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Abstract. An R-space is a compact homogeneous space obtained as an orbit of the isotropy

representation of a Riemannian symmetric space. It is known that any R-space has the

canonical embedding into a Kähler C-space as a real form and thus it is a compact totally

geodesic Lagrangian submanifold. In this article we provide an exposition on such nice

properties of R-spaces as Lagrangian submanifolds and our recent work on minimal Maslov

number of R-spaces canonically embedded in Einstein-Kähler C-spaces ([20]).

1 Introduction

A smooth immersion (resp. embedding) ϕ : L→M of a smooth manifold L into
a symplectic manifold (M,ω) is called a Lagrangian immersion (resp. Lagrangian
embedding) if 2 dimL = dimM and ϕ∗ω = 0. For a Lagrangian immersion ϕ :
L → M , we have the vector bundle isomorphism ϕ−1TM/ϕ∗TL 3 v ↔ αv :=
ω(v, ·) ∈ T ∗L. A smooth family of Lagrangian immersions ϕt : L → M with
ϕ0 = ϕ is called a Lagrangian deformation of ϕ, which is characterized by the
closedness of the 1-form αVt ∈ Ω1(L) corresponding to the variational vector field
Vt := ∂ϕt

∂t ∈ ϕ−1TM for each t. A Lagrangian deformation ϕt : L → M with
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ϕ0 = ϕ is called a Hamiltonian deformation of ϕ if αVt
∈ Ω1(L) is exact for each

t. Suppose that [ω] ∈ H2(M,R) is an integral class, that is, there is a complex line
bundle E over M and a U(1)-connection ∇ of E whose curvature form is equal to
2π
√
−1ω. It is known that a Lagrangian deformation ϕt : L → M with ϕ0 = ϕ

a Hamiltonian deformation if and if a family of flat connections {ϕ−1
t ∇} has same

holonomy homomorphism ρ : π1(L)→ U(1).

Two group homomorphisms Iµ,L : π2(M,L) → Z and Iω,L : π2(M,L) → R
are defined for any Lagrangian submanifold of a symplectic manifold in general
(see Section 3) so that Iµ,L is a symplectic invariant and Iω,L is not a symplec-
tic invariant but a Hamiltonian invariant. The minimal Maslov number of a La-
grangian submanifold in a symplectic manifold is defined as the positive generator
of ImIµ,L ⊂ Z as additive groups. It is very fundamental to the study of the Floer
homology for intersections of Lagrangian submanifolds. The monotonicity for a
Lagrangian submanifold of a symplectic manifold is defined by the condition that
Iµ,L = λ Iω,L (∃λ > 0). The Floer homology theory for the intersection of monotone
Lagrangian submanifolds was initiated and well-developed by Y.-G. Oh ([15], [16],
[17], [18] and so on). It is known that any compact minimal Lagrangian subman-
ifold of an Einstein-Kähler manifold with positive Einstein constant is monotone
(Cieliebak-Goldstein [2], Hajime Ono [21]). Moreover he ([21]) gave a nice formula
of the minimal Maslov number for a compact monotone Lagrangian submanifold in
a simply connected Einstein-Kähler manifold with positive Einstein constant (see
the formula (3.1) in Section 3).

An R-space is a compact homogeneous space obtained as an orbit of the isotropy
representation of a Riemannian symmetric space. Note that an R-space is not
a symmetric space in general and it is called a symmetric R-space when it is a
symmetric space. It is known that each R-space has the canonical embedding into
a Kähler C-space as a real form. A Kähler C-space is a simply connected compact
homogeneous complex manifold which admits invariant Kähler metrics, and it is also
called a generalized flag manifold. A real form means the fixed point subset by an
anti-holomorphic isometry of a Kähler C-space and thus it is a compact embedded
totally geodesic Lagrangian submanifold. So R-spaces canonically embedded in
Kähler C-spaces constitute a nice class of Lagrangian submanifolds. As explained
in Section 2 any R-space can be canonically embedded in an Einstein-Kähler C-
space. In this case it is a compact monotone Lagrangian submanifold and so we
can use H. Ono’s formula in order to study the minimal Maslov number for R-
spaces canonically embedded in Einstein-Kähler C-spaces. In [20] we showed a Lie
theoretic formula for the minimal Maslov number of such an R-space and some
examples of the calculation by that formula.

In this article we provide an exposition on such nice properties of R-spaces as
Lagrangian submanifolds and our related recent work ([20]). This article is orga-
nized as follows: In Section 2 we review the definitions and elementary properties
of R-spaces and their canonical embeddings into Kähler C-spaces and the descrip-
tion of the invariant symplectic structures, invariant complex structures, invariant
Kähler metrics and invariant Einstein-Kähler metrics on a Kähler C-space. We
also discuss several properties from the viewpoint of geometry of Lagrangian sub-
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manifolds such as an anti-symplectic involutive diffeomorphism, the moment maps,
Morse theory and related intersection problem. In Section 3 we recall the definitions
of two Hamiltonian invariants Iµ,L and Iω,L and the monotonicity for Lagrangian
submanifolds of general symplectic manifolds. Moreover we refer the monotonicity
theorem and minimal Maslov number formula by Cieliebak-Goldstein and H. Ono
for Lagrangian submanifolds in Einstein-Kähler manifolds. and mention our appli-
cations to the case of the Gauss images of isoparametric hypersurfaces. In Section
4 we describe the construction of the Lie theoretic formula for minimal Maslov
number for R-spaces canonically embedded in Einstein-Kähler C-spaces.

Throughout this article any manifold is smooth and connected.

2 The canonical embeddings of an R-space into a Kähler C-space

In this section we review the definitions and elementary properties of R-spaces
and their canonical embeddings into Käher C-spaces from the viewpoint of geometry
of Lagrangian submanifolds (cf. [1], [22], [27], [23], [24], [25], [20]).

Let (G,K, θ) be a Riemannian symmetric pair with an involutive automorphism
θ. Suppose that G is a connected compact semi-simple Lie group with Lie algebra g
and K is a connected compact Lie subgroup of G with Lie algebra k. We choose an
AdG- and θ-invariant inner product 〈 , 〉 of g and extend it to the complexification
gC of g by the complex bi-linearity. Let g = k + p be the canonical decomposition
of g with respect to (G,K, θ). Let a be a maximal abelian subspace of p. Choose
a maximal abelian subalgebra t of g containing a. Then we have t = b + a, b =
t∩ k, a = t∩ p and t is invariant by θ. Let ( , ) denote an inner product of t defined
by a restriction of 〈 , 〉 to t. The root space decomposition of gC with respect to t
is given as

gC = tC +
∑

α∈Σ(g)

gα,

where

gα := {X ∈ gC | (adξ)(X) =
√
−1(α, ξ)X (∀ξ ∈ t)}

and Σ(g) ⊂ t denotes the set of all roots of gC with respect to t. Set Σ0(g) :=
Σ(g) ∩ b. Define the restricted root system Σ(g, a) by Σ(g, a) := {γ = ᾱ | α ∈
Σ(g)}, where ᾱ denotes the a-component of α ∈ Σ(g) ⊂ t = b ⊕ a. We define
an involutive orthogonal transformation σ ∈ O(t) by σ := −θ|t. We choose a
σ-order > on t so that if α ∈ Σ(g) \ Σ0(g) and α > 0, then σα > 0 and thus
θα = −σα < 0 ([22]). Set Σ+(g) := {α ∈ Σ(g) | α > 0}, Σ+

0 (g) := Σ0(g) ∩ Σ+(g)
and Σ+(g, a) := {γ ∈ Σ(g, a) | γ > 0} = {ᾱ | α ∈ Σ+(g) \ Σ0(g)}.

We choose Eα ∈ gα for α ∈ Σ(g) such that [Eα, E−α] =
√
−1α, 〈Eα, E−α〉 =

1, Eα = E−α for each α ∈ Σ(g) and let {ωα | α ∈ Σ(g)} be the linear forms on gC

dual to {Eα | α ∈ Σ(g)} so that ωα(tC) = {0}, ωα(Eβ) = δαβ for each α, β ∈ Σ(g).
The restricted root space decompositions of k and p with respect to a are given as

k = k0 +
∑

γ∈Σ+(g,a)

kγ , p = a +
∑

γ∈Σ+(g,a)

pγ ,
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where k0 := {X ∈ k | (adH)X = 0 (∀H ∈ a)} and for each γ ∈ Σ+(g, a) set

kγ := {X ∈ k | (adH)2X = −(γ,H)2X (∀H ∈ a)},
pγ := {X ∈ p | (adH)2Y = −(γ,H)2Y (∀H ∈ a)}.

For γ ∈ Σ+(g, a), there are an orthonormal basis {Sγ,i | i = 1, · · · ,m(γ)} of kγ and
an orthonormal basis {Tγ,i | i = 1, · · · ,m(γ)} of pγ , wherem(γ) := dim kγ = dim p]γ ,
such that [H,Sγ,i] = (γ,H)Tγ,i, [H,Tγ,i] = −(γ,H)Sγ,i for each H ∈ a.

Now we fix an arbitrary non-zero element Z of a. Set

ΣZ(g) := {α ∈ Σ(g) | (α,Z) = 0} and Σ+
Z (g) := ΣZ(g) ∩ Σ+(g).

The element Z is called reqular if ΣZ(g) = Σ0(g). Define closed subgroups GZ and
KZ of G by

GZ := {a ∈ G | Ad(a)Z = Z}

and
KZ := {a ∈ K | Ad(a)Z = Z} = K ∩GZ .

It is well-known that GZ is always connected. Denote by gZ and kZ Lie alge-
bras of GZ and KZ , respectively. Note that θ(GZ) = GZ , θ(gZ) = gZ and thus
(GZ ,KH , θ|GZ

) is also a compact symmetric pair.

Definition. The compact homogeneous space L := K/KZ is called an R-space,

and it has the standard imbedding into the vector space p defined by

(2.1) ϕZ : L = K/KZ 3 aKZ 7−→ Ad(a)Z ∈ Ad(K)Z ⊂ p.

If Z is a regular element of a, then L = K/KZ is called a regular R-space. Another

compact homogeneous space M := G/GZ is called a generalized flag manifold or a

Kähler C-space, and it also has the standard imbedding into the Lie algebra g

(2.2) ΦZ : M = G/GZ 3 aGZ 7−→ Ad(a)Z ∈ Ad(G)Z ⊂ g.

The canonical embedding of K/KZ into G/GZ is a map defined by

(2.3) ιZ : L = K/KZ 3 aKZ 7−→ aGZ ∈ G/GZ = M.

We take the orthogonal direct sum decompositions of g and k as g = gZ+m,m ∼=
TeGZ

M and k = kZ + l, l ∼= TeKZ
L. Note that kZ = k ∩ gZ . By using the property

θ(gZ) = gZ one can show that ιZ is an embedding and 2 dimL = dimM .
The author has heard from Professor Masaru Takeuchi that the “R-space”was

named first by Jacques Tits ([31]). Here we should notice that an R-space is not a
symmetric space in general, and however the R-space can be considered as a class
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of the most important compact homogeneous spaces related to symmetric spaces.
An R-space K/KZ is called a symmetric R-space if K/KZ is a symmetric space. It
is known that an R-space is a symmetric R-space if and only if one of the following
conditions is satisfied:

(1) (K,KZ) is a symmetric pair.

(2) There is an element Z ∈ p satisfying the equation (adZ)3 + (adZ) = 0 such
that L = K/KZ and G = G/GZ .

(3) (G,GZ) is a Hermitian symmetric pair.

(4) The standard imbedding ϕZ has the parallel second fundamental form (Dirk
Ferus [3]).

(5) ϕZ(L) is an (extrinsic) symmetric submanifold in Euclidean space p (Dirk
Ferus [4]).

For such Z, we can define a G-invariant symplectic form ωZ on M = G/GZ by

ωZ(X,Y ) := 〈[Z,X], Y 〉 for each X,Y ∈ g.

and ωZ can be also expressed as

ωZ = −
√
−1

∑
α∈Σ+(g)\ΣZ(g)

(Z,α)ω−α ∧ ω−α.

Then the canonical embedding ιZ : L = K/KZ → G/GZ = M is a Lagrangian
embedding with respect to ωZ .

The involutive automorphism θ of G induces an involutive diffeomorphism

(2.4) θ̂Z : M = G/GZ 3 aGZ 7−→ θ(a)GZ ∈ G/GZ = M

which is equivariant with respect to the Lie group automorphism θ : G→ G Then
θ̂Z : G/GZ → G/GZ is anti-symplectic with respect to ωZ , that is, θ̂∗ZωZ = −ωZ .

Define the fixed point subset of M by θ̂Z as

(2.5) Fix(M, θ̂Z) := {p ∈M | θ̂Z(p) = p}.

Then ιZ(K/KZ) ⊂ Fix(M, θ̂Z) ⊂ G/GZ .
The natural left action of G on a symplectic manifold (M = G/GZ , ωZ) is a

Hamiltonian group action with the moment map

(2.6) µG := ΦZ : G/GZ −→ g ∼= g∗.

Moreover the natural left action of K ⊂ G on (M = G/GZ , ωZ) is also a Hamilto-
nian group action with the moment map

(2.7) µK := πk ◦ µG = πk ◦ ΦZ : G/GZ −→ k ∼= k∗.
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Here πk : g = k ⊕ p −→ k denotes the orthogonal projection of g onto k. Then
µG ◦ θ̂Z = −θ ◦ µG and µK ◦ θ̂Z = −µK . It follows from these formulas that

(2.8) Fix(M, θ̂Z) = µ−1
K (0).

Since K and M are compact, by a result of Kirwan ([12, p.549, (3.1)]) µ−1
K (0) is

connected and thus Fix(M, θ̂Z) is also connected. Therefore we obtain

(2.9) ιZ(K/KZ) = Fix(M, θ̂Z) = µ−1
K (0).

The Weyl group of (G,K) is defined by W (G,K) := NK(a)/ZK(a). By the
action of the Weyl group W (G,K), we may assume that Z ∈ a ⊂ t satisfies (α,Z) ≥
0 for ∀α ∈ Σ+(g).

Now we describe an invariant complex structure on M = G/GZ corresponding
to Z. Note that Z ∈ c(gZ) ⊂ t ⊂ gZ . Then

gCZ = tC +
∑

α∈ΣZ(g)

gα,

TeGZ
(G/GZ)C ∼= mC =

∑
α∈Σ+(g)\ΣZ(g)

g−α +
∑

α∈Σ+(g)\ΣZ(g)

gα

Note that gα = g−α. Thus we can define a G-invariant complex structure JZ on
G/GZ such that

TeGZ
(G/GZ)1,0 ∼=

∑
α∈Σ+(g)\ΣZ(g)

g−α, TeGZ
(G/GZ)0,1 ∼=

∑
α∈Σ+(g)\ΣZ(g)

.gα,

Since

θ

 ∑
α∈Σ+(g)\ΣZ(g)

g−α

 =
∑

α∈Σ+(g)\ΣZ(g)

gα,

the involutive diffeomorphism θ̂Z : G/GZ → G/GZ is anti-holomorphic with respect

to JZ , that is, JZ ◦ dθ̂Z = −dθ̂Z ◦ JZ .
Moreover the corresponding G-invariant Kähler metric gZ on M = G/GZ is

defined by

(2.10) ωZ(X,Y ) = (−1)gZ(JZX,Y ) for each X,Y ∈ m

or
gZ =

∑
α∈Σ+(g)\Σ+

Z(g)

(Z,α)ω−α · ω−α.

Hence the diffeomorphism θ̂Z : M →M is an isometry of M with respect to gZ .
Let Π := Π(g) = {α1, · · · , α`} be the fundamental root system of g with

respect to the σ-order < of t. Set Π(g)0 := Π(g) ∩ b. For the above Z, set
ΠZ := ΠZ(g) := {αi ∈ Π(g) | (αi, Z) = 0}. Note that Π0(g) ⊂ ΠZ(g) and
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thus Π(g)\ΠZ(g) ⊂ Π(g)\Π0(g). Let {Λ1, · · · ,Λ`} ⊂ t be the fundamental weight
system of g corresponding to Π(g) defined by

2(Λi, αj)

(αj , αj)
= δi j (i, j = 1, · · · , `).

Now we set

cZ :=
⊕

αi∈Π\ΠZ

RΛi ⊂ t, ZcZ :=
⊕

αi∈Π\ΠZ

ZΛi ⊂ cZ .

Note that cZ coincides with the center c(gZ) of gZ . Define

c+Z :=
⊕

αi∈Π\ΠZ

R+Λi ⊂ cZ , Z+
cZ :=

⊕
αi∈Π\ΠZ

Z+Λi ⊂ c+Z

where R+ and Z+ denote all positive real numbers and all positive integers, respec-
tively. Obviously we have Z ∈ c+Z .

For each λ ∈ c+Z , since Πλ = ΠZ , Σλ(g) = ΣZ(g), we have gCλ = gCZ and
thus gλ = gZ . By the connectedness of Gξ and GZ , we obtain Gλ = GZ and
G/Gλ = G/GZ = M . In particular ωλ is a G-invariant symplectic form on M =
G/GZ = G/Gλ. However λ and H define the same G-invariant complex structure
Jλ = JH on M = G/GH = G/Gλ.

Since θ(gZ) = gZ and thus θ(c(gZ)) = c(gZ), there is a direct sum decomposition

c(gZ) = cZ = (cZ ∩ b) + (cZ ∩ a).

For each H ∈ c+Z∩a, since GH = GZ and G/GH = G/GZ , we have KH = K∩GH =
K ∩GZ = KZ and thus K/KH = K/KZ = L. Hence all H ∈ c+Z ∩ a correspond to
the same R-space L = K/KZ and the convex set c+Z ∩ a parametrizes orbits of the
same type KZ .

Let I2
G(M) denote the real vector space of all G-invariant closed 2-forms on

M = G/GZ . Then the natural linear map w : I2
G(M) 3 ω 7−→ [ω] ∈ H2(M,R).

is a linear isomorphism and there is a linear isomorphism ω : 1
2π
√
−1

cZ −→ I2
G(M)

defined by

ω

(
1

2π
√
−1

λ

)
(X,Y ) := − 1

2π
〈[λ,X], Y 〉 (X,Y ∈ m)

for each λ ∈ cZ . Moreover the linear isomorphism τ = w ◦ ω : 1
2π
√
−1

cZ −→
I2
G(M) −→ H2(M,R) given by the transgression operator is restricted to a Z-

module isomorphism τ = w ◦ ω : 1
2π
√
−1

ZcZ −→ H2(M,Z). The 2nd cohomology

and homology groups of G/GZ are described as follows:

cZ =
⊕

αi∈Π\ΠZ

RΛαi
3 λ←→

[
1

2π
√
−1
ω(λ)

]
∈ H2(G/GZ ,R)

∪ ∪
ZcZ =

⊕
αi∈Π\ΠH

ZΛαi
←→ H2(G/GZ ,Z)
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and if we set α∗i :=
2αi

(αi, αi)
,

c∗Z :=
⊕

αi∈Π\ΠZ

Rα∗i 3
∑
i

xiα
∗
i ←→

∑
i

xi[S
2(α∗i )] ∈ H2(G/GZ ,R)

∪ ∪
ZcZ

∗ :=
⊕

αi∈Π\ΠZ

Zα∗i ←→ H2(G/GZ ,Z) ∼= π2(G/GZ).

For each λ ∈ c+Z , define a G-invariant Kähler metric on a complex manifold
(M = G/GZ , JZ) by

g

(
1

2π
√
−1

λ

)
:=

1

2π

∑
α∈Σ+(g)\ΣZ(g)

(λ, α)ω−α · ω̄−α

whose Kähler form coincides with ω
(

1
2π
√
−1
λ
)

as

ω

(
1

2π
√
−1

λ

)
(X,Y ) = g

(
1

2π
√
−1

λ

)
(JZX,Y ).

Note that Z ∈ c+Z ∩ a and ω( 1
2π
√
−1

2πZ) = −ωZ . Namely, the convex open set c+Z
of the vector space cZ parametrizes all G-invariant Kähler metrics on M = G/GZ
relative to the complex structure JZ . So the parameter spaces of all G-inv. Kähler
metrics on G/GZ are given as

c+Z =
⊕

αi∈Π\ΠZ

R+Λαi
3 λ←→ ω

(
1

2π
√
−1
λ
)
∈ {G-inv. Kähler met. on G/GZ}

∪ ∪
Z+
cZ =

⊕
αi∈Π\ΠZ

Z+Λαi
←→ {G-inv. Hodge met. on G/GZ}.

For each H ∈ c+Z ∩ a, the diffeomorphism θ̂Z : M = G/GZ → M = G/GZ pre-

serves a G-invariant Kähler metric g
(

1
2π
√
−1
H
)

on M , that is, θ̂Z : M = G/GZ →

M = G/GZ is an isometry with respect to g
(

1
2π
√
−1
H
)

. Hence the canonically

embedded R-space ιZ(K/KZ) is a real form, that is, the fixed point subset of a

Käher C-space M = G/GZ by the anti-holomorphic isometry θ̂Z with respect to

JZ and a Kähler metric g
(

1
2π
√
−1
H
)

for any H ∈ c+Z ∩ a.

Next we mention the characterization of a G-invariant Einstein-Kähler metric
on M = G/GZ . Set

δm :=
1

2

∑
α∈Σ+(g)\ΣZ(g)

α ∈ t.

Lemma 2.1 ([1]).

(2.11) 2δm =
∑

α∈Σ+(g)\ΣH(g)

α ∈ Z+
cH =

⊕
α∈Π\ΠH

Z+Λα.
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and it corresponds to the first Chern class of the complex manifold (M,JH):

c1(M) =

[
ω

(
1

2π
√
−1

2δm

)]
= τ

(
1

2π
√
−1

2δm

)
.

Proposition 2.2 ([24]). The G-invariant Kähler metric g = g
(

1
2π
√
−1
λ
)

on M is

Einstein if and only if λ = b δm for some b > 0.

Then we can show that 2δm ∈ a ([20]). Therefore we obtain

Proposition 2.3. The element Zein := 2δm ∈ Z+
cZ ∩ a ⊂ c+Z ∩ a corresponds to the

canonical embedding ιZein of the same R-space L = K/KZ into an Einstein-Kähler

C-space
(
M = G/GZ , ωZein , JZ , g

(
1

2π
√
−1
Zein

))
. Moreover, the element Zein is

such a unique element of c+Z ∩ a up to the multiplication by a positive constant.

Here we shall mention about geometry of R-spaces as homogeneous spaces of
noncompact real semisimple Lie groups. Set p] :=

√
−1p. Then g] := k + p] is the

Cartan decomposition of a noncompact real semisimple Lie algebra g] with Cartan
involution τ . Let GC be a connected complex Lie group without center with Lie
algebra gC and then G can be regarded as an analytic subgroup of GC. Let G] be a
connected real semisimple Lie subgroup of GC with Lie algebra g]. The root space
decomposition of g] with respect to

√
−1a is given as

g] = g]0 +
⊕

γ∈Σ(g,a)

g]γ ,

where g]0 := {X ∈ g] | [
√
−1H,X] = 0 (∀H ∈ a)} and for each γ ∈ Σ(g, a)

g]γ := {X ∈ g] | [
√
−1H,X] = (γ,H)X (∀H ∈ a)}.

Then
u := g]0 +

⊕
γ∈Σ(g,a),γ(Z)≥0

g]γ .

is a parabolic subalgebra of g]. Let U be a parabolic subgroup of G] with Lie
algebra u, which is always connected. The complexification of u

uC = (g]0)C +
⊕

γ∈Σ(g,a),γ(Z)≥0

(g]γ)C = tC +
⊕

α∈Σ(g),α(Z)≥0

gCα.

is a complex parabolic subalgebra of gC. Let UC be a complex parabolic subgroup
of G] with Lie algebra ũ, which is always connected. Then we know ([23]) that

K U = G], K ∩ U = KZ , and thus L = K/KZ
∼= G]/U,(2.12)

GUC = GC, G ∩ UC = GZ , and thus G/GZ ∼= M = GC/UC.(2.13)
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The induced complex structure of M under the identification of M = G/GZ with
the complex homogeneous space GC/UC coincides with the G-invariant complex
structure JZ of M .

Define two subgroups of K and KZ as

NK(a) := {k ∈ K | Ad(k)a = a} ⊂ K, NKZ
(a) := NK(a) ∩KZ ⊂ KZ .

Note that NKZ
(a) is not a normal subgroup of NK(a), CK(a) ⊂ NKZ

(a), and if
Z ∈ a is regular, then CK(a) = NKZ

(a):

1 −→ NKZ
(a)/CK(a) −→W (G,K) = NK(a)/CK(a) −→ NK(a)/NKZ

(a) −→ 1

Theorem 2.4 (Masaru Takeuchi [23]). Let k1, · · · , kb ∈ NK(a) be complete repre-

sentatives of NK(a)/NKZ
(a) = {[k1], · · · , [kb]}. Then the orbits Nk1o, · · · , Nkbo of

N through the origin o = eU ∈ G]/U = L provide a cellular decomposition of L

as L = G]/U = Nk1o ∪ · · · ∪ Nkbo and these cells are all cycles mod 2 of L. In

particular, dimH∗(L;Z2) =
∑dimL
i=0 dimHi(L;Z2) = b.

We briefly discuss related results of Masaru Takeuchi and Shoshichi Kobayashi
([27]) on perfect Morse functions on R-spaces. For each X ∈ g, we define a linear
function uX : g→ R defined by uX(ξ) := 〈ξ,X〉 for each ξ ∈ g. A smooth function
f̃X on M = G/GZ is defined by

f̃X := uX ◦ ΦZ = uX ◦ µG = 〈µG, X〉 : M = G/GZ −→ g −→ R.

Then by the moment map equation and (2.10) we have

(2.14) df̃X = d〈µG, X〉 = ωZ(X̃, ·) = −gZ(JZX̃, ·),

where X̃ denotes a vector field on M = G/GZ induced by a one-parameter subgroup
{exp(tX) | t ∈ R} of G, which is a Killing vector field on M with respect to a
Kähler metric gZ . Hence the gradient vector field grad(f̃X) of the function f̃X on

M = G/GZ with respect to the invariant Kähler metric gZ is equal to −JZX̃:

(2.15) −grad(f̃X) = JZX̃ = ˜(
√
−1X).

Here JZX̃ = ˜(
√
−1X) is a holomorphic vector field on M = GC/UC induced by a

one-parameter subgroup {exp(t
√
−1X) | t ∈ R} of GC.

Now assume that X ∈ p. A smooth function fX on L = K/KZ is defined by

fX = f̃X ◦ ιZ = uX ◦ ϕZ = 〈µG ◦ ιZ , X〉 : L = K/KZ −→ p −→ R

By pulling back the equation (2.14) by the canonical embedding ιZ , we have

(2.16) dfX = ι∗Zdf̃X = ι∗ZωZ(X̃, ·) = −gZ( ˜(
√
−1X) ◦ ιZ , (ιZ)∗(·)).
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Since
√
−1X ∈

√
−1p = p] ⊂ g] ⊂ gC, exp(t

√
−1X) | t ∈ R is a one-parameter

subgroup of G] and it induces a vector field ̂(
√
−1X) on L = G]/U . Since

(ιZ)∗(
̂(
√
−1X)) = ˜(

√
−1X) ◦ ιZ = JZX̃ ◦ ιZ , the equation (2.16) becomes

(2.17) dfX = −(ι∗ZgZ)( ̂(
√
−1X), · )

Hence the gradient vector field grad(fX) on L = K/KZ with respect to the induced

Riemannian metric ι∗ZgZ is equal to a vector field − ̂(
√
−1X) on L = K/KZ = G]/U

induced by −
√
−1X ∈

√
−1p ⊂ g]. In particular, the critical point set of fX on L

coincides with the zero set Zero ̂(
√
−1X) = Zero(X̃ ◦ ιZ) of vector fields ̂(

√
−1X)

and X̃◦ιZ on L. In [27] they showed that for each X = Ad(k)H ∈ p (k ∈ K,H ∈ a),

it holds `k(NK(a)eKZ) ⊂ Zero ̂(
√
−1X) and if X is regular, then `k(NK(a)eKZ) =

Zero ̂(
√
−1X). Here `k : K/KZ → K/KZ denotes the left natural action by k ∈ K

on K/KZ . Therefore, for each regular X ∈ p, the number of critical points of fX
is equal to ](NK(a)/NKZ

(a)) and thus b = dimH∗(K/KZ ,Z2). In particular fX is
a perfect Morse function on the R-space L for each regular X ∈ p ([27]). We can
also observe that for each regular X ∈ p the equality ](exp(tX) ιZ(L) ∩ ιZ(L)) =
](NK(a)/NKZ

(a)) holds for any sufficiently small t 6= 0.
Here we recall some fundamental results from the structure theory of a compact

symmetric space G/K (cf. [6], [26]). They are necessary to discuss the geometry of
R-spaces canonically embedded in Kähler C-spaces. Set A := exp a ⊂ G and
Â := A (eK) ⊂ G/K. Then the K-equivariant map

(2.18) ψ : K/ZK(a)× Â 3 (kZK(a), â) 7−→ kâ ∈ G/K

is a surjective smooth map. Define the diagram of a compact symmetric pair (G,K)
by

D(g, a) := {H ∈ a | (γ,H) ∈ πZ (∃γ ∈ Σ(g, a))}

and thus we have a \ D(g, a) = {H ∈ a | (γ,H) 6∈ πZ (∀γ ∈ Σ(g, a))}. Set
Âs := (exp D(g, a))eK ⊂ Â and Âr := Â \ Âs = (exp(a \ D(g, a)))eK. Each
element of Âr (resp. Âs) is called a regular (resp. singular) element of Â. Then
G/K = (G/K)r ∪ (G/K)s (disjoint union), where (G/K)s := ψ(K/ZK(a) × Âs) is
a closed set of codimension at least 2 and

(2.19) (G/K)r := ψ(K/ZK(a) × Âr)

is a connected open dense subset of G/K. Each element of (G/K)r is called a
regular element of G/K. The surjective smooth map

(2.20) ψ : K/ZK(a)× Âr −→ (G/K)r

is a covering map whose covering transformation group is the right natural action of
W (G,K) on K/ZK(a)× Âr, and thus it induces a diffeomorphism ψ̄ : (K/ZK(a)×
Âr)/W (G,K) −→ (G/K)r which is equivariant with the actions of K. Here note
that K/ZK(a)× Âr is not connected in general.
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Using the geometry of a compact symmetric space G/K, we discuss the in-
tersection property of a ιZ(L) and ιZ(L) under the left group action of a ∈ G on
M = G/GZ .

For any a ∈ G, by the surjectivity of ψ we have aK = ψ(kZK(a), exp(H)eK)
for some k ∈ K and some H ∈ a and thus ak1 = kk0 exp(H) for some k0 ∈
ZK(a) and some k1 ∈ K. Thus ak1GZ = kk0 exp(H)GZ = kGZ ∈ G/GZ and
hence a ιZ(k1KZ) = ιZ(kKZ) ∈ aιZ(K/KZ) ∩ ιZ(K/KZ) gives an intersection
point of aιZ(K/KZ) and ιZ(K/KZ). Moreover, for any k′ ∈ NK(a), we have

ak1k
′ = kk′(k′

−1
k0k
′) exp(Ad(k′

−1
)H) where note that k′

−1
k0k
′ ∈ ZK(A) and

Ad(k′
−1

)H ∈ a. Thus ak1k
′GZ = kk′(k′

−1
k0k
′) exp(Ad(k′

−1
)H)GZ = kk′GZ ∈

G/GZ and hence a ιZ(k1k
′KZ) = ιZ(kk′KZ) ∈ aιZ(K/KZ) ∩ ιZ(K/KZ) also gives

an intersection point of aιZ(K/KZ) and ιZ(K/KZ). Note that if kk′KZ = kk′′KZ

for k′, k′′ ∈ NK(a), then k′NKZ
(a) = k′′NKZ

(a). Therefore, combining the above
argument with Theorem 2.4, we obtain

Proposition 2.5. For any a ∈ G, it holds

](a ιZ(L) ∩ ιZ(L)) ≥ ](NK(a)/NKZ
(a)) = dimH∗(L,Z2).

Next we mention about the transversality condition of the intersection a ιZ(L)∩
ιZ(L). Suppose that p ∈ a ιZ(K/KZ) ∩ ιZ(K/KZ). Then p = a ιZ(k2KZ) =
ιZ(k1KZ) (∃k1, k2 ∈ K). Since k−1

1 ak2 ∈ GZ , using the symmetric Lie algebra
gZ = kZ + pZ of a compact symmetric pair (GZ ,KZ) so that a ⊂ pZ , there are
kZ , k

′
Z ∈ KZ and Hp ∈ a such that k−1

1 ak2 = kZ(expHp)kZ
−1k′Z . Thus ak2 =

k1kZ(expHp)kZ
−1k′Z . Since

(ΦZ)∗(Tpa ιZ(K/KZ)) =Ad(ak2)[k, Z]

=Ad(k1kZ(expHp)kZ
−1k′Z)[k, Z]

=Ad(k1)Ad(kZ)Ad(expHp)[k, Z],

(ΦZ)∗(Tp ιZ(K/KZ)) =Ad(k1)[k, Z] = Ad(k1)Ad(kZ)[k, Z],

the transversality of a ιZ(L) ∩ ιZ(L) at p is equivalent to the transversality of
Ad(expHp)[k, Z] and [k, Z]: Ad(expHp)[k, Z] ∩ [k, Z] = {0}. Then by a simple
computation using the basis {Sγ,i, Tγ,i} we can show

Lemma 2.6. a ιZ(L) intersects transversally with ιZ(L) in M = G/GZ if and

only if at each intersection point p such an Hp ∈ a satisfies (γ,H) 6∈ πZ for each

γ ∈ Σ+(g, a) with (γ, Z) 6= 0.

First we suppose that a ∈ G satisfies aK ∈ (G/K)r. Then a ιZ(K/KZ) ∩
ιZ(K/KZ) is transversal at each intersection point. Fix an intersection point
ιZ(k1KZ) ∈ a ιZ(K/KZ) ∩ ιZ(K/KZ). Then

aK =k1kZ,1 exp(H1)K (∃H1 ∈ a \ D(g, a),∃kZ ∈ KZ)

=ψ(k1kZ,1ZK(a), exp(H1)K)
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For an arbitrary intersection point ιZ(k2KZ) ∈ a ιZ(K/KZ) ∩ ιZ(K/KZ),

aK =k2kZ,2 exp(H2)K (∃H2 ∈ a \ D(G,K), kZ,2 ∈ KZ)

=ψ(k2kZ,2ZK(a), exp(H2)K)

Then there is s = [k′] ∈W (G,K) = NK(a)/ZK(a) such that

k2kZ,2ZK(a) = k1kZ,1ZK(a)s = k1kZ,1k
′ZK(a)

and

(expH2)K = s−1(expH1)K = (exp s−1H1)K = (exp Ad(k′)−1H1)K.

Thus k2KZ = k1kZ,1k
′KZ and hence ιZ(k2KZ) = ιZ(k1kZ,1k

′KZ). Therefore we
obtain

a ιZ(K/KZ) ∩ ιZ(K/KZ) = {ιZ(k1kZ,1k
′KZ) | [k′] ∈ NK(a)/NKZ

(a)}.

In particular ](a ιZ(K/KZ) ∩ ιZ(K/KZ)) = ](NK(a)/NKZ
(a)).

In general suppose that a ιZ(K/KZ) ∩ ιZ(K/KZ) is transversal at each inter-
section point. Particularly a ιZ(K/KZ)∩ ιZ(K/KZ) is a finite set. We may assume
that aK ∈ (G/K)s. Since (G/K)r is open and dense in G/K, we choose a smooth
perturbation at ∈ G of a0 = a such that atK ∈ (G/K)r (0 < ∀ t < ε). Then
at ιZ(K/KZ)∩ ιZ(K/KZ) is also transversal at each intersection point and for suf-
ficiently small t > 0 we have

](a ιZ(K/KZ) ∩ ιZ(K/KZ)) = ](at ιZ(K/KZ) ∩ ιZ(K/KZ)) = ](NK(a)/NK0(a)).

Therefore we obtain

Proposition 2.7. For any a ∈ G with transversal a ιZ(L) ∩ ιZ(L), it holds

](a ιZ(L) ∩ ιZ(L)) = ](NK(a)/NKZ
(a)).

Combining it with Theorem 2.4, we see

Corollary 2.8. For any a ∈ G with transversal a ιZ(L) ∩ ιZ(L), it holds

](a ιZ(L) ∩ ιZ(L)) = dimH∗(L,Z2).

Such a property is called the global tightness for a Lagrangian submanifolds in
a Kähler C-space ([14], [9], [5]). It was proved by [28] in the case when L is a
symmetric R-space. It is still an open problem to classify compact globally tight
or simply tight Lagrangian submanifolds of Kähler C-spaces. More generally the
intersection theory and Floer homology for two real forms in Kähler C-spaces are
discussed in [7], [11].



3 Minimal Maslov number and monotonicity of Lagrangian submani-

folds in symplectic manifolds and Einstein-Kähler manifolds

Let L be a Lagrangian submanifold of a symplectic manifold (M,ω). Define
two kinds of group homomorphisms Iµ,L : π2(M,L)→ Z and Iω,L : π2(M,L)→ R.
For a smooth map u : (D2, ∂D2) → (M,L) with A = [u] ∈ π2(M,L), choose
a trivialization of the pull-back bundle as a symplectic vector bundle (which is
unique up to the homotopy). u−1TM ∼= D2 × Cn. This gives a smooth map ũ :
S1 = ∂D2 → Λ(Cn). Here Λ(Cn) denotes the Grassmann manifold of Lagrangian
vector subspaces of Cn. Using the Moslov class µ ∈ H1(Λ(Cn),Z) ∼= Z, we define
Iµ,L(A) := µ(ũ). Another homomorphism Iω,L : π2(M,L) → R is defined by
Iω,L(A) :=

∫
D2 u

∗ω. Note that Iµ,L is invariant under symplectic diffeomorphisms
and Iω,L is invariant under Hamiltonian diffeomorphisms but not under symplectic
diffeomorphisms.

A Lagrangian submanifold L of (M,ω) is called monotone ([15]) if Iµ,L =
λ Iω,L (∃λ > 0). If Iµ,L = 0, we define ΣL = 0. We assume that Iµ,L 6= 0,
Denote by ΣL ∈ Z+ the positive generator of Im(Iµ,L) as an additive subgroup of
Z. We call ΣL is called the minimal Maslov number of LD

Theorem 3.1 ([2], [21]). Suppose that (M,ω, J, g) is an Einstein-Kähler manifold
of positive Einstein constant. If L is a compact minimal Lagrangian submanifold of
M , then L is monotone.

Suppose that (M,ω, J, g) is a simply connected Einstein-Kähler manifold with
positive Einstein constant and L is a compact monotone Lagrangian submanifold
of M . Then Hajime Ono ([21]) showed the formula for ΣL:

(3.1) nLΣL = 2γc1 ,

where we set

γc1 := min{c1(M)(A) | A ∈ H2(M ;Z), c1(M)(A) > 0},
nL := min{k ∈ Z+ | ⊗kE trivial}.

E cplx. line bdle.

flat πEπL U(1)-connection ∇

M Einstein-Kähler mfd.

-E|L

? ?

L
Lag.

-

Here 1
γω = c1(E,∇) for some constant γ > 0.

As an application of that formula (3.1), we mention the minimal Maslov number
formula for the Gauss images of isoparametric hypersurfaces in the standard sphere.

Let Nn ⊂ Sn+1(1) ⊂ Rn+2 be an oriented hypersurface of Sn+1(1) and let
N̂n := {(x(p),n(p)) ∈ V2(Rn+2) | p ∈ N} be the Legendrian lift of Nn to T 1Sn+1.
Then we have the following diagram:

14



unit sphere tangent bundle of Sn+1

= Stiefel mfd. of o.n. 2-frames of Rn+2

P = T 1Sn+1 = V2(Rn+2) ∼= SO(n+2)
SO(n)

ρ(π1(L)) πGGauss map SO(2) ∼= U(1)

M = Qn(C) = G̃r2(Rn+2) ∼= SO(n+2)
SO(2)×SO(n)

complex hyperquadric
=real ori. 2-plane Grassmann mfd.

-

N ⊂ Sn+1(1)

‖
L̂ = N̂

Leg.

? ?

L = G(N)
Gauss image Lag.

-

The Gauss Map is defined by

G : N −→ N̂ −→ G(N) ⊂ Qn(C) = G̃r2(Rn+2)
p 7−→ (x(p),n(p)) 7−→ [x(p) +

√
−1n(p)] = x(p) ∧ n(p)

Suppose that Nn ⊂ Sn+1(1) is an isoparametric hypersurface with g distinct prin-
cipal curvatures. Let N̂n := {(x(p),n(p)) ∈ V2(Rn+2) | p ∈ N} be the Legendrian
lift of Nn to T 1Sn+1. The following diagram becomes as follows:

simply conn.
Einstein Sasakian homog. sp.

P = V2(Rn+2) = SO(n+2)
SO(n) = T 1Sn+1

ρ(π1(L))
∼= Zg πGGauss map

SO(2)
∼= U(1)

Einstein-Kähler Herm. sym. sp.

M = Qn(C) = SO(n+2)
SO(2)×SO(n)

complex hyperquadric

-

N ⊂ Sn+1(1)

‖
L̂ = N̂

min. Leg. embed.

? ?

L = G(N)Gauss image

min. Lag. embed.

-

Then it holds ΣL =
2n

g
([19], [13]). This formula was crucial to the Hamiltonian

non-displaceability theorem for Gauss images of isoparametric hypersurfaces ([8]).

4 Minimal Maslov number of R-spaces canonically
embedded in Einstein-Kähler C-spaces

We take the universal cover G̃→ G of G. Let (G̃, K̃, θ) be a Riemannian symmetric

pair of compact type with simply connected G̃ and connected K̃.
By Proposition 2.3 we can choose Z = Zein = 2δm. Then ιZ : L = K/KZ →

M = G/GZ is the canonical embedding of an R-space into an Einstein-Kähler
C-space. As in [24] we use expression

2δm =
∑

αi∈Π\ΠZ

kiΛi = κ(M)
∑

αi∈Π\ΠZ

κiΛi (ki ∈ Z+),
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where κ(M) denotes the greatest common divisor of {ki | αi ∈ Π \ ΠZ} and set
κi := ki

κ(M) for each αi ∈ Π \ ΠZ . Then the invariant γc1 in (3.1) is given as

γc1 = κ(M) (cf. [20]).
simply conn.
Einstein Sasakian homog. sp.

P = G̃/G̃′Z

ρ(π1(L)) ππ̂ U(1) ∼= S1

M = G̃/G̃Z
Einstein-Kähler C-sp.

-L̂ = K̃/K̃ ′Z

tot.geod.Leg.

? ?

L = K̃/K̃Z
R-sp. canon. embed.

tot.geod.Lag.

-

Here we take the orthogonal direct sum decomposition gZ = R · 2δm ⊕ g′Z . Denote

by G̃′Z a connected Lie subgroup of G̃Z with Lie algebra g′Z and set K̃ ′Z := K̃ ∩ G̃′Z .

Then nL = ](K̃Z/K̃
′
Z) ([20]). Therefore by the formula (3.1) we obtain

Theorem 4.1 ([20]). The minimal Maslov number ΣL of an R-space L canonically
embedded in an Einstein-Kähler C-space M is given by the formula

(4.1) ΣL =
2κ(M)

](K̃H/K̃ ′H)
.

Some concrete examples of computations by this formula are given in [20] in the
case when (1) (G,K) = (SU(n+ 1), SO(n+ 1)) and L is RPn or a regular R-space,
(2) L is a maximal flag manifold of a compact semisimple Lie group K, (3) L is an
irreducible symmetric R-space. It is an interesting problem to study the minimal
Maslov number for all other R-spaces by this formula.
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