A CHARACTERIZATION OF DIFFERENTIABILITY FOR THE BEST TRACE SOBOLEV CONSTANT FUNCTION

KAZUYA AKAYAMA ${ }^{1}$ AND FUTOSHI TAKAHASHI ${ }^{2}$

Abstract

Let $1<p<N$ and let Ω be a smooth bounded domain in \mathbb{R}^{N}. In this paper we show some regularity results for the best constant S_{q} of the trace Sobolev embedding $W^{1, p}(\Omega) \hookrightarrow$ $L^{q}(\partial \Omega)$, considering that S_{q} is a function of q. We prove that S_{q} is absolutely continuous, thus $S_{q}^{\prime}=\frac{d}{d q} S_{q}$ exists a.e. $q \in\left[1, p_{*}\right]$, $p_{*}=\frac{p(N-1)}{N-p}$. We give a characterization on a set where S_{q}^{\prime} exists. These are natural extensions of the recent work by Ercole for the best constant of the Sobolev embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ for $q \in\left[1, p^{*}\right], p^{*}=\frac{N p}{N-p}$.

Key words: Best trace Sobolev constant, Absolute continuity, Differentiability
2010 Mathematics Subject Classification: 46E35, 35J20, 35J25

1. Introduction

Let $1<p<N$ be fixed and let Ω be a bounded domain in \mathbb{R}^{N} with a smooth boundary $\partial \Omega$. The well-known trace Sobolev embedding theorem claims that the continuous inclusion $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ holds true for $1 \leq q \leq p_{*}$, where $p_{*}=\frac{p(N-1)}{N-p}$ denotes the trace Sobolev critical exponent. Hence the following trace Sobolev inequality holds true for any $u \in W^{1, p}(\Omega)$:

$$
\begin{equation*}
C\left(\int_{\partial \Omega}|u|^{q} d \mathcal{H}^{N-1}\right)^{\frac{p}{q}} \leq \int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x \quad\left(1 \leq q \leq p_{*}\right) \tag{1.1}
\end{equation*}
$$

[^0]where \mathcal{H}^{N-1} denotes the $(N-1)$-dimensional Hausdorff measure on the hypersurface $\partial \Omega$. The best constant of the trace Sobolev inequality (1.1) (i.e., the largest C such that the above inequality holds for any $\left.u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right)$ is defined as
\[

$$
\begin{align*}
S_{q}=S_{q}(\Omega) & :=\inf _{u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x}{\left(\int_{\partial \Omega}|u|^{q} d \mathcal{H}^{N-1}\right)^{\frac{p}{q}}} \\
& =\inf _{\substack{u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega) \\
\|u\|_{L^{q}(\partial \Omega)}=1}} \int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x . \tag{1.2}
\end{align*}
$$
\]

It is known that the continuous embedding $W^{1, p}(\Omega) \hookrightarrow L^{q}(\partial \Omega)$ for $1 \leq q \leq p_{*}$ is actually compact when $1 \leq q<p_{*}$, thus a minimizer for S_{q} exists for $1 \leq q<p_{*}$. A minimizer u_{q} for S_{q} with the property $\left\|u_{q}\right\|_{L^{q}(\partial \Omega)}=1$ is a weak solution of the Euler-Lagrange equation

$$
\left\{\begin{array}{l}
\Delta_{p} u=|u|^{p-2} u \quad \text { in } \Omega \tag{1.3}\\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=S_{q}|u|^{q-2} u \quad \text { on } \partial \Omega
\end{array}\right.
$$

where ν is the outer unit normal of $\partial \Omega$. Note that by the strong maximum principle [18], a solution u of (1.3) has a constant sign on Ω, and we may assume $u>0$ on Ω. Also regularity results (see e.g., [15], [17]) imply that $u \in C_{l o c}^{1, \alpha}(\Omega) \cap C^{\alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$.

For the case $q=p_{*}$, the existence of a minimizer becomes a subtle problem because of the lack of compactness. Recently it is proved in [14] that $S_{p_{*}}$ is attained on any smooth bounded domain when $p \in$ $\left(1, \frac{N+1}{2}+\beta\right)$, where $\beta=\beta(\Omega)>0$. See [1], [11], [6], [7] for earlier results on the existence of extremals for $S_{p_{*}}(\Omega)$ on bounded domains.

This is a striking difference between the best constant for the Sobolev inequality

$$
\begin{equation*}
\tilde{S}_{q}=\tilde{S}_{q}(\Omega):=\inf _{\substack{u \in W_{0}^{1, p}(\Omega) \\ u \neq 0}} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\left(\int_{\Omega}|u|^{q} d x\right)^{\frac{p}{q}}} \tag{1.4}
\end{equation*}
$$

for $1 \leq q \leq p^{*}=\frac{N p}{N-p}$. Indeed, $\tilde{S}_{p^{*}}(\Omega)$ is never attained on any domain Ω other than \mathbb{R}^{N} and $\tilde{S}_{p^{*}}(\Omega)$ does not depend on the domain Ω but depends only on N. More precisely, $\tilde{S}_{p^{*}}(\Omega)=\tilde{S}_{p^{*}}\left(\mathbb{R}^{N}\right)$ and the explicit value of $\tilde{S}_{p^{*}}$ is known, see [16].

Also, the behaviors of both the constants $S_{q}(\Omega)$ and $\tilde{S}_{q}(\Omega)$ under the dilations of the domain are different from each other. That is, if we define $\mu \Omega=\{\mu x \mid x \in \Omega\}$ for $\mu>0$, we have $\tilde{S}_{q}(\mu \Omega)=\mu^{N-p-\frac{p N}{q}} \tilde{S}_{q}(\Omega)$.

On the other hand, it is easy to see by using $u_{\mu}(x)=u(\mu x)$ that

$$
S_{q}(\mu \Omega)=\mu^{N-\frac{p(N-1)}{q}} \inf _{u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)} \frac{\int_{\Omega}\left(\mu^{-p}\left|\nabla u_{\mu}\right|^{p}+\left|u_{\mu}\right|^{p}\right) d x}{\left(\int_{\partial \Omega}\left|u_{\mu}\right|^{q} d \mathcal{H}^{N-1}\right)^{\frac{p}{q}}} .
$$

Recently, several regularity properties of \tilde{S}_{q} as a function of $q \in$ $\left[1, p^{*}\right]=\frac{N p}{N-p}$ are proved by G. Ercole [3], [4]; see also [8] and [2]. In fact, in [3] it is proved that the function $q \mapsto \tilde{S}_{q}$ is Lipschitz continuous on the interval $\left[1, p^{*}-\varepsilon\right]$ for any $\varepsilon>0$ small. Also \tilde{S}_{q} is absolutely continuous on the whole closed interval $\left[1, p^{*}\right]$ and thus its derivative $\frac{d}{d q} \tilde{S}_{q}=\tilde{S}_{q}^{\prime}$ exists almost all $q \in\left[1, p^{*}\right]$. In [4], the author characterizes the point $q \in\left[1, p^{*}\right)$ where \tilde{S}_{q} is differentiable; \tilde{S}_{q}^{\prime} exists if and only if the functional

$$
\tilde{I}_{q}(u)=\int_{\Omega}|u|^{q} \log |u| d x
$$

takes a constant value on the set \tilde{E}_{q} of the L^{q}-normalized extremal functions corresponding to \tilde{S}_{q} :

$$
\tilde{E}_{q}=\left\{u \in W_{0}^{1, p}(\Omega) \mid\|u\|_{L^{q}(\Omega)}=1, \text { and } \int_{\Omega}|\nabla u|^{p} d x=\tilde{S}_{q}\right\} .
$$

We say that $\tilde{S}_{q}(\Omega)$ is simple if the extremal functions associated with \tilde{S}_{q} are scalar multiple one of the other. This is equivalent to say that $\tilde{E}_{q}=\left\{ \pm u_{q}\right\}$ for an L^{q}-normalized extremal $u_{q} \in W_{0}^{1, p}(\Omega)$. Recall that there is a long-standing conjecture that $\tilde{S}_{q}(\Omega)$ is simple if Ω is a bounded smooth convex domain in \mathbb{R}^{N} and $1 \leq q<p^{*}$. Up to now, only several partial results are available for this conjecture, however, the complete solution has not been obtained. Ercole's result is interesting since we can disprove the conjecture if we find q such that \tilde{S}_{q}^{\prime} does not exist.

Main purpose of this paper is, in spite of the differences between \tilde{S}_{q} and S_{q}, to obtain similar regularity results and a characterization of differentiability of the function $\left[1, p_{*}\right] \ni q \mapsto S_{q}$. In what follows, $|A|$ stands for both the N-dimensional Lebesgue measure $\mathcal{L}^{N}(A)$ when $A \subseteq \Omega$ and the ($N-1$)-dimensional Hausdorff measure $\mathcal{H}^{N-1}(A)$ when $A \subseteq \partial \Omega$. We hope that this abbreviation causes no ambiguity. $\|u\|_{L^{q}(\Omega)}$ and $\|u\|_{L^{q}(\partial \Omega)}$ denotes the L^{q}-norm of a function $u: \Omega \rightarrow \mathbb{R}$ and u : $\partial \Omega \rightarrow \mathbb{R}$ respectively. χ_{A} denotes a characteristic function of a set A.

2. Monotonicity and Bounded pointwise variation

In what follows, we fix $1<p<N$ and put $p_{*}=\frac{(N-1) p}{N-p}$.

Concerning the monotonicity of $q \mapsto S_{q}$, first, we prove the following lemma:

Lemma 2.1. The function $q \mapsto|\partial \Omega|^{p / q} S_{q}$ is monotone decreasing on $\left[1, p_{*}\right]$. In particular, the function $q \in\left[1, p_{*}\right] \mapsto S_{q}$ is monotone decreasing if $|\partial \Omega| \leq 1$ and strictly monotone decreasing if $|\partial \Omega|<1$.

Proof. let $1 \leq q_{1}<q_{2} \leq p_{*}$. By Hölder's inequality, we have

$$
|\partial \Omega|^{p / q_{2}}\left(\int_{\partial \Omega}|u|^{q_{2}} d \mathcal{H}^{N-1}\right)^{-p / q_{2}} \leq|\partial \Omega|^{p / q_{1}}\left(\int_{\partial \Omega}|u|^{q_{1}} d \mathcal{H}^{N-1}\right)^{-p / q_{1}}
$$

Multiplying $\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x$ to both sides and taking infimum, we see that $q \in\left[1, p_{*}\right] \mapsto|\partial \Omega|^{p / q} S_{q}$ is a monotone decreasing function. Thus

$$
S_{q_{1}} \geq|\partial \Omega|^{\left(1 / q_{2}-1 / q_{1}\right) p} S_{q_{2}}>S_{q_{2}}
$$

if $|\partial \Omega|<1$.
In Lemma 2.1, we see that the function $q \mapsto|\partial \Omega|^{p / q} S_{q}$ is strictly monotone decreasing on $\left[1, p_{*}\right]$ if $|\partial \Omega|<1$. However, we can say more. In the next lemma, the Rayleigh quotient associated with the trace Sobolev embedding $W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ is denoted by

$$
R_{q}(u)=\frac{\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) d x}{\left(\int_{\partial \Omega}|u|^{q} d \mathcal{H}^{N-1}\right)^{\frac{p}{q}}}=\frac{\|u\|_{W^{1, p}(\Omega)}^{p}}{\|u\|_{L^{q}(\partial \Omega)}^{p}} .
$$

Lemma 2.2. Let $u \in\left(W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}(\partial \Omega), u \not \equiv$ constant. Then for each $1 \leq q_{1}<q_{2} \leq p_{*}$

$$
\begin{equation*}
|\partial \Omega|^{\frac{p}{q_{1}}} R_{q_{1}}(u)=|\partial \Omega|^{\frac{p}{q_{2}}} R_{q_{2}}(u) \exp \left(p \int_{q_{1}}^{q_{2}} \frac{K(t, u)}{t^{2}} d t\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
K(t, u)=\frac{\int_{\partial \Omega}|u|^{t} \log |u|^{t} d \mathcal{H}^{N-1}}{\|u\|_{L^{t}(\partial \Omega)}^{t}}+\log \left(\frac{|\partial \Omega|}{\|u\|_{L^{t}(\partial \Omega)}^{t}}\right)>0 \tag{2.2}
\end{equation*}
$$

Before the proof, we remark that the assumption of $u \in L^{\infty}(\partial \Omega)$ is used to assure the finiteness of the integral $\int_{\partial \Omega}|u|^{p_{*}} \log |u| d \mathcal{H}^{N-1}$.

Proof. The proof will be done by differentiating $\log \left(\frac{\mid \partial \Omega \|^{\frac{1}{t}}}{\|u\|_{L^{t}(\partial \Omega)}}\right)$ with respect to t.

Fix $q_{0}<p_{*}$ and consider $t \in\left[1, q_{0}\right]$. For $u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)$, we have an estimate

$$
\begin{aligned}
\left||u|^{t} \log \right| u|\mid & =\chi_{[|u| \leq 1]}|u|^{t}|\log | u| |+\chi_{[|u|>1]}|u|^{t}|\log | u| | \\
& \leq \chi_{[|u| \leq 1]}(t e)^{-1}+\chi_{[|u|>1]} \frac{1}{p_{*}-t}|u|^{p_{*}} \\
& \leq e^{-1}+\frac{1}{p_{*}-q_{0}}|u|^{p_{*}} \in L^{1}(\partial \Omega),
\end{aligned}
$$

here we have used $x^{t}|\log x| \leq(t e)^{-1}$ for $0<x \leq 1$ and $|\log x| \leq \beta^{-1} x^{\beta}$ for any $x \geq 1$ and $\beta>0$. Thus we see $\left||u|^{t} \log \right| u \| \in L^{1}(\partial \Omega)$. Since q_{0} can be chosen arbitrarily near to p_{*}, we may differentiate under the integral symbol to get

$$
\frac{d}{d t} \int_{\partial \Omega}|u|^{t} d \mathcal{H}^{N-1}=\int_{\partial \Omega}|u|^{t} \log |u| d \mathcal{H}^{N-1}
$$

for any $1 \leq t<p_{*}$ by Lebesgue's dominated convergence theorem. Thus

$$
\begin{aligned}
\frac{d}{d t}\left(\log \frac{|\partial \Omega|^{\frac{1}{t}}}{\|u\|_{L^{t}(\partial \Omega)}}\right)= & \frac{d}{d t}\left(\frac{1}{t} \log |\partial \Omega|\right)-\frac{d}{d t}\left(\frac{1}{t} \log \int_{\partial \Omega}|u|^{t} d \mathcal{H}^{N-1}\right) \\
= & -\frac{1}{t^{2}} \log |\partial \Omega|+\frac{1}{t^{2}} \log \int_{\partial \Omega}|u|^{t} d \mathcal{H}^{N-1} \\
& -\frac{1}{t} \frac{\int_{\partial \Omega}|u|^{t} \log |u| d \mathcal{H}^{N-1}}{\int_{\partial \Omega}|u|^{t} d \mathcal{H}^{N-1}} \\
= & -\frac{K(t, u)}{t^{2}} .
\end{aligned}
$$

Integrate the above on $\left[q_{1}, q_{2}\right]$ with respect to t, we obtain

$$
\frac{|\partial \Omega|^{\frac{1}{q_{1}}}}{\|u\|_{L^{q_{1}}(\partial \Omega)}}=\frac{|\partial \Omega|^{\frac{1}{q_{2}}}}{\|u\|_{L^{q_{2}}(\partial \Omega)}} \exp \int_{q_{1}}^{q_{2}} \frac{K(t, u)}{t^{2}} d t
$$

Multiplying $\|u\|_{W^{1, p}(\Omega)}$, and taking p-th power, we get (2.1).
Next, we claim $K(t, u)>0$. Define $h:[0, \infty) \rightarrow \mathbb{R}$ as

$$
h(\xi)= \begin{cases}\xi \log \xi & (\xi>0) \\ 0 & (\xi=0)\end{cases}
$$

Then h is convex, and Jensen's inequality implies

$$
\begin{aligned}
& h\left(\frac{1}{|\partial \Omega|} \int_{\partial \Omega}|u|^{t} d \mathcal{H}^{N-1}\right) \leq \frac{1}{|\partial \Omega|} \int_{\partial \Omega} h\left(|u|^{t}\right) d \mathcal{H}^{N-1} \\
\Leftrightarrow & |\partial \Omega|^{-1}\left(\int_{\partial \Omega}|u|^{t} d \mathcal{H}^{N-1}\right) \log \left(|\partial \Omega|^{-1} \int_{\partial \Omega}|u|^{t} d \mathcal{H}^{N-1}\right) \\
& \leq|\partial \Omega|^{-1} \int_{\partial \Omega}|u|^{t} \log |u|^{t} d \mathcal{H}^{N-1} \\
\Leftrightarrow & \frac{\int_{\partial \Omega}|u|^{t} \log |u|^{t} d \mathcal{H}^{N-1}}{\|u\|_{L^{t}(\partial \Omega)}^{t}}+\log \left(\frac{|\partial \Omega|}{\|u\|_{L^{t}(\partial \Omega)}^{t}}\right) \geq 0
\end{aligned}
$$

By the equality cases for Jensen's inequality (see [12]), if the equality holds for the above inequality, then $|u|^{t}$ must be a constant, which is excluded. Thus the equalities do not hold and $K(t, u)>0$.

From Lemma 2.2, we easily see the next corollary:
Corollary 2.3. The function $q \in\left[1, p_{*}\right] \mapsto|\partial \Omega|^{p / q} S_{q}$ is strictly monotone decreasing. In particular, The function $q \in\left[1, p_{*}\right] \mapsto S_{q}$ is strictly monotone decreasing if $|\partial \Omega| \leq 1$.
Proof. Let $1 \leq q_{1}<q_{2} \leq p_{*}$ and let $u_{q_{1}} \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)$ denote an extremal function for $S_{q_{1}}$. Then the regularity theorem assures that $u_{q_{1}} \in C^{\alpha}(\bar{\Omega})$ and $u_{q_{1}}$ must not be a constant. It follows from Lemma 2.2 that

$$
\begin{aligned}
|\partial \Omega|^{p / q_{1}} S_{q_{1}} & =|\partial \Omega|^{p / q_{2}} R_{q_{2}}\left(u_{q_{1}}\right) \exp \left(p \int_{q_{1}}^{q_{2}} \frac{K\left(t, u_{q_{1}}\right)}{t^{2}} d t\right) \\
& >|\partial \Omega|^{p / q_{2}} R_{q_{2}}\left(u_{q_{1}}\right) \\
& \geq|\partial \Omega|^{p / q_{2}} S_{q_{2}} .
\end{aligned}
$$

The latter claim is trivial.
Let $I \subset \mathbb{R}$ be an interval. In what follows, a finite set $P=\left\{x_{0}, \cdots, x_{n}\right\} \subset$ $I, x_{0}<x_{1}<\cdots<x_{n}$, is called a partition of I. Following [10] Chapter 2 , we say that a function $f: I \rightarrow \mathbb{R}$ has bounded pointwise variation if

$$
\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|\right\}<\infty
$$

where the supremum is taken over all partitions $P=\left\{x_{0}, \cdots, x_{n}\right\}$ of $I, n \in \mathbb{N}$. The space of all functions $f: I \rightarrow \mathbb{R}$ with bounded pointwise variation is denoted by $B P V(I)$.
Corollary 2.4. The function $q \mapsto S_{q}$ is in $B P V(I)$ where $I=\left[1, p_{*}\right]$.

Proof. Since a bounded monotone function on I is in $B P V(I)$ ([10] Proposition 2.10), and the product of a bounded function and a function in $B P V(I)$ is again in $B P V(I)$, we have $S_{q}=\left(|\partial \Omega|^{p / q} S_{q}\right)|\partial \Omega|^{-p / q}$ is in $B P V(I)$.

3. Some estimates for the extremals

First by utilizing level set techniques, we derive some pointwise estimates for any positive solution to (1.3).
Lemma 3.1. Let u be a positive weak solution to (1.3) with $1 \leq q<p_{*}$. Then for any $\sigma \geq 1$, it holds

$$
\begin{equation*}
\left(\frac{1}{2}\right)^{\sigma+N-1} C_{q}\|u\|_{L^{\infty}(\partial \Omega)^{p-1}}^{\frac{(N-1)(p-q)+(p-1) \sigma}{p-1}} \leq\|u\|_{L^{\sigma}(\partial \Omega)}^{\sigma} \tag{3.1}
\end{equation*}
$$

where

$$
C_{q}=\left(\frac{S_{p_{*}}}{S_{q}}\right)^{\frac{N-1}{p-1}} N^{-\frac{N_{p-1}}{p-1}}
$$

Proof. As $u>0$ solves (1.3) weakly, it holds

$$
\begin{equation*}
-\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \phi d x+S_{q} \int_{\partial \Omega} u^{q-1} \phi d \mathcal{H}^{N-1}=\int_{\Omega} u^{p-1} \phi d x \tag{3.2}
\end{equation*}
$$

for all $\phi \in W^{1, p}(\Omega)$.
By a regularity theory (see [15], [17]), we may assume $u \in C^{\alpha}(\bar{\Omega})$ for some $0<\alpha<1$. Fix $t \in \mathbb{R}$ such that $0<t<\|u\|_{L^{\infty}(\partial \Omega)}$. Put

$$
A_{t}=\{x \in \Omega \mid u(x)>t\}, \quad a_{t}=\{x \in \partial \Omega \mid u(x)>t\}
$$

We take the function

$$
\phi=(u-t)^{+} \in W^{1, p}(\Omega), \quad \phi= \begin{cases}u-t & \text { in } A_{t} \cup a_{t} \\ 0 & \text { otherwise }\end{cases}
$$

in (3.2), then we have

$$
-\int_{A_{t}}|\nabla u|^{p} d x+S_{q} \int_{a_{t}} u^{q-1}(u-t) d \mathcal{H}^{N-1}=\int_{A_{t}} u^{p-1}(u-t) d x
$$

Rewriting this, we have

$$
\begin{align*}
\int_{A_{t}}\left(|\nabla u|^{p}+u^{p-1}(u-t)\right) d x & =S_{q} \int_{a_{t}} u^{q-1}(u-t) d \mathcal{H}^{N-1} \\
& \leq S_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{q-1}\left(\|u\|_{L^{\infty}(\partial \Omega)}-t\right)\left|a_{t}\right| . \tag{3.3}
\end{align*}
$$

Now, put

$$
g(t)=\int_{\partial \Omega}(u-t)^{+} d \mathcal{H}^{N-1}=\int_{a_{t}}(u-t) d \mathcal{H}^{N-1}
$$

and recall the layer cake representation: Let $v \geq 0$ be a \mathcal{H}^{N-1}-measurable function on $\partial \Omega$. Then for any $\sigma \geq 1$, it holds

$$
\int_{\partial \Omega} v^{\sigma} d \mathcal{H}^{N-1}=\sigma \int_{0}^{\infty} s^{\sigma-1} \mathcal{H}^{N-1}(\{x \in \partial \Omega \mid v(x)>s\}) d s
$$

Thus, we see

$$
g(t)=\int_{0}^{\infty} \mathcal{H}^{N-1}\left(\left\{x \in \partial \Omega \mid(u-t)^{+}>s\right\}\right) d s=\int_{t}^{\infty}\left|a_{s}\right| d s
$$

here the last equality follows from a change of variables $t+s \mapsto s$. This implies $g^{\prime}(t)=-\left|a_{t}\right|$. By Hölder's inequality, (1.1) and (3.3), we have

$$
\begin{aligned}
g(t)^{p} & =\left(\int_{\partial \Omega}(u-t)^{+} d \mathcal{H}^{N-1}\right)^{p} \\
& \leq\left(\int_{\partial \Omega}\left\{(u-t)^{+}\right\}^{p_{*}} d \mathcal{H}^{N-1}\right)^{\frac{p}{p_{*}}}\left|a_{t}\right|^{p\left(1-\frac{1}{p_{*}}\right)} \\
& \leq \frac{1}{S_{p_{*}}}\left|a_{t}\right|^{p\left(1-\frac{1}{p_{*}}\right)} \int_{\Omega}\left(\left|\nabla(u-t)^{+}\right|^{p}+\left\{(u-t)^{+}\right\}^{p}\right) d x \\
& =\frac{1}{S_{p_{*}}}\left|a_{t}\right|^{p\left(1-\frac{1}{p_{*}}\right)} \int_{A_{t}}\left(|\nabla u|^{p}+(u-t)^{p-1}(u-t)\right) d x \\
& \leq \frac{1}{S_{p_{*}}}\left|a_{t}\right|^{p\left(1-\frac{1}{p_{*}}\right)} \int_{A_{t}}\left(|\nabla u|^{p}+u^{p-1}(u-t)\right) d x \\
& \leq \frac{S_{q}}{S_{p_{*}}}\|u\|_{L^{\infty}(\partial \Omega)}^{q-1}\left(\|u\|_{L^{\infty}(\partial \Omega)}-t\right)\left|a_{t}\right|^{p\left(1-\frac{1}{p_{*}}\right)+1} \\
& =\frac{S_{q}}{S_{p_{*}}}\|u\|_{L^{\infty}(\partial \Omega)}^{q-1}\left(\|u\|_{L^{\infty}(\partial \Omega)}-t\right)\left(-g^{\prime}(t)\right)^{\frac{N_{p-1}}{N-1}}
\end{aligned}
$$

which results in

$$
\begin{equation*}
\left[\frac{S_{q}}{S_{p_{*}}}\|u\|_{L^{\infty}(\partial \Omega)}^{q-1}\left(\|u\|_{L^{\infty}(\partial \Omega)}-t\right)\right]^{-\frac{N-1}{N p-1}} \leq-g(t)^{\frac{N p-p}{N p-1}} g^{\prime}(t) . \tag{3.4}
\end{equation*}
$$

Changing a variable from t to s, and integrating the both sides of (3.4) on $\left[t,\|u\|_{L^{\infty}(\partial \Omega)}\right]$, we get

$$
\begin{equation*}
C_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{-\frac{(N-1)(q-1)}{p-1}}\left(\|u\|_{L^{\infty}(\partial \Omega)}-t\right)^{N} \leq g(t) \tag{3.5}
\end{equation*}
$$

Since $g(t) \leq\left(\|u\|_{L^{\infty}(\partial \Omega)}-t\right)\left|a_{t}\right|$, we have from (3.5) that

$$
\begin{equation*}
C_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{-\frac{(N-1)(q-1)}{p-1}}\left(\|u\|_{L^{\infty}(\partial \Omega)}-t\right)^{N-1} \leq\left|a_{t}\right| . \tag{3.6}
\end{equation*}
$$

We multiply $\sigma t^{\sigma-1}$ to the both sides of (3.6) and integrate them on $\left[0,\|u\|_{L^{\infty}(\partial \Omega)}\right]$. Then the right hand side becomes $\|u\|_{L^{\sigma}(\partial \Omega)}^{\sigma}$ by layer cake representation. By changing variables $t \mapsto\|u\|_{L^{\infty}(\partial \Omega)} s$, we observe

$$
\begin{aligned}
(L H S) & =C_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{-\frac{(N-1)(q-1)}{p-1)}} \sigma \int_{0}^{\|u\|_{L^{\infty}(\partial \Omega)}} t^{\sigma-1}\left(\|u\|_{L^{\infty}(\partial \Omega)}-t\right)^{N-1} d t \\
& =C_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{-\frac{(N-1)(p-q)+(p-1) \sigma}{p-1}} \sigma \int_{0}^{1} s^{\sigma-1}(1-s)^{N-1} d s \\
& \geq C_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{-\frac{(N-1)(p-q)+(p-1) \sigma}{p-1}} \sigma \int_{0}^{\frac{1}{2}} s^{\sigma-1} 2^{-(N-1)} d s \\
& =\left(\frac{1}{2}\right)^{\sigma+N-1} C_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{\frac{(N-1)(p-q)+(p-1) \sigma}{p-1}} .
\end{aligned}
$$

Thus we get the conclusion.
By the Lemma 3.1, we have the uniform boundedness of the extremizers for the subcritical range.

Lemma 3.2. Let $\varepsilon>0$ sufficiently small and let u_{q} be a positive $L^{q}(\partial \Omega)$-normalized extremal for S_{q} where $1 \leq q \leq p_{*}-\varepsilon$. Then we have

$$
|\partial \Omega|^{-1 / q} \leq\left\|u_{q}\right\|_{L^{\infty}(\partial \Omega)} \leq C_{\varepsilon}
$$

where $C_{\varepsilon}>0$ is a constant which depends only on $\varepsilon>0$.
Proof. Hölder's inequality and the fact $\left\|u_{q}\right\|_{L^{q}(\partial \Omega)}=1$ yield the first inequality.

Next, suppose $1 \leq q \leq p$. Taking $\sigma=1$ in (3.1), we have

$$
\left(\frac{1}{2}\right)^{N} C_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{\frac{(N-1)(p-q)+(p-1)}{p-1}} \leq\|u\|_{L^{1}(\partial \Omega)} \leq|\partial \Omega|^{1-1 / q}\left\|u_{q}\right\|_{L^{q}(\partial \Omega)}=|\partial \Omega|^{1-1 / q} .
$$

Thus

$$
\left\|u_{q}\right\|_{L^{\infty}(\partial \Omega)} \leq \max _{1 \leq q \leq p}\left(\frac{2^{N}|\partial \Omega|^{1-1 / q}}{C_{q}}\right)^{\frac{p-1}{(N-1)(p-q)+(p-1)}}=: A
$$

If $p \leq q \leq p_{*}-\varepsilon$, then take $\sigma=q$ in (3.1) to obtain

$$
\left(\frac{1}{2}\right)^{q+N-1} C_{q}\|u\|_{L^{\infty}(\partial \Omega)}^{\frac{(N-1)(p-q)+(p-1) q}{p-1}} \leq\|u\|_{L^{q}(\partial \Omega)}^{q}=1
$$

Thus

$$
\left\|u_{q}\right\|_{L^{\infty}(\partial \Omega)} \leq \max _{p \leq q \leq p_{*}-\varepsilon}\left(\frac{2^{q+N+1}}{C_{q}}\right)^{\frac{(N-p)\left(p_{*}-q\right)}{(p-1)}}=: B_{\varepsilon}
$$

since $(N-1)(p-q)+(p-1) q=(N-p)\left(p_{*}-q\right)$. Put $C_{\varepsilon}=\max \left\{A, B_{\varepsilon}\right\}$.

By combining Lemma 3.2 and Proposition 2.7 in [7], we have the following fact:

Proposition 3.3. (Bonder-Rossi [7] Proposition 2.8.) The function $q \in\left[1, p_{*}\right] \mapsto S_{q}$ is continuous.

For the proof, we refer the readers to [7].

4. Local Lipschitz and absolute continuity

In this section, by combining the arguments in [3] and [2], we prove the local Lipschitz continuity of S_{q} on $\left(1, p_{*}\right)$ and the absolute continuity of S_{q} on the whole closed interval $\left[1, p_{*}\right]$.

Theorem 4.1. The function $q \mapsto S_{q}$ is locally Lipschitz continuous on the interval $\left(1, p_{*}\right)$.

Proof. Fix $u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)$. Since $x^{t}(\log |x|)^{2} \leq(t e)^{-2}$ for $0<$ $x \leq 1$ and $t>0$, we see for $1 \leq t \leq q_{0}<p_{*}$,

$$
\begin{aligned}
|u|^{t}(\log |u|)^{2} & =\left.\left(\chi_{[|u| \leq 1]}+\chi_{[|u|>1]}\right)|u|^{t}|\log | u\right|^{2} \\
& =\left.\chi_{[|u| \leq 1]}|u|^{t}|\log | u\right|^{2}+\left.\chi_{[|u|>1]}|u|^{t}|\log | u\right|^{2} \\
& \leq \chi_{[|u| \leq 1]}(t e)^{-2}+\chi_{[|u|>1]} \frac{1}{p_{*}-t}|u|^{p_{*}} \\
& \leq e^{-2}+\frac{1}{p_{*}-q_{0}}|u|^{p_{*}} \in L^{1}(\partial \Omega) .
\end{aligned}
$$

Since q_{0} can be chosen arbitrarily close to p_{*}, we have $\|u\|_{L^{q}(\partial \Omega)}^{q}$ is at least twice differentiable and

$$
\frac{d^{2}}{d q^{2}}\|u\|_{L^{q}(\Omega)}^{q}=\int_{\Omega}|u|^{q}(\log |u|)^{2} d x \geq 0
$$

for any $q \in\left(1, p_{*}\right)$ by dominated convergence theorem. Thus $q \in$ $\left(1, p^{*}\right) \mapsto\|u\|_{L^{q}(\partial \Omega)}^{q}$ is a convex function. Now, set

$$
S=\left\{u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega) \mid\|u\|_{W^{1, p}(\Omega)}=1\right\}
$$

and define

$$
h(q)=\sup _{u \in S}\|u\|_{L^{q}(\partial \Omega)}^{q} .
$$

Since h is a supremum of convex functions $\|u\|_{L^{q}(\partial \Omega)}^{q}$, it is also convex and locally Lipschitz continuous on ($1, p_{*}$) (see [5] pp.236), which yields
that $|h(q)|<\infty$ and $\left|h^{\prime}(q)\right|<\infty$ a.e.in $q \in\left(1, p_{*}\right)$. Note that $S_{q}=$ $h(q)^{-\frac{1}{q}}=e^{-\frac{1}{q} \log h(q)}$, so

$$
S_{q}^{\prime}=S_{q}\left(-\frac{1}{q} \log h(q)\right)^{\prime}
$$

It is easy to see that $h(q)$ is bounded from above and below by a positive constant on $q \in\left(1, p_{*}\right)$. Thus

$$
\begin{aligned}
\left|S_{q}^{\prime}\right| & =S_{q}\left|\left(\frac{1}{q} \log h(q)\right)^{\prime}\right| \\
& \leq S_{q}\left(\frac{1}{q^{2}}|\log h(q)|+\frac{1}{q}\left|\frac{h^{\prime}(q)}{h(q)}\right|\right)<\infty \quad \text { a.e. in }\left(1, p_{*}\right)
\end{aligned}
$$

From this, we have the conclusion.
Theorem 4.2. The function $q \mapsto S_{q}$ is absolutely continuous on the whole interval $\left[1, p_{*}\right]$.
Proof. Since we know that S_{q} is of bounded pointwise variation on [$1, p_{*}$] by Corollary 2.4, we have

$$
S_{q}=S_{1}=\int_{1}^{q} S_{t}^{\prime} d t+S_{C}(q)+S_{J}(q)
$$

where S_{C} is the Cantor part of S_{q} and S_{J} is the jump part of S_{q}, see [10] Theorem 3.73. Then the claim that S_{q} is absolutely continuous on [$1, p_{*}$] is equivalent to $S_{C} \equiv S_{J} \equiv 0$. Since S_{q} is continuous on [$1, p_{*}$] by Proposition 3.3, we see that the discontinuous part $S_{J} \equiv 0$. The Cantor part of S_{q}, that is S_{C}, is continuous, differentiable a.e., and $S_{C}^{\prime}(q)=0$ a.e. $q \in\left[1, p_{*}\right]$. Since S_{q} is Lipschitz continuous on any interval of the form $\left[1, p_{*}-\varepsilon\right], \varepsilon>0$, it is absolutely continuous on the same interval, thus the support of S_{C} must be concentrated on $\left\{p_{*}\right\}$. Therefore $S_{C} \equiv 0$ since S_{C} is continuous at p_{*}.

5. A characterization of differentiability

Let us define the functional $I_{q}:\left(W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega)\right) \rightarrow \mathbb{R}$ as

$$
I_{q}(u)=\int_{\partial \Omega}|u|^{q} \log |u| d \mathcal{H}^{N-1}
$$

and the set of $L^{q}(\partial \Omega)$-normalized extremal functions

$$
E_{q}=\left\{u \in W^{1, p}(\Omega) \backslash W_{0}^{1, p}(\Omega) \mid\|u\|_{L^{q}(\partial \Omega)}=1,\|u\|_{W^{1, p}(\Omega)}^{p}=S_{q}\right\}
$$

for $q \in\left[1, p_{*}\right]$.

Theorem 5.1. For each $q \in\left[1, p_{*}\right)$ let u_{q} be arbitrarily chosen in E_{q}. Then we have

$$
\limsup _{t \rightarrow q+0} \frac{S_{q}-S_{t}}{q-t} \leq-\frac{p}{q} I_{q}\left(u_{q}\right) S_{q} \leq \liminf _{t \rightarrow q-0} \frac{S_{q}-S_{t}}{q-t}
$$

Therefore for $q \in\left(1, p_{*}\right)$ on which S_{q}^{\prime} exists, it holds

$$
\begin{equation*}
S_{q}^{\prime}+\frac{p}{q} I_{q}\left(u_{q}\right) S_{q}=0 \tag{5.1}
\end{equation*}
$$

Proof. Take $q \in\left(1, p_{*}\right)$ and let u_{q} an extremal for S_{q} in E_{q}. Put

$$
J(t)=\int_{\partial \Omega}\left|u_{q}\right|^{t} d \mathcal{H}^{N-1}
$$

Then we see $J(q)=1$ and $\left.J^{\prime}(t)\right|_{t=q}=\int_{\partial \Omega}\left|u_{q}\right|^{q} \log \left|u_{q}\right| d \mathcal{H}^{N-1}=I_{q}\left(u_{q}\right)$. Since

$$
\left(J(t)^{p / t}\right)^{\prime}=J(t)^{p / t}\left(-\frac{p}{t^{2}} \log J(t)+\frac{p}{t} \frac{J^{\prime}(t)}{J(t)}\right)
$$

we see

$$
\left.\frac{d}{d t}\right|_{t=q}\left(J(t)^{p / t}\right)=\left.\frac{p}{q} J^{\prime}(t)\right|_{t=q}=\frac{p}{q} I_{q}\left(u_{q}\right) .
$$

Also testing S_{t} by u_{q}, we see

$$
S_{q}=\left\|u_{q}\right\|_{W^{1, p}(\Omega)}^{p} \geq S_{t}\left(\int_{\partial \Omega}\left|u_{q}\right|^{t} d \mathcal{H}^{N-1}\right)^{p / t}=S_{t} J(t)^{p / t}
$$

Thus L'Hopital's rule and the continuity of S_{q} imply that

$$
\begin{aligned}
\limsup _{t \rightarrow q+0} \frac{S_{q}-S_{t}}{q-t} & \leq \limsup _{t \rightarrow q+0} S_{t} \frac{J(t)^{p / t}-1}{q-t} \\
& =-\left.S_{q} \lim _{t \rightarrow q-0} \frac{d}{d t}\right|_{t=q}\left(J(t)^{p / t}\right) \\
& =-\frac{p}{q} I_{q}\left(u_{q}\right) S_{q} .
\end{aligned}
$$

The similar argument yields

$$
\liminf _{t \rightarrow q-0} \frac{S_{q}-S_{t}}{q-t} \geq-\frac{p}{q} I_{q}\left(u_{q}\right) S_{q} .
$$

If S_{q}^{\prime} exists for q, the value S_{q}^{\prime} is independent of the choice of $u_{q} \in$ E_{q}. Therefore, the above theorem implies that the value $I_{q}\left(u_{q}\right)$ is also independent of the choice of $u_{q} \in E_{q}$, which proves the next corollary. Indeed, $I_{q}\left(u_{q}\right)=-\frac{q}{p} \frac{S_{q}^{\prime}}{S_{q}}$ for any choice of u_{q} in E_{q}.

Corollary 5.2. Let $q \in\left(1, p_{*}\right)$ be such that S_{q}^{\prime} exists. Then the functional I_{q} takes a constant value on $E_{q} ; I_{q}\left(u_{1}\right)=I_{q}\left(u_{2}\right)$ for any $u_{1}, u_{2} \in E_{q}$.

Now, let us define f as

$$
f(q):= \begin{cases}\frac{p}{q} I_{q}\left(u_{q}\right) & \text { when } S_{q}^{\prime} \text { exists, } \tag{5.2}\\ 0 & \text { when } S_{q}^{\prime} \text { does not exist. }\end{cases}
$$

f is well-defined on $\left[1, p_{*}\right)$ by Corollary 5.2 and $f(q)=-\frac{S_{q}^{\prime}}{S_{q}}$ when S_{q}^{\prime} exists by (5.1).

We have a representation formula for S_{q} by using f in (5.2).
Theorem 5.3. It holds

$$
\begin{equation*}
S_{q}=S_{1} \exp \left(-\int_{1}^{q} f(t) d t\right) \tag{5.3}
\end{equation*}
$$

for $1 \leq q \leq p_{*}$
Proof. Since the function $q \mapsto S_{q}$ is absolutely continuous on $\left[1, p_{*}\right]$ by Theorem 4.2, we have also the function $\left[1, p_{*}\right] \ni q \mapsto \log S_{q}$ is absolutely continuous. Thus by (5.1),

$$
\log S_{q}-\log S_{1}=\int_{1}^{q}\left(\frac{d}{d t} \log S_{t}\right) d t=\int_{1}^{q} \frac{S_{t}^{\prime}}{S_{t}} d t=-\int_{1}^{q} f(t) d t
$$

for all $q \in\left[1, p_{*}\right]$, which yields the result.
Theorem 5.3 implies also

$$
\begin{aligned}
S_{q} & =S_{1} \exp \left(-\int_{1}^{p_{*}} f(t) d t+\int_{q}^{p_{*}} f(t) d t\right) \\
& =S_{1} \exp \left(-\int_{1}^{p_{*}} f(t) d t\right) \exp \left(\int_{q}^{p_{*}} f(t) d t\right)=S_{p_{*}} \exp \left(\int_{q}^{p_{*}} f(t) d t\right)
\end{aligned}
$$

As an immediate corollary of Theorem 5.3, we have the following:
Corollary 5.4. Let $q \in\left[1, p_{*}\right)$ be a point of continuity of f. Then $\frac{d}{d q} S_{q}$ exists and

$$
S_{q}^{\prime}=-S_{q} f(q)
$$

holds.
Proposition 5.5. Suppose I_{q} is constant on E_{q} for some $q \in\left[1, p_{*}\right)$. Then f is continuous on such q. Especially f is continuous on q where S_{q}^{\prime} exists.

Proof. Take $q \in\left[1, p_{*}\right)$ and a sequence $q_{n} \rightarrow q$ as $n \rightarrow \infty$. Since $q \mapsto S_{q}$ is continuous, we see $S_{q_{n}} \rightarrow S_{q}$. Also by elliptic regularity and the fact that $\left\|u_{q_{n}}\right\|_{L^{\infty}(\Omega)}$ is uniformly bounded in n, we have a subsequence (again denoted by q_{n}) and $u \in E_{q}$ such that $u_{q_{n}} \rightarrow u$ in $C^{1}(\bar{\Omega})$ and $\|u\|_{L^{q}(\partial \Omega)}=1$. Therefore, we have

$$
\begin{aligned}
f\left(q_{n}\right) & =\frac{p}{q_{n}} \int_{\partial \Omega}\left|u_{q_{n}}\right|^{q_{n}} \log \left|u_{q_{n}}\right| d \mathcal{H}^{N-1} \rightarrow \frac{p}{q} \int_{\partial \Omega}|u|^{q} \log |u| d \mathcal{H}^{N-1} \\
& =\frac{p}{q} I_{q}(u)=\frac{p}{q} I_{q}\left(u_{q}\right)=f(q),
\end{aligned}
$$

since $I_{q}(u)=I_{q}\left(u_{q}\right)$ for $u, u_{q} \in E_{q}$.
Now, we obtain a characterization of the differentiability of the function $q \mapsto S_{q}$.

Theorem 5.6. The following 3 assertions on a point $q \in\left[1, p_{*}\right)$ are equivalent:
(i) S_{q}^{\prime} exists.
(ii) I_{q} is constant on E_{q}.
(iii) The function $t \in\left[1, p_{*}\right] \mapsto I_{t}\left(u_{t}\right)$ is continuous at $t=q$.

Proof. $(i) \Longrightarrow$ (ii): Corollary 5.2.
$(i i) \Longrightarrow(i i i)$: Since the continuity of $f(t)$ at $t=q$ is equivalent to the continuity of $t \mapsto I_{t}\left(u_{t}\right)$ is continuous at $t=q$, the proof follows from Proposition 5.5.
$(i i i) \Longrightarrow(i)$: Corollary 5.4.
It is known that S_{q} is simple when $q=p$ and $E_{p}=\left\{ \pm u_{p}\right\}$ for some $u_{p} \in E_{p}([13])$. Thus we see $S_{p}^{\prime}=\left.\frac{d}{d q} S_{q}\right|_{q=p}$ exists and $t \mapsto I_{t}\left(u_{t}\right)$ is continuous at $t=p$. Also if Ω is a ball with sufficiently small radius and $p=2$, then S_{q} is simple for any $1 \leq q<2_{*}=\frac{2(N-1)}{N-2}$ and the unique normalized extremizer for S_{q} is radial (see [6] Theorem 2.1). Thus $q \mapsto S_{q}$ is differentiable on $1 \leq q<2_{*}$ on small balls. Moreover the abstract approach using a variational principle in [9] could be applied to obtain the uniqueness of the positive solution of

$$
\left\{\begin{array}{l}
\Delta_{p} u=|u|^{p-2} u \quad \text { in } \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=\lambda|u|^{q-2} u \quad \text { on } \partial \Omega,
\end{array}\right.
$$

where $\lambda>0,1<p<N$ and $1 \leq q<p$. If this is the case, then we see that the function $q \mapsto S_{q}$ is differentiable for $1 \leq q<p$ on any bounded domain. However, the simplicity of S_{q} for $p<q<p_{*}$ on a general bounded smooth domain is unknown.

Acknowledgments.

This work was supported by the Research Institute of Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University, and partly by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

The second author (F.T.) was supported by JSPS Grant-in-Aid for Scientific Research (B), No.19H01800.

References

[1] Adimurthi: Positive solutions for Neumann problem with critical nonlinearity on boundary, Comm. Partial Differential Equations 16 (1991), 1733-1760.
[2] G. Anello, F. Faraci, and A. Iannizzotto: On a problem of Huang concerning best constants in Sobolev embeddings, Annali di Matematica 194 (2015), 767779.
[3] G. Ercole: Absolute continuity of the best Sobolev constant, J. of Mathematical Analysis and Applications, 404, Issue 2, (2013), 420-428.
[4] G. Ercole: Regularity results for the best-Sobolev-constant function, Annali di Matematica 194 (2015), 1381-1392.
[5] L. C.Evans, and R. F. Gariepy: Measure Theory and Fine Properties of Functions, CRC press (1992), iv +268 pages.
[6] J. Fernandez Bonder, E. Lami Dozo, and J. D. Rossi: Symmetry properties for the extremals of the Sobolev trace embedding, Ann. Inst. H. Poincaré Anal. Non Linéaire., 21 no.6, (2004), 795-805.
[7] J. Fernandez Bonder, and J. D. Rossi: On the existence of extremals for the Sobolev trace embedding theorem with critical exponent, Bull. London Math. Soc., 37 (1) (2005), 119-125.
[8] Y. X. Huang: A note on the asymptotic behavior of positive solutions for some elliptic equation, Nonlinear Anal. TMA, 29 (1997), 533-537.
[9] T. Idogawa, and M. Ôtani: The first eigenvalues of some abstract elliptic operators, Funkcialaj Ekvac., 38 (1995), 1-9.
[10] G. Leoni: A First Course in Sobolev Spaces, Graduate Studies in Math. 105, American Mathematical Society, (2009), xiii +607 pages.
[11] Y. Y. Li, and M. Zhu: Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math., 50 (1997), 449-487.
[12] E. Lieb, and M. Loss: Analysis, second edition, Graduate Studies in Math. 14, American Mathematical Society, (2001), xv +348 pages.
[13] S. Martinez, and J. D. Rossi: Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition, Abstr. Appl. Anal., $\mathbf{7}$ (2002), 287-293.
[14] A. I. Nazarov, and A. B. Reznikov: On the existence of an extremal function in critical Sobolev trace embedding theorem, J. Functional Anal., 258 (2010), 3906-3921.
[15] J. D. Rossi: Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem, Handbook of Differential Equations. Stationary Partial Differential Equations Volume 2 (2005), 311-401.
[16] G. Talenti: Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
[17] P. Tolksdorf: Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 5 (1984), 126-150.
[18] J. L. Vazquez: A strong maximum principle for some quasilinear elliptic equations Applied Math. and Optim. (1984), no 12, 191-202.

[^0]: ${ }^{1}$ Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
 e-mail:kazuya4876@gmail.com
 ${ }^{2}$ Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan. e-mail:futoshi@sci.osaka-cu.ac.jp

 Date: November 12, 2019.

