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1. Introduction
For a positive integer n, the stable 4-sphere of genus n is the connected sum

Σn = S4#n(S2 × S2) = S4#n
i=1S

2 × S2
i

of the 4-sphere S4 and the n copies S2 × S2
i (i = 1, 2, . . . , n) of the 2-sphere product

S2 × S2 done by taking n mutually disjoint 4-balls embedded smoothly in S4, where
a choice of the 4-balls is independent of the diffeomorphism type of Σn.

A compact connected oriented smooth 4-manifold is simply called a 4-manifold in
this paper. A compact punctured 4-manifold of a 4-manifold X is a 4-manifold X0

obtained from X by removing an interior of a 4-ball D4
0 embedded smoothly in the

interior of the 4-manifold X.
The following result is a main result of this paper.

Theorem 1.1. Let Σ0
n be a compact punctured 4-manifold of the stable 4-sphere Σn

of every positive genus n. Then every smooth embedding e : Σ0
n → Σn extends to a

diffeomorphism e+ : Σn → Σn.
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A smooth homotopy 4-sphere is a smooth 4-manifold M homotopy equivalent to
S4. The following result is obtained from Theorem 1.1:

Corollary 1.2. Every smooth homotopy 4-sphere M is diffeomorphic to the 4-sphere
S4.

Proof of Corollary 1.2. It is known that there is a diffeomorphism

k : M#Σn → Σn

from the connected sum M#Σn onto Σn for a positive integer n (see Wall [9]). Let
D4

0 = cl(Σn \ Σ0
n) be a 4-ball. By regarding M#Σn = M0 ∪ Σ0

n, let

e : Σ0
n → Σn

be a smooth embedding which is extended to a diffeomorphism

e+ : Σn → Σn

by Theorem 1.1. By the identity

M0 = cl(Σn \ e(Σ0
n)) = e+cl(Σn \ Σ0

n) = e+(D4
0),

there is an orientation preserving diffeomorphism

h : M0 → D4
0

defined by the inverse diffeomorphism (e+)−1 of e+. By Γ4 = 0 in Cerf [2], the
diffeomorphism h extends to a diffeomorphism h+ : M → S4. □

In the topological category, the corresponding result of Corollary 1.2 (namely,
every topological 4-manifold homotopy equivalent to the 4-sphere is homeomorphic
to the 4-sphere) is well-known by Freedman [3] (see also [4]). In the piecewise-linear
category, the corresponding result of Corollary 1.2 (namely, every piecewise-linear
4-manifold homotopy equivalent to the piecewise-linear 4-sphere is piecewise-linearly
homeomorphic to the piecewise-linear 4-sphere) can be shown by using the piecewise-
linear versions of the techniques used in this paper (see Hudson [6], Rourke-Sanderson
[8]).

It is known by Wall in [9] that for every closed smooth signature-zero spin 4-
manifold M with second Betti number β2(M ;Z) = 2m > 0, there is a diffeomorphism

κ : M#Σn → Σm+n
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for a positive integer n and by Freedman [3] (see also [4]) that there is a homeomor-
phism from M to Σm. However, a technique used for the proof of Theorem 1.1 cannot
be directly generalized to this case. In fact, it is known by Akhmedov-Park in [1] that
there is a smooth closed signature-zero spin 4-manifold M with a large second Betti
number β2(M ;Z) = 2m such that M is not diffeomorphic to Σm. What can be said
in this paper is the following corollary.

Corollary 1.3. Let M and M ′ be closed connected smooth 4-manifolds with the
same second Betti number β2(M ;Z) = β2(M

′;Z). Then there is a smooth embedding
e : M0 → M ′ extending a diffeomorphism e+ : M → M ′ if and only if the embedding
e : M0 → M ′ induces a fundamental group isomorphism

f# : π1(M
0, x) → π1(M

′, f(x)).

For this corollary, the proof of the “if”part is obtained by noting that the closed
complement D̃4

0 = cl(M ′\e(M0)) is a smooth homotopy 4-ball with 3-sphere boundary
which is confirmed by the van Kampen theorem and an homological argument. By
Corollary 1.2. the smooth homotopy 4-ball D̃4

0 is diffeomorphic to the 4-ball. Thus,
by Γ4 = 0 in [2], the map e extends to a diffeomorphism e+ : M → M ′. The proof of
the “only if”part is obvious.

2. Proof of Theorem 1.1

A surface-knot in a 4-manifold X is a closed oriented surface F embedded in the
interior of X by a smooth embedding. It is also called a 2-knot if F is the 2-sphere
S2. Two surface-knots F and F ′ in X are equivalent by an equivalence f if F is sent
to F ′ orientation-preservingly by an orientation-preserving diffeomorphism f of X.

A trivial surface-knot is a surface-knot F which is the boundary of a handlebody
smoothly embedded into a 4-ball in the interior of X, where a handlebody means a
3-manifold which is a 3-ball, a solid torus or a boundary-disk sum of some number of
solid tori. A trivial genus n surface-knot in X for every n ≥ 0 exists uniquely up to
equivalences of X (see [5]).

Let

F = S2#nT = F = S2#n
i=1Ti

be a trivial genus n surface-knot in S4 which is the connected sum of a trivial 2-knot
(S4, S2) and the n copies (S4, Ti) (i = 1, 2, . . . , n) of a trivial torus-knot (S4, T ) done
by taking mutually disjoint n disks in S2. The following lemma is a standard result.
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Lemma 2.1 The double branched covering space S4(F )2 of S4 branched along a
trivial genus n surface-knot F is diffeomorphic to the stable 4-sphere Σn of genus n.

Proof of Lemma 2.1. The double branched covering covering space S4(S2)2 of S4

branched along a trivial 2-knot S2 is easily seen to be diffeomorphic to the 4-sphere
Σ0 = S4.

Let T be a trivial torus-knot in S4. Then the pair (S4, T ) is the double of the
product pair (A, o) × I = (A × I, o × I) for a trivial loop o in a 3-ball A and the
interval I = [0, 1], namely, (S4, T ) is diffeomorphic to the boundary pair

∂((A, o)× I2) = (∂(A× I2), ∂(o× I2)),

where Im denotes the m-fold product of I for any m ≥ 1. Thus, the double branched
covering space S4(T )2 of S4 branched along T is diffeomorphic to the boundary
∂(A(o)2 × I2), where A(o)2 is the double branched covering space over A branched
along o which is diffeomorphic to the product S2×I. This means that the 5-manifold
A(o)2 × I2 is the product S2 × I3. Hence the 4-manifold S4(T )n is diffeomorphic to
S2 × S2. For n ≥ 2, a trivial genus n surface-knot (S4, Fn) is equivalent to the n-fold
connected sum of a trivial torus-knot (S4, T ) and hence the double branched covering
space S4(Fn)2 of S4 branched along Fn is diffeomorphic to the n-fold connected sum
of S4(T )2 = S2 × S2. Hence S4(Fn)2 is diffeomorphic to the stable 4-sphere Σn of
genus n. □

A loop basis of a closed surface F of genus n is a system of oriented simple loop
pairs (ej, e

′
j) (j = 0, 1, 2, . . . , n) on F representing a basis for H1(F ;Z) such that

ej ∩ ej′ = e′j ∩ e′j′ = ej ∩ e′j′ = ∅ for all distinct j, j′ and ej ∩ e′j is one point with
the intersection number Int(ej, e

′
j) = +1 in F for all j. A simple loop ℓ in a surface-

knot F is spin if the Z2-quadratic function q : H1(F ;Z2) → Z2 associated with the
surface-knot F has q([ℓ]) = 0 for the Z2-homology class [ℓ] ∈ H1(F ;Z2) of ℓ.

A 2-handle on a surface-knot F in X is a 2-handle D×I on F embedded smoothly
in the interior of X such that (D × I) ∩ F = (∂D) × I, where I denotes a closed
interval with 0 as the center and D × 0 is called the core of the 2-handle D × I and
identified with D. An orthogonal 2-handle pair or simply, an O2-handle pair on a
surface-knot in X is a pair (D× I,D′ × I) of 2-handles D× I, D′ × I on F such that

(D × I) ∩ (D′ × I) = (∂D)× I ∩ (∂D′)× I

and (∂D) × I and (∂D′) × I meet orthogonally on F , that is, ∂D and ∂D′ meet
transversely at one point p and the intersection (∂D)× I ∩ (∂D′)× I is diffeomorphic
to the square Q = p× I × I (see [7]).
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An O2-handle basis of a trivial genus n surface-knot F is the system (D∗×I,D′
∗×I)

of mutually disjoint O2-handle pairs (Di × I,D′
i × I) (i = 1, 2, . . . , n) on F such that

the loop system (∂D∗, ∂D
′
∗) of (∂Di, ∂D

′
i) (i = 1, 2, . . . , n) forms a spin loop basis of

F .

Lemma 2.2. Let (D∗× I,D′
∗× I) be an O2-handle basis of a trivial genus n surface-

knot F in S4. Then the surface-knot F bounds a genus n handlebody V (F ;D′
∗ × I)

smoothly embedded into a 3-ball B(V (F ;D′
∗ × I), D∗ × I) smoothly embedded in S4

such that

(IntD′
i)× I ⊂ IntV (F ;D′

∗ × I) and (IntDi)× I ∩ IntV (F ;D′
∗ × I) = ∅

for all i (i = 1, 2, . . . , n) and

B(V (F ;D′
∗ × I), D∗ × I) = V (F ;D′

∗ × I) ∪n
i=1 Di × I.

Proof of Lemma 2.2. Let S be the 2-sphere obtained from F by the embedded
surgery along the 2-handles D′

i × I (i = 1, 2, . . . , n). By uniqueness of an O2-handle
pair in [7, Theorem 3.1], the 2-sphere S is a trivial 2-knot in S4 and hence bounds a
3-ball V0 in S4. The union V0 ∪n

i=1 D
′
i × I, denoted by V (F ;D′

∗ × I) is a handlebody
such that the union V (F ;D′

∗ × I) ∪n
i=1 Di × I, denoted by B(V (F ;D′

∗ × I), D∗ × I)
is a 3-ball smoothly embedded in S4. □

In Lemma 2.2, the 3-ball Bi = Di × I ∪D′
i × I is called the bump associated with

the O2-handle pair (Di×I,D′
i×I), and the 3-ball B(V (F ;D′

∗×I), D∗×I) embedded
smoothly in S4 is called the total bump of a trivial surface-knot F associated with the
O2-handle basis (D∗ × I,D′

∗ × I).
A 2-sphere basis of the stable 4-manifold Σn is a system of mutually disjoint

smooth unoriented 2-sphere pairs (Si, S
′
i) (i = 1, 2, . . . , n) in Σn with Si ∩ S ′

i = pi a
point such that the closed complement cl(Σn \N(S∗, S

′
∗)) is an compact n-punctured

4-sphere embedded smoothly in Σn for a regular neighborhood N(S∗, S
′
∗) of the union

∪n
i=1Si ∪ S ′

i in Σn. In this case, note that Si and S ′
i meet transversely in Σn with

intersection number ±1.
The following lemma gives a relationship between an O2-handle basis (D∗×I,D′

∗×
I) of a trivial surface-knot F and a 2-sphere basis (S(D∗), S(D

′
∗)) of the stable 4-

sphere S4(F )2 = Σn.

Lemma 2.3. The core system (Di, D
′
i) (i = 1, 2, . . . , n) of every O2-handle basis

(Di × I,D′
i × I) (i = 1, 2, . . . , n) of a trivial genus n surface-knot F in S4 lifts to a

2-sphere basis (S(Di), S(D
′
i)) (i = 1, 2, . . . , n) of the stable 4-sphere S4(F )2 = Σn of
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genus n by the double branched covering projection p : S4(F )2 → S4 branched along
F .

Proof of Lemma 2.3. Let (Di×I,D′
i×I) (i = 1, 2, . . . , n) be a standard O2-handle

basis of a trivial genus n surface-knot F in S4. Let Ni (i = 1, 2, . . . , n) be mutually
disjoint regular neighborhoods of the 3-balls Di × I ∪ D′

i × I (i = 1, 2, . . . , n) in the
4-sphere S4. Since Ni is a 4-ball, the closed complement X = cl(S4 \ ∪n

i=1Ni) is a
compact n-punctured 4-sphere and FX = F ∩X is a compact proper n-punctured 2-
sphere such that the pair (X,FX) is smoothly embeddable in a trivial 2-knot (S4, S2).
Using that the double branched covering space S4(S2)2 of the 4-sphere S4 branched
along the 2-sphere S2 is diffeomorphic to the 4-sphere S4, we see that the double
branched covering space X(FX)2 of X branched along the compact n-punctured 2-
sphere FX is diffeomorphic to a compact n-punctured 4-sphere. This means that a
2-sphere pair system (S(Di), S(D

′
i)) (i = 1, 2, . . . , n) is a 2-sphere basis of the stable

4-sphere S4(F )2 = Σn of genus n because the double branched covering space X(FX)2
is diffeomorphic to the closed complement cl(Σn \ N(S(D∗), S(D

′
∗)) by Lemma 2.1.

Let (Ei × I, E ′
i × I) (i = 1, 2, . . . , n) be any O2-handle basis of a trivial genus n

surface-knot F in S4. By uniqueness of an O2-handle pair in [7, Theorem 3.1], there
is an orientartion-preserving diffeomorphism g of S4 such that

g(F ) = F, (g(Ei)× I, g(E ′
i)× I) = (Di × I,D′

i × I) (i = 1, 2, . . . , n).

The diffeomorphism g lifts to an α-invariant orientation-preserving diffeomorphism f
of S4(F )2 sending the 2-sphere pair (S(Ei), S(E

′
i)) to the 2-sphere pair (S(Di), S(D

′
i))

for all i. Thus, the 2-sphere pair system (S(Ei), S(E
′
i)) (i = 1, 2, . . . , n) is a 2-sphere

basis of Σn = S4(F )2. □

Let A be a smooth bounded 3-submanifold of S4. The sutured triple associated
with the pair (S4, A) is a triplet (Y ;A+, A−) such that Y is a smooth compact 4-
manifold obtained from S4 by splitting along the interior IntA of A and the boundary
∂Y of Y is given by the union A+∪A− for the splitting copies A+ and A− of A where
A+ is a copy of A with orientation preserved and A− is a copy of A with orientation
reversed. Note that there is a canonical identification map A+ → A−. For a slightly
different explanation of the sutured triple (Y ;A+, A−), consider a bi-collar of A in S4

which is meant by the image c(A×[−1, 1]) of a smooth embedding c : A×[−1, 1] → S4

with c(x, 0) = x for all x ∈ A. Then the sutured triple (Y ;A+, A−) is understood to
the triplet

(cl(S4 \ c(A× [−1, 1]), c(A× 1 ∪ (∂A)× [0, 1]), c(A× (−1) ∪ (∂A)× [−1, 0]).

Let F be a trivial genus n surface-knot in S4, and (D∗ × I,D′
∗ × I) an O2-handle

basis of F in S4. For the genus n handlebody V = V (F ;D′
∗ × I) constructed in
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Lemma 2.2, let

B = B(V (F ;D′
∗ × I), D∗ × I) = V ∪n

i=1 Di × I

be a total bump of F associated with an O2-handle basis (D∗ × I,D′
∗ × I). Let

(W ;V+, V−) be the sutured triple associated with (S4, V ). Note that the 2-handle
system Di × I (i = 1, 2, . . . , n) is in W . Let Di × I2 (i = 1, 2, . . . , n) be a 2-handle
system attached to V+ in W thickening the 2-handle system Di × I (i = 1, 2, . . . , n).

We have the following lemma.

Lemma 2.4. The 4-manifold U = cl(W \∪n
i=1Di×I2) is a 4-ball smoothly embedded

in W .

Proof of Lemma 2.4. Since the bi-collar c(V × [−1, 1]) is diffeomorphic to the
disk sum of n copies of the product S1 ×D3 for the 3-ball D3 and the union c(V ×
[−1, 1])∪n

i=1Di×I2 forms a 4-ball, the 4-manifold U is diffeomorphic to the 4-manifold
obtained from S4 by removing the interior of a 4-ball, which is a 4-ball. □

The double branched covering space S4(F )2 is constructed from the sutured triple
(W,V+, V−) of (S

4, V ) and the copy (W,V +, V −) of (W,V+, V−) by identifying V+ with
V − and V− with V + by the canonical identification maps V+ → V − and V− → V +,
respectively.

A spine of the stable 4-sphere Σn of genus n is the preimage Y = p−1(B) of the
total bump B = B(V (F ;D′

∗×I), D∗×I) for an O2-handle basis (D∗×I,D′
∗×I) of F

and the double branched covering projection p : S4(F )2 → S4 branched along a trivial
genus n surface-knot F under the identification S4(F )2 = Σn given by Lemma 2.1. In
this case, the preimage Z = p−1(V ) of V = V (F ;D′

∗× I) is called the backbone of the
spine Y . The backbone Z of a spine Y of Σn is diffeomorphic to the stable 3-sphere

S3#n(S1 × S2) = S3#n
i=1S

1 × S2
i

of genus n. From the construction of S4(F )2 from (W,V+, V−) and (W,V +, V −), it
is seen that the backbone Z splits Σn into W and W . The spine Y is obtained from
Z by attaching 2-handle system Di × I (i = 1, 2, . . . , n) in W and the copy system
Di × I (i = 1, 2, . . . , n) in W . Then the following lemma is directly obtained from
Lemma 2.4.

Corollary 2.5. The closed complement cl(Σn \ N(Y )) for a regular neighborhood
N(Y ) of a spine Y in Σn is a disjoint union of two smoothly embedded 4-balls in Σn.

The following lemma is near the argument of [7].
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Lemma 2.6. Let F be a surface-knot in a 4-manifoldX, and (D×I,D′
i×I) (i = 1, 2))

O2-handle pairs on F in X such that (∂D′
1)× I = (∂D′

2)× I. Then there is a smooth
isotopy ht (t ∈ [0, 1]) of X with h0 = 1 such that h1(D× I,D′

1 × I) = (D× I,D′
2 × I)

and h1(F ) = F .

Proof of Lemma 2.6. As it is done in [7, Lemma 2.3], let a be an arc obtained from
D × I by shrinking D into a point such that a ⊂ ∂D′

i. Let a′i = cl(∂D′
i \ a) for each

i (i = 1, 2). Since ∂D′′
1 = ∂D′

2, we can assume that a′1 = a′2 and a boundary collar
of ∂D′

1 in D′
1 coincides with a boundary collar of ∂D′

2 in D′
2. Let F (D × I) denotes

the surface-knot obtained from F by the surgery along the 2-handle D× I. For each
i (i = 1, 2), the arc a is deformed into an arc a′′i parallel to the arc a′i along the disk
D′

i by a smooth isotopy hi
t (t ∈ [0, 1]) of X with hi

0 = 1 keeking the surface-knot
F (D × I) fixed. Since a boundary collar of ∂D′

1 in D′
1 coincides with a boundary

collar of ∂D′
2 in D′

2, we may consider that the disk bounded by the loop a′1 ∪ a′′1 in
the disk D′

1 coincides with the disk bounded by the loop a′2 ∪ a′′2 in the disk D′
2. By

regarding D× I as a thin 1-handle with the core a on the surface-knot F (D× I), the
isotopies hi

t (t ∈ [0, 1]) for i = 1 and 2 constitute a desired isotopy ht (t ∈ [0, 1]) of X
with h0 = 1 such that h1(D × I,D′

1 × I) = (D × I,D′
2 × I) and h1(F ) = F . □

Let Σ0,0
n be a smooth 4-submanifold of Σn obtained from Σn by removing the

interiors of two 4-balls invariant under the covering involution α of S4(F )2 = Σn. Let
Diff+(D4, rel ∂))be the orientation-preserving diffeomorphism group of the 4-ball D4

keeping the boundary ∂D4 by the identity. The following lemma is an essential point
to the proof of Theorem 1.1.

Lemma 2.7. Every orientation-preserving smooth embedding u : Σ0,0
n → Σn is

smoothly isotopic to a smooth embedding ũ : Σ0,0
n → Σn such that the composition

u′ = fũ : Σ0,0
n → Σn for an α-invariant orientation-preserving diffeomorphism f of Σn

is smoothly isotopic to the inclusion map

inc : Σ0,0
n → Σn

up to local replacements by diffeomorphisms in Diff+(D4, rel ∂).

In the piecewise-linear category, this local replacement is not needed since every
orientation-preserving piecewise-linear homeomorphism of D4 with the identity on
∂D4 is piecewise-linearly isotopic to the identity 1.

Proof of Lemma 2.7. Let Z = V ∪F V be the backbone of Σn where V and
(D∗ × I,D′

∗ × I) are identified with the orbit handlebody V and the orbit O2-handle
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pair (D∗×I,D′
∗×I) in S4, respectively, and V denotes the image α(V ) of V by α. Also,

let Y = B ∪F B be the spine of Σn where B is identifined with the orbit total bump
B in S4 and B denotes the image α(B). The backbone Z and the spine Y of Σn are
assumed to be in Σ0,0

n . Since the lifting surface-knot F is a trivial surface-knot in Σn,
the embedding u is smoothly isotopic to an embedding ũ : Σ0,0

n → Σn with ũ(F ) = F

in Σn. By considering the surface-knot F in S4 as the covering projection image, there
is an orientation-preserving diffeomorphism g of S4 with g(F ) = F which sends the
spin loop basis (pũ(∂D∗), pũ(∂D

′
∗)) of F to the spin loop basis (∂D∗, ∂D

′
∗) of F . The

lifting diffeomorphism f of g is an α-invariant orientation-preserving differomorphism
of Σn such that the composition embedding u′ = fũ : Σ0,0

n → Σn with f(F ) = F

which sends the spin loop basis (ũ(∂D∗, ũ(∂D
′
∗) of F to the spin loop basis (∂D∗, ∂D

′
∗)

of F . By a smooth isotopy, the embedding u′ is deformed to send the handlebody
V to V identically and then deformed by Lemma 2.6 to send the total bump B to B
identically.

On deformations of the 2-handle systems D∗ × I and D
′
∗ × I on F in Σn, the

following two assertions are observed, where at the present stage note that the 2-
handle system images pu′(D∗ × I) and pu′(D

′
∗ × I) are in general singular 2-handles

on F in S4.

(2.7.1) The smooth embedding u′ is smoothly isotopic to a smooth embedding u∗ :
Σ0,0

n → Σn such that

u∗(D1 × I,D1 × I,D′
1 × I,D

′
1 × I) = (D1 × I, u∗(D1)× I,D′

1 × I,D
′
1 × I).

(2.7.2) The smooth embedding u∗ in (2.7.1) is smoothly isotopic to a smooth em-
bedding u1 : Σ

0,0
n → Σn such that

u1(D1 × I,D1 × I,D′
1 × I,D

′
1 × I) = (D1 × I,D1 × I,D′

1 × I,D
′
1 × I).

By continuing the same processes of (2.7.1) and (2.7.2) for i = 2, 3, . . . , n, the
embedding u is smoothly isotopic to a smooth embedding

un : Σ0,0
n → Σn

such that

un(Di × I,Di × I,D′
i × I,D

′
i × I) = (Di × I,Di × I,D′

i × I,D
′
i × I)

for all i. By Corollary 2.5, un is smoothly isotopic to the inclusion map inc after a
local replacement of a diffeomorphism in Diff+(D4, rel ∂). This completes the proof
of Lemma 2.7 except for the proofs of (2.7.1) and (2.7.2). □
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Proof of (2.7.1). By regarding the bump B1 = D1 × I ∪ D
′
1 × I ⊂ Σn as a line

bundle over a twisted disk d1 associated with D1 ∪D
′
1 (see [7]), move neighborhoods

in u′(D
′
1) of the interior intersection double points between the 2-handle core D1 and

the 2-handle core image u′(D
′
1) into the interior intersection double points of the 2-

handle core D
′
1 and the 2-handle core image u′(D

′
1) through the twisted disk d1, so

that
IntD1 ∩ Intu′(D

′
1) = ∅.

In a process of this deformation, every disk in the neighborhoods meets F in two points
apart from the part of 2-handle attachments, but in the end of this deformation the
interior of the 2-handle core image u′(D

′
1) no longer meets F (see the proof of [7,

Lemma 3.2]). This deformation does not touch the 2-handles D1× I and D′
1× I. Let

u′′ : Σ0,0
n → Σn be the resulting smooth embedding which is smoothly isotopic to u′.

Then we have the following four O2-handle pairs:

(D1 × I,D′
1 × I), (D1 × I,D

′
1 × I), (D1 × I, u′′(D

′
1 × I)), (D1 × I, u′′(D

′
1)× I)

on F in Σn. By the covering projection p : Σn → S4, we obtain the two O2-handle
pairs

(D1 × I,D′
1 × I), (D1 × I, pu′′(D

′
1)× I)

on F in S4 with pu′′(D
′
1) × I a singular 2-handle. Apply [7, Lemma 2.3] to the O2-

handle pair (D × I, pu′′(D
′
1) × I) to deform pu′′(D

′
1) × I into a smoothly embedded

2-handle, and then apply Lemma 2.6 to deform pu′′(D
′
1)× I into the 2-handle D′

1× I.
These deformations are realized by a smooth isotopy of Σn, so that there is a smooth
embedding u∗ : Σ0,0

n → Σn smoothly isotopic to u′′ such that

u∗(D1 × I,D1 × I,D′
1 × I,D

′
1 × I) = (D1 × I, u∗(D1)× I,D′

1 × I,D
′
1 × I),

where u∗(D1)× I is taken to be D1 × I. □

Proof of (2.7.2). In (2.7.1), we obtain two O2-handle pairs (D1 × I,D′
1 × I) and

(pu∗(D1)× I,D′
1 × I) on F in S4 with pu∗(D1)× I a singular 2-handle by taking the

covering projection image. Apply [7, Lemma 2.3] to the O2-handle pair (pu∗(D1) ×
I,D′

1×I) to deform pu∗(D1)×I into a smoothly embedded 2-handle, and then apply
Lemma 2.6 to deform pu∗(D1)× I into the 2-handle D1 × I. These deformations are
realized by a smooth isotopy of Σn, so that there is a smooth embedding u1 : Σ

0,0
n →

Σn smoothly isotopic to u∗ such that

u1(D1 × I,D1 × I,D′
1 × I,D

′
1 × I) = (D1 × I,D1 × I,D′

1 × I,D
′
1 × I). □
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Now the proof of Theorem 1.1 is done as follows.

Proof of Theorem 1.1. If necessary, by changing changing the orientation of Σn,
assume that the smooth embedding e : Σ0

n → Σn is orientation-preserving. Let Σ0,0
n

be an α-invariant smooth 4-submanifold of Σ0
n by removing the interiors of a 4-ball

D4
0. Let u : Σ0,0

n → Σn be the smooth embedding defined by e. By Lemma 2.7,
the embedding u is smoothly isotopic to a smooth embedding ũ : Σ0,0

n → Σn such
that the composition u′ = fũ : Σ0,0

n → Σn for an α-invariant orientation-preserving
diffeomorphism f of Σn is smoothly isotopic to the inclusion map

inc : Σ0,0
n → Σn

up to local replacements by diffeomorphisms in Diff+(D4, rel ∂). Since the inclusion
map inc : Σ0,0

n → Σn extends to the identity map 1 of Σn, the isotopy extension
theorem says that the smooth embedding u′ extends to a diffeomorphism

(u′)+ : Σn → Σn.

Then the composite diffeomorphism f−1(u′)+ : Σn → Σn is an extension of the
embedding ũ : Σ0,0

n → Σn. By the isotopy extension theorem, the smooth embedding u
extends to a diffeomorphism u+ :: Σn → Σn. Since the closed complement cl(Σn\Σ0,0

n )
is the disjoint union of 4-balls D4

0 and α(D4
0), we have the identities

cl(Σn \ u(Σ0,0
n )) = u+cl(Σn \ Σ0,0

n ) = u+(D4
0) ∪ u+α(D4

0).

Thus, the closed complement cl(Σn \ e(Σ0
n)) is a 4-ball. By Γ4 = 0 in [2], we see that

the embedding e extends to a diffeomorphism e+ : Σn → Σn. □,

The property that the diffeomorphisms f is α-equivariant in Lemma 2.7 is not
used in the proof of Theorem 1.1. This property is used in the proof of the following
corollary.

Corollary 2.8. Every orientation-preserving diffeomorphism h : Σn → Σn is smoothly
isotopic to an α-equivariant diffeomorphism up to a local replacement by a diffeomor-
phism in Diff+(D4, rel ∂).

In the piecewise-linear category, this local replacement is not needed.

Proof of Corollary 2.8. Apply the same argument as the proof of Theorem 1.1 for
h : Σn → Σn in place of u : Σ0,0

n → Σn. Then every orientation-preserving diffeomor-
phism h : Σn → Σn is smoothly isotopic to a diffeomorphism h̃ : Σn → Σn such that

11



the composition h′ = fh̃ : Σn → Σn for an α-equivariant orientation-preserving dif-
feomorphism f : Σn → Σn is smoothly isotopic to the identity 1 : Σn → Σn after local
replacements by diffeomorphisms in Diff+(D4, rel∂) needed to apply Corollary 2.5.
Then the diffeomorphism h is smoothly isotopic to the α-equivariant orientation-
preserving diffeomorphism f−1 since the composition h̃ = f−1h′ is smoothly isotopic
to f−1 and h, up to local replacements by diffeomorphisms in Diff+(D4, rel∂). □
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