Smooth homotopy 4-sphere

Akio KAWAUCHI

Osaka City University Advanced Mathematical Institute Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@sci.osaka-cu.ac.jp

ABSTRACT

Every smooth homotopy 4-sphere is diffeomorphic to the 4-sphere.

Keywords: 4-sphere, Smooth homotopy 4-sphere, Trivial surface-knot, Orthogonal 2-handle pair, Double branched covering. Mathematics Subject Classification 2010: Primary 57N13; Secondary 57Q45

1. Introduction

For a positive integer n, the stable 4-sphere of genus n is the connected sum

$$\Sigma_n = S^4 \# n(S^2 \times S^2) = S^4 \#_{i=1}^n S^2 \times S_i^2$$

of the 4-sphere S^4 and the *n* copies $S^2 \times S_i^2$ (i = 1, 2, ..., n) of the 2-sphere product $S^2 \times S^2$ done by taking *n* mutually disjoint 4-balls embedded smoothly in S^4 , where a choice of the 4-balls is independent of the diffeomorphism type of Σ_n .

A compact connected oriented smooth 4-manifold is simply called a 4-manifold in this paper. A compact punctured 4-manifold of a 4-manifold X is a 4-manifold X^0 obtained from X by removing an interior of a 4-ball D_0^4 embedded smoothly in the interior of the 4-manifold X.

The following result is a main result of this paper.

Theorem 1.1. Let Σ_n^0 be a compact punctured 4-manifold of the stable 4-sphere Σ_n of every positive genus n. Then every smooth embedding $e : \Sigma_n^0 \to \Sigma_n$ extends to a diffeomorphism $e^+ : \Sigma_n \to \Sigma_n$.

A smooth homotopy 4-sphere is a smooth 4-manifold M homotopy equivalent to S^4 . The following result is obtained from Theorem 1.1:

Corollary 1.2. Every smooth homotopy 4-sphere M is diffeomorphic to the 4-sphere S^4 .

Proof of Corollary 1.2. It is known that there is a diffeomorphism

$$k: M \# \Sigma_n \to \Sigma_n$$

from the connected sum $M \# \Sigma_n$ onto Σ_n for a positive integer n (see Wall [9]). Let $D_0^4 = \operatorname{cl}(\Sigma_n \setminus \Sigma_n^0)$ be a 4-ball. By regarding $M \# \Sigma_n = M^0 \cup \Sigma_n^0$, let

$$e: \Sigma_n^0 \to \Sigma_n$$

be a smooth embedding which is extended to a diffeomorphism

$$e^+:\Sigma_n\to\Sigma_n$$

by Theorem 1.1. By the identity

$$M^{0} = \operatorname{cl}(\Sigma_{n} \setminus e(\Sigma_{n}^{0})) = e^{+}\operatorname{cl}(\Sigma_{n} \setminus \Sigma_{n}^{0}) = e^{+}(D_{0}^{4}),$$

there is an orientation preserving diffeomorphism

$$h: M^0 \to D_0^4$$

defined by the inverse diffeomorphism $(e^+)^{-1}$ of e^+ . By $\Gamma_4 = 0$ in Cerf [2], the diffeomorphism h extends to a diffeomorphism $h^+ : M \to S^4$. \Box

In the topological category, the corresponding result of Corollary 1.2 (namely, every topological 4-manifold homotopy equivalent to the 4-sphere is homeomorphic to the 4-sphere) is well-known by Freedman [3] (see also [4]). In the piecewise-linear category, the corresponding result of Corollary 1.2 (namely, every piecewise-linear 4-manifold homotopy equivalent to the piecewise-linear 4-sphere is piecewise-linearly homeomorphic to the piecewise-linear 4-sphere) can be shown by using the piecewise-linear versions of the techniques used in this paper (see Hudson [6], Rourke-Sanderson [8]).

It is known by Wall in [9] that for every closed smooth signature-zero spin 4manifold M with second Betti number $\beta_2(M; \mathbf{Z}) = 2m > 0$, there is a diffeomorphism

$$\kappa: M \# \Sigma_n \to \Sigma_{m+n}$$

for a positive integer n and by Freedman [3] (see also [4]) that there is a homeomorphism from M to Σ_m . However, a technique used for the proof of Theorem 1.1 cannot be directly generalized to this case. In fact, it is known by Akhmedov-Park in [1] that there is a smooth closed signature-zero spin 4-manifold M with a large second Betti number $\beta_2(M; \mathbf{Z}) = 2m$ such that M is not diffeomorphic to Σ_m . What can be said in this paper is the following corollary.

Corollary 1.3. Let M and M' be closed connected smooth 4-manifolds with the same second Betti number $\beta_2(M; \mathbf{Z}) = \beta_2(M'; \mathbf{Z})$. Then there is a smooth embedding $e: M^0 \to M'$ extending a diffeomorphism $e^+: M \to M'$ if and only if the embedding $e: M^0 \to M'$ induces a fundamental group isomorphism

$$f_{\#}: \pi_1(M^0, x) \to \pi_1(M', f(x)).$$

For this corollary, the proof of the "if" part is obtained by noting that the closed complement $\tilde{D}_0^4 = \operatorname{cl}(M' \setminus e(M^0))$ is a smooth homotopy 4-ball with 3-sphere boundary which is confirmed by the van Kampen theorem and an homological argument. By Corollary 1.2. the smooth homotopy 4-ball \tilde{D}_0^4 is diffeomorphic to the 4-ball. Thus, by $\Gamma_4 = 0$ in [2], the map e extends to a diffeomorphism $e^+ : M \to M'$. The proof of the "only if" part is obvious.

2. Proof of Theorem 1.1

A surface-knot in a 4-manifold X is a closed oriented surface F embedded in the interior of X by a smooth embedding. It is also called a 2-knot if F is the 2-sphere S^2 . Two surface-knots F and F' in X are equivalent by an equivalence f if F is sent to F' orientation-preservingly by an orientation-preserving diffeomorphism f of X.

A trivial surface-knot is a surface-knot F which is the boundary of a handlebody smoothly embedded into a 4-ball in the interior of X, where a handlebody means a 3-manifold which is a 3-ball, a solid torus or a boundary-disk sum of some number of solid tori. A trivial genus n surface-knot in X for every $n \ge 0$ exists uniquely up to equivalences of X (see [5]).

Let

$$F = S^2 \# nT = F = S^2 \#_{i=1}^n T_i$$

be a trivial genus n surface-knot in S^4 which is the connected sum of a trivial 2-knot (S^4, S^2) and the n copies (S^4, T_i) (i = 1, 2, ..., n) of a trivial torus-knot (S^4, T) done by taking mutually disjoint n disks in S^2 . The following lemma is a standard result.

Lemma 2.1 The double branched covering space $S^4(F)_2$ of S^4 branched along a trivial genus *n* surface-knot *F* is diffeomorphic to the stable 4-sphere Σ_n of genus *n*.

Proof of Lemma 2.1. The double branched covering covering space $S^4(S^2)_2$ of S^4 branched along a trivial 2-knot S^2 is easily seen to be diffeomorphic to the 4-sphere $\Sigma_0 = S^4$.

Let T be a trivial torus-knot in S^4 . Then the pair (S^4, T) is the double of the product pair $(A, o) \times I = (A \times I, o \times I)$ for a trivial loop o in a 3-ball A and the interval I = [0, 1], namely, (S^4, T) is diffeomorphic to the boundary pair

$$\partial((A, o) \times I^2) = (\partial(A \times I^2), \partial(o \times I^2)),$$

where I^m denotes the *m*-fold product of I for any $m \ge 1$. Thus, the double branched covering space $S^4(T)_2$ of S^4 branched along T is diffeomorphic to the boundary $\partial(A(o)_2 \times I^2)$, where $A(o)_2$ is the double branched covering space over A branched along o which is diffeomorphic to the product $S^2 \times I$. This means that the 5-manifold $A(o)_2 \times I^2$ is the product $S^2 \times I^3$. Hence the 4-manifold $S^4(T)_n$ is diffeomorphic to $S^2 \times S^2$. For $n \ge 2$, a trivial genus n surface-knot (S^4, F_n) is equivalent to the n-fold connected sum of a trivial torus-knot (S^4, T) and hence the double branched covering space $S^4(F_n)_2$ of S^4 branched along F_n is diffeomorphic to the n-fold connected sum of $S^4(T)_2 = S^2 \times S^2$. Hence $S^4(F_n)_2$ is diffeomorphic to the stable 4-sphere Σ_n of genus n. \Box

A loop basis of a closed surface F of genus n is a system of oriented simple loop pairs (e_j, e'_j) (j = 0, 1, 2, ..., n) on F representing a basis for $H_1(F; \mathbb{Z})$ such that $e_j \cap e_{j'} = e'_j \cap e'_{j'} = e_j \cap e'_{j'} = \emptyset$ for all distinct j, j' and $e_j \cap e'_j$ is one point with the intersection number $\operatorname{Int}(e_j, e'_j) = +1$ in F for all j. A simple loop ℓ in a surfaceknot F is *spin* if the \mathbb{Z}_2 -quadratic function $q : H_1(F; \mathbb{Z}_2) \to \mathbb{Z}_2$ associated with the surface-knot F has $q([\ell]) = 0$ for the \mathbb{Z}_2 -homology class $[\ell] \in H_1(F; \mathbb{Z}_2)$ of ℓ .

A 2-handle on a surface-knot F in X is a 2-handle $D \times I$ on F embedded smoothly in the interior of X such that $(D \times I) \cap F = (\partial D) \times I$, where I denotes a closed interval with 0 as the center and $D \times 0$ is called the *core* of the 2-handle $D \times I$ and identified with D. An *orthogonal 2-handle pair* or simply, an *O2-handle pair* on a surface-knot in X is a pair $(D \times I, D' \times I)$ of 2-handles $D \times I, D' \times I$ on F such that

$$(D \times I) \cap (D' \times I) = (\partial D) \times I \cap (\partial D') \times I$$

and $(\partial D) \times I$ and $(\partial D') \times I$ meet orthogonally on F, that is, ∂D and $\partial D'$ meet transversely at one point p and the intersection $(\partial D) \times I \cap (\partial D') \times I$ is diffeomorphic to the square $Q = p \times I \times I$ (see [7]).

An O2-handle basis of a trivial genus n surface-knot F is the system $(D_* \times I, D'_* \times I)$ of mutually disjoint O2-handle pairs $(D_i \times I, D'_i \times I)$ (i = 1, 2, ..., n) on F such that the loop system $(\partial D_*, \partial D'_*)$ of $(\partial D_i, \partial D'_i)$ (i = 1, 2, ..., n) forms a spin loop basis of F.

Lemma 2.2. Let $(D_* \times I, D'_* \times I)$ be an O2-handle basis of a trivial genus n surfaceknot F in S^4 . Then the surface-knot F bounds a genus n handlebody $V(F; D'_* \times I)$ smoothly embedded into a 3-ball $B(V(F; D'_* \times I), D_* \times I)$ smoothly embedded in S^4 such that

 $(\operatorname{Int} D'_i) \times I \subset \operatorname{Int} V(F; D'_* \times I)$ and $(\operatorname{Int} D_i) \times I \cap \operatorname{Int} V(F; D'_* \times I) = \emptyset$

for all i (i = 1, 2, ..., n) and

$$B(V(F; D'_* \times I), D_* \times I) = V(F; D'_* \times I) \cup_{i=1}^n D_i \times I.$$

Proof of Lemma 2.2. Let *S* be the 2-sphere obtained from *F* by the embedded surgery along the 2-handles $D'_i \times I$ (i = 1, 2, ..., n). By uniqueness of an O2-handle pair in [7, Theorem 3.1], the 2-sphere *S* is a trivial 2-knot in S^4 and hence bounds a 3-ball V_0 in S^4 . The union $V_0 \cup_{i=1}^n D'_i \times I$, denoted by $V(F; D'_* \times I)$ is a handlebody such that the union $V(F; D'_* \times I) \cup_{i=1}^n D_i \times I$, denoted by $B(V(F; D'_* \times I), D_* \times I)$ is a 3-ball smoothly embedded in S^4 . \Box

In Lemma 2.2, the 3-ball $B_i = D_i \times I \cup D'_i \times I$ is called the *bump* associated with the O2-handle pair $(D_i \times I, D'_i \times I)$, and the 3-ball $B(V(F; D'_* \times I), D_* \times I)$ embedded smoothly in S^4 is called the *total bump* of a trivial surface-knot F associated with the O2-handle basis $(D_* \times I, D'_* \times I)$.

A 2-sphere basis of the stable 4-manifold Σ_n is a system of mutually disjoint smooth unoriented 2-sphere pairs (S_i, S'_i) (i = 1, 2, ..., n) in Σ_n with $S_i \cap S'_i = p_i$ a point such that the closed complement $\operatorname{cl}(\Sigma_n \setminus N(S_*, S'_*))$ is an compact *n*-punctured 4-sphere embedded smoothly in Σ_n for a regular neighborhood $N(S_*, S'_*)$ of the union $\cup_{i=1}^n S_i \cup S'_i$ in Σ_n . In this case, note that S_i and S'_i meet transversely in Σ_n with intersection number ± 1 .

The following lemma gives a relationship between an O2-handle basis $(D_* \times I, D'_* \times I)$ of a trivial surface-knot F and a 2-sphere basis $(S(D_*), S(D'_*))$ of the stable 4-sphere $S^4(F)_2 = \Sigma_n$.

Lemma 2.3. The core system (D_i, D'_i) (i = 1, 2, ..., n) of every O2-handle basis $(D_i \times I, D'_i \times I)$ (i = 1, 2, ..., n) of a trivial genus *n* surface-knot *F* in S^4 lifts to a 2-sphere basis $(S(D_i), S(D'_i))$ (i = 1, 2, ..., n) of the stable 4-sphere $S^4(F)_2 = \Sigma_n$ of

genus n by the double branched covering projection $p: S^4(F)_2 \to S^4$ branched along F.

Proof of Lemma 2.3. Let $(D_i \times I, D'_i \times I)$ (i = 1, 2, ..., n) be a standard O2-handle basis of a trivial genus n surface-knot F in S^4 . Let N_i (i = 1, 2, ..., n) be mutually disjoint regular neighborhoods of the 3-balls $D_i \times I \cup D'_i \times I$ (i = 1, 2, ..., n) in the 4-sphere S^4 . Since N_i is a 4-ball, the closed complement $X = cl(S^4 \setminus \bigcup_{i=1}^n N_i)$ is a compact *n*-punctured 4-sphere and $F_X = F \cap X$ is a compact proper *n*-punctured 2sphere such that the pair (X, F_X) is smoothly embeddable in a trivial 2-knot (S^4, S^2) . Using that the double branched covering space $S^4(S^2)_2$ of the 4-sphere S^4 branched along the 2-sphere S^2 is diffeomorphic to the 4-sphere S^4 , we see that the double branched covering space $X(F_X)_2$ of X branched along the compact n-punctured 2sphere F_X is diffeomorphic to a compact *n*-punctured 4-sphere. This means that a 2-sphere pair system $(S(D_i), S(D'_i))$ (i = 1, 2, ..., n) is a 2-sphere basis of the stable 4-sphere $S^4(F)_2 = \Sigma_n$ of genus *n* because the double branched covering space $X(F_X)_2$ is diffeomorphic to the closed complement $cl(\Sigma_n \setminus N(S(D_*), S(D'_*)))$ by Lemma 2.1. Let $(E_i \times I, E'_i \times I)$ (i = 1, 2, ..., n) be any O2-handle basis of a trivial genus n surface-knot F in S^4 . By uniqueness of an O2-handle pair in [7, Theorem 3.1], there is an orientartion-preserving diffeomorphism q of S^4 such that

$$g(F) = F, \quad (g(E_i) \times I, g(E'_i) \times I) = (D_i \times I, D'_i \times I) \ (i = 1, 2, \dots, n).$$

The diffeomorphism g lifts to an α -invariant orientation-preserving diffeomorphism f of $S^4(F)_2$ sending the 2-sphere pair $(S(E_i), S(E'_i))$ to the 2-sphere pair $(S(D_i), S(D'_i))$ for all i. Thus, the 2-sphere pair system $(S(E_i), S(E'_i))$ (i = 1, 2, ..., n) is a 2-sphere basis of $\Sigma_n = S^4(F)_2$. \Box

Let A be a smooth bounded 3-submanifold of S^4 . The sutured triple associated with the pair (S^4, A) is a triplet $(Y; A_+, A_-)$ such that Y is a smooth compact 4manifold obtained from S^4 by splitting along the interior IntA of A and the boundary ∂Y of Y is given by the union $A_+ \cup A_-$ for the splitting copies A_+ and A_- of A where A_+ is a copy of A with orientation preserved and A_- is a copy of A with orientation reversed. Note that there is a canonical identification map $A_+ \to A_-$. For a slightly different explanation of the sutured triple $(Y; A_+, A_-)$, consider a bi-collar of A in S^4 which is meant by the image $c(A \times [-1, 1])$ of a smooth embedding $c : A \times [-1, 1] \to S^4$ with c(x, 0) = x for all $x \in A$. Then the sutured triple $(Y; A_+, A_-)$ is understood to the triplet

$$(cl(S^4 \setminus c(A \times [-1,1]), c(A \times 1 \cup (\partial A) \times [0,1]), c(A \times (-1) \cup (\partial A) \times [-1,0]).$$

Let F be a trivial genus n surface-knot in S^4 , and $(D_* \times I, D'_* \times I)$ an O2-handle basis of F in S^4 . For the genus n handlebody $V = V(F; D'_* \times I)$ constructed in Lemma 2.2, let

$$B = B(V(F; D'_* \times I), D_* \times I) = V \cup_{i=1}^n D_i \times I$$

be a total bump of F associated with an O2-handle basis $(D_* \times I, D'_* \times I)$. Let $(W; V_+, V_-)$ be the sutured triple associated with (S^4, V) . Note that the 2-handle system $D_i \times I$ (i = 1, 2, ..., n) is in W. Let $D_i \times I^2$ (i = 1, 2, ..., n) be a 2-handle system attached to V_+ in W thickening the 2-handle system $D_i \times I$ (i = 1, 2, ..., n).

We have the following lemma.

Lemma 2.4. The 4-manifold $U = cl(W \setminus \bigcup_{i=1}^{n} D_i \times I^2)$ is a 4-ball smoothly embedded in W.

Proof of Lemma 2.4. Since the bi-collar $c(V \times [-1,1])$ is diffeomorphic to the disk sum of n copies of the product $S^1 \times D^3$ for the 3-ball D^3 and the union $c(V \times [-1,1]) \cup_{i=1}^n D_i \times I^2$ forms a 4-ball, the 4-manifold U is diffeomorphic to the 4-manifold obtained from S^4 by removing the interior of a 4-ball, which is a 4-ball. \Box

The double branched covering space $S^4(F)_2$ is constructed from the sutured triple (W, V_+, V_-) of (S^4, V) and the copy $(\overline{W}, \overline{V}_+, \overline{V}_-)$ of (W, V_+, V_-) by identifying V_+ with \overline{V}_- and V_- with \overline{V}_+ by the canonical identification maps $V_+ \to \overline{V}_-$ and $V_- \to \overline{V}_+$, respectively.

A spine of the stable 4-sphere Σ_n of genus n is the preimage $Y = p^{-1}(B)$ of the total bump $B = B(V(F; D'_* \times I), D_* \times I)$ for an O2-handle basis $(D_* \times I, D'_* \times I)$ of F and the double branched covering projection $p: S^4(F)_2 \to S^4$ branched along a trivial genus n surface-knot F under the identification $S^4(F)_2 = \Sigma_n$ given by Lemma 2.1. In this case, the preimage $Z = p^{-1}(V)$ of $V = V(F; D'_* \times I)$ is called the *backbone* of the spine Y. The backbone Z of a spine Y of Σ_n is diffeomorphic to the *stable 3-sphere*

$$S^{3} \# n(S^{1} \times S^{2}) = S^{3} \#_{i=1}^{n} S^{1} \times S_{i}^{2}$$

of genus n. From the construction of $S^4(F)_2$ from (W, V_+, V_-) and $(\overline{W}, \overline{V}_+, \overline{V}_-)$, it is seen that the backbone Z splits Σ_n into W and \overline{W} . The spine Y is obtained from Z by attaching 2-handle system $D_i \times I$ (i = 1, 2, ..., n) in W and the copy system $\overline{D}_i \times I$ (i = 1, 2, ..., n) in \overline{W} . Then the following lemma is directly obtained from Lemma 2.4.

Corollary 2.5. The closed complement $cl(\Sigma_n \setminus N(Y))$ for a regular neighborhood N(Y) of a spine Y in Σ_n is a disjoint union of two smoothly embedded 4-balls in Σ_n .

The following lemma is near the argument of [7].

Lemma 2.6. Let F be a surface-knot in a 4-manifold X, and $(D \times I, D'_i \times I)$ (i = 1, 2)) O2-handle pairs on F in X such that $(\partial D'_1) \times I = (\partial D'_2) \times I$. Then there is a smooth isotopy h_t $(t \in [0, 1])$ of X with $h_0 = 1$ such that $h_1(D \times I, D'_1 \times I) = (D \times I, D'_2 \times I)$ and $h_1(F) = F$.

Proof of Lemma 2.6. As it is done in [7, Lemma 2.3], let a be an arc obtained from $D \times I$ by shrinking D into a point such that $a \subset \partial D'_i$. Let $a'_i = \operatorname{cl}(\partial D'_i \setminus a)$ for each i (i = 1, 2). Since $\partial D''_1 = \partial D'_2$, we can assume that $a'_1 = a'_2$ and a boundary collar of $\partial D'_1$ in D'_1 coincides with a boundary collar of $\partial D'_2$ in D'_2 . Let $F(D \times I)$ denotes the surface-knot obtained from F by the surgery along the 2-handle $D \times I$. For each i (i = 1, 2), the arc a is deformed into an arc a''_i parallel to the arc a'_i along the disk D'_i by a smooth isotopy $h^i_t (t \in [0, 1])$ of X with $h^i_0 = 1$ keeking the surface-knot $F(D \times I)$ fixed. Since a boundary collar of $\partial D'_1$ in D'_1 coincides with a boundary collar of $\partial D'_2$ in D'_2 , we may consider that the disk bounded by the loop $a'_1 \cup a''_1$ in the disk D'_1 coincides with the disk bounded by the loop $a'_2 \cup a''_2$ in the disk D'_2 . By regarding $D \times I$ as a thin 1-handle with the core a on the surface-knot $F(D \times I)$, the isotopies $h^i_t (t \in [0, 1])$ for i = 1 and 2 constitute a desired isotopy $h_t (t \in [0, 1])$ of X with $h_0 = 1$ such that $h_1(D \times I, D'_1 \times I) = (D \times I, D'_2 \times I)$ and $h_1(F) = F$. \Box

Let $\Sigma_n^{0,0}$ be a smooth 4-submanifold of Σ_n obtained from Σ_n by removing the interiors of two 4-balls invariant under the covering involution α of $S^4(F)_2 = \Sigma_n$. Let $\text{Diff}^+(D^4, \text{rel }\partial))$ be the orientation-preserving diffeomorphism group of the 4-ball D^4 keeping the boundary ∂D^4 by the identity. The following lemma is an essential point to the proof of Theorem 1.1.

Lemma 2.7. Every orientation-preserving smooth embedding $u : \Sigma_n^{0,0} \to \Sigma_n$ is smoothly isotopic to a smooth embedding $\tilde{u} : \Sigma_n^{0,0} \to \Sigma_n$ such that the composition $u' = f\tilde{u} : \Sigma_n^{0,0} \to \Sigma_n$ for an α -invariant orientation-preserving diffeomorphism f of Σ_n is smoothly isotopic to the inclusion map

inc:
$$\Sigma_n^{0,0} \to \Sigma_n$$

up to local replacements by diffeomorphisms in $\text{Diff}^+(D^4, \text{rel }\partial)$.

In the piecewise-linear category, this local replacement is not needed since every orientation-preserving piecewise-linear homeomorphism of D^4 with the identity on ∂D^4 is piecewise-linearly isotopic to the identity 1.

Proof of Lemma 2.7. Let $Z = V \cup_F \overline{V}$ be the backbone of Σ_n where V and $(D_* \times I, D'_* \times I)$ are identified with the orbit handlebody V and the orbit O2-handle

pair $(D_* \times I, D'_* \times I)$ in S^4 , respectively, and \overline{V} denotes the image $\alpha(V)$ of V by α . Also, let $Y = B \cup_F \overline{B}$ be the spine of Σ_n where B is identifined with the orbit total bump B in S^4 and \overline{B} denotes the image $\alpha(B)$. The backbone Z and the spine Y of Σ_n are assumed to be in $\Sigma_n^{0,0}$. Since the lifting surface-knot F is a trivial surface-knot in Σ_n , the embedding u is smoothly isotopic to an embedding $\tilde{u} : \Sigma_n^{0,0} \to \Sigma_n$ with $\tilde{u}(F) = F$ in Σ_n . By considering the surface-knot F in S^4 as the covering projection image, there is an orientation-preserving diffeomorphism g of S^4 with g(F) = F which sends the spin loop basis $(p\tilde{u}(\partial D_*), p\tilde{u}(\partial D'_*))$ of F to the spin loop basis $(\partial D_*, \partial D'_*)$ of F. The lifting diffeomorphism f of g is an α -invariant orientation-preserving diffeomorphism of Σ_n such that the composition embedding $u' = f\tilde{u} : \Sigma_n^{0,0} \to \Sigma_n$ with f(F) = Fwhich sends the spin loop basis $(\tilde{u}(\partial D_*, \tilde{u}(\partial D'_*) \circ F$ to the spin loop basis $(\partial D_*, \partial D'_*)$ of F. By a smooth isotopy, the embedding u' is deformed to send the handlebody V to Videntically and then deformed by Lemma 2.6 to send the total bump B to Bidentically.

On deformations of the 2-handle systems $\overline{D}_* \times I$ and $\overline{D}'_* \times I$ on F in Σ_n , the following two assertions are observed, where at the present stage note that the 2-handle system images $pu'(\overline{D}_* \times I)$ and $pu'(\overline{D}'_* \times I)$ are in general singular 2-handles on F in S^4 .

(2.7.1) The smooth embedding u' is smoothly isotopic to a smooth embedding u^* : $\Sigma_n^{0,0} \to \Sigma_n$ such that

$$u^*(D_1 \times I, \overline{D}_1 \times I, D'_1 \times I, \overline{D}'_1 \times I) = (D_1 \times I, u^*(\overline{D}_1) \times I, D'_1 \times I, \overline{D}'_1 \times I).$$

(2.7.2) The smooth embedding u^* in (2.7.1) is smoothly isotopic to a smooth embedding $u_1: \Sigma_n^{0,0} \to \Sigma_n$ such that

$$u_1(D_1 \times I, \overline{D}_1 \times I, D'_1 \times I, \overline{D}'_1 \times I) = (D_1 \times I, \overline{D}_1 \times I, D'_1 \times I, \overline{D}'_1 \times I).$$

By continuing the same processes of (2.7.1) and (2.7.2) for i = 2, 3, ..., n, the embedding u is smoothly isotopic to a smooth embedding

$$u_n: \Sigma_n^{0,0} \to \Sigma_n$$

such that

$$u_n(D_i \times I, \overline{D}_i \times I, D'_i \times I, \overline{D}'_i \times I) = (D_i \times I, \overline{D}_i \times I, D'_i \times I, \overline{D}'_i \times I)$$

for all *i*. By Corollary 2.5, u_n is smoothly isotopic to the inclusion map inc after a local replacement of a diffeomorphism in Diff⁺(D^4 , rel ∂). This completes the proof of Lemma 2.7 except for the proofs of (2.7.1) and (2.7.2). \Box

Proof of (2.7.1). By regarding the bump $\overline{B}_1 = \overline{D}_1 \times I \cup \overline{D}'_1 \times I \subset \Sigma_n$ as a line bundle over a twisted disk \overline{d}_1 associated with $\overline{D}_1 \cup \overline{D}'_1$ (see [7]), move neighborhoods in $u'(\overline{D}'_1)$ of the interior intersection double points between the 2-handle core \overline{D}_1 and the 2-handle core image $u'(\overline{D}'_1)$ into the interior intersection double points of the 2handle core \overline{D}'_1 and the 2-handle core image $u'(\overline{D}'_1)$ through the twisted disk \overline{d}_1 , so that

$$\mathrm{Int}\overline{D}_1 \cap \mathrm{Int}u'(\overline{D}'_1) = \emptyset.$$

In a process of this deformation, every disk in the neighborhoods meets F in two points apart from the part of 2-handle attachments, but in the end of this deformation the interior of the 2-handle core image $u'(\overline{D}'_1)$ no longer meets F (see the proof of [7, Lemma 3.2]). This deformation does not touch the 2-handles $D_1 \times I$ and $D'_1 \times I$. Let $u'': \Sigma_n^{0,0} \to \Sigma_n$ be the resulting smooth embedding which is smoothly isotopic to u'. Then we have the following four O2-handle pairs:

$$(D_1 \times I, D'_1 \times I), (\overline{D}_1 \times I, \overline{D}'_1 \times I), (D_1 \times I, u''(\overline{D}'_1 \times I)), (\overline{D}_1 \times I, u''(\overline{D}'_1) \times I)$$

on F in Σ_n . By the covering projection $p: \Sigma_n \to S^4$, we obtain the two O2-handle pairs

$$(D_1 \times I, D'_1 \times I), \quad (D_1 \times I, pu''(\overline{D}'_1) \times I)$$

on F in S^4 with $pu''(\overline{D}'_1) \times I$ a singular 2-handle. Apply [7, Lemma 2.3] to the O2handle pair $(D \times I, pu''(\overline{D}'_1) \times I)$ to deform $pu''(\overline{D}'_1) \times I$ into a smoothly embedded 2-handle, and then apply Lemma 2.6 to deform $pu''(\overline{D}'_1) \times I$ into the 2-handle $D'_1 \times I$. These deformations are realized by a smooth isotopy of Σ_n , so that there is a smooth embedding $u^* : \Sigma_n^{0,0} \to \Sigma_n$ smoothly isotopic to u'' such that

$$u^*(D_1 \times I, \overline{D}_1 \times I, D'_1 \times I, \overline{D}'_1 \times I) = (D_1 \times I, u^*(\overline{D}_1) \times I, D'_1 \times I, \overline{D}'_1 \times I),$$

where $u^*(D_1) \times I$ is taken to be $D_1 \times I$. \Box

Proof of (2.7.2). In (2.7.1), we obtain two O2-handle pairs $(D_1 \times I, D'_1 \times I)$ and $(pu^*(\overline{D}_1) \times I, D'_1 \times I)$ on F in S^4 with $pu^*(\overline{D}_1) \times I$ a singular 2-handle by taking the covering projection image. Apply [7, Lemma 2.3] to the O2-handle pair $(pu^*(\overline{D}_1) \times I, D'_1 \times I)$ to deform $pu^*(\overline{D}_1) \times I$ into a smoothly embedded 2-handle, and then apply Lemma 2.6 to deform $pu^*(\overline{D}_1) \times I$ into the 2-handle $D_1 \times I$. These deformations are realized by a smooth isotopy of Σ_n , so that there is a smooth embedding $u_1: \Sigma_n^{0,0} \to \Sigma_n$ smoothly isotopic to u^* such that

$$u_1(D_1 \times I, \overline{D}_1 \times I, D'_1 \times I, \overline{D}'_1 \times I) = (D_1 \times I, \overline{D}_1 \times I, D'_1 \times I, \overline{D}'_1 \times I). \quad \Box$$

Now the proof of Theorem 1.1 is done as follows.

Proof of Theorem 1.1. If necessary, by changing changing the orientation of Σ_n , assume that the smooth embedding $e : \Sigma_n^0 \to \Sigma_n$ is orientation-preserving. Let $\Sigma_n^{0,0}$ be an α -invariant smooth 4-submanifold of Σ_n^0 by removing the interiors of a 4-ball D_0^4 . Let $u : \Sigma_n^{0,0} \to \Sigma_n$ be the smooth embedding defined by e. By Lemma 2.7, the embedding u is smoothly isotopic to a smooth embedding $\tilde{u} : \Sigma_n^{0,0} \to \Sigma_n$ such that the composition $u' = f\tilde{u} : \Sigma_n^{0,0} \to \Sigma_n$ for an α -invariant orientation-preserving diffeomorphism f of Σ_n is smoothly isotopic to the inclusion map

inc :
$$\Sigma_n^{0,0} \to \Sigma_n$$

up to local replacements by diffeomorphisms in Diff⁺(D^4 , rel ∂). Since the inclusion map inc : $\Sigma_n^{0,0} \to \Sigma_n$ extends to the identity map 1 of Σ_n , the isotopy extension theorem says that the smooth embedding u' extends to a diffeomorphism

$$(u')^+: \Sigma_n \to \Sigma_n.$$

Then the composite diffeomorphism $f^{-1}(u')^+$: $\Sigma_n \to \Sigma_n$ is an extension of the embedding $\tilde{u} : \Sigma_n^{0,0} \to \Sigma_n$. By the isotopy extension theorem, the smooth embedding u extends to a diffeomorphism $u^+ :: \Sigma_n \to \Sigma_n$. Since the closed complement $\operatorname{cl}(\Sigma_n \setminus \Sigma_n^{0,0})$ is the disjoint union of 4-balls D_0^4 and $\alpha(D_0^4)$, we have the identities

$$\operatorname{cl}(\Sigma_n \setminus u(\Sigma_n^{0,0})) = u^+ \operatorname{cl}(\Sigma_n \setminus \Sigma_n^{0,0}) = u^+(D_0^4) \cup u^+ \alpha(D_0^4).$$

Thus, the closed complement $cl(\Sigma_n \setminus e(\Sigma_n^0))$ is a 4-ball. By $\Gamma_4 = 0$ in [2], we see that the embedding e extends to a diffeomorphism $e^+ : \Sigma_n \to \Sigma_n$. \Box ,

The property that the diffeomorphisms f is α -equivariant in Lemma 2.7 is not used in the proof of Theorem 1.1. This property is used in the proof of the following corollary.

Corollary 2.8. Every orientation-preserving diffeomorphism $h : \Sigma_n \to \Sigma_n$ is smoothly isotopic to an α -equivariant diffeomorphism up to a local replacement by a diffeomorphism in Diff⁺ $(D^4, \text{rel } \partial)$.

In the piecewise-linear category, this local replacement is not needed.

Proof of Corollary 2.8. Apply the same argument as the proof of Theorem 1.1 for $h: \Sigma_n \to \Sigma_n$ in place of $u: \Sigma_n^{0,0} \to \Sigma_n$. Then every orientation-preserving diffeomorphism $h: \Sigma_n \to \Sigma_n$ is smoothly isotopic to a diffeomorphism $\tilde{h}: \Sigma_n \to \Sigma_n$ such that

the composition $h' = f\tilde{h} : \Sigma_n \to \Sigma_n$ for an α -equivariant orientation-preserving diffeomorphism $f : \Sigma_n \to \Sigma_n$ is smoothly isotopic to the identity $1 : \Sigma_n \to \Sigma_n$ after local replacements by diffeomorphisms in Diff⁺(D^4 , rel ∂) needed to apply Corollary 2.5. Then the diffeomorphism h is smoothly isotopic to the α -equivariant orientationpreserving diffeomorphism f^{-1} since the composition $\tilde{h} = f^{-1}h'$ is smoothly isotopic to f^{-1} and h, up to local replacements by diffeomorphisms in Diff⁺(D^4 , rel ∂). \Box

Acknowledgements. This work was in part supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

References

- A. Akhmedov and B. D. Park, Geography of simply connected spin symplectic 4-manifolds, Math. Res. Lett., 17 (2010), 483-492.
- [2] J. Cerf, Sur les difféomorphismes de la sph e re de dimension trois ($\Gamma_4 = 0$), Springer Lecture Notes in Math. 53 (1968).
- [3] M. Freedman, The disk theorem for four-dimensional manifolds, Proc. Internat. Congr. Math. (Warsaw, Poland)(1983), 647-663.
- [4] M. H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Univ. Press (1990).
- [5] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-space, Osaka J. Math. 16(1979), 233-248.
- [6] J. F. P. Hudson, Piecewise-linear topology, Benjamin (1969).
- [7] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, revised preprint.
 http://www.sci.osaka-cu.ac.jp/ kawauchi/SRibbonSLinkI(STrivialCase).pdf
- [8] C. Rourke and B. Sanderson, Introduction to piecewise-linear topology, Ergebnesse der Math., 69 (1972), Springer-Verlag.
- [9] C. T. C. Wall, On simply-connected 4-manifolds, J. London Math., Soc. 39 (1964), 141-149.