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Abstract

We study the maximization problem on the Trudinger-Moser inequality in-
volving compact term. This study is generalization of results in [5]. We prove
that decaying speed of compact term plays a crucial role on existence and
nonexistence of maximizer.
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1. Introduction

Assume that N > 2 and Q € R” is a bounded domain. The classical
Trudinger-Moser inequality asserts that

sup e dx
uew N (@) /Q = +00 (> an),

Vulln<1

where wy_; is the surface area of (N — 1)-dimensional unit sphere and

1
ay = Nwy ;. There are many results concerning this inequality so far.

The origin of this inequality is the embeddings of W™ (Q) by [17]. It was
shown that W, (Q) is embedded continuously to the Orlicz space L?* (1)

N
where ¢, (t) = /! — 1 and this embedding is sharp. After that the classi-
cal Trudinger-Moser inequality was shown by [14]. On the variational prob-
lem, the existence of a maximizer is known for any o € (0,ay|. When
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a € (0,ay), we can find existence of maximizer since the Trudinger-Moser
functional is continuous with respect to weak convergence sequence in the set

{u € W&N(Q)‘HVuHN < 1}. On the other hand, when a = ay, the func-

tional is not continuous. Thus existence and non-existence of maximizer is
nontrivial in this case. The first result on the existence of a maximizer is
2] in the case of a unit ball. In general bounded domain case, the existence
result was shown in 2-dimensional case by [4]. In the N-dimensional general
bounded domain case, existence of the maximizer was shown by [10]. Besides
these, some results related to existence of maximizer was obtained in [3, 13].

In R case, the situation is different. There are many studies in this case
also, for instance [1], [6], and so on. Here, we introduce the paper only related
to the variational problems. In [9], they proved the following inequality:

N-2

sup / eaM% B Z oﬂu!ﬁj g d < +o0 (a < ay),
weWtN RNy JRY J! =+oo  (a>ay).

J=0
[Vl §+[lullx <1

In addition, when N > 3, for a € (0, ayy] existence of maximizer was proved
by [9, 8]. However, when N = 2, not only existence results by [15, 8] but
also non-existence result was shown depending on « by [8]. Specifically, it
was shown that a maximizer exists when a € (v, ap) for some constant «,
and maximizer does not exist when « is sufficiently small. The cause is lack
of compactness by vanishing phenomenon of bounded sequences.

In bounded domain case also, non-existence results for the Trudinger-
Moser functional with perturbations exist. In two dimensional case, [16, 5, 7]
investigated the maximization problem on the following

sup /(1 + g(u))e* dx
weHL(Q) JQ
[Vull3<ar

and they clarified the form of g on the borderline of existence and nonexis-
tence of a maximizer. In [16], the author studied two speeds on a blowing up
sequence. One is the speed of remainder which comes from the concentra-
tion around the origin, and another one is that of vanishing on the annular
region. Then the optimal nonlinearity on the behavior of g is shown taking
these two speeds into account. In [7], they studied the unit ball case. They
focus only on the concentration phenomena by using a cut off function and
showed the optimal growth of g more strictly. In addition, they also studied



the variational problem on the inequality in [6]. The variational problem on
Adimurthi-Druet type was also studied by [12] and non-existence result was
obtained. In [5], the author studied the following variational problem

C(A\ f) = sup / (e‘m“? — /\|u|p> dx,
u€H}(B) /B
[Vul2<1
where A is a positive constant and p > 1. This is the case of g(s) =
—A|s|P/ (ag/ ®¢5’). However, since this perturbation decays rapidly as s —
+o00 this situation is different from that in [16, 7] essentially. Before the
studies by [5], existence result obtained by [3] for p = 2 and A < as. As
the extended results due to [5], a maximizer exists for p > 2, A > 0 or for
p € [1,2], sufficiently small A\, and maximizer does not exist for p € [1.2]
and large A\. On this results, the crucial property is the speed of decaying of
Lebesgue term | - |P. Thus, in this paper, we focus on this decaying speed in
more detail.
We study the maximization problem

)= s [ (e = Af(u)) do.
uweH}(B) /B
Vull2<1

where f € C ([0, +00), [0, +00)) satisfies

f(0)=0, and f(s)< Ko (s > .5) for some K,S >0 and a € (0, as).
(1)

Throughout this paper, X denotes the set of all functions in C ([0, +00), [0, +00))
satisfying (1). We set (I), (II), X7, X;; as follows

(I) There is a maximizer for any A > 0.
(IT) There exists a threshold A, = A.(f) such that if A € (0, \,) a maximizer
exists, and if A > )\, maximizer does not exist.
X;:={f € X|() holds.}, X;;:={f € X|(II) holds.}

We will show that X; N X;; = 0 and X; U X;; = X in the section 2. Our
purpose of this paper is to clarify conditions of f € X; and f € X;; by using
only decaying speed of f as s — 0.

Remark 1.1. The second condition in (1) guarantees the compactness of f,
that is if u, satisfies ||Vu,|lz < 1 and u, — wuy weakly in H}(B), then
[ flun)dz — [ f(uo)de.



The main theorem is as follows.

Theorem 1.1. (i) f € X if there exists g € X N C' such that

f(s) < g(s) for any s € [0,400), and lim g'(s)

s—0 S

(i) f € Xy if f € X satisfies as follows:
There exist positive constants ¢, such that

lim&? >,

s—0 8

and for any sufficiently small € > 0,

inf f(s) = f(e) > 0.

s>e
(i1i) Assume that f € X5 and f satisfies

f(s)=s* for s€[0,s), s >0,

or )
feC' and lim J'(s) =1,
s—0 8§
then \(f) > aq + 2¢|B|.
(iv) Assume that f € X;;NCY, and
/
lim 1) = +o0
s—0 S

Then C(As, f) is attained.

=0.

This theorem is extended results in [5]. Indeed, |s|? satisfies the condition
of the part (i) for p > 2, and the part (ii) for p € [1,2]. We note that if
we consider the elliptic equation corresponding to the variational problem
C(\, f), f should be C'. Since this theorem is the argument on only the
maximization problem, the function space X needs not to be differentiable.
As in the section 3 and 4, we need the differentiability of f only in the typical
case. The proof of this theorem is based on the techniques in [5]. However,
in order to complete the proof, we need some preparations which will be

introduced in the section 2.



Remark 1.2. The part (i) of Theorem 1.1 does not need the positivity of f.
Indeed, we can prove the same result for any f € C (|0, +00),R) such that

F0)=0, [f(s)] < Ke** (s> S) for some K, S >0 and a € (0,0), (3)

and (2). However, in this case, there is the possibility of X, UXy # X,
where X = {f € C ([0, +00),R)|f satisfies (3).}, X := {f € X‘(I) holds.},

and X, = {f € X’(II) holds.}.

This paper is organized as follows. In Section 2, we prepare some lemmas
and propositions to prove the main theorem. In Section 3 we prove the part
(i). We will use the blow up analysis. In Section 4, we prove the part (ii).
Also in this section, we will use the blow up analysis, but this techniques are
a little bit different from Section 3 since we consider the case of A — +4-00.
In Section 5, we prove the part (iii) and (iv). The strategies are based on
Section 3 and 4.

2. Preliminaries

First, we fix some notations. The L?(B)-norm is written as | - ||,. For
simplicity, sometimes we write function v(r) as the radially symmetric func-
tion v(z) by supposing that r = |z|. For a function v, we define v, and v_ as
vy = max{v,0} and v_ := min{v,0}. Unless otherwise stated, we assume
that f € X.

We prepare some lemmas and propositions to prove Theorem 1.1. We set

Crad()\7 f) = Sup / <GQQU2 - )\f(’UD) d.ﬁL’,
uGH&md(B) B
[Vull2<1

where Hj,.,(B) is the set of radially symmetric functions in Hj(B). By the
symmetrization of function in H}(B), we can see that C(X, f) = Craa(N, f)
and existence of maximizer of C'(\, f) is equivalent to existence of maximizer
of Craa(A, f).

We take a sequence {u,} satisfying

{tn} C HL,oa(B), [|Vttnlls <1, u,—0 weakly in H(B)
lim [|Vu,lle =1, lm ||Vu,| 28y =0 for any € > 0.
n—oo n—oo

We call {u,} satisfying the above conditions a normalized concentrating se-
quence. Then we have the following upper bound:
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Proposition 2.1 ([2]). For any normalized concentrating sequence {u,}, we
have

limsup/ eUindr < (1+ ¢)|B].
B

n—oo

Proposition 2.2 ([3]). There exists a normalized concentrating sequence
{yn} such that

lim [ e*¥ide = (1+e)|B|

n—oo B

More precisely, for sufficiently large n, vy, satisfies
/ e“Vidy = (1 + €)| B| + ey,
B

where €, is a positive constant such that €, — 0 as n — oo.

The following lemma follows from the definition of X, C'(A, f) and Propo-
sition 2.2.

Lemma 2.3. (i) C(\, f) is continuous and non-increasing with respect to
A

(i) It follows that C(X, f) > (14 €)|B| for any A and f € X.

Proposition 2.4. Assume that f is C*. For any t € [0,1), we have

sup / (ea2“2 — )\f(\u|)> de < C(\, f).
ueH}(B) /B
[Vull2<t

Proof. Set
G\ f) = sup /B (e = A (Jul)) da

u€H} (B)
[Vull2<t

and assume that Cy(A, f) = C(A, f). By the part (ii) of Lemma 2.3, we can
see that 0 is not maximizer. We take a maximizing sequence {u,} C H}(B),
that is,

< 3 0121/,,,21_ — .
Ve <t Jim [ (e = Af(u)) de = €O



Then we have u,, — uy weakly in H}(B) and ||[Vugl|ly = < t. Moreover,
by the compactness of the Trudinger-Moser functional and the functional
[ [(] - ])dz, it follows that

[ (e = Artuol) o= tim [ (5% < xfual)) do = €O 1),

In addition, we may assume that uy > 0 and that uy € H&
symmetrization. Since ug is also a maximizer of

sup [ (e <A do.
ueH}(B) /B

IVull2=t

(B) by the

;rad

there exists the Lagrange multiplier M such that
M /B VuogVodr — /B <2a2uoe“2“3 — )\f’(uo)) ddr =0 (4)
for any ¢ € H}(B). On the other hand, for s € [0, 1/#] we set
H(s) := / [6”(8“0)2 — )\f(5|u0\)] dx.
B
Then since H'(s)|s=1 = 0 we have
] (2000 = ual (o)) do =0,

and hence M = 0. From this and (4), it follows that

/ (2000628 — Af(uo])) ddr = 0
B
for any ¢ € Hj(B). Hence

203110€”2"0 — Af'(Jug|) = 0

for any = € B\ {0} since uy is continuous in any annular domain due to
uy € Hy,0q(B). Thus from f(0) = 0 it follows that Af(]s|) = e*2s* — 1 for

s € [0, |Juo||so]. However, if Af(|s]) = e®2** — 1 for s € [0, ||uo]|so], it follows
that

u+@wzcwﬁ:amﬁ=/

i (6”“3 — )\f(uo)> dx = |B],

which is a contradiction by the part (ii) of Lemma 2.3 again. ]
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Lemma 2.5. (i) IfC(\, f) > (1+e)|B|, then mazimizer of C(\, f) ezists.
(i1) If there exists A such that C(\, f) = (1 + e)|B|, then for A > A
mazximizer does not exist.

Proof. We prove (i). Assume that {u,} is a maximizing sequence of C'(}, f),
namely, {u,} satisfies

() © BBl [Vl <1, T [ (e A (Jua))) dz = COO )
n oo B

Since {u,} is bounded sequence, there exists uy such that up to a subse-
quence u, — ug weakly in H}(B), and ||Vuglls < 1. By the assumption
and Proposition 2.1, we can see that {u,} is not normalized concentrating
sequence. Therefore by the theorem in [11] we have

JEI;O/B (e — A7(fua))) d;c_/B(eawé () do.

Consequently ug is the maximizer.
We prove (ii). Assume that A > X, and uy € Hj,,4(B) is a maximizer of
C(A, f). Then we have

(1+e)B| < C(A,f):/B(eawi_Af(w)) iz

< /B (e‘”“i - )\*f(|u>\|)> dr < C(\, f) = (1+¢)|B|.

This is a contradiction. O
The next lemma follows from the monotonicity of C'(A, f) on f.

Lemma 2.6. Assume that fiy € X;. Then for any f € X satisfying f(s) <
f1(s) for all s € [0,+00), f € X;. On the other hand, assume that fo € Xy;.
Then for any f € X satisfying f(s) > fa(s) for all s € [0,4+00), f € X;;.

Proposition 2.7. It follows that X; N X7 =0 and X; U X = X.

Proof. The first assertion follows from the definitions of X; and X;;. Assume
that f ¢ X;. This implies the existence of A such that C(A, f) is not attained.
By the part (ii) of Lemma 2.3 and the part (i) of Lemma 2.5 it follows that



C(A, f) = (1 + e)|B|. Thus by the part (ii) of Lemma 2.5 C(\, f) is not
attained for any A > A. We set
A i=1nf {A > 0|C(\, f) = (1 +¢)|B|}.

By this definition, for A < A, C(X, f) > (1 +¢)|B| and C(X, f) is attained.
On the other hand, as we confirmed that, for A > A\, C(\, f) = (1 + ¢)|B]|
and C(\, f) is not attained. Therefore f € Xj;. O

3. Proof of Theorem 1 (i)

In this section, we prove the part (i) of Theorem 1.1. The strategies is

based on [5].
We assume that for f € X there is g € X N C? satisfying (2). By Lemma
2.6, we only have to prove that g € X;. We may assume that

g(s) = Kie™" (s >5),  sup |g/(s)| < Ko. (5)

s€0,5]

for some Ki, K5, S > 0 and a € (o, 2). Fix A > 0 and assume that u, €
H}(B) is a maximizer of

Culhg) = sup [ (e = xg(lul)) d,
ueHL(B) /B
Vull2<1

where «,, is a sequence of real numbers such that «,,  as as n — co. Since
Cr(X, g) = C(\, g) as n — oo, we have

C(A g) = lim (ea"“% — )\g(]un])> dzx.
B

n—o0

In addition, since u,, is a bounded sequence, we have u, — wuy weakly in
H}(B) up to a subsequence. We will show the following proposition.

Proposition 3.1. If u, — 0 weakly in H}(B) as n — oo, then we have
1+ as(2e|B))™t 1 _
(14 ol lunll )

a3 [[n %
By this proposition, if u,, — 0 weakly in Hj(B) holds, this is in contra-
diction to the constraint of C,(\,g). Thus there is ug € HJ(B) such that
u, — ug weakly in H}(B). Consequently

tim [ (et = aglul))do = [ (e < Aglaal))

and ug 1S a maximizer.

(oD
2
V|3 > ,



3.1. Preliminaries of the proof of Proposition 3.1

We prepare to prove Proposition 3.1. We note that «,, is a sequence with
o, /@ and that u, € H}(B) is a maximizer of C, (), g) again. By the
symmetrization and similar result to Proposition 2.4, we have

ou,,

IVunll2 =1, un € Hy,q(B), u, >0, and .

<0.

Concerning g, we recall Remark 1.2.
Assume that u,, — 0 weakly in H}(B). By the embedding theorem, we
have
up(x) — 0 in B\ {0}.

Moreover, by the part (ii) of Lemma 2.3 we have

n—oo

(1+e¢)|B| < lim / <eanui — Ag(un)) dz,
B
and this implies that

sup un () = u,(0) = +oo.
z€B

By the Lagrange multiplier theorem, u,, is a solution of

—Au — ]?14_7; <ueanu2 - ﬁ ,<U/>) , u > 07 111 B,
w=0 on 0B,
where A\
Mn = Oén/ (uieanu% - _ung,(un>> d.T
B 20./2

By setting v,, := ai/ 2un, vy, satisfies

—Av, = & (vne”5 -3 g’(anl/Qvn)) , v, >0, inB,

Qaé/Q

v, =0 on 0B,

(6)

and

2 _ _ 2 v A 1. —1/2
IVuall5 = any, M, = /B (vne — ang (o), / Un)) dx.

n
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By the elliptic regularity theory if follows that v, € C?(B). In addition, we
note that lim, ,, v, = 0 in B\ {0} and lim,, o v,(0) = +00. We can also
find that

A

(7% 2 _
Vo5 = — vietn — ———u,q (a;%v,) | dz.
> M, Jp 204;/2

We will study these two terms in the right hand side. By obtaining Proposi-
tion 3.2 in the subsection 3.2 and Proposition 3.12 in the subsection 3.3 we
complete the proof.

For simplicity, we set

Cn = v,(0) = sup v, (z).
zeB

3.2. Estimate of the compact term
We focus on proving the following proposition:
Proposition 3.2. [t follows that
1/2

2o [ (a7 e = ol

as n — Q.

Proof of Proposition 3.2.

Lemma 3.3. We have

lim [ e%dz = (1+e¢)B|, (7)
n— o0 B
and
lim / Ung' (0 ?0,)dz = 0. (8)
n—oo B

Proof. We show that

lim [ e*“ide = (1+e)|B|,

n—o0 B
and
lim | o ?u,g (u,)dz = 0.
n—oo B

11



As we confirmed that in Subsection 3,1, w, is a normalized concentrating
sequence. Thus by Proposition 2.1, we have

(14+¢)|B|] < liminf/ (ea”“ /\g(un)> dx
B

n—0o0

< liminf / €O Un g
B

n—o0

< limsup / et dy;
B

n—o0

< (1+¢€)|B|.

The following estimate comes from (5) and the compactness of the embedding
H}(B) into LY(B) for any q > 1. This yields the second claim.

[ oo

< Kg/und:v+K1/2auie““%dx
B B

o 1— o o

2 2 a 2 «

< Kg/ udr + 2K« (/ unagadx) ’ </ ea2“ndx> ’
B B B

o o o
< Kg/ updz + 2K,a[C(0, g)]°2 (/ ui”_adx) .
B B

Lemma 3.4. It follows that
lim inf M,, > 0.

n—oo

Proof. By the part (ii) of Lemma 2.3 and (8) we have
(1+¢e)|B] < / <e°‘"“ )\g(un)> dx
B
/ e dy + / e dz + o(1)
[un<1] [un>1]
B+ [ wieiae s o)
B

1 A
= 151 o [ (et = e ) do o)
B 200,

Qn

IA

IA

M,
< ’B| + o +0(1).

n

12



Hence for sufficiently large n we have

M, > e|B].

Lemma 3.5. For sufficiently large n, we have
M, <c((1+¢€)|B|+o(1)).

Proof. By Lemma 3.3, we have

> A
- 2000 1/2
M, = /B (vne -~ 1/21)ng( vn)) dx

We set
VM, _&
Ty = e 2,
ﬁcn
and

{qsn(y) = C(Ua (1) — cn),
Yaly) = ¢, va(ray).

Note that 7, = O(e~“/2) by Lemma 3.5. Then, from (6) we have

1 :
_A¢n =4 [¢n€¢n(l+wn) - 9 1/2 nl n)‘g( ann) m Bl/'f‘n?
Qo

4 2 (02 1 _ —c .
Ay, = L/znecn(”n b — e~ \g'(a,2enthn) | in Buyy,.

1/2 Cn
n 2042/

For sufficient large n since (5) and v, < 1 we have

2

cn)'

19/ (a2 ethy)] < Ofcpemn) = ofe

13



Thus we can use the elliptic regularity theory in (10). We have

Vp — 1 in CF(R?).

loc

Moreover, in (9), by the elliptic regularity theory we have
On = oo = — log(l + ‘iL"Q) n Cfoc(Rz%
—Apoy = 4€??=  in R2

For a constant p > 1 we set

. Cn
Up,p = 1IN ?,’Un .

lim / Vv, 2de = a2
B P

n—oo

Lemma 3.6.

We estimate the growth rate of M,, explicitly. We refer the techniques of
the proof of Lemma 3.3 in [9] and the proof of Lemma 3.6 in [18]).

Lemma 3.7. We have

M,
liminf —= > ¢|BJ.
n—oo Cn

Proof. For any fixed p > 1, by (8) and Lemma 3.6 we have

/ evndy = / eVndr + / eVn d
B [vn<cn/p) [vn>cn/p)
2 p2 2 22
< /e”k,p+—2/vne”"d:v
c
B n JB

2 A
|B| + o(1) + ,0_2 (Mn + —1/2/ vng’(anl/Qvn)dx)
c 200" JB

n

2
P

2
Cn

The left hand side is (14¢)|B|+o(1) by (7). Hence we obtain the inequality
of the lemma. O

= |B|+2Z M, +o(1).

Lemma 3.8. For any ¢ € C*°(B) we have

1 2
lim — [ cyope’odx = ¢(0).

n—oo n B

14



We can prove this lemma in the same way as the proof of similar lemma
in the previous works (for example, the proof of Lemma 3.6 in [9] and the
proof of Lemma 3.9 in [18]).

Proposition 3.9. We have

M,
lim —" = e|B].
n—oo C%L

Proof. By Lemma 3.7 we only have to show

M,
limsup —~ < ¢|B|.

n—00 n

Since lim,, s, v, = 0 in B\ {0}, for any & > 0 we have

/)éﬁ&:ﬁBJ+dBy+dU.

€

We take ¢. € C*°(B) such that
$:(0) =1, ¢.<1in B., supp¢. C B..
Then it follows that

M, (1
|Be| +¢|B|+0(1) = / eVndy > — (—/ cnvnevigbgdx) .
. ¢z \M, Jp

By Lemma 3.8 we have

M,
|B:| +e|B| > limsup —-.
n—oo C

Consequently, we finish the proof. m
The following lemma follows from (5) and Proposition 3.9.

Lemma 3.10. For any ¢ € C*°(B) we have

1
lim —/ eng (0 20, ) pda = 0.
B

n—oQ n

Proposition 3.11. For any q € [1,00), there exists a positive constant C(q)
such that for sufficiently large n we have

/ sty = S o).

ch
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Proof. We consider the equation:

—A(epvn) = 37 {(cnvn)evi — K/}/ang'(aﬁlpvn)} in B,
2

v, =0 on 0B.

By Lemma 3.8 and Lemma 3.10 it follows that

(7% 2 A _
— [ (Acyvy,)_dz = —/ €’ — ——cng (a0, | da
/B M [Acnvn <0 204;/2
(6 2
< = [ cyupendr +o(1)
M, Jg
= s+ o(1),

and

/B (Acpvn),dr = /B (Acpvn)dz — / (Acpvn)_dz

B

ov
< cn/ —do + ay + o1
op OV ? )

< az+o(l),

Thus we have [, |Acyv,|de < 205 + o(1) and hence there exists w €
W21(B) such that

Cnun — w  weakly in - W2 (B).
From this,
cyv, — w  weakly in Wy(B) for any v € [1,2)
and hence

(cpvp)tde — / wildx for any ¢ € [1,00). (11)
B B

Moreover, by Lemma 3.8 and Lemma 3.10 w satisfies

—Aw = andy in B,
w=0 on 0B.

16



Thus w is concretely written as follows
1
w = apw; log —. (12)

|z]
Thus from (11) and (12) we have

1 1
/ vide = — (/ aow;  log —dx + 0(1)) :
B tn \JB ||

O
In order to complete the proof of Proposition 3.2 we prove
/ vng (Y ?u,)de = o(c;?). (13)
B
By (2), for any € > 0 there exists d; > 0 such that for any 6 < §; we have

l9'(d)] < &d.
In addition, by the properties of v, there exists r. such that
oo, (x) <6, for z€B\B,, r.—0 as n— oo.
Thus we have
19" (a0, (2)| < eV Pu,(z) for 2€ B\B,, r.—0 as n— oo.

Hence

/ Vg (0?0, )da
B\B’re

where we used (11) and (12). On the other hand, since (5) there exists
K3 = Kj(e) such that

1/ (0, 20, (2))| < Ksvn(z)ean @ for z € B,

< 04;1/25/ vide = %a;lﬂ (C(2)+0(1)), (14)
B Ch

Thus since r. — 0 we have

/ vng (a0, da
B

Te

n

a2
< Kg/ v2eanUndy
B

Te

1_ o

2-2n an a

e ( / ) (0, g))
B

Te
= o(c,?)

By combining this and (14), we finish to prove (13). Consequently, we com-
plete the proof of Proposition 3.2. O

17



3.3. Estimate of the exponential term
In this subsection, we focus on proving the following proposition:

Proposition 3.12. [t follows that

n 8 1
X;—n/Bvie”’%daz‘ >4 + (4# + g) o +o(c, ),
Proof of Proposition 3.12. For any k, > 0 such that x, — 0 as n — oo, we
have
_ag [pleavn)?de +o(1) gt o(1)

Gn v2evnde > Gn. v2dx =
M, Jp\B., " - M, Jps,, " (e[ Bl + o(1))cy, Ch

We go back to the equation (6). Recall that as follows:
The function ¢, is defined by ¢, (y) := ¢, (va(rny) — ¢,) and ¢,, satisfies

n n(2+2 2 -3 n .
—Ay¢n =4 <]. + %) ed) ( +C%)_WC’:1€_C%)\QI (Odn2cn <]. + f—2)> mn Bl/rn'

n Ofn n

We change the notation of the variable y into x again. Then ¢, = ¢ =
—log(1+ |z]*) in C? (R?) and ¢, satisfies

loc
—A¢o = 4€??>  in R2

For sufficiently large n, we recall that

() Jomes
and thus

cle g (a,ﬂ (1 + ¢—;)) = O(e*%) for some A > 0.

n

By using this estimate and the strategy in [13] (the proof of Theorem 1) we
get the following

Proposition 3.13. Given a sequence {R,} with R, € [c%,e™] for some
q > 2, we have

Qp

M,

2 4
vielndr = 4 + ff +o(c,;h). (16)
BRnrn CTL

Combining (15) and (16) we obtain the estimate of the proposition. [
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3.4. Proof of Proposition 3.1 completed
Recall that v, = ! % Un. Proposition 3.2 and Proposition 3.12 yield
Proposition 3.1.

4. Proof of Theorem 1.1. (ii)

In this section, we prove the part (ii) of Theorem 1.1. We define the

function ¢g; and gy as
_)s (s € [0,1]),

We can check that g1, ¢, € X and
g €C g(s) <2, gi(s)>0 forany s € [0,+00),

g2 €CY go(s) <4, gh(s) >0 forany s € [0, +00).

Thus for any f € X with the properties in the part (ii), there exists A =
Ay > 0 such that

Aga(s) < f(s) for any s € [0, +00).

By the Lemma 2.6, we only have to prove that Ags € X;;. This is equivalent
to go € Xy7. Indeed, assuming that ¢ € X;;, we can obtain that Cg € Xy
and A\.(g) = \(Cyq)/C for any positive constant C'. Thus we focus on proving
go € X7. The proof is organized two steps.

St@p 1. g1 € X[[.

Step 2. go € X1 by using that g; € X;;.

The proofs of Step 1 and Step 2 are as follows. For fixed i = 1 or 2, g;
denotes g1 or go. Assume that g; € X, and that u, is a maximizer of C'(\, g;)
for each A. By Proposition 2.4 we have ||Vuy|l2 = 1. On the other hand, we
obtain the following proposition.

Proposition 4.1. There exist positive constants Cy and Cy such that we

have
4 Cy

-+
JuallZ® flualls

IVuallz <1-A + o([[uallze)

as A — +oo.

However, this proposition contradicts the constraint that ||Vu,|l2 = 1 for
large A. Hence for large A maximizer does not exist. Consequently g; € X;;.
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4.1. Preliminaries of the proof of Proposition 4.1

Before the preliminaries, we note the difference of the proofs in the case
7 =1 and the case i = 2. As we said before, we have to prove that ¢, € X;;
before proving that g, € X;; since we use the existence of \,(g;) in order
to prove the existence of \.(g2). The proof of Lemma 4.5 is different point.
The strategy is same as the proof of Theorem 1.1 in [5].

For any sequence A\, such that )\, — +o00 as n — oo, u, denotes a
sequence of maximizer of C(\,,¢;). By Proposition 2.4 we can see that
|[Vun|l2 = 1. Thus there is uy € Hj(B) such that u, — uy weakly in H}(B)
up to a subsequence. Moreover, since

(14 €)|B| < COw.g:) < C(0,9) — M / gi(un)da
B
we have

/ gi(up)der = O (i> as n — 00,
B An

which implies that uy = 0. By the compact embedding we can see that
u, — 0in B\ {0}. We can also see that lim,, o sup,cp tn(z) = u,(0) = 400
since

(1+¢e)|B] < C(An, gi) :/eazu%dx—)\n/gi(un)dmg / 02 g
B B B

In the same way as in Subsection 3.1, by setting v,, := aé/Qun and the La-
grange multiplier theorem, v, satisfies

o« 2 An S —1/2 :
—Av, = 72 (vne”n — i gi(ay "Cug) |, v >0, in B,
2

(17)
v, =0 on 0B,

and
,02 )\n _
Vol =, M, = [ ( - —1/zvngg<an1/%n>) da.
B 200

By the elliptic regularity theory v, € C?(B). In addition, we note that
lim, oo v, = 0 in B\ {0} and lim,, . v,(0) = lim,, o SUP,c g Vn(x) = +00.
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We set ¢, = v,(0). Different from Section 3, we remark that A, — +oc.

Note that
coa_ )1 (s€[01])
gl(s)_ {S% (S>1>
by ) 2s (s €10,1])
ga(s) = {2 2-1H% (s>1)
and thus

sgi(s) < gi(s) and  sgs(s) < 2ga(s).

4.2. Estimate of the compact term

In this section, we focus on proving the following proposition:

Proposition 4.2. There exists a positive constant C; such that

1/2 C, 1
206.;4'71, B Ungl(a;/Qvn)dx = = 7 + 0< )

c2ti
as n — o0.

Proof of Proposition 4.2.

Lemma 4.3.

lim [ e%dz = (1+e¢)B|,

n—oo B

n—oo

lim )\n/ vngg(aglﬂvn)dag =0,
B

liminf M,, > 0,

M, < (L+e) +o(1)).

Proof. We only prove the second equality since the proofs of the others are
same as those in Subsection 3.2. From the first equality we have

(1+e)|B| < lim (611% - /\ngi(ozgl/%n)) dr = (1+¢)|B|— lim /\n/ gi(ay v, dz,
B n—oo

n—oo B
and thus

n—oo

lim A, / gi(ayPv,)dz = 0. (18)
B
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Hence

lim /\n/ vngt(ay?vy)dz < lim 2/\n/ gi(ay v,)dz = 0.

n—oo
O]
We set
vM, _ 7,%
Ty, = e
n ﬁcn )
and

{qsn(y) = (0n(ry) — cn)s

Un(y) = ¢ on(rny).
Note that r, = O(e~/2). Then, from (17) we have

1 g2 _ .
2a1/20n1€ "Angé(%l/2cnwn)] in Bir,, (19)

—A¢, =4 [wneaﬁn(lwn) —
2

4 2 ()2 — | _ :
—Aty, = 2 [@/}ne nll) 9 1/207116 "Angi(as, I/Qann)] in Byp,. (20)

n Oy

For (20) it follows that

2 c2 (Y2 -1
2 3 —Gh N — 4f31/m Yrentnl) —ap _h
2 € "An =7 12 L
Qo Chn fBl/rn ¢ngi(a” quvbn) 2

Concerning [; we have

I <4 / Yidr.
Bl/v‘n

On the other hand, concerning I5 by the definition of g; there exists a positive
constant L such that ]
[2 Z s widﬂ%
L Bl/"”n
where we used v, < 1. Thus

2 -3 —C2
ch e ")\n < L.
Qy
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Thus we can use the elliptic regularity theory in (20). By the strong maxi-
mum principle we have

Yo — 1 in C}(R?), (21)
and i

Wc;?’e_cﬁ)\n = o(1). (22)

«

2

Since (22) we find that ¢;'e )\, = o(c2). Moreover, since (21) we have

g’(a;1/20n¢n) = O(c,;?) in Bpg for each R > 0 . Hence the second term of
the right hand side in (19) vanishes as n — oco. From this fact, in (19), by
the elliptic regularity theory we have

an — ¢00 = - IOg(l + |I|2) in C;OC(R2>7

—Adoo = 4€??=  in R2

For a constant p > 1 we set

c
Up,p i= Min =,y 23
’ { p } (22)

We can get the next lemma same as in the subsection 3.2.

Lemma 4.4. We have

lim / V| de = 22, (24)
B p

n—00

1
lim — cnvne”’%¢d9€ = ¢(0),

n—oo n B

M,
lim — = ¢|B|, (25)

n—oo C’I’L

and there ezists w such that for any v € (1,2) we have
CnUn — w  weakly in W, (B). (26)

Lemma 4.5. We have )
w = apw; log —.

|z]
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Proof in the case i = 1. By (17) and (26) for any ¢ € C3°(B) we have

1/2

ay’” A

If w =0, since ¢'(s) =1 for s € [0, 1] we have

o(1) = as(0) + o1 )—i—" (/ bdz + of1 )

which is a contradiction. Thus w # 0. By (18) we have

_ An 1
0(1) = An/ 91(% I/QUn)CLr > — T/2/ wdx + 0(1) )
B Cn \ ay'” JB\By,

which means that
An = 0(cy). (28)

Going back to (27), by (25) we find that w satisfies

—Aw = 04250 in B,
w=10 on 0B,

and thus we complete to show Lemma 4.5. Il

Proof in the case i = 2. Assume that \.(g;) exists. By Holder’s inequality,

we have
B (/f@) /|f|dx</fdx

Replacing |f| and f2 by ¢1(u,) and go(u,) with u,, which are maximizers of
C'(An, g2) respectively, we have

(1+¢)B| < /B<ea2“%—)\ngz(un)>dm

< /B <eaw%—An|B|—% ( /B gQ(Un)dxf /B gl(un)d:t) dz
< (An\Br% (f gz<un>dac)é ,gl) .



Thus from this it follows that

,er%(émm@maé<xwg

Using Holder’s inequality again, we have

)\n/ g1(up)dr < A\(g1)| Bl
B

Moreover, since g5(s) < 2g;(s) for any s > 0 we have

M [ dhtun)ds < 2. (91)|B.
B

Hence by this estimate, (17) and (25), w in (26) satisfies

—Aw = 04260 in B,
w=20 on 0B.

Consequently we complete the proof and we also obtain that
An = O(cy) (29)

O

Since (25) by obtaining the following estimate we finish the proof of
Proposition 4.2.

- L; 1
/Wﬂ%”wwz—iil
B

7
Cn

for some L;.

Indeed, since sg;(s) < s and sgy(s) < 4s® there exists a constant L such that

_ 4 L .
/ agi(ag o) da < L/ v dr = — </ w'dx + 0(1)> .

4.3. Estimate of the exponential term
In this subsection we prove the following proposition.

Proposition 4.6. It follows that

2 8 1
vielndr < 4w+ (67T + g) — +olc,?). (30)

n

(8%
M, Jg
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Proof of Proposition 4.6. By (28) and (29) we have

Since v, is decreasing function with respect to r it follows that

2 1 _
on(r)e " — — Al (ag 0a(8,)) 2 0 for 7 € [0,6,).

200
We observe that
062 2 22 (6]
v endr = — eV da —l— — ndr = Jy + Jo. (31)
M, M, Bi\Bs,
First, we show that
o5+ o(1)
Jp < 2B (32)

By the rate of A\, and g} for some L > 0 and any 6 > 1

()~ gt (a2 () > 2ol - et
g g\ () > e e

as n — 0o. Thus there exists {6, } such that

Cn (en)? 1 ~1/2
b, — +o0, melin) — = g (as" =
400 ene 204;/2 g; (oz2 9n +00.

For this 6,,, we see that v,(d,) < ¢,/0,. Thus we have v,(r) < ¢,/0, for
r € (0, 1). We define vy, 9, in the same way as (23). Then by using (24) and
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(26), we have
€%)
M, Jg

2 On—1 1

e} n On 2 On

< = (/ Ufi"l) (/ ee’wnvf)nd:v)
Mn B B

< (@Bl + o)) (/Bw d:L‘—f-O(l)) (1+e)|B|+1)m

4
Cn

2
Jy < vievnﬂn dx

Y

where w is as in Lemma 4.5.

For J;, we recall the estimate of A, and we can prove the following esti-
mate by applying the strategies of blow up analysis in [13] (see also Subsection
3.2 in this paper, or Subsection 4.2 in [5]).

6
Jp < 4w+ —Z +o(c, ). (33)

n

Combining (31), (33), and (32) we complete the proof. O

4.4. Proof of Proposition 4.1 completed
We recall that v,, = oé/zun and A\, — +00 as n — oo. Proposition 4.1

follows from Proposition 4.2 and Proposition 4.6.
O

5. Proof of Theorem (iii), (iv)

5.1. Proof of Theorem (iii)
For fi1, fo € X5 with fi < fy we can check that A\.(f1) > A(f2). Thus
we have to check that \.(g) > as + 2¢|B| for g € C? satisfying
32
g(S) = 82 (8 < 51)7 g(S) = Ke** (S < 32)7 %Ilf )g(S) > 07
s€(s1,82
or /
limM =1, g(s)=Ke* (s5<sy), inf ¢g(s) >0,

s—0 8§ s€(s1,52)

for some positive constants sy, so, K and « € (0, ). We can prove \.(g) >
as+2e|B| in the same way as Section 3 by showing the following proposition
instead of Proposition 3.1.
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Proposition 5.1. Fiz A > 0 and assume that u,, € H}(B) is a mazimizer

of
Cn(\, g) := sup / (ea""2 —/\g(|u|)> dz,
weH}(B) /B
[IVull2<1

where «,, is a sequence of real numbers such that o, / as as n — oo. If
u, — 0 weakly in H}(B) as n — oo, then we have

(1 Lt (=N (2]B)" 1

a3 [n %

[0
Va3 > 22

n

)+ ol )

Applying the strategies in Subsection 3.1-3.4 directly, we can prove this
proposition.

5.2. Proof of Theorem (iv)

Assume that f € X;;NC! satisfies the assumption in the part (iv). Set the
sequence \, such that A\, — A\, as n — oo and u,, is a maximizer of C'(\,, f).
In order to prove the part (iv), we assume that sup,.p u,(z) — +oo and
derive a contradiction. The main proposition is as follows.

Proposition 5.2. Assume that A\, and w, as above. For a positive constant
Ch and any large constant L it follows that
L C

+ + o(||lw, || 22
T T Ty, T OUllenlloc)

||Vun||§ <1-A

as n — Q.

By this proposition, we see that u, is bounded in L>(B). Consequently,
by the dominated convergence theorem we have

C(\, f) = lim C(\,, f) = lim (60‘2“% — )\nf(un)> dr = / (60‘2“3 — )\*f(uo)> dz,
B

n—oo n—o0 B

where ug is the weak limit of u,. Consequently, maximizer exists.
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