Smooth homotopy 4-sphere

Akio KAWAUCHI
Osaka City University Advanced Mathematical Institute
Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
kawauchi@sci.osaka-cu.ac.jp

Abstract

Every smooth homotopy 4 -sphere is diffeomorphic to the 4 -sphere.

Keywords: 4-sphere, Smooth homotopy 4-sphere, Trivial surface-knot, Orthogonal 2-handle pair, Double branched covering. Mathematics Subject Classification 2010: Primary 57N13; Secondary 57Q45

1. Introduction

For a positive integer n, the stable 4 -sphere of genus n is the connected sum

$$
\Sigma_{n}=S^{4} \# n\left(S^{2} \times S^{2}\right)=S^{4} \#_{i=1}^{n} S^{2} \times S_{i}^{2}
$$

of the 4 -sphere S^{4} and the n copies $S^{2} \times S_{i}^{2}(i=1,2, \ldots, n)$ of the 2 -sphere product $S^{2} \times S^{2}$ done by taking n mutually disjoint 4 -balls embedded smoothly in S^{4}, where a choice of the 4 -balls is independent of the diffeomorphism type of Σ_{n}.

A compact connected oriented smooth 4-manifold is simply called a 4-manifold in this paper. A compact punctured 4 -manifold of a 4 -manifold X is a 4-manifold X^{0} obtained from X by removing an interior of a 4 -ball D_{0}^{4} embedded smoothly in the interior of the 4-manifold X.

The following result is a main result of this paper.
Theorem 1.1. Let Σ_{n}^{0} be a compact punctured 4 -manifold of the stable 4 -sphere Σ_{n} of every positive genus n. Then every smooth embedding $e: \Sigma_{n}^{0} \rightarrow \Sigma_{n}$ extends to a diffeomorphism $e^{+}: \Sigma_{n} \rightarrow \Sigma_{n}$.

A smooth homotopy 4-sphere is a smooth 4-manifold M homotopy equivalent to S^{4}. The following result is obtained from Theorem 1.1:

Corollary 1.2. Every smooth homotopy 4 -sphere M is diffeomorphic to the 4 -sphere S^{4}.

Proof of Corollary 1.2. It is known that there is a diffeomorphism

$$
k: M \# \Sigma_{n} \rightarrow \Sigma_{n}
$$

from the connected sum $M \# \Sigma_{n}$ onto Σ_{n} for a positive integer n (see Wall [9]). Let $D_{0}^{4}=\operatorname{cl}\left(\Sigma_{n} \backslash \Sigma_{n}^{0}\right)$ be a 4-ball. By regarding $M \# \Sigma_{n}=M^{0} \cup \Sigma_{n}^{0}$, let

$$
e: \Sigma_{n}^{0} \rightarrow \Sigma_{n}
$$

be a smooth embedding which is extended to a diffeomorphism

$$
e^{+}: \Sigma_{n} \rightarrow \Sigma_{n}
$$

by Theorem 1.1. By the identity

$$
M^{0}=\operatorname{cl}\left(\Sigma_{n} \backslash e\left(\Sigma_{n}^{0}\right)\right)=e^{+} \operatorname{cl}\left(\Sigma_{n} \backslash \Sigma_{n}^{0}\right)=e^{+}\left(D_{0}^{4}\right)
$$

there is an orientation preserving diffeomorphism

$$
h: M^{0} \rightarrow D_{0}^{4}
$$

defined by the inverse diffeomorphism $\left(e^{+}\right)^{-1}$ of e^{+}. By $\Gamma_{4}=0$ in Cerf [2], the diffeomorphism h extends to a diffeomorphism $h^{+}: M \rightarrow S^{4}$.

In the topological category, the corresponding result of Corollary 1.2 (namely, every topological 4 -manifold homotopy equivalent to the 4 -sphere is homeomorphic to the 4 -sphere) is well-known by Freedman [3] (see also [4]). In the piecewise-linear category, the corresponding result of Corollary 1.2 (namely, every piecewise-linear 4 -manifold homotopy equivalent to the piecewise-linear 4 -sphere is piecewise-linearly homeomorphic to the piecewise-linear 4-sphere) can be shown by using the piecewiselinear versions of the techniques used in this paper (see Hudson [6], Rourke-Sanderson [8]).

It is known by Wall in [9] that for every closed smooth signature-zero spin 4manifold M with second Betti number $\beta_{2}(M ; \mathbf{Z})=2 m>0$, there is a diffeomorphism

$$
\kappa: M \# \Sigma_{n} \rightarrow \Sigma_{m+n}
$$

for a positive integer n and by Freedman [3] (see also [4]) that there is a homeomorphism from M to Σ_{m}. However, a technique used for the proof of Theorem 1.1 cannot be directly generalized to this case. In fact, it is known by Akhmedov-Park in [1] that there is a smooth closed signature-zero spin 4-manifold M with a large second Betti number $\beta_{2}(M ; \mathbf{Z})=2 m$ such that M is not diffeomorphic to Σ_{m}. What can be said in this paper is the following corollary.

Corollary 1.3. Let M and M^{\prime} be closed connected smooth 4-manifolds with the same second Betti number $\beta_{2}(M ; \mathbf{Z})=\beta_{2}\left(M^{\prime} ; \mathbf{Z}\right)$. Then there is a smooth embedding $e: M^{0} \rightarrow M^{\prime}$ extending a diffeomorphism $e^{+}: M \rightarrow M^{\prime}$ if and only if the embedding $e: M^{0} \rightarrow M^{\prime}$ induces a fundamental group isomorphism

$$
f_{\#}: \pi_{1}\left(M^{0}, x\right) \rightarrow \pi_{1}\left(M^{\prime}, f(x)\right)
$$

For this corollary, the proof of the "if"part is obtained by noting that the closed complement $\tilde{D}_{0}^{4}=\operatorname{cl}\left(M^{\prime} \backslash e\left(M^{0}\right)\right)$ is a smooth homotopy 4-ball with 3-sphere boundary which is confirmed by the van Kampen theorem and an homological argument. By Corollary 1.2 . the smooth homotopy 4 -ball \tilde{D}_{0}^{4} is diffeomorphic to the 4 -ball. Thus, by $\Gamma_{4}=0$ in [2], the map e extends to a diffeomorphism $e^{+}: M \rightarrow M^{\prime}$. The proof of the "only if" part is obvious.

2. Proof of Theorem 1.1

A surface-knot in a 4-manifold X is a closed oriented surface F embedded in the interior of X by a smooth embedding. It is also called a 2 -knot if F is the 2 -sphere S^{2}. Two surface-knots F and F^{\prime} in X are equivalent by an equivalence f if F is sent to F^{\prime} orientation-preservingly by an orientation-preserving diffeomorphism f of X.

A trivial surface-knot is a surface-knot F which is the boundary of a handlebody smoothly embedded into a 4 -ball in the interior of X, where a handlebody means a 3 -manifold which is a 3 -ball, a solid torus or a boundary-disk sum of some number of solid tori. A trivial genus n surface-knot in X for every $n \geq 0$ exists uniquely up to equivalences of X (see [5]).

Let

$$
F=S^{2} \# n T=F=S^{2} \#_{i=1}^{n} T_{i}
$$

be a trivial genus n surface-knot in S^{4} which is the connected sum of a trivial 2-knot $\left(S^{4}, S^{2}\right)$ and the n copies $\left(S^{4}, T_{i}\right)(i=1,2, \ldots, n)$ of a trivial torus-knot $\left(S^{4}, T\right)$ done by taking mutually disjoint n disks in S^{2}. The following lemma is a standard result.

Lemma 2.1 The double branched covering space $S^{4}(F)_{2}$ of S^{4} branched along a trivial genus n surface-knot F is diffeomorphic to the stable 4 -sphere Σ_{n} of genus n.

Proof of Lemma 2.1. The double branched covering covering space $S^{4}\left(S^{2}\right)_{2}$ of S^{4} branched along a trivial 2 -knot S^{2} is easily seen to be diffeomorphic to the 4 -sphere $\Sigma_{0}=S^{4}$.

Let T be a trivial torus-knot in S^{4}. Then the pair $\left(S^{4}, T\right)$ is the double of the product pair $(A, o) \times I=(A \times I, o \times I)$ for a trivial loop o in a 3-ball A and the interval $I=[0,1]$, namely, $\left(S^{4}, T\right)$ is diffeomorphic to the boundary pair

$$
\partial\left((A, o) \times I^{2}\right)=\left(\partial\left(A \times I^{2}\right), \partial\left(o \times I^{2}\right)\right),
$$

where I^{m} denotes the m-fold product of I for any $m \geq 1$. Thus, the double branched covering space $S^{4}(T)_{2}$ of S^{4} branched along T is diffeomorphic to the boundary $\partial\left(A(o)_{2} \times I^{2}\right.$), where $A(o)_{2}$ is the double branched covering space over A branched along o which is diffeomorphic to the product $S^{2} \times I$. This means that the 5 -manifold $A(o)_{2} \times I^{2}$ is the product $S^{2} \times I^{3}$. Hence the 4-manifold $S^{4}(T)_{n}$ is diffeomorphic to $S^{2} \times S^{2}$. For $n \geq 2$, a trivial genus n surface-knot $\left(S^{4}, F_{n}\right)$ is equivalent to the n-fold connected sum of a trivial torus-knot $\left(S^{4}, T\right)$ and hence the double branched covering space $S^{4}\left(F_{n}\right)_{2}$ of S^{4} branched along F_{n} is diffeomorphic to the n-fold connected sum of $S^{4}(T)_{2}=S^{2} \times S^{2}$. Hence $S^{4}\left(F_{n}\right)_{2}$ is diffeomorphic to the stable 4 -sphere Σ_{n} of genus n.

A loop basis of a closed surface F of genus n is a system of oriented simple loop pairs $\left(e_{j}, e_{j}^{\prime}\right)(j=0,1,2, \ldots, n)$ on F representing a basis for $H_{1}(F ; \mathbb{Z})$ such that $e_{j} \cap e_{j^{\prime}}=e_{j}^{\prime} \cap e_{j^{\prime}}^{\prime}=e_{j} \cap e_{j^{\prime}}^{\prime}=\emptyset$ for all distinct j, j^{\prime} and $e_{j} \cap e_{j}^{\prime}$ is one point with the intersection number $\operatorname{Int}\left(e_{j}, e_{j}^{\prime}\right)=+1$ in F for all j. A simple loop ℓ in a surfaceknot F is spin if the \mathbb{Z}_{2}-quadratic function $q: H_{1}\left(F ; \mathbb{Z}_{2}\right) \rightarrow \mathbb{Z}_{2}$ associated with the surface-knot F has $q([\ell])=0$ for the \mathbb{Z}_{2}-homology class $[\ell] \in H_{1}\left(F ; \mathbb{Z}_{2}\right)$ of ℓ.

A 2-handle on a surface-knot F in X is a 2-handle $D \times I$ on F embedded smoothly in the interior of X such that $(D \times I) \cap F=(\partial D) \times I$, where I denotes a closed interval with 0 as the center and $D \times 0$ is called the core of the 2-handle $D \times I$ and identified with D. An orthogonal 2-handle pair or simply, an O2-handle pair on a surface-knot in X is a pair $\left(D \times I, D^{\prime} \times I\right)$ of 2-handles $D \times I, D^{\prime} \times I$ on F such that

$$
(D \times I) \cap\left(D^{\prime} \times I\right)=(\partial D) \times I \cap\left(\partial D^{\prime}\right) \times I
$$

and $(\partial D) \times I$ and $\left(\partial D^{\prime}\right) \times I$ meet orthogonally on F, that is, ∂D and ∂D^{\prime} meet transversely at one point p and the intersection $(\partial D) \times I \cap\left(\partial D^{\prime}\right) \times I$ is diffeomorphic to the square $Q=p \times I \times I$ (see [7]).

An O2-handle basis of a trivial genus n surface-knot F is the system $\left(D_{*} \times I, D_{*}^{\prime} \times I\right)$ of mutually disjoint O2-handle pairs $\left(D_{i} \times I, D_{i}^{\prime} \times I\right)(i=1,2, \ldots, n)$ on F such that the loop system $\left(\partial D_{*}, \partial D_{*}^{\prime}\right)$ of $\left(\partial D_{i}, \partial D_{i}^{\prime}\right)(i=1,2, \ldots, n)$ forms a spin loop basis of F.

Lemma 2.2. Let $\left(D_{*} \times I, D_{*}^{\prime} \times I\right)$ be an O2-handle basis of a trivial genus n surfaceknot F in S^{4}. Then the surface-knot F bounds a genus n handlebody $V\left(F ; D_{*}^{\prime} \times I\right)$ smoothly embedded into a 3-ball $B\left(V\left(F ; D_{*}^{\prime} \times I\right), D_{*} \times I\right)$ smoothly embedded in S^{4} such that

$$
\left(\operatorname{Int} D_{i}^{\prime}\right) \times I \subset \operatorname{Int} V\left(F ; D_{*}^{\prime} \times I\right) \quad \text { and } \quad\left(\operatorname{Int} D_{i}\right) \times I \cap \operatorname{Int} V\left(F ; D_{*}^{\prime} \times I\right)=\emptyset
$$

for all $i(i=1,2, \ldots, n)$ and

$$
B\left(V\left(F ; D_{*}^{\prime} \times I\right), D_{*} \times I\right)=V\left(F ; D_{*}^{\prime} \times I\right) \cup_{i=1}^{n} D_{i} \times I .
$$

Proof of Lemma 2.2. Let S be the 2-sphere obtained from F by the embedded surgery along the 2-handles $D_{i}^{\prime} \times I(i=1,2, \ldots, n)$. By uniqueness of an O2-handle pair in [7, Theorem 3.1], the 2-sphere S is a trivial 2-knot in S^{4} and hence bounds a 3-ball V_{0} in S^{4}. The union $V_{0} \cup_{i=1}^{n} D_{i}^{\prime} \times I$, denoted by $V\left(F ; D_{*}^{\prime} \times I\right)$ is a handlebody such that the union $V\left(F ; D_{*}^{\prime} \times I\right) \cup_{i=1}^{n} D_{i} \times I$, denoted by $B\left(V\left(F ; D_{*}^{\prime} \times I\right), D_{*} \times I\right)$ is a 3 -ball smoothly embedded in S^{4}.

In Lemma 2.2, the 3-ball $B_{i}=D_{i} \times I \cup D_{i}^{\prime} \times I$ is called the bump associated with the O2-handle pair ($\left.D_{i} \times I, D_{i}^{\prime} \times I\right)$, and the 3-ball $B\left(V\left(F ; D_{*}^{\prime} \times I\right), D_{*} \times I\right)$ embedded smoothly in S^{4} is called the total bump of a trivial surface-knot F associated with the O2-handle basis $\left(D_{*} \times I, D_{*}^{\prime} \times I\right)$.

A 2-sphere basis of the stable 4-manifold Σ_{n} is a system of mutually disjoint smooth unoriented 2-sphere pairs $\left(S_{i}, S_{i}^{\prime}\right)(i=1,2, \ldots, n)$ in Σ_{n} with $S_{i} \cap S_{i}^{\prime}=p_{i}$ a point such that the closed complement $\operatorname{cl}\left(\Sigma_{n} \backslash N\left(S_{*}, S_{*}^{\prime}\right)\right)$ is an compact n-punctured 4 -sphere embedded smoothly in Σ_{n} for a regular neighborhood $N\left(S_{*}, S_{*}^{\prime}\right)$ of the union $\cup_{i=1}^{n} S_{i} \cup S_{i}^{\prime}$ in Σ_{n}. In this case, note that S_{i} and S_{i}^{\prime} meet transversely in Σ_{n} with intersection number ± 1.

The following lemma gives a relationship between an O2-handle basis ($D_{*} \times I, D_{*}^{\prime} \times$ I) of a trivial surface-knot F and a 2-sphere basis $\left(S\left(D_{*}\right), S\left(D_{*}^{\prime}\right)\right)$ of the stable 4sphere $S^{4}(F)_{2}=\Sigma_{n}$.

Lemma 2.3. The core system $\left(D_{i}, D_{i}^{\prime}\right)(i=1,2, \ldots, n)$ of every O2-handle basis $\left(D_{i} \times I, D_{i}^{\prime} \times I\right)(i=1,2, \ldots, n)$ of a trivial genus n surface-knot F in S^{4} lifts to a 2-sphere basis $\left(S\left(D_{i}\right), S\left(D_{i}^{\prime}\right)\right)(i=1,2, \ldots, n)$ of the stable 4 -sphere $S^{4}(F)_{2}=\Sigma_{n}$ of
genus n by the double branched covering projection $p: S^{4}(F)_{2} \rightarrow S^{4}$ branched along F.

Proof of Lemma 2.3. Let $\left(D_{i} \times I, D_{i}^{\prime} \times I\right)(i=1,2, \ldots, n)$ be a standard O2-handle basis of a trivial genus n surface-knot F in S^{4}. Let $N_{i}(i=1,2, \ldots, n)$ be mutually disjoint regular neighborhoods of the 3-balls $D_{i} \times I \cup D_{i}^{\prime} \times I(i=1,2, \ldots, n)$ in the 4 -sphere S^{4}. Since N_{i} is a 4-ball, the closed complement $X=\operatorname{cl}\left(S^{4} \backslash \cup_{i=1}^{n} N_{i}\right)$ is a compact n-punctured 4 -sphere and $F_{X}=F \cap X$ is a compact proper n-punctured 2sphere such that the pair $\left(X, F_{X}\right)$ is smoothly embeddable in a trivial 2-knot $\left(S^{4}, S^{2}\right)$. Using that the double branched covering space $S^{4}\left(S^{2}\right)_{2}$ of the 4 -sphere S^{4} branched along the 2 -sphere S^{2} is diffeomorphic to the 4 -sphere S^{4}, we see that the double branched covering space $X\left(F_{X}\right)_{2}$ of X branched along the compact n-punctured 2sphere F_{X} is diffeomorphic to a compact n-punctured 4 -sphere. This means that a 2-sphere pair system $\left(S\left(D_{i}\right), S\left(D_{i}^{\prime}\right)\right)(i=1,2, \ldots, n)$ is a 2 -sphere basis of the stable 4 -sphere $S^{4}(F)_{2}=\Sigma_{n}$ of genus n because the double branched covering space $X\left(F_{X}\right)_{2}$ is diffeomorphic to the closed complement $\operatorname{cl}\left(\Sigma_{n} \backslash N\left(S\left(D_{*}\right), S\left(D_{*}^{\prime}\right)\right)\right.$ by Lemma 2.1. Let $\left(E_{i} \times I, E_{i}^{\prime} \times I\right)(i=1,2, \ldots, n)$ be any O2-handle basis of a trivial genus n surface-knot F in S^{4}. By uniqueness of an O2-handle pair in [7, Theorem 3.1], there is an orientartion-preserving diffeomorphism g of S^{4} such that

$$
g(F)=F, \quad\left(g\left(E_{i}\right) \times I, g\left(E_{i}^{\prime}\right) \times I\right)=\left(D_{i} \times I, D_{i}^{\prime} \times I\right)(i=1,2, \ldots, n)
$$

The diffeomorphism g lifts to an α-invariant orientation-preserving diffeomorphism f of $S^{4}(F)_{2}$ sending the 2 -sphere pair $\left(S\left(E_{i}\right), S\left(E_{i}^{\prime}\right)\right)$ to the 2-sphere pair $\left(S\left(D_{i}\right), S\left(D_{i}^{\prime}\right)\right)$ for all i. Thus, the 2 -sphere pair system $\left(S\left(E_{i}\right), S\left(E_{i}^{\prime}\right)\right)(i=1,2, \ldots, n)$ is a 2 -sphere basis of $\Sigma_{n}=S^{4}(F)_{2}$.

Let A be a smooth bounded 3 -submanifold of S^{4}. The sutured triple associated with the pair $\left(S^{4}, A\right)$ is a triplet $\left(Y ; A_{+}, A_{-}\right)$such that Y is a smooth compact 4manifold obtained from S^{4} by splitting along the interior $\operatorname{Int} A$ of A and the boundary ∂Y of Y is given by the union $A_{+} \cup A_{-}$for the splitting copies A_{+}and A_{-}of A where A_{+}is a copy of A with orientation preserved and A_{-}is a copy of A with orientation reversed. Note that there is a canonical identification map $A_{+} \rightarrow A_{-}$. For a slightly different explanation of the sutured triple $\left(Y ; A_{+}, A_{-}\right)$, consider a bi-collar of A in S^{4} which is meant by the image $c(A \times[-1,1])$ of a smooth embedding $c: A \times[-1,1] \rightarrow S^{4}$ with $c(x, 0)=x$ for all $x \in A$. Then the sutured triple ($\left.Y ; A_{+}, A_{-}\right)$is understood to the triplet

$$
\left(\operatorname { c l } \left(S^{4} \backslash c(A \times[-1,1]), c(A \times 1 \cup(\partial A) \times[0,1]), c(A \times(-1) \cup(\partial A) \times[-1,0])\right.\right.
$$

Let F be a trivial genus n surface-knot in S^{4}, and $\left(D_{*} \times I, D_{*}^{\prime} \times I\right)$ an O2-handle basis of F in S^{4}. For the genus n handlebody $V=V\left(F ; D_{*}^{\prime} \times I\right)$ constructed in

Lemma 2.2, let

$$
B=B\left(V\left(F ; D_{*}^{\prime} \times I\right), D_{*} \times I\right)=V \cup_{i=1}^{n} D_{i} \times I
$$

be a total bump of F associated with an O2-handle basis $\left(D_{*} \times I, D_{*}^{\prime} \times I\right)$. Let $\left(W ; V_{+}, V_{-}\right)$be the sutured triple associated with $\left(S^{4}, V\right)$. Note that the 2 -handle system $D_{i} \times I(i=1,2, \ldots, n)$ is in W. Let $D_{i} \times I^{2}(i=1,2, \ldots, n)$ be a 2-handle system attached to V_{+}in W thickening the 2-handle system $D_{i} \times I(i=1,2, \ldots, n)$.

We have the following lemma.

Lemma 2.4. The 4-manifold $U=\operatorname{cl}\left(W \backslash \cup_{i=1}^{n} D_{i} \times I^{2}\right)$ is a 4-ball smoothly embedded in W.

Proof of Lemma 2.4. Since the bi-collar $c(V \times[-1,1])$ is diffeomorphic to the disk sum of n copies of the product $S^{1} \times D^{3}$ for the 3 -ball D^{3} and the union $c(V \times$ $[-1,1]) \cup_{i=1}^{n} D_{i} \times I^{2}$ forms a 4-ball, the 4-manifold U is diffeomorphic to the 4-manifold obtained from S^{4} by removing the interior of a 4 -ball, which is a 4 -ball.

The double branched covering space $S^{4}(F)_{2}$ is constructed from the sutured triple (W, V_{+}, V_{-}) of ($\left.S^{4}, V\right)$ and the copy $\left(\bar{W}, \bar{V}_{+}, \bar{V}_{-}\right)$of $\left(W, V_{+}, V_{-}\right)$by identifying V_{+}with \bar{V}_{-}and V_{-}with \bar{V}_{+}by the canonical identification maps $V_{+} \rightarrow \bar{V}_{-}$and $V_{-} \rightarrow \bar{V}_{+}$, respectively.

A spine of the stable 4 -sphere Σ_{n} of genus n is the preimage $Y=p^{-1}(B)$ of the total bump $B=B\left(V\left(F ; D_{*}^{\prime} \times I\right), D_{*} \times I\right)$ for an O2-handle basis $\left(D_{*} \times I, D_{*}^{\prime} \times I\right)$ of F and the double branched covering projection $p: S^{4}(F)_{2} \rightarrow S^{4}$ branched along a trivial genus n surface-knot F under the identification $S^{4}(F)_{2}=\Sigma_{n}$ given by Lemma 2.1. In this case, the preimage $Z=p^{-1}(V)$ of $V=V\left(F ; D_{*}^{\prime} \times I\right)$ is called the backbone of the spine Y. The backbone Z of a spine Y of Σ_{n} is diffeomorphic to the stable 3-sphere

$$
S^{3} \# n\left(S^{1} \times S^{2}\right)=S^{3} \#_{i=1}^{n} S^{1} \times S_{i}^{2}
$$

of genus n. From the construction of $S^{4}(F)_{2}$ from $\left(W, V_{+}, V_{-}\right)$and $\left(\bar{W}, \bar{V}_{+}, \bar{V}_{-}\right)$, it is seen that the backbone Z splits Σ_{n} into W and \bar{W}. The spine Y is obtained from Z by attaching 2-handle system $D_{i} \times I(i=1,2, \ldots, n)$ in W and the copy system $\bar{D}_{i} \times I(i=1,2, \ldots, n)$ in \bar{W}. Then the following lemma is directly obtained from Lemma 2.4.

Corollary 2.5. The closed complement $\operatorname{cl}\left(\Sigma_{n} \backslash N(Y)\right)$ for a regular neighborhood $N(Y)$ of a spine Y in Σ_{n} is a disjoint union of two smoothly embedded 4-balls in Σ_{n}.

The following lemma is near the argument of [7].

Lemma 2.6. Let F be a surface-knot in a 4-manifold X, and $\left.\left(D \times I, D_{i}^{\prime} \times I\right)(i=1,2)\right)$ O2-handle pairs on F in X such that $\left(\partial D_{1}^{\prime}\right) \times I=\left(\partial D_{2}^{\prime}\right) \times I$. Then there is a smooth isotopy $h_{t}(t \in[0,1])$ of X with $h_{0}=1$ such that $h_{1}\left(D \times I, D_{1}^{\prime} \times I\right)=\left(D \times I, D_{2}^{\prime} \times I\right)$ and $h_{1}(F)=F$.

Proof of Lemma 2.6. As it is done in [7, Lemma 2.3], let a be an arc obtained from $D \times I$ by shrinking D into a point such that $a \subset \partial D_{i}^{\prime}$. Let $a_{i}^{\prime}=\operatorname{cl}\left(\partial D_{i}^{\prime} \backslash a\right)$ for each $i(i=1,2)$. Since $\partial D_{1}^{\prime \prime}=\partial D_{2}^{\prime}$, we can assume that $a_{1}^{\prime}=a_{2}^{\prime}$ and a boundary collar of ∂D_{1}^{\prime} in D_{1}^{\prime} coincides with a boundary collar of ∂D_{2}^{\prime} in D_{2}^{\prime}. Let $F(D \times I)$ denotes the surface-knot obtained from F by the surgery along the 2 -handle $D \times I$. For each $i(i=1,2)$, the arc a is deformed into an arc $a_{i}^{\prime \prime}$ parallel to the arc a_{i}^{\prime} along the disk D_{i}^{\prime} by a smooth isotopy $h_{t}^{i}(t \in[0,1])$ of X with $h_{0}^{i}=1$ keeking the surface-knot $F(D \times I)$ fixed. Since a boundary collar of ∂D_{1}^{\prime} in D_{1}^{\prime} coincides with a boundary collar of ∂D_{2}^{\prime} in D_{2}^{\prime}, we may consider that the disk bounded by the loop $a_{1}^{\prime} \cup a_{1}^{\prime \prime}$ in the disk D_{1}^{\prime} coincides with the disk bounded by the loop $a_{2}^{\prime} \cup a_{2}^{\prime \prime}$ in the disk D_{2}^{\prime}. By regarding $D \times I$ as a thin 1-handle with the core a on the surface-knot $F(D \times I)$, the isotopies $h_{t}^{i}(t \in[0,1])$ for $i=1$ and 2 constitute a desired isotopy $h_{t}(t \in[0,1])$ of X with $h_{0}=1$ such that $h_{1}\left(D \times I, D_{1}^{\prime} \times I\right)=\left(D \times I, D_{2}^{\prime} \times I\right)$ and $h_{1}(F)=F$.

Let $\Sigma_{n}^{0,0}$ be a smooth 4 -submanifold of Σ_{n} obtained from Σ_{n} by removing the interiors of two 4 -balls invariant under the covering involution α of $S^{4}(F)_{2}=\Sigma_{n}$. Let $\operatorname{Diff}^{+}\left(D^{4}\right.$, rel $\left.\partial\right)$)be the orientation-preserving diffeomorphism group of the 4 -ball D^{4} keeping the boundary ∂D^{4} by the identity. The following lemma is an essential point to the proof of Theorem 1.1.

Lemma 2.7. Every orientation-preserving smooth embedding $u: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ is smoothly isotopic to a smooth embedding $\tilde{u}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ such that the composition $u^{\prime}=f \tilde{u}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ for an α-invariant orientation-preserving diffeomorphism f of Σ_{n} is smoothly isotopic to the inclusion map

$$
\text { inc : } \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}
$$

up to local replacements by diffeomorphisms in $\operatorname{Diff}^{+}\left(D^{4}\right.$, rel $\left.\partial\right)$.
In the piecewise-linear category, this local replacement is not needed since every orientation-preserving piecewise-linear homeomorphism of D^{4} with the identity on ∂D^{4} is piecewise-linearly isotopic to the identity 1.

Proof of Lemma 2.7. Let $Z=V \cup_{F} \bar{V}$ be the backbone of Σ_{n} where V and $\left(D_{*} \times I, D_{*}^{\prime} \times I\right)$ are identified with the orbit handlebody V and the orbit O2-handle
pair $\left(D_{*} \times I, D_{*}^{\prime} \times I\right)$ in S^{4}, respectively, and \bar{V} denotes the image $\alpha(V)$ of V by α. Also, let $Y=B \cup_{F} \bar{B}$ be the spine of Σ_{n} where B is identifined with the orbit total bump B in S^{4} and \bar{B} denotes the image $\alpha(B)$. The backbone Z and the spine Y of Σ_{n} are assumed to be in $\Sigma_{n}^{0,0}$. Since the lifting surface-knot F is a trivial surface-knot in Σ_{n}, the embedding u is smoothly isotopic to an embedding $\tilde{u}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ with $\tilde{u}(F)=F$ in Σ_{n}. By considering the surface-knot F in S^{4} as the covering projection image, there is an orientation-preserving diffeomorphism g of S^{4} with $g(F)=F$ which sends the spin loop basis $\left(p \tilde{u}\left(\partial D_{*}\right), p \tilde{u}\left(\partial D_{*}^{\prime}\right)\right)$ of F to the spin loop basis $\left(\partial D_{*}, \partial D_{*}^{\prime}\right)$ of F. The lifting diffeomorphism f of g is an α-invariant orientation-preserving differomorphism of Σ_{n} such that the composition embedding $u^{\prime}=f \tilde{u}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ with $f(F)=F$ which sends the spin loop basis ($\tilde{u}\left(\partial D_{*}, \tilde{u}\left(\partial D_{*}^{\prime}\right)\right.$ of F to the spin loop basis $\left(\partial D_{*}, \partial D_{*}^{\prime}\right)$ of F. By a smooth isotopy, the embedding u^{\prime} is deformed to send the handlebody V to V identically and then deformed by Lemma 2.6 to send the total bump B to B identically.

On deformations of the 2-handle systems $\bar{D}_{*} \times I$ and $\bar{D}_{*}^{\prime} \times I$ on F in Σ_{n}, the following two assertions are observed, where at the present stage note that the 2handle system images $p u^{\prime}\left(\bar{D}_{*} \times I\right)$ and $p u^{\prime}\left(\bar{D}_{*}^{\prime} \times I\right)$ are in general singular 2-handles on F in S^{4}.
(2.7.1) The smooth embedding u^{\prime} is smoothly isotopic to a smooth embedding u^{*} : $\Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ such that

$$
u^{*}\left(D_{1} \times I, \bar{D}_{1} \times I, D_{1}^{\prime} \times I, \bar{D}_{1}^{\prime} \times I\right)=\left(D_{1} \times I, u^{*}\left(\bar{D}_{1}\right) \times I, D_{1}^{\prime} \times I, \bar{D}_{1}^{\prime} \times I\right)
$$

(2.7.2) The smooth embedding u^{*} in (2.7.1) is smoothly isotopic to a smooth embedding $u_{1}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ such that

$$
u_{1}\left(D_{1} \times I, \bar{D}_{1} \times I, D_{1}^{\prime} \times I, \bar{D}_{1}^{\prime} \times I\right)=\left(D_{1} \times I, \bar{D}_{1} \times I, D_{1}^{\prime} \times I, \bar{D}_{1}^{\prime} \times I\right)
$$

By continuing the same processes of (2.7.1) and (2.7.2) for $i=2,3, \ldots, n$, the embedding u is smoothly isotopic to a smooth embedding

$$
u_{n}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}
$$

such that

$$
u_{n}\left(D_{i} \times I, \bar{D}_{i} \times I, D_{i}^{\prime} \times I, \bar{D}_{i}^{\prime} \times I\right)=\left(D_{i} \times I, \bar{D}_{i} \times I, D_{i}^{\prime} \times I, \bar{D}_{i}^{\prime} \times I\right)
$$

for all i. By Corollary 2.5, u_{n} is smoothly isotopic to the inclusion map inc after a local replacement of a diffeomorphism in $\operatorname{Diff}^{+}\left(D^{4}\right.$, rel $\left.\partial\right)$. This completes the proof of Lemma 2.7 except for the proofs of (2.7.1) and (2.7.2).

Proof of (2.7.1). By regarding the bump $\bar{B}_{1}=\bar{D}_{1} \times I \cup \bar{D}_{1}^{\prime} \times I \subset \Sigma_{n}$ as a line bundle over a twisted disk \bar{d}_{1} associated with $\bar{D}_{1} \cup \bar{D}_{1}^{\prime}$ (see [7]), move neighborhoods in $u^{\prime}\left(\bar{D}_{1}^{\prime}\right)$ of the interior intersection double points between the 2-handle core \bar{D}_{1} and the 2-handle core image $u^{\prime}\left(\bar{D}_{1}^{\prime}\right)$ into the interior intersection double points of the 2handle core \bar{D}_{1}^{\prime} and the 2-handle core image $u^{\prime}\left(\bar{D}_{1}^{\prime}\right)$ through the twisted disk \bar{d}_{1}, so that

$$
\operatorname{Int} \bar{D}_{1} \cap \operatorname{Int} u^{\prime}\left(\bar{D}_{1}^{\prime}\right)=\emptyset
$$

In a process of this deformation, every disk in the neighborhoods meets F in two points apart from the part of 2-handle attachments, but in the end of this deformation the interior of the 2-handle core image $u^{\prime}\left(\bar{D}_{1}^{\prime}\right)$ no longer meets F (see the proof of [7, Lemma 3.2]). This deformation does not touch the 2-handles $D_{1} \times I$ and $D_{1}^{\prime} \times I$. Let $u^{\prime \prime}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ be the resulting smooth embedding which is smoothly isotopic to u^{\prime}. Then we have the following four O2-handle pairs:

$$
\left(D_{1} \times I, D_{1}^{\prime} \times I\right),\left(\bar{D}_{1} \times I, \bar{D}_{1}^{\prime} \times I\right),\left(D_{1} \times I, u^{\prime \prime}\left(\bar{D}_{1}^{\prime} \times I\right)\right),\left(\bar{D}_{1} \times I, u^{\prime \prime}\left(\bar{D}_{1}^{\prime}\right) \times I\right)
$$

on F in Σ_{n}. By the covering projection $p: \Sigma_{n} \rightarrow S^{4}$, we obtain the two O2-handle pairs

$$
\left(D_{1} \times I, D_{1}^{\prime} \times I\right), \quad\left(D_{1} \times I, p u^{\prime \prime}\left(\bar{D}_{1}^{\prime}\right) \times I\right)
$$

on F in S^{4} with $p u^{\prime \prime}\left(\bar{D}_{1}^{\prime}\right) \times I$ a singular 2-handle. Apply [7, Lemma 2.3] to the O2handle pair $\left(D \times I, p u^{\prime \prime}\left(\bar{D}_{1}^{\prime}\right) \times I\right)$ to deform $p u^{\prime \prime}\left(\bar{D}_{1}^{\prime}\right) \times I$ into a smoothly embedded 2-handle, and then apply Lemma 2.6 to deform $p u^{\prime \prime}\left(\bar{D}_{1}^{\prime}\right) \times I$ into the 2-handle $D_{1}^{\prime} \times I$. These deformations are realized by a smooth isotopy of Σ_{n}, so that there is a smooth embedding $u^{*}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ smoothly isotopic to $u^{\prime \prime}$ such that

$$
u^{*}\left(D_{1} \times I, \bar{D}_{1} \times I, D_{1}^{\prime} \times I, \bar{D}_{1}^{\prime} \times I\right)=\left(D_{1} \times I, u^{*}\left(\bar{D}_{1}\right) \times I, D_{1}^{\prime} \times I, \bar{D}_{1}^{\prime} \times I\right)
$$

where $u^{*}\left(D_{1}\right) \times I$ is taken to be $D_{1} \times I$.
Proof of (2.7.2). In (2.7.1), we obtain two O2-handle pairs $\left(D_{1} \times I, D_{1}^{\prime} \times I\right)$ and $\left(p u^{*}\left(\bar{D}_{1}\right) \times I, D_{1}^{\prime} \times I\right)$ on F in S^{4} with $p u^{*}\left(\bar{D}_{1}\right) \times I$ a singular 2-handle by taking the covering projection image. Apply [7, Lemma 2.3] to the O2-handle pair $\left(p u^{*}\left(\bar{D}_{1}\right) \times\right.$ $\left.I, D_{1}^{\prime} \times I\right)$ to deform $p u^{*}\left(\bar{D}_{1}\right) \times I$ into a smoothly embedded 2-handle, and then apply Lemma 2.6 to deform $p u^{*}\left(\bar{D}_{1}\right) \times I$ into the 2-handle $D_{1} \times I$. These deformations are realized by a smooth isotopy of Σ_{n}, so that there is a smooth embedding $u_{1}: \Sigma_{n}^{0,0} \rightarrow$ Σ_{n} smoothly isotopic to u^{*} such that

$$
u_{1}\left(D_{1} \times I, \bar{D}_{1} \times I, D_{1}^{\prime} \times I, \bar{D}_{1}^{\prime} \times I\right)=\left(D_{1} \times I, \bar{D}_{1} \times I, D_{1}^{\prime} \times I, \bar{D}_{1}^{\prime} \times I\right)
$$

Now the proof of Theorem 1.1 is done as follows.

Proof of Theorem 1.1. If necessary, by changing changing the orientation of Σ_{n}, assume that the smooth embedding $e: \Sigma_{n}^{0} \rightarrow \Sigma_{n}$ is orientation-preserving. Let $\Sigma_{n}^{0,0}$ be an α-invariant smooth 4 -submanifold of Σ_{n}^{0} by removing the interiors of a 4 -ball D_{0}^{4}. Let $u: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ be the smooth embedding defined by e. By Lemma 2.7, the embedding u is smoothly isotopic to a smooth embedding $\tilde{u}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ such that the composition $u^{\prime}=f \tilde{u}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ for an α-invariant orientation-preserving diffeomorphism f of Σ_{n} is smoothly isotopic to the inclusion map

$$
\text { inc : } \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}
$$

up to local replacements by diffeomorphisms in $\operatorname{Diff}^{+}\left(D^{4}\right.$, rel $\left.\partial\right)$. Since the inclusion map inc : $\Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$ extends to the identity map 1 of Σ_{n}, the isotopy extension theorem says that the smooth embedding u^{\prime} extends to a diffeomorphism

$$
\left(u^{\prime}\right)^{+}: \Sigma_{n} \rightarrow \Sigma_{n} .
$$

Then the composite diffeomorphism $f^{-1}\left(u^{\prime}\right)^{+}: \Sigma_{n} \rightarrow \Sigma_{n}$ is an extension of the embedding $\tilde{u}: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$. By the isotopy extension theorem, the smooth embedding u extends to a diffeomorphism $u^{+}:: \Sigma_{n} \rightarrow \Sigma_{n}$. Since the closed complement $\operatorname{cl}\left(\Sigma_{n} \backslash \Sigma_{n}^{0,0}\right)$ is the disjoint union of 4 -balls D_{0}^{4} and $\alpha\left(D_{0}^{4}\right)$, we have the identities

$$
\operatorname{cl}\left(\Sigma_{n} \backslash u\left(\Sigma_{n}^{0,0}\right)\right)=u^{+} \operatorname{cl}\left(\Sigma_{n} \backslash \Sigma_{n}^{0,0}\right)=u^{+}\left(D_{0}^{4}\right) \cup u^{+} \alpha\left(D_{0}^{4}\right) .
$$

Thus, the closed complement $\operatorname{cl}\left(\Sigma_{n} \backslash e\left(\Sigma_{n}^{0}\right)\right)$ is a 4 -ball. By $\Gamma_{4}=0$ in [2], we see that the embedding e extends to a diffeomorphism $e^{+}: \Sigma_{n} \rightarrow \Sigma_{n}$. \square,

The property that the diffeomorphisms f is α-equivariant in Lemma 2.7 is not used in the proof of Theorem 1.1. This property is used in the proof of the following corollary.

Corollary 2.8. Every orientation-preserving diffeomorphism $h: \Sigma_{n} \rightarrow \Sigma_{n}$ is smoothly isotopic to an α-equivariant diffeomorphism up to a local replacement by a diffeomorphism in $\operatorname{Diff}^{+}\left(D^{4}\right.$, rel $\left.\partial\right)$.

In the piecewise-linear category, this local replacement is not needed.
Proof of Corollary 2.8. Apply the same argument as the proof of Theorem 1.1 for $h: \Sigma_{n} \rightarrow \Sigma_{n}$ in place of $u: \Sigma_{n}^{0,0} \rightarrow \Sigma_{n}$. Then every orientation-preserving diffeomorphism $h: \Sigma_{n} \rightarrow \Sigma_{n}$ is smoothly isotopic to a diffeomorphism $\tilde{h}: \Sigma_{n} \rightarrow \Sigma_{n}$ such that
the composition $h^{\prime}=f \tilde{h}: \Sigma_{n} \rightarrow \Sigma_{n}$ for an α-equivariant orientation-preserving diffeomorphism $f: \Sigma_{n} \rightarrow \Sigma_{n}$ is smoothly isotopic to the identity $1: \Sigma_{n} \rightarrow \Sigma_{n}$ after local replacements by diffeomorphisms in $\operatorname{Diff}^{+}\left(D^{4}\right.$, rel $\left.\partial\right)$ needed to apply Corollary 2.5. Then the diffeomorphism h is smoothly isotopic to the α-equivariant orientationpreserving diffeomorphism f^{-1} since the composition $\tilde{h}=f^{-1} h^{\prime}$ is smoothly isotopic to f^{-1} and h, up to local replacements by diffeomorphisms in $\operatorname{Diff}^{+}\left(D^{4}\right.$, rel $\left.\partial\right)$.

Acknowledgements. This work was in part supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

References

[1] A. Akhmedov and B. D. Park, Geography of simply connected spin symplectic 4-manifolds, Math. Res. Lett., 17 (2010), 483-492.
[2] J. Cerf, Sur les difféomorphismes de la sph e re de dimension trois $\left(\Gamma_{4}=0\right)$, Springer Lecture Notes in Math. 53 (1968).
[3] M. Freedman, The disk theorem for four-dimensional manifolds, Proc. Internat. Congr. Math. (Warsaw, Poland)(1983), 647-663.
[4] M. H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Univ. Press (1990).
[5] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-space, Osaka J. Math. 16(1979), 233-248.
[6] J. F. P. Hudson, Piecewise-linear topology, Benjamin (1969).
[7] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, revised preprint.
http://www.sci.osaka-cu.ac.jp/ kawauchi/SRibbonSLinkI(STrivialCase).pdf
[8] C. Rourke and B. Sanderson, Introduction to piecewise-linear topology, Ergebnesse der Math., 69 (1972), Springer-Verlag.
[9] C. T. C. Wall, On simply-connected 4-manifolds, J. London Math., Soc. 39 (1964), 141-149.

