
ON THE LIFTING OF HILBERT CUSP FORMS TO

HILBERT-HERMITIAN CUSP FORMS

SHUNSUKE YAMANA

Abstract. We construct a lifting that associates to a Hilbert cusp form
a Hilbert-Hermitian cusp form. This is a generalization of the lifting of
elliptic cusp forms constructed by Ikeda to arbitrary Hilbert cusp forms.
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1. Introduction

The main theme of this paper is to attach a Hilbert-Hermitian cuspidal
Hecke eigenform to an arbitrary Hilbert cuspidal Hecke eigenform by means
of a Fourier expansion. Hecke has treated the case of holomorphic modular
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forms on the upper half-plane. Various kinds of generalization of this the-
ory have been attempted. Holomorphic modular forms on the product of
the upper half-planes over a totally real field are nowadays called Hilbert
modular forms. Siegel pioneered the generalization of the theory of Hecke
to modular forms on the upper half-space now named after him. Hilbert-
Siegel and Hilbert-Hermitian modular forms are the natural generalizations
of Hilbert modular forms to tube domains on which symplectic or unitary
groups act. These modular forms are of fundamental importance in num-
ber theory and algebraic geometry, but unfortunately, their reputation does
not match their importance. In contrast to the beauty of elliptic modular
forms which is derived from the ubiquity of easily accessible examples, lack
of attractive examples seems to be responsible for this unfortunate state.

It has been nearly 20 years since Tamotsu Ikeda has discovered a remark-
able construction of Siegel and Hermitian cusp forms in [16, 17]. Analogous
liftings were constructed for other tube domains in [34, 22], but there was
little room for generalization in this construction. However, Ikeda subse-
quently invented a new approach from a representation theoretic standpoint.
Starting with a Hilbert cusp form which does not have supercuspidal com-
ponents, Ikeda and the author associate to it a family of Hilbert-Siegel cusp
forms in [18]. In such a special case the liftings are described in terms of a
concrete realization of degenerate Whittaker models called Jacquet integrals
on degenerate principal series.

In the present paper we study the Hermitian case and construct liftings
of arbitrary Hilbert cusp forms. To that end, we need generalizations of de-
generate principal series and the Jacquet integrals. The unramified Jacquet
integral is known as the Siegel series and plays a significant role in the local
and global theories of quadratic forms and theta correspondence, and, ulti-
mately, in a number of interesting problems in arithmetic (cf. [35, 12, 26]).
Its generalization is of independent interest.

To be explicit, we here let E/F be a CM extension with Galois involution
τ . We write A = A∞ · Af and E = E∞ · Ef for their adèle rings, where
A∞ = F ⊗Q R and E∞ = E ⊗Q R and where Af and Ef are the finite parts
of the adèle rings. We denote the set of real embeddings of F by S∞ and
Weil’s restriction of scalars from E to F by RE

F . Let

Gn =

{
g ∈ RE

FGL2n

∣∣∣∣ tgτ
[

0 1n
−1n 0

]
g = λn(g)

[
0 1n

−1n 0

]
, λn(g) ∈ GL1

}
be a quasisplit unitary similitude group in 2n variables. Let

Hern = {z ∈ RE
FMn | tzτ = z}

be the space of Hermitian forms with respect to E/F . Define three homo-
morphisms d : GL1 → Gn, m : RE

FGLn → Gn and n : Hern → Gn by

d(ξ) =

[
1n 0
0 ξ · 1n

]
, m(A) =

[
A 0
0 t(A−1)τ

]
, n(z) =

[
1n z
0 1n

]
.
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Let Pn = d(GL1)m(RE
FGLn)n(Hern) be a parabolic subgroup of Gn.

The identity component Gn(A∞)+ of Gn(A∞) acts componentwise on the
Hermitian symmetric domain

Hd
n =

∏
v∈S∞

Hv, Hv = {Z ∈ Mn(C) |
√
−1( tZ̄ − Z) > 0}.

We define the origin i of Hd
n and the subgroup K+

∞ of Gn(A∞)+ by

i = (
√
−11n, . . . ,

√
−11n) ∈ Hd

n, K+
∞ = {g ∈ Gn(A∞)+ | g(i) = i}.

For ξ ∈ A×
∞ and l ∈ Rd we put |ξ|l =

∏
v∈S∞

|ξv|lvFv
. For a ∈ E×

∞ and

κ ∈ Zd we set εκ(a∞) =
∏

v∈S∞
(av/a

τ
v)

κv/2. When κ, ℓ ∈ Zd and F is a

function on Hd
n, we define a function F|κℓ g : Hd

n → C by

F|κℓ g(Z) = F(gZ)εκ(det g)jℓ(g, Z)−1, jℓ(g, Z) =
∏

v∈S∞

det(cvZv + dv)
ℓv

|λn(gv)|nℓv/2

for g = (gv)v∈S∞ ∈ Gn(A∞)+, gv =

[
∗ ∗
cv dv

]
.

The subset Her+n of Hern(F ) consists of totally positive definite Hermitian
matrices over E. We define a holomorphic function e∞ on A∞ ⊗R C by

e∞(z) =
∏

v∈S∞
e2π

√
−1zv . Let ψ =

∏
v ψv be the additive character of

A/F whose restriction to A∞ coincides with e∞|A∞ .
A Hilbert-Hermitian cusp form F on Gn of weight ℓ with respect to the

character εκ is a smooth function on Gn(F )\Gn(A) which transforms on the
right by the character k 7→ εκ(det k)jℓ(k, i)

−1 of K+
∞ and such that F∆ is a

holomorphic function on Hd
n having a Fourier expansion of the form

(1.1) F∆(Z) =
∑

B∈Her+n

| detB|ℓ/2wB(∆,F)e∞(tr(BZ))

for each ∆ ∈ Gn(Af ), where wB(F) is a function on Gn(Af ) and the holo-
morphic function F∆ : Hd

n → C can be defined by

F∆|κℓ g∞(i) = F(g∞∆), g∞ ∈ Gn(A∞)+.

The Hilbert-Hermitian cusp form F is a cuspidal automorphic form on
Gn(A) in the sense of Langlands (see Proposition A4.5 of [33]) with scalar K-

type k 7→ εκ(det k)
jℓ(k,i)

and killed by certain differential operators (cf. Proposition

4.2 of [5]). If F is right invariant under an open compact subgroup D of
Gn(Af ), then F∆ is a traditional holomorphic cusp form with respect to the
arithmetic subgroup Gn(F )+∩∆D∆−1, where Gn(F )+ = Gn(F )∩Gn(A∞)+.
It is important that the group Gn(Af ) acts on the space of Hilbert-Hermitian
cusp forms: for δ ∈ Gn(Af ) we define ρ(δ)F by (ρ(δ)F)(g) = F(gδ).

Let π ≃ ⊗′
vπv be an irreducible cuspidal automorphic representation of

GL2(A) generated by a Hilbert cusp form of weight κ and central character
ω̂. We write πf = ⊗′

pπp for its finite part. Fix an auxiliary Hecke character χ̂
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of E whose restriction to A× coincides with ω̂. Denote its restriction to E×
f

by χ̂f . Take ℓ(χ̂) ∈ Zd so that the restriction of χ̂ to E×
∞ is εℓ(χ̂). Since G1

is the quotient of RE
FGL1 ×GL2 by GL1 embedded diagonally, we can view

χ̂−1
f ⊠πf as a representation of G1(Af ). We take n to be odd throughout this

paper as the key simplifying feature (3.2) can apply to the similitude group
Gn for odd n. Let Pe be a parabolic subgroup of Gn with Levi subgroup
(RE

FGL2)
(n−1)/2 ×G1. Denote the modulus character of Pe(Af ) by δPe . We

define the Galois twist τχ̂ by composing χ̂ with the conjugation map. We
write Πf for the unique irreducible subrepresentation of

Ind
Gn(Af )
Pe(Af )

δ
−1/4
Pe

⊗ {(τχ̂−1
f ⊗ πE

f )
⊠(n−1)/2 ⊠ (χ̂−1

f ⊠ πf )},

where πE
f = ⊗′

pπ
Ep
p denotes the base change of πf to GL2(Ef ).

In Sections 3 through 7 we will explicitly construct a family χ̂fג}
B }B∈Her+n

of nonzero linear functionals on Πf which satisfy

(1.2) χ̂fג
B ◦Πf (n(z)d(ξ)m(A)) = ε−ℓ(χ̂)(detA)ψ(tr(Bz))גχ̂f

ξ−1tAτBA

for all z ∈ Hern(Af ), ξ ∈ F×
+ , A ∈ GLn(E) and B ∈ Her+n .

Theorem 1.1. The Fourier series

Jκ
κ (f)∆(Z) =

∑
B∈Her+n

|detB|(κ+n−1)/2גχ̂f
B (Πf (∆)f)e∞(tr(BZ))

defines a Hilbert-Hermitian cusp form on Gn of weight κ+n−1 with respect
to εκ, where κ = 1

2(κ + n − 1 + ℓ(χ̂)). The map f 7→ Jκ
κ (f) is a Gn(Af )-

intertwining embedding Πf into the space of Hilbert-Hermitian cusp forms.

Here κ + n − 1 means the tuple (κv + n − 1)v∈S∞ ∈ Zd. Appendix A
gives an explanation of how this theorem can be viewed in the framework of
Arthur’s classification. We can make Theorem 1.1 more precise, if none of
πp is supercuspidal, i.e., there is a character µf =

∏
p µp of A×

f such that πf

is equivalent to the unique irreducible subrepresentation ⊗′
pA(µp, µ

−1
p ω̂p) of

the principal series ⊗′
pI(µp, µ

−1
p ω̂p) of GL2(Af ). To lighten notation, we put

χp =
τχ̂−1

p (µp ◦NE
F ), νp = ω̂

(n+1)/2
p µ−n

p .

Then the local component Πp of Πf at p turns out to be equivalent to the
unique irreducible subrepresentation An(χp, νp) of the degenerate principal
series In(χp, νp) of Gn(Fp) that is induced from the character of Pn(Fp)

d(ξ)m(A)n(z) 7→ ω̂p(ξ)
(n+1)/2 τχ̂p(detA)−1µp(ξ

−nNE
F (detA))

and degenerate Whittaker functionals are given by the Jacquet integrals

w
χp

B (hp) = | detB|n/2Fp

n∏
j=1

L(j, µ2
pω̂

−1
p ϵn+j

Ep/Fp
)

×
∫
Hern(Fp)

hp

([
0 1n

−1n 0

]
n(zp)

)
ψp(tr(Bzp)) dzp
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for B ∈ Hern(Fp) ∩ GLn(Ep), where ϵEp/Fp
is the character of F×

p whose

kernel is NE
F (E

×
p ). See Corollary 6.4 for a precise relation between χ̂pג

B and

w
χp

B . We form the restricted tensor product

An(χf , νf ) = ⊗′
pAn(χp, νp), wχf

B = ⊗pw
χp

B .

Corollary 1.2. Notation being as above, the Fourier series

Iκn(h)∆(Z) =
∑

B∈Her+n

| detB|(κ+n−1)/2

µf (detB)
wχf
B (Πf (∆)h)e∞(tr(BZ))

is a Hilbert-Hermitian cusp form on Gn of weight κ+ n− 1 with respect to
εκ for every h ∈ An(χf , νf ).

The series Jκ
κ (f) is left invariant under Pn(F ) if and only if the family

χ̂fג}
B }B∈Her+n

is compatible in the sense of (1.2). Put Gn = kerλn ≃ U(n, n).
We view G1 as a subgroup of Gn via the embedding

g =

[
α β
γ δ

]
7→


1n−1

α β
λ1(g)1n−1

γ δ

 .

If Jκ
κ (f) is left invariant under J1 =

(
0 1
−1 0

)
∈ G1(F ) ⊂ Gn(F ), then since

J1 and Pn(F ) generate Gn(F ), the series Jκ
κ (f) is automorphic. One can

prove this fact directly in the special case where πf is an irreducible principal
series. For the reader’s convenience we give an outline. Let

Nn
n−1 =




1n−1 x
0 1

z − y txτ y
tyτ 0

0n
1n−1 0
− txτ 1


∣∣∣∣∣∣∣∣
x, y ∈ En−1

z ∈ Hern−1

 .

The Schrödinger representation associated to S ∈ Her+n−1 is extended to
the Weil representation ωS of G1(A)⋉Nn

n−1(A). For ϕ ∈ ωS,f we define the
(S, ϕ)th Fourier-Jacobi coefficient of a function F : Pn(F )\Gn(A) → C by

FS
ϕS
(g′) =

∫
Nn

n−1(F )\Nn
n−1(A)

F(vg′)Θ(ωS(vg′)ϕS) dv

for g′ ∈ G1(A), where ϕS ∈ ωS is defined by taking the Gaussian at the
archimedean components. When F∆ is holomorphic for every ∆ ∈ Gn(Af )
and wB(∆,F) = 0 for B /∈ Her+n , Lemma 7.7 of [18] tells us that F is left
invariant under Gn(F ) if and only if (ρ(δ)F)SϕS

is left invariant under J1 for

all S ∈ Her+n−1, ϕ ∈ ωS,f and δ ∈ Gn(Af ). This notion of Fourier-Jacobi
coefficients is an adèlic version of the classical one (cf. Theorems 5.1 and
6.1 of [7]). Thus it suffices to show that Iκn(h)

S
ϕS

is left invariant under J1.
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Denote by In(χf ) the restriction of In(χf , νf ) to Gn(Af ). Lemma 10.1
defines a G1(Af )-intertwining and Nn

n−1(Af )-invariant map

(1.3) β1
S : In(χf )⊗ ωS → I1(χf ).

The proof is now accounted for by the following relation:

Iκn(h)
S
ϕS

= Iκ1 (β
1
S(h⊗ ϕS)).

Since I1(χf ) is the restriction of the automorphic representation χ̂−1
f ⊠ πf ,

the right hand side is the Fourier series of a modular form.
One can construct analogous Hilbert-Hermitian cusp forms on U(m,m)/F

for even m by taking the first Fourier-Jacobi coefficient of Iκm+1(h). Her-
mitian cusp forms on U(ℓ, ℓ)/Q constructed by Ikeda in [17] are a particular
case. We do not touch on this aspect as the structure of the A-packet for
U(m,m) is not as simple as that for Gn (see Section 18 of [17]). A lift-
ing analogous to Corollary 1.2 is constructed in [18] for metaplectic groups.
Since the restriction of Πf to Gn(Af ) can be reducible, the Hermitian case
is more complicated. It makes our exposition simpler to deal with the group
Gn rather than Gn.

The proof of Theorem 1.1 consists of two steps. The first step is to

construct the invariant functional χ̂fג
B . It is essentially local in nature, i.e.,

it is built out of local functionals χ̂pג

B on the local components Πp of Πf .
Since we restrict ourselves to odd n, a Levi subgroup of Pn(F ) acts on Her+n
transitively, so that a compatible family χ̂fג}

B }B∈Her+n
is clear from (1.2). The

main difficulty in this paper is to show that χ̂pג

B enjoys properties similar to

those of w
χp

B when πp is supercuspidal and Ep ̸≃ Fp ⊕ Fp. Proposition 7.2

proves some invariance of χ̂pג

B , which (1.2) implies. Though we give a uniform
exposition, since it is cumbersome to prove the split and non-split cases at
one time, the split case is also dealt with in Appendix B. We can extend
the Fourier-Jacobi coefficients Jκ

κ (f)
S
ϕS

to functions on B2(F )\GL2(A) due
to the invariance (cf. Proposition 3.3, Remark 8.2(1)). Here the assumption
on the parity of n is used to extend ωS,f to the similitude group.

The second step is to prove an analogous inductivity stated in Lemma
10.5, which implies that Jκ

κ (f)
S
ϕS

∈ π. When πp is not supercuspidal, the

invariance is proved in Lemma 5.3(3) and the inductive structure is (1.3) (see
Lemma 10.1). In the nonsplit supercuspidal case both properties are proved
indirectly by global methods: one can prove that the unique irreducible
subrepresentation of

Ind
Gn(A)
Pe(A) δ

−1/4
Pe

⊗ {(τχ̂−1 ⊗ πE)⊠(n−1)/2 ⊠ (χ̂−1 ⊠ π)}

is residual and directly check that χ̂pג

B occurs in the explicit factorization of
Bth Fourier coefficients of those residual automorphic forms. We remark
that all the results and the proofs in this paper carry over to holomorphic
cusp forms on quaternion upper half-spaces with minor changes (cf. [34, 23]).
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Finally, we construct cuspidal Hecke eigenforms by making Theorem 1.1
explicit. To state the formula in a style closer to the traditional one,
we let F = Q and require π to be generated by a primitive form f =∑∞

m=1 am(f)qm ∈ Sκ(Γ0(N)) of square-free level N in this introductory
section. Denote the integer ring of the imaginary quadratic field E by r.
Put

Γ
(n)
0 [N ] =

{[
A B
C D

]
∈ Gn(Q)+ ∩GL2n(r)

∣∣∣∣ C ∈ NMn(r)

}
.

We write

L(s, π) =
∞∑

m=1

am(f)

ms+(κ−1)/2
=
∏
p|N

1

1− p−sp−s

∏
p∤N

1

(1− αpp−s)(1− α−1
p p−s)

.

Denote the set of positive definite Hermitian semi-integral matrices of size

n by R+
n . Let F̃p(B,X) be a certain Laurent polynomial arising from the

unramified Jacquet integral with respect to B defined in (9.1) and (11.1).
Define a holomorphic function on Hn by the Fourier series

H(Z) =
∑

B∈R+
n

e∞(tr(BZ))|detB|(κ−1)/2
∏
p|N

| detB|spp
∏
p∤N

F̃p(B,αp).

The following result is included in Corollary 11.3.

Corollary 1.3. If n is odd, then H|(κ+n−1)/2
κ+n−1 γ = H for γ ∈ Γ

(n)
0 [N ].

When n = 1, the function H reduces to the well-known new vector of
π. The subgroup D =

∏
p Γn[rp, Nrp] of Gn(Af ) is defined in (5.2) so that

Γ
(n)
0 (N) = D ∩ Gn(Q)+. Since Gn(A) ̸= Gn(F )Gn(R)D in general, one needs

a tuple of holomorphic modular forms on Hd
n to obtain a Hermitian modular

form on Gn (see Section 11, [17, Section 13]).
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National University of Singapore, Hebrew University of Jerusalem and Uni-
versity of Rijeka for their hospitality during my visits. This work is par-
tially supported by Osaka City University Advanced Mathematical Insti-
tute (MEXT Joint Usage/Research Center on Mathematics and Theoretical
Physics).

Notation

We add the table of notations at the end of this paper for the reader’s
convenience. Here we list some of general notations to be used throughout
this paper. For an associative ring O with identity element we denote by
O× the group of all its invertible elements and by Mm

n (O) the O-module of
all m× n matrices with entries in O. Put Om = Mm

1 (O), Mn(O) = Mn
n(O)

and GLn(O) = Mn(O)×. The zero element of Mm
n (O) is denoted by 0 and

the identity element of the ring Mn(O) is denoted by 1n. If x1, . . . , xk are
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square matrices, then diag[x1, . . . , xk] denotes the matrix with x1, . . . , xk in
the diagonal blocks and 0 in all other blocks. If O has an involution a 7→ aτ ,
then for a matrix x over O, let tx be the transpose of x and txτ the conjugate
transpose of x.

The symbols Z, Q, R, C stand for the rings of rational integers, rationals,
reals, complex numbers, respectively, and N denotes the set of strictly pos-
itive rational integers. We write R×

+ and S for the subgroups of C× which
consist of strictly positive real numbers and complex numbers of absolute
value 1, respectively. Define characters e : C → C× and ε : C× → S by

e(z) = e2π
√
−1z, ε(u) = u/∥u∥ (z ∈ C u ∈ C×)

where ∥ ∥ is the standard absolute value in C, not its square. If x ∈ R, then
[x] will denote the biggest integer inferior or equal to x.

WhenX is a smooth affine variety over a field F and S is an F -algebra, we
use X(S) to denote the S-points of X, or simply X to denote its F -points.
If F is a local field, then we write S(X) for the space of Schwartz-Bruhat
functions on X. When X is a real Lie group, we denote its connected
component of the identity by X+.

2. Groups, parabolic subgroups and Weil representations

Let F for the moment be an arbitrary field and E a quadratic étale algebra
over F , i.e., E is either a separable quadratic field extension of F (the inert
case) or E = F ⊕ F (the split case). Let x 7→ xτ denote the nontrivial
F -automorphism of E. Thus (a, b)τ = (b, a) for a, b ∈ F in the split case.
Define the norm map NE

F : E× → F× by NE
F (x) = xxτ and the trace map

TE
F : E → F by TE

F (x) = x+ xτ . Let

Hern = {B ∈ RE
FMn | tBτ = B}, Herndn = Hern ∩ RE

FGLn

be the spaces of Hermitian matrices in Mn(E) or GLn(E) with the right
RE

FGLn-action given by

B⟨A⟩ = tAτBA (B ∈ Hern, A ∈ RE
FGLn).

Given B ∈ Hern and Ξ ∈ Herm, we sometimes write B ⊕ Ξ instead of
diag[B,Ξ] ∈ Herm+n. The associated similitude unitary group GUB consists
of all matrices A ∈ RE

FGLn that satisfy B⟨A⟩ = λB(A)B with λB(A) ∈ F×.
This group admits a homomorphism λB : GUB → F× whose kernel is
the stabilizer of B in RE

FGLn and denoted by UB. We define another
homomorphism ΛB : GUB → E× by

ΛB(A) = λB(A)−[n/2] detA.

Let Gn = GUJn = GU(n, n), where

(2.1) GU(n, n) = {g ∈ RE
FGL2n | tgτJng = λn(g)Jn with λn(g) ∈ F×}



9

is a unitary similitude group considered as an F -algebraic group, where

Jn =

[
0 1n

−1n 0

]
∈ GL2n(F ).

The kernel of the scale map λn = λJn : Gn → F× is denoted by Gn = UJn =
U(n, n). We formally set G0 = F×. The center Zn of Gn consists of scalar
matrices over E and is naturally identified with RE

FGL1.

Remark 2.1. When n = 1, there is an accidental isomorphism

G1(F ) ≃ E× ×GL2(F )/∆, ∆ = {(ξ, ξ) | ξ ∈ F×}.

The isomorphism is given by (a, g) 7→ a−1g. Note that

G1(F ) ≃ {(a, g) ∈ E× ×GL2(F ) | NE
F (a) = det g}/∆.

Given A ∈ RE
FGLn, z ∈ Hern and ξ ∈ F×, we put

mn(A) =

[
A 0
0 t(A−1)τ

]
, nn(z) =

[
1n z
0 1n

]
, dn(ξ) =

[
1n 0
0 ξ · 1n

]
.

We will frequently suppress the subscript n. Define the maximal parabolic
subgroup Pn with Levi subgroup Mn and abelian unipotent radical Nn by

Mn = {d(ξ)m(A) | ξ ∈ F×, A ∈ RE
FGLn}, Nn = {n(z) | z ∈ Hern}.

More generally, we use the notation

Nk
i =

vk
i (x; y; z) =


1i x
0 1k−i

z − y txτ y
tyτ 0k−i

0k
1i 0

− txτ 1k−i


∣∣∣∣∣∣∣∣
x, y ∈ RE

FM
i
k−i

z ∈ Heri

 .

We define a homomorphism

ιki : RE
FGLi × Gk−i → Gk, (A, g) 7→


A

α β
λk−i(g)

t(A−1)τ

γ δ

 ,

where we write an element g ∈ Gk−i in the form

[
α β
γ δ

]
with matrices α,

β, γ, δ of size k − i over E. The group Mk
i = ιki (R

E
FGLi × Gk−i) is a

Levi subgroup of the maximal parabolic subgroup Pk
i of Gk whose unipotent

radical is Nk
i . These parabolic subgroups form a set of representatives of

the set of all Gk-conjugacy classes of maximal parabolic subgroups.
Take natural numbers i, j, k such that i+ j = k. The center of Nk

i is

Zk
i = {vk

i (0; 0; z) | z ∈ Heri}.

We define subgroups Xk
i and Y k

i of Gk by

Xk
i = {vk

i (x; 0; 0) | x ∈ RE
FM

i
j}, Y k

i = {vk
i (0; y; 0) | y ∈ RE

FM
i
j}.
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For S ∈ Heri we define a homomorphism ℓS : Zk
i → F by

ℓS(vk
i (0; 0; z)) = tr(Sz).

Fix S ∈ Herndi . Put

Rk
S = {(A, g) ∈ GUS × Gj | λS(A) = λj(g)}.

We identify Rk
S with the subgroup of Mk

S = ιki (GUS×Gj) ⊂ Mk
i . We regard

GUS as a subgroup of Mk
i via the embedding mk

S : GUS → Gk defined by

mk
S(A) = ιki (A,dj(λS(A))) = mk(diag[A,1j ])dk(λS(A)).

Then

Mk
S = GUS ⋉ ιki (1i,Gj), Rk

S = GUS ⋉ ιki (1i, Gj).

Note that if A ∈ GUS and ξ = λS(A), then for A ∈ GUS and g ∈ Gj

mk
S(A)ιki (1i, g)m

k
S(A)−1 = ιki (1i,dj(ξ)gdj(ξ)

−1),(2.2)

mk
S(A)vk

i (x; y; z)m
k
S(A)−1 = vk

i (Ax; ξ
−1Ay; ξ−1Az tAτ ),(2.3)

ιki (1i, g)v
k
i (x; y; z)ι

k
i (1i, g)

−1 = vk
i ((x; y)g

−1; z).(2.4)

In particular, Rk
S is the stabilizer of ℓS in Mk

i under the conjugation action.

The quotient group Nk
i /Ker ℓS is a Heisenberg group with center Zk

i /Ker ℓS

and a natural symplectic structure on Nk
i /Z

k
i . We will frequently let k = n

and suppress the dependence on k from the notation. We sometimes write

m′
i(A

′) = m

([
1i 0
0 A′

])
, n′

i(z
′) = n

([
0i 0
0 z′

])
for A′ ∈ GLn−i(E) and z′ ∈ Hern−i.

The ground field F is a local field of characteristic zero with normalized
absolute value αF = | · |F unless the end of Section 7. Let E be a quadratic
étale algebra over F and ϵE/F the character of CF = F× attached to E/F

by class field theory. Given a character χ of CE = E×, we denote its
restriction to CF by χ†. We set αE(a, b) = αF (ab) for (a, b) ∈ CE in the
split case. When A is a locally compact topological abelian group, we write
Ω(A) for the topological group of all continuous homomorphisms from A to
C×. Given µ ∈ Ω(F×), we define ℜµ as the unique real number such that

µα−ℜµ
F is unitary.
We define the basic character ψ : F → S in the following way: When F

is archimedean, we let ψ = e◦TF
R . When F is an extension of Qp, we define

ψ(x) = e(−y) with y ∈ Z[p−1] such that TF
Qp

(x)−y ∈ Zp. We now associate

a character ψB : Hern → S to B ∈ Hern by ψB(z) = ψ(tr(Bz)).
Following [15] and [13], we aim to review a construction of Weil represen-

tations of Rk
S ⋉Nk

i . The Schrödinger representation ωS of Nk
i with central

character ψ ◦ ℓS is realized on the Schwartz space S(Xk
i ) by

(2.5) [ωS(v
k
i (x; y; z))ϕ](u) = ϕ(u+ x)ψS(z)ψ(TE

F (
tuτSy))
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for ϕ ∈ S(Xk
i ). The representation ωS is a unique irreducible representation

of Nk
i on which Zk

i acts by ψ ◦ ℓS by the Stone-von Neumann theorem,
and ωS extends to the Weil representation ωϵ̂

S of Gj ⋉ Nk
i . This extension

depends on the choice of a character ϵ̂ of CE whose restriction to CF is ϵiE/F .

Recall the well-known formulas:

[ωϵ̂
S(mj(A))ϕ](u) = ϵ̂(detA)| detA|i/2E ϕ(uA),

[ωϵ̂
S(nj(z))ϕ](u) = ψ

S(uz tuτ )ϕ(u),

[ωϵ̂
S(Jj)ϕ](u) = γS [FSϕ](u)(2.6)

for ϕ ∈ S(Xk
i ), u ∈ Xk

i , A ∈ GLj(E) and z ∈ Herj , where γS is a certain
8th root of unity and FSϕ is the Fourier transform

[FSϕ](u) =

∫
Xk

i

ϕ(x)ψ(TE
F (

tuτSx)) dx.

The measure dx on Xk
i is self-dual with respect to this Fourier transform.

We further extend the Weil representation ωϵ̂
S to an action of the semi-

direct product Rk
S⋉Nk

i . This material is a slight variation of that of Section

3 of [13]. Fix θ ∈ Ω(CE) and define an action of GUS on S(Xk
i ) by

[θL(A)ϕ](u) = θ(ΛS(A))|λS(A)|−ij/2
F ϕ(A−1u).

We obtain a representation θωϵ̂
S of the group GUS ⋉ (Gj ⋉Nk

i ) on S(Xk
i ) as

θL(A)ωϵ̂
S(x)

θL(A)−1 = ωϵ̂
S(m

k
S(A)xmk

S(A)−1), x ∈ Gj ⋉Nk
i

(cf. (2.2) and [13, (3.2)]). Since ιki (A, g) = mk
S(A)ιki (1i,dj(ξ)

−1g), where

(A, g) ∈ Rk
S and ξ = λS(A), we have

[θωϵ̂
S(ι

k
i (A, g)v)ϕ](u) = θ(ΛS(A))|ξ|−ij/2

F [ωϵ̂
S(dj(ξ)

−1gv)ϕ](A−1u)

for v ∈ Nk
i , u ∈ Xk

i and ϕ ∈ S(Xk
i ).

3. Degenerate Whittaker functionals and Shalika functionals

Let G be a reductive group over a local field. The space of an induced
representation IndGP σ of an admissible representation (σ, V ) of a Levi sub-
group M (or its pullback to a parabolic subgroup P = MU) of G consists
of smooth functions f on G with values in V such that

f(umg) = δP (m)1/2σ(m)f(g) (u ∈ U, m ∈ M, g ∈ G)

on which G acts by right translation. The modulus character δP of P is
built into the definition in order for the representation IndGP σ to be unitary
whenever σ is unitary. An irreducible representation π of G is called super-
cuspidal if it is not a composition factor of any representation of the form
IndGP σ with P a proper parabolic subgroup of G. If π is a smooth repre-
sentation of finite length, we write π∨ for the contragredient representation,
and for a character U of a unipotent subgroup U of G we write JΨ

U (π) for
the twisted Jacquet module of π, namely, the quotient of π by the closure of
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the span of π(u)v − Ψ(u)v (u ∈ U, v ∈ π). When Ψ is trivial, we frequently
suppress the superscript Ψ .

A Ψ -Whittaker functional on π is a complex linear functional λ on π
which satisfies λ(π(u)v) = Ψ(u)λ(v) for all v ∈ π and u ∈ U . The space of
Ψ -Whittaker functionals on π can be identified with the space of complex
linear functionals on JΨ

U (π). The group G acts on the space

IndGU Ψ = {W : G → C smooth | W (ug) = Ψ(u)W (g) for all u ∈ U, g ∈ G}

by right translation. The image of a nontrivial intertwining map π → IndGU Ψ
is called a Ψ -Whittaker model of π. Note that π has a nonzero Ψ -Whittaker
functional λ if and only if π has a Ψ -Whittaker model W (π). To obtain a
model from a functional, set W (g, v) = λ(π(g)v), and to obtain a functional
from a model, set λ(v) = W (e, v), where e denotes the neutral element
of G. When G = Gn and U = Nn, we call ψ ◦ ℓB-Whittaker functionals
Bth degenerate Whittaker functionals, write WhB(π) for the space of Bth
Whittaker functionals on π and denote by Herndn (π) the subset of Herndn
which consists of Hermitian matrices B such that WhB(π) is nonzero.

We define a GLn(E)-invariant map ϵ : Herndn → {±1} by

ϵ(B) = ϵE/F ((−1)n(n−1)/2 detB).

The set of GLn(E)-orbits in Herndn is indexed by this map in the p-adic case
and by the possible signatures in the archimedean case. Given B ∈ Herndn ,
we write OF (B) for the set of Hermitian matrices of the form ξ−1B⟨A⟩ for
some ξ ∈ F× and A ∈ GLn(E).

Definition 3.1. LetΠ be an admissible representation of Gn and χ a unitary
character of CE . We call wB ∈ WhB(Π) a Bth Shalika functional with
respect to χ if

wB ◦Π(mB(A)) = χ(ΛB(A))wB

for all A ∈ GUB. Let ShχB(Π) denote the space of Bth Shalika functionals
on Π with respect to χ.

Let us make some general observations on Shalika functionals.

Definition 3.2. Fix B0 ∈ Herndn . Granted a single Shalika functional B0ג ∈
ShχB0

(Π), we obtain a family of Shalika functionals Bג ∈ ShχB(Π) indexed

by B ∈ OF (B0) by setting

Bג = χ(ξ−[n/2] detA)−1גB0 ◦Π(d(ξ)m(A)),

where we choose ξ ∈ F× and A ∈ GLn(E) so that B = ξ−1B0⟨A⟩. The right
hand side is independent of the choice of ξ and A.

Here is a noteworthy consequence of Definition 3.2:

(3.1) Bג ◦Π(d(ξ)m(A)) = χ(ξ−[n/2] detA)גξ−1B⟨A⟩

for all ξ ∈ F×, A ∈ GLn(E) and B ∈ OF (B0).
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Suppose that n is odd and Π is a representation of Gn. For simplicity
we assume that F = C in the archimedean case. Fix B0 ∈ Herndn and
S ∈ Herndn−1. It is important to note that

OF (B0) = Herndn , λS(GUS) = F×.(3.2)

We define the subgroup of Rn
S by

RS = {(A, g) ∈ GUS ×GL2(F ) | λS(A) = det g}.
To lighten the burden of our notation, we will use the abbreviation

N ′ = Nn
n−1, X ′ = Xn

n−1, Y ′ = Y n
n−1, Z ′ = Zn

n−1, ι′ = ιnn−1, v′ = vn
n−1.

Let χΩS denote the restriction of χωϵ̂
S to RS ⋉N ′, which is independent

of the choice of ϵ̂ as the symbol suggests. Let B0ג ∈ ShχB0
(Π) and construct

B∈Herndn{Bג}
. We associate to ξ ∈ F× a ψξ-Whittaker functional ΓS

ξ ⟨B0ג⟩
on the Jacquet module JN ′(Π ⊗ χΩS) by

ΓS
ξ f)⟨B0ג⟩ ⊗ ϕ̄) = |ξ|(1−n)/2

F

∫
Z′Y ′\N ′

S⊕ξ(Π(v)f)[χΩS(v)ϕ](0)ג dv.

Since [χΩS(x)ϕ](0) = ϕ(x) for x ∈ X ′, this integral is convergent and US ⋉
N ′-invariant. Thus we can define a function on GL2(F ) by

ΓS
ξ ;g)⟨B0ג⟩ f ⊗ ϕ̄) = ΓS

ξ ,Π(ι′(A)⟨B0ג⟩ g))f ⊗ χΩS(ι′(A, g))ϕ),

where we take A ∈ GUS with λS(A) = det g. Recall that χ† denotes the
restriction of χ to F×.

Proposition 3.3. If n is odd, then for B0ג ∈ ShχB0
(Π); S ∈ Herndn−1; a, b ∈

F×; c ∈ F ; g ∈ GL2(F ); f ∈ Π and ϕ ∈ χΩS

ΓS
1 ,n(c)m(a)⟨B0ג⟩ b)g; f ⊗ ϕ̄) = ψ(c)χ†(a)ΓS

ab−1⟨גB0⟩(g; f ⊗ ϕ̄).

Proof. Take A ∈ GUS such that ab = λS(A). Then

[χΩS(ι
′(A,m(a, b)))ϕ](u) = χ(ΛS(A))|ab−1|(n−1)/2

F ϕ(aA−1u)

for u ∈ En−1 and ϕ ∈ S(En−1). Observing that

ι′(A,m(a, b))−1v′(x; y; z)ι′(A,m(a, b)) = v′(aA−1x; bA−1y; abA−1z t(A−1)τ )

by (2.3) and (2.4), we get∫
X′

,S⊕ξ(Π(xι′(A,m(aג b)))f)[χΩS(xι′(A,m(a, b)))ϕ](0) dx

=
|detA|E
|a|n−1

E

∫
X′

,S⊕Ξ(Π(ι′(A,m(aג b))x)f)[χΩS(ι′(A,m(a, b))x)ϕ](0) dx.

Since ι′(A,m(a, b)) = d(ab)m(diag[A, a]), we see by (3.1) that

S⊕1ג ◦Π(ι′(A,m(a, b))) = χ((ab)(1−n)/2a detA)גS⊕ab−1 .

The formula follows upon combining these observations with the identities
NE

F (detA) = (ab)n−1 and ΛS(A) = (ab)(1−n)/2 detA. □
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4. Certain nontempered representations

We regard ψ as a character of N = N1 in the usual way, i.e.,

(
1 c
0 1

)
7→

ψ(c). An irreducible admissible representation π of GL2(F ) is said to be
generic if it has a ψ-Whittaker model, which is unique and denoted by
W (π). Given an irreducible admissible generic unitary representation π of

GL2(F ), we will explicitly construct degenerate Whittaker functionals χ̂Bג
on an irreducible admissible unitary representation Aχ̂

n(π) of Gn. Appendix

B will construct Aχ̂
n(π) and χ̂Bג in a simpler manner in the split case.

Proposition 7.2 and Lemma 10.5 say that

χ̂Bג ∈ Shχ̂B(A
χ̂
n(π)), ΓS

1 ג⟩
χ̂
B⟩(f ⊗ ϕ̄) ∈ W (π).(4.1)

These properties are the technical heart for the proof of Theorem 1.1.
We will differ slightly from our previous notation. Given a free right

E-module X, we denote the group of all E-linear automorphisms of X by
GLE(X). The free E-module Wn = E2n comes equipped with the split
skew Hermitian form ⟨x, y⟩ = txτJny for x, y ∈ Wn. We regard Gn as the
group of similitudes of the skew Hermitian space (Wn, ⟨ , ⟩). When X is a
totally isotropic subspace of Wn, we denote the maximal parabolic subgroup
of Gn stabilizing X by PX and their unipotent radical by NX . We define
the canonical homomorphism

projX : PX → GLE(X)× Gn−i, projX(p) = (p|X , p|X⊥/X),

where dimE X = i and the subspace X⊥ consists of v ∈ Wn such that
⟨v, x⟩ = 0 for all x ∈ X.

Fix an E-basis {e1, . . . , en, f1, . . . , fn} for Wn which consists of isotropic
vectors such that ⟨ei, fj⟩ = δi,j . Let Xi (resp. Yi) be the totally isotropic
subspace spanned by e1, e2, . . . , ei (resp. f1, f2, . . . , fi). We often use matrix
representation (2.1) with respect to this Witt basis interchangeably. Recall
that the standard maximal parabolic subgroup PXi is denoted by Pi.

Let X2i (resp. X2i−1) be the totally isotropic subspace of Wn spanned by

e1, f2, e3, f4, . . . , e2i−1, f2i (resp. e1, f2, e3, f4, . . . , e2i−3, f2i−2, e2i−1).

Let Y2i (resp. Y2i−1) be the totally isotropic subspace spanned by

f1, e2, f3, e4, . . . , f2i−1, e2i (resp. f1, e2, f3, e4, . . . , f2i−3, e2i−2, f2i−1)

For brevity we will write

Pi = PXi , Ni = NXi , Mi = PXi ∩ PYi , Pe = ∩(n−1)/2
i=1 P2i,

assuming n to be odd. We denote by Nε the unipotent radical of the Borel
subgroup of Gn which stabilizes the complete flag of isotropic subspaces
X1 ⊂ X2 ⊂ · · · ⊂ Xn. As in Section 2 we realize the isomorphism with
respect to X2

i2 : GL2(E)× Gn−2 ≃ M2.
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The Galois twist τΠ of a representation Π of GLm(E) is a representation
of GLm(E) defined by τΠ(A) = Π(Aτ ) for A ∈ GLm(E). Let π 7→ πE be
the functorial transfer from irreducible representations of GLm(F ) to those
of GLm(E) given by quadratic base change (cf. [4, Ch. 1, §§6,7]).

Let Bm be the subgroup of upper triangular matrices in GLm. Given
a, b ∈ F× and c ∈ F , we put

m(a, b) =

[
a 0
0 b

]
, n(c) =

[
1 c
0 1

]
.

The induced representation Ind
GL2(F )
B2(F ) µ1⊠µ2 of the character m(a, b)n(c) 7→

µ1(a)µ2(b) of the Borel subgroup is called a principal series representation
and denoted by I(µ1, µ2). In the nonarchimedean case I(µ1, µ2) is irre-
ducible unless µ1µ

−1
2 ∈ {αF ,α

−1
F }. For χ ∈ Ω(CE) we associate to a ∈ E×

a (ψ ◦ TE
F )

a-Whittaker functional wχ
a on I(χ, τχ−1) by

wχ
a (h) = |a|1/2E L(1, χτχ)

∫
E
h(J1n(x))ψ(TE

F (ax)) dx, J1 =

[
0 1
−1 0

]
.

The integral converges absolutely for ℜ(χτχ) > 1 and extends to an entire
function on Ω(CE).

Throughout this paper we fix unitary characters ω̂ ∈ Ω(CF ) and χ̂ ∈
Ω(CE) such that χ̂† = ω̂. If ℜµ > −1

2 , then I(µ, µ−1ω̂) has a unique

irreducible subrepresentation, which we denote by A(µ, µ−1ω̂). Let π be
an irreducible admissible unitary generic representation of GL2(F ) whose
central character is ω̂. If F is nonarchimedean and π is not supercuspidal,
then there is µ ∈ Ω(CF ) which satisfies either −1

2 < ℜµ < 1
2 or µ2ω̂−1 = αF

and such that π is equivalent to A(µ, µ−1ω̂). In the archimedean case π is
equivalent to A(µ, µ−1ω̂) for some µ ∈ Ω(CF ) with ℜµ > −1

2 .

Definition 4.1. For an irreducible admissible representation π of GLm(F )
we define an irreducible admissible representation π[χ̂] of GLm(E) as

π[χ̂] = τχ̂−1 ⊗ πE .

The ψ-Whittaker model of π is denoted by W (π). Let W (π[χ̂]) denote the
ψ ◦ TE

F -Whittaker model of π[χ̂]. The representation A1(χ, µ) of G1 will be
defined in the next section. Remark 2.1 allows us to identify representations
of G1 with those of E× × GL2(F ) on which ∆ acts trivially. With this
identification we obtain the following results:

Lemma 4.2. Let µ ∈ Ω(CF ) and π be an irreducible admissible unitary
generic representation of GL2(F ) whose central character is ω̂.

(1) τµ[χ̂]−1 = (µ−1ω̂)[χ̂].
(2) If ℜµ > −1

2 , then

A(µ, µ−1ω̂)[χ̂] ≃ A(µ[χ̂], τµ[χ̂]−1), χ̂−1 ⊠A(µ, µ−1ω̂) ≃ A1(µ[χ̂], µ
−1ω̂).
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(3) τπ[χ̂]∨ ≃ π[χ̂] and the central character of π[χ̂] is χ̂ τχ̂−1.
(4) The stable base change of χ̂−1 ⊠ π is π[χ̂].

Proof. The last statement is Theorem 4.12 of [24]. The other assertions can
easily be checked. □
Definition 4.3. Let π be an irreducible admissible unitary generic repre-

sentation of GL2(F ) whose central character is ω̂. For odd n we write Aχ̂
n(π)

for the unique irreducible subrepresentation of J χ̂
n (π), where

J χ̂
n (π) = IndGn

Pe
δ
−1/4
Pe

⊗ {W (π[χ̂])⊠(n−1)/2 ⊠ (χ̂−1 ⊠ W (π))}.

Remark 4.4. (1) The central character of Aχ̂
n(π) is χ̂n(ω̂E)(1−n)/2.

(2) Define a homomorphism Λn : Gn → C1
E by Λn(g) = λn(g)

−n det g,

where C1
E denotes the norm one elements in CE . When χ† is trivial,

we can define χ̃ ∈ Ω(C1
E) by χ̃(a/aτ ) = χ(a) for a ∈ CE . Then

Aχ̂
n(π)⊗ χ̃ ◦ Λn ⊗ ν ◦ λn ≃ Aχ̂χνE

n (π ⊗ ν).

(3) It can be shown that Aχ̂
n(π) is unitary by Proposition 6.3, Corollary

5.5(2) and a simple globalization argument (cf. Appendix C).

We define the split Hermitian matrix Hm ∈ Herndm by

H2 =

[
0 1
1 0

]
, H2i−1 = H2 ⊕ · · · ⊕H2︸ ︷︷ ︸

i−1

⊕1, H2i = H2 ⊕ · · · ⊕H2︸ ︷︷ ︸
i

.

For odd n we will explicitly construct a nonzero Hnth degenerate Whittaker

functional on Aχ̂
n(π), which will ultimately turn out to be an Hnth Shalika

functional with respect to χ̂. Note that for u ∈ Nn

ψ(ℓHn(u)) = ψ

(
⟨ufn, fn⟩+

(n−1)/2∑
i=1

TE
F (⟨uf2i, f2i−1⟩)

)
.

For f ∈ J χ̂
n (π), u ∈ Nε and g ∈ Gn,

f(ug) = f(g)ψ

(
⟨ufn, fn⟩+

(n−1)/2∑
i=1

TE
F (⟨uf2i, f2i−1⟩)

)
.

Therefore the integral

χ̂Hnג
(f) =

∫
Pe∩Nn\Nn

f(u)ψ(ℓHn(u)) du

makes sense at least formally. Put

X(x, ξ) = m

1 ξ txτ

0 1 0
0 0 1n−2

 , Y (y, z) = n

0 0 0
0 z tyτ

0 y 0n−2

 .

for x, y ∈ En−2; ξ ∈ E and z ∈ F .
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Proposition 4.5. Let n be odd and f ∈ J χ̂
n (π).

(1) u 7→ f(u)ψ(ℓHn(u)) is a Schwartz function on Pe ∩Nn\Nn.

(2) χ̂Hnג
is nonzero on Aχ̂

n(π).
(3) The following identity holds:

χ̂Hnג
(f) =

∫
P2∩Nn\Nn

χ̂Hn−2ג
(f(u))ψ(ℓHn(u)) du.

Remark 4.6. The following inductive nature should be mentioned:

J χ̂
n (π) = IndGn

P2
δ
−1/4
P2

⊗ W (π[χ̂])⊠ J χ̂
n−2(π).

We regard f ∈ J χ̂
n (π) as a J χ̂

n−2(π)-valued function on Gn which satisfies

f(i2(n(x),12n−4)ug) = ψ(T
E
F (x))f(g) (x ∈ E, u ∈ N2, g ∈ Gn)

and obtain the C-valued function g 7→ χ̂Hn−2ג
(f(g)).

Proof. Define the subgroups y1 of Nn and y̌2 of Hern by

y1 =

{
vn
1 (0; y; z)

∣∣∣∣ y ∈ En−1

z ∈ F

}
, y̌2 =


z1 zτ2

tzτ3
z2 0 0
z3 0 z4

 ∣∣∣∣∣ z1 ∈ F, z2 ∈ E
z3 ∈ En−2

z4 ∈ Hern−2

 .

Then

P2 ∩Nn = n(y̌2) = y1 · n′
2(Hern−2), Pe ∩Nn = y1 · (Pe ∩ n′

2(Hern−2)).

We may assume by induction that the restriction of f(u)ψHn(u) to Pe ∩
n′
2(Hern−2)\n′

2(Hern−2) is a Schwartz function. To prove (1), we have only
to show that f ◦ Y ∈ S(En−2 ⊕F ). Since X(x, ξ) ∈ N1 and X(x, ξ)f2 = f2,
we see that f(X(x, ξ)g) = f(g) for x ∈ En−2 and ξ ∈ E. Since

X(x, ξ)Y (y, z)X(x, ξ)−1Y (y, z)−1 = vn
1 (0; ξz+

txτy, ξ tyτ ; ξξτz+TE
F (ξ

τ txτy))

for all x, y ∈ En−2; ξ ∈ E and z ∈ F ,

(4.2) f(Y (y, z)X(x, ξ)−1) = ψ(zTE
F (ξ) + TE

F (
txτy))f(Y (y, z)).

Given Φ ∈ S(En−2 ⊕ E), we put

[Φ ⋆ f ](g) =

∫
E

∫
En−2

Φ(x, ξ)f(gX(x, ξ)) dxdξ.

Write f = Φ ⋆ h for some h ∈ J χ̂
n (π) and Φ ∈ S(En−2 ⊕ E). Then

f(Y (y, z)) =

∫
E

∫
En−2

Φ(x, ξ)h(Y (y, z)X(x, ξ)) dxdξ

= h(Y (y, z))Φ̂(y, z)

by (4.2), where

Φ̂(y, z) =

∫
E

∫
En−2

Φ(x, ξ)ψ(TE
F (ξz +

txτy)) dxdξ

is the Fourier transform of Φ and hence a Schwartz function on En−2 ⊕ E.
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By what we have seen, we get the inductive formula

(4.3) χ̂Hnג
(f) =

∫
F

∫
En−2

χ̂Hn−2ג
(f(Y (y, z))) dydz

as claimed. Moreover, we have showed that

χ̂Hnג
(Φ ⋆ f) =

∫
F

∫
En−2

Φ̂(y, z)גχ̂Hn−2
(f(Y (y, z))) dydz.

If χ̂Hnג
(Φ⋆f) = 0 for all Φ ∈ S(En−2⊕E), then χ̂Hn−2ג

(f(e)) = 0. We conclude

by induction that if χ̂Hnג
kills Aχ̂

n(π), then f(e) = 0 for all f ∈ Aχ̂
n(π). This

is a contradiction however. □

5. Degenerate principal series representations

We will highlight some properties of Jacquet integrals on degenerate prin-
cipal series representations which are needed in this paper. When π is not

supercuspidal, we describe Aχ̂
n(π) as a subrepresentation of degenerate prin-

cipal series and relate χ̂Bג to the Jacquet integral in the next section.

Let χ ∈ Ω(CE) and µ ∈ Ω(CF ). Recall that χ† is the restriction of χ

to CF and that ℜµ is the unique real number such that µα−ℜµ
F is unitary.

When E = F ⊕ F , we set ℜχ = 1
2ℜχ

†. Recall that µE = µ ◦ NE
F . Then

ℜµ = ℜµE . Put

an(χ) =
n∏

j=1

L(1− j, χ† · ϵn+j
E/F ), bn(χ) =

n∏
j=1

L(j, χ† · ϵn+j
E/F )

The modulus characters of maximal parabolic subgroups of Gn are given by

(5.1) δPi(ιi(A, g)) = |λn−i(g)
−iNE

F (detA)|2n−i
F

for 1 ≤ i ≤ n, A ∈ GLi(E) and g ∈ Gn−i.

Let Jn(χ, µ) = IndGn
Pn

(χ ◦ det⊠µ ◦ λn) be the normalized induced repre-
sentation of the character of Pn defined by

d(ξ)m(A)n(z) 7→ µ(ξ)χ(detA).

The center Zn of Gn acts on Jn(χ, µ) by the character χnµE . Since Gn =
{d(ξ) | ξ ∈ F×}⋉Gn, we can identify the space Jn(χ, µ) with the space of
smooth functions f : Gn → C satisfying

f(m(A)n(z)g) = χ(detA)|detA|n/2E f(g)

for all A ∈ GLn(E), z ∈ Hern and g ∈ Gn. We write In(χ) for the represen-
tation of Gn obtained by restricting the action of Jn(χ, µ) to Gn.

In the nonarchimedean case the field F comes equipped with a subring o
whose elements are called the integers of F . We denote the integer ring of
E by r. In the split case r = o⊕ o. The ring o has a unique nonzero prime
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ideal p. The index [o : p] is denoted by q. For fractional ideals b, c of r which
satisfy bc ⊂ r we put

(5.2) Γn[b, c] =

{[
a b
c d

]
∈ Gn

∣∣∣∣ a, d ∈ Mn(r), b ∈ bMn(r), c ∈ cMn(r)

}
.

Set Γn[c] = Γn[c
−1, c]. For g ∈ Gn the quantity εc(g) is defined by writing

g = pk with p = d(λ)m(A)n(z) ∈ Pn, k ∈ Γn[c], and setting

εc(g) = |λ|−n
F |detA|E .

Once a Haar measure dz on Hern is fixed, one can ‘canonically’ construct
a nonzero element wχ

B ∈ WhB(In(χ)) for each B ∈ Herndn .

Definition 5.1 (Jacquet integrals). Given χ ∈ Ω(CE) and h ∈ In(χ), we

define a holomorphic section h(s) of In(χα
s
E) by setting h(s)(g) = h(g)εo(g)

s

for s ∈ C. In the archimedean case we define h(s) by replacing Γn[o] by
a certain standard maximal compact subgroup of Gn. For B ∈ Herndn the
integral

w
χαs

E
B (h(s)) =

∫
Hern

h(s)(Jnn(z))ψ
B(z) dz

is defined a priori for ℜs > n
2−ℜχ but admits an entire analytic continuation

to the whole s-plane. We can therefore evaluate w
χαs

E
B (h(s)) at s = 0. From

now on we assume that ℜχ > −1
2 and set

wχ
B(h) = | detB|n/2F wχ

B(h)b
n(χ).

We define an intertwining operator

Mn(χ) : Jn(χ, µ) → Jn(
τχ−1, (χ†)nµ)

by the integral

[Mn(χ)f ](g) = an(χ)−1

∫
Hern

f(Jnn(z)g) dz

which is convergent for ℜχ > n
2 and extends to an entire function on Ω(CE)

by [27, Proposition 3.2, Theorem 1.3(5)]. There is a meromorphic function
cn(χ) on Ω(CE) such that

(5.3) w
τχ−1

B ◦Mn(χ) = cn(χ)χ
†(detB)−1ϵ(B)n−1wχ

B

for all B ∈ Herndn by [27, Proposition 3.1, (3.5), (3.9), §7]. Moreover, the
product cn(χ)b

n(τχ−1) is entire and nowhere vanishing on Ω(CE). We let
χ = µ[χ̂ϵ̂]. When ϵ† = ϵn−1

E/F , we can rewrite (5.3) as the functional equation

(5.4) µ(detB)−1w
µ[χ̂ϵ̂]
B ◦Mn((ω̂µ

−1)[χ̂ϵ̂]) =
en(µ[χ̂ϵ̂])

(ω̂µ−1)(detB)
w

(ω̂µ−1)[χ̂ϵ̂]
B

involving an exponential factor of proportionality

en(µ[χ̂ϵ̂]) = cn((ω̂µ
−1)[χ̂ϵ̂])bn(µ[χ̂ϵ̂]).
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Definition 5.2. Given any function f on a group G, we define a function
ϱ(∆)f on G by [ϱ(∆)f ](g) = f(g∆) for ∆, g ∈ G. We will sometimes write
ϱ = ϱG to indicate that it pertains to G.

Lemma 5.3 ([21]). Let B ∈ Herndn , χ ∈ Ω(CE) and µ ∈ Ω(CF ). Assume
that ℜχ > −1

2 .

(1) wχ
B is a nonzero vector in WhB(In(χ)).

(2) The space WhB(In(χ)) is one-dimensional at least if F is p-adic.
(3) If A ∈ GLn(E) and ξ ∈ F×, then

wχ
B ◦ ϱ(d(ξ)m(A)) = µ(ξ)χ†(ξ)n τχ(detA)−1wχ

ξ−1B⟨A⟩.

Proof. The first part is clear. The second part is the fact proved by Karel
[21]. The third part can be proved by simple changes of variables. □

For simplicity we discuss only the p-adic case for the rest of this section.

Let k = i+n and S ∈ Herndi . Recall that ϵ† = ϵiE/F . Put χ = ϵ̂α
(i−n)/2
E . We

denote the image of the intertwining map

S(Xk
i ) → In(χ), ϕ 7→ fϕ(g) = [ωϵ̂

S(g)ϕ](0)

by Rχ
n(S). In the inert case there are precisely two equivalence classes S±

i
of nondegenerate Hermitian forms of size i over E, having opposite signs
ϵ(S±

i ) = ±1. We will write A±
n (χ) = Rχ

n(S±
n ). When In(χ) is irreducible, we

abuse notation in writing A+
n (χ) = In(χ) to make our exposition uniform.

Set A−
n (χ) = {0} unless E is a field and χ† = ϵnE/F .

Proposition 5.4 ([21, 27]). Let χ ∈ Ω(CE). Suppose that F is p-adic.

(1) In(χ) is reducible if and only if χ† = ϵiE/Fα
i−n
F for some integer

0 ≤ i ≤ 2n such that i ̸= n in the split case.
(2) If E ̸≃ F ⊕ F and χ† = ϵnE/F , then A±

n (χ) are irreducible and

In(χ) = A+
n (χ)⊕A−

n (χ), Herndn (A±
n (χ)) = {B ∈ Herndn | ϵ(B) = ±1}.

(3) If χ† = ϵn−1
E/FαF , then In(χ) has a unique irreducible subrepresenta-

tion A+
n (χ) and Herndn (A+

n (χ)) = Herndn .
(4) WhB(A

±
n (χ)) is spanned by the restriction of wχ

B for B ∈ Herndn .

Proof. All points of reducibility of In(χ), its complete composition series
and degenerate Whittaker models of its constituents at each such point are
described by Kudla and Sweet [27]. Suppose that χ† = ϵn−1

E/FαF . Then

(5.5) A+
n (χ) = Rχ

n(S
+
n+1) ∩Rχ

n(S
−
n+1)

by Theorem 1.2(3) of [27]. Note that

(5.6) In(χ)/A
+
n (χ) ≃ R

χα−1
E

n (S+
n−1)⊕R

χα−1
E

n (S−
n−1).
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Lemma 4.4 of [27] says that Herndn (R
χα−1

E
n (S±

n−1)) = ∅. By the exactness of
the Jacquet functor

(5.7) WhB(A
+
n (χ)) = WhB(In(χ)) = Herndn .

The last statement follows from Lemma 5.3. □
Corollary 5.5. Let χ ∈ Ω(CE) and µ ∈ Ω(CF ). Assume F to be p-adic.

(1) If n is odd and −1
2 < ℜχ < 1

2 , then Jn(χ, µ) is irreducible.

(2) If χ† = ϵn−1
E/FαF , then Jn(χ, µ) has a unique irreducible subrepresen-

tation An(χ, µ).
(3) If χ† = ϵn−1

E/FαF , then An(χ, µ) = Mn(
τχ−1)Jn(

τχ−1, (χ†)nµ).

Proof. Proposition 6.4 of [27] and (5.5) prove (3). For all ξ ∈ F×

Herndn (ϱ(d(ξ))A±
n (χ)) = {B ∈ Herndn | ϵ(B) = ±ϵE/F (ξ)

n}.

The first part is now clear from Proposition 5.4(1), (2). The second part is
a consequence of Proposition 5.4(3). □
Definition 5.6. When n is odd, we write An(χ, µ) for the unique irreducible
subrepresentation of Jn(χ, µ).

6. Compatibility with the Jacquet integral

We will identify Aχ̂
n(π) with a submodule of the degenerate principal series

and show that χ̂Bג equals the Jacquet integral w
µ[χ̂]
B if π ≃ A(µ, ω̂µ−1).

Consequently, one can deduce (4.1) from the relevant properties of w
µ[χ̂]
B .

For 1 ≤ i ≤ n−1
2 we define isotropic vectors by

ε±2i−1 = e2i−1 ∓ f2i, ε±2i = e2i ± f2i−1.

When n is odd, we define anisotropic vectors by

ε+n = en − ℸfn, ε−n = en + ℸfn,

where ℸ is a nonzero element of E such that ℸ̄ = −ℸ. We define E-linear
injections ι± : En ↪→ Wn by ι±(x1, . . . , xn) =

∑n
j=1 xjε

±
j . The restrictions

of ⟨ , ⟩ to the images W±
n = ι±(En) are nondegenerate. Moreover, the

isomorphism ι+(x) 7→ ι−(x) is an anti-isometry, Wn = W+
n ⊕ W−

n is an
orthogonal decomposition and

Xn = {ι+(x) + ι−(x) | x ∈ En}, Yn = {ι+(y)− ι−(y) | y ∈ En}.

Put ε1 = t(1, 0, . . . , 0) ∈ En. We write X1 for the line spanned by ε1. By
(5.1) the modulus character of P2 is given by

(6.1) δP2(p) = |λn(p)
−2NE

F (det(p|X2))|2n−2
F .

Lemma 6.1 ([28]). (1) The image of Pn ∩P2 under projX2
is the par-

abolic subgroup i2(B2 × Pn−2) of M2, where B2 is the stabilizer of
X1 = X1 in GLE(X2). Its unipotent radical is projX2

(Nn ∩P2).
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(2) projXn
(Pn∩P2) is the parabolic subgroup d(F×)m(Q1,n−2,1) of Mn,

where Q1,n−2,1 is the parabolic subgroup of GLE(Xn) stabilizing X1

and the subspace X ′
1 of Xn spanned by e1 and e3, e4, . . . , en. Its unipo-

tent radical is the image of Pn ∩N2 under projXn
.

(3) For all ξ ∈ F×; a0, a1 ∈ E×; A0 ∈ GLn−2(E)

projXn

(
i2

([
a0 0
0 a1

]
,dn−2(ξ)mn−2(A0)

))
= d(ξ)m

a0 ξ(a−1
1 )τ

A0

 .

(4) The restriction of δ
−1/4
P2

to Pn ∩P2 is δ
−1/2
Q1,n−2,1

◦ projXn

Proof. If we use the notation of [28], then

Xn = W♢, X2 = X1 × X1, Pn ∩Gn = SW♢ , P2 ∩Gn = SX1×X1 ,

Nn = RW♢ , N2 = RX1×X1 , X1 = X ♢
1 , X ′

1 = (X ⊥
1 )♢.

We can therefore apply Lemma 4 of [28] to obtain analogous results for Gn.
The proof can easily be modified to deal with Pn ∩P2. □

Proposition 6.2. An intertwining operator

Ψn(χ) : Jn(χ, µ) → IndGn
P2

δ
−1/4
P2

⊗ {I(χ, τχ−1)⊠ Jn−2(χ, µχ
†)}

is defined, for ℜχ > −1
2 , by

[Ψn(χ)h](g) : p 7→ bn−2(χ)L(1, χ τχ)

bn(χ)δP2(p)
1/4

∫
N2∩Pn\N2

h(upg) du.

If χ and µ are unramified and h is Γn[o]-invariant, then [Ψn(χ)h](e) = h(e).

Proof. Proposition 1 and Lemma 3(2) of [28] prove an analog for the unitary
group Gn. Since the inducing character of Jn(χ, µ) sends

i2

([
a0 ∗
0 a1

]
,dn−2(ξ)mn−2(A0)nn−2(z)

)
→ µ(ξ)χ(ξa0(a

−1
1 )τ detA0)

by Lemma 6.1(3), we can readily extend this result to the similitude group
Gn. The convergence is proved in Lemmas 5.1 and 5.2 of [35]. The last
statement follows from Remark 3 of [28]. □

Now iteration of the operators produces an intertwining map

Υn(χ) : Jn(χ, µ) → IndGn
Pe

δ
−1/4
Pe

⊗ (W (I(χ, τχ−1))⊠(n−1)/2 ⊠ σ),

where σ = W (J1(χ, µ(χ
†)(n−1)/2)). Since

χ̂−1 ⊠ I(µ, µ−1ω̂) ≃ J1(µ
Eτχ̂−1, µ−1ω̂),

we obtain an intertwining map

Υn(µ
Eτχ̂−1) : An(µ

Eτχ̂−1, µ−nω̂(n+1)/2) → J χ̂
n (I(µ, µ

−1ω̂)),



23

where An(µ
Eτχ̂−1, µ−nω̂(n+1)/2) is defined in Definition 5.6. By Corollary

5.4 of [37] (cf. Remark 5.5 of [37]) it factors to yield the intertwining map

Υn(µ
Eτχ̂−1) : An(µ

Eτχ̂−1, µ−nω̂(n+1)/2) → J χ̂
n (A(µ, µ−1ω̂)).

Proposition 6.3. Assume either −1
2 < ℜµ < 1

2 or µ2ω̂−1 = αF . Then

w
µ[χ̂]
Hn

= ω̂(−1)(n−1)/2גχ̂Hn
◦Υn(µ[χ̂]).

In particular, χ̂Hnג
∈ Shχ̂Hn

(Aχ̂
n(A(µ, µ−1ω̂))). Moreover, if F is nonar-

chimedean, then Υn(µ[χ̂]) induces a Gn-intertwining isomorphism

An(µ[χ̂], µ
−nω̂(n+1)/2) ≃ Aχ̂

n(A(µ, µ−1ω̂)).

Proof. We can infer from Lemma 5.3(2) that

χ̂Hnג
◦Υn(µ[χ̂]) ∈ WhHn(In(µ[χ̂]))

is proportional to the Jacquet integral w
µ[χ̂]
Hn

at least if F is nonarchimedean.
However, we will argue directly to prove the stated identity. We may assume
that n ≥ 3. Put

N−
k =

{
n−
k (z) =

[
1k 0
z 1k

] ∣∣∣∣ z ∈ Herk

}
, Z(x, ξ) = n−

n

ξ 0 txτ

0 0 0
x 0 0n−2


for x ∈ En−2 and ξ ∈ F . The map (x, ξ) 7→ Z(x, ξ) defines an isomorphism
En−2 ⊕ F ≃ P2 ∩N−

n \N−
n . For χ ∈ Ω(CE), Ξ ∈ Herndk and a ∈ E× we set

w̄χ
Ξ = wχ

Ξ ◦ ϱGk
(Jk), w̄χ

a = wχ
a ◦ ϱGL2(E)(J1)

(see Definition 5.2 for the definition of ϱG). Observe that for f ∈ Ik(χ)

w̄χ
Ξ(f) =

∫
Herk

f(n−
k (z))ψ

Ξ(z) dz.

Lemma 8 of [28] now implies that

w̄
µ[χ̂]
Hn

(h) =

∫
En−2

∫
F
(w̄

µ[χ̂]
1 ⊠ w̄

µ[χ̂]
Hn−2

)([Ψn(µ[χ̂])h](Z(x, ξ))) dξdx

for all h ∈ Jn(µ[χ̂], µ
−nω̂(n+1)/2). Put

I ′n = m

(
diag

[[
0 1
1 0

]
,1n−2

])
∈ M2, J ′

n = i2(J1, Jn−2) ∈ P2.

Since Jn = I ′nJ
′
n, we arrive at

w̄χ
Hn

= χ(−1)wχ
Hn

◦ ϱ(J ′
n), J ′

nZ(x, ξ)(J ′
n)

−1 = Y (−x,−ξ)

by Lemma 5.3(3). These considerations give

w
µ[χ̂]
Hn

(h) = χ̂(−1)

∫
En−2

∫
F
(w

µ[χ̂]
1 ⊠ w

µ[χ̂]
Hn−2

)([Ψn(µ[χ̂])h](Y (x, ξ))) dξdx

= ω̂(−1)

∫
P2∩Nn\Nn

(w
µ[χ̂]
1 ⊠ w

µ[χ̂]
Hn−2

)([Ψn(µ[χ̂])h](u))ψ(ℓHn(u)) du.
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We see by induction that

(w
µ[χ̂]
1 ⊠ w

µ[χ̂]
Hn−2

)([Ψn(µ[χ̂])h](u))

=ω̂(−1)(n−3)/2(w
µ[χ̂]
1 ⊠ χ̂Hn−2ג

◦Υn−2(µ[χ̂]))([Ψn(µ[χ̂])h](u))

=ω̂(−1)(n−3)/2גχ̂Hn−2
([Υn(µ[χ̂])h](u)).

Lemma 4.5(3) now prove the first identity.

Since w
µ[χ̂]
Hn

is nonzero on Jn(µ[χ̂], µ
−nω̂(n+1)/2), the image of Υn(µ[χ̂])

contains the unique irreducible submodule Aχ̂
n(A(µ, µ−1ω̂)). The invariance

of χ̂Hnג
amounts to the relevant property of w

µ[χ̂]
Hn

stated in Lemma 5.3(3).

Assume F to be p-adic. Since Hn ∈ Herndn (A+
n (µ[χ̂])) by Proposition 5.4,

the Jacquet integral w
µ[χ̂]
Hn

is nonzero on An(µ[χ̂], µ
−nω̂(n+1)/2) on account

of Proposition 5.4(4), and so is Υn(µ[χ̂]). The operator Υn(µ[χ̂]) there-

fore sends the unique irreducible subrepresentation of Jn(µ[χ̂], µ
−nω̂(n+1)/2)

bijectively onto that of J χ̂
n (A(µ, µ−1ω̂)). □

It is worth reminding the key simplifying feature (3.2), which explains
the reason why we consider the similitude group for odd n. We construct

χ̂Bג ∈ Shχ̂B(A
χ̂
n(A(µ, µ−1ω̂))) for all B ∈ OF (Hn), following Section 3.

Corollary 6.4. Assume either −1
2 < ℜµ < 1

2 or µ2ω̂−1 = αF . Then for
B ∈ OF (Hn)

χ̂Bג ◦Υn(µ[χ̂]) = ω̂(−1)(n−1)/2µ((−1)(n−1)/2 detB)−1w
µ[χ̂]
B .

Proof. Take ξ ∈ F× and A ∈ GLn(E) such that ξ−1Hn⟨A⟩ = B. By Lemma
5.3(3) and Proposition 6.3

w
µ[χ̂]
B =µ(ξ)nω̂(ξ)−(n+1)/2(µ2ω̂−1)(ξ)−n τµ[χ̂](detA)w

µ[χ̂]
Hn

◦ ϱ(d(ξ)m(A))

=µ(ξ)−nω̂(−ξ)(n−1)/2 τµ[χ̂](detA)גχ̂Hn
◦Υn(µ[χ̂]) ◦ ϱ(d(ξ)m(A))

=µ(ξ)−nω̂(−ξ)(n−1)/2 τµ[χ̂](detA)χ̂(ξ(1−n)/2 detA)גχ̂B ◦Υn(µ[χ̂]).

Since detB = (−1)(n−1)/2ξ−nNE
F (detA), we obtain the stated identity. □

7. Shalika functionals on Aχ̂
n(π)

Let π be an irreducible admissible unitary generic representation of GL2(F )
whose central character is ω̂. This section verifies that the degenerate Whit-

taker functional χ̂Hnג
is a Shalika functional on Aχ̂

n(π) with respect to χ̂.
When π is not supercuspidal, this result follows from Corollary 6.4 and
Lemma 5.3(3). When E ≃ F ⊕ F , Proposition 7.2 can be proved directly
from Proposition B.2(2).

Lemma 7.1. Let PHn be the parabolic subgroup of GUHn stabilizing the line

X1. If n is odd and χ̂Hn−2ג
∈ Shχ̂Hn−2

(Aχ̂
n−2(π)), then

χ̂Hnג
◦ ϱ(mHn(A)) = χ̂(ΛHn(A))גχ̂Hn

, A ∈ PHn .
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Proof. Denote the unipotent radical of PHn by NHn . By Lemma 6.1(2)
mHn(NHn) is contained inN2. We may assume thatA = diag[a, ξ(a−1)τ , A0],
where a ∈ E×, A0 ∈ GUHn−2 and ξ = λHn−2(A0). Since

(d(ξ)m(A))−1Y (y, z)d(ξ)m(A) = Y (aA−1
0 y, ξ−1NE

F (a)z),

we can see that χ̂Hnג
(ϱ(d(ξ)m(A))f) is equal to

|ξ|F |a|1−n
E | detA0|E

∫
F

∫
En−2

χ̂Hn−2ג
(f(d(ξ)m(A)Y (y, z))) dydz

for all f ∈ Aχ̂
n(π) by (4.3). The integral is equal to∫
F

∫
En−2

χ̂Hn−2ג
(f(i2(a12,dn−2(ξ)m

′
2(A0))Y (y, z))) dydz

=χ̂(a) τχ̂(a)−1χ̂(Λn−2(A0))|ξ−1NE
F (a)|n−1

F χ̂Hnג
(f)

by Lemma 6.1(3), (6.1) and the assumption on χ̂Hn−2ג
. The proof is complete

in view of |detA0|E = |ξ|n−2
F . □

If we knew that dimWhHn(A
χ̂
n(π)) ≤ 1, then we could trivially see that

degenerate Whittaker functionals on Aχ̂
n(π) are necessarily Shalika function-

als. However, due to the lack of the knowledge of the uniqueness, it is far

from formal to show that χ̂Hnג
is a Shalika functional. We resort to global

means. Let E be a quadratic extension of a number field F with adèle ring
A. When F is a smooth function on Pn(F)\Gn(A) and B ∈ Hern(F), let

WB(g,F) =

∫
Hern(F)\Hern(A)

F(n(z)g)ψB(z) dz

be the Bth Fourier coefficient of F . Note that

(7.1) WB(d(ξ)m(A)g,F) = Wξ−1B⟨A⟩(g,F)

for all B ∈ Hern(F), ξ ∈ F×, A ∈ GLn(E) and g ∈ Gn(A). Appendix C says

that χ̂Bג appears in the local factor of the Bth Fourier coefficient of a certain
residual automorphic form on Gn(A).

Proposition 7.2. If n is odd, then χ̂Hnג
∈ Shχ̂Hn

(Aχ̂
n(π)).

Proof. We may suppose that n ≥ 3 and π is supercuspidal in view of Propo-
sition 6.3. By using a Poincare series we can now embed π as a local com-
ponent of an irreducible cuspidal automorphic representation σ of GL2(A)
at a prime p of F such that σv is not supercuspidal for all primes v ̸= p
(cf. [14, Appendice 1]). That is, Fp ≃ F and σp ≃ π. Take a quadratic
extension E of F so that the global base change σE remains cuspidal. We
extend the central character ω of σ to a Hecke character χ of E. Appendix C
constructs a residual automorphic representation Aχ

n(σ) which is equivalent
to ⊗′

vA
χv
n (σv).
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Fix a factorizable vector f0 = ⊗vf
0
v ∈ Aχ

n(σ) such that χvג

Hn
(f0

v ) ̸= 0 for
all v. The identities (7.1) and (C.1) give

χpג

Hn
(ϱ(mHn(A))fp)

∏
v ̸=p

χvג

Hn
(ϱ(mHn(A))f

0
v ) = χpג

Hn
(fp)

∏
v ̸=p

χvג

Hn
(f0

v )

for all A ∈ GUHn(F) and fp ∈ A
χp
n (π). Since χvג

Hn
∈ Shχv

Hn
(Aχv

n (σv)) for all
v ̸= p by Proposition 6.3, the equality

χpג

Hn
(ϱ(mHn(A))fp) = χp(ΛHn(A))גχp

Hn
(fp)

drops out. Since the subgroups GUHn(F) and PHn(F ) generate GUHn(F )
by the Bruhat decomposition, Lemma 7.1 concludes by induction that χpג

Hn
∈

Sh
χp

Hn
(A

χp
n (π)). Remark 4.4(2) now says that χ̂Hnג

∈ Shχ̂Hn
(Aχ̂

n(π)) for all the
extensions χ̂ of ω̂. □

8. Holomorphic cusp forms on Gn

From now on the ground field F is a totally real number field of degree d
and E is its totally imaginary quadratic extension unless otherwise stated.
That is, E is a CM-field and F is its maximal real subfield. We denote by
Fv the completion of F at a prime v, by S∞ the set of real primes of F , by
A the adèles ring of F , by F×

+ the group of totally positive elements of F
and by CF = F×\A× the idèle class group of F . We do not use p to denote
archimedean primes. The basic character of F\A is defined as the product
ψ =

∏
v ψv. We denote the adèle ring of E by E, the idèle class group of E

by CE and the set of totally positive definite Hermitian matrices of size n
over E by Her+n . It is worth noting that when n = 1,

Her1 = F, Her+1 = F×
+ , H1 = {Z ∈ C | ℑZ > 0}.

For any algebraic group G over F we denote its localization at a place v
by G(Fv) or simply by Gv, its adèlization by G(A), the direct product of all
the archimedean localizations by G(A∞) and the restricted direct product
of all the nonarchimedean localizations by G(Af ). Given another F -rational
algebraic group G′, an F -rational homomorphism φ of G into G′ and an F -
algebra A, we can extend φ naturally to a homomorphism of G(A) to G′(A),
which we shall denote by the same letter φ. For example, we employ NE

F

even for the map of E× into A× derived from the map NE
F : E× → F×. For

an adèle point x ∈ G(A) we denote its projections to G(Af ), G(A∞) and Gv

by xf , x∞ and xv, respectively. Put ψf =
∏

pψp. For B ∈ Hern(F ) define

a character ψB
f : Hern(Af ) → S by ψB

f (z) = ψf (tr(Bz)). For χ ∈ Ω(E×) we
denote its restrictions to E×

f and E×
∞ by χf and χ∞, respectively.

Fix a real place v ∈ S∞. Put

Gn(Fv)
+ = {g ∈ Gn(Fv) | λn(gv) > 0},

Hn = {Z ∈ Mn(C) |
√
−1( tZ̄ − Z) > 0}.
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Define the action of Gn(Fv)
+ on Hn and the automorphy factor j(g, Z) on

Gn(Fv)
+ × Hn by

gZ = (αZ + β)(γZ + δ)−1, j(g, Z) = λn(g)
−n/2 det(γZ + δ)

for Z ∈ Hn and g =

[
α β
γ δ

]
∈ Gn(Fv)

+ with matrices α, β, γ, δ of size n over

C. For ℓ,κ ∈ Z and B ∈ Her+n we define a function W ℓ,κ
B : Gn(Fv)

+ → C by

W ℓ,κ
B (g) = (detB)ℓ/2e(tr(Bg(i)))ε(det g)κj(g, i)−ℓ,

where i =
√
−11n ∈ Hn. Put Kn,v = {g ∈ Gn(Fv) | g(i) = i}. We can see

that

(8.1) W ℓ,κ
B (n(z)d(ξ)m(A)gk) =

e(tr(Bz))ε(det k)κ

ε(detA)ℓ−2κj(k, i)ℓ
W ℓ,κ

ξ−1B⟨A⟩(g)

for all z ∈ Hern(Fv), A ∈ GLn(Ev), 0 < ξ ∈ F×
v , g ∈ Gn(Fv)

+ and k ∈ Kn,v.
Let ℓ = (ℓv)v∈S∞ be a tuple of d integers. Given g = (gv) ∈ GL2(A∞)+

and a function F on Hd
1, we define another function F|ℓg on Hd

1 by

F|ℓg(Z) = F(gZ)Jℓ(g, Z)−1, Jℓ(g, Z) =
∏

v∈S∞

(det gv)
−ℓv/2(cvZv + dv)

ℓv ,

where gv =

[
∗ ∗
cv dv

]
. Define a maximal compact subgroup of SL2(A∞) by

K∞ = {g ∈ SL2(A∞) | g(
√
−1, . . . ,

√
−1) = (

√
−1, . . . ,

√
−1)}.

For ξ ∈ F×
+ and x ∈ Rd we put |ξ|x =

∏
v∈S∞

|ξ|xv
Fv
. A Hilbert cusp form

F of weight ℓ having central character ω̂ ∈ Ω(CF ) is a smooth function on
GL2(A) satisfying

F(zγgk) = ω̂(z)F(g)Jℓ(k, (
√
−1, . . . ,

√
−1))−1

for z ∈ A×, γ ∈ GL2(F ), g ∈ GL2(A), k ∈ K∞, and having a Fourier
expansion of the form

F∆(Z) =
∑
ξ∈F×

+

|ξ|ℓ/2wξ(∆,F)e∞(ξZ)

for each ∆ ∈ GL2(Af ), where wξ(F) is a function on GL2(Af ) and the

function F∆ : Hd
1 → C is defined by

F∆|ℓg(
√
−1, . . . ,

√
−1) = F(g∆), g ∈ GL2(A∞)+.

We write Cω̂
ℓ for the space of such Hilbert cusp forms.

For tuples ℓ,κ of d integers and B ∈ Her+n we define the character εκ ∈
Ω(E×

∞) and a function W ℓ,κ
B : Gn(A∞)+ → C by

εκ(a) =
∏
v

ε(av)
κv , W ℓ,κ

B (g) =
∏
v

W ℓv ,κv

B (gv),
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where v runs over all real primes of F . For g ∈ Gn(A∞)+ and a function
F : Hd

n → C we define another function F|κℓ g : Hd
n → C by

F|κℓ g(Z) = F(gZ)εκ(det g)jℓ(g, Z)−1,

where jℓ(g, Z) =
∏

v∈S∞
j(gv, Zv)

ℓv . Put Gn(A)+ = Gn(A∞)+Gn(Af ).

Definition 8.1. The spaceGn,κ
ℓ (resp. Tn,κ

ℓ ) consists of all smooth functions
F on Gn(A) that are left invariant under Gn(F ) (resp. Pn(F )) and admit
Fourier expansions of the form

F(g) =
∑

B∈Her+n

wB(gf ,F)W ℓ,κ
B (g∞)

which is absolutely and uniformly convergent on any compact neighborhood
of g = g∞gf ∈ Gn(A)+.

We call functions in the space Gn,κ
ℓ Hilbert-Hermitian cusp forms on

Gn(A) of weight ℓ with respect to the character εκ. For each ∆ ∈ Gn(Af ) we
associate to F ∈ Tn,κ

ℓ a holomorphic function F∆ on Hd
n by the condition

F∆|κℓ g(i) = F(g∆) for g ∈ Gn(A∞)+. Since Gn(A) = Pn(F )Gn(A)+, the
function F is determined by the family of holomorphic functions {F∆}.
Remark 8.2. (1) For the space Cω̂

ℓ to be nonzero it is necessary that

ω̂∞ =
∏

v∈S∞
sgnℓv , where sgn(x) = x

∥x∥ for x ∈ F×
v . If χ̂ ∈ Ω(CE)

is an extension of ω̂, then we can extend F ∈ Cω̂
ℓ to a function on

G1(A) in such a way that F(ag) = χ̂(a)F(g) for a ∈ E×, using the
isomorphism given in Remark 2.1. In this way we view Cω̂

ℓ as a

subspace of G1,κ
ℓ , where χ̂∞ = ε2κ−ℓ.

(2) If χ is a unitary character of CE having trivial restriction to CF ,

then Gn,κ
ℓ ⊗ χ̃ ◦ Λn = Gn,κ+j

ℓ , recalling the notation in Remark 4.4,

where j ∈ Zd is such that χ∞ = ε2j .
(3) We sometimes regard the coefficients of the Fourier expansion in

Definition 8.1 as functions gf 7→ wB(gf ,F) on Gn(Af ). It is note-
worthy that F 7→ wB(F) is an intertwining map from Gn,κ

ℓ or Tn,κ
ℓ

to Ind
Gn(Af )
Nn(Af )

ψB
f .

We fix, once and for all, a Hecke character ω̂ : CF → S, an auxiliary Hecke
character χ̂ : CE → S extending ω̂. Fix an irreducible summand πf of Cω̂

ℓ .
For each odd n and B ∈ Her+n Proposition 7.2 and Definition 3.2 naturally

define χ̂pג

B and a nonzero vector χ̂fג
B ∈ Shχ̂f

B (Aχ̂f
n (πf )) by χ̂fג

B (f) =
∏

p ג
χ̂p

B (fp)

for all pure tensors f = ⊗pfp ∈ Aχ̂f
n (πf ) := ⊗′

pA
χ̂p(πp), where, as the proof

of Proposition 4.5 shows, almost all the factors are 1.

Theorem 1.1. The series

Jκ
κ (g, f) =

∑
B∈Her+n

W κ+n−1,κ
B (g∞)גχ̂f

B (Πf (gf )f), κ =
1

2
(κ+ n− 1 + ℓ(χ̂))

defines a Gn(Af )-intertwining embedding Aχ̂f
n (πf ) ↪→ Gn,κ

κ+n−1.



29

9. Convergence of the Fourier series

Let o (resp. r) be the integer ring of F (resp. E), d the different of F/Q
and D the discriminant of E/F . The norm and the order of a fractional
ideal of o are defined by N(pk) = [o : p]k = qk and ordp p

k = k for each
prime ideal p of o. Put

Rn = Hern(F ) ∩Mn(r), Rn = {z ∈ Hern(F ) | tr(zRn) ⊂ o}.

Denote the closure of Rn in Hern,p by Rn,p. Put Rnd
n = Rn ∩GLn(E).

We fix a finite prime p and temporarily suppress p from the notation.
Thus F is an extension of Qp for the moment. For every B ∈ Herndn and
an irreducible admissible unitary generic representation π of GL2(F ) with

central character ω̂ we can define χ̂Bג ∈ Shχ̂B(A
χ̂
n(π)), following Definition 3.2

and Proposition 7.2. We first provide a bound of .χ̂Bג

Lemma 9.1. Let f ∈ Aχ̂
n(π). For any compact subset C of Gn there are

0 ≤ ϕ ∈ S(Hern) and M ∈ R×
+ such that for all ∆ ∈ C and B ∈ Herndn

∥χ̂B(ϱ(∆)f)ג∥ ≤ | detB|−M
F ϕ(B).

Proof. Since {ϱ(∆)f | ∆ ∈ C} is a finite set, we may suppose that C = {12n}.
One can find a compact subset L of Hern such that χ̂B(f)ג = 0 if B /∈ L.
Therefore the claimed estimate is equivalent to saying that there are positive
constants c and M which satisfy

χ̂Hnג∥
(ϱ(d(ξ)m(A))f)∥ ≤ c|ξ−nNE

F (detA)|−M
F

for all ξ ∈ F× and A ∈ GLn(E). Since d(NE
F (E

×)) ⊂ Znmn(GLn(E)), we
have only to vary A. Recall that Zn stands for the center of Gn.

For simplicity we here exclude the split case. The split case is none other
than Lemma B.4. Let q be the maximal ideal of r. The order of the residue
field r/q is denoted by qE . Thanks to the Iwasawa decomposition, it suffices
to let A vary over the parabolic subgroup Q1,n−2,1 of GLE(Xn) defined in
Lemma 6.1(2). Define a homomorphism

℘n : E× ×GLn−2(E) → m(Q1,n−2,1), ℘n(a,A0) = m(diag[a, 1, A0]).

For each A ∈ Q1,n−2,1 there are u ∈ En−2, η ∈ E, a ∈ E× and A0 ∈
GLn−2(E) such that m(A) ∈ m(PHn)X(u, η)℘n(a,A0), where PHn = UHn ∩
PHn . Lemma 7.1 therefore allows us to suppose that A = X(u, η)℘n(a,A0).

As in the proof of Proposition 4.5, we write f = Φ ⋆ h. From (4.2) we get

[ϱ(X(u, η)℘n(a,A0))f ](Y (y, z))

=h(℘n(a,A0)Y (A−1
0 y, z))ψ(zTE

F (η) + TE
F (

tuτy))Φ̂(aA−1
0 y, az)

Substituting this expression into (4.3), we see by Lemma 6.1(3) that

χ̂Hnג∥
(ϱ(X(u, η)℘n(a,A0))f)∥ ≤ | detA0|E

∫
F

∫
En−2

∥Φ̂(ay, az)∥
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×
χ̂Hn−2ג∥∥∥∥

(
h

(
i2

([
a 0
0 1

]
,m′

2(A0)

)
Y (y, z)

))∥∥∥∥dydz.
Let Pn−1

1 (resp. Pn−1
n−1 ) be the parabolic subgroup of of Gn−1 ⊂ M1

which stabilizes the subspace spanned by f2 (resp. f2, e3, e4, . . . , en). Let
Nn−1

1,n−2 be the unipotent radical unipotent radical of Pn−1
1 ∩ Pn−1

n−1 . Since

Y (y, z) ∈ Gn−1 ⊂ M1, we can write

Y (y, z) = i2

([
1 0
0 a1

]
,m′

2(A1)

)
u1k

by the Iwasawa decomposition for Gn−1 relative to Pn−1
1 ∩ Pn−1

n−1 , where

a1 ∈ E×, A1 ∈ GLn−2(E), u1 ∈ Nn−1
1,n−2, k ∈ Γn−1[o].

For (y, z) ∈ En−2 ⊕ F let N(y, z) and N(z) be the nonnegative integers

defined by q−N(y,z) = r+ zr+
∑n−2

j=1 yjr and q−N(z) = r+ zr. Since

a−1
1 k−1f2 = Y (y, z)−1f2 = f2 − ze2 − y1e3 − · · · − yn−2en,

we get |a1|E = q
−N(y,z)
E . Since Y (y, 0) ∈ Pn−1

n−1 , we can infer from the

Iwasawa decomposition relative to Pn−1
n−1 that |a1 detA1|E = q

−N(z)
E . Thus

|detA1|E = q
N(y,z)−N(z)
E ≥ 1. By induction there are positive integers c′,

M ′ and M ′′ such that∥∥∥∥גχ̂Hn−2

(
h

(
i2

([
a 0
0 1

]
,m′

2(A0)

)
Y (y, z)

))∥∥∥∥
=

χ̂Hn−2ג∥∥∥∥

(
h

(
i2

([
a 0
0 a1

]
,m′

2(A0A1)

)
k

))∥∥∥∥
≤c′|a1|n−1

E |aa−1
1 |−M ′′

E |det(A0A1)|−M ′

E ≤ c′|a|−M ′′

E | detA0|−M ′

E ,

where we have invoked a gauge estimate for W (πE). Without loss of general-

ity we may assume Φ̂ to be the characteristic function of (p−N r)⊕n−2⊕p−N r.

Then
∫
F

∫
En−2 ∥Φ̂(ay, az)∥ dydz ≤ |a|1−n

E q
2N(n−1)
E . □

The Siegel series associated to B ∈ Rnd
n is defined by

b(B, s) =
∑

z∈Hern/Rn

Ψ(−tr(Bz))ν[z]−s,

where ν[z] = [zrn + rn : rn]1/2 and Ψ is a character of F of order zero. As is
well-known, this definition is independent of the choice of Ψ . Put

γ(s) =

n−1∏
j=0

L(s− j, ϵjE/F )
−1, F (B, q−s) = b(B, s)γ(s)−1.(9.1)

If d = o and detB ∈ o×, then F (B,X) = 1 by [17]. The Siegel series is
nothing but the unramified Jacquet integral.
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Lemma 9.2. If B ∈ Rnd
n , then

w
αs

E
B (ε

(2s+n)/2
d ) = N(d)−2ns| detB|n/2F F (B, q−2s−n).

Moreover, there is a positive constant M independent of B and F such that
∥F (B, q−2s−n)∥ ≤ | detB|−M

F for all B ∈ Rnd
n and −1

2 < ℜs < 1
2 .

Proof. The proof of the first (resp. second) part is similar to that of [36,
Lemma 4.5] (resp. [17, Lemma 2.3]). We omit detailed verifications. □

We go back to the global setting. We have taken an auxiliary Hecke
character χ̂ : CE → S whose restriction to CF coincides with the fixed
Hecke character ω̂. The tuple ℓ(χ̂) of d integers is defined by χ̂∞ = εℓ(χ̂).

Lemma 9.3. Notation being as in Theorem 1.1, the series Jκ
κ (f) converges

absolutely and uniformly on any compact subset of Gn(A).

Proof. The proof is similar to the arguments in Section 4 of [16]. It suffices
to show that the series

Jκ
κ (f)12n(Z) =

∑
B∈Her+n

| detB|(κ+n−1)/2גχ̂f
B (f)e∞(tr(BZ))

is absolutely and uniformly convergent on any compact subset of Hd
n. One

can find a natural number N such that χ̂fג
B (f) = 0 unless B ∈ N−1Rn.

There is no harm in assuming that f = ⊗pfp is factorizable. Corollary 6.4

and Lemma 9.2 give a positive constant M such that χ̂pג∥

B (fp)∥ ≤ | detB|−M
Fp

for almost all p. The bound of χ̂pג

B given in Lemma 9.1 now says that

χ̂fג∥
B (f)∥ ≤ C ′NF

Q(detB)M
′

for all B ∈ Her+n with constants C ′ and M ′ depending only on f . The
inequality of arithmetic and geometric means gives

NF
Q(detB) ≤ (nd)−nd(TF

Qtr(B))nd.

The number of B ∈ N−1Rn ∩ Her+n such that TF
Qtr(B) ≤ T is O(T dn2

).

From these estimates the series converges absolutely and uniformly on {Z ∈
Hd
n | ℑZv > ϵ1n for all v ∈ S∞} for any positive constant ϵ. □

10. Proof of Theorem 1.1

We begin with the inductive structure for Jacquet integrals on degenerate
principal series in §10.1. It is mentioned in (1.3) and a special case of (4.1).
When π ≃ I(µ, µ−1ω̂), the techniques are substantially those of Section 7
of [18], so that we will sometimes omit details. When π ≃ A(µ, µ−1ω̂) with
µ2ω̂−1 = αF , the proof is a bit more complicated than the metaplectic case
due to (5.7). We here use the functional equation (5.4).

Next we will prove the general case of (4.1) by a global method which uses
a certain residual automorphic representation. So as not to interrupt the flow
of the section, we will construct this residual automorphic representation
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in Appendix C. Since the restriction of χ̂−1 ⊠ π to G1 may be reducible,
it simplifies the proof considerably to extend the notion of Fourier-Jacobi
coefficients to G1 as in Section 3. The global criterion stated in Proposition
10.4 combined with the local result (4.1) achieves Theorem 1.1.

10.1. Jacquet integrals revisited. We return to the local situation again,
fix a prime v of F and suppress it from the notation. Fix 1 ≤ i ≤ n−1. Put

n′ = n− i, ηi =


−1i

1n′

1i
1n′

 ∈ Gn.

Lemma 10.1. Let S ∈ Herndi . Put n′ = n − i. Given h ∈ In(χ) and
ϕ ∈ S(Xn

i ), we define the function β ϵ̂
S(g

′;h⊗ ϕ̄) : Gn′ → C, for ℜχ ≫ 0, by
the integral∫

Y n
i \Nn

i

h(ηivg
′)[ωϵ̂

S(vg
′)ϕ](0) dv

i∏
j=1

L(n′ + j, χ†ϵi+j
E/F ).

This function is meaningful for all χ and gives an Nn
i -invariant and Gn′-

intertwining map β ϵ̂
S : In(χ)⊗ωϵ̂

S → In′(χϵ̂−1). Moreover, there is a nonzero

constant CS such that for all Ξ ∈ Herndn′

wχϵ̂−1

Ξ (β ϵ̂
S(h⊗ ϕ̄)) = CS | detΞ|−i/2

F

∫
Xn

i

ϕ(x)wχ
S⊕Ξ(ϱ(x)h) dx.

Proof. One can prove Lemma 10.1 in the same way as in the proof of Lemmas
7.1 and 7.2 of [18]. □

Corollary 10.2. If F is nonarchimedean and −1
2 ≤ ℜχ < 1

2 , then

β ϵ̂
S(In(χ)⊗ ωϵ̂

S) = In′(χϵ̂−1).

Proof. Fix Ξ ∈ Herndn′ . Lemma 5.3(1) enables us to take h ∈ In(χ) so that
wχ
S⊕Ξ(h) ̸= 0. Lemma 10.1 shows that if we choose ϕ to be supported in a

small neighborhood, then wχϵ̂−1

Ξ (β ϵ̂
S(h⊗ϕ̄)) ̸= 0. In particular, β ϵ̂

S(h⊗ϕ̄) ̸= 0.

Thus β ϵ̂
S is surjective, provided that In′(χϵ̂−1) irreducible. By Proposition

5.4(1) we may assume that χ† = ϵn−1
E/Fα

−1
F or E ̸≃ F ⊕ F and χ† = ϵnE/F .

When χ† = ϵn−1
E/Fα

−1
F , since wχϵ̂−1

Ξ kills the maximal proper subrepresen-

tation of In′(χϵ̂−1) in view of (5.6), the vector β ϵ̂
S(h⊗ ϕ̄) generates In′(χϵ̂−1).

We discuss the latter case. Since A±
n′(χϵ̂−1) are irreducible and satisfies

Herndn′ (A±
n′(χϵ̂

−1)) = {Ξ ∈ Herndn′ | ϵ(Ξ) = ±1}

by Proposition 5.4(2), we see that

β ϵ̂
S(A

±
n (χ)⊗ ωϵ̂

S) = A
±εn,i,n′ϵ(S)

n′ (χϵ̂−1),
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where εn,i,n′ ∈ {±1} is independent of S. Hence β ϵ̂
S(In(χ)⊗ωϵ̂

S) = A+
n′(χϵ̂−1)⊕

A−
n′(χϵ̂−1) = In′(χϵ̂−1) as claimed. □

We let i = n − 1 and suppose that n is odd for the rest of this section.
For simplicity we exclude the case in which F = R. Since ηn−1mS(A) =
d(ξ)m(ξ t(A−1)τ )ηn−1, a simple computation shows that

β ϵ̂
S(ϱ(mS(A))h⊗ θL(A)ϕ) = θ(ΛS(A))|ξ|−(n−1)/2

F | detA|E

× µ(ξ)χ(det(ξ t(A−1)τ ))|ξ−nNE
F (det(ξ

t(A−1)τ ))|n/2F β ϵ̂
S(h⊗ ϕ̄)

for all h ∈ Jn(χ, µ) and A ∈ GUS with ξ = λS(A). Observing that

θ(ΛS(A)) = τθ(ΛS(A)), χ(det(ξ t(A−1)τ )) = χ(ΛS(A))χ(ξ)(n−1)/2,

|ξ|−(n−1)/2
F |detA|E |ξ−nNE

F (det(ξ
t(A−1)τ ))|n/2F = |ξ|−1/2

F ,

we get

β ϵ̂
S(ϱ(mS(A))h⊗ θL(A)ϕ) = (χ τθ)(ΛS(A))µ(ξ)χ(ξ)(n−1)/2|ξ|−1/2

F β ϵ̂
S(h⊗ ϕ̄).

In particular, the linear map β ϵ̂
S : Jn(µ[χ̂], µ

−nω̂(n+1)/2) ⊗ χ̂ΩS → C is US-
invariant. We therefore define a function βS(h⊗ ϕ̄) : GL2(F ) → C by

βS(g;h⊗ ϕ̄) = β ϵ̂
S(ϱ(ι

′(A, g))h⊗ χ̂ΩS(ι′(A, g))ϕ),

where the right hand side does not depend on the choice of ϵ̂, χ̂ and A ∈ GUS

with λS(A) = det g. Moreover, if we put ξ = λS(A), then

βS(d1(ξ);h⊗ ϕ̄) = β ϵ̂
S(ϱ(mS(A))h⊗ χ̂L(A)ϕ) = µ(ξ)−1ω̂(ξ)|ξ|−1/2

F βS(h⊗ ϕ̄).

It therefore follows that βS(h⊗ ϕ̄) ∈ I(µ, µ−1ω̂).

Lemma 10.3. Suppose either −1
2 < ℜµ < 1

2 or µ2ω̂−1 = αF . Then

ΓS
1 ג⟩

χ̂
Hn

⟩(f ⊗ ϕ̄) ∈ W (A(µ, µ−1ω̂))

for all odd n, S ∈ Herndn−1, f ∈ Aχ̂
n(A(µ, µ−1ω̂)) and ϕ ∈ χ̂ΩS.

Proof. Corollary 5.5(3) and Proposition 6.3 tell us that

Aχ̂
n(A(µ, µ−1ω̂)) = Υ(µ[χ̂]) ◦Mn((ω̂µ

−1)[χ̂])(Jn((ω̂µ
−1)[χ̂], µnω̂(1−n)/2)).

Let h′ ∈ Jn((ω̂µ
−1)[χ̂], µnω̂(1−n)/2). Put

h = Mn((ω̂µ
−1)[χ̂])h′, f = Υ(µ[χ̂])h.

Then

ΓS
1 ג⟩

χ̂
Hn

⟩(g; f⊗ϕ̄) = µ(detS)−1

∫
X′

w
µ[χ̂]
S⊕1(ϱ(xι

′(A, g))h)[χ̂ΩS(ι′(A, g))ϕ](x) dx

for (A, g) ∈ RS by Corollary 6.4. The right hand side is equal to

en(µ[χ̂])(µω̂
−1)(detS)

∫
X′

w
(ω̂µ−1)[χ̂]
S⊕1 (ϱ(xι′(A, g))h′)[χ̂ΩS(ι′(A, g))ϕ](x) dx
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by (5.4). Next we exploit Lemma 10.1 to see that

ΓS
1 ג⟩

χ̂
Hn

⟩(g; f ⊗ ϕ̄) = e′n(µ)w
(ω̂µ−1)[χ̂]
1 (ϱ(g)βS(h

′ ⊗ ϕ̄)),

where e′n(µ) is a meromorphic function on Ω(CF ), which is holomorphic and
nonzero for ℜµ > −1

2 . We have seen that βS(h
′⊗ϕ̄) ∈ I(ω̂µ−1, µ). Therefore

M1(ω̂µ
−1)βS(h

′ ⊗ ϕ̄) ∈ A(µ, µ−1ω̂). We finally get

ΓS
1 ג⟩

χ̂
Hn

⟩(g; f ⊗ ϕ̄) = e′n(µ)e1(µ[χ̂])
−1w

µ[χ̂]
1 (ϱ(g)M1(ω̂µ

−1)βS(h
′ ⊗ ϕ̄))

by using (5.4) again. □

10.2. Fourier-Jacobi coefficients of automorphic forms. Fix S ∈ Herndi .
Put n′ = n − i. Recall the Schrödinger model of the Weil representation
ωϵ̂
S ≃ ⊗′

vω
ϵ̂v
S realized on S(Xn

i (A)). We associate to φ ∈ S(Xn
i (A)) the theta

function on Gn′(A)⋉Nn
i (A) given by

Θ(ωϵ̂
S(v)φ) =

∑
x∈Xn

i (F )

[ωϵ̂
S(v)φ](x).

The Bth Fourier coefficient WB(F) of a smooth function F on Pn(F )\Gn(A)
is defined in Section 7. The (S, φ)th Fourier-Jacobi coefficient of F is a
function on Gn′(A) defined by

FS
φ (g

′) =

∫
Nn

i (F )\Nn
i (A)

F(vg′)Θ(ωϵ̂
S(vg

′)φ) dv.

For ϕ ∈ S(Xn
i (Af )) we define ϕS ∈ S(Xn

i (A)) by

ϕS(x) = ϕ(xf )φ
∞
S (x∞), φ∞

S (x∞) =
∏

v∈S∞

φS(xv), x = (xv) ∈ Xn
i (A).

We will denote the action of Gn(Af ) on Tn
ℓ+n by ρ. The following result is

proved in [18, Lemma 7.7] and will be applied with i = n− 1.

Proposition 10.4. If F is a smooth function on Pn(F )\Gn(A), then

FS
φ (g

′) =
∑

Ξ∈Hern′ (F )

∫
Xn

i (A)
WS⊕Ξ(xg

′,F)[ωϵ̂
S(g

′)φ](x) dx.

Put n′ = n− i and κ′ = κ − 1
2(ℓ(ϵ̂) + i). Let

F(g) =
∑

B∈Her+n

wB(gf ,F)W ℓ,κ
B (g∞)

be the Fourier expansion of F ∈ Tn,κ
ℓ . Then FS

ϕS
(g′) is equal to∑

Ξ∈Her+
n′

NF
Q(detΞ)i/2W ℓ−i,κ′

Ξ (g′∞)

∫
Xn

i (Af )
wS⊕Ξ(xg

′
f ,F)[ωϵ̂f

S (g′f )ϕ](x) dx

for ϕ ∈ S(Xn
i (Af )) up to a nonzero constant. Moreover, F ∈ Gn,κ

ℓ if and

only if (ρ(∆)F)SϕS
is left invariant under Gn′(F ) for all ∆ ∈ Gn(Af ), S ∈

Her+i and ϕ ∈ S(Xn
i (Af )).
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10.3. End of the proof. We again switch to the local observation, which
is the final ingredient required for the proof of Theorem 1.1.

Lemma 10.5. If n is odd and πp is an irreducible admissible unitary generic
representation of GL2(Fp) whose central character is ω̂p, then

ΓS
1 ג⟩

χ̂p

Hn
⟩(f ⊗ ϕ̄) ∈ W (πp) (S ∈ Herndn−1, f ∈ A

χ̂p
n (πp), ϕ ∈ χ̂pΩS).

Proof. We may assume that πp is supercuspidal in view of Lemma 10.3. We
take an auxiliary supercuspidal representation π′ and embed πp and π′ as
local components of an irreducible cuspidal automorphic representation σ
of GL2(A) at primes p and p′ of a totally complex number field F. We can
find a quadratic extension E of F which splits at p′ and such that the base
change σE remains cuspidal. Extends the central character of σ to a Hecke
character χ of E. We will construct a residual automorphic representation
Aχ

n(σ) which is equivalent to ⊗′
vA

χv
n (σv) in Appendix C. We may suppose

that S is defined with respect to E/F.
For F ∈ Aχ

n(σ) and φ ∈ χΩS we define a function on FS
φ on RS(A) by

FS
φ (g

′) =

∫
N ′(F)\N ′(A)

F(vg′)Θ(χΩS(vg′)φ) dv.

Clearly, Θ(χL(A)φ) = Θ(φ) for all A ∈ GUS(F). Thus the theta distribution
Θ is invariant under RS(F) ⋉ N ′(F) and hence FS

φ is left invariant under
RS(F). We see by (C.1) and Proposition 10.4 that

FS
φ (A, g) =

∑
ξ∈F×

ΓS
ξ ג⟩

χ
Hn

⟩(g;Wn(FPe)⊗ φ̄)

+

∫
X′(A)

WS⊕0(xι
′(A, g),F)[χΩS(A, g)φ](x) dx,

where we define the function ΓS
ξ ג⟩

χ
Hn

⟩(Wn(FPe)⊗ φ̄) on GL2(A) by setting

ΓS
ξ ג⟩

χ
Hn

⟩(g;Wn(FPe)⊗ φ̄) =
∏
v

ΓS
ξ ג⟩

χv

Hn
⟩(gv; fv ⊗ φ̄v)

if Wn(FPe) = ⊗vfv and φ = ⊗vφv are factorizable.

Since J
ψp′◦ℓS⊕0

Nn(Fp′ )
(A

χp′
n (π′)) is zero by by Remark B.1 and Proposition B.2(1),

Remark 8.2(3) gives WS⊕0(f) = 0 for all f ∈ Aχ
n(σ). It follows that

FS
ϕ (A, g) is independent of A and defines a cusp form on GL2(A). Since

S ⊕ 1 ∈ OF(Hn) for the choice of F, these cusp forms generate a nonzero
cuspidal automorphic representation of GL2(A), which we denote by σ′. As
we have seen in Lemma 10.3, the restriction of σ′ to GL2(Fv) is a multi-
ple of σv for almost all v, and so by the strong multiplicity one theorem,
σ′ ≃ σ and ΓS

1 ג⟩
χ
Hn

⟩(Wn(FPe) ⊗ φ̄) is a global Whittaker function of σ.

Hence ΓS
1 ג⟩

χv

Hn
⟩(fv ⊗ φ̄v) ∈ W (σv). □
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We are now ready to prove Theorem 1.1. The series Jκ
κ (f) is left in-

variant under Pn(F ) ∩ G(A)+ by (1.2), (8.1) and the choice of κ. Since
Gn(A) = Pn(F )Gn(A)+, it has a unique extension to a left Pn(F )-invariant

function on Gn(A). Since χ̂fג
B is nonzero for every B ∈ Her+n by Propositions

4.5(2) and 6.3, the map Jκ
κ is nonzero and hence injective as Aχ̂f

n (πf ) is irre-

ducible. Thus Jκ
κ is a Gn(Af )-intertwining embedding A

χ̂f
n (πf ) ↪→ Tn,κ

κ+n−1.

The essential point is to show that Jκ
κ (A

χ̂f
n (πf )) is contained in Gn,κ

κ+n−1

Let S ∈ Her+n−1 and ϕ ∈ S(X ′(Af )). We extend the Fourier-Jacobi coef-

ficient Jκ
κ (f)

S
ϕS

to a function on RS(A) by

Jκ
κ (f)

S
ϕS
(g′) =

∫
N ′(F )\N ′(A)

Jκ
κ (f)(vg

′)Θ(χ̂ω1
S(vg

′)ϕS) dv

for g′ ∈ RS(A), where we let ϵ̂ be the trivial character of CE . We also define
a function on RS(A) by

F(g′) =

∫
N ′(F )\N ′(A)

Jκ
κ (f)(vg

′)Θ(χ̂ΩS(vg′)ϕS) dv

Remark 2.1 implies that

RS(A) = Zn(A)RS(A).

The central character of Jκ
κ (f) is χ̂n(ω̂E)(1−n)/2 while Zn(A) acts on χ̂ω1

S

by the character χ̂n−1(ω̂E)(1−n)/2. Therefore Jκ
κ (f)

S
ϕS

is an extension of F
by the character χ̂. Put κ′ = κ − n−1

2 = κ+ℓ(χ̂)
2 (cf. Remark 8.2(1)).

Proposition 10.4 gives a nonzero constant CS such that

F(A, g) = CS

∑
ξ∈F×

+

W κ,κ′

ξ (g∞)ΓS
ξ

⟨
χ̂fג
Hn

⟩
(gf ; f ⊗ ϕ̄).

In particular, F factors through the homomorphism

RS(A) ↠ GL2(A∞)+GL2(Af ).

We can rewrite the equality as

F(g) = CS

∑
ξ∈F×

+

W κ,κ′

1 (m(1, ξ)g∞)ΓS
1

⟨
χ̂fג
Hn

⟩
(m(1, ξ)gf ; f ⊗ ϕ̄)

by (8.1) and Proposition 3.3. Since ΓS
1

⟨
χ̂fג
Hn

⟩
(f ⊗ ϕ̄) is a ψf -Whittaker

function of πf by Lemma 10.5, the series F belongs to Cω̂
κ as π is automorphic

and cuspidal. It therefore follows that Jκ
κ (f)

S
ϕS

is left invariant under G1(F ).

Proposition 10.4 eventually proves that Jκ
κ (f) ∈ Gn,κ

κ+n−1.
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11. Translation to classical language

We shall translate obtained results into more classical terminology. For
an ideal a of o we put ap = pordp a. Take a finite set S of prime ideals of o.
Put

K =
∏
p∈S

Γn[d
−1
p , dpp]×

∏
p/∈S

Γn[d
−1
p , dp].

See Section 5 for the definition of the open compact subgroup Γn[d
−1
p , dpp]

of Gn(Fp). We will let n be odd and construct Hilbert-Hermitian cuspidal
Hecke eigenforms by making Corollary 1.2 explicit with the test function
f invariant under K. We define a function ε̂p : Gn(Fp) → C as follows:

If g /∈ Pn(Fp)JnΓn[d
−1
p , dpp], then ε̂p(g) = 0. If g = d(λ)m(A)n(z)Jnk

with λ ∈ F×
p , A ∈ GLn(Ep), z ∈ Hern(Fp) and k ∈ Γn[d

−1
p , dpp], then

ε̂p(g) = |λ|−n
Fp

| detA|Ep . Note that ε̂
(2s+n)/2
p ∈ Jn(α

s
Ep
,α−ns

Fp
).

The following result can be proved easily (cf. Lemma 18.13 of [33]).

Lemma 11.1. Let A ∈ GLn(Ep) and z ∈ Hern(Fp). Then

ε̂p(Jnn(z)d(λ)m(A)) =

{
|λ|nFp

|detA|−1
Ep

if λA−1z( tAτ )−1 ∈ Mn(d
−1
p ),

0 otherwise.

Recall that Rn,p = Hern(Fp) ∩Mn(rp).

Lemma 11.2. Take χ = α
sp
Ep

so that χ† = αFp, i.e., sp − 1
2 ∈ π

√
−1

log qp
Z. Put

ĥp = Mn(χ
−1,α

nsp
Fp

)ε̂
(−2sp+n)/2
p ∈ Jn(χ,α

−nsp
Fp

).

Let n be an odd natural number.

(1) ĥp ∈ An(χ,α
−nsp
Fp

).

(2) Let B ∈ Herndn (Fp) and A ∈ GLn(Ep). Then

wχ
B(℘(d(λ)m(A))ĥp)

N(dp)n
2 |detB|spFp

=

{
en(χ)|λ−n detB⟨A⟩|(2sp+n)/2

Fp
if B⟨A⟩ ∈ Rn,p,

0 otherwise.

Proof. Corollary 5.5(3) proves (1). Lemma 11.1 gives

w
αs

Ep

B (℘(d(λ)m(A))ε̂sp) =

{
N(dp)

n2 |λ|nsFp
|detA|n−s

Ep
if λ−1B⟨A⟩ ∈ Rn,p,

0 otherwise.

The second part follows from (5.4). □
Take elements λ1, λ2, . . . , λr ∈ A×

f and A1, A2, . . . , Ar ∈ GLn(Af ) so that
{∆1,∆2, . . . ,∆r} is a complete set of representatives for the double coset
Gn(F )\Gn(A)/Gn(A∞)K, where ∆i = d(λi)m(Ai). Put

R+
n,i = {B ∈ Her+n | B⟨Ai,p⟩ ∈ Rn,p for all p}.

We write Gn,κ
ℓ (K) for the subspace of Gn,κ

ℓ on which K acts trivially. Put

Γi = Gn(F )+ ∩ ∆iK∆−1
i . Let C κ

ℓ (Γi) denote the space of holomorphic
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functions H on Hd
n such that H|κℓ γ = H for all γ ∈ Γi and such that H|κℓ γ

has a Fourier expansion of the form (1.1) for all γ ∈ Gn(F )+. Then F 7→
(F∆1 ,F∆2 , . . . ,F∆r) defines a bijection from Gn,κ

ℓ (K) onto ⊕r
i=1C

κ
ℓ (Γi).

For B ∈ Rn,p ∩GLn(Ep) and a finite prime p we put

(11.1) F̃p(B,X) = X− ordp(D(n−1)/2 detB)Fp(B, q−n
p X2).

See (9.1) for the definition of Fp(B,X). For a ∈ E×
f put |a|Ef

=
∏

p |ap|Ep .

Corollary 11.3. Let πf be an irreducible cuspidal automorphic representation
generated by a Hilbert cusp form. Assume that πf is equivalent to the unique

irreducible subrepresentation of ⊗′
pI(α

sp
Fp
,α

−sp
Fp

). Put S = {p | ℜsp ̸= 0}.
For i = 1, 2, . . . , r we define a function Hi : H

d
n → C by the Fourier series

Hi(Z) =
∑

B∈R+
n,i

|detB|(κ−1)/2Ci(B)e∞(tr(BZ)),

where

Ci(B) = |λ−n
i NE

F (detAi)|n/2Ef

∏
p∈S

|λ−n
i,p detB⟨Ai,p⟩|

sp
Fp

∏
p/∈S

F̃p(λ
−1
i,pB⟨Ai,p⟩, q

−sp
p ).

Then the tuple (H1, . . . , Hr) defines a nonzero Hilbert-Hermitian cusp form
in ⊕r

i=1C
κ
κ+n−1(Γi) whose standard L-function is equal to

n∏
i=1

L

(
s+

n+ 1

2
− i, π

)
L

(
s+

n+ 1

2
− i, π ⊗ ϵE/F

)
.

Proof. We will apply Corollary 1.2 to µp = α
sp
Fp
, ω̂ = 1 and χ̂ = 1. Define

h ∈ An(µ
E
f , µ

−n
f ) by h(g) =

∏
p∈S ε̂

(2sp+n)/2
p (gp)

∏
p/∈S εdp(gp)

(2sp+n)/2 for

g = (gp) ∈ Gn(Af ). For B ∈ R+
n,i we rewrite Lemma 9.2 as

| detB|−s
Fp

w
αs

Ep

B (ϱ(d(λi,p)m(Ai,p))ε
(2s+n)/2
dp )

=| detB|−s
Fp

|λi,p|nsFp
|detAi,p|−s

Ep
w
αs

Ep

λ−1
i,pB⟨Ai,p⟩

(ε
(2s+n)/2
dp )

=|λ−n
i,p detB⟨Ai,p⟩|−s

Fp
N(dp)

−2ns|λ−n
i,p detB⟨Ai,p⟩|n/2Fp

Fp(λ
−1
i,pB⟨Ai,p⟩, q−2s−n

p )

=N(dp)
−2nsN(Dp)

−(n−1)s/2| detB|n/2Fp
|λ−n

i,p det(Ai,p
tAτ

i,p)|
n/2
Ep

F̃p(B⟨Ai,p⟩, q−s
p ).

Correspondingly, we see that

Hi = Iκκ (h)∆i

∏
p∈S

N(dp)
n2
en(α

sp
Ep
)
∏
p/∈S

N(dp)
−2nspN(Dp)

−(n−1)sp/2.

Since h is fixed by K, the cusp form Iκκ (h) is a nonzero element in Gn,κ
κ+n−1(K)

by Corollary 1.2, so that Hi ∈ C κ
κ+n−1(Γi). □
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Appendix A. Compatibility with Arthur’s conjecture

We will see how Arthur’s endoscopic classification [2, 3, 29] accounts for
Theorem 1.1. This specialized to our current case is discussed in Section
18 of [17]. Let WF be the Weil group of F . Langlands has conjectured the
existence of a locally compact group LF such that the equivalence classes of
irreducible k-dimensional representations of LF is in one-to-one correspon-
dence with the set of irreducible cuspidal automorphic representations of
GLk(A). There should be an embedding ιv : LFv ↪→ LF for each v, where
LFv is the Weil group or the Weil-Deligne group of Fv depending on whether
v being archimedean or not.

Let G be a connected reductive algebraic group G over F whose com-
plex dual group is denoted by Ĝ. Arthur speculated that every irreducible
cuspidal or residual automorphic representation of G(A) is associated to an

elliptic A-parameter, by which we mean a Ĝ-conjugacy class of admissible
homomorphisms ϕ : LF × SL2(C) → LG such that ϕ(LF ) is bounded and

such that S(ϕ)+ is contained in Z(Ĝ)WF , where the semi-direct product
LG = Ĝ⋊WF is the L-group of G and S(ϕ)+ is the identity component of

the centralizer S(ϕ) of ϕ(LF × SL2(C)) in Ĝ.
A global A-parameter ϕ provides a local A-parameter ϕv = ϕ◦(ιv× Id) to

which one can associate a finite set Π(ϕv) of equivalence classes of unitary
admissible representations of Gv according to the local conjecture, among
other things. We define a global A-packet Π(ϕ) as a tensor product of
local A-packets, i.e., the set of representations ⊗′

vΠv of G(A) such that
Πv ∈ Π(ϕv) for all v and Πv is unramified for almost all v. It is generally
believed that to each irreducible representation ϵv of the finite group S(ϕv) =

S(ϕv)/S(ϕv)
+Z(Ĝ)WFv one can attach a subset Πϵv(ϕv) of Π(ϕv). If ϵv is

the trivial representation, then Πϵv(ϕv) should contain the L-packet Π(ϕ′
v)

for the local L-parameter ϕ′
v defined by

ϕ′
v(σ) = ϕv

(
σ,diag

[
|σ|1/2Fv

, |σ|−1/2
Fv

])
.

Arthur attached to ϕ a quadratic character ϵϕ of S(ϕ) = S(ϕ)/Z(Ĝ)WF . For
an irreducible character ϵ =

∏
v ϵv of the compact group

∏
v S(ϕv) we set

Πϵ(ϕ) = {⊗′
vΠv | Πv ∈ Πϵv(ϕv)}, mϵ =

1

#S(ϕ)
∑

s∈S(ϕ)

ϵϕ(s)ϵ(s).

Arthur conjectured that the space of square-integrable automorphic forms
on G(A) is the direct sum ⊕ϕ ⊕ϵ ⊕Π∈Πϵ(ϕ)mϵΠ which runs over the elliptic
A-parameters ϕ and irreducible characters ϵ of

∏
v S(ϕv).
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The action of WF on Ĝn = GL2n(C)×GL1(C) factors through the Galois
group ΓE

F of E over F and its nontrivial element acts via the automorphism

(g, λ) 7→ (w2n
tg−1w−1

2n , λ det g), wk =


(−1)k−1

. .
.

−1
1

 .

If ϕ(σ) = (φ(σ), λ(σ)) is an A-parameter for Gn, then the central character
of representations in Π(ϕ) should correspond to the homomorphism

σ 7→ (λ(σ) detφ(σ), λ(σ)).

We normalize the kth symmetric power representation symk of SL2(C) so
that tsymk(x)−1 = wk+1sym

k(x)w−1
k+1 for x ∈ SL2(C). Fix a character θ ∈

Ω(CF ), a character ϵ̂ of CE whose restriction to CF is ϵn−1
E/F and an element

σ0 ∈ WF whose projection to ΓE
F is nontrivial. Define homomorphisms

θιϵ̂n : LG1 → LGn,
Lsymn−1 : SL2(C) → ĜWF

n

by([
a b
c d

]
, λ

)
7→
([

a1n b1n
c1n d1n

]
, λn

)
, σ′ 7→ (ϵ̂(σ′)12n, ϵ̂(σ

′)−nθ(σ′))⋊ σ′,

σ0 7→
([

(−1)n−11n
1n

]
, θ(σ0)

)
⋊ σ0, x 7→

[
symn−1(x)

symn−1(x)

]
for

[
a b
c d

]
∈ GL2(C), λ ∈ GL1(C), σ′ ∈ WE and x ∈ SL2(C).

The proof of Proposition 6.1 of [8] gives a natural isomorphism

LG1 ≃ {(g; (α, β)⋊ σ) ∈ GL2(C)× LRE
FGL1 | αβ det g = 1}

(cf. Remark 2.1). Let π be an irreducible cuspidal automorphic represen-
tation of GL2(A) whose central character is ω̂. Recall that χ̂† = ω̂. The

representation χ̂⊠π of G1(A) gives an L-parameter ϕχ̂
1 [π] with values in LG1.

Define an A-parameter ϕχ̂
n[π, ϵ̂, θ] : LF × SL2(C) → LGn by

ϕχ̂
n[π, ϵ̂, θ](u, x) =

Lsymn−1(x) θιϵ̂n(ϕ
χ̂
1 [π](u))

for u ∈ LF and x ∈ SL2(C).
Suppose that n is odd. One can easily see that

Aχ̂v
n (πv)⊗ (˜̂ϵv ◦ Λn)⊗ (θv ◦ λn) ∈ Π(ϕχ̂v

n [πv, ϵ̂v, θvω̂
(1−n)/2
v ]′).

If πv is a discrete series with extremal weight ±κ, then the holomorphic
discrete series with lowest K-type (det)κv+n−1 belongs to the A-packet

Π(ϕχ̂v
n [πv, ϵ̂v, θv]), which should consist of certain cohomologically induced

representations (see [1]). Theorem 1.1 is compatible with the fact that both

S(ϕχ̂
n[π, ϵ̂, θ]) and S(ϕχ̂v

n [πv, ϵ̂v, θv]) are trivial.



41

Appendix B. The split case

We discuss the case in which E is the split quadratic algebra F ⊕ F ,
though our exposition included this case so far. In the split case one can
prove uniqueness of degenerate Whittaker model and reprove Proposition
7.2 via a purely local method. Proposition B.2(1) played an important role
in the proof of Lemma 10.5.

The nondegenerate form ⟨ , ⟩ identifies the free E-module W with the
sum W ⊕ W∨, where W is a vector space over F and W∨ is its dual.
The restriction to W gives an isomorphism of Gn onto the group of all
F -automorphisms of W. We fix a basis {e1, . . . , en, f1, . . . , fn} for W and
identify Gn with GL2n(F ). For A1, A2 ∈ GLn(F ) and z ∈ Mn(F ) we put

m(A1, A2) =

[
A1 0
0 A2

]
, n(z) =

[
1n z
0 1n

]
.

These matrices generate the parabolic subgroup Pn of Gn which stabilizes
the subspace spanned by e1, e2, . . . , en. Denote its unipotent radical by Nn.
For B ∈ Mn(F ) we define a homomorphism ℓB : Nn → F by ℓB(n(z)) =
tr(Bz). Let X2i (resp. X2i−1) be the subspace of W spanned by

e1, f1, e2, f2, . . . , ei, fi (resp. e1, f1, e2, f2, . . . , ei−1, fi−1, ei),

and Pe the stabilizer in Gn of the flag X2 ⊂ X4 ⊂ · · · ⊂ X2n−2.
The rest of this section assumes F to be an extension of Qp. Let π be an

irreducible admissible unitary generic representation of GL2(F ) with central
character ω̂ and An(π) the unique irreducible subrepresentation of

In(π) = IndGn
Pe

δ
−1/4
Pe

⊗ W (π)⊠n.

Remark B.1. Note that χ̂ = (ω̂µ, µ−1) for some µ ∈ Ω(CF ). Then π[χ̂] =

(π⊗µ)⊠(π⊗µ)∨. The restriction of Aχ̂
n(π) to Gn is equivalent to An(π⊗µ).

Proposition B.2 ([6, 32, 20]). (1) If n is odd, rankB = n− 1 and π is

supercuspidal, then Jψ◦ℓB
Nn

(An(π)) = {0}.
(2) dim Jψ◦ℓB

Nn
(An(π)) = 1 for all B ∈ GLn(F ).

Proof. When n = 1, there is nothing to prove. We therefore suppose that
n > 1. We may assume B = diag[1, B′] without loss of generality. For
x, y ∈ Fn−1; z ∈ F and z′ ∈ Mn−1(F ) we put

X(x) = m

([
1 tx
0 1n−1

]
,1n

)
, C(x, y, z, z′) = n

([
z tx
y z′

])
.

Since the subgroups

X = {X(x) | x ∈ Fn−1}, Y = {C(0, y, 0,0n−1) | y ∈ Fn−1},
C = {C(x, 0, z, z′) | x ∈ Fn−1, z ∈ F, z′ ∈ Mn−1(F )},
C ′ = {C(x, 0, z,0n−1) | x ∈ Fn−1, z ∈ F}
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satisfy all the requirements of Lemma 2.2 of [10], we obtain

Jψ◦ℓB
Nn

(An(π)) ≃ J
ψ◦ℓB′

1
XC (An(π)),

where we define a homomorphism ℓB
′

1 : XC → F by

ℓB
′

1 (X(x)C(x′, 0, z, z′)) = z + tr(B′z′).

Note that XC ′ is the unipotent radical of the stabilizer of X1 in Gn.
Define the character ψU of the unipotent radical U of the stabilizer of the
flag X1 ⊂ X2 by ψU(u) = ψ(⟨uf1, e∨1 ⟩), where {e∨1 , . . . , e∨n , f∨1 , . . . , f∨n } is the

dual basis for W∨. The restriction of ψ ◦ ℓB
′

1 to XC ′ coincides with ψU.
Put

Φ− = Jψ
U

XC′ , Π = Φ−(An(π)).

Recall the filtration given in §3.5 of [6]:

0 ⊂ Π2n−1 ⊂ · · · ⊂ Π1 = Π, Πk/Πk+1 = (Φ+)k−1Ψ+(Π(k)).

Since Π(k) vanishes for k ≥ 2 and Π(1) ≃ An−1(π) ⊗ α−1/2
F by Lemma 3.6

of [32], we are led to

Π = Π1 ≃ Π1/Π2 ≃ Jψ
U

U (An(π)) ≃ Ψ+(An−1(π)⊗α−1/2
F ).

We obtain

Jψ◦ℓB
Nn

(An(π)) ≃ Jψ◦ℓB′

Nn−1
(Φ−(An(π))) ≃ Jψ◦ℓB′

Nn−1
(An−1(π)⊗α−1/2

F ).

Our proof is complete by induction. □
We define the linear map nג : In(π) → C by

n(f)ג =
∫
Pe∩Nn\Nn

f(n(z))ψ(tr(z)) dz.

This integral makes sense since the integrand is a Schwartz function on
Pe∩Nn\Nn as the same proof as that of Proposition 4.5 shows. Though the
following results were stated in a uniform way, one can bypass the intricate
notation or calculation in the split case.

Lemma B.3. (1) nג is nonzero on An(π).
(2) For all f ∈ In(π)

n(f)ג =
∫
Fn−1

,n−1(f(C(0ג y, 0, 0))) dy.

(3) n(ϱ(m(A,A))f)ג = ω̂(detA)גn(f) for A ∈ GLn(F ) and f ∈ An(π).

Proof. We can prove the first and second assertions by arguing exactly as
in the proof of Proposition 4.5. Since

nג ◦ ϱ(m(A,A)) ∈ HomMn(F )(An(π) ◦ n,ψ ◦ tr),
Proposition B.2(2) gives µ ∈ Ω(CF ) such that nג ◦ϱ(m(A,A)) = µ(detA)גn.
Letting A = diag[ξ,1n−1], we find that µ is the central character of π. □
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Lemma B.4. For f ∈ An(π) there are 0 ≤ ϕ ∈ S(Mn(F )) and M ∈ R×
+

such that for all A ∈ GLn(F )

∥n(ϱ(m(A,1n))f)ג∥ ≤ | detA|−M
F ϕ(A).

Proof. The proof is similar to that of Lemma 9.1 and omitted. □

Appendix C. Fourier coefficients of certain residual
automorphic forms

To complete the proof of Lemma 10.5 and Theorem 1.1, we will associate
to an irreducible cuspidal automorphic representation σ of GL2(A) the resid-
ual automorphic representation Aχ

n(σ) of Gn(A) and prove the factorization
of Fourier coefficients of those residual automorphic forms. Let us give a
brief account of Jacquet modules of degenerate principal series representa-
tions with respect to Bessel and Fourier-Jacobi characters. Let E be an
étale quadratic algebra over a finite algebraic extension F of Qp. Fix an odd
natural number n. Let Wi be the unipotent radical of the parabolic sub-
group ∩i

k=1Pk of Gn. If i < n and w ∈ X⊥
i ∩Y⊥

i , we define a homomorphism
ℓi,w : Wi → F by

ℓi,w(u) = TE
F (⟨ue2, f1⟩+ ⟨ue3, f2⟩+ · · ·+ ⟨uei, fi−1⟩+ ⟨uw, fi⟩).

When w = ei+1, we write ℓi = ℓi,ei+1 . For i < n− 1 we consider a subgroup

W0
i+1 = Wi · {ιi(1i,vn−i

1 (0; 0; z)) | z ∈ F}

of Wi+1. For ξ ∈ F we extend ℓi to a homomorphism ℓξi : W0
i+1 → F by

ℓξi (ιi(1i,v
n−i
1 (0; 0; z))) = ξz. When i = n− 1, we define ℓξn : Wn → F by

ℓξn(u) = TE
F (⟨ue2, f1⟩+ ⟨ue3, f2⟩+ · · ·+ ⟨uen, fn−1⟩) + ξ⟨ufn, fn⟩.

Lemma C.1 ([11]). Let χ ∈ Ω(CE). Suppose that n ≥ 2.

(1) J
ψ◦ℓi,w
Wi

(In(χ)) = {0} for all i ≥ 1 and anisotropic w ∈ X⊥
i ∩ Y⊥

i .

(2) J
ψ◦ℓξi
W0

i+1
(In(χ)) = {0} for all i ≥ 1 and ξ ∈ F×.

(3) If E ≃ F ⊕ F , then J
ψ◦ℓi,0
Wi

(In(χ)) = {0} for all i ≥ 3.

Proof. The first part is a special case of Theorem 5.4(1) of [11]. The second
part is a special case of Theorem 6.3 of [11]. We discuss the case E ≃ F ⊕F .
Then Gn ≃ GL2n(F ) and Wi is conjugate to the unipotent radical of a
parabolic subgroup stabilizing the flag

X1 ⊂ · · · ⊂ Xi ⊂ X2n−i ⊂ · · · ⊂ X2n−1.

Theorem 5.7 of [11] includes (1) whereas Theorem 6.5 of [11] includes (2).

The module J
ψ◦ℓi,0
Wi

(In(χ)) is a certain twisted Jacquet module of the ith

derivative In(χ)
(i) of In(χ). By the Leibniz rule In(χ)

(i) is zero for i ≥ 3. □
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From now on E/F is a quadratic extension of an arbitrary number field.
The quadratic character of CF corresponding to E is denoted by ϵE/F . Fix
an irreducible cuspidal automorphic representation σ of GL2(A) with central
character ω. For simplicity the base change σE of σ to GL2(E) is assumed
to be cuspidal. Extend ω to χ ∈ Ω(CE). Let σ[χ] = τχ−1 ⊗ σE be an
irreducible cuspidal automorphic representation of GL2(E). Let As denote
the Asai representation of the L-group of RE

FGL2. Fix an extension γ̂ of
ϵE/F to CE .

Lemma C.2. Notation being as above, the L-functions L(s, σ[χ] ⊗ γ̂,As)
and L(s, σ[χ]× (χ−1 ⊠ σ)∨) have a pole at s = 1.

Proof. Since σ[χ] is the stable base change of χ−1 ⊠ σ by Lemma 4.2(4),
the product L-function has a pole at s = 1 and by Theorem 11.2(4) of [11]
L(s, σ[χ]⊗ γ̂,As) has a pole at s = 1. □

We aim to construct a residual automorphic representation in the packet
ϕχ
n[σ, ϵ̂, θ]. Let Q2,...,2 be the parabolic subgroup of RE

FGL2m = GLE(X2m)
which leaves the flag X2 ⊂ X4 ⊂ · · · ⊂ X2m stable. The Langlands quotient

Am(σ[χ]) of the standard module Ind
GL2m(E)
Q2,...,2(A) δ

1/4
Q2,...,2

⊗ σ[χ]⊠m appears in

the space of square-integrable forms on GL2m(E) (cf. [30]).
Fix a good maximal compact subgroup Kn of Gn(A). Extend the modulus

character δPn−1 of Pn−1(A) to a right Kn-invariant function on Gn(A). For

ϕ ∈ Ind
Gn(A)
Pn−1(A)A(n−1)/2(σ[χ])⊠ (χ−1 ⊠ σ)

we form the Eisenstein series

E(g, ϕ, s) =
∑

γ∈Pn−1(F )\Gn(F )

ϕ(γg)δPn−1(γg)
s/4.

For any parabolic subgroup P of Gn with unipotent radicalN the constant
term map on the space of automorphic forms on Gn(A) is defined by

F 7→ FP(g) =

∫
N (F )\N (A)

F(ug) du.

Lemma C.3 (cf. [19]). The series E(ϕ, s) has at most a simple pole at
s = 1. Let Aχ

n(σ) denote the representation of Gn(A) generated by those
residues. If F ∈ Aχ

n(σ), then F is square-integrable and the function

g 7→ W2(g,FP2) = |λn−2(g)|(n−1)/2

∫
E\E

FP2

(
i2

([
1 x
0 1

]
, g

))
ψ(TE

F (x)) dx

belongs to Aχ
n−2(σ). Assume further that Aχ

n(σ) is nonzero. Then

Aχ
n(σ) ≃ ⊗′

vA
χv
n (σv).

Proof. Theorem 1.2 of [19] determines a set of possible poles of certain Eisen-
stein series on classical groups. Though they do not treat similitude groups,
one can apply their results to constituents of the restriction of the induced
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representation to Gn(A). These combined with Lemma C.2 say that E(ϕ, s)
has at most a simple pole at s = 1.

The induction formula (3-8) of [19] implies some inductivity of FP2 . The

cuspidal support of F consists only of δ
−1/4
Pe

⊗ {σ[χ]⊠(n−1)/2 ⊠ (χ−1 ⊠ σ)}
and hence it is square-integrable by Lemma I.4.11 of [31]. Thus Aχ

n(σ) is a

unitary quotient of Ind
Gn(A)
Pn−1(A) δ

1/4
Pn−1

⊗{A(n−1)/2(σ[χ])⊠(χ−1⊠σ)}, which is

a quotient of ⊗′
v
τJχv
n (σv)

∨. If Aχ
n(σ) is nonzero, then it must be isomorphic

to the Langlands quotient ⊗′
vA

χv
n (σv) of the standard module ⊗′

v
τJχv
n (σv)

∨

as the Langlands quotient is the unique semisimple quotient. □
Next we will observe that χvג

Hn
arises as a local component of the Hnth

Fourier coefficient of residual automorphic forms in Aχ
n(σ). Our computa-

tions are similar to those carried out in the proof of Theorem 1 of [9].

Lemma C.4. If n ≥ 3, then for all F ∈ Aχ
n(σ)∫

W1(F )\W1(A)
F(u)ψ(ℓ1(u)) du =

∫
W2(F )\W2(A)

F(u)ψ(ℓ2,0(u)) du.

Proof. Consider the function

hi(x; y; z,F) =

∫
Wi(F )\Wi(A)

F(uvn−i
1 (txτ ; tyτ ; z))ψ(ℓi(u)) du

on (E\En−i−1)2⊕(F\A) for 1 ≤ i ≤ n−2. The left hand side of the identity
is h1(0; 0; 0,F). Lemma C.1(2) implies that hi(x; y; z,F) is independent of
z. We expand hi in a Fourier series along the coordinates (x; y) to get

hi(x; y; z,F) =

∫
W0

i+1(F )\W0
i+1(A)

F(uvn−i
1 (txτ ; tyτ ; 0))ψ(ℓ0i (u)) du

=
∑

w∈(X⊥
i+1∩Y⊥

i+1)(F )

ci+1,w(F)ψ(ℓi+1,w(v
n−i
1 (txτ ; tyτ ; 0))),

where

ci+1,w(F) =

∫
Wi+1(F )\Wi+1(A)

F(u)ψ(ℓi+1,w(u)) du.

Our goal is to show that c2,w(F) = 0 for all nonzero vectors w. We eventually
get h1(x; y; z,F) = c2,0(F). This was to be shown.

We may assume that F corresponds to a decomposable vector ⊗vfv. Fix
a finite prime p of F such that σp ≃ I(µ, µ−1ωp) for some µ ∈ Ω(CEp). The

map hp 7→ ci+1,w(hp⊗⊗v ̸=pfv) defines a functional on J
ψp◦ℓi+1,w

Wi+1(Fp)
(In(µ[χp])) in

view of Proposition 6.3 and Lemma C.3. If w is anisotropic, then ci+1,w(F) =
0 by Lemma C.1(1). If i ≥ 2, then ci+1,0(F) = 0 by Lemma C.1(3).

If w is a nonzero isotropic vector and if we take β ∈ Gn−i−1(F ) ⊂ Mi+1(F )
so that βw = ei+2, then

ci+1,w(F) =

∫
Wi+1(F )\Wi+1(A)

F(uβ)ψ(ℓi+1(u)) du = hi+1(0, ϱ(β)F),
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where if i = n− 2, then we consider the function

hn−1(z,F) =

∫
Wn−1(F )\Wn−1(A)

F(un′
n−1(z))ψ(ℓn−1(u)) du

=
∑
ξ∈F

ψ(ξz)

∫
Wn(F )\Wn(A)

F(u)ψ(ℓξn(u)) du

for z ∈ F\A. The constant term of hn−1(F) must be zero as F is concen-
trated on Pe. Since Aχ

n(σ) is not generic by Lemma C.1(2), all the Fourier
coefficient vanish and hn−1(F) is identically zero. We conclude that hi(F)
is identically zero for 2 ≤ i ≤ n− 2 by descending induction. It follows that
c2,w(F) = 0 unless w = 0. □

We retain the notation in the proof of Proposition 4.5.

Lemma C.5. If F ∈ Aχ
n(σ), then∫

M2
n−2(E)\M2

n−2(E)

∫
Her2(F )\Her2(A)

F(v2(0; y; z))ψ
H2(z) dzdy

=

∫
A

∫
En−2

W2(Y (y, z),FP2) dydz.

Proof. Applying Lemma 7.1 of [11] to

X = {X(x, ξ) | x ∈ En−2, ξ ∈ F}, Y = {Y (y, z) | y ∈ En−2, z ∈ F}.
and C = y1, we see that the left hand side is∫

Y (F )\Y (A)

∫
C(F )\C(A)

F(vn
1 (0;

tbτ ; c)Y )ψ(TE
F (b1)) dcdbdY

=

∫
Y (A)

∫
X(F )\X(A)

∫
C(F )\C(A)

F(vn
1 (ξ,

txτ ; tbτ ; c)Y )ψ(TE
F (b1)) dcdbdξdxdY.

Recall a trace zero element ℸ ∈ E×. Consider the function

h(z) =

∫
X(F )\X(A)

∫
C(F )\C(A)

F(vn
1 (ξ+zℸ, txτ ; tbτ ; c)Y )ψ(TE

F (b1)) dcdbdξdx

on F\A. Since
2ζz +TE

F (b1) = ℓ1,ζℸ−1e2+f2(v
n
1 (ξ + zℸ, txτ ; tbτ ; c)),

its ζth Fourier coefficient vanishes by Lemma C.1(1) for each ζ ∈ F×. Thus
h is a constant function whose value is∫

W1(F )\W1(A)
F(u)ψ(ℓ1,f2(u)) du =

∫
W1(F )\W1(A)

F(uγ)ψ(ℓ1(u)) du,

where we have taken an element γ ∈ Gn−1(F ) ⊂ M1(F ) such that γf2 = e2.
The right hand side is equal to∫

W2(F )\W2(A)
F(uγ)ψ(ℓ2,0(u)) du = W2(12n−2,FP2)

by Lemma C.4. We have used Lemma C.4 in the second line. □
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Put Me = ∩(n−1)/2
k=1 M2k. For an automorphic form ϕ on Me we set

Wn(ϕ) =

∫
(Me∩Nε)(F )\(Me∩Nε)(A)

ϕ(u)ψ(ℓHn(u)) du.

Proposition C.6. If F ∈ Aχ
n(σ), then

WHn(F) =

∫
(Pe∩Nn)(A)\Nn(A)

Wn(FPe(u))ψ(ℓ
Hn(u)) du.

In particular, the space Aχ
n(σ) is nonzero.

Proof. By the inductivity stated in Lemma C.3 we can apply Lemma C.5
repeatedly to obtain the formula above. If F ∈ Aχ

n(σ) is factorizable, then
FPe remains factorizable by the proof of Lemma C.3, and hence so does
Wn(FPe) ∈ ⊗′

vA
χv
n (σv) by uniqueness of the Whittaker model. Choose local

factors χvג

Hn
in order that if we write Wn(ϱ(g)FPe) =

∏
v fv(gv), then the

Hnth Fourier coefficient factorizes as WHn(F) =
∏

v ג
χv

Hn
(fv) and so by (7.1)

WB(F) =
∏
v

χvג

B (fv), B ∈ OF (Hn).(C.1)

Each factor can be made nonzero by Proposition 4.5(2). □
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additive characters
e, 8
e∞, 3
ψ, 10, 26
ψB , 10
ψf ,ψ

B
f , 26

automorphy factors
Jℓ(g, Z), 27
j(g, Z), 27
jℓ(g, Z), 3, 28

characters
Ω(A), 10
αF , 10
χ†, 10
χf , χ∞, 26
δP , 11
ϵE/F , 10, 44
ϵ̂, 11
ω̂, χ̂, 15, 28

µE = µ ◦NE
F , 18

εκ , 3, 27
characters of Gn

Λn, 16
λn, 8

characters of GUB

ΛB , 8
λB , 8

compact subgroups
K∞, 27
Γn[b, c],Γn[c], 19
K, 37
K+

∞, 3

Fourier coefficients
WB(F), 25
wB(F), 3, 28
wξ(F), 27

Fourier series
Iκn(h), 5
Jκ
κ (f), 4, 28

functionals
ΓS
ξ ,⟨B0ג⟩ 13

Shχ
B(Π), 12

WhB(π), 12
wχ

B , 19

χ̂fג
B , 28

χ̂Bג , 24
χ̂Hnג

, 16, 42

wχ
B , 19

wχ
a , 15

groups
Bm, 15
CF , 10, 26
F×
+ , 26

N ′, X ′, Y ′, Z′, 13
Nk

i , 9
Xk

i , Y
k
i , Zk

i , 9
Gn(A)+ = Gn(A∞)+Gn(Af ), 28

Mk
i , 9

PX , NX , 14
Pn, Nn = Nn

n ,Mn = Mn
n, 9

Wi, 43
W0

i , 43
Nε, 14
Pi,Ni,Mi,Pe, 14

Hermitian matrices
B ⊕ Ξ = diag[B,Ξ], 8
B<A> = tAτBA, 8
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Hm, 16
Herndn (π), 12
Her+n , 26
OF (B), 12
Rn, Rn, 29
Rn,p, Rnd

n , 29
Hern,Herndn , 8
R+

n,i, 37
homomorphisms

m′
i, n

′
i, 10

mk
S : GUS → Gk, 10

mn,nn,dn, 9
vk
i , 9

ℓS , 9, 41
ℓξi , ℓ

ξ
n, 43

ℓi,w, ℓi, 43
i2 : GL2(E)× Gn−2 ≃ M2, 14
m, n, 15, 41
ι′,v′, 13
ιki : RE

FGLi × Gk−i → Gk, 9
projX : PX → GLE(X)× Gn−i, 14
℘n, 29

ideals
d, D, 29
p, 19

intertwining maps
Mn(χ), 19
Ψn(χ), 22
Υn(χ), 22

βϵ̂
S , 32

βS , 33

Lie groups
X+, 8
S, 8
Gn(A∞)+, 3

matrices
Jn, 8
ηi, 32

maximal orders
o, r, 18, 29

modular forms
FS

φ , 34
F∆, 3, 27, 28
FP , 44
Cω̂
ℓ , 27

Gn,κ
ℓ (K), 37

Gn,κ
ℓ ,Tn,κ

ℓ , 28
C κ
ℓ (Γi), 37

W2(FP2), 44

reductive groups

Gn = U(n, n), 9
Rk

S , 9
GUB , 8
UB , 8
Gn = GU(n, n), 8
Mk

S , 10
RS , 13
Zn = the center of Gn, 9

representations of G1

χ̂−1 ⊠ π, 4, 15
representations of Gn

An(χ, µ), 21
Jn(χ, µ), 18
J χ̂
n (π), A

χ̂
n(π), 16, 41

representations of Gn(A)
Aχ

n(σ), 44
representations of Gn(Af )

A
χ̂f
n (πf ), 28

Πf , 4
representations of GL2(Af )

πf , 3, 28
representations of GL2(F )

A(µ, µ−1ω̂), 15
I(µ1, µ2), 15

representations of GLm(E)
π[χ̂], 15, 41
πE , 4, 15
τΠ, 15

representations of GL2m(E)
Am(σ[χ]), 44

representations of Gn

A±
n (χ), 20

In(χ), 18
Rχ

n(S), 20

Schwartz functions
S(X), 8
ϕS , φ

∞
S , 34

Siegel series
γ(s), F (B,X), 30

F̃p(B,X), 38
b(B, s), 30

Weil representations
ωϵ̂
S of Gj ⋉Nk

i , 10
χΩS of RS ⋉N ′, 13
θωϵ̂

S of GUS ⋉ (Gj ⋉Nk
i ), 11
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