a) is a weakly reflective

PF submanifold of Vg.

Example 3. Let G be a connected compact semisimple Lie group. Let K = K1

and K ′ = K2 be connected symmetric subgroups of G with involutions θ1 and θ2,

respectively. Suppose that θ1 ◦ θ2 = θ2 ◦ θ1. Ohno ([13, Theorem 5]) gave a sufficient

condition for orbits (K2×K1) ·a and K2 ·aK1 to be weakly reflective submanifolds of

G and G/K1, respectively. By Corollary 7, in this case the orbits P (G,K2 ×K1) ∗ u
through u ∈ Φ−1(a) is a weakly reflective PF submanifold of Vg.
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Example 4. Let G, K1, K2 be as in Example 3. Ohno ([13, Theorem 4]) also

gave another sufficient condition for an orbit N := (K2 × K1) · a to be a weakly

reflective submanifold of G. In this case νa := la ◦θ1 ◦ l−1
a was shown to be a reflection

of N with respect to any normal vector at a ∈ G. Applying Theorem 7 to his result

we can see that Φ−1(N) = P (G,K2 ×K1) ∗ u (u ∈ Φ−1(a)) is a weakly reflective PF

submanifold of Vg as follows. Choose g ∈ P (G,G × {e}) so that u = g ∗ 0̂. Then

a = Φ(u) = g(0). Set N ′ := a−1N = ((a−1K2a) ×K1) · e. Then θ1 is a reflection of

N ′ with respect to any normal vector at e ∈ N ′. Since θ1 is an automorphism of G,

it follows from Theorem 7 that Φ−1(N ′) is a weakly reflective PF submanifold of Vg.

By commutativity of (6) we have g ∗ Φ−1(N ′) = Φ−1(N). Thus Φ−1(N) is a weakly

reflective PF submanifold of Vg.

7. Weakly reflective submanifolds via the parallel transport map II

In this section supposing that G/K is a Riemannian symmetric space of compact

type we show that for any weakly reflective submanifold N of G/K its inverse image

under the parallel transport map ΦK is a weakly reflective PF submanifold of Vg.

Theorem 8. Let G, Vg, K, π, ΦK be as in Section 2. Suppose that G is

semisimple and its bi-invariant Riemannian metric is induced by the negative multiple

of the Killing form of g. Assume that (G,K) is an effective symmetric pair. If N is

a weakly reflective submanifold of G/K, then

(i) π−1(N) is a weakly reflective submanifold of G,

(ii) Φ−1
K (N) is a weakly reflective PF submanifold of Vg.

Corollary 8. Let M be an irreducible Riemannian symmetric space of com-

pact type (cf. [6]). Denote by G the identity component of the group of isometries of

M . Set K := {a ∈ G | La(p) = p} for a fixed p ∈ M . Let ΦK : Vg → G/K = M be the

parallel transport map. If N is a weakly reflective submanifold of M , then Φ−1
K (N) is

a weakly reflective PF submanifold of Vg.

Proof of Theorem 8. (i) Let (a, ξ) ∈ T⊥π−1(N). Denote by la the left trans-

lation by a ∈ G and La an isometry on G/K defined by La(bK) := abK for b ∈ G. Set

N ′ := L−1
a (N). Let η ∈ T⊥

e π−1(N ′) be the horizontal lift of dL−1
a ◦ dπ(ξ) ∈ T⊥

eKN ′.

By commutativity of (7) we have la(π
−1(N ′)) = π−1(N) and dla(η) = ξ. Thus in

order to show the existence of a reflection νξ of π−1(N) with respect to ξ, it suffices

to construct a reflection νη of π−1(N ′) with respect to η. Let νdπ(ξ) be a reflection

of N with respect to dπ(ξ) ∈ T⊥
aKN . Define a reflection νdπ(η) of N ′ with respect to

dπ(η) = dL−1
a ◦ dπ(ξ) ∈ T⊥

eKN ′ by νdπ(η) := L−1
a ◦ νdπ(ξ) ◦ La. Now we define νη as

follows. Denote by I(G/K) the group of isometries of G/K with identity component
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I0(G/K). By the assumption, a map L : G → I(G/K), a 7→ La is a Lie group isomor-

phism onto I0(G/K) ([6, p. 243]). Since I0(G/K) is a normal subgroup of I(G/K),

we can define a map νη : G → G, b 7→ νη(b) by

Lνη(b) := νdπ(η) ◦ Lb ◦ ν−1
dπ(η). (16)

Note that νη is an automorphism of G and thus an isometry of G which fixes e ∈ G.

Moreover since L(K) = {f ∈ I0(G/K) | f(eK) = eK} and νdπ(η) fixes eK, we have

νη(K) ⊂ K. Furthermore it follows that the induced map on G/K from νη is identical

to νdπ(η). Thus by Lemma 2, νη is a reflection of π−1(N ′) with respect to η. This

proves (i).

(ii) Let (u,X) ∈ T⊥Φ−1
K (N). Choose g ∈ P (G,G × {e}) so that u = g ∗ 0̂. Set

a := Φ(u) = g(0) and N ′ := L−1
a (N). Let η ∈ T⊥

e π−1(N ′) be the horizontal lift of

dL−1
a ◦ dΦK(X) ∈ T⊥

eKN ′ with respect to the Riemannian submersion π : G → G/K.

Further with respect to the Riemannian submersion Φ : Vg → G the horizontal lift of

η at 0̂ ∈ Vg is the constant path η̂ ∈ T⊥
0̂
Φ−1
K (N ′). By commutativity of (8) we have

g ∗ Φ−1
K (N ′) = Φ−1

K (N) and d(g∗)η̂ = X. Thus in order to show the existence of a

reflection νX of Φ−1
K (N) with respect to X, it suffices to construct a reflection νη̂ of

Φ−1
K (N ′) with respect to η̂. By the same way as in (i) we can define a reflection νη of

π−1(N ′) with respect to η . Since νη is an automorphism of G, we can also define a

reflection νη̂ of Φ−1
K (N ′) with respect to η̂ similarly to (15). This proves (ii). □

Remark 5. Even if N is reflective in Theorem 8, Φ−1
K (N) can not be reflective

due to Corollary 2 (ii). In this case there exists one more reflective submanifold N⊥

of G/K corresponding to N ([12, p. 328]) and thus a pair of two weakly reflective PF

submanifolds appears in the Hilbert space Vg.

Remark 6. Let G, K, ΦK be as in Section 2. The fact that each fiber of ΦK

is weakly reflective also follows from Theorem 8 if (G,K) satisfies the assumptions in

Theorem 8. The advantage of Corollary 5 is that it does not require such assumptions.

It is also noted that under such assumptions each of the fibers has at least two different

weakly reflective structures.

Example 5. Ikawa, Sakai and Tasaki ([7, Theorem 4]) classified weakly reflec-

tive submanifolds of the standard sphere given as orbits of s-representations of irre-

ducible Riemannian symmetric pairs. Applying Theorem 8 to their result we obtain

weakly reflective PF submanifolds as follows. Let (U,L) be a compact Riemannian

symmetric pair. Suppose that L is connected. Denote by u = l ⊕ p the canonical

decomposition and Ad : L → SO(p) the isotropy representation. If an orbit Ad(L) · x
through x ∈ p is a weakly reflective submanifold of the hypersphere S(∥x∥) in p, then

the orbit P (SO(p),Ad(L)× SO(p)x) ∗ 0̂ is a weakly reflective PF submanifold of the

Hilbert space Vso(p).
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Example 6. Enoyoshi ([3, Proposition 4]) gave an example of a weakly re-

flective submanifold in a symmetric space SO(7)/SO(3) × SO(4) by the action

of the exceptional Lie group G2. Applying Theorem 8 to her result an orbit

P (SO(7), G2 × (SO(3) × SO(4))) ∗ 0̂ is a weakly reflective PF submanifold of the

Hilbert space Vso(7).

Remark 7. In Theorems 6, 7 and 8, suppose further that N is a weakly reflec-

tive submanifold such that at each point there exists a reflection which is independent

of the choice of normal vectors. Then the corresponding weakly reflective PF subman-

ifolds also have such a property.
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