ON THE LIFTING OF HILBERT CUSP FORMS TO
HILBERT-HERMITIAN CUSP FORMS

SHUNSUKE YAMANA

ABSTRACT. We construct a lifting that associates to a Hilbert cusp form
a Hilbert-Hermitian cusp form. This is a generalization of the lifting of
elliptic cusp forms constructed by Ikeda to arbitrary Hilbert cusp forms.
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1. INTRODUCTION

The main theme of this paper is to attach a Hilbert-Hermitian cuspidal
Hecke eigenform to an arbitrary Hilbert cuspidal Hecke eigenform by means
of a Fourier expansion. Hecke has treated the case of holomorphic modular
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forms on the upper half-plane. Various kinds of generalization of this the-
ory have been attempted. Holomorphic modular forms on the product of
the upper half-planes over a totally real field are nowadays called Hilbert
modular forms. Siegel pioneered the generalization of the theory of Hecke
to modular forms on the upper half-space now named after him. Hilbert-
Siegel and Hilbert-Hermitian modular forms are the natural generalizations
of Hilbert modular forms to tube domains on which symplectic or unitary
groups act. These modular forms are of fundamental importance in num-
ber theory and algebraic geometry, but unfortunately, their reputation does
not match their importance. In contrast to the beauty of elliptic modular
forms which is derived from the ubiquity of easily accessible examples, lack
of attractive examples seems to be responsible for this unfortunate state.

It has been nearly 20 years since Tamotsu Ikeda has discovered a remark-
able construction of Siegel and Hermitian cusp forms in [I#, 1'7]. Analogous
liftings were constructed for other tube domains in [34, P2, but there was
little room for generalization in this construction. However, Ikeda subse-
quently invented a new approach from a representation theoretic standpoint.
Starting with a Hilbert cusp form which does not have supercuspidal com-
ponents, Tkeda and the author associate to it a family of Hilbert-Siegel cusp
forms in [IR]. In such a special case the liftings are described in terms of a
concrete realization of degenerate Whittaker models called Jacquet integrals
on degenerate principal series.

In the present paper we study the Hermitian case and construct liftings
of arbitrary Hilbert cusp forms. To that end, we need generalizations of de-
generate principal series and the Jacquet integrals. The unramified Jacquet
integral is known as the Siegel series and plays a significant role in the local
and global theories of quadratic forms and theta correspondence, and, ulti-
mately, in a number of interesting problems in arithmetic (cf. [35, I, 26]).
Its generalization is of independent interest.

To be explicit, we here let E/F be a CM extension with Galois involution
7. We write A = Ay - Af and E = E, - E¢ for their adele rings, where
Ay = F ®gR and E = F ®g R and where A¢ and E¢ are the finite parts
of the adele rings. We denote the set of real embeddings of ' by &, and
Weil’s restriction of scalars from E to F' by Rg . Let

0 1 0 1
t. T n _ n
be a quasisplit unitary similitude group in 2n variables. Let

Her, = {z € REM,, | &7 = 2}

Gn = {g € REGL,,

be the space of Hermitian forms with respect to E/F. Define three homo-
morphisms d : GL; — G, m : RgGLn — G, and n : Her,, — G,, by

ao-[o O] ma-lo ] o=l L]



Let P, = d(GL1)m(REGL,)n(Her,) be a parabolic subgroup of G,,.
The identity component G, (A)t of G,(A) acts componentwise on the
Hermitian symmetric domain

a1 =T 9o 9, ={Z e M,,(C) | vV=1(*Z — Z) > 0}.
’UEGOO
We define the origin i of $¢ and the subgroup K of G,(Ay)" by

i=(Vlln,... V=1L €95 KL = {9 € GalAu)® | 9(i) =1}

For £ € AY and I € R we put [£]' = [[,ce. \gy\ﬁgv. For a € EX and
€ 7% we set €*(an0) = Hvegm(av/ag)””/z. When s, ¢ € Z% and F is a
function on H2, we define a function F|7g : 2 — C by
det(c, Zy + dy)*

[An(go) o/

Fl79(2) = F(92)e*(det 9)je(9, 2) 7", o9, Z) = ]]
VEG o0
* *
for g = (gv)'uEGOo € gn(Aoo)+7 v = |:C d :|
(o (¥

The subset Her,! of Her,, (F) consists of totally positive definite Hermitian
matrices over . We define a holomorphic function e,, on A, ®r C by
ex(2) = [yee.. 2™Vl Let op = [I, %, be the additive character of
A/F whose restriction to Ay, coincides with e s, -

A Hilbert-Hermitian cusp form F on G, of weight ¢ with respect to the
character £” is a smooth function on G, (F)\G,(A) which transforms on the
right by the character k — e*(det k)jy(k,i)~! of KL, and such that Fa is a
holomorphic function on H¢ having a Fourier expansion of the form

(1.1) Fa(Z)= > |det B["*wp(A, Fex(tr(BZ))
BeHer)!

for each A € G, (Ag), where wp(F) is a function on G, (A¢) and the holo-
morphic function Fa : H¢ — C can be defined by

Falf 9o (i) = F(go0l), Goo € Gn(Aso)™.

The Hilbert-Hermitian cusp form F is a cuspidal automorphic form on
Gn(A) in the sense of Langlands (see Proposition A4.5 of [33]) with scalar K-

type k > Sy
4.2 of [H]). If F is right invariant under an open compact subgroup D of
Gn(Ag), then Fa is a traditional holomorphic cusp form with respect to the
arithmetic subgroup G, (F)*NADA™L, where G,(F)* = G.(F)NG,(Ax) ™.
It is important that the group G,,(A¢) acts on the space of Hilbert-Hermitian
cusp forms: for § € G,,(Ag) we define p(0)F by (p(6)F)(g) = F(gd).

Let m ~ ®/ 7, be an irreducible cuspidal automorphic representation of
GL2(A) generated by a Hilbert cusp form of weight £ and central character

w. We write ¢ = ®;J7rp for its finite part. Fix an auxiliary Hecke character y

and killed by certain differential operators (cf. Proposition
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of E whose restriction to A* coincides with &. Denote its restriction to Ef
by X;- Take (%) € Z¢ so that the restriction of ¥ to EX is ¢/X). Since G;
is the quotient of RgGLl x GLg by GL; embedded diagonally, we can view
X5 ! X7, as a representation of Gy (Ag). We take n to be odd throughout this
paper as the key simplifying feature (B=2) can apply to the similitude group
Gy, for odd n. Let Be be a parabolic subgroup of G,, with Levi subgroup
(REGL2)(™=Y/2 x G;. Denote the modulus character of Pe(Af) by dp,. We
define the Galois twist "x by composing x with the conjugation map. We
write Il for the unique irreducible subrepresentation of

(A 4 - e A_
Ind%%&%é L/ Q@ {("x¢ Lo mf) 1)/2®(Xf1®77f)}7

where W}E = ®p77p Ev denotes the base change of 7¢ to GLa(Eg).

In Sections B through [@ we will explicitly construct a family {J5} peper+
of nonzero linear functionals on Ily which satisfy
(12) I o He(n(2)d(§)m(A)) = e (det A)p(tr(B2) I, 40 50
for all z € Her,,(Ag), £ € F*, A € GL,(FE) and B € Her;}'.
Theorem 1.1. The Fourier series

TZ(Ha(Z) =Y |det B UETE(IT(A) fleo(tr(BZ))
BeHer,!

defines a Hilbert-Hermitian cusp form on G, of weight k+mn — 1 with respect
to €*, where 3 = (k+n—1+£(X)). The map f — JZ(f) is a Gn(Ag)-
intertwining embedding Iy into the space of Hilbert-Hermitian cusp forms.

Here s +n — 1 means the tuple (k, +n — 1)yes., € Z% Appendix B
gives an explanation of how this theorem can be viewed in the framework of
Arthur’s classification. We can make Theorem Il more precise, if none of
mp is supercuspidal, i.e., there is a character pg = Hp pp of AL such that g

is equivalent to the unique irreducible subrepresentation ®pA(Mp, up ) of

the principal series @y 1 (p,, ftp @ 12 @,) of GLa(Ag). To lighten notation, we put
. +1)/2 —
Xp = Xp I(MP ° NF)v Vp = wygn )/ Hyp "

Then the local component II, of IIf at p turns out to be equivalent to the
unique irreducible subrepresentation A, (xy,v,) of the degenerate principal
series I,(xp, V) of G, (F}) that is induced from the character of P, (F})

d(€)m(A)n(z) = @y (&) D2 Ty (det A) T pp(€NE (det A))

and degenerate Whittaker functionals are given by the Jacquet integrals

n
2
wy (hy) = \detB|% HL s Ha; 16?7&)
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for B € Her,(F,) N GL,(Ey), where eg, /5, is the character of F; whose

kernel is NZ(E;‘). See Corollary 54 for a precise relation between J%" and
w? . We form the restricted tensor product

An(xe, ve) = @ An(Xps 1), wi = Qpuy.

Corollary 1.2. Notation being as above, the Fourier series

|det B’(n—i—n—l)/Q
Iy (h)a(2) =
B;;ﬁ ue(det B)

wi (Ig(A)h)es (tr(BZ))

is a Hilbert-Hermitian cusp form on G,, of weight x + n — 1 with respect to
e” for every h € A, (x¢, V).

The series JZ(f) is left invariant under P, (F') if and only if the family
{35 } Bettert is compatible in the sense of (I2). Put G, = ker A, =~ U(n, n).
We view G; as a subgroup of G, via the embedding

1,1
a f o B
= >
I ['Y 5} A(9)1n-1
0 1)
If J7(f) is left invariant under J; = _01 (1) € Gi1(F) C Gn(F), then since

J1 and P, (F) generate G,(F'), the series J(f) is automorphic. One can
prove this fact directly in the special case where 7¢ is an irreducible principal
series. For the reader’s convenience we give an outline. Let

1,1 z|z—yl™ y
N 0 1 T 0 || z,ye B!
n—1 7= 0 1,1 O z € Her,,_1
" —bT 1

The Schrodinger representation associated to S € Her;ll is extended to

the Weil representation wg of G1(A) x N)_;(A). For ¢ € wgs we define the
(S, ¢)th Fourier-Jacobi coefficient of a function F : Py, (F)\G,(A) — C by

F= | Flvg 1O (v} ) dv
Ny (F)\Np_y (A)

for ¢ € G1(A), where ¢g € wg is defined by taking the Gaussian at the
archimedean components. When Fx is holomorphic for every A € G,,(Ayf)
and wp(A,F) =0 for B ¢ Her,, Lemma 7.7 of [Ig] tells us that F is left
invariant under G,,(F) if and only if (p(d)F )gs is left invariant under J; for
all S € Heerl, ¢ € wgs and 0 € G,(A¢). This notion of Fourier-Jacobi
coefficients is an adelic version of the classical one (cf. Theorems 5.1 and
6.1 of [[]). Thus it suffices to show that I;j(h)gs is left invariant under J.
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Denote by I,,(xf) the restriction of I,(x¢,vf) to Gp(Ag). Lemma [T
defines a G1(A¢)-intertwining and N;_; (A¢)-invariant map

(1.3) ﬁé : In(xr) @ wg — 11 (x¢)-

The proof is now accounted for by the following relation:
Ii(h)3, = IT(B5(h ® s)).

Since I1(xr) is the restriction of the automorphic representation x; 'R e,
the right hand side is the Fourier series of a modular form.

One can construct analogous Hilbert-Hermitian cusp forms on U(m,m)
for even m by taking the first Fourier-Jacobi coefficient of I} ,(h). Her-
mitian cusp forms on U(/, £) ;g constructed by Ikeda in [I7] are a particular
case. We do not touch on this aspect as the structure of the A-packet for
U(m,m) is not as simple as that for G, (see Section 18 of [I7]). A lift-
ing analogous to Corollary 2 is constructed in [I8] for metaplectic groups.
Since the restriction of II¢ to G, (Af) can be reducible, the Hermitian case
is more complicated. It makes our exposition simpler to deal with the group
G, rather than G,,.

The proof of Theorem [T consists of two steps. The first step is to
construct the invariant functional Yg. It is essentially local in nature, i.e.,

it is built out of local functionals J%‘J on the local components II, of IIt.
Since we restrict ourselves to odd n, a Levi subgroup of P, (F) acts on Her;’
transitively, so that a compatible family {I} } ppe,+ is clear from (IZ2). The

main difficulty in this paper is to show that Jé" enjoys properties similar to
those of wf_éf when 7, is supercuspidal and E, % F, ® F,. Proposition [2

proves some invariance of J)f , which (I2) implies. Though we give a uniform
exposition, since it is cumbersome to prove the split and non-split cases at
one time, the split case is also dealt with in Appendix B. We can extend
the Fourier-Jacobi coefficients J7(f )gs to functions on By (F)\GL2(A) due
to the invariance (cf. Proposition BZ3, Remark B72(M)). Here the assumption
on the parity of n is used to extend wg ¢ to the similitude group.

The second step is to prove an analogous inductivity stated in Lemma
O, which implies that JZ( f)gs € 7. When 7, is not supercuspidal, the
invariance is proved in Lemma 6=3(8) and the inductive structure is (I=3) (see
Lemma [0). In the nonsplit supercuspidal case both properties are proved
indirectly by global methods: one can prove that the unique irreducible
subrepresentation of

Ind‘%;((i)) (5;3(1/4 ® {(TX—I ® WE)ﬁ(n—l)ﬂ < (92_1 X )}
is residual and directly check that Jé" occurs in the explicit factorization of
Bth Fourier coefficients of those residual automorphic forms. We remark
that all the results and the proofs in this paper carry over to holomorphic
cusp forms on quaternion upper half-spaces with minor changes (cf. [34, 23]).
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Finally, we construct cuspidal Hecke eigenforms by making Theorem I
explicit. To state the formula in a style closer to the traditional one,
we let F' = Q and require m to be generated by a primitive form f =
Yoo tam(f)d™ € Sk(To(N)) of square-free level N in this introductory
section. Denote the integer ring of the imaginary quadratic field FE by t.
Put

Iy [V] = { [é g] € Gn(Q)T N GLy(r) | C € NMn(t)} .
We write
— am(f) 1 1
L(s,m) = = _ '
(S 77) mz:l ms+(r—=1)/2 p1|_]I\7 1—psp—s pl;[v (1 _ Oéppfs)(l — o p*S)

Denote the set of positive definite Hermitian semi-integral matrices of size
n by Z;. Let F,(B,X) be a certain Laurent polynomial arising from the
unramified Jacquet integral with respect to B defined in (81) and (COT).
Define a holomorphic function on §),, by the Fourier series

H(Z)= ) ex(tr(BZ))|det B|* /2] |det By [[ F1(B. ap).
Bezt p|N ptN
The following result is included in Corollary 3.

Corollary 1.3. If n is odd, then H|gj_tln__11)/27 = H forv € F(()”) [NV].

When n = 1, the function H reduces to the well-known new vector of
m. The subgroup D = [], 'n[ty, Nvy] of Gn(Ag) is defined in (B2) so that

F(()")(N) =DNG,(Q)". Since G,(A) # G, (F)G,(R)D in general, one needs
a tuple of holomorphic modular forms on $¢ to obtain a Hermitian modular
form on G, (see Section [, [I'4, Section 13]).
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versity of Rijeka for their hospitality during my visits. This work is par-
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NOTATION

We add the table of notations at the end of this paper for the reader’s
convenience. Here we list some of general notations to be used throughout
this paper. For an associative ring O with identity element we denote by
O* the group of all its invertible elements and by M)""(O) the O-module of
all m x n matrices with entries in O. Put O™ = M*(O), M,,(O) = M7'(O)
and GL,(O) = M, (O)*. The zero element of M]"'(O) is denoted by 0 and
the identity element of the ring M,,(O) is denoted by 1,,. If x1,...,x; are
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square matrices, then diag[zy,...,zx| denotes the matrix with z1,...,x in
the diagonal blocks and 0 in all other blocks. If O has an involution a — a7,
then for a matrix = over O, let ‘% be the transpose of z and 7 the conjugate
transpose of x.

The symbols Z, Q, R, C stand for the rings of rational integers, rationals,
reals, complex numbers, respectively, and N denotes the set of strictly pos-
itive rational integers. We write R and S for the subgroups of C* which
consist of strictly positive real numbers and complex numbers of absolute
value 1, respectively. Define characters e : C — C* and ¢ : C* — S by

e(z) = 2™V 12, e(u) = u/|ul (z€ CueCX)

where || || is the standard absolute value in C, not its square. If z € R, then
[x] will denote the biggest integer inferior or equal to x.

When X is a smooth affine variety over a field F' and S is an F-algebra, we
use X (5) to denote the S-points of X, or simply X to denote its F-points.
If F is a local field, then we write S(X) for the space of Schwartz-Bruhat
functions on X. When X is a real Lie group, we denote its connected
component of the identity by X*.

2. GROUPS, PARABOLIC SUBGROUPS AND WEIL REPRESENTATIONS

Let F for the moment be an arbitrary field and F a quadratic étale algebra
over F, i.e., F is either a separable quadratic field extension of F' (the inert
case) or E = F @ F (the split case). Let x + x7 denote the nontrivial
F-automorphism of E. Thus (a,b)” = (b,a) for a,b € F in the split case.
Define the norm map NE : EX — F* by NE(z) = 227 and the trace map
TE:E — F by TE(x) =2 +27. Let

Her, = {B € R%Mn | ‘BT = B}, Herﬁd = Her,, N RgGLn

be the spaces of Hermitian matrices in M, (E) or GL,(F) with the right
RgGLn—action given by

B(A) = '‘A"BA (B € Her,,, A € REGL,).

Given B € Her, and = € Her,,, we sometimes write B @ = instead of
diag[B, =] € Her,,4+,. The associated similitude unitary group GU g consists
of all matrices A € REGL,, that satisfy B(A) = Ag(A)B with Ag(4) € F*.
This group admits a homomorphism Ap : GUgp — F* whose kernel is
the stabilizer of B in RgGLn and denoted by Up. We define another
homomorphism Ag : GUgp — E* by

Ap(A) = Ap(A)~"/2 det A.
Let G, = GU;, = GU(n,n), where
(2.1)  GU(n,n) = {g € REGLy, | 47 Jng = Mn(g)Jn with \,(g) € F*}



is a unitary similitude group considered as an F-algebraic group, where

0 1,

The kernel of the scale map A\, = \j, : G, — F* is denoted by G,, = U, =
U(n,n). We formally set Gy = F*. The center Z,, of G,, consists of scalar
matrices over E and is naturally identified with RgGLl.

Remark 2.1. When n = 1, there is an accidental isomorphism
G1(F) =~ B x GLy(F)/A4, A={( Qe F )
The isomorphism is given by (a,g) — a~'g. Note that
G1(F) ~{(a,g) € E* x GLo(F) | NE(a) = det g} /A.
Given A € RgGLn, z € Her, and £ € F*, we put

A 0 1, =z |1, 0
We will frequently suppress the subscript ,. Define the maximal parabolic
subgroup P,, with Levi subgroup M,, and abelian unipotent radical N,, by

M, ={d(€)m(A) | ¢ € F*, Aec REGL,}, N, ={n(z)|z € Her,}.

More generally, we use the notation

1, =z |z—yl™ y
0 1, by 0r_; || z,y € REM: .
E_ k(oo _ k—i k—i Y FYk—g
NZ Vi ($, Y Z) 0 1, 0 z € Her;
k o tIT ]-k:—z'
We define a homomorphism
A
@
Li‘c : R]@GLz’ X Gp—i = Gr, (A, g)— No—i(9) t(Afl)‘r B )
—1
y )

B
4]

B, v, 6 of size k — i over E. The group MF = (F(REGL; x Gx_;) is a
Levi subgroup of the maximal parabolic subgroup Pf of G, whose unipotent
radical is Nl-k. These parabolic subgroups form a set of representatives of
the set of all Gi-conjugacy classes of maximal parabolic subgroups.

Take natural numbers ¢, j, k such that i + 7 = k. The center of Nik is

ZF = {v¥(0,0; 2) | z € Her;}.
We define subgroups X¥ and Y} of G}, by
XF={vi(2;0,0) |z € REMS}, Y = {v}(0;;0) | y € REM}}.

where we write an element g € Gr_; in the form [a ] with matrices «,
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For S € Her; we define a homomorphism ¢° : Zf — F by
05 (vF(0;0; 2)) = tr(Sz).
Fix S € Her?. Put
R§ = {(A,g) € GUs x G; | As(A4) = \j(9)}-

We identify R with the subgroup of MS = 8(GUg xG;) € MF. We regard
GUg as a subgroup of Mf via the embeddlng mlg GUg — Gj defined by

m§(A4) = (A, d;(As(4))) = my(diag[4, 1;])di(As(4)).

Then

ME = GUg x F(1;,G), RE = GUg x F(1;,Gj).
Note that if A € GUg and £ = Ag(A), then for A € GUg and g € G
(2:2) ol (A) (1, )l ()1 = (15, d;(€)gd;(€) ),
(2.3) m(A)v (z;y; 2)mE(A) ™" = vi(Az; € Ay; €71 AZIAT),
(24) (L, 9)vi (@5 2)05 (L1, 9) ™1 = vi((259)97 5 2).

In particular, RS is the stabilizer of £% in M¥ under the conjugation action.
The quotient group Nik /Ker £5 is a Heisenberg group with center Zf /Ker £°
and a natural symplectic structure on Ni]C / Zf. We will frequently let k =n
and suppress the dependence on k from the notation. We sometimes write

wioon([5 ). wer-a((2 )

for A’ € GL,,—;(E) and 2’ € Her,,_;.

The ground field F' is a local field of characteristic zero with normalized
absolute value aup = |- | unless the end of Section [@. Let E be a quadratic
étale algebra over F' and eg/p the character of Cp = F'* attached to E/F
by class field theory. Given a character x of Cp = E*, we denote its
restriction to Cr by x'. We set ag(a,b) = ap(ab) for (a,b) € Cg in the
split case. When A is a locally compact topological abelian group, we write
Q(A) for the topological group of all continuous homomorphisms from A to
C*. Given p € Q(F*), we define Ry as the unique real number such that
ua;%“ is unitary.

We define the basic character ¢ : F' — S in the following way: When F
is archimedean, we let 1 = eoT]{g . When F' is an extension of @, we define
¥(z) = e(—y) with y € Z[p~!] such that Tgp (x) —y € Zy. We now associate
a character ¥ : Her, — S to B € Her,, by ¥ (z) = ¥(tr(Bz)).

Following [ 5] and [[3], we aim to review a construction of Weil represen-
tations of RS X Nf . The Schrodinger representation wg of le with central
character 1 o £ is realized on the Schwartz space S(XF) by

(2.5) [ws (Vi (@393 2))0)(u) = p(u + )3 (2)P(TE('u” Sy))
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for ¢ € S(XF). The representation wg is a unique irreducible representation
of Nz-k on which Zf acts by 1 o £° by the Stone-von Neumann theorem,
and wg extends to the Weil representation wg of G; x Nik. This extension
depends on the choice of a character ¢ of Cg whose restriction to Cr is ejE /P
Recall the well-known formulas:

[w§ (m;(A))](u) = é(det A)| det A%L>¢(uA),
[w(0(2))] (1) = 9 (uzu”)p(u),
(2.6) [w ()] (u) = vs[Fso](u)

for ¢ € S(XF), u € XF, A € GLj(E) and z € Her;, where vg is a certain
8th root of unity and Fg¢ is the Fourier transform

[Fso](u / ()Y (TE(W™Sz)) da.

The measure dx on Xik is self-dual with respect to this Fourier transform.

We further extend the Weil representation wg to an action of the semi-
direct product R X Nj°. k. This material is a slight variation of that of Section
3 of [13]. Fix 0§ € Q(C’E) and define an action of GUg on S(XF) by

PL(A4)6)(u) = 6(As(A)IAs(A)] 57> (A ).
We obtain a representation % of the group GUg x (G x NF) on S(XF) as
OL(A)ws(2)’L(A) ! = wi(mE(A)zmE(A)™), z € Gjx NF

(cf. (22) and [13, (3.2)]). Since (F(4,9) = mE(A)k(1;,d;(€)7tg), where
(A, g) € RE and & = A\g(A), we have

[ (E (A, 9)0) 8] (1) = O(As(A)) €] 77w (d; (€) " gv)g] (A u)
for v € NF, u € XF and ¢ € S(XPF).

3. DEGENERATE WHITTAKER FUNCTIONALS AND SHALIKA FUNCTIONALS

Let G be a reductive group over a local field. The space of an induced
representation Indg o of an admissible representation (o, V') of a Levi sub-
group M (or its pullback to a parabolic subgroup P = MU) of G consists
of smooth functions f on G with values in V' such that

f(umg) = 6p(m)?a(m)f(g) (uelU, meM, ge@q)

on which G acts by right translation. The modulus character §p of P is
built into the definition in order for the representation IndIGD o to be unitary
whenever ¢ is unitary. An irreducible representation m of G is called super-
cuspidal if it is not a composition factor of any representation of the form
Indg o with P a proper parabolic subgroup of G. If 7 is a smooth repre-
sentation of finite length, we write 7" for the contragredient representation,
and for a character U of a unipotent subgroup U of G we write Jf(r) for
the twisted Jacquet module of 7, namely, the quotient of 7 by the closure of
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the span of 7(u)v — ¥(u)v (u € U, v € w). When ¥ is trivial, we frequently
suppress the superscript .

A ¥-Whittaker functional on 7 is a complex linear functional A on 7
which satisfies A(w(u)v) = ¥(u)A(v) for all v € 7 and w € U. The space of
¥-Whittaker functionals on 7 can be identified with the space of complex
linear functionals on Jg (). The group G acts on the space

Ind$ ¥ = {W : G — C smooth | W(ug) = ¥(u)W(g) for all u € U, g € G}

by right translation. The image of a nontrivial intertwining map = — Indg 4
is called a ¥-Whittaker model of 7. Note that m has a nonzero ¥-Whittaker
functional A if and only if 7 has a W-Whittaker model # (7). To obtain a
model from a functional, set # (g,v) = A(w(g)v), and to obtain a functional
from a model, set A(v) = #'(e,v), where e denotes the neutral element
of G. When G = G,, and U = N,,, we call ¥ o /B-Whittaker functionals
Bth degenerate Whittaker functionals, write Whp(7) for the space of Bth
Whittaker functionals on m and denote by Her(r) the subset of Her2
which consists of Hermitian matrices B such that Whp(7) is nonzero.
We define a GL,,(E)-invariant map e : Her®™ — {£1} by

e(B) = eg/p((—1)"""D/2 det B).

The set of GL,,(E)-orbits in Her™ is indexed by this map in the p-adic case
and by the possible signatures in the archimedean case. Given B € Herﬁd,
we write Op(B) for the set of Hermitian matrices of the form ¢~*B(A) for
some £ € F* and A € GL,(E).

Definition 3.1. Let IT be an admissible representation of G,, and x a unitary
character of Cg. We call wp € Whp(II) a Bth Shalika functional with
respect to x if

wp o II(mp(A)) = x(Ap(A))ws
for all A € GUp. Let Sh);(II) denote the space of Bth Shalika functionals
on II with respect to x.

Let us make some general observations on Shalika functionals.

Definition 3.2. Fix By € Her. Granted a single Shalika functional Ip, €
Sh’éo(ﬂ ), we obtain a family of Shalika functionals Jp € Sh);(IT) indexed
by B € Op(By) by setting

Ip = x(6" ™ det A)"'1p, o I (d(€)m(A)),

where we choose ¢ € F* and A € GL,,(FE) so that B = ¢ 1By(A). The right
hand side is independent of the choice of £ and A.

Here is a noteworthy consequence of Definition B2
(3.1) I 0 I(d(§)m(A)) = x(§"/* det A)Tg-1 ()
for all £ € F*, A€ GL,(F) and B € Op(By).



13

Suppose that n is odd and II is a representation of G,. For simplicity
we assume that F' = C in the archimedean case. Fix By € Her’ and
S € Her™ . It is important to note that

(3.2) Op(By) = Herd, As(GUg) = F*.
We define the subgroup of R by
Rs ={(4,9) € GUg x GLa(F) | As(A) = det g}.
To lighten the burden of our notation, we will use the abbreviation
N'=Ny_,, X'=X,,, Y=Y, Z=2,, V=5, vV=vi,

Let XQ g denote the restriction of Xwg to Rg X N’, which is independent
of the choice of € as the symbol suggests. Let Ip, € Shﬁo(ﬂ ) and construct

{IB} peperna. We associate to § € F* a h*-Whittaker functional F?(JB())
on the Jacquet module Jy/(II ® XQg) by

DS (15,0 (f © ) = ¢/ / Tsee (1T(0) f)(0)9](0) do.

Z'Y'\N'
Since [XQg(x)¢](0) = ¢(x) for z € X', this integral is convergent and Ug x
N’-invariant. Thus we can define a function on GLg(F') by

2 (35,)(9: f © &) = T2 (Ap,) (I (V' (4,9) f © XQ2s5(/ (4, 9))9),

where we take A € GUg with Ag(A) = detg. Recall that x denotes the
restriction of x to F'*.

Proposition 3.3. If n is odd, then for 1p, € Shy (IT); S € Her™ ; a,b €
F*;ce F; ge Gla(F); f €Il and ¢ € XQg

I'7 (I5,) (n(c)m(a, b)g; f © &) = P(e)x (@)1 (Ip,) (g; f © 9).
Proof. Take A € GUg such that ab = Ag(A). Then

Qs (¢ (A, m(a, b)) (u) = x(As(A))]ab |5 2 p(aA u)

for u € E"1 and ¢ € S(E™1). Observing that
(A m(a,0) 7 (2555 2)0 (A, m(a, b)) = V(@A™ s bAT y; ab AT (AT
by (233) and (£4), we get

/X/ Isae (I (xd' (A, m(a, b)) f)[XQs (20 (A, m(a, b)))¢] (0) dz
| det Alg
el Jx

Since ¢/(A, m(a,b)) = d(ab)m(diag[A, a]), we see by (B) that
Ise1 o (4 (A, m(a, b)) = x((ab)1~™/2a det A)Igpap-1-

The formula follows upon combining these observations with the identities
NE(det A) = (ab)"~! and Ag(A) = (ab)1=™/2 det A. O

Ise=(I(/'(A,m(a,b)z) f)XQ2s(V (A, m(a, b))x)¢] (0) da.
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4. CERTAIN NONTEMPERED REPRESENTATIONS

We regard v as a character of N = Nj in the usual way, i.e., <é ; —

1(c). An irreducible admissible representation 7w of GLy(F) is said to be

generic if it has a 1-Whittaker model, which is unique and denoted by

# (7). Given an irreducible admissible generic unitary representation 7 of

GLo(F), we will explicitly construct degenerate Whittaker functionals :I%,

on an irreducible admissible unitary representation A%(W) of G,. Appendix

B will construct AX(7) and Yé in a simpler manner in the split case.
Proposition 2 and Lemma M3 say that

(4.1) T € Shi(AX(m)), D3I (f © 6) € #/(m).

These properties are the technical heart for the proof of Theorem L.

We will differ slightly from our previous notation. Given a free right
E-module X, we denote the group of all E-linear automorphisms of X by
GLg(X). The free E-module W,, = E?" comes equipped with the split
skew Hermitian form (x,y) = @7 J,y for z,y € W,. We regard G,, as the
group of similitudes of the skew Hermitian space (W, (, )). When X is a
totally isotropic subspace of W,,, we denote the maximal parabolic subgroup
of G,, stabilizing X by Px and their unipotent radical by Nx. We define
the canonical homomorphism

projx : Px — GLg(X) x Gn—, projx (p) = (plx,plx1/x);

where dimp X = ¢ and the subspace X consists of v € W, such that
(v,z) =0 for all z € X.

Fix an E-basis {e1,...,en, fi,..., fn} for W, which consists of isotropic
vectors such that (e;, f;) = d; ;. Let &; (resp. );) be the totally isotropic
subspace spanned by e1, es, ..., e; (resp. fi, fo,..., fi). We often use matrix

representation (EZ0) with respect to this Witt basis interchangeably. Recall
that the standard maximal parabolic subgroup Py, is denoted by P;.
Let X9; (resp. X2;—1) be the totally isotropic subspace of W,, spanned by

e1, f2,€e3, fa, ... €21, fo (resp. 617f2,637f47---,62i737f2i72,62i71)-
Let Q9; (resp. Y2,—1) be the totally isotropic subspace spanned by
fi,e2, fa,ea, ..., foi—1, €2 (resp. fi,e2, f3,eq,. .., f2i73,62i727f2i71)
For brevity we will write
—1)/2
Bi=Px,, MNi=DNx, M=Px,NPy, Pe= ﬂEL % PBoi,

assuming n to be odd. We denote by 1. the unipotent radical of the Borel
subgroup of G, which stabilizes the complete flag of isotropic subspaces
X, C X, C --- C X,. As in Section B we realize the isomorphism with
respect to Xy

12 : GLQ(E) X gn_g ~ gﬁg.
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The Galois twist "IT of a representation IT of GL,,(F) is a representation
of GL,,(E) defined by "II(A) = II(A") for A € GL,,(E). Let 7 +— 7% be
the functorial transfer from irreducible representations of GL,,(F") to those
of GL,,(E) given by quadratic base change (cf. [, Ch. 1, §§6,7]).

Let B,, be the subgroup of upper triangular matrices in GL,,. Given
a,b € F* and ¢ € F, we put

m(a,b) = {g 2} n(e) = [(1) ﬂ

The induced representation Indgif}g;) p1 X g of the character m(a, b)n(c) —

1 (a)p2(b) of the Borel subgroup is called a principal series representation
and denoted by I(u1,u2). In the nonarchimedean case I(puq,pus2) is irre-
ducible unless yi15"' € {ap, aj'}. For x € Q(Cg) we associate to a € E*
a (¢ o TE)*-Whittaker functional w) on I(x,x ') by

() = 220370 [ am()eTEeaas 5= gl
The integral converges absolutely for ®(x"x) > 1 and extends to an entire
function on Q(Cg).

Throughout this paper we fix unitary characters @ € Q(Cr) and x €
Q(Cg) such that {7 = &. If R > —3, then I(u,p~'@®) has a unique
irreducible subrepresentation, which we denote by A(u, " '@). Let 7 be
an irreducible admissible unitary generic representation of GLo(F') whose
central character is @. If F' is nonarchimedean and 7 is not supercuspidal,
then there is p € Q(CF) which satisfies either —% < Rp < % or p?0~ ' = ap
and such that 7 is equivalent to A(u,~*@). In the archimedean case T is
equivalent to A(u, @) for some pu € Q(Cr) with Ru > —%.

Definition 4.1. For an irreducible admissible representation 7 of GL,, (F')
we define an irreducible admissible representation 7[x| of GL,,(E) as

) =" e

The p-Whittaker model of 7 is denoted by #' (7). Let # (w[x]) denote the
1 o TE-Whittaker model of 7[X]. The representation A;(x, ) of G1 will be
defined in the next section. Remark P allows us to identify representations
of G; with those of E* x GL2(F) on which A acts trivially. With this
identification we obtain the following results:

Lemma 4.2. Let p € Q(Cr) and 7 be an irreducible admissible unitary
generic representation of GLo(F') whose central character is .

(1) X7 = (nO)N-
(2) If Ry > —%, then

A, p )R]~ AR BIRTY, TR A, p 7 0) ~ Ay (plR], w7 '),
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(3) "r[X]Y ~ 7[X] and the central character of w[X] is XX .

(4) The stable base change of X' X7 is 7[y].

Proof. The last statement is Theorem 4.12 of [?4]. The other assertions can
easily be checked. ([

Definition 4.3. Let 7 be an irreducible admissible unitary generic repre-
sentation of GLg(F') whose central character is &. For odd n we write Ay (7)
for the unique irreducible subrepresentation of JyX(m), where

JX(r) = Ind§y o5 @ {/ (w[R) V2R (1R ()}

Remark 4.4. (1) The central character of AX(r) is {(&F)(1-7)/2,
(2) Define a homomorphism A, : G, — Cx by A,(g) = An(g) ™ det g,
where C}, denotes the norm one elements in Cp. When x1 is trivial,

we can define ¥ € Q(CL) by Y(a/a™) = x(a) for a € Cg. Then

AT @ X oA, @ Vo, ~ AgXVE(T(@I/).

(3) It can be shown that AY (m) is unitary by Proposition 623, Corollary
63(P2) and a simple globalization argument (cf. Appendix 0).

We define the split Hermitian matrix H,, € Her™ by

0 1
H2=[1 0}, Hoyy 1 =Ho®---®©Hy®l, Hoy=Ho®---®Hs.
N— N—

i—1 i
For odd n we will explicitly construct a nonzero H,th degenerate Whittaker

functional on A%(ﬂ'), which will ultimately turn out to be an H,th Shalika
functional with respect to x. Note that for u € N,

(n—1)/2
P (w) = 4 <<Ufn,fn> + Y T%<<uf2iaf2i—1>)>'
i=1
For f € Jf;‘(ﬂ), u €N and g € G,

(n—1)/2
flug) = f(g)¥ <<ufn7fn> + Y Tg((ﬂfzz’,fzz'—ﬂ))'

i=1

Therefore the integral
B0= [ f ) du
PNy \ Ny,

makes sense at least formally. Put

1 & 47 00 0
X(x,)=m|[ |0 1 0 , Y(y,2)=n| |0 z T
0 0 1,9 0 Yy 0,—2

for z,y € E" % ¢ € Eand z € F.



17

Proposition 4.5. Let n be odd and f € J)(r).
(1) u = f(u)pp(¢Hn(u)) is a Schwartz function on Pe N Np\Ny,.
(2) Iy, is nonzero on Ax(r).
(3) The following identity holds:

B0 = [ T ()R () du
(ﬁzﬂNn\Nn
Remark 4.6. The following inductive nature should be mentioned:
JX(x) = Indy, 6, © # (w[8]) B Ty ().
We regard f € JX(7) as a Jﬁf_ (m)-valued function on G,, which satisfies
flia(n(@), Lon—a)ug) = Y(TE(2)) f(9) (v € B, u€ Ny, g € Gn)
and obtain the C-valued function g — JHn ,(f(9))
Proof. Define the subgroups 11 of N, and s of Her, by

y € En—l <1 25 tzg
LeF }, Pe=14 (22 0 O
zz 0 24
Then

P2 N N, =n(h2) =1 - né(Hern—2)> Be NNy =1 - (Pe N né(Hern—2>)~

We may assume by induction that the restriction of f(u )'(/)H"( ) to Pe N
n),(Her,_2)\n)(Her,_2) is a Schwartz function. To prove (I), we have only
to show that foY € S(E" 2@ F). Since X (x,&) € My and X (2, ) fa = fo,
we see that f(X(z,£)g) = f(g) for x € E"~2 and ¢ € E. Since

X(2,6)Y (y,2)X (2, )7V (y,2) 7" = v{(0: €2+ 2Ty, € yT; €674 TE(E 2Ty))
forall z,y € E" 2, (€ Eand z € F,

(4.2) FY (y,2) X (2,6)7) = (zTE(E) + TE(27y)) f(Y (y, 2))-
Given ® € S(E" 2@ E), we put

% £)(g / [ 205X (2,6) dnde.
En—2
Write f = ® x h for some h € J(x) and ® € S(E"2 & E). Then

//EnQ (z,)h(Y (y,2) X (x,&)) dodg
(Y (y,2))®(y, 2)

z3 € En—2
z4 € Hery,_o

91 = {V?(O;yﬂ)

Z1€F, ZQEE}

by (£2), where

9= [ [ 0w OulTEE + ) dodg

is the Fourier transform of ® and hence a Schwartz function on E" 2 & E.
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By what we have seen, we get the inductive formula

(13) B 0= [ [ 302 dyas

as claimed. Moreover, we have showed that

@ n= [ [ b3, 002 dud

If 1} (Pxf) = 0forall ® € S(E"2&E), thenI}; _ (f(e)) = 0. We conclude

by induction that if :PIA‘{" kills AX(7), then f(e) = 0 for all f € AX(r). This
is a contradiction however. O

5. DEGENERATE PRINCIPAL SERIES REPRESENTATIONS

We will highlight some properties of Jacquet integrals on degenerate prin-
cipal series representations which are needed in this paper. When 7 is not
supercuspidal, we describe A% (7) as a subrepresentation of degenerate prin-
cipal series and relate J} to the Jacquet integral in the next section.

Let x € Q(Cg) and pu € Q(Cp). Recall that x' is the restriction of x
to Cp and that Ry is the unique real number such that ua;%" is unitary.
When F = F & F, we set £y = %?RXT. Recall that u? = o NE. Then
Ru = Nupf. Put

n n
. +4 . +4
a"(x) = [T 2t =5 x" i), 000 =] LG - i)
7=1 j=1
The modulus characters of maximal parabolic subgroups of G,, are given by
(5.1) 3P, (ti(A, 9)) = [An—i(9)'NE(det A)[ 7~

for 1 <i<n, A€ GL;(F) and g € G,,_;.
Let J,(x,p) = Ind%; (x o det®u o \,,) be the normalized induced repre-
sentation of the character of P,, defined by

d(§)m(A)n(z) — p(€)x(det A).

The center Z,, of G, acts on J,(x,u) by the character x",uE. Since G,, =
{d(¢) | £ € F*} x G, we can identify the space J,(x, x) with the space of
smooth functions f : G,, — C satisfying

f(m(A)n(z)g) = x(det A)| det A f(g)

for all A € GL,(F), z € Her,, and g € G,,. We write I,,(x) for the represen-
tation of G, obtained by restricting the action of J,(x, 1) to Gy,.

In the nonarchimedean case the field F' comes equipped with a subring o
whose elements are called the integers of F'. We denote the integer ring of
E by t. In the split case v = 0 @ 0. The ring o has a unique nonzero prime
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ideal p. The index [o : p] is denoted by ¢. For fractional ideals b, ¢ of t which
satisfy bc C t we put

a b
(5.2) Tylb, ¢ = {[C d] €0n
Set T[] = Ty[c™t ¢]. For g € G, the quantity &.(g) is defined by writing
g = pk with p = d(A)m(A)n(z) € Py, k € I';)[¢], and setting
i(g) = A" det Al

a,d € M, (v), b € bM,,(v), c € CMn(t)} .

Once a Haar measure dz on Her,, is fixed, one can ‘canonically’ construct
a nonzero element wy € Whp(I,,(x)) for each B € Herld.

Definition 5.1 (Jacquet integrals). Given x € Q(Cg) and h € I,(x), we
define a holomorphic section h(*) of I,,(xa%) by setting h®)(g) = h(g)eo(g)*
for s € C. In the archimedean case we define h(*) by replacing I',[0] by
a certain standard maximal compact subgroup of G,. For B € Hergd the
integral

Wit O) = [ O (Jn(:)$7 () s
ery
is defined a priori for $ts > §—%x but admits an entire analytic continuation

to the whole s-plane. We can therefore evaluate WEQSE (h(*)) at s = 0. From
now on we assume that Ry > —% and set
n/2 n
w)(h) = |det BI/*w ()b (x).
We define an intertwining operator
My (x) = (X, 1) = Ju (X (X))
by the integral
[Ma(x)fl(9) = a"(x)™" | f(Jan(2)g)dz

Her,,

which is convergent for Ry > % and extends to an entire function on Q(Cg)
by [27, Proposition 3.2, Theorem 1.3(5)]. There is a meromorphic function
cn(x) on Q(CE) such that

(5.3) w0 My(x) = en()x! (det B)'e(B)" " w

for all B € Her™ by [27, Proposition 3.1, (3.5), (3.9), §7]. Moreover, the
product ¢, (x)b"("x~!) is entire and nowhere vanishing on Q(Cg). We let
X = [X€]. When e = 6%7}1,, we can rewrite (B23) as the functional equation

(54)  p(det B) M wy™ o My((@n)[xe) = w(l%]t)m wp'

involving an exponential factor of proportionality

en(p[%€]) = cn((@n™") [REDD" (nlxe])-
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Definition 5.2. Given any function f on a group G, we define a function
o(A)f on G by [0(A)f](g) = f(gA) for A, g € G. We will sometimes write
0 = o¢ to indicate that it pertains to G.

Lemma 5.3 ([21]). Let B € Her™, x € Q(Cg) and p € Q(CFp). Assume
that Ry > —%.

(1) w} is a nonzero vector in Whp(I,(x))-
(2) The space Whp(I,(x)) is one-dimensional at least if F is p-adic.
(3) If A€ GL,(F) and € € F*, then

w0 o(d(€)m(A)) = u(E)x (€)™ x(det A) w1 .

Proof. The first part is clear. The second part is the fact proved by Karel
[21]. The third part can be proved by simple changes of variables. O

For simplicity we discuss only the p-adic case for the rest of this section.
Let k =i+n and S € Her™. Recall that ¢/ = eiE/F. Put x = ea% M2 We
denote the image of the intertwining map

S(XF) = Lu(x), ¢ = f5(9) = [w5(9)9](0)

by RX(S). In the inert case there are precisely two equivalence classes SZ-jE
of nondegenerate Hermitian forms of size ¢ over F, having opposite signs
e(SF) = 1. We will write A (y) = RX(S;). When I,,(x) is irreducible, we
abuse notation in writing A (x) = I,(x) to make our exposition uniform.
Set A (x) = {0} unless E is a field and x' = /P

Proposition 5.4 ([0, 27]). Let x € Q(Cg). Suppose that F' is p-adic.

(1) I.(x) is reducible if and only if x' = eiE/Fai?" for some integer
0 <i < 2n such that i # n in the split case.
(2) fE£F®F and x' = €pypo then AE(x) are irreducible and

L(x) = A7 () ® 4, (x), Herp!(47(x)) = {B € Herp! | ¢(B) = £1}.

(3) If xt = GE/FO‘F’ then I,(x) has a unique irreducible subrepresenta-
tion At (x) and Her™ (A} (x)) = Her™,
(4) Whp(A(x)) is spanned by the restriction of w) for B € Herld
Proof. All points of reducibility of I,(x), its complete composition series

and degenerate Whittaker models of its constituents at each such point are

described by Kudla and Sweet [27]. Suppose that xf = eE/FaF. Then
(5.5) At (x) = RX (S:H) NRX(S, 1)

n

by Theorem 1.2(3) of [27]. Note that

(5.6) L)AL (x) ~ REF (S5 1) & RF (7).
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Lemma 4.4 of [27] says that Her™(Ry™? (S |)) = 0. By the exactness of
the Jacquet functor

(5.7) Whip(AF (1)) = Whp (I (x)) = Hert.

The last statement follows from Lemma bB=3. O

Corollary 5.5. Let x € Q(Cg) and p € Q(Cp). Assume F' to be p-adic.
(1) If nis odd and —3 < Rx < 3, then J,,(x, p) is irreducible.
(2) If xt = 6%7},0{ r, then J,(x, pt) has a unique irreducible subrepresen-

tation A, (x, u).
(3) It X' = € Lo, then An(x, 1) = My ()L (x)")-

Proof. Proposition 6.4 of [27] and (B3) prove (). For all { € F*

Herp (o(d(€)) A () = {B € Hery | e(B) = +epr(€)"}.

The first part is now clear from Proposition 64(M), (2). The second part is
a consequence of Proposition b4(R). O

Definition 5.6. When n is odd, we write A, (x, p) for the unique irreducible
subrepresentation of J,(x, 1)

6. COMPATIBILITY WITH THE JACQUET INTEGRAL

We will identify AX (m) with a submodule of the degenerate principal series
and show that J§ equals the Jacquet integral wgbd if m ~ A(u,d;uil).
Consequently, one can deduce (B-1) from the relevant properties of w%M.
For1<i< ”T_l we define isotropic vectors by

+ +
€31 = €2i—1 T Jais €9 = €9 = foi1-
When n is odd, we define anisotropic vectors by
5::671*-[]0717 5;:€n+-‘fnv
where 7 is a nonzero element of F such that = —7. We define E-linear
injections (* : E" < W, by 1*(21,...,2,) = P xjsf The restrictions

of { , ) to the images W = (*(E") are nondegenerate. Moreover, the
isomorphism (*(z) + () is an anti-isometry, W,, = W7 & W, is an
orthogonal decomposition and

Xo={" @)+ (@) [e€ B}, Vu={(y)—¢ (y) |y E"}.

Put 1 = {1,0,...,0) € E™. We write 27 for the line spanned by £;. By
(610) the modulus character of Ps is given by

(6.1) I, (D) = [Mn(p) *NE(det(plx,)) 7>

Lemma 6.1 ([28]). (1) The image of P, NP2 under projy, is the par-
abolic subgroup i2(Ba X Pn_2) of My, where By is the stabilizer of
Xy = Xy in GLg(X2). Its unipotent radical is projy, (N, N Pa).
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(2) projy, (PnNPa) is the parabolic subgroup d(F*)m(Q1 n—21) of My,
where Q1,n—2,1 is the parabolic subgroup of GLg(X,) stabilizing X,
and the subspace X{ of X, spanned by ey and eg, ey, ..., e,. Its unipo-
tent radical is the image of Pp NN under projy, .

(3) Forall§ € F*; ap,a1 € E*; Ay € GL,,—2(F)

ai

proi, (12 (|10 0] da(@miatan) ) —atom | | etarty

(4) The restriction of 5‘;321/4 to P, NPy is 5@311,/712_271 o pProjy,
Proof. If we use the notation of [28], then
Xy=W  Xo=21%x21, PuNGn=Syoe, BoaNGn =522
Ny = Ryo, M2= Raixa, X =27, Xl = (2H)°.

We can therefore apply Lemma 4 of [28] to obtain analogous results for G,,.
The proof can easily be modified to deal with P, N‘Bs. O

Proposition 6.2. An intertwining operator
—-1/4 _
Ui (X) + (X 10) = Indg o @ {106 X ) B T (o, ix)}
is defined, for Rx > —%, by

b”‘2(X)L(1,xTx)/
h(upg) du.
b ()0, (P)Y* o\ (upg)

If x and p are unramified and h is I'y,[o]-invariant, then [V, (x)h](e) = h(e).

[T (x)hl(g) : p—

Proof. Proposition 1 and Lemma 3(2) of [28] prove an analog for the unitary
group G,,. Since the inducing character of J,(x, 1) sends

a

(| ] e ©maataoma2()) = uOx(Eantar ) der o

by Lemma BI(B), we can readily extend this result to the similitude group
Gn. The convergence is proved in Lemmas 5.1 and 5.2 of [85]. The last
statement follows from Remark 3 of [28]. O

Now iteration of the operators produces an intertwining map
T(X) : Jnlxo 1) = Indgs 05 @ (7 (1(x, % )PV R o),
where o = # (J1(x, n(xH)*~D/2)). Since

X R (@) = B (WP ),
we obtain an intertwining map

TP 0 A (B @MDY o T (@),
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where A, (pFx~1, p="&™+t1/2) is defined in Definition 58. By Corollary
5.4 of [34] (cf. Remark 5.5 of [37]) it factors to yield the intertwining map
Yu(uP) AP n D) o TX (A, p70)).

1

Proposition 6.3. Assume either —5 <Ru < % or 20~ = ap. Then

wid = (=) o Yy (ulX)).
In particular, J’A‘Hn € Sh’fin(A%(A(u,u_lw))). Moreover, if F is nonar-

chimedean, then Y, (u[xX]) induces a Gp-intertwining isomorphism
AR GV 2) e A (A 1)),
Proof. We can infer from Lemma BZ3(2) that

T, © Yu(ulX]) € Wha, (In(p[X]))
is proportional to the Jacquet integral wg[f] at least if F' is nonarchimedean.
However, we will argue directly to prove the stated identity. We may assume

that n > 3. Put

L 0 é- 0 tl,T
Vo ={m@ =" D]]senent. 2o =n; ([0 0 0
€ n—2

for x € E"2 and ¢ € F. The map (z,¢) — Z(x,¢) defines an isomorphism
E" 2@ F ~%B, NN, \N, . For x € Q(Cg), Z € Her} and a € E* we set

Wk = wk o gg, (Ji), Wy = Wy ° 0GLy () (J1)
(see Definition b2 for the definition of pg). Observe that for f € Ij(x)
wx(f) = flng (2)$=(2) dz.
Hery,

Lemma 8 of [P8] now implies that

i = [ [ @Rl ) (i) 2. ¢) dedo
En-2JF

for all h € J,(u[x], p "@"+D/2), Put

<dlag H ] 2]) €My,  J, =ia(J1,Jn2) € Pa.

Since J,, = I’ J’, we arrive at

oy, = X(—l)wﬁ o o(Jp), TnZ (2, &) ()~ =Y (~x,-€)
by Lemma BE33(B). These considerations give
W) = (- [E o Lt e (Y (o €) de

Il
g>

1 / (N R Wi ) (@ (W) R () (€7 (w)) .
P2NN,\Np,
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We see by induction that

(N R ) ([0 (ulR])A] (w))
)2 (AN R T o o (ulR)) ([ (%)) ()
(

(
ST (b)) ).
Lemma BH(B) now prove the first identity.
[x

lis nonzero on J,(u[x], p"@™+D/2), the image of Tp(u[¥])

contains the unique irreducible submodule AX(A(u, p~'@)). The invariance

=w(—-1
=w(—1

Since w“

of :l)f{n amounts to the relevant property of wﬁ,bd stated in Lemma BZ3(B).
Assume F to be p-adic. Since H,, € Hernd(A+( [x])) by Proposition 64,

the Jacquet integral wh; #X] i nonzero on Ay, (u[x], p~ "™+ 1/2) on account
of Proposition b4(@), and so is Tp(u[x]). The operator Y, (u[x]) there-
fore sends the unique irreducible subrepresentation of J, (u[X], = "@™+1)/2)
bijectively onto that of Jff(A(,u,u Loy). O

It is worth reminding the key simplifying feature (B=2), which explains
the reason why we consider the similitude group for odd n. We construct
15 € Sh(AX(A(p, p~'@))) for all B € Op(H,), following Section B.
Corollary 6.4. Assume either —% < Ru < % or p?w~" = ap. Then for
B e OF(Hn)

T5 0 Ta(plR]) = &(~1) " D2u((~1) "= D/2 det B) Lty ¥,

Proof. Take ¢ € F* and A € GL,,(F) such that ¢'H,,(A) = B. By Lemma
653(8) and Proposition 63

wi =p(€) (&) (0 (€) 7 R (det Al o o(d()m(4))
=€) "@(=) "2 L[R] (det )Ty, 0 Ta(u[X]) 0 o(d(€)m(A))
=p(€) (=)D LR (det A) (€12 det A)T 0 To(u[X]).
Since det B = (—1)("~1/2¢="NE(det A), we obtain the stated identity. O

7. SHALIKA FUNCTIONALS ON AX(7)

Let m be an irreducible admissible unitary generic representation of GLo(F')
whose central character is w. This section verifies that the degenerate Whit-
taker functional :IX is a Shalika functional on Ax(w) with respect to X.
When 7 is not supercuspldal this result follows from Corollary 64 and
Lemma B3(B). When E ~ F @ F, Proposition 2 can be proved directly
from Proposition BZA(B).

Lemma 7.1. Let Py, be the pm:abolz'c qubgmup of GUpg,, stabilizing the line
21, If nis odd and Iy ) € Shy (A} _o(m)), then

T5, 0 o(mp, (A)) = X(Ap, (A)TF, . AePy.
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Proof. Denote the unipotent radical of Py, by Ng,. By Lemma E1(2)
mp, (Ng,) is contained in My. We may assume that A = diag[a, £(a™1)7, Ag],
where a € E*, Ag € GUpg,_, and & = Ay, _,(Ap). Since

(d(§)m(A)) 7Y (y, 2)d(§)m(A) = Y (ady'y, £ 'NE(a)2),
we can see that .'IX (o(d(§)m(A))f) is equal to

elelal " det ol [ [ 35 (F@©mA)Y (0.2)) dye
for all f € AX ) by (B=3). The integral is equal to

/ /E L S lafa1a, dua(@mb(A0) Y (5, 2))) dyd
)7(@)” YA o) e NE (@) [T, (1)

by Lemma 61(B), (6) and the assumption on 3}3%2. The proof is complete
in view of | det Ag|, = ¢ 2. O

If we knew that dim Why, (A% (7)) < 1, then we could trivially see that
degenerate Whittaker functionals on AX(7) are necessarily Shalika function-
als. However, due to the lack of the knowledge of the uniqueness, it is far
from formal to show that :IX is a Shalika functional. We resort to global

means. Let E be a quadratlc “extension of a number field F with adele ring
A. When F is a smooth function on P, (F)\G,(A) and B € Her,(F), let

Wiy, F) = / Fn(2)g)9P(2) dz

Her,, (F)\Her, (A)
be the Bth Fourier coeflicient of F. Note that

(7.1) W (d(§)m(A)g, F) = We-1p(a(9, F)

for all B € Her,(F), £ € F*, A € GL,(E) and g € G,(A). Appendix O says
that I appears in the local factor of the Bth Fourier coefficient of a certain
residual automorphic form on G, (A).

Proposition 7.2. If n is odd, then JXHn € Sh’;f[n (AX(m)).

Proof. We may suppose that n > 3 and 7 is supercuspidal in view of Propo-
sition E33. By using a Poincare series we can now embed 7 as a local com-
ponent of an irreducible cuspidal automorphic representation o of GLa(A)
at a prime p of F such that o, is not supercuspidal for all primes v # p
(cf. [4, Appendice 1]). That is, F, ~ F' and o, ~ 7. Take a quadratic
extension E of F so that the global base change o® remains cuspidal. We
extend the central character w of o to a Hecke character x of E. Appendix O
constructs a residual automorphic representation Ax(c) which is equivalent
to @ AR (0y).
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Fix a factorizable vector f0 = ®,f € AX(o) such that I ( f9) # 0 for
all v. The identities (T) and (C) give

3 (e(mp, (A) f) [ [ 3, (e(mm, (A)) 1)) = T, (f) T ] 3. ()
VFEP v#£p

for all A € GUy, (F) and f, € A3*(w). Since 1ff € Sh)y (AX" (o)) for all
v # p by Proposition 63, the equality

T, (e(mp, (A)) fo) = xp(Amr, (A)T37, (f)

drops out. Since the subgroups GUg, (F) and Pg, (F) generate GUp,, (F)
by the Bruhat decomposition, Lemma [l concludes by induction that :I}Cfn €
Shy? (AX*(r)). Remark E(D) now says that Ij; € Sh}; (AX(r)) for all the
extensions x of @. O

8. HOLOMORPHIC CUSP FORMS ON G,

From now on the ground field F' is a totally real number field of degree d
and F is its totally imaginary quadratic extension unless otherwise stated.
That is, F/ is a CM-field and F is its maximal real subfield. We denote by
F, the completion of F' at a prime v, by G the set of real primes of F', by
A the adeles ring of F, by F the group of totally positive elements of F'
and by Cr = F*\A* the idele class group of F'. We do not use p to denote
archimedean primes. The basic character of F'\A is defined as the product
¥ = [, ¥,. We denote the adele ring of E by E, the idele class group of £
by Cg and the set of totally positive definite Hermitian matrices of size n
over E by Her,l. It is worth noting that when n = 1,

Her; = F, Her{ = F, 9 ={ZeC|SZ>0}.

For any algebraic group G over F' we denote its localization at a place v
by G(F,) or simply by G,, its adelization by G(A), the direct product of all
the archimedean localizations by G(A,) and the restricted direct product
of all the nonarchimedean localizations by G(Ag). Given another F-rational
algebraic group G, an F-rational homomorphism ¢ of G into G’ and an F-
algebra A, we can extend ¢ naturally to a homomorphism of G(A) to G'(A),
which we shall denote by the same letter ¢. For example, we employ Ng
even for the map of E* into A* derived from the map Ng : E* — F*. For
an adele point x € G(A) we denote its projections to G(Af), G(A) and G,
by xf, oo and x,, respectively. Put ¥y = Hp ,,. For B € Her,(F) define
a character ¥ : Her,(Ag) — S by 9P (2) = 94 (tr(Bz)). For x € Q(E*) we
denote its restrictions to Ef and EX by xf and Xoo, respectively.

Fix a real place v € 6. Put

gn(Fv)+ = {9 € gn(Fv) ’ An(gv) > O},
$m = {Z € M,(C) | V=1("Z - Z) > 0}.
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Define the action of G,(F,)" on £, and the automorphy factor j(g, Z) on
Gn(Fy)™ x $Hn by

9Z = (aZ+B)(vZ+0)"",  j(9,Z) = Malg) " det(vZ +6)
for Z € 9, and g = [: ﬁ € Gn(F,)" with matrices a, 3,7, d of size n over
C. For {, € Z and B € Her, we define a function W5 : G,(F,)* — C by

W™ (9) = (det B)*e(tr(By (1)) =(det ) (9.1) ",
where i = /—11,, € ,. Put K,,, = {g € G,(F,) | g(i) = i}. We can see
that
_e(tr(Bz))e(det k)* 4.
= et A2k e B 9)
for all z € Her,(F,), A € GL,(E,), 0 < £ € F)X, g € Go(F,)T and k € K, .

Let £ = ({y)yes,, be a tuple of d integers. Given g = (g,) € GLa(Ax)™
and a function F on $?¢, we define another function F|,g on H¢ by

Fleg(Z) = F(92)Je(g. 2)7, Jelg, 2) = ] (detgo) ™/ (coZy + do)™,
vEGC

8.1)  Wg¥(n(2)d(&)m(A)gk)

*

where g, = [ ;} . Define a maximal compact subgroup of SLa(A) by

(%

Koo = {g € SLa(As) | g(WV—=1,...,V/=1) = (V—=1,...,vV=1)}.

For ¢ € F* and z € R? we put [¢|* = [loes.. €7 - A Hilbert cusp form
F of weight ¢ having central character @ € Q(CFp) is a smooth function on
GL2(A) satisfying

F(zvgk) = @(2)F(9) Je(k, (V=1,...,v/=1)) !
for z € A*, v € GLo(F), g € GL2(A), k € K, and having a Fourier
expansion of the form
Fa(Z)= ) €Pwe(A, Flex(£2)
geFy

for each A € GLa(A¢), where w¢(F) is a function on GLa(A¢) and the
function FAa : ﬁil — C is defined by

Faleg(W=1,...,v/=1) = F(gA), g€ GLa(Ax)™.

We write (’:;f’ for the space of such Hilbert cusp forms.
For tuples £, » of d integers and B € Her,” we define the character £* €
Q(EX) and a function W5 : G, (As)t — C by

e*(a) = [ [ e(av)™, Wy (g) = [[Wg ™ (9),



28 SHUNSUKE YAMANA

where v runs over all real primes of F. For g € G, (Ax)t and a function
F : 9% — C we define another function F|7g : ¢ — C by

Fl79(2) = F(9Z)e(det 9)jel9, Z2) 7,
where j@(97 Z) = HUEGOO j(gvv Zv)ev~ Put gn(A)+ = gn(Aoo)Jrgn(Af)
Definition 8.1. The space &, (resp. T,””) consists of all smooth functions

F on G,(A) that are left invariant under G, (F) (resp. P,(F')) and admit
Fourier expansions of the form

Flg)= > walge, HIWE (90)

BeHer;!

which is absolutely and uniformly convergent on any compact neighborhood

of g = googr € Gn(A)*,

We call functions in the space (’5?’” Hilbert-Hermitian cusp forms on
Gn(A) of weight ¢ with respect to the character . For each A € G,,(A¢) we
associate to F € T, a holomorphic function Fa on $2 by the condition
Falyg(i) = F(gA) for g € G,(As)™. Since Gp(A) = Pp(F)Gn(A)T, the
function F is determined by the family of holomorphic functions {Fa}.
Remark 8.2. (1) For the space € to be nonzero it is necessary that

oo = [oes.. sgn’, where sgn(z) = H%II for x € F. If x € Q(CEg)
is an extension of @, then we can extend F € QI;E’ to a function on
Gi(A) in such a way that F(ag) = x(a)F(g) for a € EX, using the
isomorphism given in Remark Z. In this way we view Qﬁ‘é’ as a
subspace of (’5;’”, where Yoo = e2# 7.

(2) If x is a unitary character of Cg having trivial restriction to Cp,
then &, ® Yo A, = 6?’”+j, recalling the notation in Remark £,
where j € Z4 is such that yeo = €%,

(3) We sometimes regard the coefficients of the Fourier expansion in
Definition B as functions g — wpg(gf, F) on G,(Agf). It is note-
worthy that F +— wp(F) is an intertwining map from &, or ;"

n(Af)
to Ind (30 9

We fix, once and for all, a Hecke character & : Cr — S, an auxiliary Hecke
character x : Cg — S extending w. Fix an irreducible summand 7¢ of €7.
For each odd n and B € Her,l Proposition 2 and Definition B2 naturally

define J%" and a nonzero vector 1 € Shif (AX (m¢)) by TS (f) = I, J%p(fp)

for all pure tensors f = ®, f, € Ai‘;f(m) = ®;A5<P (mp), where, as the proof
of Proposition BZ3 shows, almost all the factors are 1.

Theorem . The series

Fo f) = 3 WETT M g )TY (Telgr)f), 2= g+ n— 14+0(5)
BeHer}!

defines a Gn(Ag)-intertwining embedding AN () — CHR
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9. CONVERGENCE OF THE FOURIER SERIES

Let o (resp. t) be the integer ring of F' (resp. E), 0 the different of F/Q
and © the discriminant of E/F. The norm and the order of a fractional
ideal of o are defined by M(p¥) = [0 : p]* = ¢* and ord, p* = k for each
prime ideal p of 0. Put

R, = Her,,(F) N M, (v), Ky = {z € Her,(F) | tr(zR,,) C 0}.

Denote the closure of R,, in Her, , by R, . Put %ﬁd =%, N GL,(E).

We fix a finite prime p and temporarily suppress p from the notation.
Thus F' is an extension of Q, for the moment. For every B € Her™ and
an irreducible admissible unitary generic representation 7 of GLo(F') with

central character & we can define I € Shi;(AX()), following Definition B2
and Proposition [CA. We first provide a bound of ])é.

Lemma 9.1. Let f € A%(T{'). For any compact subset C of G, there are
0 < ¢ € S(Her,,) and M € R such that for all A € C and B € Her’d

TS (o(A) ) < | det BlM o(B).

Proof. Since {o(A)f | A € C} is a finite set, we may suppose that C = {12, }.
One can find a compact subset £ of Her, such that I5(f) = 0 if B ¢ L.
Therefore the claimed estimate is equivalent to saying that there are positive
constants ¢ and M which satisfy

175, (e(d(©)m(A))f)]| < c|&é "NE(det A)|

for all ¢ € F* and A € GL,(E). Since d(NE(EX)) C Z,m,(GL,(E)), we
have only to vary A. Recall that Z,, stands for the center of G,.

For simplicity we here exclude the split case. The split case is none other
than Lemma B. Let q be the maximal ideal of r. The order of the residue
field t/q is denoted by gg. Thanks to the Iwasawa decomposition, it suffices
to let A vary over the parabolic subgroup @Q1,-21 of GLg(AX),) defined in
Lemma BE(B). Define a homomorphism

on : EX X GLp—2(E) - m(Q1n-21), ©nla, Ag) = m(diagla, 1, Ao)).

For each A € Q1,,—2,1 there are u € Ern2 npe E ac EX and Aj €
GL;,,—2(FE) such that m(A) € m(Ppy, )X (u,n)pn(a, Ag), where Py, = Ug, N
P, . Lemma [T therefore allows us to suppose that A = X (u,n)p,(a, Ao).

As in the proof of Proposition B3, we write f = ® x h. From (E2) we get

[o(X (u, n)pn(a; 40)) FI(Y (y, 2))
=h(pn(a, A0)Y (Ag 'y, 2))(TE() + TE(uy))d(ady 'y, az)
Substituting this expression into (E33), we see by Lemma G1(B) that

15, (X e mnlas A) )] < [det Aale [ [ [b(a,a2)]
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o[ 1 i) o

Let Plnf1 (resp. Pg:ll) be the parabolic subgroup of of G,,_1 C M
which stabilizes the subspace spanned by fa (resp. fa,es, 64, ...y epn). Let
an o be the unipotent radical unipotent radical of P1 P;Z__ll. Since
Y(y, z) € Gp—1 C My, we can write

Y(y,2) = i2<[é (SJ ,m’Q(Al)>u1k:

by the Iwasawa decomposition for G,,—; relative to P}"~ 'n P~ 11, where

ay € EX, A€ GLnfg(E), Uy € NﬁEEQ, ke anl[o].
For (y,z) € E" 2@ F let N(y,z) and N(z) be the nonnegative integers
defined by g~ V@2 = ¢ 4 2v + Z?;IZ y;v and ¢~V =t + zt. Since
aflk_lfz =Y (y,2) ' fo=fo— zea — yr€3 — -+ — Yn_2€n,

we get |a1|p = qEN(y #) " Since Y(y,0) € P"!', we can infer from the
Twasawa decomposition relative to P~ that |a; det 41|y = g NGE - Thus

|det A1, = qg(y’z)_N(Z) > 1. By mductlon there are positive integers ¢/,
M’ and M" such that

i (1[5 2] i)y )|
s (1 2] mscanan)))]

<dar|% Haa M| det(AoAr) |5 < ¢)alzM" | det Aol M,

where we have invoked a gauge estimate for # (7). Without loss of general-
ity we may assume & to be the characteristic function of (p~Nt)®"2@p— .

Then [ [pn |®(ay, az)|| dydz < |a|5" 2N(n b, O
The Siegel series associated to B € ,%’,I;d is defined by
b(B,s)= Y. W(—tx(Bz)wlz] ",
z€Her, /Rn
where v[z] = [zt + " : t"]Y/2 and ¥ is a character of F of order zero. As is

well-known, this definition is independent of the choice of ¥. Put
01 ) =] Ls—dieyp) ™ F(B.g®) =b(B,s)v(s) "

If 9 = 0 and det B € 0%, then F(B,X) = 1 by [I7]. The Siegel series is
nothing but the unramlﬁed Jacquet integral.
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Lemma 9.2. If B € %9, then
wi (e$5) = M) 72| det B F(B,q7>7").

Moreover, there is a positive constant M independent of B and F' such that
|F(B,q%)|| < |det B|;* for all B € %24 and —1 < Rs < L.

Proof. The proof of the first (resp. second) part is similar to that of [38,
Lemma 4.5] (resp. [I7, Lemma 2.3]). We omit detailed verifications. O

We go back to the global setting. We have taken an auxiliary Hecke
character y : Cg — S whose restriction to C'r coincides with the f:]xed
Hecke character &. The tuple £(X) of d integers is defined by %o = /(9.

Lemma 9.3. Notation being as in Theorem [, the series J7(f) converges
absolutely and uniformly on any compact subset of G, (A).

Proof. The proof is similar to the arguments in Section 4 of [I6]. It suffices
to show that the series

TE(P1an(Z) = > | det B2 (e, (t1(BZ))
BeHer,!

is absolutely and uniformly convergent on any compact subset of H4. One
can find a natural number N such that JXf(f) = 0 unless B € N~'%,.
There is no harm in assuming that f = ®, f, is factorizable. Corollary 54

and Lemma O2 give a positive constant M such that HJ%’ (f)ll < |det B|I_,pM

for almost all p. The bound of J%" given in Lemma O now says that
1T ()] < C'Ng(det B)M

for all B € Her,” with constants C’ and M’ depending only on f. The
inequality of arithmetic and geometric means gives

NG (det B) < (nd)~"(Tgtr(B))".

The number of B € N4, N Her, such that Tgtr(B) < T is O(T%).
From these estimates the series converges absolutely and uniformly on {Z €
9% 1 $Z, > €1, for all v € G4} for any positive constant e. O

10. PrRoOOF orF THEOREM @1

We begin with the inductive structure for Jacquet integrals on degenerate
principal series in §IO. It is mentioned in (I=3) and a special case of ().
When 7 =~ I(u, 1~ '@), the techniques are substantially those of Section 7
of [I¥], so that we will sometimes omit details. When 7 ~ A(u, u~'&) with
p2o™t = ap, the proof is a bit more complicated than the metaplectic case
due to (BZ1). We here use the functional equation (54).

Next we will prove the general case of (EX0) by a global method which uses
a certain residual automorphic representation. So as not to interrupt the flow
of the section, we will construct this residual automorphic representation
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in Appendix 0. Since the restriction of Y~! X 7 to G may be reducible,
it simplifies the proof considerably to extend the notion of Fourier-Jacobi
coefficients to G; as in Section B. The global criterion stated in Proposition
[04 combined with the local result (E) achieves Theorem .

10.1. Jacquet integrals revisited. We return to the local situation again,
fix a prime v of F' and suppress it from the notation. Fix 1 <i <n—1. Put

_]-i
e Gyp.

1,/
/ . n
n =n—i, n; =

1;

Lemma 10.1. Let S € Her!. Put n' = n —i. Given h € I,(x) and
¢ € S(X]"), we define the function B5(g';h @ ¢) : Gy — C, for Rx > 0, by
the integral

i
[ g kg l0) do TL 20+t
YN j=1

This function is meaningful for all x and gives an N;*-invariant and Gy -
intertwining map B35 : I, (x) @w§ — Ly (xé™1Y). Moreover, there is a nonzero
constant Cg such that for oll = € Herf‘j1

w3 00w 6) = Csldet 2177 [ Gl =(ofe)h) do

Proof. One can prove Lemma [0 in the same way as in the proof of Lemmas
7.1 and 7.2 of [IR]. O

Corollary 10.2. If F' is nonarchimedean and —% <Ry < %, then

B5(In(x) @ w§) = Lu(xé ™).

Proof. Fix = € Her™!. Lemma E3(I) enables us to take h € I,,(x) so that
wg@g(h) # 0. Lemma I shows that if we choose ¢ to be supported in a

small neighborhood, then wérl (B5(h®¢)) # 0. In particular, B5(h®e) # 0.

Thus ﬁg is surjective, provided that I, (yxé™!) irreducible. By Proposition

64(I) we may assume that x' = e%?},a}l or E£F@F and x' = e%/F.
X€~

When ! = e%?},a}l, since wz ' kills the maximal proper subrepresen-
tation of I,y (xé™1) in view of (B3), the vector 35(h®¢) generates L, (xé ™).
We discuss the latter case. Since Aff, (xé~1) are irreducible and satisfies

dipx (21 = d —
Herpi (A7 (xé 7)) = {5 € Herp) | e(5) = £1}
by Proposition 54(2), we see that

N - +e . se(S o
BE(AE(x) @ wh) = A ) (e 1),



33
where e,,;,v € {#1} is independent of S. Hence 8§ (I,,(x)®ws) = Al (xe e
A (xé™1) = Ly (x€™ 1) as claimed. O

We let ¢ = n — 1 and suppose that n is odd for the rest of this section.
For simplicity we exclude the case in which F' = R. Since 7,-1mg(A4) =
d(&m(E(A )™ )n,_1, a simple computation shows that

B5(o(ms(A)h © °L(A)$) = §(As(A))[¢|" "% | det Al
X (€)x(det(€(A™H)T)) e "NE(det(€ (A7) B4 (h © &)
for all h € Jp(x, 1) and A € GUg with £ = Ag(A). Observing that
0(As(A)) = B(As(A)), x(det(€ (A7) = x(As(A))x(&)T /2,
€02  det Al ple"NE(det(€ (AP = 1€l
we get
B5(o(ms(A)h @ OL(A)$) = (x 0)(As(A)u(€)x ()" V2(el 285 (h @ §).

In particular, the linear map f35 : Jn(u[pz],u_”@("fl)m) ® XQg — C is Ug-
invariant. We therefore define a function Bg(h ® ¢) : GLo(F) — C by

Bs(g:h ® ¢) = B5(e(t' (A, 9)h @ XQs(V(4, 9))9),

where the right hand side does not depend on the choice of ¢, x and A € GUg
with Ag(A) = det g. Moreover, if we put £ = Ag(A), then

Bs(di(©):h® 6) = 5 (o(ms(A)h@SL(A)) = u(©) "G ()l Bs(h®6).
It therefore follows that Bs(h ® ¢) € I(p, u~1d).

1

Lemma 10.3. Suppose either —% <Ru < % or 1?0~ = ap. Then

Y (@) (f @ 6) € 7/ (Alp, ')
for all odd n, S € Her™ || f € AX(A(u, pn~'@)) and ¢ € XQg.
Proof. Corollary 53(8) and Proposition 63 tell us that
AX(A(p, 51 @)) = T (X)) © Mo (@p~ KD (n(@p K], pra72)).
Let 1/ € J,,((op=Y)[X], p"@(=™/2). Put
h = My ((op™")[RDE, f="(uXx])h.

n—1>

Then
IS (35, )(g: f©F) = p(det §)! /X W (o' (A, g))h)F Qs (7 (A, 9))9] (2) da

for (A, g) € Rg by Corollary 64. The right hand side is equal to

en(p[R]) (uo~)(det 5) / w W (o (A, 9) W) FQs( (4, 9))¢] (x) da
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by (64). Next we exploit Lemma I to see that
~ — U:) —1 o —
YT, ) (9 © 6) = eh(mwi™ M (elg)Bs (k' @ 8)),

where e, (i) is a meromorphic function on Q(CF), which is holomorphic and
nonzero for Ry > —1. We have seen that Bs(h'®¢) € I(@wp~", ). Therefore
My(op=Y)Bs(W @ ¢) € A(u, p~'&). We finally get

DY, )05 f © 6) = enwen ()~ wi™ (el) M@ )Bs (W © 9))
by using (54) again. O
10.2. Fourier-Jacobi coefficients of automorphic forms. Fix S € Her?.
Put n' = n — 4. Recall the Schrodinger model of the Weil representation
w§ ~ @ we realized on S(X'(A)). We associate to ¢ € S(X(A)) the theta
function on G,/(A) x N/*(A) given by

OWs(v)p) = Y [Wsv)e)(x).
zeX(F)

The Bth Fourier coefficient Wg(F) of a smooth function F on P, (F)\G,(A)
is defined in Section @. The (S, )th Fourier-Jacobi coefficient of F is a
function on G, (A) defined by

7o) - | F(og) (w5 (vg)) do.
NP (F)\NJ ()
For ¢ € S(X['(Af)) we define ¢g € S(X]'(A)) by

¢s(7) = D(26)pF (100), 0% (100) = [ wsl@n), o= (z,) € X]'(A).
v€EG

We will denote the action of G, (A¢) on T} by p. The following result is

proved in [I8, Lemma 7.7] and will be applied with i =n — 1.
Proposition 10.4. If F is a smooth function on Pn(F)\Gn(A), then
F= Y[ Wsaslad, PG da
SeHer,, (F) X1 (&)
Putn’ =n—i and 5 = 3 — L(0(€) +1i). Let
Flo)= Y. walor, F)W5"(9ec)
BeHer;!
be the Fourier expansion of F € T,;"”. Then }"gs (¢') is equal to
> Nt S PWE () [ oz (ash P gl @) do
EGHer+, X (Ag)

for ¢ € S(X(Af)) up to a nonzero constant. Moreover, F € &, if and
only if (p(A)}')gs is left invariant under G/(F) for all A € G,(Ag), S €
Her; and ¢ € S(X!(Ag)).
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10.3. End of the proof. We again switch to the local observation, which
is the final ingredient required for the proof of Theorem L.

Lemma 10.5. Ifn is odd and m, is an irreducible admissible unitary generic
representation of GLa(F,) whose central character is &y, then

TS IR ) (f @) €W (m) (S eHerldy, fe AP (my), ¢ € ©Qg).

Proof. We may assume that 7, is supercuspidal in view of Lemma [Z3. We
take an auxiliary supercuspidal representation 7’ and embed 7, and 7’ as
local components of an irreducible cuspidal automorphic representation o
of GL2(A) at primes p and p’ of a totally complex number field F. We can
find a quadratic extension E of F which splits at p’ and such that the base
change o® remains cuspidal. Extends the central character of o to a Hecke
character y of E. We will construct a residual automorphic representation
AX (o) which is equivalent to ®, Ax"(co,) in Appendix 0. We may suppose
that S is defined with respect to E/F.
For F € AX(o) and ¢ € XQ0s we define a function on .7:5 on Rg(A) by

F2g) = / F(vg)O(XQs(vg')p) dv.
(F)\V/(A)

Clearly, O(XL(A)p) = O(p) for all A € GUg(F). Thus the theta distribution
© is invariant under Rg(F) x N'(F) and hence ]:g is left invariant under
Rs(F). We see by (C) and Proposition MI4 that

F(A,g) = > TEE5 ) g #a(Fp.) © @)
=

+ Wseo(z' (4, g), F)XQs(4, 9)¢)(z) dz,
X'(A)

where we define the function F?(JXHn)(%(Fpe) ® @) on GLa(A) by setting
L2 (3%, ) (9; #n(Fp.) ® @) HFg 15903 fo © Po)

if #;, (.Fqge) ®v fv and ¢ = ®,(, are factorizable.

Since J d}"/(oe ) (Ag"/ (7)) is zero by by Remark BT and Proposition BZ2(I),

Remark B2(B ) gives Wsago(f) = 0 for all f € Ax(o). It follows that
Fs 9(A,g) is independent of A and defines a cusp form on GLg(A). Since
S ® 1 € Op(H,,) for the choice of F, these cusp forms generate a nonzero
cuspidal automorphic representation of GL2(A), which we denote by o’. As
we have seen in Lemma M3, the restriction of ¢’ to GLa(F,) is a multi-
ple of o, for almost all v, and so by the strong multiplicity one theorem,
o' ~ o and T (35,) #u(Fp.) @ @) is a global Whittaker function of o.
Hence Ff(]ﬁn)(fv ® @y) € W (0y). O
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We are now ready to prove Theorem Il The series JZ(f) is left in-
variant under P, (F) N G(A)™ by (I2), (81) and the choice of s. Since
Gn(A) = Pp(F)G,(A)T, it has a unique extension to a left P, (F)-invariant
function on G, (A). Since Yg is nonzero for every B € Her, by Propositions
(D) and 633, the map J* is nonzero and hence injective as AX* (m¢) is irre-
ducible. Thus JZ is a G,(A¢)-intertwining embedding Ak (mg) = Tl 4.

The essential point is to show that J:(A%f (¢)) is contained in &7
Let S € Her," | and ¢ € S(X'(Ag)). We extend the Fourier-Jacobi coef-
ficient J”(f)s to a function on Rg(A) by

JZ(D3.(d) = / JZ(1)(0g) B (Rwk(vg)bs) dv
N/(F)\N'(A)

for ¢’ € Rg(A), where we let € be the trivial character of Cr. We also define
a function on Rg(A) by

Flg') = / JE()(vg)O(XQs(vg)ps) dv
N'(F)\N'(A)

Remark P11 implies that
Rs(A) = Z,(A)Rs(A).

The central character of JZ#(f) is X"(&%)1~/2 while Z,(A) acts on Xw}
by the character x"~1(&F)(1=™)/2, Therefore J#( f)SS is an extension of F

by the character X. Put 5/ = » — 251 = i() (cf. Remark B2()).
Proposition T4 gives a nonzero constant Cg such that

=Cs Y W™ (920)TE (I Vot | @ ).

geFX
In particular, F factors through the homomorphism
Rs(A) - GLQ(AOO)+GL2(Af)

We can rewrite the equality as

Flg)=Cs > Wi (m(1,€)goe)T5 (3 (L, E)gs: f © 6)

X
EEF]

by (B1l) and Proposition B33. Since Ff<J>A<an>(f ® ¢) is a 1pe-Whittaker
function of 7¢ by Lemma [ITIF, the series F belongs to ¢¥ as 7 is automorphic
and cuspidal. It therefore follows that J7( f )gs is left invariant under G (F).
Proposition M4 eventually proves that J7(f) € &7 .
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11. TRANSLATION TO CLASSICAL LANGUAGE

We shall translate obtained results into more classical terminology. For
an ideal a of o we put a, = podr @ Take a finite set & of prime ideals of o.

Put
~1 1
K =] Tnloy " 0,0) x [] Tulo, 0,
peG p¢6
See Section B for the definition of the open compact subgroup I', [0, 1,Dpp]
of G, (Fp). We will let n be odd and construct Hilbert-Hermitian cuspidal
Hecke eigenforms by making Corollary 2 explicit with the test function
f invariant under K. We define a function é, : G,(F,) — C as follows:
If g ¢ Pu(Fp)Jnlno, ", 0,p], then &5(9) = 0. If g = d(A\)m(A)n(z)Jnk
with A € F, A € GLy(E,), z € Her,(F,) and k € T'n[0,',0,p], then
ép(g) = |\5"| det Alg,. Note that &7"/% € J, (a3, , ™).
The following result can be proved easily (cf. Lemma 18.13 of [33]).
Lemma 11.1. Let A € GL,(E,) and z € Her,,(F,). Then

AE, [ det Al if MATT2(PAT) ™1 € My (051),
0 otherwise.

Ep(Jun(2)d(N)m(A)) = {

Recall that R, , = Hery, (F},) N My, (tp).

Lemma 11.2. Take x = a? so that x' = aps,, i.e., sp— 5 € TO‘QZZ Put

ﬁp = M,(x~ 1 a?s")&?,g 2sp+n)/2 e J, (X,aF:Sp).
Let n be an odd natural number.
(1) hy € Ay (xap ™).
(2) Let B € Herﬁd(Fp) and A € GL,(Ey). Then

wi(p(ANmMA)hy) _ [en()N T det B(A)EY T if BA) € Ry,
MN(0p)"* | det B|§;’p 0

otherwise.
Proof. Corollary B3(B) proves (). Lemma [T gives

if \1B(A) € Ry,

o oD@ N[ det A
wBE*J@(d(A)m(A))ep):{O R By

otherwise.
The second part follows from (B4). O
Take elements Aj, Ag,..., A\ € Af and Ay, Ay, ..., A, € GL,(Af) so that
{A1,Aq,...,A,} is a complete set of representatives for the double coset

Gn(F)\Gn(A)/Gn(Ax) K, where A; = d(A\)m(A4;). Put
%L = {B € Her;, | B(A4i,) € Ry, for all p}.

We write &,"*(K) for the subspace of &;”” on which K acts trivially. Put
I, = Go(F)* N A KA. Let €7(T;) denote the space of holomorphic
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functions H on $¢ such that H|7y = H for all v € I'; and such that H|7y

has a Fourier expansion of the form (D) for all v € G,(F)*. Then F

(Far, FAgs-- -5 Fa,) defines a bijection from &,"*(K) onto @]_,%(I;).
For B € Ry, N GL,(Ey,) and a finite prime p we put

(11.1) Fy(B,X) = X~ o@DV B (g g x?),
See (B11) for the definition of Fy(B,X). For a € Ef put |a|g, = Hp lag| g, -

Corollary 11.3. Let ¢ be an irreducible cuspidal automorphic representation
generated by a Hilbert cusp form. Assume that 7¢ is equivalent to the unique
irreducible subrepresentation of @i/ (a;l;,a;;p). Put & = {p | Nsy # 0}.
For i = 1,2,...,r we define a function H; : §¢ — C by the Fourier series
Hi(Z)= > |det B|" V/2Cy(B)ex(tr(BZ)),
BeZ;!

where

Ci(B) = |\7"NE(det A2 TT 1hi det B(Awp) 3t ] B BlAiy), a5 ™).
pe6 p¢S

Then the tuple (Hy, ..., H,) defines a nonzero Hilbert-Hermitian cusp form
in ®j_,%7,,_1(I'i) whose standard L-function is equal to

n

1 1
1_[1L<s—|—n—2i_ —z',7r>L<s n;_
1=

Proof. We will apply Corollary 2 to pu, = a}q};, w =1 and xy = 1. Define

—n ~(2s8p+4m)/2 Sp+n
ho€ An(uf . ug") by hg) = Tlpee & ™" (0p) Tlyge =0, (g)*+7)/2 for
g =(9p) € Gn(Ag). For B € %):er we rewrite Lemma 02 as

El

| det BJzwy ™ (o(d(Aip)m(A; )t 7?)

=[det B| 5| AiplF;

2s+n)/2
7| det Ay |5 )\ElpB<A,< ><ggp /2

=7 det B{Awp) 5 0(@y) " A det B{A) (77 Fo(A) BlAip) g5 ")
—N(0p) "2 N(D,) "™ 1s/2ydetB|"/2|A;;det(Ai,ptA; )”/2 Fy(B(Aip), a5 %)
Correspondingly, we see that

Wa; [] 0@ en(ai) [T 0@y 2 ot(Dy) (D2,
pes pgS

Since h is fixed by K, the cusp form I7(h) is a nonzero element in &, (K)
by Corollary 2, so that H; € €7, _(I%).
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APPENDIX A. COMPATIBILITY WITH ARTHUR'S CONJECTURE

We will see how Arthur’s endoscopic classification [2, B, 29] accounts for
Theorem M. This specialized to our current case is discussed in Section
18 of [I7]. Let Wr be the Weil group of F. Langlands has conjectured the
existence of a locally compact group L such that the equivalence classes of
irreducible k-dimensional representations of L is in one-to-one correspon-
dence with the set of irreducible cuspidal automorphic representations of
GLk(A). There should be an embedding ¢, : Lp, < Lp for each v, where
L, is the Weil group or the Weil-Deligne group of £, depending on whether
v being archimedean or not.

Let G be a connected reductive algebraic group G over F' whose com-
plex dual group is denoted by G. Arthur speculated that every irreducible
cuspidal or residual automorphic representation of G(A) is associated to an
elliptic A-parameter, by which we mean a é—conjugacy class of admissible
homomorphisms ¢ : Lr x SLy(C) — “G such that ¢(Lr) is bounded and
such that S(¢)T is contained in Z(G)WF, where the semi-direct product
LG = G x Wp is the L-group of G and S(¢)" is the identity component of
the centralizer S(¢) of ¢(Lr x SLy(C)) in G.

A global A-parameter ¢ provides a local A-parameter ¢, = ¢o (1, xId) to
which one can associate a finite set IT(¢,) of equivalence classes of unitary
admissible representations of GG, according to the local conjecture, among
other things. We define a global A-packet IT(¢) as a tensor product of
local A-packets, i.e., the set of representations ®]I1, of G(A) such that
II, € II(¢y) for all v and II, is unramified for almost all v. It is generally
believed that to each irreducible representation ¢, of the finite group S(¢,) =
S(¢y)/S(dy)TZ(G)WFe one can attach a subset I1%(¢,) of II(¢y). If €, is
the trivial representation, then IT¢(¢,) should contain the L-packet IT(¢))
for the local L-parameter ¢! defined by

3(7) = o0 (o ding [l 1, )

Arthur attached to ¢ a quadratic character e4 of S(¢) = S(¢)/Z(G)VF. For
an irreducible character € = [ [, €, of the compact group [], S(¢,) we set

11(6) = {&) 10, | 1T, € T(6)}, me= -2 3 cols)els).

Arthur conjectured that the space of square-integrable automorphic forms
on G(A) is the direct sum @y @e D e re(p)Mell which runs over the elliptic
A-parameters ¢ and irreducible characters € of [[, S(¢y).
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The action of Wr on G, = GLg,(C) x GL1(C) factors through the Galois
group Fg of E over F' and its nontrivial element acts via the automorphism

(-1t

(97 >‘) = (w2n g 1w2n 5 Adet g) Wr = 1

1

If ¢(0) = (p(0), A(0)) is an A-parameter for G,, then the central character
of representations in I7(¢) should correspond to the homomorphism

o (A(o)detp(o), A(o)).

We normalize the kth symmetric power representation sym* of SLy(C) so
that sym”(z)~! = wkﬂsymk(x)w,;il for z € SLy(C). Fix a character 6 €
Q(CF), a character € of Cr whose restriction to Cp is 6%7}, and an element

o9 € W whose projection to Fg is nontrivial. Define homomorphisms

eLé Lg = g, Lsym"_1 : SLy(C) — QAXVF

([

] )‘> <[Zi Z:‘iﬂ ,/\”> .ol (6(07)1an, é(07)M0(0")) X o,
<[ v n] 79(00)) X 09, T+ [Symn_l(x)
b
d

:| S GLQ(C) A E GLl(C>, = Wg and x € SLQ(C)

sym™~!(z)

a
for

The proof of Proposition 6.1 of [8] gives a natural isomorphism
"G1 >~ {(g; (@, B) % 0) € GLy(C) x "REGLy | af det g = 1}
(cf. Remark 270). Let 7 be an irreducible cuspidal automorphic represen-
tation of GLa(A) whose central character is &. Recall that YT = &. The

representation YK of Gy (A) gives an L-parameter ¢ [x] with values in ©G;.
Define an A-parameter ¢y [r, €,0] : L x SLa(C) — *G, by

oX[m, €, 0] (u, ) = Lsym™ 1 () % (¢ [7] (w))

for u € L and z € SLy(C).
Suppose that n is odd. One can easily see that

AXe (1) @ (6 0 Ap) @ (By 0 Ap) € TT(GX° [y, &y, B 7M/2)).
If m, is a discrete series with extremal weight 4+, then the holomorphic

discrete series with lowest K-type (det)***"~1 belongs to the A-packet

1 (qbg” [Tv, €u, By]), which should consist of certain cohomologically induced
representations (see [1]). Theorem [T is compatible with the fact that both

S(pX[m, €,0]) and S(¢8* [y, €y, 0,]) are trivial.
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APPENDIX B. THE SPLIT CASE

We discuss the case in which E is the split quadratic algebra F & F,
though our exposition included this case so far. In the split case one can
prove uniqueness of degenerate Whittaker model and reprove Proposition
[ via a purely local method. Proposition BZ(M) played an important role
in the proof of Lemma 3.

The nondegenerate form ( , ) identifies the free E-module W with the
sum W @& WV, where W is a vector space over F and WV is its dual.
The restriction to W gives an isomorphism of G, onto the group of all
F-automorphisms of W. We fix a basis {ej,...,e,, f1,...,£,} for W and
identify G, with GLq, (F'). For Ay, Ay € GL,(F) and z € M, (F) we put

. A1 0 o 1n z
m(Al,Ag) = |: 0 A2:| s n(z) = |:0 1n:| .
These matrices generate the parabolic subgroup P, of G, which stabilizes
the subspace spanned by e, es, ..., e,. Denote its unipotent radical by N,,.

For B € M, (F) we define a homomorphism ¢ : N,, — F by (B(n(z)) =
tr(Bz). Let Xy; (resp. Xg;—1) be the subspace of W spanned by

ey, fi,ex fo,... e f; (resp. er,fi, e, fo, ... ei-1,fi1,€),

and P, the stabilizer in G, of the flag Xo C X4 C --- C Xgp_9.

The rest of this section assumes F' to be an extension of Q,. Let 7 be an
irreducible admissible unitary generic representation of GLa(F) with central
character @ and A, (7) the unique irreducible subrepresentation of

Iy (r) = Ind% 6, @ # ()=

Remark B.1. Note that X = (&, ') for some p € Q(Cr). Then 7[x] =

(r@p)X(r®p)Y. The restriction of AX(7) to G, is equivalent to A, (7@ u).
Proposition B.2 ([G, B2, 20)). (1) If n is odd, rankB =n—1 and 7 is
supercuspidal, then J;@:ZB(AH(W)) = {0}.
(2) dim J2°* (A, (x)) = 1 for all B € GL,(F).
Proof. When n = 1, there is nothing to prove. We therefore suppose that

n > 1. We may assume B = diag[l, B/] without loss of generality. For
r,y € F* 1. 2 € Fand 2 € M,,_1(F) we put

X(:c)zm([(l) 1:“;’1},1”), C(x,y,z,z’)zn([z :;TD

Since the subgroups
X={X(@)|zeF" "}, Y ={C(0,y,0,0,1)]yeF" '}
C={C(z,0,2,2) |z € F* ! 2€F, 2 e M,,_1(F)},
C' ={C(z,0,2,0,1) |z € F"" ! 2 € F}
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satisfy all the requirements of Lemma 2.2 of [I0], we obtain
QZB OKB/
TR (An(m) = TG (An(m)),
where we define a homomorphism ¢7" : XC' — F by
(P (X (2)C(2,0,2,2")) = z + tr(B'2).

Note that XC’ is the unipotent radical of the stabilizer of X; in G,,.
Define the character ¥* of the unipotent radical &l of the stabilizer of the
flag X; C Xo by ¥(u) = ¥ ((ufy, e))), where {ey,...,eY £, ..., £V} is the

»Cn
dual basis for WV. The restriction of % o EFI to XC’ coincides with y*.
Put

o =JY,, T = & (Ap(n)).
Recall the filtration given in §3.5 of [6]:
0Cc Iy, C---Cl) =11, Hk/ﬂk+1:(q)+)k_1\lf+(n(k)).

Since IT®) vanishes for k > 2 and IV ~ A,,_;(7) ® a}l/Q by Lemma 3.6
of [87], we are led to

T =10 ~ I /Ty ~ JY (An(7)) ~ T (A, (1) @ o).
We obtain
otB otB' o otB' -1/2
T (An(m)) = TG0 (@7 (An(m)) = TE) (Ana(m) @ @' /?).
Our proof is complete by induction. O

We define the linear map 1,, : I,,(7) — C by

1(f) = / £ (0(=))$(r(2)) d.
PeﬂNn\Nn

This integral makes sense since the integrand is a Schwartz function on
PeN N, \N,, as the same proof as that of Proposition B3 shows. Though the
following results were stated in a uniform way, one can bypass the intricate
notation or calculation in the split case.

Lemma B.3. (1) 3y, is nonzero on Ay(m).
(2) For all f € I,,(m)

WD = [ 3a(f(C0..0.0) d
(3) Jn(o(m(A, A))f) =w(det A)I,(f) for A € GL,(F) and f € Ay(7).
Proof. We can prove the first and second assertions by arguing exactly as
in the proof of Proposition EZ4. Since
JTL © Q(m(Aa A)) S HomMn(F) (An(ﬂ-) on,to tr)v

Proposition BA(B) gives u € Q(Cr) such that J,, 0 o(m(A, A)) = u(det A)7,.
Letting A = diag[£, 1,,—1], we find that p is the central character of 7. [
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Lemma B.4. For f € A,(w) there are 0 < ¢ € S(My(F)) and M € R}
such that for all A € GL,(F)

3n(o(m(A, 1)) )| < |det Al ¢(A).
Proof. The proof is similar to that of Lemma B and omitted. U

APPENDIX C. FOURIER COEFFICIENTS OF CERTAIN RESIDUAL
AUTOMORPHIC FORMS

To complete the proof of Lemma I3 and Theorem I, we will associate
to an irreducible cuspidal automorphic representation o of GLy(A) the resid-
ual automorphic representation AX(o) of G,(A) and prove the factorization
of Fourier coefficients of those residual automorphic forms. Let us give a
brief account of Jacquet modules of degenerate principal series representa-
tions with respect to Bessel and Fourier-Jacobi characters. Let E be an
étale quadratic algebra over a finite algebraic extension F' of Q,. Fix an odd
natural number n. Let W, be the unipotent radical of the parabolic sub-
group ﬂzzlpk of Gp. If i <nmand w € Xf ﬁyf, we define a homomorphism
gi,w : VVZ — F by

Ciw(u) = TE((ues, f1) + (ues, fo) + - + (uei, fi1) + (uw, fi)).

When w = e;41, we write £; = £; ., ,. For i <n —1 we consider a subgroup

W21 =W - {ui(1i, vi7H(0;052)) | 2 € F}

(3

of Wiy1. For £ € F we extend ¢; to a homomorphism €§ : VVQJrl — F by

Ef(%(li,v’f*i(o;o;z))) — ¢z, When i = n — 1, we define £ : W, — F by
0 (u) = TE((ues, fr) + (ues, fo) + - + (uen, fo1)) + E(wfn, fn).
Lemma C.1 ([I0]). Let x € Q(CEg). Suppose that n > 2.
(1) J;pvjei’” (In(x)) = {0} for alli > 1 and anisotropic w € X N Yi+.

ott
(2) J;pvofz (In(x)) = {0} for alli>1 and { € F*.
i+1

(3) If E~F® F, then Jiyy " (In(x)) = {0} for all i > 3.

Proof. The first part is a special case of Theorem 5.4(1) of [[1]. The second
part is a special case of Theorem 6.3 of [I7]. We discuss the case E ~ F & F.
Then G,, ~ GLg,(F) and W; is conjugate to the unipotent radical of a
parabolic subgroup stabilizing the flag

XiC--CX; CXgpei T C Xop1-

Theorem 5.7 of [I1] includes (I) whereas Theorem 6.5 of [[1] includes (B).
The module J;bvjei’o (In(x)) is a certain twisted Jacquet module of the ith
derivative I,,(x)® of I,(x). By the Leibniz rule I,,(x)® is zero fori > 3. O
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From now on E/F is a quadratic extension of an arbitrary number field.
The quadratic character of Cr corresponding to £ is denoted by €g/p. Fix
an irreducible cuspidal automorphic representation o of GLo(A) with central
character w. For simplicity the base change 0¥ of o to GLg(E) is assumed
to be cuspidal. Extend w to x € Q(Cg). Let o[x] = X! ® oF be an
irreducible cuspidal automorphic representation of GLo(IE). Let As denote
the Asai representation of the L-group of RgGLg. Fix an extension 4 of
6E/F to CE

Lemma C.2. Notation being as above, the L-functions L(s,o[x] ® 7, As)
and L(s,a[x] x (x "' ®o)V) have a pole at s = 1.

Proof. Since o[x] is the stable base change of x~! X ¢ by Lemma E2(8),
the product L-function has a pole at s = 1 and by Theorem 11.2(4) of [IT
L(s,0]x] ® 4, As) has a pole at s = 1. O

We aim to construct a residual automorphic representation in the packet
¢x[0,¢,0]. Let Q2.2 be the parabolic subgroup of REGLy,, = GLg(X2m)
which leaves the flag Xo C X4 C - -+ C X9, stable. The Langlands quotient
A (o[x]) of the standard module Indggzmga) 529/;_“72 ® o[x]®™ appears in

the space of square-integrable forms on GLoy,(E) (cf. [30]).
Fix a good maximal compact subgroup &,, of G,,(A). Extend the modulus
character dyp, , of P, _1(A) to a right K,-invariant function on G, (A). For

n (A —
¢ € Indyr ™) Ay (o) B (xR o)
we form the Eisenstein series
E(g,¢,5) = > 3(v9)0p, , (v9)**.

’Yemnfl(F)\gn(F)

For any parabolic subgroup P of G,, with unipotent radical A/ the constant
term map on the space of automorphic forms on G, (A) is defined by

F— Fplg) = / F(ug) du.
N(F)\N(A)

Lemma C.3 (cf. [[Y]). The series E(¢,s) has at most a simple pole at
s = 1. Let A%(o) denote the representation of Gn(A) generated by those
residues. If F € AX(c), then F is square-integrable and the function

90 1l Fyu) = oot 2 [ Ay (o ([g ] 0) ) BOEG an

belongs to AX_,(c). Assume further that A¥(o) is nonzero. Then
Aj(0) = @, Ay (0v).
Proof. Theorem 1.2 of [I9] determines a set of possible poles of certain Eisen-

stein series on classical groups. Though they do not treat similitude groups,
one can apply their results to constituents of the restriction of the induced
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representation to G, (A). These combined with Lemma say that E(¢, s)
has at most a simple pole at s = 1.

The induction formula (3-8) of 9] implies some inductivity of Fy,. The
cuspidal support of F consists only of 5;;32/4 @ {o ¥ V2R (x ' Ko)}
and hence it is square-integrable by Lemma 1.4.11 of [31]. Thus Ax(o) is a

. . Gn (A 1/4 _ .
unitary quotient of Indmn(fl)(A) 6‘]3/n71 @{A—1)2(c[x]) R (x ' ®o)}, which is
a quotient of @) TxX"(0,)V. If Ax(c) is nonzero, then it must be isomorphic
to the Langlands quotient ®! AX"(0,) of the standard module &} TxX"(0y,)"
as the Langlands quotient is the unique semisimple quotient. ([l

Next we will observe that J’ﬁ’n arises as a local component of the H,th
Fourier coefficient of residual automorphic forms in A%(c). Our computa-
tions are similar to those carried out in the proof of Theorem 1 of [9].

Lemma C.4. Ifn > 3, then for all F € Ax(o)

/ Fu) Pl (w)) du = / Flu)p(lao()) du.
Wi (F)\W1(A) Wa (F)\W2(A)
Proof. Consider the function
hals s 2 F) = / Flavt (™ 7 2) PG w) du
Wi (F)\W;(A)

on (E\E"~"=12g (F\A) for 1 <14 < n—2. The left hand side of the identity
is h1(0;0;0,F). Lemma CI(B) implies that h;(z;y; 2z, F) is independent of
z. We expand h; in a Fourier series along the coordinates (x;y) to get

talasyin F) = [ Fvt= (73 0) % (@) du
W2 (F)\W?, (A)
= Z Cit1aw(F)Pliv10(VI (2775 0))),
we (XA NV )(F)
where

Cir(F) = / F(u) (i1 (w)) du.
Wit1(F)\Wit1(A)

Our goal is to show that ¢z ., (F) = 0 for all nonzero vectors w. We eventually
get hi(z;y; 2, F) = c20(F). This was to be shown.

We may assume that F corresponds to a decomposable vector ®,, f,. Fix
a finite prime p of F such that o, ~ I(y, ™ 'wy) for some p € Q(Cg,). The

map hy — Cit1,0(hp@®y2p fr) defines a functional on J;@Zi?;p;” (In(pe[xp))) in
view of Proposition 63 and Lemma CZ3. If w is anisotropic, then ¢; 1, (F) =
0 by Lemma C(M). If ¢ > 2, then ¢j41,0(F) = 0 by Lemma CT(B).

If w is a nonzero isotropic vector and if we take 8 € G,—;—1(F') C M1 (F)
so that fw = e;49, then
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where if i = n — 2, then we consider the function

hn-1(z, F) :/W o )]—"(un;_l(z))mdu
B : Flu Wdu
= ) Lo, TR

for z € F\A. The constant term of h,_1(F) must be zero as F is concen-
trated on Pe. Since AX(o) is not generic by Lemma CT(R), all the Fourier
coefficient vanish and h,_1(F) is identically zero. We conclude that h;(F)
is identically zero for 2 < i < n — 2 by descending induction. It follows that
2.0 (F) = 0 unless w = 0. O

We retain the notation in the proof of Proposition E=3.
Lemma C.5. If F € AX(0), then

/ / Fva(0;; 2))™ () dzdy
M2 _,(E)\MZ_,(E) JHera(F)\Her2(A)

_ / Wa(Y (y, 2), Fop,) dydz.
A ]En72

Proof. Applying Lemma 7.1 of [T1] to
X ={X(z,6) |z € E" % ¢cF}, Y={Y(y,2)|yec E" 2 2€F}.
and C = 11, we see that the left hand side is

/ / FD(0; 575 )Y )(TE(br)) dedbdy
Y(F)\Y (A) JC(F)\C(A)

/ / / F(vP (€™, C)Y)¢(Tfj:(b1)) dedbdédzdY.
Y(A) JX(F)O\X(A) JC(F)\C(A)
Recall a trace zero element 1 € E*. Consider the function
h(z) = / / F(E4 27575 575 ¢) V) (TE(br) dedbdeda
X(FO\X(A) JC(F)\C(A)

on F\A. Since
QCZ + Tg(bl) = 61,(‘[*162-‘1-]”2 (VqlfL(é~ + Z—i? th; th; C)),

its (th Fourier coefficient vanishes by Lemma (M) for each ¢ € F'*. Thus
h is a constant function whose value is

/ F) Pl () du = / Fluy) B (w) du,
WA\ W () WA ()W ()

where we have taken an element v € G,,_1(F) C M (F') such that v fa = es.
The right hand side is equal to

/ F(un 9 (ap(w)) du = #a(Lan_2, Foy)
(F)\W2(A)

by Lemma 4. We have used Lemma [ in the second line. O




47

Put Me = ﬁg:ll)/ 2m2k. For an automorphic form ¢ on e we set
tuo) = | (07 ()
(MeMNe) (F)\(MeMNe) (A)
Proposition C.6. If F € AX(o), then
W, (F) = W (Fape (1)) (£ (w)) du.

(BeNNn)(A)\Nn (4)

In particular, the space AX(o) is nonzero.

Proof. By the inductivity stated in Lemma 3 we can apply Lemma C3

repeatedly to obtain the formula above. If F € AX(o) is factorizable, then

Fp, remains factorizable by the proof of Lemma 23, and hence so does

Wn(Fp,) € QA" (0,) by uniqueness of the Whittaker model. Choose local

factors T}y in order that if we write #,,(0(g9)Fp,) = [I, fu(gv), then the
H,,th Fourier coefficient factorizes as W, (F) = [, 3}, (f») and so by (1)

(C.1) Wi(F) = [135 (), B € Op(Hny).

Each factor can be made nonzero by Proposition B=3(1). g
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