A CHARACTERIZATION OF DIFFERENTIABILITY
FOR THE BEST TRACE SOBOLEV CONSTANT
FUNCTION

KAZUYA AKAYAMA! AND FUTOSHI TAKAHASHI?

ABSTRACT. Let 1 < p < N and let €2 be a smooth bounded do-
main in RY. In this paper we show some regularity results for
the best constant S, of the trace Sobolev embedding W1?(Q) —
L1(0Q), considering that S, is a function of g. We prove that S,
is absolutely continuous, thus S} = diqu exists a.e. ¢ € [1,p.],

N—1 . L
. = %. We give a characterization on a set where S; ex-

ists. These are natural extensions of the recent work by Ercole for

the best constant of the Sobolev embedding W, (Q) < L4(Q) for
* _ N

q € []—vp*}a P = Nif;,

Key words: Best trace Sobolev constant, Absolute continuity, Dif-

ferentiability

2010 Mathematics Subject Classification: 46E35, 35J20, 35J25

1. INTRODUCTION

Let 1 < p < N be fixed and let  be a bounded domain in RY
with a smooth boundary 0f2. The well-known trace Sobolev embedding

theorem claims that the continuous inclusion W (Q) < L9(9Q) holds
true for 1 < ¢ < p,, where p, = 2 %V:pl) denotes the trace Sobolev critical
exponent. Hence the following trace Sobolev inequality holds true for

any u € WhH(Q):

C (/m |u|? d”HN‘l)g < /ﬂ(|vu|1’ +uPyde (1<q<p,) (11
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where HV~! denotes the (N — 1)-dimensional Hausdorff measure on
the hypersurface 9€). The best constant of the trace Sobolev inequality
(1.1) (i.e., the largest C' such that the above inequality holds for any
we WhP(Q) \ Wy P(Q)) is defined as

Jo ((Vul” + Jul?) da

D
q

Sy = 54() := inf
ueWLP(Q)\WaP(Q) (fm ’u|q dHNfl)

~ / (Vuf + |uf)dz.  (12)
wewbP@\Wa P (@) JO
||U‘|Lq(ag):1

It is known that the continuous embedding W'?(Q) < L%(99Q) for
1 < g < p, is actually compact when 1 < ¢ < p,, thus a minimizer
for S, exists for 1 < ¢ < p,. A minimizer u, for S, with the property
||l La(p) = 1 is @ weak solution of the Euler-Lagrange equation
Apu = |ulP~2u  inQ
pU 2’8‘ . (1.3)
(VulP=252 = Sylul*u  on 09,

where v is the outer unit normal of 0{2. Note that by the strong
maximum principle [18], a solution u of (1.3) has a constant sign on 2,
and we may assume u > 0 on €. Also regularity results (see e.g., [15],

[17]) imply that u € C%(2) N C*(Q) for some a € (0, 1).

For the case ¢ = p,, the existence of a minimizer becomes a subtle
problem because of the lack of compactness. Recently it is proved in
[14] that S, is attained on any smooth bounded domain when p €
(1,2 + 3), where 8 = B(Q) > 0. See [1], [11], [6], [7] for earlier
results on the existence of extremals for S, (€2) on bounded domains.

This is a striking difference between the best constant for the Sobolev
inequality

p
Sg=5,(Q):= inf fﬂw—u'di (1.4)
“EVZ%(Q) (J, luledz)

forl1 <g<p*= NN—SD. Indeed, S’p*(Q) is never attained on any domain
Q other than RY and S,-(Q) does not depend on the domain Q but
depends only on N. More precisely, S,-(Q2) = S,-(RY) and the explicit
value of Sy is known, see [16].

Also, the behaviors of both the constants S,(€2) and S, () under the
dilations of the domain are different from each other. That is, if we
define uQ = {puz |z € Q} for u > 0, we have S, (uQ) = ,uN_p_%gq(Q).
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On the other hand, it is easy to see by using u,(z) = u(ux) that
o ) da

N— p(N—-1)
a P
weWLP@©\Wo () ([0 |u, |t dHN1) e

Sq(ps2) = p

Recently, several regularity properties of S*q as a function of ¢ €
[1,p*] = NN—_’;) are proved by G. Ercole [3], [4]; see also [8] and [2]. In
fact, in [3] it is proved that the function ¢ — Sq is Lipschitz continuous
on the interval [1,p* — €] for any € > 0 small. Also S, is absolutely
continuous on the whole closed interval [1,p*] and thus its derivative
%}Sq = 5, exists almost all q € [1,p*]. In [4], th? author characterizes
the point ¢ € [1,p*) where S, is differentiable; 57 exists if and only if
the functional

() = | Jul"log ulds
Q

takes a constant value on the set Eq of the L%-normalized extremal
functions corresponding to S;:

By = {u € W) [ull oy = 1 and | [VuPdo = 5.

We say that S,(Q) is simple if the extremal functions associated with
S, are scalar multiple one of the other. This is equivalent to say that
E, = {#u,} for an L%normalized extremal u, € W,”(Q). Recall
that there is a long-standing conjecture that Sq(Q) is simple if 2 is a
bounded smooth convex domain in RY and 1 < ¢ < p*. Up to now, only
several partial results are available for this conjecture, however, the
complete solution has not been obtained. Ercole’s result is interesting
since we can disprove the conjecture if we find ¢ such that 5'(’1 does not
exist.

Main purpose of this paper is, in spite of the differences between
S’q and S,, to obtain similar regularity results and a characterization
of differentiability of the function [1,p.] 3 ¢ — S,. In what follows,
| A| stands for both the N-dimensional Lebesgue measure £~ (A) when
A C Q and the (N —1)-dimensional Hausdorff measure H¥~!(A) when
A C 0. We hope that this abbreviation causes no ambiguity. |[ul|,qq)
and [[u|| 40y denotes the L?-norm of a function v : € — R and u :
09) — R respectively. x4 denotes a characteristic function of a set A.

2. MONOTONICITY AND BOUNDED POINTWISE VARIATION

(N=1)p

In what follows, we fix 1 < p < N and put p, = N
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Concerning the monotonicity of ¢ — S, first, we prove the following
lemma:

Lemma 2.1. The function q — |02P/9S, is monotone decreasing on
[1,p.]. In particular, the function q € [1,p.] — S, is monotone de-
creasing if |0 < 1 and strictly monotone decreasing if |02 < 1.

Proof. let 1 < ¢; < ¢2 < p,. By Holder’s inequality, we have

—p/q2 -p/q1
|5;Q‘p/q2 (/ ’u‘tp d’HNl) < |3Q’p/q1 </ |u|‘“ deN1> )
o0 o0

Multiplying [, (|Vul? + |u|?) dz to both sides and taking infimum, we

see that ¢ € [1,p.] — |0QP/1S, is a monotone decreasing function.
Thus

SQI > |8Q|(1/Q2—1/Q1)p8q2 > 5q2
if |09 < 1. O

In Lemma 2.1, we see that the function ¢ ~— [0Q|P/9S, is strictly
monotone decreasing on [1, p,] if |02 < 1. However, we can say more.
In the next lemma, the Rayleigh quotient associated with the trace

Sobolev embedding W1?(Q) \ Wy*(2) — R is denoted by

R — o (7 + ) d iy
T (el artys Tl

Lemma 2.2. Let u € (W(Q)\ W,P(Q)) N L®(0NQ), u # constant.
Then for each 1 < q1 < qo < py

§3 2 2 K(t,u
o1 Rut) = o Ry e (v [ S5 ar) )
q1
where
tl t deN—l 0
K(t,u) = Jog I ogt|u| + log # >0 (2.2)
HUHLt(aQ) HuHLt(aQ)

Before the proof, we remark that the assumption of u € L>®(09) is
used to assure the finiteness of the integral [, [u[?* log [u| dHN "',

1
Proof. The proof will be done by differentiating log (”u||a ) ) with
Lt(6%)
respect to t.
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Fix ¢y < p. and consider t € [1,qo]. For u € W'"(Q) \ W,*(Q), we
have an estimate

|[ul*log |u]| = x{ui<y [ul*| 1og |ul| + X{u>1|ul'| log |ul|

< (te)™' + !
< Xlul<1] Xllul>1

<elg

P ¢ L1092,

lu
P« — qo

here we have used #'|log z| < (te)™! for 0 < # < 1 and |logz| < 872"

for any > 1 and 8 > 0. Thus we see ||ul'log |u|| € L'(09). Since

qo can be chosen arbitrarily near to p,, we may differentiate under the
integral symbol to get

d

\u]t dHN ! / lu|* log |u| dHN~*
dt o9

for any 1 < t < p, by Lebesgue’s dominated convergence theorem.
Thus

d 09|+ d (1 d (1 Nl
— [ log ———— log |09 log/ lu|" dH
dt ( HM’U(@Q)) dt ot

1 1 t gN-1
= —t—210g 09| + ﬁlOg /89 lul" dH

1 [oq [ul"log Ju] dHN !
t foq lult dHN1

K(t,u)
2

Integrate the above on [q1, ¢2] with respect to ¢, we obtain

oo |00 2 K(tu)

HUHLQ1(aQ) a ||u||Lq2(BQ) a 2

dt

Multiplying [[ully1,(q), and taking p-th power, we get (2.1).
Next, we claim K (¢,u) > 0. Define h : [0,00) — R as

hE) = {Slogﬁ €>0
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Then h is convex, and Jensen’s inequality implies
1 1
h| — uthN1>§— h(|ult) dHN!
(o Lo 00 Sy

=]0Q|™! </ |ulf dHN—l)log<|aQ|—1/ |ulf dHN—l)
o0 o0

< |8le/ ] log |u|! dHN!
o0
t t N-1
o Jog [ul' og [u]' d +1og< 09| )ZO
)

[l o) [l o

By the equality cases for Jensen’s inequality (see [12]), if the equality
holds for the above inequality, then |u|" must be a constant, which is
excluded. Thus the equalities do not hold and K (¢,u) > 0. O

From Lemma 2.2, we easily see the next corollary:

Corollary 2.3. The function q € [1,p.] — |0QP/1S,, is strictly mono-
tone decreasing. In particular, The function q € [1,p.] — S, is strictly
monotone decreasing if |02 < 1.

Proof. Let 1 < q1 < ¢o < p, and let u, € WHP(Q) \ W, P(Q) denote
an extremal function for S;,. Then the regularity theorem assures that

ug, € C*(Q) and u, must not be a constant. It follows from Lemma
2.2 that

QP S, = |0/ Ry, (ug,) exp (p /
q

1

” K(t7 utn)
Ko,

> ‘aQ|p/q2 Ry, (ug,)
> \3Q]p/q25q2.
The latter claim is trivial. O
Let I C R be an interval. In what follows, a finite set P = {zg, -+ ,2,} C

I, xg < xy < -+ <y, is called a partition of I. Following [10] Chapter
2, we say that a function f : I — R has bounded pointwise variation if

sup {Z |f(x;) — f(xll)\} < 00

where the supremum is taken over all partitions P = {xq, - ,z,} of
I, n € N. The space of all functions f : I — R with bounded pointwise
variation is denoted by BPV (I).

Corollary 2.4. The function g — S, is in BPV (I) where I = [1,p,].



CHARACTERIZATION 7

Proof. Since a bounded monotone function on [ is in BPV (I) ([10]
Proposition 2.10), and the product of a bounded function and a func-
tion in BPV/(I) is again in BPV(I), we have S, = (|0Q[?/15,)|0Q| /4
is in BPV(I). O

3. SOME ESTIMATES FOR THE EXTREMALS

First by utilizing level set techniques, we derive some pointwise es-
timates for any positive solution to (1.3).

Lemma 3.1. Let u be a positive weak solution to (1.3) with 1 < q < p..
Then for any o > 1, it holds

1\°V-1! (N-1)(p-q+p-1o
(5)  Gllimgnr <Ml 6D

where

Proof. As u > 0 solves (1.3) weakly, it holds
- / |VulP2Vu - Védr + S, / it dHN T = / uPlodr  (3.2)
0 o9

Q
for all ¢ € WP(Q). B
By a regularity theory (see [15], [17]), we may assume u € C*(€2) for
some 0 < o < 1. Fix ¢ € R such that 0 <¢ < ||ul|(sq)- Put
A ={zeQ|u(z)>t}, a={xred]|ulx)>t}
We take the function

= (u—t)" e WH(Q),
¢ = (u ) () 0 otherwise

u—t inAtUat,
o-{

in (3.2), then we have

— [ |VulPdz + Sq/ wl™Hu—t) dHN T = / uP (u — t)d.
Ay at Ay
Rewriting this, we have

/ (|VulP +uPHu—t)) do = Sq/ u(u —t) dHN T
Ay

< Syllullfec oy (lullL=(agy — t)lacl- (3.3)
Now, put

9(t) = /d (u— )T M = / (u—t) dHN!

at
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and recall the layer cake representation: Let v > 0 be a H"~'-measurable
function on 0€2. Then for any o > 1, it holds

/ o dHY N = o / U (g € 00 | v(x) > 5))ds
o0 0

Thus, we see

:/OOO HY T ({2 €0 | (u—1t)t > s}) ds:/too|as|d87

here the last equality follows from a change of variables ¢t +s — s. This
implies ¢'(t) = —|a|. By Holder’s inequality, (1.1) and (3.3), we have

otvr = ([ -t a)

< ( {(u—1)*}" d’HNl) " a0
o0
< gl [ (90—t P+ (= ))) do
P

= Lo / (IVal? + (u — £ (u— 1)) da
Sp* Ay

< g —U/ (VP + a7 (u — ) da
Sp* Ay
Sq L)+1

1—
=5, ||U||Loo Q) (HU”Loo(aQ) - t)|at|p( b

= qll ull o0y (lull e ony — ) (=9 (£) ™7,

which results in

N
S Np—1 Np—p
S ull i ulleon -0 < g% /0.

D=

Changing a variable from ¢ to s, and integrating the both sides of (3.4)
on [t, HUHLOO(aQ)]7 we get

(N—=1)(g—1)

Callull oty (ull oo any = ™ < g(#). (3.5)

Since g(t) < ([[ull po o0y — t)|at|, we have from (3.5) that

(N=1)(g=1)

Callull oty (ull ooy = " < lad. (3.6)
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We multiply ot°~! to the both sides of (3.6) and integrate them on
[O, ||“||Loo(aﬂ)]' Then the right hand side becomes [[u||7. 5, by layer

cake representation. By changing variables ¢ — [[u|| .« n)5, we observe

(N-1)(g=1)

UL HUIILoowm o Nl
(LHS) = Cyllullpeihy 0 / 17 (g oy — £l

(N—-1)(p—q)+(p—1)o

1
= Cyllull oo o) * 0/0 s77H1 - s)Vds

=

_(N=D(p=g)+(p—Do Lo (N—1)
p—1 o—1lo—(N—
> Collul| oo (0 O’/O s772 ds

1\ otV-t (V=D (p=g)+(p=Do
~(3) Gl

Thus we get the conclusion. O

By the Lemma 3.1, we have the uniform boundedness of the extrem-
izers for the subcritical range.

Lemma 3.2. Let ¢ > 0 sufficiently small and let u, be a positive
L1(092)-normalized extremal for S, where 1 < q¢ < p, —e. Then we
have

|aQ|_1/q < HuqHLOO(BQ) < C:

where C. > 0 is a constant which depends only on € > 0.
Proof. Hélder’s inequality and the fact [lugl| qpq) = 1 yield the first

inequality.
Next, suppose 1 < ¢ < p. Taking 0 =1 in (3.1), we have
1\Y V=) @=g) (=) 1-1/q 1-1/g
5 ) Calltllze o) < ull 1 any < 10U [ugllogany = 109/,

Thus

2N 9Q| /e De-a =D
||uq||Loo (o0) = max —Cq =: A.

1<q¢<p

If p<q<p,—e, then take 0 = ¢ in (3.1) to obtain
1\t (N-1)(p—a)+ =1
(5) CQHUHLOO(aQ)p < HuHLq(aQ L.

(N—p)(px—a)

< 2q+N+1 (»-1) _. 3
HuqHLOO (69) <{JIL%X7€ c, = B¢

Thus
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since (N—1)(p—q)+(p—1)g = (N —p)(p.—q). Put C. = max{A, B.}.
U

By combining Lemma 3.2 and Proposition 2.7 in [7], we have the
following fact:

Proposition 3.3. (Bonder-Rossi [7] Proposition 2.8.) The function
q € [1,p] — S, is continuous.

For the proof, we refer the readers to [7].

4. LOCAL LIPSCHITZ AND ABSOLUTE CONTINUITY

In this section, by combining the arguments in [3] and [2], we prove
the local Lipschitz continuity of S, on (1, p,) and the absolute conti-
nuity of S, on the whole closed interval [1, p,].

Theorem 4.1. The function q — S, s locally Lipschitz continuous on
the interval (1, p.).

Proof. Fix u € W'(Q) \ W, (Q). Since z*(log|z|)? < (te)~2 for 0 <
r<landt>0,weseeforl<t<qgy<ps,

2
|ul(log [u])* = (X{ui<1) + X{juj>1)) [u[*] log |ul]
2 2
= Xuj<y |l log [ul|” + xusylul'| log ul|

DPx

< e (t) ™ + (a1 ——u
> X[u|<1] [Jul> ]p ¢

1
P« — 4o
Since go can be chosen arbitrarily close to p., we have [[ul|7,(sq, is at

least twice differentiable and

ey = [ lulog u)? dr > 0

dg? ) g B
for any ¢ € (1,p.) by dominated convergence theorem. Thus g €
(L,p") = |lullZq(aq) is @ convex function. Now, set

*

<e?4

P e LHOQ).

|u

S={u e WP\ WyP(Q) | lullyrs@ = 1}
and define

h(q) = sup ||u||qu(aQ)-
ues

Since h is a supremum of convex functions [[u[|7, g, it is also convex
and locally Lipschitz continuous on (1, p.) (see [5] pp.236), which yields
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that |h(¢)| < oo and |W(q)] < oo a.e.in ¢ € (1,p.). Note that S, =
—: _ . —qlogh(a)
hlg) T+ = ¢4 ER0)so

/ 1 /
S, =5, (—glog h(q)) :

It is easy to see that h(q) is bounded from above and below by a positive
constant on ¢ € (1, p,). Thus

(élogh0ﬁ>/
1

1
<s, (?uogh(qnw

|S(/;| = Sq

h(q)
h(q)

From this, we have the conclusion. O

D < oo a.e. in (1,p.)

Theorem 4.2. The function ¢ — S, is absolutely continuous on the
whole interval [1, p.].

Proof. Since we know that S, is of bounded pointwise variation on
[1, p] by Corollary 2.4, we have

q
&:&:/$ﬁ+&@+&@
1

where S¢ is the Cantor part of S, and S; is the jump part of S, see
[10] Theorem 3.73. Then the claim that S, is absolutely continuous on
[1,p.] is equivalent to S¢ = S; = 0. Since S, is continuous on [1, p,]
by Proposition 3.3, we see that the discontinuous part S; = 0. The
Cantor part of Sy, that is S¢, is continuous, differentiable a.e., and
St:(q) = 0 ae. ¢ € [1,p]. Since S, is Lipschitz continuous on any
interval of the form [1, p, — €], € > 0, it is absolutely continuous on the
same interval, thus the support of S¢ must be concentrated on {p,}.
Therefore Sc = 0 since S¢ is continuous at p,. O

5. A CHARACTERIZATION OF DIFFERENTIABILITY

Let us define the functional I, : (IW5P(Q)\ WyP(Q)) — R as

LG = [ Jullogul dn
Ge)
and the set of L(9)-normalized extremal functions
E, = {u € W@\ We?(Q) | lull aony = L. lullfyiagy = So}

for ¢ € [1, p.].
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Theorem 5.1. For each q € [1,p.) let u, be arbitrarily chosen in E,.
Then we have

lim sup —~ < —Elq(uq)Sq < lim inf S~ St.
t—qt0 q—1 q t—q—0 q—1
Therefore for q € (1,p.) on which S, exists, it holds
p
Sy + 5Iq(uq)Sq = 0. (5.1)

Proof. Take q € (1,p.) and let u, an extremal for S, in E,. Put

Jt) = [ |ugl" dH L.
20
Then we see J(¢) = 1 and J’(t)’t:q = [0 lugl?log |ug| dHN T = I, (uy).

Since

(Tt = Tty (‘t% log J () + ??8 ) ’

we see

= 21, (uy).

Hl, e =L =2

dt t=q q
Also testing S; by u,, we see

p/t
Sq = Huq|’€[/1m(ﬂ) Z St (/ |uq|t dHN—1> — Stj(t)P/t
o0

Thus L’Hopital’s rule and the continuity of S, imply that

Sg— S J(tr't —1
lim sup 202 < im sup St()—
t—q+0 4 — t t—q+0 q—1
d
= — im — p/t
% tEqH—lO dt lt=q (7))
p
= _5Iq(uq)5¢
The similar argument yields
. . Sq - St p
> _ £
lglql_r%]f - qu(uq)Sq.

O

If S exists for ¢, the value S is independent of the choice of u, €
E,. Therefore, the above theorem implies that the value I,(u,) is also
independent of the choice of u, € E,, which proves the next corollary.

Indeed, I,(u,) = —%?—3 for any choice of u, in E,.
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Corollary 5.2. Let ¢ € (1,p.) be such that S, exists. Then the
functional 1, takes a constant value on E,; I, (uy) = I,(ug) for any
ui, us € L.

Now, let us define f as

f(q) = {ﬁfq(uq) when S exists,

) (5.2)
0 when S(/; does not exist.

f is well-defined on [1,p,) by Corollary 5.2 and f(q) = — 5% when S,

S
exists by (5.1). '
We have a representation formula for S, by using f in (5.2).

Theorem 5.3. It holds
q
Sy = S1exp (—/ ft) dt) (5.3)
1

Jor1<q<p.

Proof. Since the function ¢ — S, is absolutely continuous on [1, p,] by
Theorem 4.2, we have also the function [1, p,] 5 ¢ — log S, is absolutely
continuous. Thus by (5.1),

q d q Sé q
log S, —log 51 = / <£log St) dt = / §dt = —/ f(t)dt
1 1 Ot 1

for all ¢ € [1, p.], which yields the result. O

Theorem 5.3 implies also

S, = S1exp (— /1 " by + /q " f(t)dt>
— Sy exp (— /11)* £t) dt) exp (/qp f(t)dt) = 5, exp (/qp f(t)dt).

As an immediate corollary of Theorem 5.3, we have the following;:

Corollary 5.4. Let g € [1,p.) be a point of continuity of f. Then %Sq
exists and

Sy = =5/ (a)
holds.
Proposition 5.5. Suppose 1, is constant on E, for some q € [1,p,).

Then f is continuous on such q. Especially f is continuous on q where
S, exists.
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Proof. Take ¢ € [1, p.) and a sequence g, — g as n — 0o. Since g — S,
is continuous, we see S, — S;. Also by elliptic regularity and the fact
that [lug, ||}~ is uniformly bounded in n, we have a subsequence

(again denoted by ¢,) and u € E, such that u, — u in C'(Q) and
[ull o(9q) = 1. Therefore, we have

fla) =L / tg |9 log [ug, | AHN 1 5 P / ] log [u] dHN
0 q Jon

p p
==1,(u) ==1,(uy) = f(q),
L) = Lalug) = f(9)
since I,(u) = I,(u,) for u,u, € E,. O

Now, we obtain a characterization of the differentiability of the func-
tion g — Sy.

Theorem 5.6. The following 3 assertions on a point ¢ € [1,p,) are
equivalent:
(i) S| exists.
(11) 1, is constant on E,.
(i1i) The function t € [1,p.] — I(us) is continuous at t = q.

Proof. (i) = (ii): Corollary 5.2.

(1) = (i17): Since the continuity of f(t) at t = ¢ is equivalent to
the continuity of ¢ — I(u;) is continuous at ¢ = ¢, the proof follows
from Proposition 5.5.

(7i1) = (i): Corollary 5.4. O

It is known that S, is simple when ¢ = p and E, = {£u,} for some
u, € E, ([13]). Thus we see S, = d%sq}q:p exists and t — I;(u) is
continuous at t = p. Also if €2 is a ball with sufficiently small radius and
p = 2, then S, is simple for any 1 < ¢ < 2, = 2%\[__21) and the unique
normalized extremizer for S, is radial (see [6] Theorem 2.1). Thus
q — Sy is differentiable on 1 < ¢ < 2, on small balls. Moreover the
abstract approach using a variational principle in [9] could be applied
to obtain the uniqueness of the positive solution of

Ayu = [ulP?u  inQ,
uP 5= = Au|?T“u on 0f,
VulP~29% = Au|7~2 o0

where A > 0, 1 <p < N and 1 < ¢ < p. If this is the case, then we
see that the function ¢ — S, is differentiable for 1 < ¢ < p on any
bounded domain. However, the simplicity of S, for p < ¢ < p, on a
general bounded smooth domain is unknown.
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