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Abstract

Our goal is to obtain the John–Nirenberg inequality for ball Banach func-
tion spaces X, provided that the Hardy–Littlewood maximal operator M is
bounded on the associate space X ′ by using the extrapolation. As an appli-
cation we characterize BMO, the bounded mean oscillation, via the norm of
X.
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1 Introduction

The classical BMO semi-norm ∥ · ∥BMO is defined by

∥b∥BMO := sup
Q:cube

1

|Q|

∫
Q

|b(y)−mQ(b)| dy = sup
Q:cube

mQ(|b−mQ(b)|)

for b ∈ L1
loc(Rn). Here and below mQ(f) denotes the average of the locally inte-

grable function f over a cube Q. We follow the standard convention of the usage
of the word “cube”: By a cube we mean a compact cube whose edges are parallel
to the coordinate axes. The BMO space consists of all locally integrable functions
b such that ∥b∥BMO < ∞. Due to the John–Nirenberg inequality and the L∞-BMO
boundedness of singular integral operators, the BMO space is one of the impor-
tant function spaces in real analysis. For example, equivalent expressions of the
BMO norm ∥ · ∥BMO are necessary in order to prove boundedness of commutators
involving BMO functions on various function spaces.
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Given a constant 1 ≤ p < ∞ we define

∥b∥BMOLp := sup
Q:cube

1

∥χQ∥Lp

∥(b−mQ(b))χQ∥Lp .

It is known that the value ∥b∥BMOLp is a semi-norm equivalent to ∥b∥BMO. The
estimate ∥b∥BMO ≤ ∥b∥BMOLp is easily obtained by the usual Hölder inequality.
On the other hand, the opposite estimate C ∥b∥BMOLp ≤ ∥b∥BMO is not obvious.
The following is a famous result named the John–Nirenberg inequality [21] which
proves the estimate.

Theorem 1.1. There exist c1, c2 > 0 such that for all λ > 0, cubes Q and
b ∈ BMO,

|{x ∈ Q : |b(x)−mQ(b)| > λ}| ≤ c1 |Q| exp
(
− c2λ

∥b∥BMO

)
.

We next consider a further generalization of ∥b∥BMOLp in terms of variable
exponent. Replacing the constant p by a measurable function p(·) we define

∥b∥BMO
Lp(·) := sup

Q

1

∥χQ∥Lp(·)
∥(b−mQ(b))χQ∥Lp(·) .

The authors have considered the equivalence between ∥ ·∥BMO and ∥ ·∥BMO
Lp(·) and

obtained some results:

1. (Izuki [15]) If p(·) ∈ P ∩ B, then ∥b∥BMO
Lp(·) and ∥b∥BMO are equivalent.

2. (Izuki–Sawano [18]) If p(·) : Rn → [1,∞) satisfies p− = 1, p+ < ∞ and
p(·) ∈ LH, then ∥b∥BMO

Lp(·) and ∥b∥BMO are equivalent.

3. (Izuki–Sawano–Tsutsui [20]) If p(·) : Rn → [1,∞) satisfies p+ < ∞ and
the Hardy–Littlewood maximal operator M is of weak type (p(·), p(·)), then
∥b∥BMO

Lp(·) and ∥b∥BMO are equivalent.

The precise definition of the operator M and the classes P , B and LH including
variable exponent Lebesgue spaces are found in the next section. We note that the
result due to Izuki–Sawano–Tsutsui [20] is not included in Theorem 1.2 below.

Finally we consider the replacement of not only the exponent but also the
norm of Lp. Ho [12] has obtained the following result as a byproduct of atomic
decomposition via Banach function spaces.

Theorem 1.2. Suppose that we are given a Banach function space X such that
the Hardy–Littlewood maximal operator M is bounded on X ′. We define

∥b∥BMOX
:= sup

Q

1

∥χQ∥X
∥(b−mQ(b))χQ∥X

for b ∈ L1
loc(Rn). Then the norms ∥b∥BMOX

and ∥b∥BMO are equivalent. That is,
for some constant C ≥ 1, we have

C−1∥b∥BMOX
≤ ∥b∥BMO ≤ C ∥b∥BMOX

for any b ∈ BMO.
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The first author [16] has given another simple proof of the theorem by virtue of
the Rubio de Francia algorithm ([5, 25, 26, 27]). The proof due to [16] is applicable
to the case that X is a ball Banach function space and to characterization of
Campanato spaces ([19]). In particular Theorem 1.2 is true for the ball Banach
function spaces.

On the other hand, Ho [13] has proved a generalization of the John–Nirenberg
inequality to the case of variable exponent.

Theorem 1.3. Suppose that p(·) : Rn → [1,∞] satisfies p+ < ∞ and p(·) ∈ LH.
Then there exist c1, c2 > 0 such that for all λ > 0, cubes Q and b ∈ BMO,∥∥∥χ{x∈Q : |b(x)−mQ(b)|>λ}

∥∥∥
Lp(·)

≤ c1 ∥χQ∥Lp(·) exp

(
− c2λ

∥b∥BMO

)
.

Our first aim in this paper is to obtain the John–Nirenberg inequality in ball
Banach function spaces via an extrapolation theorem. Applying the inequality and
the extrapolation again we will give another proof of Theorem 1.2 in the setting of
ball Banach function spaces.

In this paper we use the following notation:

1. Let E ⊂ Rn be a measurable set. The symbol |E| denotes the Lebesgue
measure and χE means the characteristic function.

2. Given a measurable set E such that |E| > 0, a measurable function f and a
positive constant q, we define

m
(q)
E (f) :=

(
1

|Q|

∫
Q

f(x)qdx

)1/q

and mE(f) := m
(1)
E (f).

3. Let w be a locally integrable and positive function defined on Rn. The usual
weighted L1 norm is defined by

∥f∥L1(w) :=

∫
Rn

|f(x)|w(x) dx.

In particular, for a measurable set E, we write

w(E) := ∥χE∥L1(w) = ∥wχE∥L1 =

∫
E

w(x) dx.

4. The symbol C always denotes a positive constant independent of the main
parameters.
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2 Preliminaries

2.1 The Muckenhoupt Ap weights

In this subsection we recall the definition of the Muckenhoupt Ap weights and
state some fundamental results. For further informations on the weights we refer
to [9, 10, 24, 30].

Definition 2.1. Given a locally integrable function f we define the operator M
by

Mf(x) := sup
Q∋x

1

|Q|

∫
Q

|f(y)| dy (x ∈ R),

where the supremum is taken over all cubes Q containing x. The operator M is
said to be the Hardy–Littlewood maximal operator.

Definition 2.2. A weight w is a locally integrable and positive function defined
on Rn. Furthermore a weight w is said to be an A1 weight if

Mw(x) ≤ C w(x) (x ∈ Rn)

holds. On the other hand, let 1 < p < ∞ be a constant. A weight w is said to be
an Ap weight if w satisfies

sup
Q

1

|Q|
∥w1/pχQ∥Lp∥w−1/pχQ∥Lp′ < ∞,

where p′ is the conjugate exponent of p, namely 1/p + 1/p′ = 1 holds. We denote
the set of all Ap weights by Ap for every 1 ≤ p < ∞.

Remark 2.3. We can rephrase the definition of Ap without using the Hardy–
Littlewood maximal operator M as follows. A weight w is an A1 weight if and
only if

[w]A1 := sup
B

{
1

|B|

∫
B

w(x) dx · ∥w−1∥L∞(B)

}
is finite. The value [w]A1 is said to be an A1 constant of w. On the other hand, if
1 < p < ∞, then the following value

[w]Ap := sup
B

(
1

|B|
∥w1/pχB∥Lp∥w−1/pχB∥Lp′

)p

is called an Ap constant of w.

By the Hölder inequality the Muckenhoupt class is nested; Ap ⊂ Aq for 1 ≤
p ≤ q < ∞. In view of the relation we can define the class A∞ as follows:

Definition 2.4. We define A∞ :=
∪

1<p<∞

Ap and an A∞ weight is a weight in the

class A∞.

There are several known definitions equivalent to above; see [22] for example.

4



Theorem 2.5. Let w be a weight. Then the following three conditions are equiv-
alent:

1. w ∈ A∞.

2. There exist two constants δ, C > 0 such that for all cubes Q and S ⊂ Q,

w(S)

w(Q)
≤ C

(
|S|
|Q|

)δ

.

3. The following value, called the A∞ constant, is finite:

[w]A∞ := sup
Q

mQ(w)exp
(
mQ(logw

−1)
)
.

2.2 Lebesgue spaces with variable exponent

In this subsection we define Lebesgue spaces with variable exponent and some
classes of variable exponents.

Definition 2.6. Let p(·) : Rn → [1,∞] be a measurable function. The Lebesgue
space Lp(·) = Lp(·)(Rn) with variable exponent p(·) consists of all functions f sat-
isfying that ρp(f/λ) < ∞ for some λ > 0, where

ρp(f) :=

∫
{p(x)<∞}

|f(x)|p(x) dx+ ∥f∥L∞({p(x)=∞}). (2.1)

Additionally we can give the norm of Lp(·) by

∥f∥Lp(·) := inf {λ > 0 : ρp (f/λ) ≤ 1} . (2.2)

In the statement of variable exponent analysis we use the following notations.

Definition 2.7. 1. Given a measurable function p(·) : Rn → [1,∞], we denote
the conjugate exponent by p′(·), namely 1/p(·)+1/p′(·) ≡ 1 holds. In addition
we define

p+ := ess.supx∈Rnp(x), p− := ess.infx∈Rnp(x)

2. The set P consists of all measurable functions p(·) : Rn → [1,∞] satisfying
1 < p− ≤ p+ < ∞.

3. The set LH consists of all measurable functions r(·) : Rn → (0,∞) satisfying

|r(x)− r(y)| ≤ C

− log(|x− y|)
(|x− y| ≤ 1/2)

and

|r(x)− r∞| ≤ C

log(e+ |x|)
(x ∈ Rn)

for some real constant r∞.

4. The set B consists of all p(·) : Rn → [1,∞] such that M is bounded on Lp(·).

The class LH is established by Cruz-Uribe–Fiorenza–Neugebauer [3, 4] and
Diening [6]. Some conditions equivalent to p(·) ∈ B are obtained by Diening [7].
For further informations including many properties of function spaces with variable
exponent or recent development of the theory of variable exponent analysis we refer
to [2, 8, 17].
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2.3 Ball Banach function spaces

Below M denotes the set of all complex-valued measurable functions defined
on Rn. Based on Bennet–Sharpley [1] we define Banach function spaces.

Definition 2.8. Let X be a linear subspace of M. The space X is said to be a
Banach function space if there exists a functional ∥ · ∥X : X → [0,∞) satisfying
the following conditions for all f, g, fk ∈ M (k ∈ N):

(P1) (Norm property)

(P1-1) ∥f∥X = 0 holds inf and only if f(x) = 0 for almost every x ∈ Rn.

(P1-2) ∥λf∥X = |λ|∥f∥X for all λ ∈ C.
(P1-3) ∥f + g∥X ≤ ∥f∥X + ∥g∥X .

(P2) (Lattice property) If 0 ≤ g(x) ≤ f(x) holds for almost every x ∈ Rn, then
we have ∥g∥X ≤ ∥f∥X .

(P3) (Fatou property) If 0 ≤ f1(x) ≤ f2(x) ≤ . . . and fk(x) → f(x) (k → ∞) hold
for almost every x ∈ Rn, then we have ∥fk∥X → ∥f∥X (k → ∞).

(P4) If a measurable set E satisfies |E| < ∞, then we have ∥χE∥X < ∞.

(P5) If a measurable set E satisfies |E| < ∞, then

∫
E

|f(x)| dx ≤ CE∥f∥X holds,

where CE is a positive constant independent of f .

We next define the associate space and give some fundamental properties.

Definition 2.9. Let X be a Banach function space. The associate space X ′ con-
sists of all f ∈ M satisfying

∥f∥X′ := sup

{∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣ : ∥g∥X ≤ 1

}
< ∞.

The value ∥ · ∥X′ is called the associate norm of X.

Lemma 2.10. Let X be a Banach function space. Then the following hold:

1. The associate space X ′ is a Banach function space.

2. (The Lorentz–Luxemberg theorem) (X ′)′ = X holds, in particular, the norm
∥ · ∥X is equivalent to ∥ · ∥(X′)′ .

3. (Generalized Hölder’s inequality) We have that for all f ∈ X and g ∈ X ′,∫
Rn

|f(x)g(x)| dx ≤ ∥f∥X∥g∥X′ .
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It is known that not only the usual Lebesgue spaces Lp with constant exponent
1 ≤ p ≤ ∞ but also Lp(·) are Banach function spaces and that the associate space
of Lp(·) is Lp′(·) ([23]). Thus we can consider some function spaces including Lp(·)

in the context of Banach function spaces. But there exist some examples which
does not satisfy the definition of Banach function spaces. In order to treat them
we need a class of generalized function spaces wider than Banach function spaces.
Based on Hakim–Sawano [11] we define ball Banach function spaces.

Definition 2.11. A ball Banach function space X is defined by replacing (P4),
(P5) by the following conditions (P4)’, (P5)’ respectively in Definition 2.8:

(P4)’ For all open balls B we have ∥χB∥X < ∞.

(P5)’ For all open balls B we have

∫
B

|f(x)| dx ≤ CB∥f∥X , where CB is a positive

constant independent of f .

The associate space of ball Banach funciton space can be defined by the same
way of the case for Banach function spaces.

We can replace “all open balls” by “all open cubes” or “all compact sets” in
(P4)’ and (P5)’. The Morrey space Mp

q(Rn) with 1 < q < p < ∞ satisfy not (P5)
but (P5)’, that is, the space is not a Banach function space but a ball Banach
function space. This fact is proved by Sawano–Tanaka [29].

We finally note that the norm ∥ ·∥X has a property similar to the Muckenhoupt
Ap weights provided that M is bounded on X.

Lemma 2.12 (Izuki [16]). Let X be a ball Banach function space and suppose
that the Hardy–Littlewood maximal operator M is weakly bounded on X, that is,
∥χ{x∈Rn :Mf(x)>λ}∥X ≤ Cλ−1∥f∥X holds for all λ > 0 and all f ∈ X. Then we have
that for all cubes Q,

1

|Q|
∥χQ∥X∥χQ∥X′ ≤ C.

Applying the Hölder inequality, we can obtain that the opposite estimate:

1 ≤ 1

|Q|
∥χQ∥X∥χQ∥X′

is also true.

3 Main results

3.1 The John–Nirenberg inequality

The aim of this note is to prove the following theorem which extends the well-known
John–Nirenberg inequality:

Theorem 3.1. Let X be a ball Banach function space such that M is bounded
on X ′ and write B := ∥M∥X′→X′ . Then for all b ∈ BMO(Rn) and k ≥ 0,∥∥∥χ{x∈Q : |b(x)−mQ(b)|>k 2n+2 ∥b∥BMO}

∥∥∥
X
≤ C 2

−k

1+2n+4B ∥χQ∥X
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Remark 3.2. We remark that Theorem 3.1 is significant only when k ∈ N. That
is, if Theorem 3.1 is true for k ∈ N, then the theorem is valid for general k ≥ 0.

In fact, for k ≥ 0 consider the decomposition k = [k] + (k− [k]). Then once we
show Theorem 3.1 for k ∈ N ∪ {0},∥∥∥χ{x∈Q : |b(x)−mQ(b)|>k 2n+2 ∥b∥BMO}

∥∥∥
X

≤
∥∥∥χ{x∈Q : |b(x)−mQ(b)|>[k] 2n+2 ∥b∥BMO}

∥∥∥
X

≤ C 2
−[k]

1+2n+4B ∥χQ∥X
≤ C 2

−k

1+2n+4B ∥χQ∥X

holds. Furthermore, if k = 0, then the result is clear. So, one may assume k ∈ N.

3.2 An extrapolation theorem

The proof of Theorem 3.1 is given by the extrapolation result in [5, Theorem 4.6].
We reexamine the proof of [5, Theorem 4.6] to show the following extrapolation
result:

Theorem 3.3. Let X be a ball Banach function space such that M is bounded
on X ′ and write B := ∥M∥X′→X′ . Define F to be the set of all pairs (f, g) of
non-negative measurable functions. Suppose that for every w ∈ A1 satisfying
[w]A1 ≤ 2B the inequality

∥f∥L1(w) ≤ ∥g∥L1(w)

holds for all (f, g) ∈ F such that ∥f∥L1(w) < ∞. Then we have

∥f∥X ≤ 2∥g∥X

for all (f, g) ∈ F such that ∥f∥X < ∞.

Proof. We set Rh(x) =
∞∑
k=0

1

(2B)k
Mkh(x), where it will be understood that Mk

denotes the k-fold composition of the Hardy–Littlewood maximal operator and
that M0h(x) = |h(x)|. As in [5, p. 74] or as we can check directly, we have
|h(x)| ≤ Rh(x), ∥Rh∥X′ ≤ 2∥h∥X′ and [Rh]A1 ≤ 2B. By the duality we have

∥f∥X = sup

{∣∣∣∣∫
Rn

f(x)h(x) dx

∣∣∣∣ : ∥h∥X′ ≤ 1

}
.

Fix h ∈ X ′ such that ∥h∥X′ ≤ 1 arbitrarily. If h = 0, then
∣∣∫

Rn f(x)h(x) dx
∣∣ ≤

2∥g∥X is obvious. We consider the case 0 < ∥h∥X′ ≤ 1. Since [Rh]A1 ≤ 2B, our
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assumption is applicable. Therefore we obtain∣∣∣∣∫
Rn

f(x)h(x) dx

∣∣∣∣ ≤ ∫
Rn

|f(x)h(x)| dx

≤
∫
Rn

f(x)Rh(x) dx

≤
∫
Rn

g(x)Rh(x) dx

≤ ∥Rh∥X′∥g∥X
≤ 2∥g∥X .

3.3 Proof of Theorem 3.1

For the proof of Theorem 3.1 we will need two additional lemmas: In [28, p.400],
we showed the following local estimates for BMO functions.

Lemma 3.4. For any k ∈ N∪{0}, a cube Q and a nonconstant BMO(Rn)-function
b, we have ∣∣{x ∈ Q : |b(x)−mQ(b)| > k 2n+2 ∥b∥BMO

}∣∣ ≤ 21−k|Q|.

Hytönen and Pérez proved the following quantitative estimate [14, Theorem
2.3].

Lemma 3.5. Let w ∈ A∞, and let q := 1 +
1

2n+3[w]A∞

. Then for all cubes Q,

m
(q)
Q (w) ≤ 2mQ(w). (3.1)

We complete the proof of Theorem 3.1. Let w ∈ A1, and write ε :=
1

2n+3[w]A∞

>

0. Then we have m
(1+ε)
Q (w) ≤ 2mQ(w) for all cubes Q. Consequently

w(E)

w(Q)
≤

2

(
|E|
|Q|

) ε
1+ε

. As a result, we have

w
({

x ∈ Q : |b(x)−mQ(b)| > k 2n+2 ∥b∥BMO

})
≤ 21+

ε(1−k)
1+ε w(Q)

≤ 2
1+ 1−k

1+2n+3[w]A1 w(Q).

Thus, if [w]A1 ≤ 2B, then we apply Theorem 3.3 to(
2
−1− 1−k

1+2n+4Bχ{x∈Q : |b(x)−mQ(b)|>k 2n+2 ∥b∥BMO}, χQ

)
∈ F

and obtain ∥∥∥χ{x∈Q : |b(x)−mQ(b)|>k 2n+2 ∥b∥BMO}
∥∥∥
X
≤ 2

2+ 1−k

1+2n+3B ∥χQ∥X . (3.2)
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3.4 Another proof of Theorem 1.2

Applying Theorem 3.1 (the John–Nirenberg inequality) and Theorem 3.3 (the
extrapolation) we can give another proof of Theorem 1.2. We note that we do
not use the Rubio de Francia algorithm directly. In this paper we have used the
algorithm only to get the extrapolation.

Take b ∈ BMO and a cube Q arbitrarily. The estimate ∥b∥BMO ≤ C ∥b∥BMOX
is

easily obtained by Lemmas 2.10 and 2.12. We next prove the opposite inequality.
We remark that the norm of the associated space of L1(w) satisfies

∥f∥L1(w)′ = ∥w−1f∥L∞ .

We observe that if w ∈ A1, then M is bounded on this associate space, that is

∥w−1M(fw)∥L∞ ≤ [w]A1∥f∥L∞ .

Thus, we are in the position of applying Theorem 3.1 to X = L1(w) to have∥∥∥χ{x∈Q : |b(x)−mQ(b)|>k 2n+2 ∥b∥BMO}
∥∥∥
L1(w)

≤ 2
3+ −k

1+2n+4[w]A1 ∥χQ∥L1(w)

for all k > 0. Here we have used the precise estimate (3.2) and Remark 3.2 below
Theorem 3.1. If we integrate this inequality against k > 0, then we have∫

Q

|b(x)−mQ(b)|
2n+2 ∥b∥BMO

w(x)dx =

∥∥∥∥∫ ∞

0

χ{x∈Q : |b(x)−mQ(b)|>k 2n+2 ∥b∥BMO}dk
∥∥∥∥
L1(w)

=

∫ ∞

0

(∥∥∥χ{x∈Q : |b(x)−mQ(b)|>k 2n+2 ∥b∥BMO}
∥∥∥
L1(w)

)
dk

≤
(∫ ∞

0

2
3+ −k

1+2n+4[w]A1 dk

)
∥χQ∥L1(w)

=
8 + 2n+7[w]A1

log 2
∥χQ∥L1(w).

Consequently,∫
Q

|b(x)−mQ(b)|w(x)dx ≤ 22n+11[w]A1∥b∥BMO

∫
Q

w(x)dx.

If we use Theorem 3.3, then we have

∥b∥BMOX
≤ C∥b∥BMO.

Remark 3.6. In [16, 19] the authors have applied the Rubio de Francia algorithm
to get the estimate ∥b∥BMOX

≤ C∥b∥BMOLq for some 1 < q < ∞. On the other
hand, the proof above has directly yields the estimate ∥b∥BMOX

≤ C∥b∥BMO.
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[23] O. Kováčik and J. Rákosńık, On spaces Lp(x) andW k,p(x), Czechoslovak Math.
J. 41 (1991), 592–618.

[24] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal func-
tion, Trans. Am. Math. Soc. 165 (1972), 207–226.

[25] J. L. Rubio de Francia, Factorization and extrapolation of weights, Bull. Am.
Math. Soc. (N.S.) 7 (1982), 393–395.

[26] J. L. Rubio de Francia, A new technique in the theory of Ap theory. In: Topics
in Modern Harmonic Analysis, vol. I, II (Turin/Milan, 1982), pp. 571–579,
Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983.

[27] J. L. Rubio de Francia, Factorization theory and Ap weights, Amer. J. Math.
106 (1984), 533–547.

[28] Y. Sawano, Theory of Besov spaces, 56 Springer, Singapore, 2018. xxiii+945
pp.

[29] Y. Sawano and H. Tanaka, The Fatou property of block spaces, J. Math. Sci.
Univ. Tokyo 22 (2015), 663–683.

[30] E. M. Stein, Singular Integrals and Differentiability Properties of Functions.
Princeton Mathematical Series, No. 30 Princeton University Press, Prince-
ton, N.J. 1970.

13


