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Abstract. This is a complement of the former works by Costin-Maz’ya [1] and Hamamoto-
Takahashi [5] on sharp Hardy-Leray inequality for solenoidal (i.e., divergence-free) fields
in R3 with some axisymmetry conditions. Here we derive the same best constant, with
no assumption of any symmetry.

1. Introduction

Let N ≥ 3 be an integer. Throughout this paper, we use bold letters to denote N -
dimensional vectors, e.g., x = (x1, x2, · · · , xN ) ∈ RN . In the following, C∞

c (RN )N denotes
the space of all smooth vector fields

u = (u1, u2, · · · , uN ) : RN → RN , x 7→ u(x) =
(
u1(x), u2(x), · · · , uN (x)

)
with compact support on RN .
Let γ ∈ R be a real number. The Hardy-Leray inequality with weight γ is given by

CN,γ

∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx (1.1)

for all u ∈ C∞
c (RN )N such that u(0) = 0 if γ ≤ 1 − N/2, where the constant number

CN,γ =
(
γ + N

2 − 1
)2

is sharp. J. Leray [8] proved the inequality (1.1) for N = 3 and γ = 0
in his works on the Navier-Stokes equations, as a generalization of the one-dimensional
inequality by G. H. Hardy [6]. We are interested in the problem whether CN,γ in (1.1) is
improved to be larger if the selection of u is restricted to a smaller subspace of C∞

c (RN )N .
This problem has been answered in some cases or variations: Taking into account the
context of hydrodynamics, O. Costin and V. Maz’ya [1] derived a new sharp value of CN,γ

by assuming u to be solenoidal (i.e., divergence-free) and axisymmetric. After a decade,
N. Hamamoto and F. Takahashi [4] computed another sharp value of CN,γ in the case where
u is conservative; this computation was done with no use of any symmetry condition. At
present, the case of solenoidal fields still remains unanswered under no assumption of any
symmetry, which is the main theme of this paper. Incidentally, it should be pointed out that
the sharpness of Rellich-Leray inequality (which is a second-order version of Hardy-Leray
inequality) was also studied for axisymmetric solenoidal fields or conservative fields [3, 4].

Hereafter we restrict ourselves to the case N = 3. The three-dimensional version of the
preceding result [1] reads as follows:

Theorem 1 (O. Costin and V. Maz’ya [1]). Let u ∈ C∞
c (R3)3 be an axisymmetric solenoidal

field such that u(0) = 0 for γ ≤ −1/2. Then inequality

Cγ

∫
R3

|u|2

|x|2
|x|2γdx ≤

∫
R3

|∇u|2|x|2γdx

holds with the best constant Cγ =


(
γ + 1

2

)2 4 +
(
γ − 3

2

)2
2 +

(
γ − 3

2

)2 , for γ ≤ 1 ,(
γ + 1

2

)2
+ 2 , for γ > 1 .
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As a slight refinement of this theorem, N. Hamamoto and F. Takahashi [5] showed that
the axisymmetry condition on u can be relaxed to that on only the swirl (or azimuthal)
component of u, without changing the value of Cγ . This time, we will further completely
remove such a symmetry condition. Now our main result is the following:

Theorem 2. Let u ∈ C∞
c (R3)3 be a solenoidal field such that u(0) = 0 for γ ≤ −1/2.

Then inequality

Cγ

∫
R3

|u|2

|x|2
|x|2γdx ≤

∫
R3

|∇u|2|x|2γdx

holds with the same constant Cγ as in Theorem 1.

In the setting of spherical coordinates (in §2), the previous Theorem 1 was proved in [1]
by choosing latitudinal and azimuthal components of u as two independent test functions.
Theorem 2 is, however, difficult to prove in the same way, roughly because the two angular
components are not necessarily L2-orthogonal unless u is axisymmetric. To overcome such
a difficulty, we choose the so-called poloidal-toroidal potentials (in §3) as alternative test
functions. After these preparations, the proof of Theorem 2 will be given in §4.

2. First Preparation: spherical coordinates

In this section, we introduce a spherical coordinate system and derive some useful formulae
for differential operators on the sphere

S2 =
{
x ∈ R3 ; x2

1 + x2
2 + x2

3 = 1
}
.

The spherical coordinate system in R3 is composed of the radius ρ > 0 and the two angles:
colatitude θ ∈ [0, π] and azimuth φ ∈ [0, 2π). The position of a vector x = (x1, x2, x3) ∈ R3

is then represented by x = ρσ, where σ = σ(θ, φ) ∈ S2 together with the orthonormal basis
R(σ) = (σ, eθ, eφ) ∈ SO(3) given by

σ = (cos θ, sin θ cosφ, sin θ sinφ) ,

eθ = ∂θσ = (− sin θ, cos θ cosφ, cos θ sinφ) ,

eφ = ∂φσ =
(
0,− sinφ, cosφ

)
.

(2.1)

Hereafter we write the partial derivatives simply as ∂θ = ∂
∂θ , ∂φ = ∂

∂φ , etc. Also we use the

abbreviation

∂φ :=
1

sin θ
∂φ .

By differentiating eθ and eφ , we can directly verify that{
∂θeθ = −σ , ∂φeθ = eφ cot θ ,

∂θeφ = 0 , ∂φeφ = −σ − eθ cot θ.
(2.2)

Now let u = (u1, u2, u3) : R3 → R3 be a vector field. Then its radial and angular
components uρ, uθ, uφ are defined as the expansion coefficients of u in the basis R(σ):

u(x) = u(ρσ) = σuρ + eθuθ + eφuφ. (2.3)

Also let us expand the gradient operator ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
in the same basis: by the

differential chain rule together with (2.1), we have

∂ρ = ∂ρx · ∇ = σ · ∇ ,

∂θ = ∂θx · ∇ = ρeθ · ∇ ,

∂φ = ∂φx · ∇ = (ρ sin θ)eφ · ∇ ,

where “ · ” denotes the standard inner product in R3. Then it turns out that

∇ = σ∂ρ +
1

ρ
∇σ , (2.4)
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where ∇σ = eθ∂θ + eφ∂φ is the gradient operator on S2. When they act on x = ρσ or
ρ = |x|, we verify the formulae

y · ∇x = y , ∇ρ = σ ,

y · ∇σσ = y − (y · σ)σ (2.5)

for all y ∈ R3. Indeed, the first line follows by direct differential calculation in the standard
R3 coordinates, while the last equality follows from (2.4):

y · ∇σσ = y · ρ∇σ = y · ρ∇x

ρ
= y · (∇x)ρ− x∇ρ

ρ

= y · ∇x− y · σσ = y − (y · σ)σ.

The Laplace operator ∆ = ∇ · ∇ =
∑3

k=1(
∂

∂xk
)2 is known to be written in terms of the

spherical coordinates as

∆ =
1

ρ2
∂ρ

(
ρ2∂ρ

)
+

1

ρ2
∆σ , (2.6)

where ∆σ = Dθ∂θ+∂2
φ is the Laplace-Beltrami operator on S2; the operator Dθ = ∂θ+cot θ

is adjoint to −∂θ in L2(S2):

−
∫
S2
(∂θf)gdσ =

∫
S2
fDθgdσ , dσ = sin θdθdφ

for any f, g ∈ C∞(S2).
For later use, we give the following technical lemma:

Lemma 3. Let f : S2 → R be a smooth function of the variable σ ∈ S2. Then

∆σ(σf)− σ∆σf = 2(∇σf − σf) ,

∆σ∇σf −∇σ∆σf = −2σ∆σf .
(2.7)

proof. Let us identify f ∈ C∞(S2) with f̃ ∈ C∞(R3\{0}) by the relation f̃(x) = f(x/|x|).
The key idea of the proof is to express the operators on S2 in terms of the standard R3

coordinates in which the derivatives are commutative: ∆∇ = ∇∆. By using the Leibniz
rule and (2.4),(2.6),(2.5) for y = ∇σf , we see

∆σ(σf)− σ∆σf = (∆σσ)f + 2∇σf · ∇σσ

= (ρ2∆∇ρ)f + 2
(
∇σf −

(
(∇σf) · σ

)
σ
)

= (ρ2∇∆ρ)f + 2∇σf =
(
ρ2∇ 2

ρ

)
f + 2∇σf

= −2(∇ρ)f + 2∇σf = −2σf + 2∇σf ,

which proves the first line of (2.7). The proof of the second line also follows similarly:

(∆σ∇σ −∇σ∆σ)f = ρ2∆∇σf − ρ∇∆σf

= ρ2∆
(
ρ∇f

)
− ρ∇

(
ρ2∆f

)
= ρ2

(
(∆ρ)∇f + 2∇ρ · ∇∇f

)
− ρ

(
∇ρ2

)
∆f

= 2ρ∇f + 2ρ2σ · ∇∇f − 2ρ2(∇ρ)∆f

= 2∇σf + 2ρ2∂ρ
1

ρ
∇σf − 2σ∆σf

= −2σ∆σf .

□
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3. Second Preperation: Poloidal-Toroidal representation of solenoidal
fields

Let us define G as a linear operator, that maps every solenoidal field u ∈ C∞
c (R3)3 to a

continuous function Gu : R3 → R, by the formula

Gu(x) =
|x|
4π

∫
S2
σ′ · u

(
|x|σ′) log (1− x

|x|
· σ′

)
dσ′ for all x ∈ R3\{0}. (3.1)

This function is called the poloidal potential of u. Then G also maps the rotation of u ,

∇× u =
(
∂x2u3 − ∂x3u2 , ∂x3u1 − ∂x1u3 , ∂x1u2 − ∂x2u1

)
,

to the function G(∇ × u) which is called the toroidal potential of u. The logarithmic
function log(1 − σ · σ′) in the right-hand side of (3.1) appears in e.g. [2, V§11.4] or [7], as
a Green’s function of the Laplace-Beltrami operator on S2; this enables Gu to satisfy the
Poisson-Beltrami equation:

∆σGu = x · u in R3\{0}.

Although this is well-known, we give its proof in Appendix in our style of notation, for the
convenience of the readers.

Also let us introduce the derivative operator

J := x×∇ = σ ×∇σ = eφ∂θ − eθ∂φ ,

which stands for an angular momentum in quantum mechanics. Note that J commutes with
both of ∆ and ∆σ:

∆J = J∆ , ∆σJ = J∆σ ;

the former equality is easy to check by using the standard coordinates, whereas the latter
follows from the former by use of (2.6).

The following proposition is known as the so-called poloidal-toroidal decomposition of
solenoidal fields:

Proposition 4. Let u ∈ C∞
c (R3)3 be a solenoidal field. Let A, B denote the poloidal,

toroidal potentials of u, that is, A = Gu , B = G(∇× u). Then they satisfy the Poisson-
Beltrami equations

∆σA = x · u , ∆σB = x · (∇× u) (3.2)

and the poloidal-toroidal decomposition formula

u = uP + uT ,

 uP := ∇× JA = σρ−1∆σA− (∂ρ +
1
ρ )∇σA

uT := JB
(3.3)

for all x = ρσ ̸= 0. Moreover, this is an L2-orthogonal decomposition in the sense that∫
S2
uP (ρσ) · uT (ρσ) =

∫
S2
∇uP (ρσ) · ∇uT (ρσ)dσ = 0 .

proof. The proof of the equations in (3.2) follows by using Lemma 5 in Appendix.
We now prove (3.3). As in [9], it suffices to check that the solenoidal field

w(x) := u(x)−∇× JA− JB
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vanishes everywhere; to do so, by direct calculation of the last two terms and their rotations,
we verify that:

JB = (eφ∂θ − eθ∂φ)B ,

∇× JA = ∇× (x×∇A) = −∇×
(
∇× (xA)

)
= ∆(xA)−∇(∇ · (xA))

=
(
2∇A+ x∆A

)
−∇(3A+ x · ∇A)

= x∆A− 2∇A− x · ∇∇A = x∆A− (2 + x · ∇)∇A

= ρσ
(
(∂ρ +

2
ρ )∂ρ + ρ−2∆σ

)
A− (2 + ρ∂ρ)(σ∂ρA+ ρ−1∇σA)

= σρ−1∆σA− (∂ρ +
1
ρ )∇σA ,

∇× JB = σρ−1∆σB − (∂ρ +
1
ρ )∇σB ,

∇×
(
∇× JA

)
= ∇×

(
∆(xA)−∇(∇ · (xA))

)
= ∇×∆(xA)

= ∇× (x∆A) = −x×∇∆A .

By using these relations and (3.2), we see

x ·w = x · u−∆σA = 0 ,

x · (∇×w) = x · (∇× u)−∆σB = 0 .

Namely, w and ∇ × w have no radial component. This enables the solenoidal field w =
wθeθ + wφeφ to satisfy {

x · (∇×w) = Dθwφ − ∂φwθ = 0 ,

ρ∇ ·w = Dθwθ + ∂φwφ = 0 ,

or equivalently

∂θ(wφ sin θ)− ∂φwθ = ∂θ(wθ sin θ) + ∂φwφ = 0 .

This fact implies

∆σ(wθ sin θ) = Dθ∂θ(wθ sin θ) + ∂φ∂φwθ

= Dθ(−∂φwφ) + ∂φ∂θ(wφ sin θ) = (−Dθ∂φ + ∂φDθ)wφ = 0 ,

∆σ(wφ sin θ) = Dθ∂θ(wφ sin θ) + ∂φ∂φwφ = Dθ∂φwθ − ∂φ∂θ(wθ sin θ)

= (Dθ∂φ − ∂φDθ)wθ = 0 .

Multiplying by −wθ sin θ or −wφ sin θ, and integrating by parts over S2, we have

−
∫
S2
(wθ sin θ)∆σ(wθ sin θ)dσ =

∫
S2
|∇σ(wθ sin θ)|2dσ = 0 ,

−
∫
S2
(wφ sin θ)∆σ(wφ sin θ)dσ =

∫
S2
|∇σ(wφ sin θ)|2dσ = 0 .

Then it turns out that ∇σ(wθ sin θ) = ∇σ(wφ sin θ) = 0, that is, wθ sin θ and wφ sin θ are
constant on ρS2 for each ρ > 0. (Here ρS2 denotes the sphere of radius ρ centered at
the origin.) Since wθ and wφ are bounded on ρS2, they does not diverge as θ → +0 ;
therefore, such constant numbers must be zero, i.e., wθ = wφ = 0, which shows that
w = eθwθ + eφwφ = 0 . Thus the proof of (3.3) is done.

It remains to show the L2-orthogonality of uP and uT . To this end, we claim that∫
S2
∇σf · Jgdσ = 0 for any f, g ∈ C∞(S2).

Indeed, a calculation of the integrand gives

∇σf · Jg = (eθ∂θf + eφ∂φf) · (eφ∂θg − eθ∂φg)

= −(∂θf)∂φg + (∂φf)∂θg .
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By integration (by parts) on the both sides over S2, we obtain∫
S2
∇σf · Jgdσ =

∫
S2
f(Dθ∂φ − ∂φ∂θ)gdσ = 0 ,

which proves the claim. Then we see∫
S2
uP · uT dσ = −

∫
S2

((
1
ρ + ∂ρ

)
∇σA

)
· (JB) = 0

by applying the claim for f = ( 1ρ + ∂ρ)A and g = B. Likewise, we also have∫
S2
∂ρuP · ∂ρuT dσ = −

∫
S2
∇σ∂ρ

(
( 1ρ + ∂ρ)A

)
· J∂ρBdσ = 0 ,

and hence ∫
S2
∇uP · ∇uT dσ =

∫
S2
∇σuP · ∇σuT dσ = −

∫
S2
uP ·∆σuT dσ

= −
∫
S2

(
( 1ρ + ∂ρ)∇σA

)
·∆σJBdσ

= −
∫
S2
∇σ

(
( 1ρ + ∂ρ)A

)
· J∆σBdσ = 0 .

□

4. Proof of Theorem 2: evaluation of the toroidal and poloidal parts of
Hardy-Leray quotient

In the following, we assume u ̸≡ 0 and
∫
R3 |∇u|2|x|2γdx < ∞, since otherwise there is

nothing to prove. As in [1], there exists an integer k > −γ − 3
2 such that ∇u = O(|x|k) as

|x| → 0. It then follows from the condition “ u(0) = 0 if γ ≤ − 1
2 ” that

|x|γ+ 1
2u(x) = O(|x|β) for β =

{
k + γ + 3

2 if γ ≤ − 1
2 ,

γ + 1
2 if γ > −1

2 .
(4.1)

This ensures, since β > 0, that
∫
R3 |u|2|x|2γ−2dx < ∞. Then it turns out, from the L2-

orthogonality of the decomposition u = uP + uT in proposition 4, that∫
R3 |∇u|2|x|2γdx∫
R3 |u|2|x|2γ−2dx

=

∫
R3 |∇uP |2|x|2γdx+

∫
R3 |∇uT |2|x|2γdx∫

R3 |uP |2|x|2γ−2dx+
∫
R3 |uT |2|x|2γ−2dx

≥ min

{ ∫
R3 |∇uP |2|x|2γdx∫
R3 |uP |2|x|2γ−2dx

,

∫
R3 |∇uT |2|x|2γdx∫
R3 |uT |2|x|2γ−2dx

}
(4.2)

if uT ̸≡ 0 and uP ̸≡ 0. Namely, the Hardy-Leray quotient for a solenoidal field is estimated
from bellow by the lesser of that for poloidal part and for toroidal part. Now, all we have
to do is to evaluate them separately.

4.1. Evaluation of the toroidal part. Let uT = JB ̸≡ 0. By using the formula

Jf · Jg = ∇σf · ∇σg for any f, g ∈ C∞(S2) ,
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we write the L2(S2)-integrals of uT and ρ∇uT in terms of the toroidal potential B as∫
S2
|uT |2dσ =

∫
S2
|JB|2dσ =

∫
S2
|∇σB|2dσ ,

ρ2
∫
S2
|∇uT |2dσ =

∫
S2

(
|ρ∂ρuT |2 + |∇σuT |2

)
dσ =

∫
S2

(
|ρ∂ρJB|2 + |∇σJB|2

)
dσ

=

∫
S2

(
ρ2|J∂ρB|2 − JB · J∆σB

)
dσ

=

∫
S2

(
ρ2|∇σ∂ρB|2 −∇σB · ∇σ∆σB

)
dσ

=

∫
S2

(
(∆σB)2 + ρ2|∂ρ∇σB|2

)
dσ .

Now let us define the function f ∈ C∞(R3\{0}) by

f(x) = ργ+
1
2B = |x|γ+ 1

2G(∇× u)(x) ,

which is also continuous with compact support on R3; we note, for β > 0 given in (4.1), that

f(x) = O(|x|β) ,

|x|∇f(x) = O(|x|β)

}
as |x| → +0 , (4.3)

which we can verify by using (3.1) with u replaced by ∇×u. Integrating the above L2(S2)
equations with measure ρ2γdρ over R+ and transforming B into f , we see∫

R3

|uT |2|x|2γ−2dx =

∫ ∞

0

ρ2γdρ

∫
S2
|∇σB|2dσ =

∫ ∞

0

dρ

ρ

∫
S2
|∇σf |2dσ ,∫

R3

|∇uT |2|x|2γdx =

∫ ∞

0

dρ

ρ

∫
S2
(∆σf)

2dσ +

∫
S2
dσ

∫ ∞

0

ρ2γ+2|∂ρ∇σB|2dρ .

Here the last radial integration is written in terms of f as∫ ∞

0

ρ2γ+2|∂ρ∇σB|2dρ =

∫ ∞

0

∣∣ρ∂ρ∇σ

(
ρ−γ− 1

2 f
)∣∣2ρ2γdρ

=

∫ ∞

0

∣∣∣(−γ − 1
2 )∇σf + ρ∂ρ∇σf

∣∣∣2 dρ
ρ

=

∫ ∞

0

(
(γ + 1

2 )
2|∇σf |2 + |ρ∂ρ∇σf |2

)dρ
ρ

− (γ + 1
2 )

∫ ∞

0

∂ρ|∇σf |2dρ

=

∫ ∞

0

(
(γ + 1

2 )
2|∇σf |2 + |ρ∂ρ∇σf |2

)dρ
ρ

(
by use of (4.3)

)
.

It then follows, by combining the above integral equalities, that∫
R3 |∇uT |2|x|2γdx∫
R3 |uT |2|x|2γ−2dx

=

∫∞
0

dρ
ρ

∫
S2(∆σf)

2dσ +
∫
S2 dσ

∫∞
0

(
(γ + 1

2 )
2|∇σf |2 + |ρ∂ρ∇σf |2

)
dρ
ρ∫∞

0
dρ
ρ

∫
S2 |∇σf |2dσ

≥ (γ + 1
2 )

2 +

∫∞
0

dρ
ρ

∫
S2(∆σf)

2dσ∫∞
0

dρ
ρ

∫
S2 |∇σf |2dσ

.

In order to evaluate the last term, we use the spherical harmonics expansion of f :

f(ρσ) =

∞∑
ν=0

ν∑
m=−ν

fνm(ρ)Yνm(θ, φ) ,


−∆σYνm = ανYνm ,

J1Yνm = imYνm ,
αν = ν(ν + 1) .

(4.4)
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Then we have∫∞
0

dρ
ρ

∫
S2(∆σf)

2dσ∫∞
0

dρ
ρ

∫
S2 |∇σf |2dσ

=

∫∞
0

dρ
ρ

∫
S2 f(−∆σ)

2fdσ∫∞
0

dρ
ρ

∫
S2 f(−∆σ)fdσ

=

∑∞
ν=0

∑ν
m=−ν α

2
ν

∫∞
0

|fνm(ρ)|2 dρ
ρ∑∞

ν=0

∑ν
m=−ν αν

∫∞
0

|fνm(ρ)|2 dρ
ρ

=

∑∞
ν=1

∑ν
m=−ν α

2
ν

∫∞
0

|fνm(ρ)|2 dρ
ρ∑∞

ν=1

∑ν
m=−ν αν

∫∞
0

|fνm(ρ)|2 dρ
ρ

≥ inf
ν∈N

α2
ν

αν
= α1 .

Hence the toroidal part of the Hardy-Leray quotient is estimated by∫
R3 |∇uT |2|x|2γdx∫
R3 |uT |2|x|2γ−2dx

≥ (γ + 1
2 )

2 + α1 . (4.5)

4.2. Evaluation of the poloidal part. Let uP = ∇ × JA ̸≡ 0. Let us transform the
potential A into the function f ∈ C∞(R3\{0}) by the formula

f(x) = ργ−
1
2A = |x|γ− 1

2Gu(x) ,

which is also continuous with compact support on R3; we note, for β > 0 in (4.1), that

f(x) = O(|x|β) ,
|x|∇f(x) = O(|x|β) ,

|x|2∇2f(x) = O(|x|β)

 as |x| → +0 , (4.6)

which can be verified by using (3.1). Then the poloidal part of u is expressed in terms of f
as

uP =
(
σ
ρ∆σ − ( 1ρ + ∂ρ)∇σ

)
(ρ

1
2−γf)

= ρ−
1
2−γ

(
σ∆σf − ( 32 − γ + ρ∂ρ)∇σf

)
= ρ−

1
2−γ

(
σ∆σf − ( 32 − γ + ∂t)∇σf

)
, (4.7)

where we have introduced the deformed radial coordinate t ∈ R by the transformation

t = log ρ ,

whose differential obeys the chain rules: ρ∂ρ = ∂t , dt = dρ
ρ ; hereafter we prefer to use t as

an alternative radial coordinate, rather than ρ .
Taking the absolute square of (4.7) yields

ρ2γ+1|uP |2 = (∆σf)
2 +

(
3
2 − γ

)2 |∇σf |2 + |∂t∇σf |2 − ( 32 − γ)
∂

∂t
|∇σf |2.

Integrating the both sides with measure |x|−3dx =
dρ

ρ
dσ = dtdσ, we can express the

L2(|x|2γdx) integral of uP /|x| as∫
R3

|uP |2

|x|2
|x|2γdx =

∫∫
R+×S2

ρ2γ+1|uP |2
dρ

ρ
dσ =

∫∫
R×S2

ρ2γ+1|uP |2dtdσ

=

∫
R
dt

∫
S2

(
(∆σf)

2 + ( 32 − γ)2|∇σf |2 + |∂t∇σf |2
)
dσ , (4.8)

by use of (4.6).
In order to calculate the L2(|x|2γdx)-integral of ∇uP , we start with calculation of its

spherical part; we see, by using (2.7) and (4.7), that

∆σ

(
ργ+

1
2uP

)
= ∆σ(σ∆σf)−

(
3
2 − γ + ∂t

)
∆σ∇σf

= σ∆2
σf + 2(∇σ − σ)∆σf −

(
3
2 − γ + ∂t

)(
∇σ∆σf − 2σ∆σf

)
= σ

(
∆2

σf + 2( 12 − γ + ∂t)∆σf
)
+ ( 12 + γ − ∂t)∇σ∆σf .
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Multiplication by −ργ+
1
2uP · and integration by parts over S2 yield∫

S2
|∇σuP |2ρ2γ+1dσ = −

∫
S2
ργ+

1
2uP ·∆σ

(
ργ+

1
2uP

)
dσ

= −
∫
S2

(
(∆σf)

(
∆2

σf + 2( 12 − γ + ∂t)∆σf
)
− ( 32 − γ + ∂t)∇σf · ( 12 + γ − ∂t)∇σ∆σf

)
dσ

= −
∫
S2

(
(∆σf)∆

2
σf + 2( 12 − γ)(∆σf)

2 + ( 32 − γ)( 12 + γ)(∆σf)
2 − (∂t∆σf)

2
)
dσ

−
∫
S2

(
(∆σf)2∂t∆σf + ( 32 − γ)(∇σf) · ∂t∇σ∆σf − (∂t∇σf) · ( 12 + γ)∇σ∆σf

)
dσ

=

∫
S2

(
|∇σ∆σf |2 +

(
(γ + 1

2 )
2 − 2

)
(∆σf)

2 + (∂t∆σf)
2
)
dσ − (γ + 1

2 )
d

dt

∫
S2
(∆σf)

2dσ .

Integrating this with measure dρ
ρ = dt over R+

∼= R , we obtain∫
R3

|∇σuP |2|x|2γ−2dx =

∫ ∞

0

dρ

ρ

∫
S2
|∇σuP |2ρ2γ+1dσ =

∫
R
dt

∫
S2
|∇σuP |2ρ2γ+1dσ

=

∫∫
R×S2

(
|∇σ∆σf |2 +

(
(γ + 1

2 )
2 − 2

)
(∆σf)

2 + (∂t∆σf)
2
)
dtdσ , (4.9)

by use of (4.6). Also, we similarly calculate the radial part of ∇uP ; we see, by (4.7), that

ργ+
1
2 ρ∂ρuP = ργ+

1
2 ρ∂ρ

(
ρ−

1
2−γ

(
σ∆σ − ( 32 − γ + ∂t)∇σ

)
f
)

= (−1
2 − γ)

(
σ∆σ − ( 32 − γ + ∂t)∇σ

)
f +

(
σ∂t∆σ − ( 32 − γ + ∂t)∂t∇σ

)
f

= σ
(
− 1

2 − γ + ∂t
)
∆σf +

(
( 12 + γ)(32 − γ) + (2γ − 1)∂t − ∂2

t

)
∇σf .

Taking the absolute square of this yields

|ρ 1
2+γρ∂ρuP |2 =

(
(− 1

2 − γ + ∂t)∆σf
)2

+
∣∣∣(( 12 + γ)( 32 − γ) + (2γ − 1)∂t − ∂2

t

)
∇σf

∣∣∣2
= (γ + 1

2 )
2
(
(∆σf)

2 + ( 32 − γ)2|∇σf |2
)
+ (∂t∆σf)

2

+
(
(2γ − 1)2 + 2( 12 + γ)( 32 − γ)

)
|∂t∇σf |2 +

∣∣∂2
t∇σf

∣∣2
+

∂

∂t

(
(− 1

2 − γ)(∆σf)
2 + ( 12 + γ)( 32 − γ)(2γ − 1)|∇σf |2

− (2γ − 1)|∂t∇σf |2 − 2( 12 + γ)(32 − γ)∇σf · ∂t∇σf
)
.

By integration of this with measure dρ
ρ = dt over R+

∼= R, and by use of (4.6), we obtain∫
R+

|∂ρuP |2ρ2γρ2dρ =

∫
R

(
(γ + 1

2 )
2
(
(∆σf)

2 + ( 32 − γ)2|∇σf |2
)
+ (∂t∆σf)

2

+
(
(2γ − 1)2 + 2( 12 + γ)( 32 − γ)

)
|∂t∇σf |2 +

∣∣∂2
t∇σf

∣∣2)dt
=

∫
R

(
(γ + 1

2 )
2
(
(∆σf)

2 + ( 32 − γ)2|∇σf |2 + |∂t∇σf |2
)

+ ( 32 − γ)2|∂t∇σf |2 + (∂t∆σf)
2 +

∣∣∂2
t∇σf

∣∣2)dt
= (γ + 1

2 )
2

∫
R+

|uP |2ρ2γdρ+
∫
R

(
(∂t∆σf)

2 + ( 32 − γ)2|∂t∇σf |2 +
∣∣∂2

t∇σf
∣∣2)dt .

(4.10)

Therefore, with the abbreviation

r.h.s.(· · · ) := right-hand side of (· · · ) ,
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the Hardy-Leray quotient for uP ̸≡ 0 is expressed as∫
R3 |∇uP |2|x|2γdx∫
R3 |uP |2|x|2γ−2dx

=
r.h.s.(4.9) +

∫
S2 r.h.s.(4.10)dσ

r.h.s.(4.8)
= (γ + 1

2 )
2 +Rγ(f) , (4.11)

Rγ(f) :=

∫∫
R×S2

(
|∇σ∆σf |2 +

(
(γ + 1

2 )
2 − 2

)
(∆σf)

2 + 2(∂t∆σf)
2 + ( 32 − γ)2|∂t∇σf |2 +

∣∣∂2
t∇σf

∣∣2)dtdσ∫∫
R×S2

(
(∆σf)

2 + ( 32 − γ)2|∇σf |2 + |∂t∇σf |2
)
dtdσ

.

In order to evaluate Rγ(f), we take the one-dimensional Fourier transformation

f(x) = f(etσ) 7→ f̂(λ,σ) =
1√
2π

∫
R
e−iλtf(etσ)dt .

This operation commutes with the spherical derivative operator: ∇̂σf = ∇σ f̂ . Also, the

radial t-derivative is changed into the algebraic multiplier: ∂̂tf = iλf̂ . By the L2-isometry
of the Fourier transformation, we can then rewrite Rγ(f) as

Rγ(f) =

∫∫
R×S2

(
|∇σ∆σ f̂ |2 +

(
(γ + 1

2 )
2 − 2 + 2λ2

)
|∆σ f̂ |2 +

(
( 32 − γ)2λ2 + λ4

)
|∇σ f̂ |2

)
dλdσ∫∫

R×S2

(
|∆σ f̂ |2 +

(
( 32 − γ)2 + λ2

)
|∇σ f̂ |2

)
dλdσ

.

The S2 integration by parts in each of the denominator and the numerator leads to

Rγ(f) =

∫∫
R×S2 f̂ Q(λ,−∆σ)f̂ dλdσ∫∫
R×S2 f̂ q(λ,−∆σ)f̂ dλdσ

,

where Q and q are the polynomials defined by{
Q(λ, α) = α3 +

(
(γ + 1

2 )
2 − 2 + 2λ2

)
α2 +

(
( 32 − γ)2λ2 + λ4

)
α ,

q(λ, α) = α2 +
(
( 32 − γ)2 + λ2

)
α .

We now expand f̂ in the spherical harmonics {Yνm} as in (4.4). Then we have

f̂(λ,σ) =
∞∑
ν=0

ν∑
m=−ν

f̂νm(λ)Yνm(θ, φ) ,

Rγ(f) =

∑∞
ν=0

∑ν
m=−ν

∫
R Q(λ, αν)|f̂νm(λ)|2dλ∑∞

ν=0

∑ν
m=−ν

∫
R q(λ, αν)|f̂νm(λ)|2dλ

=

∑∞
ν=1

∑ν
m=−ν

∫
R Q(λ, αν)|f̂νm(λ)|2dλ∑∞

ν=1

∑ν
m=−ν

∫
R q(λ, αν)|f̂νm(λ)|2dλ

≥ inf
λ∈R

inf
ν∈N

Q(λ, αν)

q(λ, αν)
= inf

x≥0
inf
ν∈N

Fγ(x, αν) , (4.12)

where

Fγ(x, αν) :=
Q(

√
x, αν)

q(
√
x, αν)

=
α3
ν +

(
(γ + 1

2 )
2 − 2 + 2x

)
α2
ν +

(
( 32 − γ)2x+ x2

)
αν

α2
ν +

(
( 32 − γ)2 + x

)
αν

= x+ αν

(
1− 4(1− γ)

x+ αν + ( 32 − γ)2

)
,

which is just the same as [1, Eq.(2.36)n=3]. As in [1] again, by checking that
Fγ(x, αν) ≥ Fγ(0, αν) ≥ Fγ(0, α1) , for γ ≤ 1 ,

∂Fγ(x, αν)

∂αν
= 1 +

4(γ − 1)
(
x+ ( 3

2
− γ)2

)(
x+ αν + ( 3

2
− γ)2

)2 > 0 , for γ > 1 ,
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we obtain the minimum value of Fγ(x, αν) :

inf
x≥0

inf
ν∈N

Fγ(x, αν) = min
x≥0

Fγ(x, α1)

=


Fγ(0, α1) = α1

(
1− 4(1− γ)

α1 + ( 3
2
− γ)2

)
, for γ ≤ 1

α1 +min
x≥0

(
x+

4(γ − 1)α1

x+ α1 + ( 3
2
− γ)2

)
, for γ > 1 .

(4.13)

Then it follows, by combining (4.12) with (4.11), that the poloidal part of Hardy-Leray
quotient is estimated by∫

R3 |∇uP |2|x|2γdx∫
R3 |uP |2|x|2γ−2dx

≥ (γ + 1
2 )

2 +min
x≥0

Fγ(x, α1) , (4.14)

where the value of min
x≥0

Fγ(0, α1) is given in the right-hand side of (4.13).

4.3. Conclusion. By combining (4.5),(4.14) with (4.2), we arrive at∫
R3 |∇u|2|x|2γdx∫
R3 |u|2|x|2γ−2dx

≥ min
{
r.h.s.(4.5) , r.h.s.(4.14)

}
= (γ + 1

2 )
2 +min

{
α1 , min

x≥0
Fγ(x, α1)

}

=


(γ + 1

2 )
2 + Fγ(0, α1) = (γ + 1

2 )
2
4 + (32 − γ)2

2 + (32 − γ)2
, for γ ≤ 1

(γ + 1
2 )

2 + α1 = (γ + 1
2 )

2 + 2 , for γ > 1

= Cγ

for every solenoidal fields u ̸≡ 0 . This completes the proof of Theorem 2 .

5. Appendix.

Here we show that the function S2 × S2 ∋ (σ,σ′) 7→ log(1− σ · σ′) with σ ̸= σ′ defines
a Green’s function of the Laplace-Beltrami operator on S2:

Lemma 5. For every f ∈ C∞(S2), let us define the function Gf : S2 → R by

Gf (σ) =

∫
S2
f(σ′) log(1− σ · σ′)dσ′ for all σ ∈ S2.

Then Gf is smooth on S2 and satisfies the Poisson-Beltrami equation

∆σGf (σ) = 4πf(σ)−
∫
S2
f(σ′)dσ′ for all σ ∈ S2.

proof. We construct the proof in the following steps:

Step 1. First of all, Gf (σ) is well-defined for each σ = (cos θ, sin θ cosφ, sin θ sinφ). Indeed,
since the matrix Rσ = (σ, ∂θσ, ∂φσ) = (σ, eθ, eφ) ∈ SO(3) maps e1 = (1, 0, 0) to σ if
σ ̸= ±e1, we have∫

S2
f(σ′) log(1− σ · σ′)dσ′ =

∫
S2
f(σ′) log

(
1− (Rσe1) · σ′)dσ′

=

∫
S2
f(RσR

−1
σ σ′) log

(
1− e1 ·R−1

σ σ′) dσ′

=

∫
S2
f(Rσσ

′) log(1− e1 · σ′)dσ′

=

∫ 2π

0

dφ′
∫ π

0

f(Rσσ
′)
(
log(1− cos θ′)

)
sin θ′dθ′.
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Here the second last equality follows by the change of variables, R−1
σ σ′ 7→ σ′. Since the

integrand in the last line is bounded on S2, the above integrals are all convergent, which
proves Gf (σ) to be well-defined if σ ̸= ±e1. Moreover, we obtain

Gf ∈ C∞(
S2\{±e1}

)
from the differentiability of the function σ 7→ f(Rσσ

′). Replacing f by f ◦ Re2 for the
rotation matrix Re2 = (e2,−e1, e3), we also have Gf◦Re2

= Gf ◦ Re2 ∈ C∞(S2\{±e1}),
which implies Gf ∈ C∞(

S2\{±Re2e1}
)
= C∞(S2\{±e2}). Hence Gf ∈ C∞(S2), as a result.

Step 2. For every g ∈ C∞(S2), we prove that

Fg(σ
′) :=

∫
S2
∆σg(σ) log(1− σ · σ′)dσ = 4πg(σ′)−

∫
S2
g(σ)dσ (5.1)

for any σ′ ∈ S2. To do so, we verify the formula

Fg◦R = Fg ◦R for every R ∈ SO(3).

We identify every g ∈ C∞(S2) with g̃ ∈ C∞(R3\{0}) by the relation g̃(x) = g(x/|x|). Then
integration by parts together with the chain rule ∇σg(Rσ) = R−1∇g(Rσ) yields

Fg◦R(σ
′) =

∫
S2

(
∆σg(Rσ)

)
log(1− σ · σ′)dσ = −

∫
S2
∇σg(Rσ) · ∇σ log(1− σ · σ′)dσ

=

∫
S2

(
R−1∇g(Rσ)

)
· σ

′ − (σ′ · σ)σ
1− σ · σ′ dσ =

∫
S2
∇g(Rσ) · Rσ′ − (Rσ′ ·Rσ)Rσ

1−Rσ ·Rσ′ dσ

=

∫
S2
∇g(σ) · Rσ′ − (Rσ′ · σ)σ

1− σ ·Rσ′ dσ = −
∫
S2
∇σg(σ) · ∇σ log(1− σ ·Rσ′)dσ

=

∫
S2
∆σg(σ) log(1− σ ·Rσ′)dσ = Fg(Rσ′) ,

where the third and the sixth equality follow from (2.5), and the fifth equality follows by
the change of variables Rσ 7→ σ. Hence the proof of Fg◦R = Fg ◦ R is done. By choosing
R ∈ SO(3) to satisfy Re1 = σ′, we see that equation (5.1) is equivalent to

Fg◦R(e1) = Fg(Re1) = 4πg(Re1)−
∫
S2
g(Rσ)dσ .

Then replacing g ◦ R by g reduces the proof of (5.1) to the special case σ′ = e1. This case
is verified by integration by parts:

Fg(e1) =

∫
S2

(
∆σg(σ)

)
log(1− σ · e1)dσ = −

∫
S2
∇σg(σ) · ∇σ log(1− cos θ)dσ

= −
∫
S2
∂θg(σ)∂θ log(1− cos θ)dσ = −

∫ 2π

0

dφ

∫ π

0

∂θg(σ)
(sin θ)2

1− cos θ
dθ

= −
∫ 2π

0

dφ

∫ π

0

∂θg(σ)(1 + cos θ)dθ

= −
∫ 2π

0

dφ

([
g(σ)(1 + cos θ)

]θ=π

θ=0
−
∫ π

0

g(σ)(− sin θ)dθ

)
= 4πg(e1)−

∫
S2
g(σ)dσ .

Thus the proof of (5.1) is done.
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Step 3. By the definition of Gf , integration of (5.1) with (signed) measure f(σ′)dσ′ over
S2 yields ∫

S2
∆σg(σ)Gf (σ)dσ =

∫∫
S2×S2

∆σg(σ)f(σ
′) log(1− σ · σ′)dσdσ′

=

∫
S2

(
4πg(σ′)−

∫
S2
g(σ)dσ

)
f(σ′)dσ′

=

∫
S2
g(σ)

(
4πf(σ)−

∫
S2
f(σ′)dσ′

)
dσ .

On the other hand, since g and Gf are smooth, the self-adjointness of ∆σ in L2(S2) gives∫
S2
g(σ)∆σGf (σ)dσ =

∫
S2
∆σg(σ)Gf (σ)dσ .

Hence combining the two results yields∫
S2
g(σ)∆σGf (σ)dσ =

∫
S2
g(σ)

(
4πf(σ)−

∫
S2
f(σ′)dσ′

)
dσ .

Since the choice of g ∈ C∞(S2) is arbitrary, the two integrands in the both sides must
coincide, which proves the desired equation. □
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