Continuous representations of semisimple Lie groups concerning homogeneous

holomorphic vector bundles over elliptic adjoint orbits

Nobutaka Boumuki®

December 4, 2019

!This work was supported by JSPS KAKENHI Grant Number JP 17K05229 and by Osaka City University Advanced Mathematical
Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).



NOBUTAKA BOUMUKI

DEPARTMENT OF MATHEMATICAL SCIENCES

FACULTY OF SCIENCE AND TECHNOLOGY

O11A UNIVERSITY

700 DANNOHARU, O1TA-SHI, OITA 870-1192, JAPAN

E-mail address: boumukiQ@oita-u.ac.jp



Preface

Our interest lies in continuous representations of real semisimple Lie groups concerning homogeneous holomorphic vector
bundles over elliptic adjoint orbits, especially the representation ¢ : G — GL(Vg/1) below.

Let G¢ be a connected complex semisimple Lie group, let G be a connected closed subgroup of G¢ whose Lie algebra
Lie(G) = g is a real form of gc, and let T be a non-zero, element of g such that (1) the linear transformation ad7 : g — g,
X — [T, X], is semisimple and (2) all the eigenvalues of ad T are purely imaginary. Consider the adjoin orbit AdG(T) = G/L
of G through T, where L := {g € G| Adg(T) = T}. These T and G/L are called an elliptic element and an elliptic adjoint
orbit (or an elliptic orbit for short), respectively. It is shown that G/L can be embedded into a complex flag manifold G¢/Q~
(which is also called a K&hler C-space or a generalized flag manifold) via ¢ : G/L — G¢/Q~, gL — ¢gQ~, and furthermore
the image +(G/L) is a domain in G¢/Q~. Identifying G/L with «(G/L) we induce a G-invariant complex structure J on
G/L from G¢/Q~. Then, the elliptic orbit G/L is a homogeneous complex manifold of G.

Lﬁ(GC XPV) Gc XpV

G/L

Ge/Q~

Take a finite-dimensional complex vector space V and a holomorphic homomorphism p : @~ — GL(V), ¢ — p(q), where
GL(V) is the general linear group on V. Denote by G¢ x, V the homogeneous holomorphic vector bundle over the complex
flag manifold G¢/Q associated with p, and by 1#(Ge x, V) its restriction to the domain G/L C G¢/Q~. In this setting,
one may assume that

. s hol hi
Vg/L = {z/} GQ™ =V (i) ¢ is holomorphic, }

(i) ¥(zq) = p(q)~ " ((x)) for all (z,q) € GQ™ x Q~

is the complex vector space of holomorphic cross-sections of the bundle ¢#(G¢ x »V); and can define a continuous representation
o of G on Vg, by
(g(g)zﬁ) (x) :=(g7'a) for g€ G, € Va/r, and v € GQ™.

Here the topology for Vg, is the topology of uniform convergence on compact sets.

Notation

Throughout this note we utilize the following notation, where G is a Lie group and g is a Lie algebra:
(nl) Lie(G) : the Lie algebra of G, i.e., the real Lie algebra of left invariant vector fields on G,

(n2) Gy : the identity component of G,

(n3) Ly (resp. Ry) : the left (resp. right) translation of G by an element g € G,

(nd4) ad, Ad : the adjoint representation of a Lie algebra, a Lie group,

(n5) Z(G) : the center of G,

(n6) Cg(A):={g € G|gag™' =afor all a € A} for a subset A C G,

(n7) Cg(a) :={g € G|Adg(X) = X for all X € a} for a subset a C Lie(G),
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(n8) Cu(X):={g € G| Adg(X) = X} for an element X € Lie(G),

(n9) Ng(m):={g € G| Adg(m) C m} for a vector subspace m C Lie(G),
(n10) ¢y(X) :={Z € g| ad X(Z) = 0} for an element X € g, which is the kernel of the linear mapping ad X : g — g,
(nl1l) ad X(g) : the image of a linear mapping ad X : g — g,
(n12) By : the Killing form of g,

(n13) N, Z, Q, R, C : the sets of natural numbers, integers, rational numbers, real numbers, complex numbers, respectively,

where N does not contain the zero,
(n14) Zs>( : the set of non-negative integers,
(n15) R* : the set of positive real numbers,
(n16) K=Ror C,
(nl7) GL(V) : the general linear group on a vector space V over K|
(n18) m @ n : the direct sum of vector spaces m and n,
(n19) ATII B : the disjoint union of sets A and B,
(n20) C>*(M) : the associative algebra of real-valued smooth functions on a smooth manifold M,
(n21) T, M : the tangent vector space of a smooth manifold M at a point p € M,
(n22) X(M) : the real Lie algebra of smooth vector fields on a smooth manifold M, which is also a C*>°(M)-module,
(n23) f|a : the restriction of a mapping f to a set A,
(n24) id4 or id : the identity mapping of a set A,
(n25) cy4 : the characteristic function of a set A,
(n26) A% or A : the closure of a subset A4 in a topological space X.

In addition, for a Lie group G we usually denote its Lie algebra by the corresponding Fraktur small letter g.

Remark

We say that a Lie group G is semisimple, nilpotent, or parabolic, respectively, whenever the Lie algebra g is.
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Chapter 1
Homogeneous spaces

In this chapter we review fundamental facts about homogeneous spaces. We deal with (real) homogeneous spaces in Section
1.1 and complex homogeneous spaces in Section 1.2. Finally in Section 1.3 we show that homogeneous spaces are principal
fiber bundles.

1.1 Real case

Let G be a (real) Lie group which satisfies the second countability axiom, and let H be a closed subgroup of G. Consider
the left quotient space G/H = {gH |g € G} of G by H and define a surjective mapping = : G — G/H (which is called the

projection of G onto G/H) as follows:
m(g) :=gH for g € G. (1.1.1)

Provide G/H with the quotient topology relative to this w. Then, G/H is called a homogeneous space, and one has
Theorem 1.1.2. There exists a real analytic structure S = {(Uy,¥a)}aca on the homogeneous space G/H so that
(1) #: G — G/H, g — gH, is a surjective, open, real analytic mapping,
(2) u:GxG/H — G/H, (g1,92H) — g192H, is a real analytic mapping.
Moreover, for each a € A there exists a real analytic mapping o, : Uy, — G such that W(Ua(x)) =z for all x € U,,.
The main purpose of this section is to demonstrate Theorem 1.1.2.

Remark 1.1.3. The condition (2) in Theorem 1.1.2 implies that 7 : G — G/H is real analytic, since 7(g) = p(g,7(e)) for
all g € G. Here, e is the unit element of G.

Remark 1.1.4 (Uniqueness).

(i) Suppose G/H to admit another real analytic structure S’ so that p: G x G/H — G/H, (g1,92H) — g192H, is real
analytic, where the topology for G/H is the quotient one relative to . Then, (G/H,S) is G-equivariant real analytic
diffeomorphic to (G/H,S’) via the identity mapping of G/H. cf. Subsection 1.1.4.

(ii) Let r € NU{0,00,w}. Suppose that G acts transitively on a differentiable manifold M of class C" as a differentiable
transformation group of class C", G x M > (g,z) — g-x € M. Let us denote by H’ the isotropy subgroup of G at an
xg € M. Then, G/H' > gH' — g-x¢ € M is a G-equivariant diffeomorphism of class C" of G/H' = (G/H',S) onto
M1

1.1.1 Topological properties of G/H
Recall that the topology for G/H is the quotient topology relative to .

Lemma 1.1.5.

(1) #: G — G/H, g — gH, is a surjective, open, continuous mapping.

le.g. 5EH 3.7.11 in #27 [34, p.131].
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(2) For any open subset U C G/H, there exists an open subset O C G such that 7(O) =U.

Proof. (1). It suffices to confirm that 7 : G — G/H, g — gH, is an open mapping. For any open subset O’ of G, we deduce

7 1 (n(0) =0'H = | Ra(O")

heH

by a direct computation, where R}, stands for the right translation of the Lie group G by h. Since each Rp(O’) is open in G,
the union |J,,c; Rr(0') = 77 1(7(0")) is also open in G. Therefore w(0’) is an open subset of G/H.

(2). Since 7 : G — G/H is continuous, O := 7~ }(U) is an open subset of G. Furthermore, one has 7(0) = U because
7w : G — G/H is surjective. O

Lemma 1.1.6.
(1) G/H is a Hausdorff space.
(2) u:GxG/H - G/H, (91,92H) — g1g2H, is a continuous mapping.
(3) G/H satisfies the second countability aziom.

Proof. (1) follows by H being a closed subset of G and Lemma 1.1.5-(1).

(2). Take any (g1,92H) € G x G/H and any open neighborhood U of u(g1,92H) = 7(g9192) € G/H. Lemma 1.1.5-(1)
implies that 7—1(U) is an open neighborhood of g1go € G, so that there exist open subsets O1, Oy C G satisfying g € Oy,
g2 € Oy and 0105 C 7~ 1(U). Then, O; x 7(03) is an open neighborhood of (g1,92H) € G x G/H, and it follows that
M(Ol X W(Og)) cU.

(3). Since G satisfies the second countability axiom, there exists a countable open base {O,, } e for the topological space

G. Lemma 1.1.5 implies that {7(O,)}nen is a countable open base for the topological space G/H. O
Lemma 1.1.6-(2) leads to

Corollary 1.1.7. Fiz a g € G and define a transformation 7, of G/H by
1q(aH) := gaH for aH € G/H.
Then for each g € G, 74 is a homeomorphic transformation of G/H, and 7gom = mo Ly on G. Here L, stands for the left

translation of the Lie group G by g.

1.1.2 Local cross-sections

Choose a real vector subspace m C g such that
g=madh,

and define a real analytic mapping ¢ : m x h — G by ¢(X,Y) :=exp X expY for (X,Y) € m x h. Then,
Lemma 1.1.8. There exist two open neighborhoods Vi of 0 € m and By of 0 € b such that
(1) ¢: (X,Y)—expXexpY is a real analytic diffeomorphism of Vi x By onto an open neighborhood of e € G,
(2) exp By is an open neighborhood of e € H.

Proof. It turns out that ¢(0,0) = e and the differential (dy),0) of ¢ at (0,0) is a real linear isomorphism of the tangent
vector space T{g,0)(m x h) onto T.G. Thus the inverse mapping theorem assures the existence of open neighborhoods Vi of
0 € m and B; of 0 € h satisfying (1); besides, one may assume that the (2) holds for this By by substituting a sufficiently
small open neighborhood B} of 0 € § for By (if necessary). O

Let Vi, B; have the properties in Lemma 1.1.8. In this setting, we assert
Proposition 1.1.9. There exists an open neighborhood V of 0 € m so that
(1) 0eV cw,

(2) N :=expV is a regular submanifold of G,
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(3) exp: V — N is a real analytic diffeomorphism,
(4) 7(N) is an open subset of G/H,
(5) m: N — w(N) is homeomorphic.

Proof. Taking Lemma 1.1.8-(2) and the topology for H into account, we see that there exists an open neighborhood O of

e € G satisfying
expB; = (ONH). (a)

Since the mapping G x G 3 (91,92) — g7 14y € G is continuous, one can choose a compact subset C' C V; containing an open

neighborhood of 0 € m and satisfying
exp(—C)expC C O. (b)

In this setting, 7 : expC — 7(expC) is a homeomorphism because if 7(exp X1) = 7(exp X2) with X3, Xy € C, then it
follows from (b), (a) that exp(—X2)exp X1 € (O N H) = exp By. This and Lemma 1.1.8-(1) yield X; = Xs; consequently
7 : exp C — 7(exp C) is injective, and so it is homeomorphic due to Lemma 1.1.6-(1).

Now, let V' be an open neighborhood of 0 € m such that V' C C, and let N := exp V. Then, it turns out that

(i) oevVcCc,

(ii) V x By is an open neighborhood of (0,0) € V; x By (. (i)),

(iii) (V' x Bj) is an open neighborhood of e € G (.- (ii), Lemma 1.1.8-(1)),

(iv) ¢: V x By = ¢o(V x By), (X,Y) — exp X expV, is a real analytic diffeomorphism (-.- (ii), Lemma 1.1.8-(1)),

(v) V x {0} is a regular submanifold of V' x By,

(vi) N =expV = ¢(V x {0}) is a regular submanifold of o(V x By) (" (iv), (v)),

(vii) ¢ : V x {0} = N, (X,0) — exp X, is a real analytic diffeomorphism (.- (iv), (v), (vi)).
Therefore (1), (2) and (3) hold for the V. From exp By C H we obtain

m(¢(V x By)) = m(N exp B1) = n(N),

which assures (4) because the subset ¢(V x By) C G is open and the projection 7 : G — G/H is an open mapping. The last
(5) comes from N C expC and 7 : exp C — 7(exp C) being homeomorphic. O

Let V have the properties in Proposition 1.1.9, and let N := exp V. Proposition 1.1.9-(4) and Lemma 1.1.5-(1) imply
that 7' (7(N)) = (exp V)H is an open neighborhood of e € G. For any g € (exp V)H there exists a unique (X,h) € V x H
satisfying

g = (expX)h

because 7(g) = m(exp X) € m(N) and Proposition 1.1.9-(5), (3) yield (exp |v) ! ((z|n) (7 (g))) = X; therefore X is uniquely
determined by ¢, and so is h. Then, one can define a mapping x : (expV)H — V as follows:

x(g) =X (1.1.10)
for g = (exp X)h € (expV)H with (X,h) € V x H.
Lemma 1.1.11. The above x : (expV)H — V, g — x(9), is a real analytic mapping such that
(1) x=xoRy forallhe H,
(2) m(g9) = m(expx(g)) for all g € (expV)H.
Here we refer to Proposition 1.1.9 for V.

Proof. From the definition (1.1.10) of x it is immediate that (1) and (2) hold for x. Let us prove that x : (expV)H — V is

real analytic. In view of Lemma 1.1.8 we see that

(i) W :=expV exp B is an open neighborhood of e € G,
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(ii) p: Vx By =W, (X,Y) —expXexpY, is a real analytic diffeomorphism,
(iii) W C (expV)H.

Take any g = (exp X)h € (expV)H with (X,h) € V x H. It is natural that Rj,-1(g) € expV C W, and hence there exists
an open neighborhood O of g € (exp V)H such that

Rp-1(0) C W,

where we recall that (exp V) H is an open subset of G. Considering a real analytic mapping proj: Vx By —»V (X,Y) — X,

we conclude that projop™?

: W — V is a real analytic mapping. Therefore
projop~t o R,-1 : O — V is a real analytic mapping

because the right translation Rj-1 : G — G is real analytic. This enables us to conclude that y : O — V is real analytic,

1

because (iii), projop=t =y on W and x = y o R,—1 on (exp V)H imply that xy = projop~!o R;-1 on O. O

1.1.3 Proof of Theorem 1.1.2

From now on, let us demonstrate Theorem 1.1.2.

Proof of Theorem 1.1.2. Take an open neighborhood V' of 0 € m having the properties in Proposition 1.1.9, and put N :=
exp V. Proposition 1.1.9-(4), (5), (3) enables us to define an open neighborhood U of 7(e) € G/H by

U:=n(N),

and moreover, define two homeomorphisms ¢ : U — N and ¢ : U — V by

o= (nly)"", Y= (exp|v)t oo, (a)
respectively.
exp
mDOV N=expV C G

(explv) ™t

7| o= (r|ny)"?

U=n(N)CG/H
Let us fix a real basis {X;} | of the vector space m, identify m with R™, and set
Ug :=14(U), thg(x) :=0(r, ' (x)) for z € U, (geU). (b)
Then, Lemma 1.1.6-(1) and Corollary 1.1.7 imply that
1. G/H is an n-dimensional topological manifold,
2. each pair (Ugy, 1) is a coordinate neighborhood of G/H with w(g) € U, (g € G),
3. §:={(Ug,v%q)}gec is an atlas of G/H.
Our first aim is to show that
the above S = {(Uy,%y)}4ec defines a real analytic structure in G/H. O

Suppose that Uy, NU,, # 0 (g1, 92 € G). For any X € 1,,(Uy, NU,,) C V, it follows from 7y, om =m0 L,,, N =expV, (a)
and (b) that 7(goexp X) = ¢ (X) € Uy, NUy,, so that m(g; tgaexp X) € 7'9;1(Ug1 NUg,) CU = m(N); and furthermore,
gitgaexp X € 771 (U) = (exp V) H and Lemma 1.1.11-(2) yield

(1hgy © ¥, N(X) = (7 (g1 " g2 exp X)) = ¥ (m(exp x(g7 ' g2 exp X)))
= ((exp|v) " o (|n) ") (7 (exp x(g; g2 exp X))) = (exp |v') " (exp x(g; g2 exp X))
= X(g1 'g2exp X) = (x 0 L1, 0 (exp|v)) (X).
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Accordingly thg, o1p; )t = x o L1y, 0 (exp |v), and thus ¢y, 0y !« by, (Ug, NUy,) — g, (Ug, NU,,) is real analytic, because

all the mappings x : 7 (U) — V, Lg;192 :G — G and exp : V — N are real analytic due to Lemma 1.1.11, Proposition

1.1.9-(3). We have shown (D). Henceforth, G/H is a real analytic manifold having the atlas S = {(Uy, ¥g) }gec-

Our second aim is to verify that
m:G— G/H, g — gH, is a surjective, open, real analytic mapping. (@)

By virtue of Lemma 1.1.5-(1) it suffices to verify that the projection 7 : G — G/H is real analytic. Let By denote the open
neighborhood of 0 € h given in Lemma 1.1.8, and let W := exp V exp B;. Here, we know that W is an open neighborhood
ofee Gand ¢ : Vx By - W, (X,Y) — expXexpY, is a real analytic diffeomorphism (cf. the proof of Lemma 1.1.11).
For an arbitrary g € G, it follows that

4. gW is an open neighborhood of g € G,
5. m(gW) C Uy,
6. (gW, o L,-1) is a coordinate neighborhood of G,

where we identify b with R* by fixing a real basis {Y]}§:1 C h. For any (X,Y) € (¢t oL,1)(gW) CV x By we obtain

(Wgomo(p toLy1) ) (X,Y) =1tpy(r(gexpXexpY)) = X

from (b) and (a). Consequently ¥yomo (o o Ly-1)"1: (o7 o Ly-1)(gW) — 1y(Uy), (X,Y) — X, is real analytic, and so
7w : gW — G/H is real analytic.

Now, let us define a continuous mapping o4 : Uy — G by
o4(x) = Ly(o(r, Y ())) for z € Uy (g € G). (c)
Our third aim is to prove the following proposition: for each g € G
04 : Uy — G is a real analytic mapping such that o4,(Uy) C gW and 7o o, = id on U,. (6))

It is immediate from (c) and (b) that 04(Uy) = Ly(o(U)) C Ly(N) C gW. For any = € Uy, = 7,(U), there exists an X € V
satisfying z = 7, (m(exp X)), and then it follows from (c) and (a) that 7(og4(2z)) = 7(Ly(o(m(exp X)))) = m(gexp X) = w;
hence mo oy =1id on Uy,. Let us demonstrate that o, : Uy — G is real analytic. For any X € ¢4,(Uy) C V, we deduce

((p7roLy-1)oagoi, ") (X) = (¢~ o Ly-1)o0y)(m(gexp X)) = (¢~ " o Ly-1)(gexp X) = (X, 0)

by (b), (a) and (c). This implies that (¢~ o Ly-1) ooy 0t : 9y(Uy) = (¢ 0 Ly-1)(gW), X — (X,0), is real analytic, so
that o4 : Uy — G is a real analytic mapping.
Our last aim is to conclude that

p:GxG/H — G/H, (g1,92H) — g1g92H, is a real analytic mapping. @

We denote by f the multiplication in G, namely f : G x G — G, (g1,92) — g1g2. Let us take any (¢1,92H) € G x G/H.
Then, G x Uy, is an open neighborhood of (g1,92H) € G x G/H. For any (g,z) € G x Uy, we assert that

7T(f(970'92 ('1:))) = ﬂ-(ga.ih (I)) =Tg (7T(0'92 (l‘))) = Tg(l‘) = :u(gvx)

because of 7o oy, =id on Ugy,. This assures that u: G x Uy, = G/H, (g,2) — (g, x), is a real analytic mapping, since all
the mappings 7 : G - G/H, f : G x G — G and oy, : Uy, — G are real analytic due to @), @.
Theorem 1.1.2 comes from D, @), @ and @. O

Lemma 1.1.6-(3) and the proof of Theorem 1.1.2 lead to

Corollary 1.1.12. The homogeneous space G/H is an n-dimensional real analytic manifold which satisfies the second

countability axiom, where n = dimg G — dimg H.

The following lemma will be needed later (e.g. Chapter 9):
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Lemma 1.1.13. Equip the homogeneous space G/H with the real analytic structure S in Theorem 1.1.2, and define a
mapping F : g — Tr)(G/H) by
F(X):= (dm). X, for X € g.

Then, F is a surjective, linear mapping and b coincides with the kernel ker(F).

Proof. Tt is clear that I : g — Tr(e)(G/H), X + (dm)cXe, is a linear mapping. In the proof of Theorem 1.1.2 we have shown
that 7 : G — G/H is real analytic. By the arguments we conclude that the linear mapping (dr)e : T.G — Ty (G/H),
v = (dm).v, is surjective. Accordingly F' is surjective linear because the mapping g 3 X — X, € T.G is a linear isomorphism.

Now, let us prove that h = ker(F). For any Z € h and f € C>(G/H) one obtains ((dr).Z.)f = d/dt’tzof(w(exp t7)) =
d/dt’tzof(ﬂ(e)) = 0; and hence F(Z) = (dn).Z. = 0. This gives rise to

b C ker(F).
Furthermore, since F' : g — T(.)(G/H) is surjective linear, Corollary 1.1.12 implies that
dimg ker(F') = dimg g — dimg T (¢)(G/H) = dimg b,

so that h = ker(F') holds. O

1.1.4 Supplementation

Let us confirm the proposition in Remark 1.1.4-(i) for the sake of completeness.

Suppose G/H to admit another real analytic structure S” so that p : G x G/H — G/H, (g1,92H) — g1g2H, is real
analytic, where the topology for G/H is the quotient one relative to w. We denote by M the real analytic manifold G/H
having the atlas &’. Since the topology for G/H is the same as that for M, the identity mapping id : G/H — M is a
G-equivariant homeomorphism. For any p € G/H, Theorem 1.1.2 allows us to have an open neighborhood U, of p € G/H
and a real analytic mapping o, : U, — G such that 7(0,(z)) = z for all € U,. Then, id = 7 o 5, on U,, which implies
that id : U, — M is real analytic because m : G — M is real analytic (cf. Remark 1.1.3). Consequently id : G/H — M
is G-equivariant homeomorphic and real analytic. Since id : G/H — M is real analytic, one can consider the differential
of id at each point, which is a real linear isomorphism. Therefore the inverse mapping theorem assures that the inverse
mapping id : M — G/H is also real analytic. For this reason G/H = (G/H,S) is G-equivariant real analytic diffeomorphic
to M = (G/H,S’) via id.

1.2 Complex case

Let G, H be the same Lie groups as in Theorem 1.1.2. Suppose further that (s1) G is a complex Lie group and (s2) H is a

complex Lie subgroup of G. Then, one can show

Theorem 1.2.1. There exists a holomorphic structure S = {(Un, Vo) taca on the homogeneous space G/H so that
(1) m: G— G/H, a — aH, is a surjective, open, holomorphic mapping,
(2) u:GxG/H — G/H, (a1,a2H) — aja2H, is a holomorphic mapping.

Moreover, for each a € A there exists a holomorphic mapping o, : Uy, — G such that W(oa(z)) =z for all z € U,.

Proof. We get the conclusion by substituting the words “complex” for the words “real” in Subsections 1.1.2 and 1.1.3. [

Remark 1.2.2 (Uniqueness). Suppose G/H to admit another holomorphic structure &’ so that p : G x G/H — G/H,
(a1,a2H) — ajagH, is holomorphic, where the topology for G/H is the quotient one relative to m. Then, (G/H.S) is
G-equivariant biholomorphic to (G/H,S’) via the identity mapping of G/H.

Remark 1.2.3. For a complex Lie group G satisfying the second countability axiom and a closed complex Lie subgroup H
of G, we always consider the complex homogeneous space G/H to be a homogeneous complex manifold of G with respect to

the invariant complex structure J induced by the S in Theorem 1.2.1.
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1.3 Principal fiber bundles and homogeneous spaces

Let G be a Lie group which satisfies the second countability axiom, and H a closed subgroup of G. Denote by 7 the projection
of G onto G/H, and consider the homogeneous space G/H as a real analytic manifold having the atlas S = {(Uqy, %a) }aca
in Theorem 1.1.2. In addition, let o, : U, — G be the real analytic mapping in Theorem 1.1.2 (o € A). In this setting, we
will show that this (G, 7, G/H) is a principal fiber bundle.

For an o € A, it follows that 7= (U, ) is an open subset of G. Then we set

Cal9) = (0a(r(9))) g for g € 7} (Ua). (1.3.1)

Since 7(g) € Uy and 7(04(z)) =  for all z € U,, it is natural that oo (7(g))H = 7(ca(7(g))) = n(g) = gH, and therefore
¢al9) = (0a (7‘(‘(9)))_19 belongs to H. Moreover, the following lemma holds:

Lemma 1.3.2. For each a € A, the (o : 71 (Uy) — H, g+ (a(9), is a real analytic mapping such that
(1) Calgh) = Calg)h for all (g,h) € 71 (Ua) x H,
(2) Ca (Ua(x)) =e forall x € U,.
Now, we see that
1. H acts real analytically and freely on G to the right, G x H 3 (g,h) — Rp(g9) = gh € G,
2. Riyny(9) = Riy (Rn, (9)) for all hy,hy € H and g € G,
3. m:G— G/H, g~ gH, is a surjective, real analytic mapping,
4. for given g1, g1 € G, m(g1) = 7(g2) if and only if there exists an h € H such that go = Rp(91),
5. {Uy : @ € A} is an open covering of G/H.
Furthermore, (1.3.1) and Lemma 1.3.2 enable one to see that for each « € A,
6. o : 7 1 (Us) = UaxH, g (7(g),Calg)), is a real analytic diffeomorphism, 65 (y, h) = oo (y)h for all (y, h) € Uy x H,
7. Calgh) = Ry (Calg)) for all (g,h) € 7 1(Uy) x H.
These lead to
Proposition 1.3.3. (G,7,G/H) is a real analytic, principal fiber bundle over G/H with group H.

Remark 1.3.4. The principal fiber bundle (G, 7, G/H) in Proposition 1.3.3 is able to be holomorphic, provided that the G

is a complex Lie group and the H is a complex Lie subgroup of G.






Chapter 2

Homogeneous vector bundles over

homogeneous Spaces

In this chapter we deal with homogeneous vector bundles over homogeneous spaces. The setting of Chapter 2 is as follows:
e (G is a Lie group which satisfies the second countability axiom,
e H is a closed subgroup of G,
e 7 is the projection of G onto the left quotient space G/H,
e §={(Uq,%a)}aca is the real analytic structure on G/H given in Theorem 1.1.2,
e 0, : U, — G is the real analytic mapping in Theorem 1.1.2 (a € A).

The topology for G/H is the quotient topology relative to 7 : g — gH, and the homogeneous space G/H is an n-dimensional

real analytic manifold having the atlas S.

2.1 Definition of homogeneous vector bundle

First of all, we are going to recall the definition of homogeneous vector bundle. Let V be a finite-dimensional real vector
space, and let p : H — GL(V), h + p(h), be a continuous (group) homomorphism,! where we fix a real basis {e;}; of V
and identify V with R, and we consider the vector space V and the general linear group GL(V) as a real analytic manifold
and a Lie group, respectively. For two elements (g1,v1), (g2,v2) € G X V we say that (g1, v1) is equivalent to (ga,vs), if there
exists an h € H satisfying

g2 = q1h, va = p(h)71(v1). (2.1.1)

This gives rise to an equivalence relation on G x V. We denote by [(g,v)] the equivalence class of an element (g,v) € G X V,
put G x, V :={[(g,v)] : (9,v) € G x V}, and define two surjective mappings @w : G x V. — G x,V and Pr: G x,V — G/H
by

(g,v) == [(9,V)] for (9,v) € G xV, Pr([(g,v)]) :=7(g) for [(g,)] € G x,V, (2.12)

respectively. Provide G x, V with the quotient topology relative to this w.

Definition 2.1.3 (cf. Bott [2, p.207]). In the setting above, G x,V = (G x, V,Pr,G/H) is called a homogeneous vector
bundle over G/H associated with p or called an associated fiber bundle of the principal fiber bundle (G,n,G/H) with fiber V.

GxV

G x,V
Pr

G/H

We will confirm that

IRemark. Since p: H — GL(V), h + p(h), is a continuous homomorphism, it is a real analytic mapping. e.g. & 2.3.7 in 12 [34, p.48].

15
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1. G x, V is a real analytic manifold, cf. Section 2.2,
2. (G x,V,Pr,G/H) is a fiber bundle with fiber V and group p(H) (C GL(V))), cf. Section 2.3.

In addition, we will study the real vector space I'"(G x, V) of differentiable cross-sections of the bundle (G x,V,Pr,G/H),
cf. Section 2.4.

2.2 Real analytic structures on homogeneous vector bundles

Our purpose of this section is to define a real analytic structure . = {(Pr™*(Uy), ¥a)}aca on G X, V. Here, G x,V =
(G x,V,Pr,G/H) is a homogeneous vector bundle over G/H associated with p. In order to accomplish the purpose, we first
define a real analytic mapping ®, needed later. By use of (, : 7~ 1(U,) — H in (1.3.1), we define a real analytic mapping
O, N (Uy) x V = U, x V as follows:

®a(g,v) := (m(g), p(Calg))v) for (g,v) € 71 (Ua) x V (2.2.1)

(€ A).

2.2.1 Topological properties of G x,V = (G x,V,Pr,G/H)

We want to deduce that G x,V is a topological manifold (see Proposition 2.2.9). Recalling that the topologies for G x,V and
G/H are the quotient topologies relative to w : G x V. — G x, V, (g,v) — [(g,v)] and 7 : G — G/H, g — gH, respectively,

we first prove
Lemma 2.2.2. Pr: G x,V — G/H, [(g,v)] — 7(g), is a surjective, continuous mapping.

Proof. We only verify that Pr: G x,V — G/H is continuous. Let U be any open subset of G/H. By a direct computation

we obtain
w ' (Pr=HU)) =7 (U) x V; (2.2.3)

besides, 7~ }(U) x V is an open subset of G x V. Hence w~*(Pr ~!(U)) is open in G x V, and so Pr—'(U)isopenin Gx,V. O
Corollary 2.2.4. {Pr ' (U,): a € A} is an open covering of G x, V.
Proof. Since {U, : o € A} is an open covering of G/H, Lemma 2.2.2 enables us to get the conclusion. O

For an a € A, it follows from Pr([(g,v)]) = m(g) that 7(g) € Uy for all [(g, V)] € Pr—!(U,). Then one can set

%a([(9:V)]) = (m(9), p(Ca(9))V) for [(g,v)] € Pr~(Us). (2.2.5)

Here it is necessary to confirm that this (2.2.5) is well-defined. Let us confirm that. Suppose that (¢g1,v1) is equivalent to
(92,va) with [(g1,v1)] € Pr™*(U,). By the definition (2.1.1) of equivalence relation, there exists an h € H such that go = g1 h,
vo = p(h)~Y(vy). In this case it turns out that 7(g2) = 7(g1h) = m(g1). Moreover, Lemma 1.3.2-(1) implies

p(Calg2))v2 = p(Calg1h))v2 = p(Calgr)hIva = p(Ca(g1)) (p(R)v2) = p(Calgr))V1
since p: H — GL(V) is a homomorphism. Therefore (2.2.5) is well-defined. Now, let us prove

Proposition 2.2.6. For each a € A, the mapping ¢ : Pr 1 (Uy) — Uy x V, [(g,V)] — (W(g),p(@a(g))v), is a homeomor-
phism. In addition, ¢ ;' (z,v) = [(0a(z),V)] for all (z,v) € Uy x V. cf. (1.3.1).

Proof. Let ¢, (z,v) := [(0a(z),V)] for (z,v) € Uy x V.
(Bijective). For any [(g,v)] € Pr~!(U,) we have

O (a([(9:V)])) = ¢4 (7(9): p(Ca(9))V) = [(oa(m(9)) p(Cal@))V)] "= [(calm(9)), p((calm(g))  g)v)]
(2.1.1)
=" [(9,v)]-

For any (z,v) € U, x V we deduce

¢o¢<¢/a(x7v)) = (ba([(ga(x)vv)]) = (W(Ja(l‘))7p(ca(0'a(1')))v) = (m,v)
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by 700, =id on U, and Lemma 1.3.2-(2). Therefore ¢, is bijective and ¢ = ¢/,.
(Continuous 1). Let us show that ¢, : Pr 1 (U,) — Uy x V, [(g,v)] — (7(9), p(Ca(g))v), is continuous. It follows from
(2.2.3) that @ (7~ (Ua) x V) C Pr—!(U,), and it follows from (2.1.2), (2.2.1) and (2.2.5) that

S, =¢a0w

on 7~ Y(U,) x V. Consequently ¢ : Pr=*(U,) — U, x V is continuous, because ®, : 7~ 1(U,) x V — U, x V is continuous
and the topology for G' x, V is the quotient topology relative to w.

(Continuous 2). The inverse mapping ¢ : Uy x V — Pr=Y(Uy), (z,v) = [(0a(z),V)], is also continuous because it is
the composition of two continuous mappings U, x V 3 (z,v) — (04(2),v) € 771 (Uy) x V and G x V 3 (g,v) — w(g,v) €
G x, V. O

Proposition 2.2.6 leads to

Corollary 2.2.7. For each a € A, 1o(Uy,) x V is an open subset of R"™ the mapping o := (a x idy) 0 ¢ : Pr=1(U,) —
Ya(Ua) XV, [(9,V)] = (¢a(m(9)), p(Ca(9))V), is homeomorphic, and o (X,v) = [(0a(tg (X)), v)] for all (X,v) € 1a(Ua) X
V. Here m = dimg V.

_ Pa
G x,V 2 Pr 1 (Uy,) UsxV CG/HxV

\ e X idy

Ya(Us) x V C RPH™

Corollary 2.2.8. G x,V is a Hausdorff space.

Proof. For [(g1,v1)], [(g2,v2)] € G x, V we suppose that [(g1,v1)] # [(92,Vv2)]. Let us investigate two cases 7(g1) # 7(g2) and
7(g1) = 7(g2), individually.

e In case of 7(g1) # m(g2), there exist open neighborhoods U; of 7(g1) and Us of 7(g2) € G/H such that U; N Uz =
because G/ H is a Hausdorff space. Then, Lemma 2.2.2 implies that Pr="(U;), Pr~*(Us) are open neighborhoods of [(g1,v1)],
[(g2,v2)] € G x, V and Pr~*(Uy) N Pr—1(Usy) = 0.

e In case of m(g1) = m(gz), Corollary 2.2.4 and Pr([(g1,v1)]) = 7(g1) = 7(g2) = Pr([(g2,v2)]) assure the existence of an

clement € A satisfying [(g1,v1)], [(92,v2)] € Pr—'(Ua). So, one has [(g1,va)], [(g2, v2)] € Pr=*(Us) and [(g1,v1)] # [(g2,v2)]-
Then there exist open subsets Wi, Wy C Pr=*(U,) such that [(g1,v1)] € W1, [(g2,v2)] € Wa and

WiNWy =0,

because Corollary 2.2.7 implies that Pr_l(Ua) is a Hausdorff space. Remark here that both W; and W5 are open subsets of
G x, V, since Pr~'(U,) is open in G x, V. O

Corollaries 2.2.8, 2.2.4 and 2.2.7 allow us to assert
Proposition 2.2.9. The following three items hold:
(1) G %,V is an (n + m)-dimensional topological manifold, where m = dimg V,
(2) each pair (Pr="(Uy), pa) is a coordinate neighborhood of G x,V (o € A),
(3) .7 = {(Pr~"(Ua), 9a) Yaca is an atlas of G x, V.
Here we refer to Corollary 2.2.7 for .
We end this subsection with proving
Proposition 2.2.10.
(i) Pr:Gx,V—=G/H, [(9,v)] = 7(g), is a surjective, open, continuous mapping.

(i) G %,V satisfies the second countability axiom.
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(ili) w: G xV =G x,V, (g,v) = [(9,V)], is a surjective, open, continuous mapping.
(iv) v: G x (Gx,V) = Gx,V, (g1,[(g92,V)]) = [(g192,V)], is a continuous mapping.

Proof. (i). By Lemma 2.2.2 it suffices to confirm that Pr : G X,V — G/H is an open mapping. For any open subset
W C G x,V we see that o' (W) is open in G x V. Considering an open mapping proj : G xV — G, (g,v) — g, we conclude
that proj (w_l(W)) is open in G, so that

proj(w ™ (W))H = U,ep Bi(proj(w 1 (W))) is an open subset of G.

A direct computation yields proj(w™*(W))H = 7' (Pr(W)). Accordingly #~!(Pr(W)) C G is open, and hence Pr(W) is
an open subset of G/H.

(ii). Since G %,V is a topological manifold, it is enough to show that G %,V is a Lindeldf space. Let {W : A € A} be an
arbitrary open covering of G x, V. Needless to say, {cw~!(W)) : A € A} is an open covering of G x V. Since both G and V
satisfy the second countability axiom, the product G x V also satisfies the same axiom. Therefore one can find a countable
subset {w ™1 (W}) : k € N} of {1 (Wy) : A € A} so that

GxV=J= (W)
keN

Then G %,V =w@(G x V) = @(Upen @ *(Wi)) C Upeny Wk, which implies that G x, V is a Lindeldf space.

(iii). We only verify that w : G xV — G %, V, (g,v) — [(g,v)], is an open mapping. For any non-empty open subset
Q C G x V, we are going to show that =} (w(Q)) is an open subset of G x V. For any (g,v) € wil(w(Q)), it follows that
w(g,v) € w(Q), so that there exists a (a,w) € @ satisfying

w(g,v) = w(a,w).

Since (a,w) € @ and Q C G xV is open, there exist open subsets O C G and B C V such that (a,w) € O x B C ). Moreover,
a direct computation, together with (2.1.1), yields

= (@(0 x B)) = |J (Ba(0) x p(h)7'(B)),

heH

which implies that @ (@ (O x B)) is an open subset of G xV because each Ry, (0) x p(h)~!(B) is open in G xV. Consequently,
@ ! (@(O x B)) is an open neighborhood of (g,v) € GxV and w ™! (@w(Ox B)) C @~ *(w(Q)). This implies that @ (@ (Q))
is an open subset of G x V.

(iv). Take any (a1, [(az,w)]) € G x (G %, V) and any open neighborhood W of v(a1, [(az,w)]) = [(a1a2,w)] € G X, V.
Since 1 (W) is an open neighborhood of (ajaz,w) € G x V and since © : G x (G x V) = G x V, (g1, (92,V)) — (9192,V), is
a continuous mapping, there exist open subsets 01,05 C G and B C V such that a; € O1, a2 € O3, w € B and

ﬁ(01, (02 X B)) C w_l(W).

Then w (O x B) is an open subset of G %,V due to (iii), and so O; x @w(O2 x B) is an open neighborhood of (a1, [(a2,w)]) €
G x (G x, V); besides,
I/(Ol X ’ZE(OQ X B)) C W(Q(Ol, (OQ X B))) c W.

Accordingly v : G x (G x, V) = G x, V, (g1, [(92,V)]) = [(g192, V)], is continuous. O

2.2.2 A real analytic structure on G x,V

We have shown that . = {(Pr™"(Us), ¥a)}taca is an atlas of G x, V (cf. Proposition 2.2.9). In this subsection we aim to
confirm that the . defines a real analytic structure in G x, V.

Lemma 2.2.11. Suppose that Pr—'(U,) NPr—1(Us) # 0 (a, B € A). Then,
(1) @s(Pr~'(Ua) NPr(Up)) = 1p(Ua NUs) x V.
(2) (#a 095 )XV) = (b (51 (X),p ((0a(s (X)) 'oa(v (X)) V) for all (X,v) € G5(Ua NUg) x V.

(3) wqo gogl is a real analytic diffeomorphism of ¢5(Pr~"(Ua) NP1~ (Us)) onto o (Pr—"(Ua) NPr~"(Us)).
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Proof. (1). First, let us demonstrate that ¢g(Pr™"(Us) ﬂPrfl(UB)) C (UaNUg) x V. For any (X1,v1) € pg(Pr~"(Us) N
Prfl(Ug)) = gpg(Prfl(Ua N Ug)), there exists a [(a1,w1)] € Pr—' (U, N Up) satisfying (X1,v1) = ¢5([(a1,w1)]). From
wp = (g x idy) o ¢3 we obtain

(X1,v1) = @a([(a1,w1)]) = (¥p(m(a1)), p(¢plar))wi).

This, combined with m(a;) = Pr([(a1,w1)]) € Uy N Up, implies that (Xi1,v1) € 13(Us NUs) x V; hence ¢g(Pr~"(Us) N
Pr'(Us)) C ¢3(Us NUgs) x V. Next, let us show that the converse inclusion also holds. For any (X2, v2) € ¥3(Ua NUp) X V,
it follows from Corollary 2.2.7 that

(X2.v2) = ps (95" (X2, v2)) = ws([(05(05 ' (X2)),v2)]).-

Furthermore PI‘([(O’ﬁ(’(/JEl(XQ)),VQ)}) = 77(05(1/}51()(2))) = wgl(Xg) € U, NUg, and so [(O’ﬁ(wgl(Xg)),Vg)] e Pr (U, N
Us). Consequently we have (Xa,v2) € g (Pr™ (U NUg)). Hence, 13Uy NUz) x V C @(Pr~" (U,) NPr—"(Up)).
(2). For any (X,v) € ¥3(Us, NUg) x V, Corollary 2.2.7 enables us to have

(0o 003 )X V) = 0a([(0505 (X)) V)]) = Walm (o505 (X)) p(Calos s (X))
UEY (o (0 (85 (X)), p((Fa(m(oa (@5 (X)) os( (X)))V)
= (ba (W5 (X)), p((0a (5 (X)) " os(w5  (X)))V)

since ¢ﬁ_1(X) € Uy NUp and moog =id on Ug.
(3) comes from (1) and (2). O

By Proposition 2.2.9 and Lemma 2.2.11 we conclude
Theorem 2.2.12. The atlas ¥ = {(Pr™ " (Uy), ¥a) Yaca in Proposition 2.2.9 defines a real analytic structure in G x, V.
Theorem 2.2.12 and Proposition 2.2.10-(ii) lead to

Corollary 2.2.13. G %,V is an (n + m)-dimensional real analytic manifold which satisfies the second countability axiom,

where m = dimg V.
We end this section with confirming

Proposition 2.2.14. w: G xV = G X%, V, (g, ) [(g,v)], is a surjective, open, real analytic mapping. Here G x,V is a
real analytic manifold having the atlas % = {(Pr™"(Us), ) Yaca in Proposition 2.2.9.

Proof. We only demonstrate that @w : G x V — G x, V is real analytic (cf. Proposition 2.2.10-(iii)). For any a € A and
(g,v) € 7= Y(U,) x V, one has w(r 1 (Uy,) x V) ¢ Pr~}(U,), and

(a 0 @)(g:v) = @a(l(g:V)]) = (Ya(m(9)), p(Cal9))V)

due to Corollary 2.2.7. This mapping G x V O 771 (Ua) x V 3 (g,V) = (¥a(7(9)), p(Ca(9))V) € wa(Pr~!(Uy)) C R¥™ is
real analytic; hence @ : 77 1(U,) x V. = G X, V is real analytic for each a € A. Therefore @w : G x V. — G x, V is a real
analytic mapping, since G = (J,c 4 7Y (Uy). O

2.3 Fiber bundles

For a homogeneous vector bundle Gx,V = (G x,V,Pr,G/H) over G/H associated with p : H — GL(V), we will demonstrate
that it is a fiber bundle with fiber V and group p(H) (C GL(V)), cf. Theorem 2.3.5.

2.3.1 Vector space structures on fibers

First, let us show that for every xo € G/H, the fiber Pr~*({zo}) can be a real vector space which is real linear isomorphic
to V. Since G/H = J,c 4 Ua, there exists an o € A such that x¢ € U,. Then, f, : V — Pr*({z0}), v = [(0a(20),V)], is a

homeomorphism due to Proposition 2.2.6.2 Setting

Mg, )] = [(oa(@0), Ao((0a(z0)) ~'g)V)]
2fa ([(9,)]) = p(Calg))v for all [(g,v)] € Pr=*({zo}).

{ [(g1,v1)] + [(g2,v2)] == [(0a(®0), p((0alz0)) " tg1)v1 + p((0a(x0)) L g2)v2)], (23.1)
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for [(g1,v1)], [(92,v2)], [(9,v)] € Pr*({zo}) and X € R, one can assert that the fiber Pr™*({zo}) is a real vector space, where
we note that

[(9:v)] = [(9a(z0), p((0a(z0)) " g)v)] for all [(g,v)] € Pr™" ({zo}).

With respect to this vector space Pr—'({zo}), the homeomorphism f, : V — Pr '({zo}), v = [(0a(z0),V)], is real linear
isomorphic, and hence the vector space structure on Pr_l({mo}) is independent of the choice of a € A satisfying ¢ € U,,.

Remark 2.3.2.

(1) For each zy € G/H we see that
Pr(Af(g1,v1)] + A2((g2, v2)]) = o

for all [(g1,v1)], [(g2,v2)] € Pr*({zo}) and A1, Ao € R because of (2.3.1).
(2) Hereafter, for each 29 € G/H we regard the fiber Pr='({z¢}) as an m-dimensional real vector space by means of
(2.3.1). Here m = dimg V.

2.3.2 Transition functions

Let us set
9ap(y) = (0a(y)) top(y) for y € Us NUs (2.3.3)

whenever U, NUg # 0 (o, B € A). Since 7(0a(y)) =y = m(0s(y)) we have gop(y) € H, and therefore gog : Uy NUg — H is
a real analytic mapping, where we remark that H is a regular submanifold of G. It is easy to prove

Proposition 2.3.4. For the real analytic mapping gos : Us NUs — H, y — (04(y)) " tos(y), the following two items hold:
() gaa(z) =€ for allz € U,.

(b) 9ap(2)gpy(2)gyalz) =€ for all z € Uy NUg N U,.

2.3.3 Proof of Theorem 2.3.5

Now, we are in a position to demonstrate

Theorem 2.3.5. Provide G x,V with the real analytic structure ¥ = {(Pr="(Uy), ¢a)}aca in Proposition 2.2.9. Then, the

following two items hold:
(1) Pr:Gx,V—G/H, [(g,v)] — w(g9) = gH, is a surjective, open, real analytic mapping.

(2) For each a € A, the mapping ¢3' : Uy x V — Pr Y (U,), (x,v) + [(0a(x),V)], is a real analytic diffeomorphism;
besides, ¢a ([(9,V)]) = (7(9), p(Calg))V) for all [(g,v)] € Pr™ (Uy). cf (1.3.1).

Moreover, for each x¢ € Uy it follows that

(3) Pr((b;l(mo,v)) =xg forallveV,

(4) the mapping V 3 v — ¢ (xo,v) € Pr= ({zo}) is a real linear isomorphism.
In addition, suppose that U, NUg # 0 (o, B € A). Then,

(5) (¢ © b5 ) (Y V) = (4: p(gap(y))V) for all (y,v) € (Us NUp) x V.
Here we refer to (2.3.3) for guos-

Proof. (1). By Proposition 2.2.10-(i), it suffices to confirm that Pr : G x,V — G/H is real analytic. For any o € A and
(X,V) € pa(Pr 1 (Uys)) = ¥a(Us) x V, Corollary 2.2.7, (2.1.2) and 7 0 0, = id on U, imply that

(Yo 0 Propg ) (X, v) = (ta o Pr)([(0a (45" (X)),v)]) = va(m(0a(¥5 (X)) = X,

so that Pr: Pr~'(U,) — G/H is real analytic. Thus Pr: G x,V — G/H is real analytic.
(2). For any (X,v) € (¢o X idy)(Us X V) = 94 (Uy,) x V, we deduce

(Sﬂa © ¢;1 © (1/}04 X idv)_l)(X,V) = (SDa ow;l)(X7v) = (X,V)
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by Corollary 2.2.7. Hence ¢! : U, x V — Pr~*(U,) is a real analytic diffeomorphism.
(3). By a direct computation we have Pr(¢ ! (zo,v)) = Pr([(0a(z0),v)]) = 7(0a(z0)) = 0.
(4). Recall that f, : V — Pr*({zo}), v [(0a(20),V)], is real linear isomorphic, cf. Subsection 2.3.1.
(5). For any (y,v) € (Us NUp) x V, Proposition 2.2.6 enables us to obtain

(60 © 05 (Y, v) = a([(08(1),V)]) = (7(05(y)), P(Calos()))V)
2D (2(05)), p((a(m(os®))) " os@)V) = (1 p((0a@) 2os@)V) (- m(os(y) = y)

C2D (4, p(gas®))V).

We end Section 2.3 with proving

Proposition 2.3.6. v : G x (G x,V) = G x,V, (g1,[(g2,V)]) = [(9192,V)], is a real analytic mapping. Here G X,V is a
real analytic manifold having the atlas .7 = {(Pr™"(Ua), Pa)}aca in Proposition 2.2.9.

Proof. Fix any o € A. On the one hand; since 7 : G x (G x V) = G xV, (g1, (g2,Vv)) — (9192,V), is a real analytic mapping,
it follows from Proposition 2.2.14 and Theorem 2.3.5-(2) that @ o ¥ o (idg x (04 x idy)) o (idg X¢a) is real analytic on
G x Pr~'(U,). On the other hand; for any (g1, [(g2,v)]) € G x Pr~!(U,) one has

(wovo (idg x(aa x idy)) o (ide Xa)) (g1, [(g2,V)]) = (w0 P o (idg X (00 x idv))) (g1, (7(g2), p(Calga))V))

= (@ 00) (g1, (0a(m(g2)). p(Calg2))V)) = (9100 (7(g2)). p(Calg2)v) 2"

21y @ (9192, V) = v(g1, (g2, V)]).

' @(g10a(1(92)), p((0a(7(g2))) " g2)V)

Hence v : G x Pr'(U,) — G x, V is real analytic, and so v : G x (G x, V) — G x, V is real analytic. O

2.4 Vector spaces of cross-sections of homogeneous vector bundles

For a homogeneous vector bundle G x,V = (G x, V,Pr,G/H) we provide G x, V with the real analytic structure ./ =
{(Pr " (U,), ¢a)}aca in Proposition 2.2.9 (cf. Theorem 2.2.12). In this section we study the real vector space I' (G x, V) of
differentiable cross-sections of the bundle G x, V.

For an r € NU {0, co,w}, let us set

(2.4.1)

FT(GXPV)::{’V:G/H%GXPV (1) v is of class C", }

(2) Pr(y(z)) = for all z € G/H

Then, for any v; € I"(G x,V) and x € G/H (i = 1,2), it follows from (2.4.1)-(2) that v;(z) € Pr~'({z}). Accordingly, since

Pr'({z}) is a real vector space, one can define an element v; + v, € T"(G x, V) as follows:
(71 + v2)(x) :=(x) + v2(z) for z € G/H. (2.4.2)

Similarly, Ay € I'"(G X, V) as follows:
(M) (z) := My(z) for z € G/H, (2.4.3)

where v € I"(G x, V) and A € R (cf. Remark 2.3.2). Hereafter, we regard I'"(G x, V) as a real vector space by means of
(2.4.2) and (2.4.3).
The main purpose of this section is to verify Theorem 2.4.15 which implies that the real vector space I'"(G x, V) is
isomorphic to
(i) € is of class C7,
V(G %x,V):=4&:G—=V | 3 . (2.4.4)
: { (ii) &(gh) = p(h) " (&(9)) for all (g,h) € G x H

Here V"(G x, V) is a real vector space with respect to the following addition of vectors and scalar multiplication:

(61 +&)(9) = &i(9) + &(9), (A)(9) := A&(g) for g € G, (2.4.5)

where £1,£1,£ € V(G x, V) and A € R.
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2.4.1 A linear mapping F; : V' (G x,V) = I"(G x, V)

Let £ be an arbitrary element of V(G x, V). From it we are going to construct an element of I'"(G x, V). Set I'¢ as

Le(m(g)) = [(9,€(9))] for m(g) € G/H. (2:4.6)
This (2.4.6) is well-defined by virtue of (2.4.4)-(ii) and (2.1.1). So, I'¢ is a mapping of G/H into G x, V. Moreover,
Lemma 2.4.7. In the setting of (2.4.1), (2.4.4) and (2.4.6);
(1) T¢ belongs to I'"(G x, V) for each & € V'(G x, V);

(2) Fi: V(G x,V)=T"(G x,V), {—=T¢, is a real linear mapping.

Proof. (1). Let & be an arbitrary element of V"(G x, V). It is easy to see that Pr(I'¢(m(g))) (246) Pr([(g,£(9))]) 212) 7(g)

for all m(g) € G/H. Thus, the rest of proof is to confirm that I'c : G/H — G x, V is a differentiable mapping of class C".
For each o € A, it follows from Prol's = idg,y that T'¢(Us) C Pr'(U,). Then for any X € 1, (Uy,) we have

(a0 Te 0 U3 )(X) = (90 0 Te) (¢5 (X)) = (pa o Te) (m(0a (¥ (X)) (- mo0e =id on U)
(2.4.6)

=" @a([(0a(va (X)), E(0a(¥s (X))))])

= (Ya(m(0a(ts (X)) p(Cal0a vy (X))))E(a(ts (X)) = (X, &(0a(vy (X))

by Corollary 2.2.7 and Lemma 1.3.2-(2). This mapping R" D 1, (Uy) 2 X — (X,§(aa(z/gl(X)))) € Vq (Pr_l(Ua)) c Rtm
is of class C" because both o, and ;' are of class C* and ¢ is of class C". Consequently I'¢ : U, — G x, V is of class C"

for each o € A, and hence I's : G/H — G %,V is a differentiable mapping of class C”.
(2). For any &1,& € V"(G %, V) and 7(g) € G/H, a direct computation yields

2.4.6) 4.5)

(Fi(&1 +£))(7(9)) = Terrea (n(9) “27 (9,6 + £)9)] “27 [(9.6200) + £@)] “2” [(9.61(0)] + [(9:&(9))]
CLO) D (n(g)) + Tey(n(g)) P27 (T, +Te,) (7(9)) = (FL(€1) + Fi (&) (n(g)-

Thus Fl(fl —‘rgg) = F1(€1)+F1(£2) for all 51762 S VT(G XpV). Slmllarly, Fl()\f) = )\Fl(f) for all (f,A) S VT(G XPV) xR. O

2.4.2 A mapping F,:I"(G x,V) = V" (G x,V)

Fix an arbitrary v € I'"(G x, V). From it we will construct an element of V"(G x, V). For any a € A, Theorem 2.3.5-(2)
implies that ¢ : Pr™ ! (Uy) — Ua x V, [(g1,v)] = ((g1), p(Ca(g1))V), is real analytic, so that we can define a real analytic
mapping xo : Pr~(U,) — V by

Y ((lg1,9)]) = p(Calgn)V for [(g1,v)] € Pr(Ua). (2.4.8)

Furthermore, by use of this x, we define a differentiable mapping =, , : 7~ *(Uy) — V of class C" as follows:

Eral(91) = p(Ca(91)) " (Xa(¥(7(91)))) for g1 € 71 (Uy). (2.4.9)

Then, Lemma 1.3.2-(1) assures that
Zy,alg1h) = p(h) " (Ey,a(g1)) for all (g1, h) € 71 (Ua) x H. (2.4.10)

Now, in terms of v(7(g1)) € G x, V, we obtain a (a,w) € G x V satisfying v(7(g1)) = [(a,w)]. Then (2.4.1)-(2) yields
m(g1) = Pr(v(r(g1))) = Pr([(a,w)]) = m(a). Therefore g; 'a € H, v := p(g; 'a)w € V and

2.1.1

Y(n(g0) = [(a,w)] “=" [(g1,v)].

This gives Zy,0(g1) "= p(Ca(91)) " (Xa((T(91)))) = pCalgn) ™ (ke (g1, 9)]) P2 p(Calg1) ™ (p(Calg1))v) = v. Hence,
it follows that

v(7(91)) = [(91,Ey,a(g1))] for all g € 7= 1 (Uy). (2.4.11)

In a similar way, we conclude that for any go € 7~ *(U,) N7~ (Ug), there exists a vo € V such that y(7(g2)) = [(g2,v2)];
moreover =, o(g2) = va = 2, 3(g2). Therefore one can define a differentiable mapping =, : G — V of class C" by

Z,(9) = Ealg) if g € 71 (Ua), (2.4.12)



2.5. THE RESTRICTIONS OF BUNDLES TO OPEN SUBSETS AND THEIR CROSS-SECTIONS 23

where we remark that G = |, 4 7~ (Ua). Needless to say, it follows from (2.4.10), (2.4.11) and (2.4.12) that

{ =, (gh) = p(h) "1 (Z,(g)) for all (g,h) € G x H,
(9))]

(2.4.13)
) for all g € G.

v(m(9)) = (9.2

Summarizing the statements above, we conclude

Lemma 2.4.14. For each v € IT"(G x, V), E5 belongs to V" (G x,V). Therefore, one can get a mapping Fr : I (G x,V) —
V' (G x,V) by setting F>(v) :=E, fory € I"(Gx,V). Moreover, ¥(m(g)) = [(g, (F2(7))(9))] for all (v,g) € T"(Gx,V) xG.
Here we refer to (2.4.12), (2.4.9) for E,,.

Now, let us verify

Theorem 2.4.15. In the setting of (2.4.1) and (2.4.4); there exists a real linear isomorphism F : T"(G x,V) = V" (G x, V),
v = F(7), such that y(n(g)) = [(9, (F(7))(9))] for all (v,g) € T"(G x, V) x G. Here r € NU{0,00,w}.
Proof. By Lemmas 2.4.7 and 2.4.14 it is enough to confirm that (1) F} o F» = id on I'"(G x, V) and (2) F; o F; =id on
V(G x, V).

(1). Let us take any o € A, € U, and § € I'"(G x, V). Since §(z) € Pr ' (Uy,) C w(n~ (Ua) x V), there exists a
(91,v) € = H(Uq) x V such that d(z) = [(g1,v)]. Then we have z = m(g1), (7 (g1)) = [(g1,v)] and

(FL(F2(0)) (@) = Ty (@) 2% (g1, (F2(6))(91))] = [(91,Z5(90)] F 7L (g1, p(Cal91)) ™ (e (0 (90))))]
8

= [(ghp«a(gl»-l(xa([(gh >1>))] P2 [(g1,v)] = 8(2).

Therefore we see that Fy(F2(d)) = 6 on U, (o € A). This, together with G/H =
G/H. For this reason Fy o F5 =id on I'"(G x, V).
(2). By arguments similar to those stated in (1), one can conclude that (2) F» o F} =id on V" (G X, V). However, let us

wca Ua, assures that Iy (F5(0)) = 6 on

confirm (2) for the sake of completeness. For any o € 4, g € 7~ 1(U,) and n € V" (G x, V), we have

(2.4.9),(2.4.12)

(F2(Fr(m))(9) = Ermm(9) — = 7 plCal9) ™ (Xa (F1(0))(7(9)))) = p(Ca(9)) ™" (Xa(Ty(n(9))))
"2 069 (xalllgm(@)D) *= lg).
Hence F(Fi(n)) =non 7 1 (Uy) (a € A), and Fo(Fi(n)) =n on G =J,ec a7 (Ua). Consequently (2) holds. O

2.5 The restrictions of bundles to open subsets and their cross-sections

Fix a homogeneous vector bundle G x,V = (G x, V,Pr,G/H) and provide G X, V with the real analytic structure . =
{(Pr~(Ua), Ya)}aca in Proposition 2.2.9. For a non-empty open subset U C G//H we define an open subset (G' x, V)y of
G %,V by

(Gx,V)y = Pr—Y(U); (2.5.1)

besides, we induce real analytic structures Sy on U and . on (G X, V)y from G/H and G x, V, respectively. Then,
Proposition 2.3.4 and Theorem 2.3.5 tell us that (G %, V)y = ((G Xp VU, Prl(ax,v)us U) is a fiber bundle with fiber V and
group p(H) (C GL(V)), which is called the restriction of the bundle (G x,V,Pr,G/H) to U.

Let I'"(Gx ,V)u be the real vector space of differentiable cross-sections of the bundle (Gx,V)y = ((Gx,V)y, Pr l(Gax Vo U),

namely

(1) v is of class C",
I'"(G x,V)y = U — (G x,V 2.5.2
(&> Vo {ry (G, Vo (2) Pr(y(z)) =z forallz € U ( )
This I'"(G x, V)y corresponds to the following real vector space:
f cl "
V(G x, V) = {g () v | 1) & s of class €, } (2.5.3)

(
(i) £(gh) = ()~ (£(g)) for al (g, }) € -1(U)  H
)

Proposition 2.5.4. In the setting of (2.5.1), (2.5.2) and (2.5.3); there exists a real linear isomorphism F : I'"(G x,V)y —
V(G x,V)u, v+ F(), such that v(7(g)) = [(9, (F(7))(9))] for all (v,g) € T"(G x,V)y x 7= (U). Herer € NU{0,00,w}
and U is a non-empty open subset of G/H.

Proof. Refer to Section 2.4 for the proof of this proposition. O






Chapter 3

Homogeneous holomorphic vector bundles

over complex homogeneous spaces

In this chapter we deal with homogeneous holomorphic vector bundles over complex homogeneous spaces. The setting of

Chapter 3 is as follows:
e (G is a complex Lie group which satisfies the second countability axiom,
e H is a closed complex Lie subgroup of G,
e 7 is the projection of G onto the left quotient space G/H,
e §={(Us,%a)}taca is the holomorphic structure on G/H given in Theorem 1.2.1,
e 0, : U, — G is the holomorphic mapping in Theorem 1.2.1 (a € A).

The topology for G/H is the quotient topology relative to 7w : g — gH, and the homogeneous space G/H is a complex
manifold having the atlas S.

3.1 Definition of homogeneous holomorphic vector bundle

Let V be a finite-dimensional complex vector space, and let p : H — GL(V), h — p(h), be a holomorphic homomorphism,
where we fix a complex basis {e;}7, of V and identify V with C™, and consider V and GL(V) as a complex manifold and a

complex Lie group, respectively.

Definition 3.1.1. In the setting above, the homogeneous vector bundle G x,V = (G x, V,Pr,G/H) over G/H associated
with p is said to be holomorphic. cf. Definition 2.1.3.

In the next section we state results about homogeneous holomorphic vector bundles.

3.2 Results about homogeneous holomorphic vector bundles

Let G x,V = (G x, V,Pr,G/H) be a homogeneous holomorphic vector bundle over G/H associated with p : H — GL(V).
Referring to Chapter 2 we are going to state results about this bundle.

Theorem 3.2.1. There exists a holomorphic structure . = {(Pr™"(Us), )} aca on the homogeneous holomorphic vector
bundle G x,V so that

(1) w:GxV—=Gx,V, (9,v) = [(9,Vv)], is a surjective, open, holomorphic mapping,

(2) v:Gx(Gx,V)—=Gx,V, (91,[(92,v)]) = [(9192, V)], is a holomorphic mapping,

4) Pr:Gx,V—G/H, [(g,v)] — w(g9) = gH, is a surjective, open, holomorphic mapping,
)

(5) for each o € A, the mapping ¢5' : Uy x V. — Pr Y (U,), (z,v) — [(0a(x),v)], is a biholomorphism; besides,
¢a([(9,v)]) = (7(9), p(Cal9))V) for all [(g,v)] € Pr™" (Ua). cf. (1.3.1).

25



26 CHAPTER 3. HOMOGENEOUS HOLOMORPHIC VECTOR BUNDLES

Moreover, for each x¢ € Uy it follows that
(6) Pr(¢z'(wo,v)) = zo for allv eV,

(7) the mapping V. > v — ¢ (x0,v) € Pr'({zo}) is a complex linear isomorphism, where the complex vector space

structure on Pr—'({zo}) is defined by a similar way to (2.3.1).
In addition, suppose that U, NUg # 0 (o, B € A). Then,
(8) gop:UaNUs — H, y s (0a(y)) tos(y), is a holomorphic mapping such that

(8.2) gaa(x) =c¢€ for all z € Uy,
(8.b) 9as(2)98+(2)gya(2) =€ for all z € Uy NUz NU,.

(9) (¢a b5 )(W,v) = (U, p(gap(y))V) for all (y,v) € (Us NUs) x V.
Proof. ref. Proposition 2.2.14, Proposition 2.3.6, Theorem 2.3.5 and Proposition 2.3.4. [

Provide G x, V with the holomorphic structure . = {(Pr™"(Us), ¥a)}aca in Theorem 3.2.1, and define complex vector
spaces ['(G x, V) and V(G x, V) by

. . (1) v is holomorphic,
I'(Gx,V):= {7 :G/H - Gx,V (2) Pr(+(x)) = for all = € G/H} (3.2.2)
and
. . (i) ¢ is holomorphic,
me“”’{ﬁaév mmmm:mm1@m»Mwu@m6GxH}’ (323)

respectively. This I'(G x, V) is the complex vector space of holomorphic cross-sections of the homogeneous holomorphic
vector bundle G' x, V, and

Theorem 3.2.4. In the setting of (3.2.2) and (3.2.3); there exists a complex linear isomorphism F : T'(G x,V) = V(G x,V),
v = F(7), such that y(n(g)) = [(g, (F(7))(g))] for all (v,9) €T(G x, V) x G.

Proof. ref. Theorem 2.4.15. O

For a non-empty open subset U C G/H, the restriction (G x, V)y = ((G %o VU, Pr@x vy U) of the bundle G x, V
to U is a fiber bundle with V and p(H) (C GL(V)). Here we induce holomorphic structures Sy on U and % on (G x, V)y
from G/H and G x,V, respectively. Let I'(G x,V)y be the complex vector space of holomorphic cross-sections of the bundle
(G %, V)y, that is,

(1) v is holomorphic,
I'G x,V)y = U — (G x,V . 3.2.5
(@, V)u {7 (G V)u (2) Pr(y(z)) =z forallz € U ( )
This I'(G x, V)y corresponds to the complex vector space
B (i) £ is holomorphic,
VG x,V)y:=&:n Y (U) =V | B B (3.2.6)
’ { (ii) £(gh) = p(h)~(&(g)) for all (g,h) € 7~ H(U) x H

as follows (ref. Proposition 2.5.4):

Proposition 3.2.7. In the setting of (3.2.5) and (3.2.6); there exists a complex linear isomorphism F : I'(G x, V)y —
V(G x,V)u, v+ F(7), such that v(7(9)) = [(9, (F(7))(9))] for all (v,9) € T(G x,V)y x 7~ *(U). Here U is a non-empty
open subset of G/H.



Chapter 4

Topological vector spaces of mappings

The main purpose of Chapter 4 is to study topological vector spaces. This chapter consists of four sections. In Section 4.1
we first define an important metric (which is called the Fréchet metric) on the vector space of continuous mappings of a
certain topological space into a finite-dimensional vector space, next confirm that the metric topology for the vector space
coincides with the topology of uniform convergence on compact sets, and finally conclude that the vector space is a Fréchet
space. In Sections 4.2 and 4.3 we apply the arguments in Section 4.1 to the real vector space of continuous cross-sections
of a homogeneous vector bundle and the complex vector space of holomorphic cross-sections of a homogeneous holomorphic

vector bundle, respectively. In the last section we give a proposition about complete metric spaces.

4.1 A topological vector space of continuous mappings

Let K =R or C. Let X be a locally compact Hausdorff space which satisfies the second countability axiom, let V be a

finite-dimensional vector space over K, and let
C(X,V):={¢{: X — V|¢ is continuous}, (4.1.1)

where we fix a basis {e;}7*, of V, identify V with K™, and consider V as a topological space. For &1,&2,¢ € C(X,V), a € K,
one defines the addition & + & and the scalar multiplication a by (&1 + &)(z) := & (z) + &2(2) and (af)(x) = a&(x) for
x € X, respectively. In this setting we will first endow the vector space C(X,V) with a metric topology so that C(X,V) is a
Hausdorff topological vector space, and afterwards show that the topological vector space C(X, V) is a Fréchet space.

4.1.1 A metric topology, the Fréchet metric

We want to set a metric d on C(X,V). For a non-empty compact subset E C X, we first define a function dg : C(X,V) X
C(X,V) = R by
dp (&1, &) = sup {[|&1(y) — &) 1y € B} (4.12)

for &1, € C(X,V). Here || - || is an arbitrary norm on the vector space V.! Since X satisfies the second countability axiom

and is a locally compact Hausdorff space, there exist non-empty open subsets O, C X such that
1. X =U,2, O, (countable union),
2. the closure O,, in X is compact for each n € N.

Then, we put E,, := O,, for n € N. Taking (4.1.2) into consideration we set

— 1 dg, (&%)
d(§1,62) n:12 T+ dp, (61.6) (4.1.3)

for 517&2 € C(X7 V)
Lemma 4.1.4. The d in (4.1.3) is a metric on C(X,V) such that

(1) d(&1,&2) <1 forall &,& € C(X,V),

IRemark. Two norms on V are always equivalent to each other because of dimg V = m < co. e.g. fli# 1.38 in HH [24, p.22].

27
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(2) d(§17€2) = d(fl +§3?€2 + 53) fOT all 51752753 S C(X7V))
(3) d(ay, ) < d(&1,&) for all a € K with |o| <1 and all &,& € C(X,V).

Proof. For any &,& € C(X,V), we deduce 0 < dg(&1,&2),d(&1,&2) by (4.1.2) and (4.1.3). Furthermore,

1 51752 = 1
:71+dE €, 6) 22——1<oo D

oo

d(&1, &) =

| N

Hence d is a non-negative function on C(X,V) x C(X,V). It is immediate from (4.1.2) and (4.1.3) that
Lo d(&1,&2) = d(&1 + &3, 62 + &) for all &1,8,&3 € C(X, V),
2. d(ay,abs) < d(&1,&) for all @ € K with || =1 and all &,& € C(X,V),
3. d(&1,&) = d(£2,&) for all &1,& € C(X,V),
4. d(£,€) = 0 for all £ € C(X, V).

Now, for &1,&5 € C(X,V) we suppose that d(£],&) = 0. Then for each k € N, one has

1 dEk(£17€2 = 1 dEn 51752) (413)
O T T dn (6.6 = 2T Tty (G | ()=

This implies that dg, (§1,&5) = 0, so that & = & on Ej for all & € N. Therefore {{ = &, on the whole X in terms of
X = Ufle O,, and E,, = O,,. Consequently, the rest of proof is to confirm the triangle inequality

d(§1,83) < d(&1,82) +d(§2,83) for all §1,82,83 € C(X, V). @

For any &1,&2,¢&3 € C(X,V), it follows from (4.1.2) that dg,(£1,€3) < dg, (&1,&2) + dg, (&2, &) for all n € N. Therefore it
follows from 0 < dg,, (&;,€;) that

dg, (£1,83) < 4z, (£1,82) +dp, (§2,&3)
1+dg,(&,8) ~ 1+dg,(&,62) +de, (&2,£3)
dg, (&1,62) n dg, (&2,83) < dg, (&1,62) n dg, (&2,83)
1+dg,(&1,&) +dE, (§2,83)  1+dp,(&1,8%) +dE, (§&,83) ~ 1+dg, (&.&2)  1+dg, (§2,83)

for all n € N. This and @) lead to @). Indeed,

o0

(4.1.3) 1 dg,(§1,83)
A& &) "= n;ﬁlﬁ-d};n(fbf?))

oo

1 dp,(&,&) 1 dg,(&,6)
; (2” 1+dg, (&1,&) - 271+ dE,,L(f%fs))

vl dn(6&) N1 de(6.&) G
_22 L+dp, (&1,&) 2" 1+dp, (82,8) d(

IN

&1,&) +d(&2,83).

n=1

Definition 4.1.5. The metric d in (4.1.3) is called the Fréchet metric on C(X,V).
Lemma 4.1.6. The metric space (C(X,V),d) is complete. Here d is the Fréchet metric in (4.1.3).

Proof. Let {£,}521 be an arbitrary Cauchy sequence in (C(X,V),d).

Our first aim is to prove that for any z € X, {&,(z)}22, is a Cauchy sequence in (V, || - ||). Let us take any € > 0. By
z € X =~ O, there exists a k € N such that z € Oy, C Ej. Since €/(2%(1 4+ €)) > 0 and {£,}52, is a Cauchy sequence
n (C(X,V),d), there exists an M € N such that n,m > M implies

€
1+e€

1
d(ﬁm €m) < 2?

Then, it follows from (4.1.3) that
1 dEk (6717 fm) 1 €
— " < d(&,&m) < s
2k 1+dEk(£m£m) < dlén.t ) 2F1+e

so that dg, (&n,&m) < € and we deduce [|€, () — & (2)]] < dEg, (€n,&m) < € by virtue of (4.1.2) and x € Ej. Hence {&,(2)}52,
is a Cauchy sequence in (V,|| - ||) for each z € X.
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Since the normed vector space (V, || - ||) is complete, one can get a mapping & : X — V by setting

&(x) := lim &,(x) for z € X.

n—oo

Our second aim is to conclude that this £ : X — V is continuous. For any € > 0 and zg € X = J,—, O, there exists a k € N
such that xqg € Op C E}. Moreover, there exists an N € N such that n,m > N implies

1 (e/3)
261+ (¢/3)

Then, it follows that dg, (&n,&m) < €/3; and [|€,(y) — Em (V)] < dE, (§n,E&m) < €/3 for all y € E), n,m > N. For this reason
we see that [|€,(y) — En(y)|| < €/3 for all y € Ej, n > N. This assures that

d(&n: &m) <

lE() = en()ll = || lim & (y) — En(y)|| < ¢/3 for all y € By @

n—oo

Besides, since £y : X — V is continuous at xg, there exists an open neighborhood Uy of zy € Oy such that z € Uy implies

1€ (20) = En(2)I] < €/3. @

The Uy, is an open neighborhood of g € X, and z € Uy, implies

1€(z0) = &(2)I| < [[€(x0) — En (o)l + 1€ (z0) = En ()l + 1En (2) — €(2)[ <€

because of D, @ and xy € Uy, C Ej. Consequently £ : X — V is continuous at xzg. At this stage we can assert £ € C(X, V).
Our third aim is to demonstrate lim d(¢,&,,) = 0. For any € > 0, one can choose an ¢ € N such that
m—0o0

1

2€<

&)

N

For each 1 < k < ¢, one has (¢/2)/(2%(1 + (¢/2))) > 0 and there exists an Nj, € N such that n,m > Nj implies

1 (¢/2)
d nySm ok

(&nr&m) < 2k 14 (e/2)
because {£,}52; is a Cauchy sequence in (C(X,V),d). Then, it follows from (4.1.3) that

BT di (6] = ) S T (G

so that dg, (§n,&m) < €/2. This and (4.1.2) enable us to verify that ||&,(y) — &n ()| < dg, (€n,ém) < €/2 for all y € E,
n,m > Nj. Therefore [|{(y) — &n(y)|| = || lim &.(y) — &m(y)|| < €/2 for all y € By, m > Ny; and thus (4.1.2) tells us that
n—oo

dp, (§,&m) < €/2 for all m > Ny. @
Now, let N := max{N; : 1 < j < /}. Then, this N belongs to N and we deduce
dp,(§,&m) <e€/2forall1 <j</{and m>N

by @. Accordingly, m > N implies

L £

d o 0o - 0o
(& em) Zl—”“ Py L dm&b) Zzi EE Y o

29 1+ dg; (& &m) i:£+1211+dE (&, &m) yeec M)
le 1 Iye 1
<Yyt 2 =)z ty<e 1O
j=1 1=0+1
Hence lim d(¢,&,,) = 0 follows. O
m— 00

Lemma 4.1.7. With respect to the Fréchet metric d in (4.1.3),
(1) the addition C(X,V) x C(X,V) 3 (&1,&2) — & + &2 € C(X,V) is continuous,

(2) the scalar multiplication K x C(X,V) 3 (o, &) — o€ € C(X,V) is continuous.
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Therefore C(X,V) = (C(X,V),d) is a Hausdorff topological vector space over K.

Proof. (1). Take any 1,12 € C(X,V) and € > 0. If &1, & € C(X,V) and d(&1,m1),d(€2,m2) < €/2, then the triangle inequality
and Lemma 4.1.4-(2) assure

d(& 4+ &2,m +n2) < d(& +Eoym + &2) +d(m + Eo,m +m2) = d(€1,m) + d(E2,m2) <

Hence the addition of vectors is a continuous mapping.
(2). Fix any 8 € K, n € C(X,V) and € > 0. Since € > 0 there exists an N € N such that

1 €

v @
By use of 5, € and the NV, we define a positive real number p as follows:
€
P AN ) ®
Now, let us suppose that o € K and £ € C(X, V) satisfy
€
1 -8l < d
(1) la =] 4N (p + max{dg,(n,0) : 1 < j < N}) o
L p
(s2) d(§,m) < NT+4p’
respectively. We want to get
d(ag, Bn) <e. (a)
It follows from (4.1.3) and (s2) that for any 1 < j < N,
1 dg (&) 1 p 1 p
— Bl oy — < —
2 1+dpg, (&) & < N T S D140
so that
dg,(§,m) <pforall1 <j<N. ©)
On the one hand; we obtain
[eS) N [eS)
(4.1.3) dg; (ag, BE) 1 dg,(a&, BE) 1
d(aé, 5) _CEO0E) 0850 NS e s S L
Z 21+ dg, (af, BE) L %:_H 2k 1 +dg, (o€, BE) — z:: kg\/;l 2k
1 (4.12) 1
(sz (a€.5)) + 5 (Z @ = BldE, (6,0)) + 55 < (Z o = B(ds, (€ m) + di, (n.0)) ) + 53
Jj=1
. 1
< o= BIN (p+ max{dp, (n,0) : 1 <j < N}) + 5% (- B)
€
<5 (1), D).
On the other hand;
(413) dg; (BE, Bn) — 1 dg, (B¢ Bn)
S B d
(g, ) ZzﬂHdE (€, ) k;M12k1+dEk(5€ o) = (; £ (56,6) + g
(4.1.2)
= (Z Blde, (&) + 5 < 18IND+ 5 (- ©)
j=1
@ |ﬁ\e 1 €
< tow <5 (O
M +1A) 2 O
These yield d(a&, ) + d(BE, Bn) < e. This, combined with the triangle inequality, enables us to conclude (a). So, the scalar
multiplication K x C(X,V) 3 (o, &) — af € C(X,V) is continuous. O

We here give a supplementation about Hausdorff topological vector spaces.

Proposition 4.1.8. Let X be a Hausdorff topological vector space over K,2 and let ) be a real or complex vector subspace
of X according as K =R or K= C. Suppose that dimg Y < co. Then,

2This proposition can hold even if X is a topological vector space satisfying the first separation axiom.
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(1) the topological vector space Y is isomorphic to K*, where k = dimg Y,
(2) Y is a closed subset of X.

Proof. (1). Fix a basis {e;}¥_; of V), and define a linear isomorphism f : K¥ — ) by

k
floa,ag,. . o) =30 ase; for (o, ,...,a) € Kk,
Let us show that
the linear isomorphism f : K*¥ — ) is homeomorphic. D
It is natural that f : K¥ — Y, (a1, 9,...,a5) + Zle a;e;, is continuous because f is the composition of the following

three continuous mappings f1, fo and fs:

fi: KE=5 (KxY)x (Kx)Y)x-x (Kx)Y), (a1,q9,...,ax) = (a1, 61,9, €2, .., g, ex),

for (KXY X (KxY)Xx-+Xx (KxY)=>YXY XXV, (Q1,y1,@2, Y2y - - -, Qs Y ) = (Q1Y1, @2Y2, - -+, QYK )5

Fr VXY x Y=V, (Y1 Yo, Uk) = Yoiey Ui
We need to confirm that the inverse f~1 : )Y — K is also continuous. It suffices to confirm that f~! is continuous at the
zero 0 € V. Let ||z|| := /|z1]2 + |22 + -+ + |z1]2 for & = (21,29,...,21) € K*. We will show that for any € > 0 there
exists an open neighborhood U of 0 € Y satisfying

f7'(U) c B, @

where B, := {x € K* : ||z|| < €}. Tt turns out that the sphere S, := {y € K* : ||y|| = €} is a compact subset of K* and
0 & S.. Therefore, since f : K¥ — Y is injective continuous and ) is a Hausdorff space, we conclude that f(S.) C ) is closed
and 0 = f(0) & f(Sc). Accordingly there exist two open subsets Uy, Uy C Y such that

OGUl, f(SE)CUQ, UlﬂUQ:(Z) (a)

because a Hausdorff topological vector space is a regular space.? Since U; is an open neighborhood of 0 € ) and the scalar
multiplication Kx Y 3 («,y) — ay € ) is continuous at (0,0), there exist a positive real number p and an open neighborhood
V of 0 € Y such that av € U; for all |a| < p and v € V. Setting U := U0<\ﬁ|<p BV, one deduces the following:

(i) U is an open subset of Y, (ii) 0 € U C Uy, (iii) tu € U for all |t| < 1 and u € U, (b)

where we remark that each SV is an open neighborhood of 0 € ). Now, we are in a position to prove (2). Let us use proof

by contradiction. Suppose that there exists a z € f~1(U) which does not belong to B.. Then, it follows from z ¢ B, that

[|z]] > €. Therefore the intermediate-value theorem enables us to obtain a real number ¢y such that 0 <ty <1 and ||tpz|| =€
(because the mapping [0,1] 3 t — t||z|| = ||tz] € R is continuous). This ||tpz| = € implies tgz € S, and so (a) yields
f(toz) € Us.

However, from f(z) € U, 0 < top < 1 and (b) we deduce f(toz) = tof(z) € U C U;. Hence f(toz) € Uy N Us, which
contradicts (a). For this reason @) holds, and f~!:) — K* is continuous at 0. This assures D).

(2). Taking the above U and f into account, we are going to prove that Y C X is closed from now on. Let z be an
arbitrary element of Y (the closure of ) in X). By (b)-(i) there exists an open subset O C X such that

U=(0n)Y).

Since O is an open neighborhood of 0 € X and the mapping R 3 ¢t — tx € X is continuous at 0, there exists a v > 0 such
that (1/v)x € O. Then, one has

x € (vO m?") crony* (" vO is open in X)
=v(O0NY)Y =vUY cvf(B)* (- Q)
= TWwB)* = [(Boo)™ C f(B,E )Y = f(B.X) c f(K*) =,

where f(B,K)¥ = f(B,.X") follows by f : K¥ — (¥ C)X being continuous, f(B,.X") C X being compact and X being a
Hausdorff space. Therefore x € ), and Y* c Y. This implies that ) is a closed subset of X. O

3More generally, a topological group satisfying the first separation axiom is a regular space. e.g. E# 1.8 in # k [27, p.28].
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4.1.2 A metric topology, a topology of uniform convergence on compact sets, and a locally

convex topology

In the previous subsection we have defined the Fréchet metric d on C(X,V). So, one can consider the metric topology for
(C(X,V),d). Recalling that X =(J.2, O,, and each E,, = O,, is compact in X (cf. Subsection 4.1.1), we prove two Lemmas
4.1.9 and 4.1.10, and deduce Theorem 4.1.11 from them.

Lemma 4.1.9. The metric topology for (C(X,V),d) coincides with the topology of uniform convergence on compact sets.

Proof. First, let us demonstrate that the metric topology %, for (C(X,V),d) is coarser than the topology P, of uniform
convergence on compact sets, namely

Dy C D

For given & € C(X,V) and € > 0, we set Oy := {£ € C(X,V)|d(&,&) < €} and take an arbitrary element £ € O4. We want
to show that there exist a non-empty compact subset £ C X and a § > 0 satisfying

{necC(X,V)|de(n,§) <d} COq
(see (4.1.2) for dg). Let r:= d(&,&). Since € —r > 0 there exists an m € N such that
1/2m < (e—r)/2.

By use of m, € and r we put
E:=UjL B 0= (e—1)/(2m).

Then, it turns out that F is a non-empty compact subset of X and ¢ > 0. Moreover, (4.1.2) yields
dp,(&1,&) + - +dg, (§1,82) < mdp(&1,82)

for all £,& € C(X,V). Hence for any n € C(X,V) with dg(n, ) < J, we have

(4.1.3) > i dEn(’f],f) . - i dEj(777§) = i dEk(”Lf)
dn. &) "=7 ) 2" 1 +dg, (n,) =2 2J‘1+-dE,~(17,€)Jr 2 261 +dp, (1,€)

n=1 7j=1 k=m+1
j=1 k=m+1 j=1
1
< m5 + 277” <€e—r

This and d(n, &) < d(n,&) + d(£, &) = d(n, &) + r imply that {n € C(X,V)|dr(n,£) < 6} C O4, and thus Dy C Dey.

Next, let us confirm that the converse inclusion Z., C %, also holds. For given &) € C(X,V), ¢ > 0 and non-empty
compact subset B’ C X, we set O, := {¢' € C(X,V) |dg (£, &) < €} and fix any element &' € O.,. We are going to show
that there exists a ¢’ > 0 satisfying

{n eC(X,V)|d(r',{) < &'} C Ocu.

Put 7' :=dp/(¢,&). Since X =, On, E, = O,, and E’ is compact, there exist finite elements n(1),...,n(k) € N such
that n(1) < --- <n(k) and E' C Ule E, iy Then it follows from (4.1.2) that

de(§1,62) < dg,,, (§1,62) + - +dg,, (€1, 62)

for all £,& € C(X,V). Setting
goo L (€=r)/k)
220 1+ (e —r)/R)’

we deduce &’ > 0. In addition; if " € C(X, V) satisfies d(n’,£’) < &', then it follows from (4.1.3) that

L o 018) s 1 (=) 1 (€ =r)/k)
30 T+, .6) = ) = F0 T (= /R S B0 T (= )R

so that dg, , (n',§') < (€ —71")/k for all 1 <i < k. Consequently, if " € C(X,V) satisfies d(n', ') < &', then dg/(n',¢’)
Zle dg, ., (', &) < e—r'. Thisand dp (', &) < dpr (0, §')+de (§',€) = dpr (1, €)+r" imply that {n" € C(X, V) [d(n’,§’)
8’} C Ocy, and $0 Doy C .

O A IA
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Lemma 4.1.10. The metric topology for (C(X,V),d) coincides with the locally convex topology determined by a countable
number of seminorms {py tnen, where p,(§) :=dg,(£,0) forn € N, £ € C(X,V). Here we refer to (4.1.2) for dg, .

Proof. We denote by Zi. the locally convex topology determined by {pn }nen, and utilize the same notation 2y, O4 = {€ €
C(X,V)|d(&, &) < €} as in the proof of Lemma 4.1.9. We need to verify that Zioc = P4, but Dioc C P4 is a consequence of
Lemma 4.1.9. Thus we are going to confirm Z; C Y. only.
For given € € Oy, we put r := d(&,&p). Since € — r > 0 there exists an N € N such that
1 €E—7r

N S5

Then, any 7 € ﬂ?{:l{n €C(X,V)|pi(n—&) < (e—7)/(2N)} satisfies

) (419 dp, (1,€) =1 dg(n9) S 1 v
ZWI—‘rdE .8 2 21 +dp, (n,€) ~ ZdE &+ %—(;dEi(mﬁ))Jr

k=N+1 k=N+1
(412)
(Zpl n— §)+7<€

furthermore, d(n, &) < d(n,§)+d(€, &) < e—r+r = e. Hence we see that ﬂil{n €C(X,V)|pin—=¢&) < (e—r)/(2N)} C Oy,
and Yy C Dioe- O

Summarizing statements above we conclude the following (see (4.1.1), (4.1.2) for C(X,V), dg, ):
Theorem 4.1.11. With respect the Fréchet metric d in (4.1.3),
(1) the metric space (C(X,V),d) is complete,

(2) the addition C(X,V) x C(X,V) 3 (&,&) — & + & € C(X,V) and the scalar multiplication K x C(X,V) 3 (a,§) —
a € C(X,V) are continuous,

(3) the metric topology for (C(X,V),d) coincides with the topology of uniform convergence on compact sets; besides, it also
coincides with the locally convex topology determined by a countable number of seminorms {pntnen, where py(§) =

dg,(&,0) forneN, £ € C(X,V).
Therefore C(X,V) is a Fréchet space over K=TR or C.

Proof. cf. Lemmas 4.1.6, 4.1.7, 4.1.9 and 4.1.10. O

4.2 Real vector spaces of continuous cross-sections of homogeneous vector
bundles

The setting of Section 4.2 is as follows:
e (G is a Lie group which satisfies the second countability axiom,

e H is a closed subgroup of G,

7 is the projection of G onto the left quotient space G/H,

S = {(Ua,%a)}aca is the real analytic structure on G/H given in Theorem 1.1.2,
o Gx,V=(Gx,V,Pr,G/H) is a homogeneous vector bundle over G/H associated with p : H — GL(V),
o 7 ={(Pr " (Us), ¥a)}aca is the real analytic structure on G x, V in Proposition 2.2.9.

The topologies for G/H and G x, V are the quotient topologies relative tom : G — G/H, g— gH,and w : GxV — G x,V,
(g,v) = [(g,Vv)], respectively, and the homogeneous space G/H and the homogeneous vector bundle G x, V are real analytic

manifolds having the atlases S and .¥, respectively.
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Now, let U be a non-empty open subset of G/H. Since 7~1(U) is open in G and the Lie group G satisfies the second
countability axiom, we see that 7—1(U) is a locally compact Hausdorff space and satisfies the same axiom. For this reason
we can apply the arguments and notation “d, dg,, || - ||” in Section 4.1 to C(7~1(U), V). Noting (2.5.3) and

V(G x, V) CcC(x ' (U),V),
we demonstrate
Proposition 4.2.1. With respect the Fréchet metric d in (4.1.3),
(1) the metric space (V°(G x,V)u,d) is complete,

(2) the addition V°(G x,V)u x VY(G x,V)u 3 (&1,&) — &+ & € VU(G x,V)u and the scalar multiplication R x V(G x,,
V)r 2 (N, €) — X € V(G x, V)y are continuous,

(3) the metric topology for (V°(G x, V)u,d) coincides with the topology of uniform convergence on compact sets; besides,

it also coincides with the locally convex topology determined by a countable number of seminorms {p,}nen, where

pn(g) = dEn(f’O) f07" ne N; 5 € VO(G Xp V)U
Therefore VO(G x, V)u is a Fréchet space over R.

Proof. Theorem 4.1.11, together with V(G x, V)y C C(7~!(U),V), enables us to show that d is a metric on V°(G x, V)y,
and to conclude (2), (3). Hence, we only prove that (V°(G x, V)y,d) is complete.

Let {n,,}52; be a given Cauchy sequence in (V°(G x,V)y,d). By V(G x, V)y C C(x~*(U),V) and Lemma 4.1.6, there
exists a unique n € C(7~1(U),V) such that nlgl;o d(n,n,) = 0. In order to show n € V°(G x, V)y, it suffices to confirm that

n(gh) = p(h)~'(n(g)) for all (g,h) € x=1(U) x H

because (2.5.3). For any (g,h) € 7~ 1(U) x H, it follows from lim d(n,n,) =0 and gh,g € 7~ *(U) that
n—oo

lim [n(gh) = nn(gh)| =0,  lim_{|nm(g) —n(g)|| =0
n (oo} m—o0
(vef. the beginning of the proof of Lemma 4.1.6); and therefore

In(gh) — p(h) = (n(9)) Il < In(gh) = mu(gh)Il + [Inn(gh) — p(h) " (n(9))
= |In(gh) = (gh)|| + [lo(h) " (1 (9) = n(9))Il — 0 (n — o0)

because of 1, € V°(G x, V)y and because the mapping p(h)™' : V. = V, v — p(h)~!(v), is continuous. Consequently, one
has n € V°(G x, V)y, and the metric space (V°(G x, V)y,d) is complete.* O

4.3 Complex vector spaces of holomorphic cross-sections of homogeneous

holomorphic vector bundles
The setting of Section 4.3 is as follows:
e (G is a complex Lie group which satisfies the second countability axiom,

e H is a closed complex Lie subgroup of G,

7 is the projection of G onto the left quotient space G/H,

S = {(Un,%a)}aca is the holomorphic structure on G/H given in Theorem 1.2.1,
o Gx,V=(Gx,V,Pr,G/H) is a homogeneous holomorphic vector bundle over G/H associated with p: H — GL(V),

o .7 ={(Pr *(Uy), ¥a)}aca is the holomorphic structure on G X, V in Theorem 3.2.1.

4This implies that VO(G x, V)y is a closed, real vector subspace of the Fréchet space C(7~1(U), V).



4.3. COMPLEX VECTOR SPACES OF HOLOMORPHIC CROSS-SECTIONS 35

The topologies for G/H and G x,V are the quotient topologies relative to 7 : G — G/H, g — gH,and @w : G xV — G x,V,
(g,v) = [(g,Vv)], respectively, and the homogeneous space G/H and the homogeneous holomorphic vector bundle G x, V are
complex manifolds having the atlases S and ., respectively. Here we fix a complex basis {e;}7, of V, identify V with C™
and consider V as a complex manifold.
The following arguments are similar to those in the previous section. For a non-empty open subset U C G/H, it follows
from (3.2.6) and (4.1.1) that
V(G x,V)y C C(x H(U),V),

and moreover
Proposition 4.3.1. With respect the Fréchet metric d in (4.1.3),
(1) the metric space (V(G x, V)y,d) is complete,

(2) the addition V(G x,V)u xV(Gx,V)u 3 (£1,§2) — &1+& € V(G X, V)y and the scalar multiplication Cx V(G x,V)y 2
(a,&) = a € V(G x, V)y are continuous,

(3) the metric topology for (V(G x,V)y,d) coincides with the topology of uniform convergence on compact sets; besides, it

also coincides with the locally convex topology determined by a countable number of seminorms.
Therefore V(G x, V)u is a Fréchet space over C.

Proof. By Theorem 4.1.11 and V(G x, V)y C C(r~1(U),V) we conclude that d is a metric on V(G X, V)y, and that both
(2) and (3) hold.
Let us prove that (V(G x, V)y,d) is complete. Let {£,}72, be a given Cauchy sequence in (V(G x, V)y,d). By (3.2.6)
and (2.5.3), one has
V(G x,V)y € VUG x, V),

where we regard V as a real vector space here. Therefore {£,}22, C V(G x, V)y and Proposition 4.2.1-(1) assure the
existence of a unique £ € VO(G x, V)y satisfying lim d(&,€,) = 0. So, we can get the conclusion if one confirms that
n—oo

the continuous mapping ¢ : 7= 1(U) — V = C™ is holomorphic. D

For an arbitrary g € 71(U), we take a holomorphic coordinate neighborhood (P, %) of g such that (i) 27 (¢(g)) = 0 for
all 1 < j < N :=dimc 7 1 (U) and (ii) ¥ is a homeomorphism of P onto an open subset of CV defined by |z!| < r, |22| <
r,...,|2N| < r for some r > 0. Let us express £ o9p~1 : ¢(P) — C™ as

(fow_l)(zl,zQ,...,zN) = (51(21722,...,ZN),...,fm(zl,zQ,...,zN)),
and set D :={z € C: |z| < r}. If one shows that foreach 1 <i<mand 1 <j< N
the continuous function D > 27 + £¥(--- ,27,.-.) € C of one variable is holomorphic, @’

then we can conclude @) by (P) > (21, 22,...,2Y) = €4(2%, 22, ..., 2") € C being continuous and ¢)(P) = D x D x --- x D.
—_—

N
In order to show @)’ we first express &, o~ : )(P) — C™ as

(Enotp™ 1) (24 22,...,20) = (E}L(zl,z2,...,ZN),...,f;”(zl,ZQ,...,zN)),

n € N. Notice that each & (z!,22,...,2") : (P) — C is a holomorphic function (1 < i < m, n € N) by virtue of
&n € V(G x, V)y. Remark that nh_)ngo d(&, &) =0 and the topology for (V(G x, V)y,d) coincides with the topology of
uniform convergence on compact sets. Substituting a sufficiently small #/ > 0 for r (if necessary), one can assume that
{&n 07112 | is uniformly convergent to £ o ¢h~! on the set 1(P)—that is, for any € > 0 there exists a K € N such that

k > K implies
[(€ov™)(2) = (Er o™ )(2)|| < € for all z € (P),

where ||w| == \/[w1]2 + - + [wp|? for w = (wy,...,w,) € C™. Consequently it follows that for each 1 <i < m

{€0 (2%, 22, ..., 2N)}% , is uniformly convergent to £'(z1, 22,..., 2Y) on ¥(P),
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and in particular, foreach 1 <i<mand 1 <j; < N
{€(-++,29,--)}°2 is uniformly convergent to £(--+,29,---) on D. (a)

Now, we are in a position to demonstrate Q). Fix any 1 <4 <m and 1 < j < N. Let C be any piecewise differentiable

closed curve of class C'! which is contained in D. Then we have

/gi(-u,zj,--')dzj@ lim (20, )d =0
c

n—oo C
because the function D 3 27 + £i(--- 27, ...) € C is holomorphic for each n € N, its domain D is a star region and Cauchy’s
integral theorem.® Accordingly we obtain () from Morera’s theorem.% O

4.4 An appendix (complete metric spaces, the Baire category theorem)

In Sections 4.1, 4.2 and 4.3 we have dealt with metric spaces C(X, V), V*(G x,V)y and V(G x, V)y, respectively. To these

spaces we can apply the following proposition:

Proposition 4.4.1. Let X = (X,d) be a complete, metric space. If {F,}52, is a sequence of closed subsets of X and
X = Uf;l F,,, then there exists an N € N such that F includes a non-empty open subset of X.

Proof. We use proof by contradiction. Suppose that each F,, cannot include any non-empty open subset of X (n € N). Then,
X # [ follows, and X — F} is a non-empty open subset of X. Thus there exist an a; € X — F; and an r; > 0 satisfying

r1 <1/2, B(ai,r1) :={re€ X|d(z,a1) <ri} C X — Fy.

Since B(a1,71/2) is a non-empty open subset of X, the supposition assures that (X — F5) N B(a1,r1/2) is a non-empty open
subset of X. Thus there exist an as € (X — F3) N B(ay,71/2) and an ro > 0 satisfying

T2<T‘1/2, B(GQ,T’Q)C(X*FQ)HB(CLl,Tl/Z).

By repeating the arguments above, one has a sequence {a,}52; C X and a sequence {r,}52,; of positive real numbers such
that
Trnt1 < Tn/2y Blant1,7nt1) C (X — Fhp1) N B(an,mm/2), n=1,2,.... D

Here we remark that

-+ C B(an+41,n+1) C (X = Fy)NB(an, mn/2)) C Blan,m) C (X = Fo) N B(an—1,7n-1/2))

C .-+ C Blag,r2) C (X — F») N B(a1,m1/2)) C Blay,m1) C X — Fi. ®
The @ assures that n > m implies
A, an) < d(@m, @mt1) + d(@mt1; Gma2) + -+ d(an—1,an)
< %”Jrrm;l +~~~+T”2‘1 <2%+2;1+1 +-~~+% < 21;1_1 < 2%
Consequently {a,}>2; is a Cauchy sequence in (X, d), so there exists a unique a € X satisfying
lim d(a,,a) =0. &)

n—oo

For any k € N, in terms of ) there exists a natural number Ny > k such that n > Ny implies d(a,,a) < rig4+1/2, and then
d(ak+1,a) < d(ag41,an) + d(an, a) <741

because we can deduce d(agt1,an) < Tk+1/2 from n > k + 1 and (D). Therefore it follows from a € B(ag41,7k+1) and @
that a & U;Cill F; for all k € N. This and X = (J,—, F, yield a € X, which is a contradiction. O

Se.g. WEHE 2.2 in K1 [33, p.249).
be.g. EHE 3.4 in K7 [33, p.258).



Chapter 5

Left-invariant Haar measures

In this chapter we deal with left-invariant Haar measures on topological groups. The setting of this chapter is as follows:
e (G is a locally compact Hausdorff topological group.

Besides, we utilize the following notation:
e 7T : the set of open subsets of G,

e % : the o-algebra on G generated by T, i.e., the Borel field on G,

C : the set of compact subsets of G,

e U : the set of open neighborhoods of the unit element e € G,

e WW° : the interior of a subset W C G,

o I, (resp. ry) : 2¢ — 26, A gA (resp. Ag), for g € G,

e cp : the characteristic function of a subset B C G,

o ¢5o(G,R):={f:G—R ‘ (1) f is continuous, (2) supp(f) C G is compact, (3) f(g) > 0 for all g € G}.

Here 2¢ stands for the power set of G.

5.1 Definition of left-invariant Haar measure
We first give a lemma, next state Theorem 5.1.2 and then recall the definition of left-invariant Haar measure.
Lemma 5.1.1.

(1) cc &

(2) 14(AB) C B, re(B) C A for each g € G.

Proof. (1). Since G is a Hausdorff space, every C € C is a closed subset of G, and we have (1).

(2). Since the left translation L,-1 : G — G is a homeomorphism, /,-1(%) is a g-algebra on G and includes 7 = [,-1 (7).
Hence we see that & C 1,-1(%) because £ is the least o-algebra on G including 7. It follows from % C [,-1(%) that
14(#B) C A. Similarly, r,(#) C B. O

Lemma 5.1.1 ensures that the conditions (p6), (p7) in the following theorem are well-defined:
Theorem 5.1.2 (cf. Haar [15], von Neumann [36]). There exists a set function p: B — R1II{oo} such that
(pl) 0 < p(A) < oo forall A e B,
(p2) u(0) =0,
(p3) An € B (n=1,2,...), 43N A, =0 (j # k) imply (11721 An) = 3252, 1(An),

37
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(p4) u(A) = inf{(0): O € T, A C O} for every A € B,
(p5) 1(0) = sup{u(C) : C €C, C C O} for every O € T,
(p6) u(C) < oo for each C € C,

(p7) pu(gA) = pu(A) for all (g, A) € G x B,  (left-invariant)
(p8) u(0O) >0 for each O € T —{0}.

In addition, the ezistence of p above is unique up to a positive multiplicative constant whenever G satisfies the second

countability axiom.
Remark 5.1.3. Here are comments on Theorem 5.1.2.
(i) The conditions (pl), (p2) and (p3) are just the conditions for p to be a measure on A.

(ii) The conditions (p3) and (p6) imply that for a g € G,

{ 1({g}) = n({g} IL0) = u({g}) + u(®),
pu({g}) < oo.

Accordingly, these conditions imply (p2) p(@) = 0.

(iii) It seems that one can omit the supposition “G satisfies the second countability axiom” from this theorem. e.g. Theorem
9.2.6 in Cohn [11, p.290].

We will prove this theorem in the next section.

Definition 5.1.4. A measure p on 4 is called a non-zero left-invariant Haar measure on G, if it satisfies the five conditions
(p4) through (p8) in Theorem 5.1.2.

5.2 Proof of Theorem 5.1.2

We take four steps to prove Theorem 5.1.2. In Subsection 5.2.1 we first define a non-negative integer §(C : W) and a set
function hy : ¢ — Q. In Subsection 5.2.2 we get a set function he : C — R by taking $(C' : W) and hy into consideration.
In Subsection 5.2.3 we construct a Carathéodory outer measure p* on G from the function he. Finally in Subsection 5.2.4

we complete the proof of Theorem 5.1.2. The arguments below will be similar to those in Cohn [11, Section 9.2].

5.2.1 Step 1/4, §(C:W) € Z>o & hy : C — Q

For any C € C and any subset W C G with W° # (), one puts
$(C : W) := min{n € Zx( | there exist n elements g1, go, ..., g, € G so that C C | JI_, g;W}. (5.2.1)

This (5.2.1) is well-defined because § # {n € Zx | there exist n elements g1, gs,...,g, € G so that C C |J_, g;W} follows
from C € C and W° # ). In view of (5.2.1) we see that

#(C: W) € Zso; C =0 if and only if §(C : W) = 0. (5.2.2)

Since G is locally compact, there exists a Cy € C whose interior is non-empty. By use of this Cy and a given U € U, let us

define a set function hy : C — Q by
g5(C:U)
8(Co = U)

where we remark that (5.2.3) is well-defined due to (5.2.2), Cy # ) and U € U. The above hy has the following properties:

hy(C) = for C €C, (5.2.3)
Proposition 5.2.4. For any U € U and C,C1,C5 € C,
(i) 0 < hy(C) <H(C: Cy) € Z,

(i) hy(0) =0,
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(ili) hy(Co) =1,
(iv) hu(gC) = hu(C) for all g € G,
(v) C1 C Cq implies hy(Cy) < hy(Cy),
(vi) hu(C1UCy) < hy(Ch) + hy(Ca),
(vii) CLUTNCU Y = 0 implies hyy(C1 U Cy) = hy (Ch) + hy(Cs). Here UL := {u~1|u € U}.

Proof. (i). Tt is enough to show hy(C) < #(C : Cp) because of (5.2.2) and (5.2.3). Let n := §(C : Cyp), m := §(Cy : U).
Then, by (5.2.1) there exist n elements g1, gs,...,g, € G and m elements hy, ho, ..., hy, € G such that C C |J;_, g:Co and
Co C UjL, hyU, respectively. Accordingly C C i, Uj~, gih;U, and so (5.2.1) implies

$(C:U) <nm=4(C: Co)t(Co : U).

This, (5.2.3) and #(Cp : U) > 0 yield hy (C) < §(C : Cy).

(ii), (iii) are immediate from (5.2.2) and (5.2.3).

(iv). By (5.2.3) it suffices to show #(gC : U) = #§(C : U). Let k := §(gC : U), £ := §(C : U). Then, by (5.2.1) there
exist g1,92,..., 9k, h1, ha, ..., hg € G such that gC C Uszl g.U, C C U§:1 hyU. On the one hand; from gC C U§:1 9o U we
obtain C C Uizl(g‘lga)U, and hence £ = #(C : U) < k by (5.2.1). On the other hand; from C C U,(i:l hyU one obtains
gC C Uf;:l(ghb)U, and k = f(gC : U) < {. Therefore k = ¢ holds, namely f(gC : U) = §(C : U).

(v). By (5.2.3) and #(Cp : U) > 0 it suffices to show §(Cy : U) > §(C; : U). The supposition “Cy C Cy” implies that

{n € Z>¢ | there exist n elements g1, ga, ..., g, € G so that C, C U, ¢;U}
C {m € Z>q | there exist m elements hi, ha, ..., hy, € G so that Cq C U;nzl h;U},

and hence

min{n € Zx | there exist n elements g1, gs,...,g, € G so that Cy C J;_, :U}
> min{m € Zx¢ | there exist m elements hq, ha, ..., hy € G so that C; C U;"‘Zl h;U}.

Consequently we deduce §(Cs : U) > #(Cy : U) by (5.2.1).

(vi). By (5.2.3) and #(Cy : U) > 0 it suffices to show #(C1 UCy : U) < §(Cy : U) + #(Cy : U). Let m = #(Cy : U),
n:=f#(Cy : U). Then, by (5.2.1) there exist hy, ho, ..., hm, 91,92, .,9n € G such that C1 C Uj~, h;U, Cy C U;, g:U; and
it follows that C1 U Cy € UjL, h;U UL, g:U. So, (5.2.1) yields §(C1 UCy : U) <m+n =§(C1 : U) +4(C2 : U).

(vii). By (vi), (5.2.3) and #(Cy : U) > 0 it suffices to show §(Cy : U)+#(Cy : U) < §(C1UCs : U). Let £ :=#§(CLUCy : U).
Then, there exist g1, go, ..., g¢ € G such that

4
(Cl UCQ) C U gaU
a=1

by (5.2.1). Here, the supposition “C1U "' N CoU~1 = )" enables us to assert that each set g,U meets at most one of C; and
Cy. Therefore one can separate {g,}5_, into two pieces {h;}1_, and {k.}"™; so that C; C J,_, hsU and Cy C I, k.U.
This and (5.2.1) imply $(C1 : U) +8(Cy: U) <n+m=£=4(CL UCy: U). O

5.2.2 Step 2/4, h,:C > R

Our goal in this subsection is to demonstrate Proposition 5.2.11.
For each C € C we define a closed (finite) interval 1o C R as

IC = [O,ﬁ(C : Co)]

(cf. (5.2.1)), and denote by X the product space of the family {Ic}cec of topological spaces. Tikhonov’s product theorem
implies that
the topological space X = Ilgecle is compact. (5.2.5)

Remark 5.2.6. In general, one can identify “a set function h : C — R such that h(C) € I for all C' € C” with “an element
of X =Ilgecls” via h — (h(c))Cec € X. Under this identification we construct arguments hereafter.
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Proposition 5.2.4-(i) and Remark 5.2.6 allow us to assume that hy € X for all U € Y. For this reason, we can define a
closed subset S(V) C X by

S(V):={hy|U €U, U CV} (the closure in X) (5.2.7)
for Ve lU.

Lemma 5.2.8. There exists an he € [\, S(V).

Proof. The family {S(V)}v ey consists of closed subsets of X. It has the finite intersection property. Indeed; for any finite
elements Vi,...,V,, € U one sees that V := (", V; belongs to U, and moreover hy € (-, S(V;); hence {S(V)}vey has the
desired property. Consequently we deduce (o, S(V) # 0 by (5.2.5). O

We prepare two lemmas for proving Proposition 5.2.11.
Lemma 5.2.9. For each C € C, the following two items hold:
(1) Pre : X — Ic, h— h(C) is continuous; in particular, it is a continuous mapping of X into R. cf. Remark 5.2.6.
(2) 0 <h(C) <§(C:Cy) forallh e X.

Proof. (1). X =Ilgecle is the product topological space, and so the projection X 3 h — h(C) € I is continuous.
(2) follows by h(C) = Prc(h) € Ic = [0,4(C : Cy)]. O
=0

Lemma 5.2.10. For any Cy,Cy € C with C; N Cy = 0, there exist (01,V1), (092, V2) € T X U which satisfy O1 N Oq
C1Vi C O1 and CoVy C Os.

’

Proof. In case of C; = () we can get the conclusion by setting Oy := () and Oy = V; = V5 := G. Similarly one can do so in
case of Cy = 0.

Now, let us suppose that C; # 0 and Cy # (). On the one hand; C5 is a closed subset of G since G is a Hausdorff space
and Cy € C. On the other hand; G is a regular space since G is a Hausdorff topological group. Consequently, for an arbitrary
g € C1, there exist Py, Q4 € T such that

gEPg, CQCan PgﬂQg:@,

where we remark that C; NCy = (), g € C; lead to g € Co. In terms of C; C Ugec1 P, and C; € C, there exist finite elements
g1s---,gn € Cy such that Cy C J]_, P,,. Setting Oy := J]_, P,, and Oz := ), Qg we deduce

01,0, €T, 01002:(2), Ci C O, CyCO:s.

The rest of proof is to confirm that for each a = 1,2, there exists a V,, € U satisfying C,V, C O,. Fix any element h € C,.
From h € C, C O, € T we obtain a W}, € U such that

hW, C O,.

Moreover, since the mapping G X G 3 (g1, 92) — g192 € G is continuous at (e, e) and W}, is an open neighborhood of e € G,
there exists a Uy, € U satisfying
UnUp C Wy,

In terms of C, C UheCa hUp, and C, € C, there exist finite elements hq, ..., hy € C, such that C, C U§:1 h;Up,. Now, let
Vo = ﬂ§=1 Up,. Then it follows that V, € U; besides, for any k € C, (C U§=1 hjUhj) there exists a 1 < ¢ < £ such that
k € h;Up,, and hence

kV, C hiUhiVa C hthiUhi C thhl C O,.

This implies C,V, C O,. O
Now, let us prove
Proposition 5.2.11. For any C,C1,C5 € C,
(i) 0<h(C)<H(C:Cy) €Z for allh € X =Tgeclo,

(i) h(0) =0 for allh € X,
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(iii) h(Cy) =1 for all h € S(G),
(iv) h(gC) = h(C) for all g € G and h € S(G),
(v) C1 C Cy implies h(Cy) < h(C2) for all h € S(G),
(vi) h(C1UC%) < h(Cy) + h(C2) for all h € S(G),
(vil) C1 N Cy =0 implies he(C1 U C2) = he(C1) + he(C2).
Remark here that he € S(G) C X, and (i) through (vii) hold for he. cf. (5.2.7).

Proof. (i) follows from (5.2.2) and Lemma 5.2.9-(2).

(ii). By Lemma 5.2.9-(1), Pry(X) C I = [0,4(0 : Cp)] (522 {0}. Hence, h(D) = Pry(h) =0 for all h € X.

(iii). Lemma 5.2.9-(1) implies that Pr¢, : S(G) — I¢,, h — h(Cp), is continuous. Proposition 5.2.4-(iii), combined with
(5.2.7), implies that Prc, = 1 on a dense subset {hy |U € U} of S(G). Consequently h(Cy) = Pre,(h) =1 for all h € S(G).

(iv). By Lemma 5.2.9-(1) we see that Pryc —Pre : S(G) — R is continuous. Proposition 5.2.4-(iv) and (5.2.7) imply
that Prgc —Pre = 0 on the dense subset {hy |U € U} of S(G). Thus h(gC) — h(C) = (Prgc —Pr¢)(h) =0 for all h € S(G).

(v). By virtue of Lemma 5.2.9-(1), Proposition 5.2.4-(v) and (5.2.7) we deduce that Prc, — Pre, : S(G) — R is continuous,
and that Pre, — Pre, > 0 on the dense subset {hy |U € U} C S(G). Hence h(C3) — h(Cy) = (Pre, —Pre,)(h) > 0 for all
h e S(G).

(vi). One can conclude (vi) by arguments similar to those in the above (v) and Proposition 5.2.4-(vi).

(vii). Since Cy,Cy € C with C; N Cy = (), Lemma 5.2.10 assures that there exist (O, V;), (02, Va) € T x U satisfying

O01N0y = (Z), ciVi C 01, V5 C Os.
By use of Vi, Va, we put V3 :=V; N V,. Then, it follows that V3, V?fl € U; and moreover, U C V{1 and U € U imply
hU(Cl> + hU(CQ) - hU(Cl @] CQ) =0

because of Proposition 5.2.4-(vii) and (C1U 1 N CoU 1) C (C1Vaz N CaV3) C (C1V N CyVa) C (01 NOg) = (. Consequently
we deduce that (Pre, +Pre, — Pro,ue,)(hy) = 0 for all hy € {hy |U €U, U C V5 '}. Furthermore, one verifies that

(Pre, + Pre, — Pro,uc,)(h) = 0 for all h e S(Vy 1)

because Pre, + Pre, — Pro,ue, @ S(Vy ') — R is continuous and {hy |U € U, U C V5 '} is dense in S(V; '). Therefore we
obtain h.(C’l) + h.(CQ) — h.(Cl @] CQ) = (Prcl +PI'C’2 — Prclucz)(h.) =0 from he € (mVEU S(V)) C S(Vé_l) O

5.2.3 Step 3/4, u*: 2% - R1I{co}

Lemma 5.2.12. Set
wi(0) :=sup{he(C):CeC,C CO} forOeT; (5.2.13)

p*(A) == inf{uj;(0): 0 € T, AC O} for A€ 2C. (5.2.14)
Then pi(0) = p*(O) holds for each O € T.

Proof. On the one hand; it follows from O € T, O C O that

11 (0) = inf{ui(P): Pe T, 0 c P} "2 u7(0).

On the other hand; for an arbitrary @ € T with O C @, one has {he(C): C €C,C C O} C {heo(K): K €C, K C @}, and
so (5.2.13) yields pi(0O) < pi(Q). This enables us to show

(5.2.14

1wi(0) <int{ui(Q): Qe T.0 c Q) "E u*(0).
Hence pj(0) = p*(O) holds. O

Our first aim in this subsection is to prove Proposition 5.2.18, which tells us that the p* in (5.2.14) is a Carathéodory

outer measure on G. We are going to confirm three lemmas and conclude Proposition 5.2.18 from them.
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Lemma 5.2.15. Let C € C, and let O1,05,...,0, € T such that C C U];:l Oy. Then, there exist Cy,Cs,...,Cy € C such
that C, C Oy (1 <a<k) and C=J:_, C

Proof. We prove this lemma in case of k = 2, which enables one to get the conclusion by mathematical induction on k.
Suppose that C' C 01 U Og, where 01,02 € T. Setting K, := C — O, (a = 1,2), we obtain K1, Ky € Cand K; N Ky =0
from the supposition. Hence Lemma 5.2.10 assures the existence of Py, P, € T such that

PPNk =0, KiCcP, K,Ch. D
Now, let C, := C — P, for a = 1,2. Then, it follows from @) that C1,C3 € C, C, C O, (a =1,2) and C' = Cy U Cs. O
Lemma 5.2.16. For any A, A;, Ay € 2C,
(1) 0< p(4) < o0,
(2) w(0) =0,
(3) Ay C Ay implies p*(Ay) < pu*(Asz).
Proof. (1) (resp. (2)) follows by (5.2.13), (5.2.14) and Proposition 5.2.11-(i) (resp. -(ii)).
(3). From A; C Ay we deduce that {uj(0): O €T, Ao CO} C{puj(P): P €T, A1 C P}, so that pu*(Az) > p*(A41) due
o (5.2.14). O
Lemma 5.2.17. O, € T (n=1,2,...) imply p*(U,~, On) < 307 1*(0y).

Proof. For an arbitrary C € C with C C |2, O,,, one can choose a finite subset {O,}*_; C {0,,}22, so that C C UZ:I @)
Then, there exist C1,Cy,...,Cy € C such that C, C O, (1 <a <k)and C = UZ:1 C, by Lemma 5.2.15. Therefore

k k
= ( U ) < Z he(Cs) (.- Proposition 5.2.11-(vi), C, € C)

k
< pi(0a) (- (52.13),Co€C, Cu CO,)

<> p*(On) (. Lemma 5212, O, € T, Lemma 5.2.16-(1)),

n=1
namely he(C) < > i*(0,,) for any C' € C with C C |, O,,. This and (5.2.13) yield pi(U,2, On) < ooy 1" (On).
Hence p* (U2, On) < 307, 1*(0y,) by Lemma 5.2.12 and |~ , O,, € T. O

We are in a position to prove
Proposition 5.2.18. The p* in (5.2.14) has the following four properties:
(i) 0 < p*(A) < oo for all A€ 29,

(i) p(0) =
(lll) A1 C AQ, Al,Ag S 26G Zmply M (Al) <u (AQ)
v)

(iv) A4, €29 (n=1,2,...) imply U*(Uzo:1 Ap) < fo:l w(An).

Proof. By virtue of Lemma 5.2.16 it is enough to prove (iv).
(iv). It is clear in the case where there exists a j € N such that p*(A4;) = co. Henceforth, we investigate the case where
w*(A,) < oo for all n € N. Let € > 0. For each m € N there exists an O,, € T such that
€

Am C O, N*(Om) = NT(Om) < N*(Am) + o=

2771
because of p*(A,,) < 0o, (5.2.14) and Lemma 5.2.12. Then, it follows that
o0
u“*( U ) ( U Om) '. A C U Om7 Lemma 5216—(3))
m=1

<> 4(Om) (. Lemmab5.217, OpeT (m=1,2,...))
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so that p*(Upe_1 Am) < ooy 11" (Am)- -

Proposition 5.2.18 tells us that the p* in (5.2.14) is a Carathéodory outer measure on G, so that we can get a o-algebra
A on G by setting
M= {Ae2°|u*(B) = p* (BN A) + p* (B — A) for every B € 26}. (5.2.19)

Our second aim is to prove Proposition 5.2.22 below. We first show two lemmas and afterwards accomplish the aim.
Lemma 5.2.20. Let A € 2¢. Then,

(1) p*(B) < p*(BNA)+ p*(B— A) for every B € 29;

(2) u*(B) = 0o, B €29 imply u*(B) > p* (BN A) + p*(B — A).

Proof. (1). By Proposition 5.2.18-(iv) we have p*(B) = p*((BNA)U (B — A)) < p*(BNA) + p*(B — A).
(2). Trivial. O

Lemma 5.2.21. Let O € T. Then it follows that p*(P) < oo, P € T imply pu*(P) > p*(PNO) + p*(P — O).

Proof. Take any € > 0. By Lemma 5.2.16-(3) and (PN O) C P, we see that u*(PNO) < p*(P) < oo. Therefore there exists
a Cq € C such that
Ci C(PNO), he(Cr)>pi(PNO)—e=p*(PNO)—¢ )

because of (5.2.13), PNO € T and Lemma 5.2.12. Since (P — C7) C P one can conclude that there exists a Cy € C satisfying
Cy C (P* Ol), h.(CQ) > M*(P — Cl) — € @
in a similar way. Moreover, C; U Cy € C, (C; UCy) C P, (5.2.13) and Lemma 5.2.12 yield p*(P) > he(C1 U C3). Hence

W (P) > he(C1UC2) = he(Cy) + he(C2) (.- C1NCy =0, Proposition 5.2.11-(vii))
>u (PNO)+u*(P—C1)—2¢ (D, @)
> W (PRO)+p(P - 0) — 2

where we remark that p*(P — Cy) > p*(P — O) follows from (P — C;) D (P — O) and Lemma 5.2.16-(3). This u*(P) >
w*(PNO)+ p*(P—0) — 2¢ assures that u*(P) > p*(PNO) + p*(P — O) holds. O

Lemmas 5.2.20 and 5.2.21 allow us to assert
Proposition 5.2.22. The o-algebra # on G includes B. cf. (5.2.19).

Proof. 1t is enough to conclude 7 C ., since .# is a o-algebra on G and 4 is the least g-algebra on G including 7. From
(5.2.19) and Lemma 5.2.20 one can obtain 7 C ., provided that the following inequality holds for each O € T

p*(BNO)+ pu*(B—0) < p*(B) for any B € 2¢ with u*(B) < oo. )

Let us show (@ from now on. Fix any € >0, O € T, and B € 2¢ with p*(B) < oo. By virtue of u*(B) < oo and (5.2.14) we
have a P € T such that
BCP, pj(P)<up*(B)+e<oo. (a)

Since O, P € T and pf(P) < oo, Lemmas 5.2.21 and 5.2.12 assure
W (PNO)+ (P — 0) < " (P) = 1i(P). (b)
By B C P we deduce (BNO) C (PNO) and (B—0) C (P — 0). Hence Lemma 5.2.16-(3) implies that
W (BNO)+ (B - 0) < y*(PNO) + u*(P — O). (©)

Consequently (a), (b) and (c) yield p*(B N O) + p*(B — O) < p*(B) + €, which gives rise to (D. O

5.2.4 Step 4/4, the proof of Theorem 5.1.2

In this subsection we demonstrate Theorem 5.1.2. We prove the existence of a left-invariant Haar measure p in the first half,

and prove the uniqueness of p in the latter half (see Propositions 5.2.23 and 5.2.29).



44 CHAPTER 5. LEFT-INVARIANT HAAR MEASURES

The existence of Haar measure First of all, let us show

Proposition 5.2.23 (Existence). There exists a set function p: B — RI1{oo} satisfying the eight conditions (pl) through
(p8) in Theorem 5.1.2.

Proof. We have already known that the p* in (5.2.14) is a Carathéodory outer measure on G, and that the inclusion & C #
holds for the class .# of all sets measurable with respect to u* (recall Proposition 5.2.18, (5.2.19), Proposition 5.2.22). Hence
we can define a measure p on 4 as follows:
= " 5. (5.2.24)
Then (5.2.14) assures that the four conditions (pl) through (p4) in Theorem 5.1.2 hold for the p = u*|%. From now on, let
us confirm that the rest of conditions also hold.
(p5). Fix an O € T. For a given C € C, it follows from (5.2.13) that he(C) < p(Q) for any @ € T with C C @, so that

(5.2.14)

he(C) < int{u(@): Qe T, € < @} "2 (0.
Hence we see that
he(C) < u(C) for all C € C. D

This @ gives us
1(0) PEY suplhe(C): C €€, € C O} < sup{u(C): C €C, C c O} < u(O);
and therefore (p5) u(O) = sup{p(C) : C € C, C C O} holds. Here, we remark that u(C) < u(O) follows from C C O and
Lemma 5.2.16-(3).

(p6). Take any C € C. Since C' C G is compact and G is a locally compact Hausdorff space, we can construct an O € T
so that C C O and O € C. Then, for any K € C with K C O, one has

he(K) < ha(0)
due to K,0 € C, K C O and Proposition 5.2.11-(v). Therefore it follows from (5.2.13) that
4(0) < ha(0).
In addition, C' C O and Lemma 5.2.16-(3) yield
u(C) < p(0).
Consequently we deduce p(C) < u(O) < he(O) < (O : Cp) < oo by Proposition 5.2.11-(i). So, (p6) u(C) < oo holds.
(p7). Fix an arbitrary (g, A) € G x %A. For a given O € T we first obtain

1(0) P EY quplhe () : C €€, € € O} = sup{ha(9C) : C €C, gC C O} (- 1,-1(C) =C)

=sup{he(gC): C €C,C C g0} =sup{he(C): C €C,C C g~ tO} (. Proposition 5.2.11-(iv))
(5.2.13)  _
=" ulg™r0).
This u(0) = u(g~*0) enables us to conclude that

u(gA) CEY inf{u(0): 0 € T, gA C O} = inf{u(g~10) : O € T, gA C O}
= inf{u(g"10): 0 €T, AC g7 O} = inf{u(0) : O € T, AC O} (. 1,(T)=T)

(5.2.14)

p(A).
Hence (p7) u(gA) = u(A) holds.

(p8). Let us use proof by contradiction. Suppose that there exists a P € T — {(} satisfying u(P) < 0. On the one hand;
from (p1) and p(P) < 0 we obtain p(P) = 0. On the other hand; since P # () there exists a p € P. Setting P’ := p~!P we
conclude

P eld, uP)=0
by (p7). For any C € C, it follows from P" € U that C' C (J . cP’, and so there exist finite elements cy,...,c; € C such
that C C Ule ¢;P'. Then (pl), Lemma 5.2.16-(3), Proposition 5.2.18-(iv) imply that
k

k k
0<u(e) <p(JaP) < nter) D3 ur) o

i=1
in particular, u(Cp) = 0. However, Proposition 5.2.11-(iii) and (D yield 1 = he(Cp) < pu(Co) = 0, which is a contradiction.
For this reason one sees that p(Q) > 0 for all @ € T—{0}, and (p8) holds. Consequently we have shown the p : Z — RU{c0}
in (5.2.24) satisfies the eight conditions (p1) through (p8) in Theorem 5.1.2. O
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The uniqueness of Haar measure Our aim is to demonstrate that the existence of left-invariant Haar measure is unique
up to a positive multiplicative constant whenever G satisfies the second countability axiom (cf. Proposition 5.2.29). For the

aim let us give four lemmas first.
Lemma 5.2.25. For any K € C and O € T with K C O, there ezists an f € €>0(G,R) such that cx < f <co on G.

Proof. Since K € C, O € T, K C O and G is a locally compact Hausdorff space, there exists a @ € T such that
KcQcQco

and Q € C. Here @ is a compact Hausdorff space, so it is a normal space. Hence Uryson’s lemma assures that there exists a

continuous function h : Q — R such that
(i)0<h(q)<lforallqe @, (ii)h(k)=1forallkec K, (i) h(p)=0foralpecQ—Q.

Then we define a function f: G — R by
h(g) ifgeq,

flg) = ,
0 ifgeG-Q.

Remark here that the definition of f is well-defined because h(p) = 0 for all p € Q@ N (G — Q). About this f we assert the
following statements, which complete the proof of Lemma 5.2.25:

1. f is continuous since h : @ — R is continuous, both @ and G — Q are closed in G and G = Q U (G — Q);

2. supp(f) is compact due to supp(f) C @ and Q € C;

3. it follows from (i) that 0 < f(g) <1 for all g € G}

4. 0< f <1, (ii) and K C Q imply cx < f;

5. it follows from (G — O) C (G — Q) that f(x) =0 for all x € O, so that 0 < f <1 leads to f < co.

O
From Lemma 5.2.25 we deduce

Lemma 5.2.26. Let v be a measure on & such that
(p5) v(0) =sup{v(C):C eC, C C O} for every O € T.
Then, for each P € T it follows that

vP)=sw{ [ F@avia) | € @GR, £ < en).

G

Proof. First, let us confirm that

sw{ [ Fovia) | £ € Cn(GR). £ < er} <uip) ®

G

For any f € ¢>0(G,R) with f < cp, both f and cp are Z-measurable functions on G and 0 < f < ¢p. Therefore we have

/ f(g)dv(g) < / ep(g)di(g) = v(P).
G G

Hence the inequality D holds. Now, let us show that the converse inequality also holds. From (p5) it suffices to show that
for any K € C with K C P, there exists an h € >0(G, R) satisfying

h<en. vK) < [ ha)ivlo)

That comes from Lemma 5.2.25 and v(K) = [ cx(g)dv(g). O
Lemma 5.2.27. Let v be a measure on & such that

(p6) v(C) < oo for each C € C.
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Then, the following three items hold:
(1) Any f € 6>0(G,R) is v-integrable on G.
(2) For any f € ¢>0(G,R) and g € G, the non-negative function G 3 x — [ f(gx)dv(g) € R is continuous.
(3) The measure space (G,%B,v) is o-finite in the case where G satisfies the second countability axiom.

Proof. (1). Since supp(f) C G is compact and f is continuous, there exists a positive real number \ such that f < Acgupp(s)
on G. In addition, V(supp(f)) < 00 due to (p6). Then, it follows from 0 < f < Acgupp(y) and V(Supp(f)) < oo that

L 1@6) < | Nwpoir (@)dr(a) = dv(supp() < .

Hence f is v-integrable on G.
(2). The above (1) assures that the function G > z +— [ f(gx)dv(g) € R and the computations below are well-defined.
Fix any ¢ > 0 and x¢p € G. There exists a V € U satisfying V € C because G is a locally compact Hausdorff space. In
view of supp(f) € C, we see that supp(f)Vz, 1is a compact subset of G, and that f is uniformly continuous on G. Then it
follows from (p6) that
0 < d < oo holds for § :=1+ V(supp(f)Vmgl);

and moreover, there exists a U € U such that (i) U = U~1, (ii) U C V, and (iii) a='b € U implies |f(a) — f(b)| < €/5. If
x € G and g € G satisfy x5 'z € U and g ¢ supp(f)Vzy ', respectively, then (i) and (i) yield gz ¢ supp(f), and f(gx) = 0.
Consequently, x € zqU implies

’ / flgzo)dv(g / flgz)dv(g / | f(gz0) — f(g2)|dv(g)
—/ 1 f(gzo) = flga)|dv(g) +/ | flgzo) — flgx)|dv(g)
supp(f)VmO G—supp(f)Vz,

- / |F(gzo) — Flgu)dv(g)
supp(f)Vz,

6 —_ see
< / _ gdl/(g) (. (gzo)~lgz = 2y 'a € U, (i)
supp(f)Vay

. u(supp(f)anl)
1+ V(supp(f)anl) -

= gu(supp(f)ngl) =

So, the function G 3 x — [, f(gx)dv(g) € R is continuous.
(3). Since G satisfies the second countability axiom and is a locally compact Hausdorfl space, there exists a sequence
{E,}>2, C G satisfying E,, € C (n € N) and |J,_, E, = G. Thus we conclude (3) from (p6). O

Lemma 5.2.28. There exists an hg € 6>o(G,R) satisfying fG ho(gz)dv(g) > 0 for all x € G and all measures v on B such
that (p8) v(0) > 0 for each O € T — {0}.

Proof. Since G is locally compact, there exists a K € C satisfying ) # K°. Lemma 5.2.25 and K € C allow us to find an
ho € €>0(G, R) such that hg > cx. In this setting, for each z € G and each measure v with (p8), we obtain

| otgaiavt) = [ exlgn)vie) = [ excor(@)ivlo) = (a2 m(K ) > 0

G G G

from (p8). O
Lemmas 5.2.26, 5.2.27 and 5.2.28 enable one to obtain

Proposition 5.2.29 (Uniqueness). Suppose that G satisfies the second countability axiom. Then, for non-zero left-invariant

Haar measures p and v on G, there exists a positive real number \ such that u = Av.

Proof. Throughout this proof, (pk) means the condition (pk) in Theorem 5.1.2 (1 < k < 8).
By (p4) and Lemma 5.2.26 it suffices to confirm the following: there exists a A > 0 such that

/ f(@)du(z) = A / f(y)dv(y) O
G G
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for all f € €>0(G,R). Let us fix any f € €>(G,R), and deal with the product measure space (G x G, Z, ux v) obtained from
the measure spaces (G, %, ju) and (G, %,v). Recalling that there exists an hg € €>o(G,R) such that [, ho(gx)du(g) > 0,
Jo ho(gz)dr(g) > 0 for all 2 € G, we define a function F : G x G — R by

f@holyr)

F(z,y) : or (r,y) € G x G (a)

[ holga)du(g)

(cf. Lemma 5.2.28). On the one hand; this function F' is non-negative, continuous on G x G by Lemma 5.2.27-(2). Hence

1

F' is Z-measurable on G x G. On the other hand; since supp(F') C supp(f) x supp(ho) supp(f)~"', we see that supp(F') is

a compact subset of G x G, and that (1 x v)(supp(F)) < p(supp(f))v(supp(ho) supp(f)~*) < oo by (p6). Accordingly we
conclude that
the F(x,y) is #Z-measurable and (p x v)-integrable on G x G (b)

by arguments similar to those in the proof of Lemma 5.2.27-(1). Now, (b), Lemma 5.2.27-(3) and Fubini’s theorem imply

| t@ana) = | ([ Papi)due) = [ Pegdoey

GxG

:/G(/GF($,y)dM($))dl/(y):/G(/GF(y—lx’y)dﬂ(yﬂx))dl/(y) (by 2 = y~12)
D[ ([ For @) i) = [ i)

GxG

:/G(/GF(yflx,y)dy(y))du(x):/G(/GF(yﬂ’xy)dy(xy))du(x) (by y — x)

where we remark that f(z) = [, F(x,y)dv(y). Hence it turns out that

@) _ [ e |
J ho(z)dp(2) _/ch ho(gyD)dvg) (¥)- ©

The above arguments assure that for any non-zero left-invariant Haar measure p’ on G, the equality

[ f)du (@) foh

T (2 () /. T ho(gy Davig) ™Y
fG f(@)dp(z) = fG f(z)dp'(z) ; in particular
Joho(2)du(z)  [5ho(z)dp!(2)’ ’

Jos F@)du(x) [y fla)dv(a)
S ho(2)dp(z) ~ [ ho()dw(z)

always holds, and thus (c) yields

_ Jaho()du(2)
Jo ho(z)dv(2)
Propositions 5.2.23 and 5.2.29 lead to Theorem 5.1.2.

Setting A : , we have A > 0 and (D. O

5.3 An example of unimodular group

Suppose G to satisfy the second countability axiom. Let p be a non-zero left-invariant Haar measure on G. For an x € G,
Lemma 5.1.1-(2) enables us to define a set function é(z)u : B — RII{oo} by

(6(z)p)(A) := p(Ax) for A € B. (5.3.1)

Then §(x)p is also a non-zero left-invariant Haar measure on G, since the right translation R, : G — G is a homeomorphism.

Accordingly there exists a unique positive real number A(z) satisfying
0(z)p = O(x)p (5.3.2)

by Theorem 5.1.2. The function A : G — R, 2+ A(x), is called the modular function of G.! Besides; the group G is said
to be unimodular, if A(x) = 1 for all z € G. In this section, we clarify some properties of A and show Proposition 5.3.4

which provides us with an example of unimodular group.

IRemark. Theorem 5.1.2 assures that this modular function A is independent of the choice of .



48 CHAPTER 5. LEFT-INVARIANT HAAR MEASURES

Proposition 5.3.3. Suppose that G satisfies the second countability axiom. Let /\ denote the modular function of G. Then,
(i) A:G—=RY, 2+ A(x), is a continuous function.
(i) A(zy) = A(x)A(y) for all x,y € G.

(iii) A(z) =1 for all x € G (i.e., G is unimodular) if and only if a non-zero left-invariant Haar measure p on G is also
right-invariant (i.e., p(Ag) = p(A) for all (g, A) € G x A).

Proof. Let pu be a non-zero left-invariant Haar measure on G.
(i). By Lemma 5.2.28 there exists an hg € €>o(G,R) such that [ ho(g9z)du(g) > 0 for all z € G. From (5.3.1) and
(5.3.2) we obtain [, ho(gz)du(g) = Ax)™! [, ho(g)du(g). Then, Lemma 5.2.27-(2) implies that

1
L R+ . . )
G A /C;ho(g)d,u(g) € is continuous

Hence A : G — R*, z — A(x), is continuous because [ ho(g)du(g) is a positive constant.

(ii). By a direct computation, together with (5.3.2) and (5.3.1), we have A(xy)u(A) = p(Azy) = (0(y)u)(Az) =
Ay)p(Az) = A(z)A(y)u(A) for all A € £, and so A(xy) = A(x)A(y) by virtue of u # 0.

(iii). For each z € G, it follows from (5.3.2), u # 0 and (5.3.1) that A(x) = 1 if and only if d(x)u = p if and only if
w(Az) = p(A) for all A € B. Hence we can get the conclusion. O

Now, let us show

Proposition 5.3.4. G is unimodular if G is a compact Hausdorff topological group, or G is a connected semisimple Lie

group.? Here, we say that a Lie group is semisimple, if so is its Lie algebra.

Proof. First, let us confirm that a compact Hausdorff topological group K is unimodular. Proposition 5.3.3-(i), (ii) implies
that A : K — R*, k+— A(k), is a continuous (group) homomorphism, where we note that R™ is the identity component of
GL(1,R). Thus its image A(K) is a compact subgroup of R, and it must be {1}.3 So K is unimodular.

Next, let us prove that G is unimodular, where G is a connected semisimple Lie group. Since A : G — RT, g — A(g), is
a continuous homomorphism, it is a Lie group homomorphism. Therefore one can set its differential A, : g — gl(1,R), and
obtain

A.(g) = {0}

from g = [g,g]. Since G is a connected Lie group, for each g € G there exist finite elements X, Xo,..., X) € g such that
g = exp X7 exp Xs - - - exp X, and then

A(g) = Alexp X - -exp Xp) = Alexp X1) - - Afexp Xp) = e X) o gfe(Xi) —
For this reason A(G) C {1}, and G is unimodular. O

We end this chapter with commenting on unimodular groups.

Remark 5.3.5. Suppose that (sl1) G satisfies the second countability axiom and (s2) G is unimodular. Then, for a given

non-zero left-invariant Haar measure p on G and any p-integrable function f on G, it follows that

/f )dplg /fscg du(g /f )dp(zg) for all z € G;

/f )du(g /f Ydu(g /fgxdu()forallmeG

f(g)du(y Ndplg) = | flg™"dplg)
@ . / 5 /.

where A is the modular function of G. Remark here, (1), (2) A(z)™! [, f(9)du(g) = [ f(gz)du(g) and (3') [, f( =

Jo O “Ddu(g) come from the measure y being left-invariant only.

2Remark. A connected Lie group always satisfies the second countability axiom.
3(.") Suppose that A(K) contains an element A # 1. Then, since A(K) is a subgroup of Rt we have A, A= € A(K) and (0,1)U(1,00) C A(K);
so A(K) = (0,00) = Rt. This is a contradiction. For this reason A(K) = {1}.



Chapter 6
Regulated integrals

In this chapter we study integrals of vector-valued functions. cf. Lang [25, Section 4, Chapter IJ.

6.1 An introduction to regulated integral
The setting of Section 6.1 is as follows:

o (X, %, 1) is a measure space which consists of an abstract space X, a o-algebra % on X, and a measure u on %,
e V is a Fréchet space over K = R or C, whose topology is determined by a countable number of seminorms {p;}sen,
e d is a metric on V such that

(1) d is a suitable metric for V which induces a topology identical to the original one,
(2) the metric space (V,d) is complete,

(3) d(&1,&2) = d(& +&3,& + &) for all £,62,83 € V.

We remark that for £ € V and {£,}52, C V, le d(&,&,) =0 if and only if for any € > 0 and each ¢ € N there exists an
Ny € N such that n > N, implies po(§ — &,) < e.

6.1.1 The regulated integral of a step function

For an A € & with u(A) < oo, a step function
S=8x): A=V

is a mapping such that there exists a finite sequence {A4;}%_, C 24 satisfying the following three conditions:
1. A;e Bloralll <i<k,
2. A= ]_[le A; (disjoint union),
3. the mapping S is constant on each A4; (1 <i < k).

For this step function S : A — V), we define its integral [, S(x)du(x) on A by

k
/AS(J:)du(x) = ZM(Ai)§i7 (6.1.1)

1=

where S(4;) = {&}, 1 < i < k. Remark that 0 < p(4;) < p(A) < oo (1 <4 < k), that the integral (6.1.1) is independent
of the choice of A; on which S is constant, and that [, S(x)du(x) € V. In addition, [, S(z)du(z) = 0 if p(A4) < 0 (ie.,
u(4) = 0).

49
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6.1.2 Definition of regulated integral

In the previous subsection we have set the integral of a step function, (6.1.1). We want to consider the integral [, F(2)du(x)
on A of a more general function F': A — V. For this reason, let us first prove Lemma 6.1.2 and afterwards show Proposition

6.1.3. This proposition grants our want.

Lemma 6.1.2. Let A € B with u(A) < 0o, let S, T : A —V be step functions, and let a, 8 € K.
(1) aS+ BT : A—V is a step function, and / (S + pT)(z)dp(x) = a/ S(x)du(x) +ﬂ/ T(x)d
A A A
(2) f A=BUC and B € B, then both S: B — YV and S : C — V are step functions, and

/A S(@)du(z) = /B S()du(y) + /C S(=)du(z).

(3) Suppose that W is a Fréchet space over K and K : V — W is a K-linear mapping. Then, K oS : A — W is a step
function, and K(/ S(m)du(x)) = / (K o S)(x)du(z).
A A

Proof. Let
A=TIL, 4 =11, B, AiBje®, Sa)=Y[ ca@é T() =3, cp (@,
where &;,77; € V and cq is the characteristic function of a subset Q C A.
(1). It turns out that A, NB; € A, A = ngigk,lgjgh(Ai N Bj), and aS + BT = Zlgigk,lgg‘gh canB; (@& + Bn;).
Consequently a.S + 5T : A — V is a step function; besides,

k

A<as+5T><x>du<x>(6él) S (AN By)(agi + ) = Z(Z (AN B) )§z+ﬁz(z (4 N B;) ),

1<i<k,1<j<h i=1

—aZu £7+l32u [ Saduta)+5 [ T

Hence (1) holds.
(2). Both S(y) = Ele ca,n(y)& : B—Vand S(z) = Zle ca;ne(2)& : C =V are step functions, and

/ S(x)du(x) =" S (AN (BILC)) ZMA mB§Z+ZuA neo)e ‘6“)/5 Vdu(y /s Ydu(z
BIIC

i=1 i=1
where we remark that B, C = (A — B) € B, u(B) < u(4) < oo, u(C) < 00, B = Hf:I(Ai NB), C = ]_[le(Ai NC), and
(A;NB), (A;iNC) € B.
(3). Since K : V — W is linear we see that (K o S)(z) = Zle ca, (x)K (&), and so K oS : A — W is a step function.

Moreover,
k

K(/S( )d 6LV a0e) =S L
| S)an()) °=" k(Do) > nA)K (€)= [ (10 S)@iuta).

i=1

Taking the proof of Lemma 6.1.2 into account, we prove

Proposition 6.1.3. Let A € B with u(A) < oo, and let F : A — V be a mapping. Suppose that a sequence {S, : A —

V| Sy is a step function}S ; is uniformly convergent to F on A. Then, the following two items hold:

(i) There exists a unique Ep € V such that lim d §F,/ Sp(x)dp(z

n—oo

(i) If another sequence {Ty, : A — V| Ty, is a step function}S_; is uniformly convergent to F' on A also, then the sequence
{4 Tm(x)du(x)}:zl in (V,d) converges to the same limit point &g as { [, Sn(m)du(x)}zo:l

Proof. Let A = ]_[k" Ani, Api € # and Sy (x) = Zfl ca, ;(®)&n i, where fnz eV, neN.
(i). Since (V,d) is a Fréchet space, it is enough to confirm that { [, S, (z)du(x )}:ozl is a Cauchy sequence in (V,d). In
case of p(A) <0, we show that 0 < p(A, ;) < p(A) <0 and

kn
[ Su@nte) =3 4,060 =0

i=1
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for all n € N; therefore { [, Sp(z)du(z )} = {0} is a Cauchy sequence in (V,d). From now on, let us consider the case
where p(A) > 0. Fix any € > O and an arbltrary seminorm p € {p;}een. For each n € N we define a subset X,, C A by

X, = {a € A|p(Sn(a) — F(a)) < e/(2u(A))}.
On the one hand; the supposition allows us to choose an N,, € N such that n > IV, implies A = X,;; and so
A={a€ A|p(Sula) — F(a)) < €/(2u(A))} for all n > N, )

On the other hand; a direct computation yields

o [ Su@an@) = [ Su@du@) Ep( P plAni ) = )

1<i<kn,1<j<km

IA

Z 1(Ani N Am ;) - p(&nyi — &m.g)-

1<i<kn,1<j<km

Here, one estimates the last term at

1(Ani N A g) - P(Eni = Emj) < p(Ani O Am j) - €/ n(A), @
provided that n,m > N,. Indeed; in case of A4, ; N A, ; = () we have
(A OV Am ) - (Eni = &m.g) = 0 < p(Ani N A j) - €/u(A)
In case of A, ; N Ay, j # 0, one can take an element a € A, ; N Ay, j, and obtain S, (a) = &, i, Sm(a) = &mn,; and
(A 0V A j) - P(Ensi = &mj) = 1(Ani N A ) - P(Sn(a) — Sm(a))
< i(Ani N Amj) - (p(Sn(a) = F(a)) + p(F(a) = Sm(a))) < p(Ani N Am,j) - €/ u(A)

from @ and n,m > N,. In any case @ does hold. Consequently, it follows from @) that n,m > N, implies

/ S d,U/ / Sm d/}, Z M(An,z N Am,j) : p(gn,i - gm,j)

1<i§k7ul§j§knz

€
M(A) Z :U'(An,z N Am,j) <e

1<i<kn 1< <knm

<

Hence d( [, Sy (x)dp(z), [, Sm(z)dp(z)) — 0 (n,m — 00), and (i) holds.
(ii). Suppose that a sequence {T,, : A — V|T,, is a step function}>>_; is uniformly convergent to F' on A. Then, by
virtue of (i) there exists a unique & € V satisfying 1i_1>n d(f}?,/ Tm(x)du(x)) =0; and
m (o] A

e &) < d(gr. [ Su@in@) +d( [ Su@duta). [ T@dua) +a( [ Tu@duta).gp).

Accordingly, it suffices to confirm that

Jim d( [ S,@au@), [ Tu@ant) =0 (a)

The arguments below will be similar to those in (i) above.
Now, let A = H?21 By j, Bm,j € # and T, (z) = 2?21 B, ; ()M, j, where 1, ; € V, m € N. In case of pu(A) <0 we

know that p(B, ;) =0 and
/ S () dp(z) = 0 = / T, () du(z)
A A

for all n € N. Accordingly one has (a) in case of u(A) = 0. So, we investigate the case where p(A) > 0 henceforth. Let us fix
any € > 0 and seminorm p € {p;}een. Since {S,}22, and {7}, }3°_; are uniformly convergent to F' on A, there exist N, € N
and M, € N such that n > N, and m > M, imply

A= {a S A|p(Sn(a) —F( )) < 6/ 2/.1 } and A = {be A|p( m )_F(b)) < 6/(2M(A))}7 @l

respectively. For any n > max{N,, M,}, one knows

p(Ani NV By j) - péni — Mnyj) < (Ani N By ;) - €/p(A) @
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in a similar way. Consequently n > max{N,, M,} implies

p(/ASn(x)du(x)f/ATn(x)du(x)) < > 1(Ani O By j) - p(nsi — 1)

1<i<kn,1<j<hn

€
< > 1(An,i N Bnj) <.
HA) | i< <n,

Therefore d( [, Sn(z)du(z), [, Tn(x)dpu(x)) = 0 (n — 00), and (a) holds. O
Proposition 6.1.3 assures that the following Definition 6.1.4-(2) is well-defined:
Definition 6.1.4. Let A € 2 with u(A) < co.

(1) A mapping F : A — V is said to be regulated, if there exists a sequence {S,, : A — V| S, is a step function}?2 ; which

is uniformly convergent to F' on A.

(2) Let F: A — V be a regulated mapping. Suppose that a sequence {S,,}°2 ; of step functions is uniformly convergent to
F on A. Then, there exists a unique £ € V such that

lim d(fF,ASn(:c)du(a:)) —0.

n—oo
This £ is called the regulated integral or the integral on A of F' and we write fA F(z)du(z).

Needless to say, the above integral [, F(x)du(z) accords with the integral in (6.1.1) whenever F is a step function.

6.1.3 Properties of regulated integrals
Let us clarify some properties of regulated integrals.
Lemma 6.1.5. Let A € B with u(A) < oo, let F,G : A — V be regulated, and let o, 8 € K.

(1) aF 4+ 8G : A =V is a regulated mapping and

[ @k + 56 @uta) =

A

F(a)du(x) + 8 /A Gla)du(x).
(2) f A=BUC and B € &, then both F: B— YV and F : C — V are requlated mappings, and

[ P@uta) = [ Pwyint + [ P,

C

(3) Suppose that W is a Fréchet space over K and L :V — W is a continuous, K-linear mapping. Then, Lo F : A — W

is a requlated mapping and

i /A F(a)dp(x)) = /A (Lo F)(x)du(x).

(4) For any continuous seminorm p on V, it follows that po F : A — R is regulated, and the inequality

o [ F@u@) < [ (o Pa)into)
holds.
¢f. Definition 6.1.4.

Proof. Let {S,}52, and {T;,}5°_; be sequences of step functions which are uniformly convergent to F'; G on A, respectively.
(1). In case of |a| + |B] <0, one has a« = § = 0; thus aF + G = 0 is a regulated mapping and

/A (aF + BG)(x)du(z) = 0 = o /A F(z)du(z) + B /A G(z)dp(z).

So, let us consider the case where || + |3] > 0 henceforth. Fix any ¢ > 0 and any seminorm p € {p¢}sen. Since {S,}52,
{T,}3_, are uniformly convergent to F', G on A, there exist N,, M, € N such that n > N,,, m > M, imply
p(F(.’E) - Sn(‘r)) p(G(SC) - Tm(x))

< €
o + 181"

€
< —
ol + 5]
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for all z € A, respectively. Hence k > max{N,, M,} implies

p(aF (z) + BG(z) — aSi(x) — BTk(x)) < lalp(F(x) — Sk(@)) + |Blp(G(z) — Tk(x)) <€

for all x € A. Consequently the sequence {«S,, + 8T, }52; of step functions is uniformly convergent to aF' + G on A (cf.
Lemma 6.1.2-(1)), and aF + G : A — V is a regulated mapping. Furthermore, we obtain

( /A (oF + 8G)(2)du(x) — a /A F(a)du(z) - B /A G(a)du(z)

gp( /A (aF + BG)(z)du(z) — /A (aSn—kb’Tn)(x)du(x))

+0( [ (@8, + 8T @) o [ F@)ine) =5 [ Ga)inte)
=1 [ (@F + 86 @auta) = [ (@8, -+ AT, ) w)dn(x))

+pla /S Ydp(z —|—,6’/ x)dp(x —a/ F(z)du(z B/ G(z)du(x (" Lemma 6.1.2-(1))
<o( [ (@F +BG)@)duta) = [ (@S, + AT, ) w)dn(x))

+ Jap( /A S(@)dplz) — /A Fla)du(x)) +181p( /A T (2)dp() — /A G(2)dp(x)

— 0 (n— o0)

because of Definition 6.1.4-(2) and {aS, + BT, }52 1, {Sn}22 4, {Tm};’,f 1 being uniformly convergent to oF + G, F, G on
A, respectively. The above computation leads to [, (aF + 3G)(x) =a [, F(x)du(z)+ B [, G(z)du(z).

(2). cf. Lemma 6.1.2-(2).

(3). Suppose that the topology for W is determined by a countable number of seminorms {¢, }men. Since {S,}°2, is
uniformly convergent to F on A, it follows from Definition 6.1.4-(2) that

nli_)rrgod(AF(x)du(m),/ASn(m)d,u(x)) = 0. )

From now on, let us confirm that Lo F' : A — W is regulated. By Lemma 6.1.2-(3), Lo S,, : A — W is a step function
(n € N). We want to show that the sequence {L o S,}52 of step functions is uniformly convergent to L o F' on A. Take
any € > 0 and any seminorm ¢ € {¢m }men. Since L : ¥V — W is continuous, there exist finite py,,...,ps. € {pe}een and
Aty ...y Ar > 0 such that

q(L(€)) < A1pe, (§) + -+ + Arpe, (§) for all € € V. @
Then, for each 1 < j < r there exists an N, ; € N such that n > N, ; implies

€

De; (Sn(-r) - F(QJ)) < m

&)

for all z € A, because {S,,}72, is uniformly convergent to F' on A. Therefore it follows from @) and @) that n > max{N,; :
1 <j <r} implies

A(L(S.(@)) = L(F () = a(L(Su(x) = @) € 3" Apr, (Sula) = Fla)) < 3= DAy =

for all z € A. Hence {L 0 5,,}22  is uniformly convergent to L o F on A. Consequently we assert that Lo F': A - W is a

regulated mapping. Note here, at this stage we see that
o [@os)@in) - [ - F)du(w)) 0 (n— ) @
by Definition 6.1.4-(2). The rest of proof is to verify that L( [, F(z)du(z)) = [,(L o F)(x)du(x), which comes from
o(2( Paduta)) = [ (Lo P)@int)
<o(2(] P@ne) = [ (Lo s)@duta)) +a( [ oS @dnte) ~ [ (Lo F)w)intz)
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:q(L(/AF(x)du(a:)) —L(/A Su(@)du(x))) +q</A(LoSn)(a:)d,u(x)—A(LoF)(x)du(x)) (- Lemma 6.1.2-(3))
—o(L( P@ino) - [ Su@au@)) +a( [ (Lo @dnte) - [ (Lo F)@yint)

because ¢ o L is continuous, ) and @.
(4). Let A = Hf;l A, Ani € % and Sp(z) = Zf;l ca, . (x)&n,i, where &, ; € V, n € N. By a direct computation we
obtain ﬁ(Sn (y)) = p(&n,) if y € Ay ;. This assures that

pOS ZCAH, fnz

and that {p 0 .S,}>2 is a sequence of step functions. Now, let us show that {p 0 S, }>2; is uniformly convergent to p o F
on A. Take an arbitrary € > 0. On the one hand; since p : ¥V — R is continuous at 0, there exists a § > 0 such that n € V,
d(n,0) < ¢ implies

p(n) = [p(n) - B0)] <e.

On the other hand; since {5, }52; is uniformly convergent to F' on A, there exists an N € N such that n > N implies
d(F(z) ),0) = d(F(2), Su(2)) < 6

for all x € A. Consequently, n > N implies p( ) < €, and then

P(F () = p(Sn ()] < B(F(x) — Su(x)) <€
for all z € A. Hence {po S, }>2, is uniformly convergent to po F' on A, and we conclude that po F': A — R is regulated. In
addition, one has

kn

JACEEACITORS )Zu w0600 = 5( S n(An060) = i [ Suta)duta)

i=1

for all n € N, and therefore

A(ﬁo F)(z)dp(x) = lim [ (po Sp)(z)du(xz) > lim p / Sp(x)dp(z) ) = f)( lim / Sn(w)d,u(x)> (". p is continuous)

O

Remark 6.1.6. In terms of Lemmas 6.1.2-(1) and 6.1.5-(1), the sets of step functions and regulated mappings are vector

spaces over K, respectively.

6.1.4 A remark on regulated integrals of real-valued functions

In case of V = R, we can consider two kinds of integrals, the regulated integral in the sense of Definition 6.1. 4 (2) and the
p-integral in the sense of the measure theory, which we here dare to write [, F(x)du(z) the former and p- [, F(x)dp(z) the
latter. In this subsection we are going to confirm that

[ P@uta) = [ F@yiuto)

for all regulated mappings F': A — R, where A € # with u(A) < co.
Suppose that YV =R, A € # and pu(A) < oo. Here, (V, {pr}een) = (R,] - |) follows.
Any step function S = Zle ca, ()N : A — R is p-integrable on A, and it is immediate from (6.1.1) that

/S Ydu(x /\——/S Ydu(x @)
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Now, let F': A — R be a regulated mapping. Then, by Definition 6.1.4-(1) there exists a sequence {S,}5; of step functions
which is uniformly convergent to F on A. On the one hand; Definition 6.1.4-(2) implies that

On the other hand; since {S,,}22; is uniformly convergent to F' on A, there exists an M € N such that m > M implies
|Sm(z) — Sam(x)] < 1 for all x € A; and it follows that

|Sm(z)| < |Sm(z)| + 1 for all m > M and z € A.

This, together with Lebesgue’s convergence theorem, tells us that F' is p-integrable on A and
‘,u/S )dp(z /F )dp(z )’—>0 (n — 00), 6

since p(A) < oo, each S, is p-integrable on A and {S,,}72; is uniformly convergent to F' on A. In view of O, @ and @ we
see that

|| P@inte) e[ F@in)| <] [ Fene) - [ i@+ | [ s.@aut) — -] P
= | [ F@auta) = [ Su@)dute)| + o] Su@int@) = e[ Pla)duta)| —0 o).

So, one has [, F(x)du(z) = p- [, F(x)du(x).

Remark 6.1.7. By the arguments above and the measure theory we deduce that for any A € % and u(A) < oo, all regulated
mappings f,g: A — R are p-integrable on A, and that the inequalities

0< /A f(@)du(z) < /A o()dp(z)

hold in the case where 0 < f(x) < g(z) for all z € A.

Case V = R, pu(A) < oo: p-Integrals on A

’ Regulated integrals on A

6.1.5 An example of regulated mapping

The following proposition provides us with examples of regulated mappings.

Proposition 6.1.8. Suppose that

(s1) X is a Hausdorff (topological) space,

(s2) Z includes the set of open subsets of X,

(s3) K is a compact subset of X with u(K) < co.

Then, every continuous mapping F : K — V is requlated. Accordingly F has a regulated integral on K.

Proof. For & € V and r > 0 we set an open subset B(£y,7) CV as B(&o,7) :=={£ € V|d(&,&) <7}

By Definition 6.1.4 it suffices to construct a sequence of step functions which is uniformly convergent to F on K. For any
n € N, one has F(K) C U, cpx) B(n:1/n). Since F(K) is compact in V, there exist finite elements n1,n2, ..., 7., € F(K)
satisfying F(K) C Uf;l B(n;, 1/n). Then, we put

A; == FY(B(n;,1/n)) —U;Z F~Y(B(n;,1/n)) for 1 <i < 4y,

Since F : K — V is continuous, it follows from (s2) that F~!(B(n;,1/n)) € 4, so that A; € £ (1 < i < {,). Moreover,
we deduce K = ]_[f;l A; by a direct computation. Now, let S, (z) := 2521 ca,(x)n; for x € K. This S,, : K — V is a step

function and satisfies d(S, (), F(x)) < 1/n for all z € K. Accordingly {S,}32, is the desired sequence of step functions. [J

Remark 6.1.9. By considering Lemma 6.1.5-(3) in case W = K we see that the integral [}, F(2)du(x) in Proposition 6.1.8
accords with the integral in Bourbaki [7, Section 3, Chapter III], the integral in Rudin [31, p.77, Definition 3.26], and so on.
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6.2 An application (K-finite vectors)

The setting of Section 6.2 is as follows:

e K is a compact Lie group,

e V is a Fréchet space over C,

e d is a suitable complete metric for V which induces a topology identical to the original one,

e 0: K — GL(V), k+— o(k), is a (group) homomorphism, where it does not matter whether o is continuous here.
In this section we apply the theory on regulated integrals to conclude

Proposition 6.2.1. Suppose that (S) the mapping 7, : K x V =V, (k, &) — o(k)&, is continuous.* Then,
Vi = {n € V| dimc¢spanc{o(k)n : k € K} < oo}
is a o(K)-invariant, complex vector subspace of ¥V, and moreover, it is dense in V.

The main purpose of this section is to prove Proposition 6.2.1.

6.2.1 A preparation for proving Proposition 6.2.1

In order to prove Proposition 6.2.1 we study C(K,C) first, where C(K,C) = {¢ : K — C]| ¢ is continuous}. Let us define a

norm || - || on the complex vector space C(K,C) by
6l = sup {|6(x)| : = € K} for 6 € C(K, ©),

consider C(K,C) as a complex Banach space with this norm, and define a homomorphism p : K — GL(C(K,C)), k ~ p(k),
as follows:
(p(k)p)(z) := ¢(k~tz) for ¢ € C(K,C) and x € K.

Then, it turns out that ||p(k)¢|| = [|¢| for all (k,¢) € K x C(K,C), and that the mapping 7, : K x C(K,C) — C(K,C),
(k,¢) — p(k)@, is continuous. Furthermore, by the Peter-Weyl theory one knows

Proposition 6.2.2 (e.g. Sugiura [32, p.27, Theorem 3.5]).
C(K,C)g :={p € C(K,C) | dim¢ spanc{p(k)p : k € K} < oo}
is a p(K)-invariant, complex vector subspace of C(K,C) and is dense in C(K,C).2
From now on, let us suppose that
(S) my : KXV =V, (k,§) — o(k)¢, is continuous,

and denote by p a non-zero left-invariant Haar measure on 4, where 4 is the Borel field on the compact Lie group K. Then,
for a £ € V, Proposition 6.1.8 and (S) allow us to define a mapping F¢ : C(K,C) — V by

Fe(¢) := /K ¢(x)(e(x)§)dp(x) for ¢ € C(K, C), (6.2.3)

since fy : K — V, x — ¢(z)(0(x)§), is continuous and p(K) < oo (cf. (p6) in Theorem 5.1.2).

Lemma 6.2.4. On the supposition (S); for each £ € V, the mapping Fr : C(K,C) —» V, ¢ — fK o(x)(o(x)E)du(x), is
continuous.

Proof. Fix any £ € V, € > 0, ¢ € C(K,C) and any continuous seminorm p on V. Let us verify that F¢ : C(K,C) — V is
continuous at 1. For ¢ € C(K,C) we suppose that
€

U+ T p(e(R)E)dp(k)

I This supposition (S) means that ¢ is a continuous representation of K on V (see Definition 11.0.1).
2Remark. C(K,C) g includes the representative ring of the compact Lie group K.

v — ¢l <
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where it should be remarked that 0 < [} p(o(k)€)du(k) < oo, cf. Remark 6.1.7. The mapping fy (resp. fy): K — V,
x = Y(x)(o(x)€) (resp. — ¢(x)(o(x)E)), is continuous, and so it is regulated due to Proposition 6.1.8. Hence one shows

3(Fe(w) = Fel)) 2 o( [ futa)duta / olw)du(z ( [ o= £)@n(@) - Lemma 6.1.5-(1)
/ 2(fo — fo)(a / () — o) P (e()E) du(x) < /K 1 — ollp(e(2)e) dulz)
= 6=l [ ple@)dn(a) < s | pe@e)dnte) <<
(see Lemma 6.1.5-(4), Remark 6.1.7 also). Therefore F¢ : C(K,C) — V is continuous at . O

Lemma 6.2.5. On the supposition (S); F¢(C(K,C)k) C Vi for all{ € V.
Proof. Fix a ¢ € C(K,C). There exist finite vectors ¢1,..., o, € C(K,C) and functions a,...,a, : K — C such that
p(k)p =321, ai(k)g; for all k € K O

by virtue of dime spanc{p(k)¢ : k € K} < co. Therefore, for any k € K

o(k) (Fe()) 2 ok) ( /K P@)(e@)du(2)) = [ olk)(pla) e(@)))dula) (. (8), Lemma 6.1.5-(3)

K

- /K (@) (o(ka)E)dpu(z) = /K ok ) (e)E)dp(kYy)  (by = — k)
@ / > (b eEdnti ) / Zaz i) (o()E)duly) (- is left-invariant)

—Zaz / o) (0 duls) ®Z S ulk) o).

i=1

Hence dime spanc{o(k)(Fe(¢)) : k € K} < n < oo, and so Fe(yp) € Vi. O
Lemma 6.2.6. On the supposition (S); for any & € V, there exists a sequence {¢, }>2; C C(K,C) satisfying
Tim d(€, Fe(6n)) = 0.

Proof. Fix an € > 0 and a £ € V. Since K is a smooth manifold, one can construct a strictly decreasing sequence {U,}52,
of open neighborhoods of e € K so that

Uy DUy DU DUsD - DUpDUpii DUpy1 DUpsa DD {e} )
and a sequence {¢,,}52; of smooth functions (which are sometimes called bump functions) so that
L 0<¢u(z) <lforallzeK,
2. Pp(y) =1 for all y € Upyq,
3. Yp(z)=0forall z€ K —U,.

For these functions one can assert that 0 < u(Unq1) < [ ¥n(z)dp(z) < p(Un) < p(K) < oo for all n € N because p is a

1

Haar measure on the compact Lie group K, cf. (p8), (p6) in Theorem 5.1.2. Setting ¢,, := ¥y, for n € N, we

Jic ¥n(@)dp(z)
conclude that ¢,, € C(K,C), [ ¢n(x)du(z) =1, and 0 < ¢y, (x) for all n € N and z € K; in addition,
£~ Fi(6n) *2V ¢ - / ula) e@))ua) = [ Gu@édn(o) = [ du(a)lela)6)na)
@
/ on(z (x)¢)du(z) (.- Lemma 6.1.5-(1), Proposition 6.1.8),

where § = [ & Pn(2)édp(z) follows from S x Pn(2)dp(r) = 1.3 Now, let p be an arbitrary continuous seminorm on V. Since
K >k~ o(k)§ €V is continuous at e € K and p(e)§ = &, there exists an open neighborhood O of e € K satisfying

p(§—oy)§) <eforallyeO. ®

3Indeed; suppose a sequence {fm = >, ¢ Ay i dmyi 0 K — R}SO_ of step functions to be uniformly convergent to ¢, on K. Then it follows

from Definition 6.1.4-(2) and [, én(z)du(z) = 1 that limm [ frm(z)du(z) = [ ¢n(z)du(z) = 1. Besides, the sequence {fmé = 3", ca,, ;Am, i€ :
(6.1.1)

K — V}S°_, consists of step functions and is uniformly convergent to ¢n& on K. Accordingly [f én(x)édu(z) = limpy, [ fm(z)édu(z)
. . 6.1.1) /.
timgn 3, (A, ) A i€ = (o (5, (A, D) Am,))€ = (timy, Ji Fm(@)du(z))€ = €. Hence [i ¢n(z)édu(z) = €.
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By @ there exists an N € N such that n > N implies U,, C O, and then
(e~ Feton) Lo ( [ onla)(€ - e@)aut)) < [ 6ule)ple - sla)g)auta) (- Lomma 6.15-4), 0 < 6, (2)
= | GuW)BH(€ — o(v)€)duly) +/ dn(2)P(€ — 0(2)€)dp(z) (. Lemma 6.1.5-(2))
Uy K-U,
- /U bB(E — o)) dply) (b =0 on K — U,)
<e / Gu(W)dp(y) (- UnC O, ®)
U,

< e/K Pn()dp(z) (0 < dn(2))

For this reason the sequence {¢,,}22, satisfies lim d(&, Fe(¢y,)) = 0. O
n—o0

6.2.2 Proof of Proposition 6.2.1

Now, let us prove Proposition 6.2.1.

Proof of Proposition 6.2.1. We only prove that Vi is dense in V = (V,d). Take any { € V and ¢ > 0. By Lemma 6.2.6
there exists a ¢ € C(K, C) satisfying
d(&),Fgo(Qb)) < €/2.
Since Fy, : C(K,C) — V is continuous at ¢ (cf. Lemma 6.2.4), there exists an open neighborhood W of ¢ € C(K,C) such
that
d(Fe,(v), Fey (9)) < ¢/2

for all ¢ € W. Proposition 6.2.2 enables us to take an element ¢ € W NC(K,C)g. Then, it follows from Lemma 6.2.5 that
F¢,(¢) € Vi, and we have
d(g(), Féo (90)) < d(an F§0 (7/})) + d(Fio (w)a FEO (90)) <€

This completes the proof of Proposition 6.2.1. O



Chapter 7
Elliptic elements and elliptic adjoint orbits

In this chapter we recall the definitions of elliptic element and elliptic (adjoint) orbit, and show some fundamental properties

of elliptic elements and elliptic orbits. The setting of Chapter 7 is as follows:
e (G is a connected, real semisimple Lie group,
e gc is the complexification of the Lie algebra g.

Remark that the Lie group G satisfies the second countability axiom since it is connected.

7.1 Definitions of elliptic element and elliptic orbit
Here are the definitions of elliptic element and elliptic orbit.
Definition 7.1.1 (cf. Kobayashi [19]).
(i) An element Z € g is said to be semisimple, if the linear transformation ad Z : g — g, X + [Z, X], is semisimple.!
(ii) The adjoint orbit Ad G(Z) of G through a semisimple element Z € g is called a semisimple (adjoint) orbit.
(iii) An element T € g is said to be elliptic, if it is semisimple and all the eigenvalues of ad T are purely imaginary.
(iv) The adjoint orbit Ad G(T') of G through an elliptic element T' € g is called an elliptic adjoint orbit or an elliptic orbit.

Needless to say, 0 is an elliptic element of g.

7.2 Properties of elliptic elements
Let us clarify some properties of elliptic elements.
Lemma 7.2.1. Let T be a non-zero, elliptic element of g, and let S* := {exptT : t € R}.
(1) St is a 1-dimensional connected, closed Abelian subgroup of G.
(2) Suppose that the center Z(G) of G is finite. Then, S is compact.
Remark 7.2.2. We cannot omit the supposition “the center Z(G) of G is finite” from Lemma 7.2.1-(2). cf. Example 7.2.3.
From now on, we are going to prove Lemma 7.2.1.

Proof of Lemma 7.2.1. (1). S* coincides with the connected Lie subgroup of G corresponding to the subalgebra spang {7’} of
g. Hence, let us only verify that S is a closed subset of G. The element T is non-zero elliptic, so there exist Ay,...,Ap > 0
and an ordered real basis {X1,Y1, X2, Ya,..., Xk, Yi, Zog41,. .., Zn} of g such that

adT(X;) = \Y;, adT(Y;) = -\ X; (1<i<k), adT(Z;)=0 (2k+1<j <N = dimgg).

IThis condition is equivalent to the condition that ad Z : gc — gc is represented by a diagonal matrix relative to some complex basis of gc.

59



60 CHAPTER 7. ELLIPTIC ELEMENTS AND ELLIPTIC ADJOINT ORBITS

Relative to this ordered basis, Ad(exptT) = exptadT : g — g is represented by

R, O

Ad(exptT) = . , Ri= (Zij((:i; _CZ:(ISA)) ) 1<i<k,
O In_o
where Iy_gp stands for the identity matrix of order (IV — 2k). Accordingly
Ad S! is a compact subgroup of GL(g) = GL(N,R). o)

Since the adjoint representation Ad : G — GL(g) is a continuous homomorphism and the Lie group G is connected, we
conclude that
Adfl(Ad Sl) = S'Z(Q) is a closed subgroup of G )
by @. Here it follows from dimg Z(G) = 0 that S! is the identity component of the Lie group S'Z(G). Therefore S! is
closed in S'Z(G). This and 2 assure that S* is a closed subset of G.
(2). Suppose that the center Z(G) is finite. On the one hand; S'NZ(G) is compact by the supposition. On the other hand;
S1/(8' N Z(G)) is homeomorphic to Ad St because S! satisfies the second countability axiom (. (1)) and Ad : S* — Ad S*

is a surjective continuous homomorphism with kernel S' N Z(G). Consequently, St is compact due to D. O

Example 7.2.3. Let g :=sl(2,R) = {(m Y )
z -z

T,Y, % € R} and let

T (_01 3).

— 1 1 0 1
Then T belongs to g, {El = ( ’ > , By = (Z ,>7E3 = < . 0) } is a complex basis of gc = s[(2,C), and adT :
i

gc — gc is represented by

22 0 O
adl'=[10 —-2i 0
0 0 0

relative to the basis. This implies that T is a non-zero elliptic element of g. Incidentally, ad T : g — g is represented by

0 -2 0
adl'=[2 0 O
0 0 O

01 1 0 0 1
relative to the real basis {Xl = < ),Yl = ( Zy = ( ) } of g = sl(2,R). Now, spang{T'} = s0(2) holds,

10 0o -1)’ -1 0
w,yER}.

and one can get a Cartan decomposition g = € @ p of g by setting
Let G be a simply connected Lie group with Lie algebra g, and let G = KP denote the Cartan decomposition of G

¢ :=spang{T}, p:= { (; —yx>

corresponding to g = € @ p. In this setting, we have {exptT : t € R} = K, but K is not compact because K includes the
center Z(G) and Z(G) is infinite (more precisely, Z(G) = Z). This implies that we cannot omit the supposition “the center
Z(@G) of G is finite” from Lemma 7.2.1-(2).

The following lemma provides us with a criterion for judging whether an X € g is elliptic or not.
Lemma 7.2.4. An element X € g is elliptic if and only if there exists a Cartan involution 0, of g so that 0,(X) = X.

Proof. Assume that X # 0 (otherwise our assertions are trivial). If X is elliptic, then Lemma 7.2.1 assures the existence
of a Cartan involution 6, of g satisfying 6.(X) = X (because, for a given compact subalgebra s' C g there always exists a

maximal compact subalgebra £ of g such that s! C ).
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Conversely, suppose that a Cartan involution 6, of g satisfies 6,(X) = X, and define an inner product (-, -) on g by
(Y, Z) := =By (Y,0.(2)) for Y, Z € g, (7.2.5)

where By stands for the Killing form of g. For an arbitrary ad X-invariant vector subspace m C g, we take its orthogonal
complement m* in g with respect to (-, -). Then, g = m@m= holds, and moreover, the vector space m* is also ad X-invariant
because it follows from 6, (X) = X that

(ad X(Y),Z) =—(Y,ad X(2)) for all Y, Z € g. D

Consequently the linear transformation ad X : g — g is semisimple; besides, all the eigenvalues of ad X are purely imaginary
by . Hence, X is elliptic. 0

By Lemma 7.2.4 one has
Corollary 7.2.6. All elements of a compact semisimple Lie algebra are elliptic.
Corollary 7.2.6 provides us with examples of elliptic orbits.

Example 7.2.7 (A complex Grassmann manifold). Let G := SU(n) = {g € SL(n,C) |'g =g '}, and let

L (’I’L — k)Ik O
T=v-1 ( 0 —kJIn—k> ’

where n > 2 and 1 < k <n —1. Then T is an element of g, and it is elliptic because g = su(n) is a compact semisimple Lie
algebra. A direct computation yields

Ca(T) = { (é g) € SL(n,C)

AeU(k),DeU(n—k) } =S(Uk) xU(n —k)),
and the elliptic orbit AdG(T) = G/Cq(T) = SU(n)/S(U(k) x U(n — k)) is a complex Grassmann manifold; in particular,
it is a complex projective space in case of kK =1 or k = n — 1. Incidentally, the eigenvalue of ad T is +n+/—1 or zero.

The following lemma will be needed later (e.g. Chapter 8):

Lemma 7.2.8. Let T be an elliptic element of g, and set complex vector subspaces g*,u* C gc as
g = {Wegc|adT(W)=iAW} for A€ R, uT:=P, o0, u =B, 00" (7.2.9)

where i := v/—1 and g* = {0} in the case where i)\ is different from the eigenvalues of adT. In addition, denote by Ic (resp.
[) the centralizer of T in gc (resp. g), by u the image of the linear mapping adT : g — g, and by T the conjugation of gc
with respect to g. Then, it follows that

(1) gc =P epo* =u" ®lcdu, lc =g°,

(2) Adz(g*) C g* for all (2,)\) € Cq(T) x R, where Cq(T) :={z € G| Ad=(T) =T},
(2" Adz(Ig) Clg, Adz(ut) Cu™, Adz(u™) Cu™ for all z € Co(T),

(3) g%, 9" C g™t for all \, p € R,

(3" [Ic,Ic] C I, [le,ut] cut, [Ic,u”] Cu™, uwhut]Ccut, u,u"]Cu,

(4) Bg.(g*,9") = {0} if \+ u # 0, where By, is the Killing form of gc,

(4') By (Ic,u®) = {0}, By (lc,u™) = {0}, By (u,ut) = {0}, By.(u™,u7) = {0},

(5) 7(g*) = g~ for all A € R,

(5" o(lc) =lg, o(ut) =u, o(u") =ut,

(6) T(Adg(W)) = Adg(a(W)) for all (9,W) € G X gc,

(i) g=lou, T el,
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(ii) Adz() C I, Adz(u) Cu for all z € Ce(T),
(iii) [={Y elc|aY)=Y},u={V+5(V)|V eut}.

Proof. (1). Since T € g is elliptic and (7.2.9) we obtain gc = @, g*. Moreover, it follows from (7.2.9) that g = g° and
B0 =P’ @’ 0P, (0" =ut OlcDu.

(2). For any (2,A) € Cq(T) xR and X* € g*, one has [T, Ad 2(X*)] = Ad z([T, X*]) = iAAd z(X?), and Ad z(X*) € g*.
Hence Ad z(g*) C g* holds.

(3). From the Jacobi identity and (7.2.9) we deduce (3).

(4). For any X* € g*, X# € gt we see that iABy. (X*, X#) = By ([T, X*], X*) = =By (X, [T, X#]) = —iuBg. (X, X*),
and therefore By.(X*, X*) =0 if A # —p. This yields (4).

(5). For any X* € g* we obtain [T,5(X*)] =5 ([T, X*]) =7(iAX?) = —iAo(X?), and 5(X*) € g~*. Thus o(g*) C g~
This enables us to have 7(g~*) € g=(-» = g*, and moreover g=* = 52(g~*) C 7(g*) C g~*. Consequently we can show
a(gh) =9

(b) is a consequence of Ic = g%, (7.2.9) and (b), where b = 2,3, 4, 5.

(6). Take an arbitrary g € G and V,W € gc. On the one hand; for any X € g one has

7(Adexp X (V) = 7(expad X(V)) = 7 2 %(ad X)) = ;) % (ad7(X))'5(V)
= %(ad X)'5(V) = Adexp X (a(V))
n>0

because a(X) = X. On the other hand; since the Lie group G is connected, there exist finite elements X7, Xo,..., Xi € g
such that g = exp X7 exp X - - - exp X;. Accordingly
7(Adg(W)) = (Adexp X1 (Adexp Xo(--- (Adexp X(W))))) = Adexp X; (7 (Ad exp Xa(- - - (Adexp X (W)))))
== Adexp X1 (Adexp X3 (- - (Adexp Xi(a(W))))) = Ad g(a(W)).

(i). Since the linear transformation ad T : g — g is semisimple, we conclude that g = ker(adT) @ adT'(g) = (@ u. It is
natural that [T, 7] =0 and T € g, so that T € [.

(ii). For any z € Cg(T), we show that [T,Adz(Y)] = Adz([T,Y]) = 0 for all Y € [; hence Ad z(l) C [ It follows from
u=[T,g] and Adz(g) C g that Ad z(u) = Ad 2([T, g]) C [T,Ad 2(g)] C u.

(iii). For a given W € g¢, W € l'if and only if “[T, W] = 0 and (W) = W” if and only if “W € I and g(W) = W.”
This implies that

I={Yel|ay)=Y}. )

Now, let us prove that u = {V + (V) |V € ut}. For any U € u, there exists a X € g satisfying U = [T, X] in view of
u=[T,g|]. Since X € g C gc and (1) there exists a unique (V*,Z, V") € ut x g° x u~ such that X = V+ + 7 + V. Here
o(X)=Xyieldsg(V*t)=V~,and X = VT 4+ Z +3(V"). Therefore

U= [1,X) = [T,V + 245V = [,V + [13(v)] = [1,V*] + 71T, V7))
This, together with [T, V] € [Ic,u™] C ut, enables us to assert that
uC{V+a(V)|Veutl @
From {W eut @u™ |g(W)=W}={V+3(V)|V €u’} we obtain
o ¢ 2

2 dimg{V +7(V)|V € ut} = dimg u* + dimgu~ = dimg ge — dimg lc = 2(dimg g — dimg [) 2 2 dimg w.

Hence one concludes u = {V +a(V)|V € ut} by @. O

7.3 The centralizer of an elliptic element

In this section we first clarify relation between the centralizer Co(T") of a torus subgroup 77 in G and the centralizer C¢(T)
of an elliptic element T' € g (cf. Proposition 7.3.2), and then confirm that Cs(T) is a connected, closed subgroup of G (cf.

Lemma 7.3.3). Here we utilize the following notation:
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o Og(A):={g€G|gag™ =a for all a € A} for a subset A C G,
o Ce(X):={9€ G| Adg(X) = X} for an element X € g.
In order to prove Proposition 7.3.2 we need the following lemma:

Lemma 7.3.1. For an X € g, we put A := {exptX :t € R} and denote by A the closure of A in G. Then,

Ca(X) = Cg(A) = Cg(A).

Proof. We will show Cg(A) C Ca(A) C Cq(X) C Ca(A) and conclude this lemma.

(Cg(A) C Cg(A)). The inclusion Cg(A) C Cg(A) is immediate from A C A.

(Ca(A) C Cg(X)). Take an arbitrary g € Cg(A). Then, for all t € R one has exptX = g(exptX)g~! = expt Ad g(X).
Differentiating this equation at ¢t = 0, we obtain X = Ad ¢g(X). Hence g € C(X), and so Cg(A) C Ce(X) follows.

(Ca(X) C Cg(A)). Take an h € Cg(X). For any a € A, there exists a t € R satisfying a = exptX, and it follows from
Adh(X) = X that hah™! = h(exptX)h~! = expt Adh(X) = exptX = a. Therefore

hah~' =q for all a € A. D

The mapping A 3 2 + hah™! € G is continuous, and A is dense in A. Hence (I) implies that hxh~! = x for all z € A, which

allows us to show h € Cg(4), and Cg(X) C Cg(A). O
From Lemma 7.3.1 we deduce
Proposition 7.3.2. For any torus subgroup T" C G, there exists an elliptic element X € g such that Cq(X) = Ca(T").

Proof. Since T" is a torus, Kronecker’s approximation theorem enables us to obtain an element X € Lie(7") such that the
closure A”" in T" coincides with the whole 7", where A := {exptX : t € R}. This X is an elliptic element of g by Lemma
7.2.4 and Lie(T") being a compact subalgebra of g. Furthermore, A C AT AC and T" = AT yield

Ca(A%) C Ca(TT) € Ca(A).
Thus Cg(X) = Ce(TT) follows by Lemma 7.3.1. O
Recalling that the Lie group G is connected, we demonstrate

Lemma 7.3.3. For any elliptic element T € g, the centralizer Cq(T) is a connected, closed subgroup of G.

Proof. Needless to say, Cq(T) is a closed subgroup of G. So, we only prove that Co(T) is connected. By Lemma 7.2.4
there exists a Cartan involution 6, of g so that 6,(T) = T. By use of this 6, we put £ :={X € g|0.(X) =X}, p:={Y €
g|60.(Y) = —=Y}. Denote by G = KP the Cartan decomposition of G corresponding to g = ¢ @ p. Then, it turns out that

(i) [e.8 Ct [Ep Cp, [pp] CE,
(ii) K is a closed subgroup of G,
(iii) 7 € Lie(K) = ¢,
(iv) P is a regular submanifold of G,
(v) exp:p — P, Y — exp?, is a real analytic diffeomorphism,
(vi) ¢ : K x P — @G, (k,p) — kp, is a real analytic diffeomorphism.
Let us prove that Co(T) is connected by taking three steps (S1), (S2) and (S3):

(S1) Ck(T) x (PN Cg(T)) is homeomorphic to Ce(T) via ¢, where we equip Cg(T) x (P N Cg(T)) with the induced
topology from K x P;

(S2) PN Cq(T) is connected;

(S3) Ck(T) is connected.
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(S1): Since ¢(Ck(T) x (PN Ca(T))) C Ce(T) is clear, it suffices to confirm that for a given z € Cg(T), there exist
k€ Cx(T) and p € PN Cq(T) satistying kp = ¢(k,p) = x by virtue of (vi). Now, let us take any x € Cg(T). In view of
T = Ad(z)T one sees that

exptT = expt Ad(z)T = z(exptT)z~" (t € R). )

For the x € G there exists a unique (k,p) € K x P such that kp = = by (vi). We want to show that both & and p belong to
Ca(T). Tt follows from @D that z = (exptT)x exp(—tT), so that

k-p=x=(exptT)xexp(—tT) = ((exptT)kexp(—tT)) - ((exp tT)pexp(—tT))
for all ¢t € R. Here (i), (iii) and (v) yield (exptT)kexp(—tT) € K and (exptT)pexp(—tT) € P; hence we conclude
k = (exptT)kexp(—tT), p= (exptT)pexp(—tT) )

by ¢ : K x P — G being injective. This gives rise to exptT = k(exptT)k™! = expt Adk(T) and exptT = expt Adp(T).
Differentiating exptT = expt Adk(T) = expt Adp(T) at t = 0, we have T = Adk(T) = Adp(T). This assures that
k,p € Ce(T), and accordingly we deduce k € (KN Cq(T)) = Cx(T) and p € PN Ce(T).

(S2): Let us demonstrate that P N Cq(T) is (arcwise) connected. Take any y € PN Cq(T) and express it as y = expY
(Y € p). For any t € R, one deduces y = (exptT)yexp(—tT) by y € Cg(T) and arguments similar to those in (S1). Then,
we have

expY =y = (exptT)yexp(—tT) = exp Ad(exp tT)Y.

Therefore, it follows from (v) and Ad(exptT)Y € p that Y = Ad(exptT)Y = exptadT(Y) for all t € R; and hence [T,Y] =0
holds. By [Y,T] = 0 we conclude that for every ¢t € R,

Ad(exptY)T = exptadY(T) = Z %(ad Y)"T =T.
n>0

This implies that the whole 1-parameter subgroup {exptY |t € R} lies in PN Cg(T), where exptY € P follows from tY € p
and (v). So, one can joint y = exptY|;=; to the unite element e = exptY|,—o € P N Cq(T) by an arc in PN Cq(T).

(S3): Note that K is connected because (vi) and G is connected. Since £ is compact one can decompose it as
=t Dj3(¢) (direct sum of Lie algebras),

where €55 (resp. 3(£)) stands for the semisimple part (resp. the center) of ¢. This and (iii) enable us to uniquely express the

T as follows:

T=Tsx+T,

(Ts € tss, T, € 3(£)). Denote by Ky and Z(K)g the connected Lie subgroups of K corresponding to £ and 3(), respectively.
From now on, let us verify that Cx (T) is connected. Since the Lie group K is connected, one sees that K = Ky - Z(K)op; so
that

Cr(T) = Ok, (Tss) - Z(K)o 8)
because Ad(k)T, =T, for all k € K, and Ad(c¢)X = X for all (¢, X) € Z(K)g x €. Since K is connected and &5 is compact

semisimple, K is compact. This implies that Ck__(Tss) is connected, and it follows from @) that Ck (T) is connected. [

By Lemma 7.3.3 one can conclude
Proposition 7.3.4. For any elliptic element T € g, the homogeneous space G/Cq(T) is simply connected.

Proof. Let (é, p) be a universal covering group of the connected Lie group G. Then, the differential homomorphism p. : g — g
is a Lie algebra isomorphism, and so we assume g = g via p,. On this assumption, T is an elliptic element of g and Cs(T) is
connected by Lemma 7.3.3. Therefore G/ Cs(T) is simply connected, and hence G/Cq(T) is also simply connected because
é/C@(T) is homeomorphic to G/Cq(T). O
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7.4 An appendix (semisimple orbits)

We investigate relation between semisimple (adjoint) orbits and reductive homogeneous spaces, where we refer to Nomizu [28,
p.41] for the definition of reductive homogeneous space. Let Z be a semisimple element of g. Since the linear transformation
ad Z : g — g is semisimple, it follows that

(1) its image ad Z(g) is a vector subspace of g,
(2) g=ker(ad Z) ® ad Z(g),
(3) Adz(Y) C ad Z(g) for all (z,Y) € Ca(Z) x ad Z(g).

Here we remark ker(ad Z) = Lie(Ce(Z)). Hence, the semisimple adjoint orbit G/Cq(Z) is a reductive homogeneous space.

Moreover, one can assert that

Lemma 7.4.1 (Uniqueness). Let X be any element of g. If m is a vector subspace of g such that (2') g = ker(ad X) & m
and (3") Adz(Y) C m for all (z,Y) € C(X) X m, then m coincides with ad X (g).

Proof. ad X(m) C m is a consequence of (3'). Furthermore, (2') assures that the linear transformation ad X : m — m is
injective, and hence is isomorphic. From m = ad X(m) we obtain m C ad X(g). Therefore m = ad X(g) holds because of
ad X (g) = ad X (ker(ad X) @ m) C ad X (m) C m. O

Proposition 7.4.2. For an X € g the following (a) and (b) are equivalent:
(a) X is a semisimple element of g.
(b) G/Cq(X) is a reductive homogeneous space.

Proof. (a)=(b). cf. the beginning of this section.
(b)=-(a). Suppose that G/C(X) is a reductive homogeneous space. By the definition of reductive homogeneous space,

there exists a vector subspace m C g such that
g=cg(X)@dm, Ad(Ce(X))mCm. )

Then, Lemma 7.4.1 implies
m = ad X(g). @

Now, let h be a Cartan subalgebra of ¢g(X)—this is, b is a subalgebra of ¢;(X) such that
(i) b is nilpotent,
(ii) the normalizer of b in ¢g(X) coincides with b.

We will verify that this b is also a Cartan subalgebra of g. Since (ii), X € ¢g(X) and [h, X] = {0} C b, one obtains

X eb. 6)

We want to show that the normalizer ng(h) of b in g also coincides with h. Let Y be any element of g with [h,Y] C h. On the
one hand; @) yields ad X(Y') € h C ¢g(X). On the other hand; @) yields ad X(Y) € m. Thus ad X (Y") € (¢g(X) Nm) = {0}
by @, and hence Y € ¢4(X). Accordingly, (ii) implies that Y € b, so that ng(h) C b, and nyg(h) = bh. This, together with
(i), assures that b is a Cartan subalgebra of g. So, since g is a semisimple Lie algebra, ad H : g — g is semisimple for each
H € 0. In particular, ad X : g — g is semisimple. For this reason X is a semisimple element of g. O

Remark 7.4.3. It is known that Ad G(X) is a closed subset of g if and only if X is a semisimple element of g. cf. Proposition
7.4.2.






Chapter 8
Complex flag manifolds

By a complex flag manifold, we mean the complex homogeneous space G¢/Q of a connected complex semisimple Lie group
G over a connected, closed complex parabolic (Lie) subgroup @ C G¢. Here, a complex flag manifold is also called a Kéhler
C-space or a generalized flag manifold. In this chapter we study complex flag manifolds. The setting of this chapter is as

follows:
e (¢ is a connected complex semisimple Lie group,
e T is a non-zero, elliptic element of g¢,

o Le:=Cq.(T) = {z € Ge | Adx(T) = T},

gd = {X €gc|adT(X) =i X} for A € R,

u+ = @)\>0 g)\v u = ®A>0 gi)\a

o UT :=exput, U™ :=expu~,

e QF = NGC(@;/ZO 9”) ={q € Gc| Ad Q(eayzo g”) C @VZQ 8"}, Q7 == Ng, (@Vzo 97"),

where g* = {0} in the case where i\ is different from the eigenvalues of ad T' and exp : gc — Gc is the exponential mapping.

In addition, let 6, be a Cartan involution of g¢ satisfying 6, (T) = T (cf. Lemma 7.2.4). Since G¢ is semisimple, 0, can be
lifted to G¢. Denote its lift by 6, and set closed subgroups G, C G¢ and L, C G,, as

e G, :={keGcl|Ok) =k},
o Lu = CGu (T)a

respectively. We remark here that T € g,, that  is an anti-holomorphic involutive automorphism of G¢, and that G, is

connected and is a maximal compact subgroup of G¢.' One can show
Lemma 8.0.1.
(a) Lc is a connected closed complex (Lie) subgroup of Gc with lc = ¢4 (T) = g°,
(b) Q° is a closed complex subgroup of Gc with q° = {X € gc : [X,D,50 8] C D,5008%} (s = %),
(¢) Ly is a connected compact subgroup of G, and L, = (G, N L¢),
(1) gc=Phrert* =t @lcou™, P o0e’ =l ®u’, B,500 " =lcOu,
(2) Adx(g) C g for all (z,)\) € L¢c x R,
(2") Adz(lc) C Ig, Adz(ut) cut, Adz(u™) Cu™ forall x € Lg,

(2") Le cQT, Lc C Q™

1Here we assert that the Lie group G is connected since so is G¢; and that G, is compact since it is a connected Lie group whose Lie algebra

is compact semisimple.
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(3) [g*, "] C g** for all \,u € R,
(3) [le,lc] C le, [le,ut] cut, [le,u™] cu™, ub,ut] cut, u,u"] cu,

Y are complex subalgebras of gc,

(3") both ut and u™ are complex nilpotent subalgebras of gc, both @VZO g¥ and 691/20 g
(4) Bg.(g*,9") = {0} if A+ u # 0, where By, is the Killing form of gc,
(4/) BQ«:([C’uJ’_) = {0}7 Bgc([Cvu_> = {0}, Bgc(u+au+) = {0}, Bgc(u_’u_) = {0}’7

(5) 0.(g*) =g~ for all A € R,
(5") 0.(Ic) = I, O.(ut) =u~, O, (u") =ut,
(5") O(Lc) = Le, 0(UT) =U—, 0(U") =U", Q") =Q~, 6(Q™) = Q*,
(6) 0. (Adk(X)) = Adk(6.(X)) for all (k,X) € Gy X gc,
(i) gu =l ®adT(g,), T € Ly,
(i) Adz(l,) C L, Adz(adT(g.)) C adT(g,) for all z € Ly,
(iii) Iy = (gu Nlc) ={Y € lc[0.(Y) =V}, adT(gu) = {A € ad T(gc) | 0.(A) = A} = {V + 0. (V) |V € ut}.

Proof. cf. Lemmas 7.3.3 and 7.2.8. O

8.1 A complex flag manifold and a fundamental root system

From the next section we will prove propositions related to complex flag manifolds by taking a root system into consideration.

In this section we set up a root system and give a lemma.

8.1.1 A root space decomposition

Take a maximal torus ihg of the compact semisimple Lie algebra g,, containing the element 7', and denote by A = A(gc, he)
the (non-zero) root system of g¢ relative to hc, where he is the complex vector subspace of g¢ generated by ihg. Let g, be
the root subspace of gc for a € A. In this setting T' € ibg, 0.(bc) = be, be = ihr @ br, 0. = id on ibg, §, = —id on bg, and
gc is decomposed into a direct sum of vector subspaces: gc = hc © D e Ja- Here br :=i(ihr).

8.1.2 Chevalley’s canonical basis

For each root o € A, there exists a unique H, € hc such that o(X) = By.(Hq, X) for all X € he. Then br = spang{H, | a €
A}, and for every a € A there exist vectors F1, € g+, satisfying

(Ea — E_a),i(Eq + E_o) € gy and [Ey, E_y) = (2/a(H,)) Ha. (8.1.1)
Here it follows that g, = ibr © @, spang{ Lo — E_o} @ spang{i(Es + E_4)}, and
0.(Ey) = —E_, for all a € A = A(gc, be)- (8.1.2)

Remark that g, = spanc{E,} for all @ € A. Setting H}, := (2/a(Hqa))H, for a € A, one has [H, E,) = 2E,, [H}, E_,] =
—2E_,, |[Eo, E_,] = HX, and thus s, = spanc{H}, E,, E_,} is a complex subalgebra of g¢ which is isomorphic to s((2,C)
for each a € A.

8.1.3 A Weyl group W

Define a Weyl group W of G¢ and an action ¢ of W on the dual space (hc)* by

{ W= Ng, (ibr)/Caq, (ibr), (8.1.3)

C([w])n :=tAdw=(n) for [w] € W and n € (hc)*,
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where [w] stands for the left coset wCg, (ibr). By use of E, in (8.1.1) we set
wq = exp(nw/2)(Ey — E_,) for a € A. (8.1.4)

Remark that ¢ : W — GL((hc)*), [w] = (([w]), is a group homomorphism and Adw(gs) = g¢([w))s for all ([w], ) € W x A.
For every root a € A, it follows from (8.1.1) and (8.1.4) that Adw,(X) = X — a(X)H} for all X € h¢, so that w, belongs

to the normalizer Ng, (ihr) and so [we] € W; besides, (([wy]) is the reflection along a which leaves A invariant.

8.1.4 A fundamental root system, Borel subalgebras, and Iwasawa decompositions

Let ITx be a fundamental root system of A = A(gc, he) satisfying?

a(—iT) > 0 for all @ € IIA. (8.1.5)

Relative to this IIa we fix the set AT of positive roots, and put A~ := —A™T. Needless to say, 3(—iT) > 0 for all 8 € AT.
Setting

= @pepr 05 0= @pepr 05, b i=bcoOnt, b i=hcon, (8.1.6)

one has Iwasawa decompositions gc = g, ® hr D n® and complex Borel subalgebras b+ of gc. Moreover, gc =n" ®hcPn,
0.(n*) =nT, 0,(6%) = bT and

lc =g (T) = g°=bco @'yEA Gy
ut = @,\>o 9)\ = @aeA+—A ga C @5ea+ g5 = nt cbtC 691/20 g =Ic ®ut, (8-1~7)

U =@ cnt_af-aCn” Cb™ C @Vzog*” =lchu,

where A := {y € A(gc, be) | 7(T) = 0}. Denote by G¢ = G, Hg N* the Iwasawa decompositions of G¢ corresponding to the
gc = gu @ hr ® n, respectively.

Remark 8.1.8.

(i) I¢ is a complex reductive Lie algebra by (8.1.7).

(ii) A complex subalgebra of g¢ is said to be parabolic, if it includes a complex Borel subalgebra of gc.
(iif) (8.1.7) implies that P, -, 8" = lc & u® is a complex parabolic subalgebra of gc (s = *).

(iv) We have constructed complex parabolic subalgebras Ic @ u™ C g¢ from the elliptic element T € gc. Similarly one can
do so from every elliptic element of gc. This construction provides us with all complex parabolic subalgebras of gc.

(v) Let {Z.}._, C bc be the dual basis of IIn = {a,}%_,. Then, by (8.1.5) one can express —iT as —iT = 22:1 XaZq,
with A1, XAa,...,A; > 0. In fact; for any elliptic element 7" € g¢, there exist an inner automorphism 1 of gc and
Ny Xy, -y Ay > 0 such that o(—iT') = Y N, Z,.

a=1

(vi) A, AT — A and A~ — A are closed subsets of /A, and furthermore, A is symmetric (i.c., A = —A). Here a subset I' C A
is said to be closed, if a,f € I"and a+ f € A imply a + g € T.

(vii) AT —Aa={aeA|la(—iT) >0}, A" — A ={a€ A|a(—iT) < 0}.
(viii) If a(—iT) > 0 for all o € I (cf. (8.1.5)), then I = he, u= =nF, @, = lc ®u* = b* and 4 = 0.
In addition to Remark 8.1.8 we pay attention to
Remark 8.1.9. Let
He = Cg.(hc), B*:=Ng.(b%), AT :=aNAF nf =@, 4t 00, N =expni. (8.1.10)
Then it turns out that

(i) L¢e = LuHRNli are Iwasawa decompositions of the reductive Lie group L,

2There is such a system with (8.1.5)—for example, consider the lexicographic linear ordering on the dual space (hg)* associated with an ordered
real basis —iT =: A1, Aa,..., Ay of bhg.
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(ii) If a(—iT) > 0 for all a € T, then Lc = He, U* = N* and Q* = B*.
In view of (8.1.7) we see
Lemma 8.1.11. Let s =+ or —.
(1) Gec = G.Q".
(2) N* C LcU®.

Proof. (1). We prove G¢ C G,,Q° only. For any g € Gg, there exists a unique (k, a,n) € G, HgrN® satisfying g = kan, since
Gc = G HgN®. From (8.1.7) and Lemma 8.0.1-(3"”) we obtain [hr,D,~, 0% C D,~ 0%, 0°,D,~008°"] C P, 9% So,
both Hr = exphr and N°® = expn® are subsets of Ng.(D,~,0%) = Q_S, and thus an € HyN* € éSQS C Q°. This yields
g = k(an) € G,Q°, and G¢ C G, Q°. -

(2). By a direct computation with (8.1.7) we deduce n®* = (Ic N n®) @ u®, and both ¢ N n® and u® are subalgebras of n®.
Therefore we conclude N* = exp(lc Nn®) expu® C LcU? since the nilpotent Lie group N® = expn® is simply connected. [

8.2 Propositions related to complex flag manifolds

8.2.1 Some properties of U®, Q° and G¢/Q*
Let us clarify some properties of U*, Q* and Gc/Q*.
Proposition 8.2.1. The following seven items hold for each s = + :

(i) U® is a simply connected, closed complex nilpotent subgroup of Gc whose Lie algebra is u®, and exp : u® — U® is

biholomorphic.
(ii) Ly, coincides with G, N Q°.
(iil) Q* = NGC(®I/ZO g°") is a connected, closed complex parabolic subgroup of G¢ such that Q° = L¢ x U® (semidirect)
and q° = (lc ®u*) = P,5, 0%
(iv) The product mapping U~ x Q* > (u,q) — uq € Gc is a biholomorphism of U~% x Q% onto a domain in Gc.?
(V) t:Gy/Ly = Gc/Q%, kL, — kQ*, is a G -equivariant real analytic diffeomorphism.
(vi) QF includes the center Z(Gc).
(vi)) Q~* N Q* = L.

Proof. By Lemma 8.0.1-(5"), (5'), (1) and 6(Z(Gc)) = Z(Gc), it suffices to investigate the case of s = + only. Let us obey
the setting of Section 8.1.

(i). N* is a closed complex nilpotent subgroup of G¢ whose Lie algebra is n™, and exp : nt — N7 is biholomorphic.
Hence we conclude (i) from ut C n* and UT = expu™. cf. (8.1.7).

(ii). Tt is immediate from L, = (G, N L¢) and Lemma 8.0.1-(2") that

L, C (GuNLc) C(GuNnQT).

Let us show that the converse inclusion also holds. Take an arbitrary k € G, N Q*. We are going to conclude k € Cg,, (T).
Since Q* = Ng (D, 8") we have Ad k(@uzo g’) C D, 9" Furthermore, 0(k) = k and Lemma 8.0.1-(5) give rise to
Adk(B,50087") CB,200 " Therefore it follows from ¢q.(T) = g% and u™ = @, ¢* that

Adk(cg.(T)) = Adk(@uzo 9" NED >0 g ") C (@uzo 9" NED >0 g7") = g (1),
Adk(ut) = Adk([T,ut)) € [AdK(T), B, 8] = [AdK(T), cqe (T) & ut] C ut,

where we note that ad 7 : ut — u™ is linear isomorphic and Ad k(T') belongs to the center of ¢y (7). From Adk(g,) C gu
and Adk(cg.(T)) C cge(T) one obtains

Adk(cq, (T)) = Adk(gu Nege(T)) C g, (T). D

3This statement will be improved later (see Corollary 8.3.16-(1)).
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Here ihr C ¢g,(T) and ibg is a maximal torus of the compact Lie algebra ¢g, (T'). So, by (D there exists an = € Cgq, (T)
satisfying
Ad(zk)(ibg) = ibr, 'Ad(zk)"1(AT)C AT,

where A = {y € A(gc, be) |7(T) =0} and AT = ANAT. In view of z € Cg, (T) C Le, Adk(u™) C ut and Lemma 8.0.1-(2)
we see that Ad(zk)(u™) C u™. This, combined with Ad(zk)(ibr) = ibr and u* = @, cp+_, Ga, assures that

PAd(zk) "N (AY — &) C AF — A,

Consequently it follows that ‘Ad(zk) "' (AT) C AT, and so Ad(xk) = id on hc. Hence we conclude k € Cg, (T) by T € he
and Adz(T) = T. For this reason we show that (G, N Q") C Cg,(T) = Ly, so that L, = (G, N Q™).
(iii). First, let us verify
LeUt C Q™. )

It follows from (8.1.7) and Lemma 8.0.1-(3") that [u™, &, 8"] C @, 8". Accordingly Lemma 8.0.1-(2"), together with
(i), assures that both Le and U™ are subsets of Ne.(@,5(9”) = Q*, and thus one can assert @ LcUT C QTQT C QF.

Next, let us demonstrate
Q+ C LcU +. @

Take an arbitrary ¢ € Q*. By ¢ € G¢c = G, Hg N T there exists a unique (k,a,n) € G, x Hg x N7 satisfying ¢ = kan. Then
Hg C L¢, Lemma 8.1.11-(2) and @ tell us that

an € L((;LcUJ'_ C LcU+ C Q+.

This and (ii) yield k = gq(an)™! € (G, NQT) = L, C Lc. Accordingly, ¢ = k(an) € LcLcU* C LeU™T, and one has 3. At
this stage we know that Q¥ = LcU™, and that QT is a connected, closed complex subgroup of G¢ due to (i) and Lemma
8.0.1-(a), (b). In addition, UT is a normal subgroup of Q* = LcU™ by virtue of Lemma 8.0.1-(2") and UT = expu.
Therefore, the rest of proof is to confirm

LeN Ut = {e} @

because @, QT = LcU™, Lemma 8.0.1-(1) and Remark 8.1.8-(iii) assure that Lie(Q") = (Ic ®u™) = @, ¢” is parabolic.
Take an arbitrary y € Lc NUT. By y € UT and (i) there exists a unique Y € u™ satisfying y = exp Y. Tt follows from
y € Lc = Cg.(T) that Ady(T) = T. So, for any t € R we have y(exptT)y~! = exptT, and then y = (exptT)yexp(—tT).
Therefore exp Y = exp Ad(exp tT)(Y). This, together with Y, Ad(exptT)(Y) € u™ and (i), assures that Y = Ad(exptT)(Y').
Differentiating this equation at ¢ = 0, we obtain 0 = [T, Y]. Thus Y € (¢g.(T) Nu™) = {0}, and y = expY = e. For this
reason @) holds.

(iv). Since (i), (iii) and gc =u~ @ (lc ®ut) =u~ & qT, we only show that

U nQt ={e}.

Take any z € U~ N Q™. On the one hand; by (i) there exists a unique Z € u~ such that z = exp Z. On the other hand; from
2€ Q% = Ng.(D,500") and T € g% we have Adz(T) - T € @D, 09" Hence

v 1 n - _ —A
@Po 3 Ad(1)-T = Za(adZ) Tew =FPa
v>0 n>1 A>0
This implies that Ad z(T) — T =0, so that z € (LcNU™) = {e} by (iii). Thus U~ N QT = {e} follows.

(v). By (ii) and Lemma 8.1.11-(1), ¢ : G /L, — Gc/QT, kL, — kQT, is bijective and G,-equivariant real analytic.
Hence it suffices to show that the differential (di),, of ¢ at o, is a real linear isomorphism of the tangent vector space
T,,(Gu/Ly) onto T, (Gc/QT). Here o, denotes the origin of G\ /L,. From (ii) we obtain [, = (g, N q"), and so the
differential (di),, is a linear injection. Moreover, since g,, (resp. [,,) is a real form of g¢ (resp. I¢), one shows

dimg Ge/Q = dimg g — dimg q* = dimg gc — (dimg Ic + dimg u*)
= 2dimg g, — 2dimg [, — dimg u™ = 2dimg ad T'(g,,) — dimg u™

= dimg ad T'(g,,) = dimg g, — dimg [,, = dimg G,/ L,

where we remark that g, = [, ® adT(g,) and dimg ad T(g,) = dimgu™. Thus (dt)o, : To, (Gu/Lu) = Ty0,)(Gc/QT) is

linear isomorphic.
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(vi). Z(Ge) C Cqo(T) = Lc € QT by (iii).

(vii). Lemma 8.0.1-(2") yields Lc € Q~ NQ%. Now, let ¢ € Q~ N Q™T. Then, there exist elements (I+,u+) € Lc x UT
satisfying [_u_ = ¢ = lyuy due to (iii). From u_ = [~'l,uy, (iii) and (iv), we deduce that u_ = e, I"'l, = e, uy = e.
Therefore ¢ = I, € L¢, and hence Q~ N Q™ C L¢. O

Remark 8.2.2. By Proposition 8.2.1-(iii), Lie(Q®) = ¢° is a complex parabolic subalgebra of gc whose Levi factor and

unipotent radical are I¢ and u®, respectively (s = +).
Propositions 7.3.4 and 8.2.1-(v) and Lemma 8.0.1-(5") lead to
Corollary 8.2.3.
(1) Both G¢/Q™ and G¢/Q™ are simply connected, compact complex homogeneous spaces.

(2) Ge/QT is Ge-equivariant anti-biholomorphic to Ge/Q™ wvia the mapping Ge/QF 2 gQt — 0(9)Q™ € Ge/Q™.

8.2.2 A complex Grassmann manifold and an invariant K&hler metric on G¢/Q*

Now, let My k(C) be the set of all K-dimensional complex vector subspaces of gc, where N = dimc g, K = dimg q° and
s =+ or —. The special linear group SL(gc) = SL(N,C) acts transitively on My x(C), so we put

My, k(C) = SL(gc)/P?,

where P* := {¢ € SL(gc)|¢(q®) C q°}. In this way, My x(C) is a complex homogeneous space, which is a complex
Grassmann manifold. Since Ad G¢ C SL(gc) and G¢ acts on My k(C) as a holomorphic transformation group,

G(C X MN7K(C) > (g,m) — Adg(m) S MN,K(C),

one can consider the orbit Ad G¢(q®) of G¢ through the point q° € My x(C), and equip Ad Ge(q°) C My, x(C) with the
relative topology. Then, it follows from Q° = Ng.(q°) that

fs : GC/QS — Ad G(C(qs)a ng — Adg(qb)v (824)

is a bijective continuous mapping; moreover, it is homeomorphic by Corollary 8.2.3. Providing Ad G¢(g®) with the holomor-
phic structure so that fs : G¢/Q° — Ad Ge(g®) is biholomorphic, we deduce that the orbit Ad G¢(q°) is a simply connected,
compact, regular complex submanifold of My x(C). Here we remark that the mapping G¢/Q° 3 ¢gQ° — (Adg)P*® €
SL(gc)/P?® is a Ge-equivariant holomorphic embedding.

Remark 8.2.5. Via the Pliicker embedding p; : My x(C) — CP(ANECYN), spanc{vy,va, ..., vk} + [v1 Avg A -+ Avg], the
orbit Ad G¢(g*) can be holomorphically embedded into the complex projective space CP(AKCY) of dimension N!/(K!(N —
K)!) — 1. Since p; (Ad G@(qs)) = pa (fs(G(c/QS)) is a connected, compact, regular complex submanifold of CP(AKCY), it
is a projective algebraic variety by Theorem V in Chow [9, p.910].

The complex homogeneous space G¢/Q? is a Kahler manifold. Indeed,

Proposition 8.2.6. The simply connected, compact complex homogeneous space Gc/Q° = (Ge¢/Q%,Js) admits a G-
invariant Kdhler metric g, with respect to Js (s = £). Here we refer to Remark 1.2.3 for the Ge-invariant complex structure
Js on Ge/Q3 .4

Proof. The special unitary group SU(g,) = SU(N) acts transitively on the complex Grassmann manifold My x(C),> and
the complex homogeneous space My kx(C) = SL(gc)/P° admits a unique SU(g,,)-invariant Kéhler metric gs up to a positive
multiplicative constant. Accordingly one can induce a G,-invariant Kahler metric g5 on G¢/Q* by use of the Ge-equivariant
holomorphic embedding G¢/Q?® > gQ*® — (Ad g)P*® € SL(gc)/P?, where we remark that AdG, C SU(g,). O

4Remark. Js is Ge-invariant, but, in contrast, gs is Gy -invariant.
SRemark. My, k(C) may be represented as SU(N)/S(U(K) x U(N — K)).
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8.2.3 A complex projective space, an irreducible representation and G¢/Q"

Our goal in this subsection is to prove that G¢/Q™ can be holomorphically embedded into a complex projective space CP(V).
We will construct arguments by obeying the setting of Section 8.1, in particular, Subsection 8.1.4.

Let G be the quotient group of the Lie group G¢ modulo the center Z(Gc), and set Qf = Néc(q+), where we assume
gc = gc-
First, let us confirm

Lemma 8.2.7. The mapping Ge/Qt 3 gQt — 7(9)Q"T € Ge/Qt is a Ge-equivariant biholomorphism. Here 7 is the
projection of G¢ onto Ge = Ge/Z(Ge).

Proof. ©: Ge — G, g+ gZ (Ge), is a surjective holomorphic homomorphism. So, we conclude this lemma from Proposition
8.2.1-(vi). O

Next, let us construct a complex projective space from an irreducible representation. Denote by {w,}’_, the set of the
fundamental dominant weights relative to Ia = {a,},_,. For —iT = Zizl AaZa (Aq > 0) one can separate the set {\,}¢_;
into two pieces {Aq; }5_; and {Aq, }—, 1 50 that A, >0 for all 1 < j <7 and A, =0 for all 7 +1 < k < £. Namely,

—iT = MZ1+ XoZo+ -+ XNeZp with A, Ao, ..., A >0
=Xy Zay + AayZay + -+ Aa,p Za, With Aoy, Aays -5 Aa,. > 0.
Remark here that IIn N A = {ag, }f,_,,. Taking that into account, we define a dominant integral form w on h¢ as follows:
W = Wq, + Way, + -+ + W, (8.2.8)

Here w # 0 comes from T # 0. The Cartan-Weyl theorem enables us to obtain an irreducible representation p, of the
complex Lie algebra gc on a finite-dimensional complex vector space V which has the above w as its highest weight. Since the
complex Lie group Ge is isomorphic to the adjoint group of gc, one can take a holomorphic homomorphism p : Ge — GL(V),
g — p(g), whose differential homomorphism accords with p, : gc — gl(V). Now, let uy € V be a maximal vector of weight
w, let [v] := spang{v} for 0 # v € V, and let CP(V) = {[v] : 0 # v € V} denote the complex projective space of dimension
d — 1, where d := dim¢ V. The special linear group SL(V) = SL(d,C) acts transitively on CP(V), so we put

CP(V)=SL(V)/P,
where P := {p € SL(V) : [p(uo)] = [uo]}. In this setting, we verify
Lemma 8.2.9. The mapping é’@/@* 5 9Q" — p(g)P € SL(V)/P is a Ge-equivariant holomorphic embedding.

Proof. Remark that p(Gc) € SL(V) follows from p(Gc) € GL(V) and G being connected semisimple.

In this proof we temporarily denote by f the mapping Gc/Q1 3 §QT — p(§)P € SL(V)/P.

(well-defined). It is necessary to confirm that the f is well-defined. For this reason, we aim to demonstrate p(Q*) C P.
From (8.1.7) and AT = A N AT one has

" =lcout =hcont ©B, v 0+
So, for a given X € Lie(Q1) = q* there exists a unique (X, Xy, X;) € be x nt x @D, ca+ 8- such that
X=X+ X, + X
By a direct computation we obtain
p+(Xn)uo = w@(Xn)ug € spanc{uo}, pu(Xn)uo =0 € spanc{uo} @
because ug is a maximal vector of weight @ and X}, € hc, X,, € nt. We want to show that
p«(X1)ug € spanc{up}, @

which is a consequence of that p,(E_)ug = 0 for all v € AT. Therefore, let us show that p,(E_,)ug = 0 for all v € A™.
Take an arbitrary v € AT. From IIx N A = {ag, };_,,; we deduce AT = spany__{aq, },_, ;. This, together with (8.2.8)
and v € AT, gives )

w(H:) = 0. (a)
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We are going to construct a complex vector subspace of V from the s, = spanC{Hi, E,,E_.}. Set

n = po(E_)"ug (b)
for n € N. Since dim¢ V < oo and vectors ug, ug, Ug, ... are linearly independent®, there exists a unique m € N such that
up #0 (0 <p<m—1) and Uy, = Upq1 = --- = 0. Here, it follows from (a) and (b) that

px(H3)up = —2puy, for all 0 <p <m —1,
pi(Ey)ug =0, pu(Ey)ug = —q(q — ug—q forall1 < g <m—1,

Pi(E—y)um—1 =0, p(E_y)u; = uj4q forall 0 < j <m —2.

Then W := span(c{up}gl:_ol is an m-dimensional, p.(s,)-invariant complex vector subspace of V, and moreover, 0 = u,, =
ps(E_y)™ug and (b) yield 0 = p.(E;)(p+(E—y)™ug) = —m(m — 1)uy,—1; therefore m = 1. This implies that u; = 0, and
thus p.(E_+)ug = u; = 0. Accordingly we conclude @). By virtue of @, @), one can assert that

p+(X)ug € spang{up} for all X € Lie(Q1) = q*. )

Therefore, for every X € Lie(Q1) there exists a w € C satisfying p,(X)ug = wug, and then p(exp X)ug = e®“uq € [ug]. This
assures p(Q1) C P because the Lie group Q% is connected. From p(Q1) C P we conclude that f : G¢/QT — SL(V)/P,
GQ — p()P, is well-defined.

(injective). Our aim is to prove that f is injective. In order to accomplish the aim, we first prepare for a moment. Fix
any a € AT — A. On the one hand; one has @w(H}) > 0 since (8.2.8). On the other hand; it follows from H} = [E,, E_,]
and p,(Ey)ug = 0 that

@w(H)uo = pu([Bas E—a])uo = pu(Ea) (p+(E—a)uo) — p«(E—a)(p+(Ea)uo) = pu(Ea) (p+(E—a)uo).
Consequently we can assert that
(i) p«(E_a)ug # 0, and (ii) @ — « is a weight of the representation p, (relative to hc) for each o € AT — A. @
Next, let us confirm that
Y € gc and p.(Y)ug € spanc{ug} imply Y € g*. ®

For Y € gc suppose that p,(Y)ug € spanc{ug}. By (8.1.7) and gc = q* @ u~ we have gc = q" @ @ ca+_, 9—a- S0, there

exist a Y, € 7 and w_, € C such that Y =Y, + Y acnt_a W_aE_o. Then the supposition, 3) and @ yield

Vw = SpanC{UO} > p*(Y)UO = p*(Yq)UO + ZQGA+,A w—ap*(E—a)UO € Vw S2) @OCGA+7A Vw—om

and therefore w_, = 0 for all &« € AT — A, where we denote by V_, the wight subspace of V for @ — .. Consequently it
turns out that Y =Y, € q*, and so (§ holds.
Now, we are in a position to accomplish the aim. For the aim, it is enough to prove that

p1(P) C O, ©®
For § € G¢ we suppose p(§) € P. Then [p(§)uo] = [uo] holds, and for any X € q* one has

p=(Adg(X))uo = p(§)p«(X)p(9) ™ 'uo € spanc{uo}

by @. Accordingly it follows from ® that Adg(X) € q* for all X € q*. Thus § € Ng_(q*) = Q*, and one concludes ).
This © implies that f : Gc/Qt — SL(V)/P, §QF — p(§)P, is injective.

(holomorphic). Since p : Ge — SL(V), § — p(§), is a holomorphic homomorphism, it is now obvious that f : G¢/Qt —
SL(V)/P, GQt — p(g)P, is a Ge-equivariant holomorphic mapping. Moreover, we have already shown that f is injective,
which also assures that its differential (d f )p 1s injective at each point p € Ge / Q“‘. Hence, the mapping f is a Gc—equivariant
holomorphic embedding. O

By Lemmas 8.2.7 and 8.2.9 one establishes

Theorem 8.2.10. G¢/QV is able to be G¢-equivariant holomorphically embedded into the complex projective space CP(V) =
SL(V)/P, where V is a representation space of the irreducible representation of gc with highest weight w in (8.2.8).

6(because ug, u1, uz,... are eigenvectors of ps (H%) for distinct eigenvalues)
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8.3 Bruhat decompositions

In this section we generalize Bruhat decompositions of G¢ by following Kostant’s method [21, 22]. The setting of Section
8.1 remains valid in this section. Recalling that W = N¢,, (ihr)/Cq, (ibr) and A = {y € A|y(T) = 0}, we set

{% = {8 € A ((w]) '8 € A} for [w] €W, (8:3.1)

W= {[o] € W| D, C AT — A}, Wi = Ny, (ihr)/Cy, (ibR).

Remark here that W is a Weyl group of L¢. Hereafter, we assume W, to be a subgroup of the Weyl group W via the mapping
Nyp,(ibr)/CL, (ibr) > 7CL, (ihr) — 7Cq, (ibr) € Ng, (ihr)/Ceq, (ibr). In addition, we utilize the following notation:

e [k] : the unique element of W such that (([x])(A~) = AT and (([x]) = ¢(([x]) 7},

e n[, : the cardinal number of the set @[, for [o] € W*.

8.3.1 A proposition on the root system

We will verify Theorem 8.3.7 in the next subsection. For this reason we need
Proposition 8.3.2 (cf. Kostant [21, pp.359-361], [22, p.121]).
(i) @) is a closed subset of A for any [w] € W (i.e., B1, B2 € Py and By + B2 € A imply 1 + P2 € Ppy)).
(i) AT = @y I @y, (disjoint union) for all [w] € W.
(iii) If [o] € W1, then (([o]) "1 (aT) C AT and {([o]) "1 (A7) C A™.
(iv) For each [w] € W, there exists a unique (7], [0]) € W1 x W' such that [w] = [ro].
(v) For a given [o] € W1, the following items (v.1) and (v.2) hold:

(v.1) npe) = 0 if and only if [e] = [o].
(v.2) niy = 1 if and only if there evists a [ € IIn — A satisfying [wg] = [o].

Here AT = AN A%, e is the unit element of G, and we refer to (8.1.4) for wg.

The main purpose of this subsection is to prove Proposition 8.3.2. First of all, we are going to prepare three lemmas for

proving it. The first lemma, is
Lemma 8.3.3.
(1) @ is a closed subset of A for any [w] € W.
(2) AT = B H Py for all [w] € W.
(3) If [c] € W1, then (([o])~L(AT) € AT and (([o]) " (A7) C A~

Proof. We only prove (3), since (1) and (2) are clear from the definition (8.3.1) of ®,) and {([k])(A7) = AT,

(3). For each v € AT, either the case (([o]) "1y € A~ or {([o]) "1y € AT has to occur. If {([¢]) "1y € A~, then it follows
from (8.3.1) and [o] € W' that v € ®|,; C At — A, which contradicts v € A*. Thus the remaining case (([0]) "'y € AT
occurs, and ¢([o]) " (aT) € AT holds.

The ¢([o]) "1 (A7) C A~ comes from (([o]) "} (AT) C AT, A= = —-AT and A~ = —A™. O

The second lemma is
Lemma 8.3.4. Set Ay, := @) I (= Ppyy) for [w] € W. Then
(1) Apyy is a closed subset of A for any [w] € W.
(2) A= Ap I (=Apyy) for all [w] € W.

(3) C([w])) N (Ap)) = A7 for all [w] € W.
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Proof. (1). For o, 3 € Ay, we suppose that a + 3 € A. If a, B € ®p,) (resp. —Piyy)), then o+ 3 € py (resp. —Ppy,y,) due
to Lemma 8.3.3-(1). Now, let us investigate the case where o € @, and 3 € —®(,). Then one has (([w]) ™' (o + ) € A~
in case of a+ B € A, and (([wk]) " (a+ B) € AT in case of a+ 3 € A™. Accordingly o+ 3 € P, in case of a+ 5 € AT,
and a+ 8 € =Py, in case of a + 3 € A™. In any cases we obtain a + 3 € (q)[w] U (= Ppy ])) C Apy)- Consequently A, is
a closed subset of A.

(2) follows from A = AT II (=AT), Lemma 8.3.3-(2) and A, = @y I (= Ppyye)).-

(3). On the one hand; by a direct computation with (8.3.1) we deduce ¢([w])™'(Ap,)) € A™. On the other hand; the
above (2) implies that the cardinal number of A~ is equal to that of A, which is equal to that of ¢([w])~*(Afy)). Therefore
one concludes (([w]) ™ (Ap,) = A~ O

Lemmas 8.3.3 and 8.3.4 lead to
Corollary 8.3.5. ®yy,) = Py, with [wy], [we] € W implies [w1] = [ws).

Proof. Suppose that ®(,,) = Py, for [wi], [we] € W. From ®(,,] = ®,,) and Lemma 8.3.3-(2) we see that @[y, x) = Pluyn)-
Hence it turns out that A, = (@[wl] II (—<I>[wm])) = Alw,], S0 that

¢([wy ') (A7) = C([w2) 7 (S ([n]) (A7) = C(lw2)) T (D)) = C([wa) T (D)) = A7
by Lemma 8.3.4-(3). This and (8.1.3) assure that Ad(w; 'w;) = id on be, and hence [w;] = [ws)]. O
The last lemma is
Lemma 8.3.6. Set Wy, := (C([w])(A7)) Na*, Uf, ) := AT = U}, and Ap) := V) T (=Tf,)) for [w] € W. Then
(1) AT =9y, ILVE, for all [w] € W.

(2 (C([w)(AT)) N A* for all [w] € W.

w]i

(4) Apy) is a closed subset of A for any [w] € W.

| 2

(5

(1)
) v
(3) Both V) and Vf,, are closed subsets of A for each [w] € W.
)
) A= Ap, I (—Ap,) for all [w] € W.

)

(6) For a given [w] € W, there exists a unique [t] € Wi such that (([7]) " (A,]) = A

Proof. (1) is obvious.
(2). Since Wi, = AT — U, and ¥, = (C([w])(A7)) N AT, the following six conditions (i) through (vi) are equivalent
for v € A:
(1) v E \Il[cw]v (11) 7€ At and 0 g \Il[w]a (111) v € At and Y € C([w])(A7)7
(iv) y € A" and (([w]) "ty € A7, (v) v € AT and (([w]) "'y € AT, (vi) v € (C([w))(AT)) N At
Hence 97, , = (C([w) (A1) N AT follows.
(3). By V) = (C([w)(A7)) N AT and i, = (¢([w])(AT)) N AT we conclude that W, and W, are closed subsets of
A, respectively.
(4). We conclude (4) by arguments similar to those in the proof of Lemma 8.3.4-(1) together with the above (3), (2).
(5) follows from A = A* II (—A™), the above (1) and Ap, = ¥, 1T (=TF ).
(6) is a consequence of the above (4), (5). O

Now, let us start with proving the proposition.

Proof of Proposition 8.3.2. By virtue of Lemma 8.3.3 it suffices to confirm the items (iv) and (v) only.
(iv). First, let us verify the uniqueness of ([7], [0]) € Wy x W1

(Uniqueness). For [01],[02] € W' we suppose that [r1] := [o105 '] belongs to W;. We are going to prove [o1] = [02]. In
terms of [11] € Wy, [lc,u”] Cu™ and u™ = @, c a4 Ja One has
C(m)(A™ —Aa)CA™ —a. ©)

Let us show that

(I)[U;l] C (I)[Ufl]. @
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For any 3 € @,y we obtain § € A™, (([02])8 € A™ from (8.3.1). Hence it turns out that

C([o1])B = C(([r102]) B € C([])(A7).

So, either the case (([01])8 € ¢([r1])(a7) or {([o1])B € (([m1])(A~ — A) has to occur. If (([o1])8 € ¢([r1]) (A7), then we
conclude B € ¢([o7 1)) (A7) = (([o2]) " (A7) € A~ by Lemma 8.3.3-(3) and [02] € W'. However, this 8 € A~ contradicts
B € AT. For this reason, the remaining case (([o1])8 € (([r1])(A~ — A) occurs. Accordingly @ implies (([o1])8 € A~, and

moreover (8.3.1) yields 5 € P, -1 Hence @ ®(,-1) C ®(,-1 holds. We have deduced |, 1) C ¢, from [o105 '] € W.
—1

—1
P

€ W;. Consequently <I>[U;1] = <I>[ . This and Corollary

Thus one can show <I>[a;1] C <I>[U;1] from [ogafl] = [01051] )
8.3.5 allow us to have [o1] = [o2].
Next, we are going to confirm the existence of ([7], [¢]) € Wi x Wi,

(Existence). Take an arbitrary [w] € WW. By Lemma 8.3.6-(6) there exists a unique [r] € W; such that
(D) (M) = A7
Then, it is enough to confirm that [o] := [r~w] belongs to W!. In order to show [0] € W', we first prove
(CeD (A7) naT =0. &)

Let us use proof by contradiction. Suppose that there exists ay € (¢([0])(A7))NA™. Then~ € o™ and ¢([7])y € ¢([w])(A7).
From v € o™ and [7] € Wy we deduce (([7])y € A. So, ¢([7])y € AT or (([7])y € A™.

L If ¢([r])y € A™, then ¢([r])y € (C([w])(A7)) NAY =Ty C Ay = C([7])(A7).
2. If (([7])y € o™, then Lemma 8.3.6-(2) tells us that (([7])y € (¢([w])(A7)) N A~ = —Vi, C A = C(IrhH(a).

These contradict v € AT. Hence @) holds. Now, let us show [0] € W!. We need to demonstrate that D, C AT — A. For
any o € ®(,), it follows from (8.3.1) that o € A" and a € (([0])(A™). This and @) give @ € AT — A, and @, C AT — A.
For this reason we assert [o] € W1

From now on, we are going to prove (v).

(v.1). In view of (8.3.1) we see that ny,) = 0 if and only if {([¢])(AT) = AT if and only if Ado =id on b if and only if
[0] = [e]. Hence one has (v.1).

(v.2). Suppose that a 8 € II — A satisfies [wg] = [0]. Since 3 € IIa one knows that {8} = {a € AT |{([ws])a € A} =
@[wl;l] = @[wﬁ] = @[U]. Therefore n[g] =1.

Conversely, suppose that nj, = 1. By Lemma 8.3.3-(2), IIo C AT = Qo) I Dpppy. If A C Py, then we conclude that
Qpp) = AT (because Py, is a closed subset of A), which contradicts ®(,] # (). Therefore there exists a v € II5 such that
v & ®[5x)- Then we deduce v € ®[,), and hence the supposition assures

P = {7}
Here v € IIn — A follows from ®(,; C A" — A. Since v € Il one knows that ®(,, | = {7} = ®[5). This and Corollary 8.3.5
provide [w,] = [o]. Consequently (v.2) holds. O
8.3.2 The generalized Bruhat decomposition by Kostant

Proposition 8.3.2 enables us to establish the following theorem which is a result of Kostant [22, p.123, Proposition 6.1] with

some slight modifications:
Theorem 8.3.7. Let r = dimcut.

(1) For each [o] € W' we set
F[U] = {'y S @[U—lm] |C([O’])’y eENT — A}, u[t] = GB’YEF[U] 9¢(lo))ryo U[—;] = expufg]. (8.3.8)

Then, U[(t] is a simply connected closed complex nilpotent subgroup of U and it is biholomorphic to the (r — Nig])-

dimensional complex Fuclidean space u[;] (C u™) via the exponential mapping exp : u?‘;] — U[‘g]. Furthermore,

Nte Q™ = JflU["']Qf.

o
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(2) For a given [o] € W', the following items (2.i) and (2.ii) hold:

(24) dime Uy = r = dimc U* if and only if [¢e] = [o].
(2.ii) dim¢ U[Lt] =r — 1 if and only if there exists a B € IIn — A satisfying [wg] = [o0].

(3) Gec = Ijpjemn Nto Q= = [ijemn O'_lU[-g]Q_.

Proof. (1). Since both ®(,-1,; and AT — A are closed subsets of A, it follows from (8.3.8) that I'l,) is a closed subset of

A. Therefore we see that uf;} = @wer
onsequent =expu, is a simp connecte closed complex nilpotent subgroup o = exput and is biholomorphic

C ly U[Jg] [J;] i ly d closed lex nil bg fUt * and is bihol hi

to uf;] via exp, and dim¢ u[t] accords with the cardinal number [['[5)|. Moreover,

9¢(jo])y 18 a complex subalgebra of the nilpotent Lie algebra ut = Dacart—_a fa-

—~

8.3.8) (8 3.1)

oy e A" —alved, 1) 2V o]y e At —alye AT, (o k) v e A7)
(o)ye A —aly €AY} (o C(R])(A7) = AF, AT — & C A7)
([o])y € A% — [ ¢([o]) "L (¢(ol)y) € At} B2V

This implies that the number |[I',| is equal to r — nj, because of |[AT — A| = dimcu™ =7 and ®(,) C AT — A. Hence one

C([o))(Te))

{<
{ (A —A)—‘I)[U}.

has dim¢ uf;] = 7 —n[,]. Now, the rest of proof is to confirm that Nto~1Q~ = a‘lU[J;]Q_. Proposition 8.3.2-(i), (ii) implies

that N+ L%

exp(@acar 8a) = exP(D,eca, 8v) XP(Dpea , 95), 50 that

lo

Nt Q™ = 0_16XP(€BWE<1>[ 1y 9¢oDy) P (Dsea, , 9cons) @

tep(@,ee, ., 8(0)r) QT

(®
B (8.3.9)
“lexp(D el 9¢( 0])71)6Xp(@72€{v€¢ ,lm]|c([a])yen}9<<[a])w)@
(&

- 638 _
texp €T 9¢((o]) 1)@ 1U+]Q

where we note that @66%,_1] acens €0~ Cq~ and Ppp-1, =T I {y € Ppo-1,4 ] C([0])y € AT}

(2) is immediate from (1) and Proposition 8.3.2-(v).

(3). By (1), it is enough to prove Gc = [[|,jepn N*to=1Q~. In terms of B* = Ng.(b") we fix a Bruhat decomposition
Gc = H[w]ew N*tw=tB*. Then, (([x])(A7) = AT yields Gc = v~ 1Gc = H[w]ew N~ (wk)™'BT = H[w]ew N-w BT,
namely

IT v w'B" (8.3.10)
[w]ew
In a similar way, one can obtain
]_[ Ny iBf
[T]EWL
from (8.1.10) and By := Nyz.(hc @ n}). This, together with Q* = LcU™ and Bt = B U™, assures that for any [0] € W,
N o'Qt=No"'LeUt = |J N o'Wy 'BHYUT = |J N o 'Nyr'Bt = [[ N (r0)"'B*, (83.11)
[T]€W1 [T]EW] [ ]EWl

where 0 "!N; € N~o~! follows from [o] € W' and Proposition 8.3.2-(iii). Consequently, (8.3.10) and Proposition 8.3.2-(iv)

allow us to assert that

H N-o71Q™.
[oclew?
Thus Gc = []emn N*o=1Q~ because of §(Gc) = Gc, 0(N~) = N*,0(c) =0 and (QT) = Q. O

Remark 8.3.12.

(1) Inthe proof of Theorem 8.3.7-(3) we gave Bruhat decompositions Ge = [[1,,jcyy NTw™' B and Ge = [[ ey N w ™' BY,
and generalized Bruhat decompositions G¢ = [[(,jenn N=o7'Q* and G¢ = [ijemn Nto~ Q.

(2) Theorem 8.3.7-(1) and Proposition 8.2.1-(iii), (iv) imply that N*o=1Q~ = O'_lU[i]Q_ is a connected regular complex
submanifold of G¢ whose dimension is dime U — njy) 4+ dime Q™ (= dime Ge — nyy)) for each [o] € W

Taking the proof of Theorem 8.3.7 into consideration, we prove
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Lemma 8.3.13. For cvery [o] € W, the following three items hold:
(1) Nto~ Q= = irem Nt (r0)"'B~, where B~ = Ng.(b7).
(2) ¢(lo]) " (A*) = {3 € Bpr | C(l0])y € AT}
(3) dimg NTo=tQ~ > dime Nt (7o)~ B~ for all [r] € Wy, and dim¢ Nto~1Q~ = dim¢ NTo~1B~.

Proof. (1) comes from (8.3.11), §(N~) = NT, 0(Q*) = Q~, (BT) = B~ and f(w) = w (w € Ng, (ibr))-
(2). On the one hand; by Proposition 8.3.2-(iii) and [0] € W' we have (([o])~!(aT) C AT. Besides, a direct computation
yields ¢([o7's]) 1 (¢([0])"H(aT)) € ¢([x])"*(aT) € A™. Hence we obtain (([o])"(aT) C ®[,-1,; from (8.3.1). Therefore

C([e) ™ (aT) € {y € D1, [C([o])y € AT}

On the other hand; since (([o]) : A — A'is bijective the cardinal number |{y € ®,-1,|(([c])y € AT}| is less than or equal
to |aT|. Consequently (2) follows from | ™| = |¢([o]) "' (aT)|.

(3). For any [r] € Wy, both N* (7o)~ B~ and NJr ~1Q~ are regular submanifolds of G¢, and moreover, N (7o) "B~ C
N*to=1Q~ due to (1). Hence we conclude that dimec N* (7o) B~ < dimc Nto~1Q~ for all [r] € W,. At this stage, the
rest of proof is to deduce

dim¢ NTe7 !B~ =dim¢ Nto™1Q.

In a similar way to (8.3.9) one has

Nt 'B™ =07 exp(@,ca ,, 9cohr) @P(Bpen, , 9(l)s) B

=g ! eXp(@weé[gaﬂ] 9(([0])7)3_

lo=1x]

=07 exp(D,,ery,, 9c(lohm) XP(Brseyen, 1 lcllolveaty 9ellohne) BT

&)

- _ (8.3.8)
= o7l exp(D,,ery,, 9ol ) P (Daca+ 8a) B~ =

—177+ N+ R—
o UL N BT

where N;~ = expn]. Therefore it follows from U ]ON+B )C(UtNQ™)={e}and (N NB~) C (N*NB~) = {e} that

dim¢ NTo™ !B~ = dime Ul N;{*B~ = dim¢ U+] + (dime N;© + dime B™)
(dlmc Ut o]) + dim¢c @~ = dim¢ Nto~ Q .
cf. Remark 8.3.12-(2). O
Lemma 8.3.13 provides us with

Proposition 8.3.14. Let [0],[0] € W'. If NT071Q~ c Nto-1Q— — Nto~1Q~, then dimc NT071Q~ < dimc Nto~1Q~
and njg) > njy). Here we denote by Nto=1Q~ the closure of Nto=1Q™ in Ge.

Proof. By Lemma 8.3.13-(1) and [o], [0] € W' we have

NTO'B-CNT07'Q  CNto Q- -N'o'Q = |J Nt(ro)"'B~— |J NT(no)"'B~
[rlews [r1]lews )
= U N+ (ro)~1B~ — U Nt (ro) !B~ C U (N*t(ro)~'B~ — N*(r0)"'B")
[rlewn [r1]eWs [Tlewn

because W is a finite set. Here each NTw™!B~ is a Bruhat cell in G¢ ([w] € W), so one knows that”
1. for any [w] € W, Ntw=1B~ — Ntw !B~ is a disjoint union of Bruhat cells of strictly lower dimension,
2. for [wy], [we] €W, (Ntw; !B~ N Ntwy'B~) # 0 if and only if NTw;'B~ = Ntw, ' B~

(e.g. Theorem 27.4 in Bump [8, p.252]). These, together with (D), enable us to see that

N+(r0)"1B~ — N*(r0)"'B~ C 11 Ntw B~
[w+]] € W with dime Nt wi, ]B < dime¢ Nt (r0)"'B~

"Remark. One can assert these statements without the supposition that the group Gc is algebraic or simply connected.
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for all [r] € Wi; besides, there exist [r2] € W) and [wy,,]] € W satisfying
N*t67'B~ = Ntw;_B~, dime Ntw B~ < dimc N*(r0) "B
Consequently Lemma 8.3.13-(3) and [r2] € W yield
dime NT07'Q™ = dimc NT07 !B~ < dimc N*(r0) ' B~ < dim¢ NTo™'Q™.
From dimg Nt071Q~ < dime¢ NTo~'Q™ we obtain njg > njyj. cf. Remark 8.3.12-(2). O
The direct product group N+ x Q= acts on G¢ by

(Nt x Q™) x Gc 3 ((n,q),z) — naq™ ' € G.

Theorem 8.3.7-(3) tells us that this orbit space coincides with {N*o=1Q~ : [0] € W'}. In addition, since the action is
continuous and W! is finite, one can show that for any [o] € W! there exist finite elements [61], [02], ..., [0k] € W* such that

Nto-1Q- =Nto 'Q INTo/'Q "IN, ' Q™ 1LI-- - IINT6, Q.
Furthermore, Proposition 8.3.14 leads to

Corollary 8.3.15. For any [0] € W! there exist finite elements [01], [02], ..., [0k] € W' such that Nto=1Q- — Nto~1Q~ =
Nt Q- IINT0;'Q 11+ IINT0,'Q™ and njp,) > nyy) for all 1 < i < k.

Theorem 8.3.7 leads to the following corollary which is an improvement of Proposition 8.2.1-(iv):
Corollary 8.3.16.
(i) The product mapping UT x Q= > (u,q) — uq € G¢ is a biholomorphism of Ut X Q™ onto a dense, domain in Gc.
(i) N*tQ~ is a dense, domain in Gc.

Proof. (i). We only verify that the image UTQ~ is dense in G¢. For every [o] € W — {[e]}, it follows from Theorem
8.3.7 that ¢~ 'U [Jg ]Q’ is a submanifold of G¢ whose dimension is strictly lower than dim¢ G¢, so that it has measure 0 in
the manifold G¢. Hence, the finite union H[a] eWl—{[e]} 0_1U[(+7 ]Q_ has measure 0 in G¢ also, and therefore its complement
Ge = Higewr — ey a_lU[i]Q_ = e_lU[Jg]Q_ = U*Q™ is dense in Gc.

(ii). By Theorem 8.3.7-(1) one has N*Q~ = UTQ~. Hence (ii) comes from (i). O

8.3.3 An analytic continuation related to Bruhat decompositions

Our aim in this subsection to demonstrate

Theorem 8.3.17. Let
O =1 e w* with npy <1 NT0T1Q7 (8.3.18)

Then, it follows that
(i) O is a dense, domain in Gg,
(ii) any holomorphic function f on O can be continued analytically to the whole Gg.

For the aim we first prepare some lemmas and a proposition. We will conclude Theorem 8.3.17 by Hartogs’s continuation

theorem and G¢ — O being of complex codimension 2 or more.

Lemma 8.3.19. Let M be a topological manifold, let A be a subset of M, and let D be a dense domain in M. Suppose that
the subset AU D of M is open. Then, AU D is a dense domain in M.

Proof. We only confirm that A U D is arcwise connected. Fix a point py € D, and take any p € AU D. By the supposition
there exists an arcwise connected, open subset U C M such that p € U C AU D. Since D C M is dense, there exists a
de UnND. Then, pg and d (resp. d and p) can be joined by an arc in D (resp. U), and therefore pg and p can be joined by
an arc in AU D. O
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Lemma 8.3.20 (Hartogs’s continuation theorem). Let P be an open subset of CV defined by |2'| < R, |2%| < R,...,|z"V| < R
for some R > 0, and set
A:={(ZY. . 25 N e Pl =22 = =28 =0},

where 2 < k < N. Then, for an arbitrary holomorphic function f: (P — A) — C, there exists a unique holomorphic function
f:P — C such that f = f on P — A.

Proof. (Uniqueness). The uniqueness of f comes from P being a domain, P — A being a non-empty open subset of P and

the theorem of identity.

(Existence). Let us confirm the existence of f. Take an arbitrary 0 < r; < R, and fix a point (2%, 22,...,2N) € P with
|z1| < r1. Then, for any |2!| < |w| < R it turns out that (w, z2,...,2"¥) € P — A, and hence the definition
w, 2%, 2N
g(w) ::%forwe{wEC:|zl|<|w|<R}

is well-defined. Furthermore, g(w) is holomorphic on the annular domain |2!| < |w| < R which includes the circle Cy : |w| =

2 N
Co |w|=r1 w—=2z

r1, and consequently

exists in C for every (2!,22,...,2") € D,, x Dg x --- x Dg, where D,. := {z € C: |z| < r}. Now, let us prove that
2 N
W, 2%, ..., % . .
the function / f(—l)dw is holomorphic on D,, X Dr X -+ X Dg. ()
[w|=r1 w—=z

Taking Hartogs’s theorem of holomorphy into account, we will only conclude that the function is holomorphic with respect
to each variable 27 (1 < j < N). Let us demonstrate that the function is holomorphic with respect to z!. For any w € C

with |w| = r1, we see that

Fu(z4, 22,0 2N) = f(w,22,...,2Y)/(w — 21) is holomorphic on D,, x Dg x --- x Dg. (a)

Hence for a given piecewise differentiable closed curve C = """ | C,,, Cy, : 2! = 21 (s) (a, < s < by,) of class C! which is

contained in D, , Cauchy’s integral theorem enables us to deduce that for any w € C with |w| = r; and any (2%,...,2") €
DR X X DR,
/ Fu(, 22, 2Y)del =0 (b)
c
because D,, is a star region. Therefore it follows from f(w,2%,...,2"N)/(w — 2') = F,(z',2%,...,2N) and C = 3", Cp,

Cpn: 2t =2L(s) (a, < s<b,) that

flw, 2. 2N) 1_/ / - N .
/C(/W—h w— 2! dw)dz B C( |w\:r1Fw(z o ® )dw)dz

m b 2w it 1
n d d
= E / ( Frein(2L(5), 2%, ..., 2Y) e dt) z”(s)dSZ / (/ Fw(zl,z2,...,zN)dzl>dw ©y.
n—1 0 dt dS |w|:7,1 C

an

it 2 LNY dreit dal

Here we applied Fubini’s theorem to the continuous function [0, 27] X [ay,, by] D (¢, $) — flrie ,tz — 27) drie” dz, (s) e C.
riett — z1(s) dt ds

The above and Morera’s theorem allow us to assert that flw\:h (f(w,22,...,2Y)/(w — 2'))dw is a holomorphic function

with respect to the variable z! € D,... In a similar way, one can assert that with respect to the other variables (because of
(a)). Hence (D holds. So, one can define a holomorphic function f : D,, x Dg x --- x D — C by

< 1 22N
flzt 222N = — f(w’z’—l’z)dwfor(zl,zz,...,zN)ED,.l><DR><-~-><DR. )
270 Sy =,y w—z

The function f coincides with this f on (Dy, x Dpx---x Dg)—A. Indeed, since D x (D —{0}) x D x---x D C P— A,

f(z4,22,23, ... 2N) is holomorphic on Dg x (Dr — {0}) x Dg x --- x Dg. From Cauchy’s integral formula for 2! € Dy we
obtain ) s N
1
f(z1, 2%, 23,...,2) = — flw 2%, 2 . 'z )dw on D, x (Dr—{0}) x Dgr x -+ X Dg.
270 S =,y w—z

This and @) assure that f = f on D,., x (Dr — {0}) x Dg x --- x Dg. Therefore the theorem of identity enables us to show

f=fon (D, x DR x Drx---xDgp)—A
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because D,, x (Dr — {0}) x Dg X -+ x Dp is a non-empty open subset of the domain (D,, x Dgr x Dg x -+ x D) — A.
Letting r; * R one can get the conclusion. Here we remark that P = Dg X Dg X -+ X Dg. O
Lemma 8.3.21. O = H[U] € W! with ny) < 1 N*to='Q~ is a dense, domain in Gc.

Proof. Corollary 8.3.16-(ii) tells us that NTe~'Q~ is a dense domain in G¢. By that, Proposition 8.3.2-(v.1) and Lemma
8.3.19, it suffices to conclude that O C G¢ is open, which is equivalent to that G¢ — O is closed in G¢. Since W! is a finite

set, we deduce

Uley e w with 2 < gy N T071Q7 = U e wt with 2 < nggy VT071Q7 = g1 e wt with 2 < oy V9@ =G - O

by Corollary 8.3.15 and Theorem 8.3.7-(3). Accordingly G¢ — O is closed in Gc. O

Lemma 8.3.22. The following two items hold for a given [o] € W' :
(1) o=UT Q™ is a dense, domain in Gc.
(2) U_lU[(t]Q_ is an analytic subset of o~ U Q™ having complex codimension Nio), that is to say, there exist holomorphic
functions fu, fo, ..., fa, o tUTQ™ — C such that (2.i) dfy Adfa A- - “‘Ndfp,, # 0 on o tUTQ™ and (2.ii) oflU['g]Qf =
{z €0 UFQ™ | fi(z) = falz) = -+ = fuy, (z) = 0}.
(3) o"INTQ~ is a dense domain in Gc, and Nto~1Q™ is an analytic subset of c"*N+tQ~ having complex codimension
n[a].

Proof. (1). Since the left translation L,-1 : G¢ — G¢ is homeomorphic, we conclude (1) by Corollary 8.3.16-(i).

(2). By Theorem 8.3.7-(1) one can choose a complex basis {£;}7_; of u™ so that u[i] = spanC{En[a]+k};;T[”]. Let us

consider the canonical coordinates z!, 22, ..., 2" of the first kind associated with this basis {E; }§=1 C u™. Then,
dzt Ao ANdzMe AdzME TN A AdZ £0on U U['g] ={ueU"|z'(u) =2%(u) = = 2" (u) = 0}. D

For each x € o ~1UTQ~, Proposition 8.2.1-(iv) assures that there exists a unique (u,q) € Ut x Q™ satisfying x = o~ lug, and
then one can get a holomorphic function f; : 0~'UtQ™ — C by setting fi(z) := 2*(u) for 1 <i < nyy). These f1, fa, ..., fu,
are desired functions due to @.

(3) is immediate from (1), (2), c7INTQ~ =~ UTQ™ and NTo~1Q™ = G_lUE;]Q_. O

For [o] € W! we set
O =0 'NTQ™ — U N+tr—-1Q- (8.3.23)
[r] € Wt with [o] # [7] & nig] < Np

and demonstrate
Proposition 8.3.24. For any [o0] € W, it follows that

(i) Oyjg) is an open subset of Gc,

(ii) N+071Q7 C O[G] - 071N+Q7,

(iif) Ol = N¥o™' Q7 € i) € W with niyy < nioy -1 N 707 Q7
Proof. (i). Since 07! NTQ™ C G¢ is open and W! is finite, we have (i) by (8.3.23).

(ii). It is natural from (8.3.23) that Of,) C o7 'NTQ™. So, let us show N*o~'Q~ C Oy}, namely
Nte Q™ c (U_1N+Q_ — U N+771Q7).
[7] € W' with [o] # [7] & 1o < 1y

Since N*o=1Q~ € ¢~!N*Q~ it is enough to confirm that
€T ¢ U[T] € W! with o] # [7] & nio] < Nipl N+7-—1Q— for all = c N+0'_1Q_. @

Let us use proof by contradiction. Suppose a y € Nto~1Q~ to satisfy y € U[T] € W with [0] # [r] & npay < npyj N+r=1Q-.
Then, there exists a [r] € W' such that [o] # [7], njo) < nrj and y € N*771Q~. From y € NTo7'Q™ and y € Nt771Q~
one obtains

Nte 'Q™ c Ntr-1Q-.
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Here we recall that NTo~1Q~ is an orbit of the group N*T xQ~ and N*t771Q~ isalso. In case of Nt 1Q NNt7r71Q— =0
Corollary 8.3.15 and NTo~1Q~ ¢ N*7-1Q~ cause n(7) < n[s], which is a contradiction to njy < nj;j. Even if NtolQ—n
N*t771Q~ # (), we have [0] = [7], which contradicts [0] # [7]. Hence @) holds.

(iii). By a direct computation we obtain

O = N*o Q= E% (oIt Q- U NFTIQ) — NtolQ-
[r] € W* with [o] # [r] & ni) < g

c(o'NtQ - U N*TTIQT) - NtolQ
[r] € W* with [o] # 7] & nig) < g

Co 'NtQ™ — LJ Nto~1Q~
[6] € W' with nio) < ne)

C Ge - 11 NtO'Q™.

(0] € W' with nj,) < ng
This, combined with Theorem 8.3.7-(3), gives rise to (iii). O

Utilizing the notation O, in (8.3.23) we show
Lemma 8.3.25. Let D be a dense, domain in Gc. For each [0] € WY, the following two items hold:
(1) Oy U D be a dense domain in Gc.

(2) Suppose that (s1) 2 < ny,) and (s2) Oy — NTo='Q~ C D. Then, for a given holomorphic function f : D — C, there
ezists a unique holomorphic function f: O U D — C such that f = f on D.

Proof. (1) is a consequence of Lemma 8.3.19 and Proposition 8.3.24-(i).
(2). The uniqueness of f: Ojs) U D — C follows by (1) and the theorem of identity. We are going to verify its existence.
First, let us establish the following:

For each x € O,) U D, there exist an open neighborhood P, of z € Oj;) U D and a holomorphic

_ . )
function f, : P, — C such that f = f, on P, — Nto~1Q.

Here we note that (s2) assures P, — NTo~1Q~ C D, so f exists on P, — NTo~'Q~. Now, fix any = € O U D. In either
of the cases x € D and = € O, — N*to=1Q™, it follows from (s2) that # € D, and hence we deduce (D) by putting

Let us consider the remaining case
reNte Q™

from now on. By Proposition 8.3.24-(i), (ii) and Lemma 8.3.22-(3), there exist holomorphic functions hy, ..., byt Opp = C
which satisfy
dhl ARERNAN dhn[g] 7é 0 on O[a]y N+U?1Q7 = {y € O[U] ‘hl(y) == hn[o] (y) = O}

Then, the inverse mapping theorem enables us to take a holomorphic coordinate neighborhood (P, ) of 2 € O, such that
(i) 27 (¢(x)) =0 forall 1 <j < N = dimc Oy, (ii) ¢ is a homeomorphism of P, onto an open subset of CN defined by
2! < R,...,|z"| < R for some R > 0 and (iii) 2° 0 ¢ = h; for all 1 <i < n,). Consequently Lemma 8.3.20 and (s1) imply
that for the holomorphic function f: (P, — NTo71Q~) — C, there exists a unique holomorphic function fw : P, — C such
that f = fx on P, — Nto=1Q~. Thus @ holds. One can construct a holomorphic function f: Oig)UD — C from (D and

f=felp, for z € O,y U D. @)
Here, it is necessary to confirm that @) is well-defined. If P, N P, # 0 (x,y € Ojs) U D), then one can show that
fe=f, on P,NP,

because (a) both fas fy are continuous on P, N P, (b) fo=f= fy on P,NP,— Nto~'Q~, and (c) P,NP,— Nto~1Q~
is dense in P, N P, ("' 1 < nyy)). Accordingly ) is well-defined. For the function fin @), we conclude that f = fonD. O



84 CHAPTER 8. COMPLEX FLAG MANIFOLDS

We are in a position to accomplish the aim.

Proof of Theorem 8.3.17. (i). cf. Lemma 8.3.21.
(ii). Take any holomorphic function f on O. First, let k := min{n(,; € N: [o] € W', 2 < ni,)}. For every [0] € W' with
N[s] = k2, Proposition 8.3.24-(iii) implies

8.3.18)

—1— —1— —1- (
O = N*o7'@Q CH[n]ewl withn[n]gk271N+77 'Q :H[e]ewl withn[9]§1N+9 'Q 0.

Hence for every [0] € W! with Njs] = k2, the function f can be continued analytically from O to the dense domain O U O,
by virtue of (i), 2 < ks = n[,] and Lemma 8.3.25. Furthermore, the theorem of identity assures that f can be continued
analytically from O U O, to the dense domain Oy := O U (U[U] € W with ny) = ko O|s)). Here Proposition 8.3.24-(ii) and
(8.3.18) yield

H[e] € W' with ngg) < k2 NTO~1Q™ C O,. (a)
Next, let ks := min{n(, € N: [p] € W, ky +1 < n,}. For any [p] € W' with nj, = ks, we obtain
O = N*p™'Q~ C L e wt witn gy < ks — 1 Ntyp=lQ~ = I e wt wien nioy < o N*T9~1Q~ c O,

from Proposition 8.3.24-(iii) and (a). Accordingly, we conclude that f can be continued analytically from Os to the dense
domain Oz := Oz U (U[p] € W' with ny,) = ks Oy,)) and L6 € W with njo) < ks NT671Q~ C Oz by arguments similar to those
stated above and (a). Now, let ky := min{n;j € N: [¢] € W', ks +1 < nig}. Then, f can be continued analytically from
O3 to the dense domain O4 := O3 U (U[g] € W' with ng = ks Oyy) and ]_[[0] € W' with ngg; < ks N*T9='Q~ C O4. By inductive
arguments we can get the conclusion. O

Remark 8.3.26. The O in Theorem 8.3.17 is also expressed as
0= H[a] € W with nj,) <1 Nto lQ-=N*tQ I (HB €A —a N+wEIQ_)
— — — —1 —
= H[a] € W' with nj,; <19 1U[i]Q =UfQ™ I (HB elln —a W U[TUB]Q )
Here A = {v € A(gc, be) |7(T) = 0}. cf. Theorem 8.3.7-(1), Proposition 8.3.2-(v).
The following lemma will be needed in the next chapter:
Lemma 8.3.27. For each p € IIpn — A, the following three items hold:
(1) NTfQ—n wEINJFQ— = (exp @a€A+7{ﬁ} ga)w[;l exp(gg — {0})Q~.
(2) NtQ~ Ow,glN*Q’ is a dense domain in Gc.
(3) UTQ~ ﬂwﬁ_lU“'Q_ is a dense domain in Gc.
Proof. (1). First, let us demonstrate that (exp Docat—(5 ga)w/;l exp(gs —{0})Q~ C NtQ~ ﬂw51N+Q*. Since 8 € IIa
one has (([wg])(AT —{B}) = AT — {B}. Hence
(exp® go)wy;' =w; ' (exp @D ) =w;" (exp P ) Cw;z Nt
acn+—{g} Ba)Ws 8 aent—{8} 9¢([wp))a B PDsen+—(p} 89 B ’

This, together with gg C n™, gives rise to
((exp Deocar—i5 ga)wgl) exp(gg — {0})Q~ C (wglN"’)N‘*‘Q_ C w§1N+Q_. (a)

Since sg = spanC{HE, Eg,E_g} is a complex subalgebra of gc which is isomorphic to sl(2,C), the connected Lie subgroup
Sz C Gg corresponding to sg is isomorphic to either SL(2,C) or SL(2,C)/Zs. Accordingly, for any z € C — {0} we obtain

wgl exp(zEp) = exp((—1/z)Ep) exp(—(logr +i0)Hy) exp((1/2)E_p) (8.3.28)

from (8.1.4), where z = re? v > 0, —7 < @ < 7. Then, it turns out that wgl exp(gp — {0}) C (expgg)LcU~ C NTQ™, and
$0

(exp Daen+—(5) 9a) (w5 exp(gs — {0}))Q” C NF(NTQT)Q™ C N*Q™. (b)
From (a) and (b) we conclude that (exp Docrr—(s ga)wgl exp(gp — {0}))Q™ C N*TQ™n w§1N+Q*. Next, let us show
that the converse inclusion also holds. Take an arbitrary z € NTQ™ N w;lN*‘Q_. Proposition 8.3.2-(i), ®[,,) = {4} and
Pl = AT — {B} imply that N* = (exp @5€A+7{5} gs) exp g3, and moreover

wi' NYQ™ = wi (exp @scpr (5 05)(@xp8s)Q™ = (exp@ocnr (s 8a)ws (expgs)Q .



8.3. BRUHAT DECOMPOSITIONS 85

Hence there exist n € exp @aeAJ_{B} ga, 21 € C and ¢ € Q~ satisfying x = nwﬁ_1 exp(z1Eg)g. Then, we can assert that
T € (eXP @QEAJr_{B} ga)wgl exp(gs —{0H)Q™, if
z1 # 0. (c)
For this reason, the rest of proof is to confirm (c¢). Let us use proof by contradiction. Suppose that z; = 0. Then, it follows
that * = nwﬁ_1 exp(z1E5)q = nwglq € Nﬂung_, and x € NTQ™ n N+wﬁ_1Q_. This is a contradiction to Theorem
8.3.7-(3). Therefore (c) holds.
(2). (1) implies that NTQ™ N wglNJrQ* is connected; furthermore, it is a dense domain in G¢ by Corollary 8.3.16-(ii).
(3) is an easy consequence of (2) and NTQ~ =U+Q . O






Chapter 9
Homogeneous symplectic manifolds

In this chapter we first study homogeneous symplectic manifolds and afterwards investigate relation between homogeneous

symplectic manifolds and adjoint orbits of semisimple Lie groups.

9.1 Invariant symplectic forms on homogeneous spaces and skew-symmetric

bilinear forms on Lie algebras

Let us establish the following theorem which will play a role in the next section:

Theorem 9.1.1. Let G be a (real) Lie group which satisfies the second countability aziom, let H be a closed subgroup of G,
let ™ denote the projection of G onto G/H, and let o :== w(e). Then, the following two items (I) and (II) hold:

(I) Suppose the homogeneous space G/H to admit a G-invariant symplectic form Q. Then, there exists a unique skew-

symmetric bilinear form w : g X g — R satisfying the following four conditions:

s.1) w([X1, Xo], X3) + w([X2, Xa], X1) + w([Xs, X1], X2) = 0 for all X1, X5, X5 € g,
h={Zeglw(Z,X)=0 for all X € g},

w(Adz(X),Adz(Y)) =w(X,Y) forall z € H and X,Y € g,

(X,Y

) = Qo ((dn)eXe, (dm)cYe) for all X,Y € g.

(s.

(s.2
(s.3
(s.

)
)
)
4)

S

w

(IT) Suppose that there exists a skew-symmetric bilinear form w : g X g — R satisfying the above three conditions (s.1), (s.2)
and (s.3). Then, G/H admits a unique G-invariant symplectic form § so that w is related to Q by (s.4).

Here G/H is an n-dimensional real analytic manifold in view of Theorem 1.1.2, and we identify the real constants with the

real-valued constant functions on G.

Proof. (I). Let Q be a G-invariant symplectic form on G/H. Define a skew-symmetric bilinear form w: g x g — R by
w(X,Y) = QO((dw)eXe, (dw)eYe) for XY € g. (9.1.2)
Needless to say, (s.4) holds for this w. For any z € H and X,Y € g, we obtain

w(Ad2(X), Ad 2(Y)) "7 Q, ((dr)e (Ad 2(X))e, (d7)e (Ad 2(Y))e) = Qo ((d7.)0((dr)e Xe), (dr2)o((dr).Ye))
= O, ((dm)Xe, (dm).Y2) U2V w(X,Y)

because  is G-invariant and 7(z) = o (see Corollary 1.1.7 for 7,). Hence (s.3) holds for w. We are going to confirm that
the rest of conditions (s.1) and (s.2) holds for w.
(s.1). Set
Wg(u,v) := Qg ((dm)gu, (dm)gv) for g € G and u,v € T,G,

namely @ is the pullback of Q by 7 : G — G/H. Then &4(X,,Y,) = Ge(Xe, Ye) for all g € G and X,Y € g, since Q is
G-invariant. Accordingly we see that for each X,Y € g,

the mapping G 3 g — @©4(Xy,Y,) € R is the constant function with the value w,(X,,Ye). @)

87
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Identifying the real constants with the real-valued constant functions on G, one may assume that
wX,Y)=ao(X,Y) forall X,Y eg

by (9.1.2). Hence it suffices to confirm that (s.1) holds for the &. Moreover, it follows from d? = 0 and @ = 7*(Q that do = 0,
so that for all X1, Xo, X3 € g,

0

(dw) (X1, X2, X3)
X, ((J:}(XQ,XB)) — X5 ((Z)(Xl,Xg)) + Xg(of)(Xl,Xg)) — C:J([Xl,XQ],Xg) -I-of)([Xl,Xg],Xg) — d)([Xg,Xg],Xl)

[C

—0([X1, Xa], X3) — 0([X3, X1], Xo) — ([ X2, X3], X7).

Thus (s.1) holds.

(s.2). Let b :={Z € glw(Z,X) =0 for all X € g}. We want to show h = b,,. First, let us show h C h,,. Take any Z € b.
Then, it is immediate from (9.1.2) and (dr).Z, = 0 that w(Z, X) = Qo ((dn)cZe, (dT)cX.) = 0 for all X € g. Therefore the
inclusion b C b,, follows. Next, let us prove that the converse inclusion also holds. For Y € g we suppose that w(Y, X) =0
for all X € g. Then,

Q, ((dr). Ve, (dr)eXe) "= w(y, X) =

for all X € g. This yields (dr).Y. = 0 because {2, is non-degenerate on the vector space T,(G/H) and the mapping
g3 X — (dm)eX. € T,(G/H) is surjective. By (dm).Y. = 0 and Lemma 1.1.13 we conclude Y € b, and b, C §. Therefore
h = b, and (s.2) holds. Thus one can conclude (I) since (s.4) assures the uniqueness of w.

(IT). Now, suppose that a skew-symmetric bilinear form w : g x g — R satisfies the following three conditions:
(S ].) w([Xl,XQ],Xg) + w([Xg, Xg], Xl) + w([Xg,Xﬂ,Xg) =0 for all Xl,XQ,Xg € g,
(s2) h={Z eg|lw(Z,X)=0for all X € g},

s.3) w(Adz(X),Adz(Y)) =w(X,Y) forall z € H and X,Y € g.

Our aim is to construct a G-invariant symplectic form € on G/H, on this supposition. First, let us construct a closed
differential form @ of degree 2 on G from the w. Let {E,}Y | be a real basis of g, and set

C®(G):={f:G—R|fis of class C*°}.

Since {(E,)4 2, is a real basis of the vector space T,G for each g € G, an arbitrary vector U € X(G) is uniquely expressed
as U =N, fTET, fr €C®(G). Then, for V=S h,E, € X(G) (hs € C®(G)) we put

Bg(Ug, Vy) 1= Som oy Fr(9)hs(g)w(Ey, Ey) for g € G. (a)

This (a) is independent of the choice of {E,.}Y_; because w is R-bilinear. So, @ is a differential form of degree 2 on G. From
now on, we are going to verify that the & is closed. One can express [E,, E] as [E,, Es] = Zévzl ct Ey, by € R. For any
X,Y,Z € g there uniquely exist a”,b°, c* € R satisfying X = Zivzl a" B Y = Ziv:l b°Es, Z = Zivzl ctEy; then all ©(Y, Z),
W(X,Z) and @(X,Y) are constant functions on G due to (a), and moreover,

(d2)(X,Y,Z) = X (@(Y, 2)) = Y (9(X, 2)) + Z(0(X,Y)) —&([X,Y],2) + &([X, 2],Y) — &([Y, Z], X)

= —0([X,Y], 2) —w([Z, X],Y) — &([Y; Z], X)
N N N
@ _ Z a"bctet w(Ey, By) — Z a"b*ctet, w(Ey, Ey) — Z a"bctctw(Ey, B,)
r,s,t,0=1 r,s,t, =1 r,s,t,4=1

—w([X,Y],Z2) —w([Z,X],Y) —w([Y,Z],X) (. w is R-bilinear)
(61 .
namely (dw)(X,Y,Z) =0 for all X,Y,Z € g. This gives rise to

(d@)(U,V,W) = 0 for all U, V, W € 2(G)

because d@ is C>°(G)-multilinear and X(G) is generated by smooth functions f : G — R and elements X € g. Thus @ is
closed. Consequently @ is a closed, differential form of degree 2 on G. Identifying the real constants with the real-valued
constant functions on G, one may assume that

wX,Y)=w(X,Y) forall X,Y eg (b)
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by (a). From now on, let us construct a G-invariant symplectic form Q on G/H. For given vectors u,v € T,(G/H), we
choose X,Y € g so that u = (dn).X.,v = (dm).Ye, and set

Qo(u,v) = Qo ((d7)e Xe, (dm)eYe) == w(X,Y). (c)

Lemma 1.1.13 and (s.2) assure that (c) is independent of the choice of X and Y, and that €, is non-degenerate. Therefore
Q, is a symplectic form on the vector space T,(G//H). Then, one defines a symplectic form Q(,y on T4 (G/H) (g € G) by

Qﬂ(g) (whwg) = QO((dTg—l)ﬂ.(g)wl, (dTg—l)ﬂ(g)wg) for wi,wq € Tﬂ.(g)(G/H). (d)

Here we remark that (d) is well-defined by virtue of (s.3) and (c). From (d) it follows that €2 is G-invariant. If we show that
Q is of class C* and d2 = 0, then one can assert that  is a G-invariant symplectic form on G/H.

(class C*°). We are going to show that € is of class C*°. For any point p € G/H, there exist coordinate neighborhoods
(U, (yh, ... ,y")) of class C* of G/H and (F_I(U), (2t oo an :vN)) of class C* of G such that p € U and &% = y’or
on 7~ H(U) for all 1 < i < n; moreover, there exists a real analytic mapping o : U — G such that W(U(q)) =qforallqgeU
(cf. Section 1.3). Therefore, for any g € 7=1(U) and 1 < 4, < n we obtain

Qr(g) ((aii )W(g)» (a%-)ﬂ(g)) “a, ((dTgfl)ﬂg) (;yi )ﬂ(g)7 (d7g-1)x(g) (aiyj)ﬂ(g))
= ((d7y- (e ((dw)g(%L), (d7y-1)n(e) ((dﬂ)g(%)g)) ‘ozt = yiom)
= 0 ((dm)e ((dLy), (%)g), (dm)e ((dLg-1), (%)g)).

Temporarily we express (dL,-1),(0/92%), € T.G as (dL,-1)4(8/0z%), = X¥ with X* € g, and then the last term is

Qo ((dm)e ((dLy1), (%)g), (dwe((dLgﬂ)g(%)g)) = 0, ((dm) X7, (dm) X1) € w(X, X7) 2 5, (x), X3)

= @9((dLg)eXeia (dLg)eXg) = @9<(%>gv (%)g)

Therefore, it turns out that Q;; om = @;; on 7~ 1(U) (1 <1i,j < n), where Q;; := Q(9/dy*,0/0y’), w;; = w(0/dz",d/dx7).

Furthermore, 7 o o = id yields

—~
=

Qj=w;000onU (1<i,j<n). (e)

This (e) implies that (2 is of class C°° because o : U — 7~ 1(U) is real analytic and @;; : 7~*(U) — R is smooth.
(d2 = 0). It follows from (e) and dw = 0 that forall 1 <k <n
00 O@ij00) = 0wy O(at oo)

ok oyF — Oz Oyt =0

and thus df2 = 0 holds.

We have proven that the Q in (d) is a G-invariant symplectic form on G/H. From (c) it is natural that w is related to
this Q by (s.4). Now, the uniqueness of €2 follows from (s.4), G-invariability and Lemma 1.1.13. Hence we complete the proof
of Theorem 9.1.1. O

Let g be a real Lie algebra. Suppose that w is a skew-symmetric bilinear form w : g x g — R satisfying
(s.1) w([X1,X2), X3) +w([X2, X3], X1) + w([ X35, X1],X2) =0 for all X7, X5, X3 € g.
In this setting, one can get a subalgebra b, C g by putting
ho ={Z €g|lw(Z,X)=0for all X € g}, (9.1.3)
and deduce the following proposition from the proof of Theorem 2 in Chu [10, p.149]:

Proposition 9.1.4. Let G be a simply connected Lie group with the Lie algebra g, and let H,, be the connected Lie subgroup
of G corresponding to the subalgebra b, C g in (9.1.3). Then,

(i) Hy is a connected, closed subgroup of G,

(i) w(Ad2(X),Adz(Y)) =w(X,Y) for all z € H, and X,Y € g,
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(iii) G/H,, is a simply connected homogeneous space, and there exists a unique G-invariant symplectic form Q on G/H,
such that w(X,Y) = Qo) ((dm)e Xe, (dm)cYe) for all X,Y € g.

Here 7 is the projection of G onto G/H,,, and we identify the real constants with the real-valued constant functions on G.

Proof. (i). It is enough to prove that H,, is closed in G. Since (s.1) holds for the w, one can define a closed differential form

w of degree 2 on G by a similar way to (a) in the proof of Theorem 9.1.1-(IT). Then one can assert that
w(X,Y)=w(X,Y) forall XY €g¢ o)

where we identify the real constants with the real-valued constant functions on G. For the real vector space g* of left invariant
differential forms of degree 1 on G,! the group of affine transformations of the vector space g* is GL(g*) x g* (semidirect).

Moreover, its Lie algebra is gl(g*) x g* and the exponential mapping exp : gl(g*) x g* — GL(g*) x g* is expressed as

(exp(B,n))(§) = (exp B)(€) + (352, (1/n1) B"~1) (n), @

where (B,n) € gl(g*) x g* and £ € g*. Besides, the bracket product of Lie algebra gl(g*) x g* is expressed as?

[(B1,m), (B2,m2)] = ([B1, Bz, Bi(12) — Ba(m1)). 6)

Now, for any X,Y € g it follows from (D that @(X,Y) is a real-valued constant function on G. Accordingly one can define
a mapping ¢, : g — gl(g") x g" by

6-(X) 1= (Lx, (X)) for X € g, @
where Ly and +(X)w stand for the Lie derivative with respect to the vector field X and the interior product of @ with X,
respectively. Here for any X,Y € g one has

Ly (Z(X)@) =(do(Y)+1(Y)od) (z(X)oNJ) =(Y) (d(z(X)@)) (oY) (Z(X)@) — &(X,Y) is constant)
=1(Y)((Lx —o(X) 0 d)®) =2(Y)(Lx@) (. d&=0),

since Ly = doo(W) 4+ (W) od for all W € X(G). This shows
Ly ((X)@) =(Y)(Lxw) for all X,Y € g. ®

From now on, let us confirm that the mapping ¢. : g — gl(g*) x g* in @ is a Lie algebra homomorphism. It is obvious that
¢x: X = (Lx,2(X)w) is linear. For any X,Y € g, we obtain

6.0, 6.0 D [(Lx1(X)3). Ly o()3)] L (L, L), Lx 6(V)B) — Ly (X))

= (Lix,y), Lx (W(Y)@) — Ly ((X)@)) ® (Lix,yp, Lx (Y)@) — oY) (Lx@)) = (Lix,y), o([X, Y])@) Q

¢« ([X,Y]).

Thus ¢, : g — gl(g*) x g*, X — (Lx,(X)w), is a Lie algebra homomorphism. Since ¢, : g — gl(g*) X g* is a homomorphism
and G is a simply connected, there uniquely exists a Lie group homomorphism ¢ of G into the identity component of
GL(g*) x g* such that its differential homomorphism accords with ¢,.. Then one can take a real analytic action of G on g*,

G xg*3(g,m)~ ¢(9)(n) €9,

and take the isotropy subgroup H of G at 0 € g* into consideration. Needless to say, H = {g € G| ¢(g)(0) = 0} is a closed
subgroup of G. If

b, = Lie(H), ©
then ®) implies that H,, coincides with the identity component of H, so that H, is closed in H; and therefore H,, is closed
in G. For this reason, the rest of proof is to demonstrate ©). For any Z € b, and t € R we see that

=1

P(exptZ)(0) = (exptp.(Z))(0) @ (expt(Lz,(Z)@))(0) @ (exptLz)( Z n— (tLz)" ' (u(tZ)@) =0

1Remark. dimp g* = dimp g < co.
2e.g. i 5.8.2 in 157 [34, p.406].
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because +(tZ)w = 0 comes from tZ € b, (9.1.3) and @. Hence Z € Lie(H), and so b, C Lie(H). Let us show that the
converse inclusion also holds. For any A € Lie(H) and t € R, one has

0= ¢(exptA)(0) (. tA € Lie(H))

= (exptp.(A))(0 @@Z (tLA)"(u(tA)D Zﬁ L) M ((A)D).

3

Differentiating this equation at ¢ = 0 we obtain 0 = +(A)w, and therefore A € b, due to (9.1.3) and @. Hence Lie(H) C b,
holds. This completes the proof of ).

(ii). Since w is skew-symmetric, it follows from (s.1) and (9.1.3) that w([Z, X],Y) 4+ w(X,[Z,Y]) = 0 for all Z € b,
X,Y € g. Therefore (ii) holds because H,, is connected.

(iii). G/H,, is a simply connected homogeneous space by (i) and G being simply connected. Hence we can conclude (iii)
by Theorem 9.1.1-(II) together with (s.1), (9.1.3) and (ii). O

9.2 Homogeneous symplectic manifolds of semisimple Lie groups
We want to first show
Lemma 9.2.1. Let g be a real semisimple Lie algebra, and let w be a skew-symmetric bilinear form w : g X g — R satisfying
(s.1) w([X1,X2], X3) +w([X2, X3], X1) + w([ X35, X1], X2) =0 for all X1,X5, X5 € g.
Then, there exists a unique S € g such that
(1) w(X,Y) = Bg(S,[X,Y]) for all X, Y € g, (2) ¢g(S)={Z € g|lw(Z,X)=0 forall X € g}.
Here By is the Killing form of g and ¢y(S) = {Y € g| ad S(Y) = 0}.

Proof. (Uniqueness). The uniqueness of S follows by (1), g = [g, g] and By being non-degenerate.

(Existence). Let us confirm that there exists an S € g satisfying the conditions (1) and (2). Consider the cohomology
group H*(g) = Z*(g)/B*(g) for the trivial representation of g on the vector space R. On the one hand; (s.1) implies that
w € Z%(g). On the other hand; by the Whitehead lemma one knows dimg H'(g) = dimg H?(g) = 0, since g is real semisimple.
Hence there exists a unique linear mapping « : g — R such that

o([X,Y]) =w(X,Y) for all X,Y € g.

Furthermore, there exists a unique S € g such that a(V) = By(S, V) for all V' € g because By is non-degenerate. Then, this
S satisfies (1). By (1) we deduce that

w(Z,X) = By(S,[Z, X]) = By (ad S(2), X)
for all X, Z € g. This implies that w(Z, X) =0 for all X € g if and only if ad S(Z) = 0. Therefore S satisfies (2) also. O

From Theorem 9.1.1 and Lemma 9.2.1 we conclude

Proposition 9.2.2 (cf. Matsushima [26]®). Let G be a real semisimple Lie group which satisfies the second countability
aziom, let H be a closed subgroup of G, let m denote the projection of G onto G/H, and let o := 7(e). Suppose that the

homogeneous space G/H admits a G-invariant symplectic form ). Then, there exists a unique S € g such that
(i) Bg(S,[X,Y]) = Q,((dn)eXe, (dm)cYe) for all X,Y € g,
(ii) Cg(S)o CHC Og(S)

Here G/H is a real analytic manifold in view of Theorem 1.1.2, C(S)o is the identity component of Ca(S) = {g €
G| Adg(S) = S}, and we identify the real constants with the real-valued constant functions on G.

3Remark. Théoréme 1 in Matsushima [26, p.54] and its proof enable one to make a more excellent assertion.
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Proof. By virtue of Theorem 9.1.1-(T) and Lemma 9.2.1, it suffices to verify that (ii) C¢(S)o C H C Cg(S). From Lemma
9.2.1-(2) and Theorem 9.1.1-(I)-(s.2) we obtain Lie(Cg(S)) = Lie(H), and therefore

CG(S)O =HyCH.

Hence, the rest of proof is to confirm H C C¢(S). Forany z € H and X,Y € g, Lemma 9.2.1-(1) and Theorem 9.1.1-(I)-(s.3)
imply that

Bg(S = Ad 2(95),[X,Y]) = By(S,[X,Y]) — Bg(S,[Ad 27" (X),Ad 2 (Y)]) = w(X,Y) —w(Adz"'(X),Ad 2" (Y)) = 0.

Accordingly one has S — Ad z(S) = 0 because g = [g,g] and By is non-degenerate. Thus it turns out that z € Cg(S), and
H C Cg(5). O

Proposition 9.2.2 tells us that homogeneous symplectic manifolds of semisimple Lie groups are essentially adjoint orbits.

The converse also holds:

Lemma 9.2.3. Let G be a real semisimple Lie group which satisfies the second countability aziom, let S be a given element
of g, and let H be a subgroup of G such that

CG(S)Q CHC Cg(S)

Then, H is a closed subgroup of G, and there exists a unique G-invariant symplectic form Q on G/H such that By4(S, [X,Y]) =
Qo((dw)eX67 (dw)eYe) for all X, Y € g. Here we identify the real constants with the real-valued constant functions on G.

Proof. First, we confirm that the subgroup H is a closed subset of G. Since Cg(S)o is an open subset of Cg(S) and
H = Upen Ln(Ca(8S)o), we see that H is an open subgroup of C¢(S). Hence H is closed in C(S); besides, Cg(S) is closed
in G. So, H is a closed subset of G. At this stage b = ¢4(.5) follows from C¢(S)o C H C Cg(S).

Next, we show the existence of (2. Define a skew-symmetric bilinear form w : g x g — R by
w(X,Y) = By(S,[X,Y]) for X,Y € g.

Then, this w satisfies the (s.1), (s.2) and (s.3) in Theorem 9.1.1, because of the Jacobi identity, h = ¢4(S) and H C Cg(S).
Consequently, Theorem 9.1.1-(II) provides us with a unique G-invariant symplectic form  so that By(S, [X,Y]) =w(X,Y) =
Qo ((dm)eXe, (dm).Ye) for X,Y € g. O

9.3 An appendix (an orbit space)
The direct product group GL(1,R) x SL(2,R) acts on sl(2,R) by
(GL(1,R) x SL(2,R)) x sl(2,R) 3 ((\, 9), X) — AAd g(X) € sl(2,R).

b

—a

First, let us calculate this orbit space s[(2,R)/(GL(1,R) x SL(2,R)). For a non-zero, element X = <a ) € sl(2,R) we
c

investigate the following three cases individually:
(k) 0<detX, (a)0>detX, (n)0=detX.

Case (k) 0 < det X = —a? — bc. Setting

Ve/V=a? —be —a/(yev—a? —be) .
", (1/\/—@2 — be, 0 ez T ) if ¢ >0,
?g =
YN e V=¢c/V—=a2 =bc a/(v/—cv/—aZ = be) "
(- be, . i, ) ife<o,

-1
we have (A, g) € GL(1,R) x SL(2,R) and AAdg(X) = <(1) 0 )
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Case (a) 0 > det X = —a? — be. Setting

(a4 VTR
(A, (1/\/@( 2\/a2+b(:) (\/aQ—I—bc—a)/(Q\/M))),

we have (X, g) € GL(1,R) x SL(2,R) and A Ad g(X) = <é 01>.

Case (n) 0 = det X = —a? — be. Setting

. (_1/0, (_C1 la;:)) ife£0,
.9) ==
(1/b, ((1) (1))) if ¢ = 0,

0 1

we see that (A, g) € GL(1,R) x SL(2,R) and AAd g(X) = (0 0). Remark here that ¢ =0 and b # 0 if ¢ = 0.

Consequently the orbit space s[(2,R)/(GL(1,R) x SL(2,R)) is as follows:

s1(2,R)/(GL(LE) x SL(2,R)) = {[K],[A], [N], (0]}, (9.3.1)
where K := 0 -1 , A= L0 , N = 01 and Oy := (0 0).
1 0 0 -1 0 0 0 0

Now, the centralizers of the above K, A, N and Os in SL(2,R) are
Csrier) (K) =80(2), Csper)(A)=S(GL(1,R) x GL(1,R)), Csper)(N) =R xZs, Csrier)(02)=5SL(2,R),

respectively. Accordingly (9.3.1), Proposition 9.2.2 and Lemma 9.2.3 ensure that a homogeneous symplectic manifold of

SL(2,R) is one of the following:

(1) SL(2,R)/SO(2) * the open unit disk in C,
(2) SL(2,R)/S(GL(1,R) x GL(1,R)) * a hyperboloid of one sheet,
(3) SL(2,R)/S(GL(1,R) x GL(1,R))q * a covering space of (2),
(4) SL(2,R)/(R x Z3) * the light cone in the 3-dimensional Lorentz-Minkowski space R},
(5) SL(2,R)/R x* a covering space of (4),
(6) S

L(2,R)/SL(2,R) % 0-dimensional manifold.






Chapter 10
Homogeneous pseudo-Kahler manifolds

It is known that elliptic (adjoint) orbits can be geometrically characterized as follows:

Any elliptic orbit G/Cg(T) is a homogeneous pseudo-Kéhler manifold of G. Conversely, a homogeneous pseudo-
Kéhler manifold M of G is an elliptic orbit. cf. Dorfmeister-Guan [12], [13].

In this chapter we confirm this fact.

Remark 10.0.1. We consider a Kahler manifold to be one of the pseudo-Kéahler manifolds.

10.1 Projectable vector fields

The setting of Section 10.1 is as follows:
e (G is a Lie group which satisfies the second countability axiom,
e H is a closed subgroup of G,
e 7 is the projection of G onto G/H.

The homogeneous space G/H is an n-dimensional real analytic manifold in view of Theorem 1.1.2.
In the next section we will prove Theorem 10.2.2. For this reason we need to know some properties of projectable vector
fields. Here, a smooth vector filed V on G is said to be projectable, if there exists an A € X(G/H) such that

(dm)gVy = Apg) forall g € G

(i.e., V is m-related to A), where X(G/H) stands for the real Lie algebra of smooth vector fields on G/H. This A is uniquely
determined by V since 7 : G — G/H is surjective. So, we write 7,V for A.

Lemma 10.1.1.
(i) Let V,W € X(G) be projectable, and let A\, € R. Then,

(i.1) AV + uW is a projectable vector field on G, and w,(AV 4+ pW) = A7 V) + p(m W),
(i.2) [V, W] is a projectable vector field on G, and w,[V,W| = [r.V,m.WV].

(ii) For any A € X(G/H) there exists a projectable vector field V on G satisfying A = 7,V
(i) All right invariant vector fields on G are projectable.

Proof. (i) follows from V' (resp. W) being m-related to m,.V (resp. m.W).
(ii). Let A € X(G/H). Our aim is to construct a V' € X(G) which is m-related to A. There exist coordinate neighborhoods
(Ua, (k... y2)) of class C* of G/H and (7= (Uy), (zl,... 2%, 0, ... zll)) of class C¥ of G (a € A) such that

(1) G/H =U,ep Uas
(2) 2t =yl oron w1 H(U,) (a € A, 1< i <n),

95
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< 9 N~ Oxh 0
< = - <r< -1 -1
8% 121 oz} 8951 sI=m Oz} s:;ﬂ Oxy, O, (n+1<r < N) whenever 7= (Us) N7~ (Us) # 0,

because (G, 7, G/H) is a real analytic principal fiber bundle (cf. Section 1.3). For a € A and 1 < i < n, we put A% := A(y?).
Then, the vector field A is expressed as

AZQ

— "oy,
on each U,, and so we define a smooth vector field V, on 7=1(U,) by

n

N
Va = Z(Aa o W)T%

i=1
for each a € A. Now, suppose that #=1(U,) N7~ 1(Uy) # 0 (a,b € A). Then, one has

Wt = 3 itata) (), = 22 abtrto 2ot (),

1 ij=1 Iy,

= iAi(ﬂg))ff“( (axl) 9 S Ai(n(y D)5 ’ )g=<Vb>g

Jj=1

for all g € 7~ (U,) N~ (Uy), since it follows from Y 7 | A7 (0/dy,) = A= 3T, Al(8/8y]) that Al = > Al (ByL /oyl)

and it follows from (2) 2 = y¢ o 7 that

Ozt Ay om) 8y Oy om) "L Oyl . Oyl
2 (g) = IWaoT) 2 (n(g)) 20T oy = @ (7(g))5" = Y2 ((g)).
a0 = 2T g) = 3 St 22T ) = 3 Dt = Pt

Consequently one can construct a smooth vector field V on the whole G = {J,cp 7 (U,) from V| —1(y,) := V, for a € A.
Besides, this V' is w-related to A by virtue of (2).

(iii). Denote by g’ the real Lie algebra of right invariant vector fields on G. For X € g we define a right invariant vector
field X’ on G and a smooth vector field X* on G/H by

X;f = %‘t_of(exp(—tX)g) for g € G and f € C®(G),

. d
Xof=—

dt lt=0

f(TeXp(—tX)(p)) for pE G/H and f € COO(G/H)a

respectively (see Corollary 1.1.7 for Ty, (—¢x)). Then, the mapping g > X — X’ € ¢ is a Lie algebra isomorphism, and the
mapping g 3 X — X* € X(G/H) is a Lie algebra homomorphism. Moreover, X’ is w-related to X* for every X € g. O

10.2 Invariant complex structures on homogeneous spaces and linear trans-

formations of Lie algebras

We first prove the following lemma, and afterwards demonstrate Theorem 10.2.2:

Lemma 10.2.1. Let G be a Lie group, let 3 be a linear transformation of g, and let 7 be a tensor field of type (1,1) on G.
Suppose that (1X)g = joXg = (9X)g4 for all (g, X) € G x g. Then, the tensor j is of class C™.

Proof. Take a real basis { Ex }o_; of g and express jEj, € g as 1By, = Zévzl cx'Ey, ¢t € R. Any vector U € X(G) is expressed
as U = Zivzl feEr (fr € C®(G)), and then the supposition enables us to show that for all g € G and h € C(G),

(GR)(9) = (U)gh = (Ziiy Frl@) 0B o)h = (S ey Frl9)ert (Ee)g)h
= Ynimr Srl9)en (Beh)(9) = (Splem fi - e’ - (Eeh)) (9).
The last term is a smooth function on G, so the tensor j is of class C'*°. O

Now, let us demonstrate

Theorem 10.2.2 (cf. Koszul [23, Paragraph 2]). Let G be a (real) Lie group which satisfies the second countability aziom,
let H be a closed subgroup of G, let @ denote the projection of G onto G/H, and let o := 7w(e). Then, the following two items
(I) and (II) hold:
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(I) Suppose the homogeneous space G/H to admit a G-invariant complex structure J. Then, there exists a linear trans-
formation 3 : g — g satisfying the following five conditions:
(c.1) yZ =0 for all Z €,
(c.2) 32X = —X (modb) for all X € g,
(c.3) 7(Ad2(X)) = Ad 2(3X) (modh) for all (z,X) € H x g,
(c.4) DX, Y] = [X,Y] =X, Y] = )[X,jY] = 0 (modh) for all X, Y € g,
(¢5) (dm).(sX). = Jo((dm). X.) for all X € g.

(IT1) Suppose that there exists a linear transformation j : g — @ satisfying the above four conditions (c.1) through (c.4).

C.

C.

Then, G/H admits a unique G-invariant complex structure J so that j is related to J by (c.5).
Here G/H is an n-dimensional real analytic manifold in view of Theorem 1.1.2.

Proof. (I). Let J be a G-invariant complex structure on G/H. Take a real vector subspace m C g so that

g=mah, @
and define a surjective linear mapping F : g — T,(G/H) by

F(X) := (dn). X, for X € g. @

Then Lemma 1.1.13 implies that

b = ker(F). &)
From @ and @ we deduce that the linear mapping F : m — T,(G/H) is injective, so that

F:m— T,(G/H) is a linear isomorphism

by virtue of dimg m = dimg 7,(G/H). For this reason one can define a linear mapping 7: g — m (C g) as follows:

JX = (Flu) " (Ju(F(X))) for X € g. @

Let us prove that this j satisfies the five conditions (c.1) through (c.5), from now on.
(c.1) is immediate from @ and @).
(c.2). For any X € g we obtain

2X D (Flw) " 0 Jo 0 F) o (Flw) " 0 J, 0 F))(X)
— (Fla)  (F(-X)) (- Fo(Flu)~" =id, J2 = —id on T,(G/H))
= (Flw) " (F(=Xon — Xp)) @ (Flw)  (F(=Xm)) = =X, = —X (modb)

by a direct computation. Here we have expressed the X e g=m@®has X = X,,, + X, (X;n, €m, X, € h).
(c.3). For any (z,u) € H x T,(G/H) one has

F((Flw)™ " ((dr2)ou) — Ad 2((Flwm) " 'w)) = (dr2)ou — F(Ad 2((F|m) ")) @ (dr2)ou — (dw)e(Adz((F\m)_lu))e
= (dr.)ou — (de)o((dw)e((F|m)*1u)e) @ (d12)ou — (d73)ou = 0.
Accordingly it follows from @) that
(Flw) "' ((d72)ou) = Ad 2 ((F|wm)'u) (modb) for all (z,u) € H x T,(G/H). ®

Therefore for any (z,X) € H x g we conclude

7(Ad 2(X)) @ (Flwm) ™" (Jo(F(Ad 2(X)))) @ (Flw) ™ (Jo((dm)e(Ad 2(X))e)) = (Flm) ™! (Jo((d72)o((dm)e Xe)))

= (Flm )*1(<du>o(Jo<<dvr>eXe>))@Adz«F\ )" (Jo((dm)eXe))) (modb)

2D Adz(3X) (modb)
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since J is G-invariant and 7(z) = o.
(c.5). Let us verify (c.5) before proving (c.4). For any X € g one shows that

©

(dm)e(7X)e @ (A@m)e((Flw) ™" (Jo(F(X)))), = F((Flw) ™ (Jo(F(X)))) = Jo(F(X)) (. Fo(Flw)™" =id on T,(G/H))

e

®

= Jo((dﬂ-)eXe)~

Hence (c.5) holds.
(c.4). First, let us construct a smooth tensor field j of type (1,1) on G. Define a linear isomorphism « : g — T.G by

a(X) =X, for X €g.
Using this « and the j in @), we define a linear mapping j, : T,G — T,G (g € G) by
Jou = ((dLg)e oo goa™" o (dLy-1)4)(u) for u € T,G.
From this j, we construct a tensor field j of type (1,1) on G as follows:
(JU)g := 34Uy for g € G and U € X(G).

Then, it turns out that
(JX)g = JgXg = (3X), for all (9, X) € G x g, ©)

so that the tensor j is of class C'*° in terms of Lemma 10.2.1. Next, let us clarify a property of this j. For any g € G and
U € X(G), there exists a unique X € g such that U; = X, and then we have

(dm)g(U) g = (dm)g (59 Xy) @ (dm)y ((ALg)e(3X)e) = (A7)0 ((dm)e(1X)e) ‘E (dry)o(Jo((dm). X))
= Jr(g) ((d7)g ((dLg)e Xe)) = Jn(g) ((dm)gUy)
(because jX € g and J is G-invariant). That is to say,
(dm),(JU)g = W(g)((dﬂ')gUg) for all (¢,U) € G x X(G).
Accordingly, for an arbitrary V € B(G) it follows that

jV is a projectable vector field on G, and . (V) = J(7.V), @

where B(G) denotes the Lie subalgebra of X(G) generated by projectable vector fields on G. Now, let us define a skew-
symmetric, smooth tensor field S of type (1,2) on G/H and a skew-symmetric (real) bilinear mapping § : X(G)xX(G) — X(G)
by

{S(Al, AQ) = [JAl, JAQ] — [Al, AQ] — J[JAl, AQ] — J[Al, JAQ} for Alv A2 S %(G/H),

5(Uy,Us) := [jUn, jUs] — [U1, Us] — j[3U4, Us] — j[Ux, jUs] for Uy, Us € X(G),
respectively. Then, (7) and Lemma 10.1.1-(i) enable us to assert that
S(m V,m W) = 7. (5(V,W)) for all V,W € B(G).
Furthermore, since the Nijenhuis tensor S of J vanishes we have m, (ﬁ(V, W)) =0, and then
§(V,W) € C*(G)h ®

for all V, W € B(G)." Here C>°(G)h stands for the submodule of X(G) generated by smooth functions f : G — R and vectors
Y € h. From @ we are going to conclude that §(Uy,Us) € C°(G)h for all Uy, U; € X(G). Denote by g’ the Lie algebra of
right invariant vector fields on G, and recall that g’ C P(G) (cf. Lemma 10.1.1-(iii)). On the one hand; @) yields

5(X1, X3) € C(G)h for all X!, X} € g

1Let us show ® for the sake of completeness. Take real bases {E;}? ; of m and {Es}é\’:nJrl of h. Then, {(Ex)g})_, is a real basis of TyG

for each g € G; and any vector U € X(G) is expressed as U = Z,]cvzl feEr (fi € C®(@)). If it is projectable and m.U = 0, then it follows that

0= (dm)gUy = 33y fr(9)((dm)g(Bk)g) = 31y fi(9)((dm)g(Ei)g) for all g € G, so that fi =+ = fn = 0 because (dn)g(E1)g, .., (dm)g(En)g
is linearly independent for each g € G. Hence U = Ziv:kJrl fsEs € C°(G)h if it is projectable and 7 U = 0.
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On the other hand; for any X’ € g’ it follows from (7) and J? = —id that m,(72X’) = 7.(—X’), so that ?X’' + X' € C=(G)b.
Thus for given X{, X} € g’ and smooth function f: G — R we have
5(fX7, X3) = f5(X1, X3) + (X /)(X] +°X1) = f5(X7, X3) (mod C>(G)h).
Consequently we show that
Q(Ul, UQ) S COO(G)[) for all Ui,Us € %(G) @

because & : X(G) x X(G) — %(G) is skew-symmetric bilinear and X(G) is generated by smooth functions f : G — R and
elements X’ € g’. For any X, Y € g (C X(G)), in view of (D one sees that

C=(G)h 2 5(X,Y) = [jX,jY] - [X, Y] = jX, Y] = j[X, jY] @ DX, Y] = [X, Y] =X, Y] = g[X, jY] € g,

and therefore X, 3Y] — [X,Y] — j[sX, Y] — J[X, Y] € (gNC>(G)h) C h. Hence (c.4) holds. This completes the proof of (I).

(IT). Now, let us suppose that a linear transformation j: g — g satisfies the following four conditions:
(c.1) yZ=0for all Z € b,

)
(c.2) °X = —X (modh) for all X € g,
(c.3) 7(Ad 2(X)) = Ad 2(3X) (modh) for all (z,X) € H x g,

) DX, Y] — [X,Y] = JX, Y] = J[X, 3] = 0 (modb) for all X,Y € g.

We want to construct a G-invariant complex structure J on G/H from this 5. For a vector u € T,(G/H), we choose an
X € g so that u = (dm).X., and put
Jou = JO<(d7T)eXe) = (dm)e(9X)e. (a)

Lemma 1.1.13 and (c.1) assure that this (a) is independent of the choice of X because y: g — g is linear. Thus J, is a linear
transformation of the vector space T,(G/H). Moreover, (c.2) and Lemma 1.1.13 imply that (J,)? = —id on T,(G/H). Using
this J, we define a complex structure J, (4 on Ty (o (G/H) (9 € G) by

Jﬂ(g)w = (dTg)o(Jo((dTg—l)ﬂ-(g)’w)) for w € Tﬂ(g)(G/H). (b)

This is well-defined in terms of (a), (¢.3) and Lemma 1.1.13; and besides, it is immediate from (b) that J is G-invariant.
Therefore one can assert that the J is a G-invariant complex structure on G/H, if J is of class C* and its Nijenhuis tensor
S is vanishes.

(class C*°). Let us prove that the tensor J is of class C*°. The arguments below will be similar to the arguments in the
latter half of the proof of (I). Define a linear mapping j, : T,G — T,G (g € G) by

Jou = ((dLg)eoaogoato(dL,1)y)(u) for u € T,G,
and define a tensor field j of type (1,1) on G by
(GU)g := 34Uy for g € G and U € X(G).
Then, it turns out that
(JX)g = JgXg = (1X)g for all (g, X) € G x g, (c)

so that the tensor 7 is of class C*° due to Lemma 10.2.1. Moreover, it follows from (c) and (c.2) that 72X = —X (modb) for
all X € g, and hence
72U = —U (mod C*®(G)h) for all U € X(G) (d)

because X(G) is generated by smooth functions f:G— R and vectors X € g. For any g € G and U € X(G), there exists a

unique X € g such that U; = X, and then
(dﬂ-)g(jU)g = (dﬂ-)g (ngg) (é) (dﬂ')g((d[/g)e(]x)e) = (dTg)o((dﬂ-)e(JX)e) @ (dTg)o(Jo((dﬂ-)eXe))
= (d73)o (Jo (d7y 1)) (A7), X)) 2 () (dm)g Xy) = Ty (dm)gU)

because 73X € g. Accordingly, for an arbitrary V € PB(G) we assert that

jV is a projectable vector field on G, and . (jV) = J(m.V). (e)



100 CHAPTER 10. HOMOGENEOUS PSEUDO-KAHLER MANIFOLDS

Now, for each point p € G/H, one can find a coordinate neighborhood (U, (y',...,y™)) of class C* of G/H and a coordinate
neighborhood (7~ 1(U), (2',... 2™ a"*!, ... a)) of class C¥ of G such that p € U and 2' = y* o« on 7 1(U) for all
1 < i < n; moreover, there exists a real analytic mapping ¢ : U — G such that W(U(q)) =qforallge U. Then, 2 =y’or

and (e) yield
0 0 /0
J(ayi) = 7(m(527)) = (1(557))
for all 1 < 4 < m. This and 2° = ¢y’ o 7 imply that J;7 o = 37 on 7= 1(U) for all 1 < i,5 < n, where J(9/9y') =
Z?Zl Ji7(0/0y?) and j(0/0x%) = Zgzl 7:%(0/02%). Furthermore, it follows from 7 o ¢ = id that

Ji=jdooconU (1<i,j<n).

Consequently the tensor J is of class C*°, since o : U — 7~ 1(U) is real analytic and 7;7 : 7=1(U) — R is smooth.
(S =0). Let us show that the Nijenhuis tensor S of J vanishes. For any X7, Xo € g we obtain

[1X1, 7 Xa] — [ X1, Xo] — j[jX1, Xo| — j[X1, jX2] 9 [1X1,9Xo] — [ X1, Xo] — g9 X1, Xo] — 9[X1,9X2] € b
from (c.4). Accordingly (d) implies that
[le,jUQ] — [Ul, UQ] —j[le, UQ] _j[Ul,jUQ] S COO(G)[) for all Ul, U € :{(G) (f)

because X(G) is generated by smooth functions f : G — R and vectors X € g. For given A, B € ¥(G/H), Lemma 10.1.1-(ii)
enables us to find V, W € B(G) satisfying A = 7.V, B = m.W, respectively. Then Lemma 10.1.1-(i), combined with (e) and
(f), yields

S(AvB) = [JAv‘]B] - [AvB] - J[JAvB] - J[Av‘]B] :W*([jv,jW] - [VaW] *j[jV,W} *j[V,jW]) =0.

Consequently the .J in (b) is a G-invariant complex structure on G/H. Besides, j is related to J by (c.5); indeed (a) assures
that (dm)e(3X)e = Jo((dm)eX.) for all X € g. The uniqueness of J follows from (c.5), G-invariability and Lemma 1.1.13.
This completes the proof of Theorem 10.2.2. O

Remark 10.2.3. Theorem 10.2.2-(II) assures the uniqueness of J for each j; but in contrast, (I) does not assure the

uniqueness of j for any J.
Modifying Theorem 10.2.2 slightly, one can assure the uniqueness of j in Theorem 10.2.2-(I).
Proposition 10.2.4. In the setting of Theorem 10.2.2; let m be a real vector subspace of g so that
g=moh.
Then, the following two items (I) and (II) hold:

(I) Suppose the homogeneous space G/H to admit a G-invariant complex structure J. Then, there exists a unique linear

mapping j: g — m satisfying the following five conditions:

(c.1) 3Z =0 for all Z € ¥,
(c.2
(c.3
(cA
(c.5

7?X = —X (modb) for all X € g,

)

)

) ](Adz(X)) = Ad z(3X) (modb) for all (2,X) € H x g,

) DX Y] = (X, Y] =X, Y] = )X, Y] = 0 (modb) for all X, Y € g,
)

¢.5) (dm)e(1X)e = Jo((dm)eXe) for all X € g.

(IT1) Suppose that there exists a linear mapping j : g — m satisfying the above four conditions (c.1) through (c.4). Then,
G/H admits a unique G-invariant complex structure J so that j is related to J by (c.5).

Proof. cf. the proof of Theorem 10.2.2. O
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10.3 Invariant pseudo-Kahlerian structures on homogeneous spaces
By Theorems 10.2.2 and 9.1.1 we conclude

Theorem 10.3.1 (cf. Dorfmeister-Guan [14]). Let G be a (real) Lie group which satisfies the second countability aziom, let

H be a closed subgroup of G, let m denote the projection of G onto G/H, and let o := mw(e). Then, the following two items
(I) and (II) hold:

(I) Suppose the homogeneous space G/H to admit a G-invariant complex structure J and a G-invariant symplectic form
Q such that

Q(JA, JB) = Q(A, B) for all A, B € X(G/H). (10.3.2)

Then, there exist a linear transformation j: g — g and a unique skew-symmetric bilinear form w : g x g — R satisfying
the following ten conditions:

(c.1) yZ =0 for all Z €Y,

(c.2) 72X = —X (modh) for all X € g,

(c.3) 3(Adz(X)) = Adz(yX) (modb) for all (z,X) € H x g,

(cd) X, pY] = [X,Y] = DX, Y] = 5[X, Y] = 0 (modb) for all X,Y € g,

(©5) (dm)e(X)e = Jo((dm)eX.) for all X € g;

(s.1) w([X1, Xa], X3) +w([X2, X3], X1) + w([ X3, X1], X2) =0 for all X1,X2, X3 € g,
(82) h={Z eg|lw(Z,X)=0 for all X € g},

(s.3) w(Adz(X),Ad2(Y)) =w(X,Y) for all z € H and X,Y € g,

(s.4) w(X,Y) = Q,((dm)eXe, (dm).Ye) for all X,Y € g;

(cs) w(3X,)Y) =w(X,Y) for all X,Y € g.

(IT) Suppose that there exist a linear transformation j: g — g and a skew-symmetric bilinear form w : g x g — R satisfying
the above eight conditions (c.1) through (c.4), (s.1) through (s.3), and (c.s). Then, G/H admits a unique G-invariant
complez structure J and a unique G-invariant symplectic form Q so that (10.3.2) holds, 7 is related to J by (c.5), and
w is related to Q by (s.4).

Here G/H is a real analytic manifold in view of Theorem 1.1.2, and we identify the real constants with the real-valued constant
functions on G.

Here are comments on Theorem 10.3.1.
Remark 10.3.3.

1. By virtue of (10.3.2) one can construct a G-invariant pseudo-Kéhler metric g on G/H from

g(A,B) :=Q(A,JB) for A,B € ¥(G/H).

2. We refer to Dorfmeister-Guan [14, Section 1.2] for Theorem 10.3.1. Remark that the paper [14] has been created earlier
than the paper [12], but [14] is published later than [12].

10.4 Elliptic orbits and homogeneous pseudo-Kahler manifolds of semisim-

ple Lie groups

In this section we will confirm that there is no essential difference between elliptic orbits and homogeneous pseudo-Kéhler
manifolds of semisimple Lie groups. The setting of Section 10.4 is as follows:

e (G is a connected, real semisimple Lie group,
e g is the complexification of the (real) Lie algebra g = Lie(G),

e 7 is the conjugation of gc with respect to g.
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10.4.1 A pseudo-Kahlerian structure on an elliptic adjoint orbit
The main purpose of this subsection is to prove

Proposition 10.4.1. Let T be any elliptic element of g, and let L := Cg(T). Then, the homogeneous space G/L admits a

G-invariant complex structure J and a G-invariant symplectic form Q such that
Q(JA,JB) = Q(A,B) for all A,B € X(G/L).

Therefore G/L is a simply connected, homogeneous pseudo-Kdhler manifold of G. Here G/L is a real analytic manifold in

view of Theorem 1.1.2, and we identify the real constants with the real-valued constant functions on G.

Proof. By Proposition 7.3.4 and Theorem 10.3.1-(II), it is enough to show that there exist a linear transformation j: g — g
and a skew-symmetric bilinear form w : g x g — R satisfying the eight conditions (c.1) through (c.4), (s.1) through (s.3), and
(c.s) in Theorem 10.3.1. Taking the Killing form By of g we define a skew-symmetric bilinear form w : g x g — R by

w(X,Y) := By(T,[X,Y]) for X,Y € g. ®

Then, one knows that this w satisfies the conditions (s.1) through (s.3) by the proof of Lemma 9.2.3. For this reason, the rest
of proof is to construct a linear transformation j: g — g satisfying the (c.1) through (c.4) and (c.s). We quote the notation
[c, ut and [ from Lemma 7.2.8; and first define a complex linear transformation jc of gc = ut @ [c @ u~ by

(VT +Z4+V7) =iVt 4 (=i))V~ for V* cu*, Z € Ig,

where ¢ = /—1. Then, we deduce
gojc=jcoo @

by Lemma 7.2.8-(5"). Moreover,
(c.1) 3c(Z2)=0forall Z € I¢.

(c.2)! For any V* € u* and Z € I¢ we see that 2(VT +Z+ V") = -Vt + V") = -Vt + Z+ V™) (modlc), and thus
J2(W) = =W (modlc) for all W € gc.

(c.3)" Lemma 7.2.8-(2') implies that for every z € L, V¥ € u* and Z € I¢,
ac(Adz(VT+Z+ V7)) =iAdz(VT) —iAd2(V") = Ad2(iVT —iV ") = Adz(jc(VT+ Z+V7));
and jc(Adz(W)) = Ad z(yc(W)) for all (2, W) € L X gc.
(c.4)" For given V.F € u* and Z, € I¢ (a = 1,2), we obtain

e + 20+ V) 0e(Ve' + 2o+ Vo )| = Vi + 20+ Vi, Vo + 2o + Vs ]
—0e(eVi" + 20+ V) Vol + Zo+ Vo)) —ge(V + 20+ Vi e (V" + 22+ V3)])
= — [Zl,ZQ} S [C
by a direct computation with Lemma 7.2.8-(3'). So, we conclude that [jc(W1), jc(W2)] — W1, Wa] — g (e (Wh), Wa]) —
](c([Wl,jc(Wg)]) € ¢ for all Wy, Wy € gc-

(c.s) Fix any V.F € uF and Z, € I¢ (a = 1,2). On the one hand; Lemma 7.2.8-(3'), (4') and T € I¢ allow us to have
Boo (T e (Vi + 21+ V) ge(V™ + Zo + Vi )l) = Boo (T, iVi* — iV, iVs — iV )
= By (T, Vi, Vy 1+ [V, V3']) = Bee (T, [Vi" + Vi Vo + Vy ).
On the other hand; [T, Z,] = 0 and By ([P, Q], R) = —By.(Q, [P, R]) yield

By (T, Vi" + 21+ Vi Vo + Zo + V5 ]) = —Boo (Vi + Z0 + V7, T Vs + Zo + V)
= By (Vi" + Vi, T, Vs + Zo + Vi) = By (T, [Vi™ + Vi, Va© + Zo + V5 7))
= BE;C([V2+ + Zy + ‘/277T]7 VlJr + Vli) = Bgc([VQJr + V277TL V1+ + Vli) = Bgcc (T> [VlJr + ‘/177 V2Jr + V;])‘

Consequently By (T, [jc(Vit + Z1 4+ Vi), gc(Vah + Zo+ Vi )]) = Bao (T, [ViT + Z1 + Vi, V" + Zo+ V5 ]); and it follows
that By, (T7 [j@(Wl),j(c(Wg)]) = By, (T, (W1, Wg]) for all Wy, W5 € gc.
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Accordingly 7 := jcl|g is a real linear transformation of g and satisfies the conditions (c.1) through (c.4) and (c.s), because of
g={Xegc|gX)=X}and [={Y elc|a(Y)=Y}. O

Remark 10.4.2. Here are comments on the proof of Proposition 10.4.1. One can realize the linear transformation j = jc|q
of g = [ @ u by setting
Y +V4+5(V)) =iV —ig(V)for Y € land V € uT.

cf. Lemma 7.2.8-(i), (iii).

10.4.2 A realization of homogeneous pseudo-Kahler manifolds as elliptic adjoint orbits

We are going to inductively prove that any homogeneous pseudo-Kéahler manifold of G is an elliptic orbit of G (see Theorem
10.4.7).
Let H be a closed subgroup of the connected real semisimple Lie group G. Suppose that the homogeneous space G/H

admits a G-invariant complex structure J and a G-invariant symplectic form €2 such that
Q(JA,JB) =Q(A,B) for all A,B € X(G/H).

Then, there exist a linear transformation 7 : g — g and a unique skew-symmetric bilinear form w : g x g — R satisfying the

ten conditions in Theorem 10.3.1-(I). Moreover, there exists a unique S € g such that
(i) w(X,Y) = By(S,[X,Y]) for all X,Y € g,
(ii) Cg(S)O CHC Cc;(S)

by Lemma 9.2.1 and Proposition 9.2.2. Here By is the Killing form of g. Let us remark h = ¢4(.S), denote by jc the complex

linear extension of j to gc¢, and prove

Lemma 10.4.3. Let hc := ¢g.(5), g7 = {V € gc|yc(V) =iV (modbe)} and g~ := {V € gc|jc(V) = —iV (modhc)}.
Then, it follows that for each s = =+,

(1) [be,q°] C g% Adz(q®) Cq° forall z € H,
(2) q° is a complex subalgebra of gc,

(3) at Ng~ = e,

(4) @(bc) Che, o(a*) C g™ ando(g™) Cq¥,

(5) a* +49” = gc,

(6) dimc q® — dime he = dimc gc — dime q°,

(7) be ={Z € g9c | By (5, [Z,W]) =0 for all W € gc},
(8) By (S, 0% 9°]) = {0}.

Proof. Since j: g — g satisfies the conditions in Theorem 10.3.1-(I), we conclude that the complex linear transformation

Jc : gc — g satisfies
(c.1) yc(Z) =0 for all Z € b,
(c.2) J2(W) = —W (modhc) for all W € g,

(c.3) yc(ad Z(W)) = ad Z(jc(W)) (modhc) for all (Z, W) € he X gc,
gc(Adz(W)) = Ad z(yc(W)) (modhe) for all (2, W) € H x gc,

(c4) [e(Wh), 5 (Wa)] — Wi, Wa] — ge ([sc(Wh), Wa]) — ge ([Wi, jc(Wa)]) € be for all Wi, Ws € g,

(c.s)" Bg. (S, ic(Wh), 1c(Wa)]) = Bgc (S, [W, Wa]) for all Wy, W; € gc.
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Note that h¢ is a complex subalgebra of gc and o 3¢ = jc 0 @.

(1) is a consequence of (c.3)".

(2). It is clear that q° is a complex vector subspace of gc. From (1) and (c.4)’ we obtain [q°,q°] C q°. Thus ¢° is a
complex subalgebra of gc.

(3). For each V € qt Nq~ there exist Z,,Z_ € h¢ such that iV + Z, = jc(V) = —iV + Z_. Therefore one shows
V =1(i/2)(Z+ — Z_) € bc, and qT Nq~ C hc. The converse inclusion he C gt N g~ follows from (c.1)".

(4). From hc = ¢y (5) and &(S) = S we deduce that (hc) C he, which leads to 7(q°) C q~° since o jc = jc 0@ and
q° ={V € gc|yc(V) = siV (modhe)}.

(5). For an arbitrary W € g, it follows from (c.2)’ that W = (1/2)((W — igc(W)) + (W +igc(W))) € g7 4+ q~, so that
gc C g +q~. Hence q* +q~ = gc.

(6). A direct computation yields dimc gc 8 dimc (gt +q7) = dimc g+ +dimc g~ —dimc g™ Ng~ @ dimc g™ +dimcq™ —
dim@ h(c @ Qdimc qs — dim@ [j(c.

(7). For a given Z € gc, Z € he = ¢g.(S) if and only if ad S(Z) = 0 if and only if 0 = By ([S, Z], W]) = By.(S,[Z, W])
for all W € gc (because By, is non-degenerate). Thus (7) holds.

(8). For any Vi, V5 € q° (s = 4), there exist Z1, Zy € b such that jc(Vi) = siVh + Z1, gc(Va) = siVo + Zs. Then

By (S. [V, V2]) ) B, (S. e (1), ge(Va)]) = By (S, —s[Vi, Val + silVi, Zo] + si[Zy, Vo] + [21, Z2])
D By (S, —s2[Vi, Va]) = —By. (S, [V, Va)).

This implies that By, (9, [V1,V2]) = 0, and so By (S, [q°, 9°]) = {0}. O

Set be, gT as in Lemma 10.4.3. In view of Lemma 10.4.3-(2), (6), (7), (8) we see that q* is a complex subalgebra of the

complex semisimple Lie algebra g¢ and is a weak polarization of S. Thus,
1. q* is a complex parabolic subalgebra of gc and includes a complex Borel subalgebra b’ of gc,
2. [S,q*"] is an ideal of gT.

cf. Theorem 2.2 in Ozeki-Wakimoto [30, p.447]. In general, the intersection of two complex Borel subalgebras is not empty
and includes a Cartan subalgebra in a complex semisimple Lie algebra. Hence there exists a Cartan subalgebra ¢ of gc such
that ¢ C b’ NF(b’), and then

cc C (b'Na(b)) C (g Ng™) =be = g (5) (10.4.4)

by Lemma 10.4.3-(4), (3). This enables us to assert that S € ¢ and S is a semisimple element of g. Moreover,

Proposition 10.4.5. There exists an elliptic element T € g such that ) = ¢y(T') and

be=¢°, [S.qT]= Do g", [S,qa7]= Do gt gt = @Vzo g%, 9 = @yzo g,
where g* := {W € gc | ad T(W) = iAW} for A\ € R. Here we refer to Lemma 10.4.3 for bc, qF.

Proof. We are going to prepare some notation first. Since S € g is semisimple, there exists a (real) Cartan subalgebra ¢ C g
containing S. Denote by c¢¢ the complex vector subspace of gc generated by ¢, by A = A(gc, ¢c) the root system of g¢ relative
to ¢c, by go the root subspace of g¢ for a € A, and by H, (o € A) the unique element of ¢¢ such that a(X) = By, (Hq, X)
for all X € ¢c. Taking S € ¢¢ and 7(cc) = ¢¢ into account, we define a symmetric closed subset A C A and an involutive

transformation o* : A — A by
A:={yeA|S) =0}, (7*a)(X):=a(a(X)) for a € A and X € cc, )

respectively. Then it turns out that gc = ¢c © @, o, e (S) = cc B D, e, 9y, and b = ¢4 (5) is a complex reductive
Lie algebra including cc. In addition, since S is semisimple and [S, %] C q* we have g% = ¢,+ (S) ®ad S(q%) = hc @[S, 4*],
and there exist subsets A;, A, C A such that

AZA?{HAHA;7 [S7q+} :®5€Aq+ 957 [S7q7] :®5€A; 9,3 @

by [cc, qF] € g and Lemma 10.4.3-(5), (3). Remark that the cardinal number |AF] is equal to |[A | (because ®56A; g5 =
[S,q7]=7([S,q7]) = GBBGAQ‘ g5+ follows from (D, 7(S) = S and Lemma 10.4.3-(4)), and that 7* (A ) = AF, 7 (Af) = A,
and 7*(A) = A.
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Now, ¢¢, ¢c are Cartan subalgebras of hc and hc is a complex reductive Lie algebra. cf. (10.4.4). For this reason there
exists an inner automorphism v of hc such that ¢)(¢;) = ¢c. One can regard this ¢ as an inner automorphism of gc, so
b := 1 (b’) is a complex Borel subalgebra of g¢. Besides, it follows from [h¢, b'] C [hc, 7] C g that 4 (b’) C g™, so that

cccbcqt )

by ¢c = ¥(ci) C (b). Relative to this Borel subalgebra b C gc, we fix the set AT (C A(ge, cc)) of positive roots and put
A~ :=—A". Then b C q" = hc @ [S,q"] and @ yield AT — A C A}. Accordingly we conclude

AT —A=AF, AT —Aa=N7,

from A = (AT — A)TTATI(A™ — &), D, [AT — A| = |A™ — Al and [Af| = |A;|. Summarizing the statements above we
show that

be=cc @ EBVGA gy, S, qt] = @5ea+d g5, [S97]= @Bea—d 98,
gc = ¢g.(S) @ad S(gc), ¢4 (S) =be, adS(ge) =[S,aT]@[S,q7], at =bc@[S,qT], - =bc@®[S,q7], O
T'(A)=A, T(AT—A)=A"—4A, T(AT—A)=AT —a.

Let us put Z := > sca+_a Hs. Then Z belongs to cc and it follows form [he, [S,q7]] < [S,q7], [[S,q7].[S,qT]] € [S,q7]
that for each a € A,
the zero ifa €A,

a(Z) is { a positive real number if a € AT — A,

a negative real number ifa € A7 — A,

cf. Corollary 5.101 in Knapp [17, p.330].2 Therefore 3) and () assure that for each o € A, (7% a)(Z) = (") (Z) and

=0 ifaeca,
a(Z-7(2)is >0 ifaecAt —a, @
<0 ifae A™ —A.

Setting T' := i(Z —5(Z)) € ¢c, we demonstrate that T' = iZ+5(iZ) is an element of g = {W € gc |a(W) = W}; moreover, T
is elliptic, he = g7, [S,4%] = @50 67" and ¢= = @, 6= by @, @. In addition, it follows from ¢g.(S) = he = g° = ¢4 (T)
that b = ¢g(S) = (9N ¢y (5)) = (g N cge(T)) = (7). O

We will state Theorem 10.4.7 after proving
Lemma 10.4.6. Let T have the properties in Proposition 10.4.5. Then, H coincides with C(T).

Proof. At the beginning of this subsection one has known Cg(S)g C H C Cg(S). Therefore Proposition 10.4.5 and Lemma
7.3.3 give rise to
Ca(T) = Cs(S)o C H C C(9).

Hence, the rest of proof is to confirm that H C Cq(T). Let us denote by G the adjoint group of g, set H := Ad H, and
identify g with g via g > X +— ad X € g. Our first aim is to prove

H C Cu(T). D

2Indeed; let (o, B) := By (Ha, Hg) for a, 8 € A. Define ¢ (resp. wq) in a similar way to (8.1.3) (resp. (8.1.4)).

e In case of « € A, it follows from Eq — E_q € bc and [be, [S,q7]] C [S, q7] that Adwa(gs) = 9¢(jwa))sr C([wal)d € AT —aforalléd € AT —a.
Therefore a(Z) = a(Xsent_a Hs) = Xsent—al8) = S sent—a Cwal)e, (([wal)d) = =X scat_a (&, (([wa])d) = —a(Z). This implies
that a(Z) = 0.

e Suppose that « € AT — A. If §’ € AT — & and (&', ) < 0, then one has 2(§’, a)/{a,a) = —1, —2 or —3 (because of §’ # —a) and accordingly
C([wa])d’ = 6" 4+ o, & + 2a or §' + 3. At any rate (([wa])d’ belongs to A+ — A since Eqo, Es € [S,q%] and [[S,q7],[S,q7]] C [S,q"]. Besides,
one shows ((([wa])é’, o) = —(8’, &) > 0. Consequently it turns out that

a(Z) = Xsrent—a with (5’,a)<0<5l’a> + ZaoeAJrﬂ with (50,a>:0(507"‘> + Eaaeafrﬂ with <5a,a>>o<5a70‘>
= Ysrent—a with (57,ay<0 (&' +C([wal)d', a) + 350 At _ 4 with (5,0)50, ¢((wa])sga+—ald )
= 255A+—A with (8,a)>0, C([wa])5€A+—A<67a> > 0.

Here we remark that « € AT — A, (o, @) > 0, (([wa])a € AT — a.
e If a € A~ — A, then we conclude a(Z) < 0 from —a € AT — aA.
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Set Ge as the adjoint group of gc. In view of Lemma 10.4.3-(1) and Proposition 10.4.5 we see that

H - (NGC(GBI/ZO gu) N NGC(GBVZO gil’))v

where we identify gc = gc¢ in a similar way. That, together with Proposition 8.2.1-(vii), yields HC CGC(T)’ and hence
Hc(Gn Cg.(T)) = Cx(T). Thus @ holds. From now on, let us confirm that H C Cg(T). For any h € H, it follows that
Adh e H, and @) implies AdhoadT o (Adh)~! = adT. Hence we have Adh(T) =T, and H C Cgq(T). O

By summarizing the statements above and by Proposition 7.3.4 we conclude

Theorem 10.4.7 (cf. Dorfmeister-Guan [12, p.335]). Let G be a connected real semisimple Lie group, and let H be a
closed subgroup of G. Suppose the homogeneous space G/H to admit a G-invariant complex structure J and a G-invariant
symplectic form Q such that

Q(JA,JB) =Q(A,B) for all A,B € X(G/H).

Then, there exists an elliptic element T € g satisfying
H =Cq(T).

Therefore any homogeneous pseudo-Kdhler manifold of G is an elliptic adjoint orbit, and it is always simply connected.

10.5 Invariant complex structures on an elliptic orbit

It is known that there are several kinds of invariant complex structures on an elliptic adjoint orbit. One can understand that

from the following example:

Example 10.5.1. Let G := SU(2,1) = {X € SL(3,C) |'XI5; X = I} and

T .= ,
-1 0 O
where Ip; = 0 —1 0. Then it turns out that
0 0 1
iay b+ic |ix—y
) ) ab7 s Ly Yy <y S R,
g=su(2,1) = —b+ic ias ir—w a1,0a2,a3,0,¢,,Y, 2, W

5 - 5 ar +az+a3 =0
—ir—y —zz—w‘ ias

and T is an elliptic element of g; besides,

eqr 010
Co(T) = 0 e| 0 |eGp=SU@1)xU1)xU1)),
0 0 |es
0 b+ic |ixz—y
adT'(g) = —b+ic 0 iz —w b,c,z,y,z,weR
—ix —y —iz—w‘ 0

and g = ¢y(T) @ adT(g). Now, let us define linear mappings 1, j2, J3, J4, J5, J6 : § — ad T'(g) by

iaq b+ic |ix—y 0 ib—c | —x—1y
n —b+ic ias 1z —w = b+ ¢ 0 —z—w |, J2 = —I1,
—ir—Yy —iz—w 1a3 -4y —z+iw ‘ 0
iay b+ic |ix—y 0 tb—c | —x —iy
73 —b+ic ias iz—w | = ib+c 0 z 4w , 14 = —J3,
—r—y —iz—w 1a3 —r+1iy z—iw ‘ 0
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iaq b+ic |ix—y 0 tb—c | x4+ 1y
51 —b+ic ias iz—w |:=1] ib+c 0 z+iw |, J6 == —J5,
—iT — Y —iz—w‘ 1a3 T —1y z—iw‘ 0

respectively. By a direct computation we see that all the mappings j, (1 < a < 6) satisfy the conditions (c.1) through (c.4) in
Proposition 10.2.4, and therefore the elliptic orbit G/Cq(T) = SU(2,1)/S(U(1)xU(1)xU(1)) admits six G-invariant complex
structures J,. Incidentally, if Q is a G-invariant symplectic form on G/Cq(T') constructed from w(X,Y") := By (T, [X,Y])
(X,Y € g), then all (J,,Q) are G-invariant pseudo-Kéhlerian structures on G/Cg(T') and the signatures of pseudo-Kéhler
metrics g, (4, B) :=Q(A4, J,B) (A, B € X(G/Cq(T))) are as follows:

Signature

++++++)

(_7 -+, 4+ +)

g6

g1, 84

This implies that gg is a G-invariant Kéhler metric on G/Cq(T).







Chapter 11

Homogeneous holomorphic vector bundles

over elliptic orbits

In this chapter we deal with continuous representations of real semisimple Lie groups concerning homogeneous holomorphic

vector bundles over elliptic orbits. Here the definition of continuous representation is as follows:

Definition 11.0.1. Let G be a Lie group, V a Fréchet space over C, and ¢ : G — GL(V), g — 0(g), a homomorphism, where
GL(V) is the general linear group on V and it does not matter whether p is continuous here. Then, g is called a continuous

representation of G on V, if the mapping 7, : G XV =V, (g,¢) — 0(g)¢, is continuous.

11.1 A realization of elliptic orbits as domains in complex flag manifolds

In this section we realize elliptic (adjoint) orbits as domains in complex flag manifolds.

Let G¢ be a connected complex semisimple Lie group, let G be a connected closed subgroup of G¢ such that g is a real
form of g¢, and let T be a non-zero elliptic element of g. Let us define closed subgroups L C G and L¢ C G¢ by L := Cq(T)
and L¢ := Cg.(T'), respectively, and set

gt = {X €gc|adT(X) =iAX} for A e R, v =@, 0%, U :=expu®, QF = Ng.(B,>0™), (11.1.1)

where exp : gc — Gc is the exponential mapping. Then AdG(T) = G/L is an elliptic orbit, and G¢/Q* are complex flag
manifolds due to Proposition 8.2.1-(iii). By use of the mapping ¢ in Lemma 11.1.2-(2) below, we realize G/L as a simply
connected domain in G¢/Q*.

Lemma 11.1.2. Let s =+ or —.
(1) L coincides with G N Q°.

(2) v: G/L = Gc/Q%, gL — gQ?, is a G-equivariant real analytic diffeomorphism of G/L onto a simply connected domain

(3) GQ* is a domain in Gg.

Proof. (1). By Lemma 7.2.8-(2) and L = Cg(T') one has L C Ng. (€D, 9°) = @°; thus L C GN Q°. Let us confirm that
the converse inclusion also holds. Take any € GNQ*. Proposition 8.2.1-(iii), (i) and « € Q* imply that Q® = Ng.(lc S u®)
and there exists a unique (z,Y) € L¢ x u® satisfying

r=zexpY.

We want to show that expY = e (the unit element of G¢). Let @ denote the conjugation of gc with respect to g. On the
one hand, x € G, T € [=IcNg, Lc = Cg.(T) and Q° = Ng.(Ic ® u®) yield

g2 Ada™H(T) = (Adexp(=Y)z )T = Adexp(—Y)T € lc ©u’.

On the other hand, Adz~'(T) € g implies that Adz=(T) = o(Adz~'(T)), so that Adexp(-Y)T = o(Adexp(-Y)T) €
7(lc ®@u®) C lc @ u® by Lemma 7.2.8-(5"). Consequently we assert that

Adexp(—Y)T € (Ic ) N (Ic ©u~) = lc.

109
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Therefore [c 2 =T + Adexp(=Y)T = > >~ (1/n!)(—adY)"T € u*, and hence
Adexp(-Y)T =T.

This yields expY € (LcNU?®) = {e}. From expY = e we obtain = zexpY =z € (LcNG) = L, and GNQ* C L. For this
reason L = G N @Q* holds.

(2). We conclude (2) from (1), dimg G/L = dimg u* = dimg G¢/Q® and Proposition 7.3.4.

(3). Denote by 7 the projection of G¢ onto G¢/Q®. Tt is immediate from (2) that GQ® = 7! («(G/L)) is an open subset
of G¢. Moreover, GQ? is connected because the product mapping G x Q° > (g,q) — gq € GQ?* is surjective continuous and
both G and Q° are connected. O

Remark 11.1.3.

(i) Henceforth, we assume that the elliptic orbit G/L is a simply connected domain in the complex flag manifold G¢/Q~
via the G-equivariant mapping ¢ : G/L — G¢/Q~, gL — ¢gQ~. By inducing a G-invariant complex structure J on
G/L = «(G/L) from G¢/Q~ = (G¢/Q ™, J-), we consider G/L as a homogeneous complex manifold of G. Here we
refer to Remark 1.2.3 for the G¢-invariant complex structure J_ on G¢/Q ™.

—— | | -y

the open unit disk the unit sphere the hemisphere (without boundary)
G/L Ge/Q~ uG/L)

(ii) In general, there are several kinds of invariant complex structures on the elliptic orbit G/L (e.g. Example 10.5.1). In
this chapter we deal with the complex structure J on G/L induced by ¢ : G/L — G¢/Q~, gL — gQ~.

11.2 Homogeneous holomorphic vector bundles over elliptic orbits

The setting of Section 11.1 remains valid in this section.

Let V be a finite-dimensional complex vector space, and let p : @~ — GL(V), ¢ — p(q), be a holomorphic homomorphism.
Then, one can take the homogeneous holomorphic vector bundle G¢ x, V over the complex flag manifold G¢/Q~ associated
with p, and its restriction ¢*(G¢ x, V) to the domain G/L C G¢/Q~. Moreover, one may assume that

B (i) h is holomorphic,
Vee/q- = {h Gec =V (i) h(ag) = p(q)~*(h(a)) for all (a,q) € Ge X Q‘} ’ (11.2.1
B (i) ¢ is holomorphic, o
V = : G V
6/t {w 7V (i) v(a) = pla) " (B(@) for all (2,0) € G@- Q‘}

are the complex vector spaces of holomorphic cross-sections of the bundles G¢ %,V and H(Ge x » V), respectively (cf. Chapter
3). Let us define a homomorphism ¢ : G — GL(Vg/1), g — 0(g), as follows:

(0(9)¥)(z) :=1b(g ') for ¢ € Vg 1, and z € GQ~. (11.2.2)

In this section, we first prove that this ¢ is a continuous representation of the Lie group G on Vg, 1, next show that every
K-finite vector ¢ € Vg, (for the continuous representation ¢) can be continued analytically from U TNGQR™ toUT, and

finally provide a sufficient condition for the vector space Vg, to be finite-dimensional.
Remark 11.2.3.

(1) For the sake of simplicity, we write ¢(G¢ %, V), Va0 and Vg, for (Ge x,V)a/r, V(Ge x, V), and V(Ge x, V)1,
respectively. cf. (2.5.1), (3.2.3), (3.2.6).

(2) Corollary 8.2.3-(1) implies that G¢/Q~ is a connected compact complex manifold. Thus, one knows dim¢ Vg, /- < 0.
e.g. Kodaira [20, p.161].
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11.2.1 A continuous representation of a Lie group

We equip the complex vector space Vg, with the Fréchet metric d in (4.1.3), and hereafter consider Vg, as a Fréchet
space over C (cf. Proposition 4.3.1). Our goal in this subsection is to prove that 7, : G x Vg, = Va,r, (9,¥) = o(g)1, is
continuous (see Proposition 11.2.8). We are going to verify three lemmas first, and then obtain the goal.

Lemma 11.2.4. The following two items hold for a given ¢ € Vg, :

(1) For any € > 0 and any non-empty compact subset E C GQ~, there exists an open neighborhood U of the unit e € G
such that g € U implies dg (g(g)z/J,@/J) < €. Here we refer to (4.1.2) for dg.

(2) The mapping G > g+ 0(9)¥ € Vg1 is continuous at e € G, namely, for every e > 0 there exists an open neighborhood
U of e € G such that g € U implies d(g(g)w,@[}) < €.

Proof. (1). The mapping G' x GQ~ 3 (g,q) = g~ 'q € GQ~ is continuous, ¥ : GQ~ — V is continuous, and so the mapping
[:GxGQ™ =V, (g,9) — (97 'q), is continuous. Therefore, for each y € E there exist an open neighborhood U, of e € G
and an open neighborhood Oy, of y € GQ™ such that (g,2") € U, x O, implies

lo(g™2") =)l = 1f(g,2) = fle;y)] <e/4 @

because f is continuous at (e,y). Here || - [| is a norm on the vector space V. Since Oy is an open neighborhood of y € GQ~

and 9 : GQ~ — V is continuous at the y, one can choose an open neighborhood O, of y € O?’J so that z € O, implies

[9(y) =P (2)] < e/4. @

Since E C UyeE Oy and £ C kGQ_ is compact, there exist finite elements y1,y2,...,yr € F satisfying E C U?Zl Oy, -
In this setting, we put U := ﬂj:1 Uy,
(9,w) € U x E, there exists a 1 <i < k such that w € O,, C O, and it follows from g € (ﬂf:1 Uy,) C Uy, © and @ that

and see that U is an open neighborhood of e € G. Furthermore, for an arbitrary

(11.2.2)

[(e(g)) (w) — w(w) (g™ w) = w(w) | < (g™ w) = vyl + 1 (y:) — v(w)]| < e/4+e/4=¢/2.

This and (4.1.2) assure that dg(0(g)1, 1) < €/2 < € for all g € U. Hence (1) holds.
(2) follows by (1) and Proposition 4.3.1-(3). O

Lemma 11.2.4-(2) leads to
Corollary 11.2.5. For each ¢ € Vg1, the mapping G > g+ 0(9)Y € Vg1, is continuous.

Proof. Fix any go € G and € > 0. Since 9o := 0(go)v is an element of Vg1, Lemma 11.2.4-(2) enables us to obtain an open
neighborhood U’ of e € G such that ¢’ € U’ implies d(g(g')wo,wo) < e. Setting U := R, (U’) one can assert that U is an
open neighborhood of gy € G; moreover, g € U implies

d(e(9)v, e(go)w) = d(o(9gy "o, 1ho) < e
because of ggy ' € U’. Thus the mapping G > g +— 0(g)y € Va1 is continuous at the point go. O

The following lemma, together with Corollary 11.2.5, tells us that 7, : (g,%) — o(g)¥ is a separately continuous linear
action of G on Vg1

Lemma 11.2.6. For each g € G, the linear mapping o(g) : Va/r — Va/r, ¥ = o(g), is uniformly continuous.

Proof. By virtue of Proposition 4.3.1-(3) it suffices to prove that Vg, 3 ¥ = 0(g)1 € Vg, is uniformly continuous in the
topology of uniform convergence on compact sets. For any € > 0 and any non-empty compact subset £ C GQ~, we set
E':= g 'FE and § := . Then, E’ is a non-empty compact subset of GQ~ and § > 0. In addition, it follows from (4.1.2) and
(1122) that dg/ (1/)1,1/)2) < 6 and Y1, € Vg/L imply

de(o(9)¥1, 0(9)2) = sup {[v1(g™"y) — va(g ')l : y € E}
=sup {[[¢1(2) — ¢2(2)[| : 2 € g E} = dpr(¢1,92) <6 =

Hence, the mapping Vg, 3 ¥ +— 0(g)y € Vg, is uniformly continuous. O
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We will show Proposition 11.2.8 after proving

Lemma 11.2.7. For any non-empty compact subset C of G and any open neighborhood B of 0 € Vg1, there exists an open
neighborhood A of 0 € V1, such that o(g)y € B for all (g,v) € C x A.

Proof. For € > 0 we set an open neighborhood B. of 0 € Vg, as Be := {¢ € Vg, |d(0,v) < €}, and put D, := B, (the
closure of B¢ in Vg/r,).

Since B is an open neighborhood of 0 € Vg1, and the addition Vg, x Vg 1 3 (¢1,%2) = ¥1 + 12 € Vg1, is continuous
at (0,0), there exists an r > 0 such that

D, + D, C B. (a)
Lemma 4.1.4-(3) assures that
tB, C B,,tD, C D, for all -1 <t <1, (b)
and it follows from (b) that
B.Cc2B.Cc---cnB.C(n+1)B.C---. (c)

Here AB, means {\¢ | ¢ € B,.} for A € R. Furthermore, one can show

VG/L = UZO:1 nb;. (d)
Indeed; for any ¢ € Vg,r,, the mapping C > a +— atpg € Vg1, is continuous at 0 € C, and therefore there exists an m € N
such that (1/m)vg € By, since B, is an open neighborhood of 0 € Vg, and lim (1/n) = 0. Hence ¢g = m((1/m)to) € mB,.
n—oo
This yields Vg, C U,—, nB;, and (d) follows.

Now, let us define

Fu = Nyeclt € Ve lolg) € nD,} ®

for n € N. For each g € C, Lemma 11.2.6 ensures that {1 € Vg, | 0(9)Y € nD,} = 0(g9)"(nD,) is a closed subset of Va/r
because nD, C Vg, is closed. Thus it follows from (D that

Fn is a closed subset of Vg, for each n € N. @)

We want to show Vg, = U, Fn. For an arbitrary vy € Vg1, the mapping G 5 g — 0(g)Yo € Vg1, is continuous by
Corollary 11.2.5. Accordingly {o(g)10|g € C} is a compact subset of Viz/r,. This, combined with (d) and (c), enables us to
find a k € N such that {o(g)vo|g € C} C kB,. Then, B, C D, and @) give rise to 19 € Fy C |y, Fn. For this reason we
conclude

VG/L = Ufle Fa. @
By @, @ and Proposition 4.4.1, there exist an NV € N, a ¢y € Fy and an open subset On C Vg1, which satisfy
’(/)N € Oy C Fn. @

Setting A’ := On — ¢, we see that A’ is an open neighborhood of 0 € V¢, Moreover, for any (g,7') € C x A, it follows
from @, D and (a) that

0(9)" = o(9) (V" + ¥n) + o(9)(—¥n) € 0(9)(Fn) + o(9)(=¢n) C ND, + ND, C NB,

where we note that o(g)(—¢¥n) = —0(9)(¥n) € —0(9)(Fn) C =ND, = N(=D,) C ND, due to (b). Hence we can deduce
the conclusion from A := (1/N)A". O

Let us show

Proposition 11.2.8. The ¢ in (11.2.2) is a continuous representation of the Lie group G on the Fréchet space Vg1, Here
we refer to (11.2.1) for Vg, and equip Vg 1, with the Fréchet metric d in (4.1.3).

Proof. Let us prove that m, : G x Vg = VgL, (9,9) = 0(g9)v, is continuous. Take any element (go,v0) € G x Vg1, and
any open neighborhood O of 7,(go0,%0) = 0(g0)%0 € Vg - Since the addition Vg /1, X Vg 3 (¥1,12) = ¥1 + 92 € Vg 1 is
continuous at (0, 0(go)1), there exist open neighborhoods B of 0 € Vg1, and U of 0(g0)10 € Vg1, such that

B+UCO. (a)
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Corollary 11.2.5 assures that G > g +— 0(g)¥0 € Vg1 is continuous at go, so there exists an open neighborhood U’ of g¢ € G
such that
9(9’)1/10 € U for all g/ S U/. (b)

Besides, since G is a locally compact Hausdorff space, there exists an open neighborhood U of gy € G so that
U C U’ and the closure U is a compact subset of G. (c)
By (c) and Lemma 11.2.7, there exists an open neighborhood A of 0 € V¢, 1, such that
0(g)y € B for all (g,) € U x A. (d)

Putting V := A+ )y, we assert that V is an open neighborhood of ¥y € Vg,1. In addition, for any (g,%) € U x V we obtain

To(9,%) = 0(9) = 0(9)(¥ — o) + 0(g)%0 € o(U)(A) + o(U)po C B+U C O

from (d), (c), (b) and (a). Consequently, 7, is continuous at (go, %o). O

11.2.2 K-finite vectors

Since the element T" € g is elliptic, Lemma 7.2.4 enables us to have a Cartan decomposition g = £ & p such that
T et

where € is a maximal compact subalgebra of g. Noting that the center Z(G) of G is finite due to Z(G) C Z(G¢) and that
gy = EPip is a compact real form of g¢, we denote by K and G, the maximal compact subgroups of G and G¢ corresponding
to the subalgebras £ C g and g, C gc, respectively. In addition, let 6 be the (anti-holomorphic) Cartan involution of G¢ so
that
Gu = {gu € Gc|0(gu) = gu}-

Fix a maximal torus ihg of the compact semisimple Lie algebra g, containing the 7', and take the (non-zero) root system
A of gc¢ relative to hc, where h is the complex vector subspace of g generated by ihg. For each a € A, we denote by g,
the root subspace of g¢, and suppose vectors E1, € g1, to satisfy (8.1.1). Letting A = {y € A|~v(T) = 0}, we are going to

demonstrate three lemmas and two propositions.

Lemma 11.2.9. Let t¢ be the complex subalgebra of gc generated by €. For a root 5 € A — A, the following (a), (b) and (c)
are equivalent:
(a) gg Ctc, (b) Eg€te, (c) (Eg—E_pg)€t.

Therefore, wg = exp(n/2)(Eg — E_g) belongs to K N Ng, (ihr) whenever one of the conditions (a), (b) and (c) holds.

Proof. Since (a)<(b) is obvious, we only confirm (b)<(c). cf. Subsection 8.1.3 for wg € Ng, (ihr).

(b)=-(c). This follows by (8.1.2), 0.(kc) C £c and € = {X € € |0.(X) = X}. Here we remark that (8.1.2) always holds
for any vector E, with (8.1.1).

(¢)=-(b). Suppose that (Eg — E_g) € £. Then, from T € £ one obtains

B(T)Es+E_p)=[T,Es—E_gl€[t€C¥
and s0 0 # B(T) € iR yields (Es + E_g) € it. Hence Es = (1/2)(Es — E_p + Es + E_g) € £+ it C tc. 0

Let TIo be a fundamental root system of A satisfying (8.1.5), and let AT be the set of positive roots relative to IIa. Let
us suppose that AT — A consists of r-roots f1, B2, ..., B, (r = dimc u™t). Then, it turns out that {Ej, }i—1 is a complex basis
of ut = @ cn+_a 80 = D), 9p,, and Proposition 8.2.1-(i) allows us to identify U* with C” via

Ut Sexp(2tEp, + 22Ep, + -+ 2"Fp.) «» (24,2°%,...,2") € C". (11.2.10)

Remark that z', 2%, ..., 2" is the canonical coordinates of the first kind associated with {Eg, }ioy Cut. Setting w; = B;(—iT)
for 1 < j <, one has 3;(T) = iw;, w; > 0 and

Ad(exptT)Eg, = e™i'Eg (1< j <) (11.2.11)

for all t € R. About these wy,wo,...,w, > 0 we assert
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Lemma 11.2.12. For a given 9 € R, the number of non-negative integer solutions (nyi,ns,...,n,) to the equation
¥ = wing + wong + - - - + wpn,
is only finite or zero.

Proof. If (n1,n2,...,n,) is a non-negative integer solution to the equation, then it follows from w; > 0 (1 < j < r) that
Y —wgng = wing + -+ Wp—1Mg—1 + Wkr1Nkt1 + - + wpnye > 0, 80 that 0 < ny < ¢/wg, np € Zforall 1 <k <. O

Now, let (Vg/r)k be the set of K-finite vectors in Vi1, for the continuous representation ¢ of G on Vg1, that is,
(Va/o)k = {¢ € Vg1 | dime spanc{o(k)p : k € K} < oo}. (11.2.13)
Note that (V1)K is a o(K)-invariant complex vector subspace of V¢ ,r,. With this notation (11.2.13) we show
Lemma 11.2.14.
(1) For each ¢ € (Vg 1)Kk we set a o(K)-invariant complex vector subspace V, C Vg1, as
V, = spanc{o(k)p : k € K}.
Then, there exist a complex basis {gpa}’;il of Vo and pi, pa, . .. s Bk, € R such that
o(exptT)pa = e g
foralll <a<k,=dimcV, andt € R.
(2) There exist a complex basis {vp};*, of V and 01,04, ...,60, € R such that
plexptT)vy = ety
forall1 < b<m=dimcV andt € R.

Proof. Since the center Z(G) is finite and T # 0, Lemma 7.2.1 implies that S = {exptT : t € R} is a 1-dimensional torus.

(1). It follows from T" € € that S* C K. Therefore, since V,, is o(K)-invariant and k, = dim¢ V,, < 0o, one can decompose
V, into a direct sum of 1-dimensional o(S Y-invariant complex vector subspaces: Vo =V1®& Vo@D @V, . Hence there exist
a complex basis {goa}I;il of V, and py, pia, . .., p, € R such that p, € V, and

o(exptT)p, = ey,

forall1 <a <k, =dimcV, and t € R.
(2). One can conclude (2) by arguments similar to those above, S* C L C Q~, V being p(Q~)-invariant and m =
dim¢ V < oo. O

We are in a position to demonstrate
Proposition 11.2.15. Let ¢ € (Vg/1)x and V, = spanc{o(k)y : k € K}.

(i) Let {gpa}sil and {vp}}*, be the bases of V, and V in Lemma 11.2.14, respectively. For x € GQ~ we express pq(x) € V
as
Pa(®) = @o(@vi +@g(@)va + - + o7 (@)vm.

Then, for each1 < a < ky, and 1 < b < m, there exists a unique polynomial (holomorphic) function @b’ = b/ (21, ..., 2")

on Ut = C" of finite degree such that
W= onUtNGQ~.

Here U™ is identified with C™ via (11.2.10), and 2, ..., 2" is the canonical coordinates of the first kind associated with
the basis {Eg;}i_; Cut.

(ii) For a given ¢ € V,, there exists a unique holomorphic mapping ¢' : Ut — V such that ¢ = ¢ on UT NGQ™.
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Proof. (i). By Lemma 11.1.2-(3), UT N GQ~ is an open neighborhood of e € UT. Hence the theorem of identity assures the
uniqueness of ¢/, where we remark that the restriction cpf’l|U+mGQf is holomorphic since U™ is a regular complex submanifold
of G¢. From now on, let us confirm the existence of ¢%’. Since ¢% : Ut N GQ~ — C is holomorphic, we can find an R > 0
so that the following (al) and (a2) hold for P :={u e Ut : [2/(u)| < R, 1 < j <7} :

(al) P is an open subset of Ut N GQ~ containing e, and

(a2) on P we can express ¢’ |y+nco- as
Wb (2t 22,...,2") = Z Qnyngom, (21" (22)"2 - (27)™
N1,M2,.. Ny >0
(the Taylor expansion of cpZ|U+ﬂGQ— at e = (0,0,...,0)).
Remark, it follows from (11.2.11) that sPs™* C P for all s € S* = {exptT : t € R}. For any t € R and u € P we obtain
Sy €l (u)vy = plexptT) (3pt; b (u)vy) (. Lemma 11.2.14-(2))

= p(exptT)(pa(u)) = pa(uexp(—tT)) (" ¢a € Va1, (11.2.1)-(ii))
(112:2) (o(exptT)pa) ((exptT)uexp(—tT)) = (e™'p,)((exptT)uexp(—tT)) (.- Lemma 11.2.14-(1))

=> ei"“atgo(bl((exp tT)u exp(—tT))vb.
This provides us with

¢!t Sl (u) = iy (exp tT)u exp(—tT)). @

If u=exp(z' Eg, + 2%2Eg, + -+ + 2"Ep.), then it follows from (a2), @ and (11.2.11) that
S gy (1)) () = O (T 22 )

_ ez’(eb—#a)th(u) — wZ((exptT)uexp(—tT)) _ (pz(emltz1,emzt22, . ,eiwrtzr)
— Z ei(wlnl+w2n2+~-~+wrnr)tan1n2mnr(Zl)nl (24’2)”2 . (ZT)HT.

ni,n2,...,n,>0

Therefore we see that

ei(ehfua)ta i(winitwano+-twrn,. )t

ning--n, — € Aping--n,.
for all t € R and nq,ns,...,n, > 0. Differentiating this equation at ¢ = 0 we deduce
(ab - ,U/a)anlngmnr - (wlnl + wong + -+ Wrnr)an1n2<~-nr~ @
Here Lemma 11.2.12 implies that the number of non-negative integer solutions (ni,na,...,n,) to the equation

Op — pa = wing +wang + - +wpn,

is only finite or zero, so that the number of the non-zero coefficients v, n,...n, is only finite. Consequently (21, 22,...,2") =

>t gy >0 Xnangeon, (z1)m1(22)"2 - -+ (™)™ must be a polynomial function on the open subset P C U™ of finite degree.

Moreover, one can extend it as a polynomial function on U of finite degree, since z',22,...,2" is a global coordinate system

in UT.
(ii). For any ¢ € V,, there exist ay,...,ax, € C such that ¢ = Z’;il aqpq- Hence (ii) follows from (i). O

Proposition 11.2.15-(ii) leads to

Corollary 11.2.16. For any ¢ € (Vg/1)K, there exists a unique holomorphic mapping o' : Ut — V such that o = ¢’ on
Ut NGQ~. Here we refer to (11.2.13) for (Ve 1) k-

Recalling that A = {y € A|v(T") = 0}, we establish the following proposition which will play a role in the next subsection:

Proposition 11.2.17. Suppose that the fundamental root system IIo satisfies not only (8.1.5) but also
g C Ec for all B € IIn — A.

Then, for each ¢ € (Vg 1)K there exists a unique h € Vg, - such that ¢ = h on GQ™.
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Proof. The uniqueness of h comes from the theorem of identity, Lemma 11.1.2-(3) and G¢ being connected. So, let us
prove the existence of h. Fix an arbitrary ¢ € (Vg/1)kx. By Corollary 11.2.16 there exists a unique holomorphic mapping
@ Ut — Vsothat ¢ = ¢’ on UT N GQ~. Then, Proposition 8.2.1-(iv) enables us to construct a holomorphic mapping
O UTQ™ — V from

" (uq) := p(q)~" (¢ (w)) for (u,q) € UT x Q™.

Here it follows from ¢ € Vg, (11.2.1)-(ii) and (UTQ~ NGQ™) = (UT NGQ™)Q~ that
e=¢"onUTQ" NGQ. )

For every 3 € Tl — A, the supposition and Lemma 11.2.9 assure wg € K, and thus g(wg)e belongs to (V1) k since (Va,/1)x
is o(K)-invariant. Consequently, for each 3 € IIn — A there exists a unique holomorphic mapping (o(wg)p)” : UTQ~ — V
such that

o(wp)p = (o(wp)p)”" on UTQ™ NGQ~, @

where we remark that UtQ™ is connected (cf. Proposition 8.2.1-(iv)). Taking these ¢”, (o(wg)p)” : UTQ™ — V (8 € IIn —A)
into account, we define a holomorphic mapping ¢ of D := U+tQ~ U (UBGHA—A w§1U+Q*) into V as follows:

(z) = o' (x) ifzeUtQ™, 3
T otws)o) (wsn) tx e wiUTQT (BETIn - a),

Here D =U"Q™ U (Ugerr, —a w?U*Q’) is a dense domain in G¢ by Corollary 8.3.16-(i) and Lemma 8.3.19. We need to
confirm that @) is well-defined. For any y € GQ™NU Q™ N (Ngerr, —a wﬁ_lUJrQ’) one has wgy € UTQ ™, wgy € KGQ™ C
GQ~, and

(o(ws)e) (wsy) D (o(ws)o)(wey) "2 o) L o (1),

Thus @) is well-defined by the theorem of identity and Lemma 8.3.27-(3). In addition, from the above computation we deduce
p=pon DNGQ~. @

Now, Lemma 8.3.22-(2) and Remark 8.3.26 imply that the domain D of ¢ includes the O in Theorem 8.3.17. Therefore there
exists a unique holomorphic mapping h : G¢ — V such that

p=honD
by Theorem 8.3.17-(ii). This h satisfies
¢=hon GQ~, h(aq) = p(q)~*(h(a)) for all (a,q) € Gec x Q™. ®

Indeed; since GQ™ is connected, it follows from ¢ = h|p, @ and the theorem of identity that ¢ = h on GQ~. Furthermore,
it follows from ¢ = h|gg- that for all (z,q) € GQ™ x Q™

h(zq) = ¢(q) = p(a) ' (p(2)) (¥ € Vayr, (11.2.1)-(if))
= p(a)"" (h(x)).
This and the theorem of identity imply that h(aq) = p(q)_l(h(a)) for all (a,q) € G¢c x Q, since GQ~ C G¢ is open.
Accordingly ® holds. By (11.2.1) and & we conclude h € Vg, ;- and this proposition. O

11.2.3 A sufficient condition for Vg, to be finite-dimensional

In order to state Theorem 11.2.18, let us fix its setting.
e (¢ is a connected complex semisimple Lie group,
e (G is a connected closed subgroup of G¢ such that g is a real form of gc,
e T is a non-zero elliptic element of g,

e g=Et@yp is a Cartan decomposition of g with T" € ¢,
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e ihg is a maximal torus of g, := € & ip containing T,

A = A(gc, be) is the root system of g¢ relative to he, where he is the complex vector subspace of gc generated by ibg,

go is the root subspace of g¢ for a € A,

L= CG(T)7

Q™ = Noo(®,5007"), where g* = {X € gc| adT(X) = iAX} for A € R,

e fc is the complex subalgebra of gc generated by &,

V is a finite-dimensional complex vector space,

p:Q = GL(V), ¢ — p(q), is a holomorphic homomorphism,

e Ve, /Q- and Vg /L are the complex vector spaces defined by

o ) (i) h is holomorphic,
Yeeran = {h YV ) hag) = pla) (h(@) for all (a.0) € Ge x Q‘} |
_ (i) ¥ is holomorphic,
Voo = G \Y 5
et {¢ OV (i) () = pla) " (9(2) for all (,9) € GQ~ @—}

respectively.
In the setting above we establish
Theorem 11.2.18 (cf. [5]'). Suppose that (S) there exists a fundamental root system Ia of /A satisfying
(s1) a(—iT) >0 for all « € IIa, and
(s2) gp C tc for every B € IIn with B(T') # 0.

Then, the complex vector space Vg, o~ i linear isomorphic to Vg, via
F: VGC/Q* — Vg/L, h+— h|GQ*§
and therefore dimc Vg1, = dime Vg, /- < 00. Here h|gq- stands for the restriction of h to GQ™ (C Gc).

Proof. Needless to say, the mapping F': Vg./q- — Vg 1, b+ hlgg-, is complex linear. Lemma 11.1.2-(3) and the theorem
of identity imply that F' is injective because G¢ is connected. Consequently, the rest of proof is to demonstrate that F' is
surjective, cf. Remark 11.2.3-(2). Fix an arbitrary ¢ € Vg /1. By Propositions 11.2.8 and 6.2.1, and by (11.2.13) we deduce
that (Vg L) i is a dense subset of V1, = (Va/1,d). So, there exists a sequence {p,}52; C (Vg 1)k satisfying

lim d(¢, p,) = 0.

n—00

On the one hand; the supposition (S) and Proposition 11.2.17 assure that (Vg,)x C F(Vg./0-), and thus

{enknzs C F(VGc/Q—)~

On the other hand; since F': V. /o~ — Vg1 is injective linear, Proposition 4.1.8-(2) and dim¢ Vg, o~ < oo enable us to
see that
F(Vg./o-) is a closed subset of Vg, 1.

Therefore ¢ = lim ¢, € F(Vg./q-), and hence F' is surjective. O
n—oo

Remark 11.2.19. If the supposition (S) in Theorem 11.2.18 holds for the elliptic orbit G/L, then one can clarify several
properties of G/L—for example,

1. any holomorphic function on G/L is constant,

2. the group Hol(G/L) of holomorphic automorphisms of G/L is a (finite-dimensional) Lie group,

IWe improve the proof of Theorem 3.1 in [5].
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and so on.

Let us give examples which satisfy the supposition (S) in Theorem 11.2.18, and give examples which do not so.

The first example is

Example 11.2.20 (G/L = Gy(2)/(SL(2,R) - TY)). Let gc be the exceptional complex simple Lie algebra (g2)c of the type
G2. Assume that the Dynkin diagram of A = A(gc, be) is as follows (cf. Bourbaki [6, p.289]):

(651 (65)
gC; O%@
3 2
Then Ia = {a1,as}, and the set A of positive roots is

AT = {30[1 + 209, 301 + a9, 21 + a0, i + ag,ahaQ}. Q)

Let us fix a non-compact real form g C gc. Taking Chevalley’s canonical basis {H ,

H; } T {E,|a € A} of gc we first

construct a compact real form g, C gc from

br := spanR{Hél,H22}, gy = ihr @ @aeA spang{Fo — E_o} @ spang{i(Es + E_o)},

and denote by {Z1,Z;} (C br) the dual basis of IIn = {aj,a2}. By use of this Zs we next construct an involutive

automorphism 6 of the complex Lie algebra gc¢ from
0 := expmad(iZs). @
Since 6(g,) C g, one can get a non-compact real form g C gc by setting
t={Xecg,|0X)=X}, ip:={YVe€g,|0Y)=-Y}, g:=tdp.

Here we remark that g, = ¢ ip, € = sp(1) D sp(1), g = ga(2) and

tc={Vegc|d(V)=V}, ©)
where £¢ stands for the complex subalgebra of gc generated by €.
aq —30[1 - 2042
tc: O O

In this setting, each T' € ibg is an elliptic element of g and we know that for [ := ¢y(T'),
(A) I=5l(2,R) & t' in case of T =i(Z; —2Z3), (B) [=5l(2,R) &t in case of T = i(Zy — 3Zs).

cf. Proposition 5.5 in [4, p.1157].
Case (A). Let T :=i(Zy — 2Z5) and 114 := {201 + aa, —3a; — 2a2}. Then 14 is a fundamental root system of A by (D.

2001 4+ o —3a1 — 209
II4: O%O

From a direct computation with «;(Z;) = d,; we obtain
(20[1 + OlQ)(*’L‘T) = O, (73@1 - 2&2)(717‘) =1 Z 0.

This assures that I14 satisfies the condition (s1) in Theorem 11.2.18. Moreover, @) yields 0(E_30,—-20,) = F—_30;,—2a,, and
so @ yields g_34,—24, C tc. Therefore II4 satisfies the condition (s2) also. Hence, the supposition (S) in Theorem 11.2.18
holds in this case.

Case (B). Let T := i(Z1 — 3Z5) and Il := {1, —3a; —as}. Then, one can conclude that the supposition (S) in Theorem
11.2.18 holds, by arguments similar to those above,

(651 —30[1 — Q9
IIp: O%{j

and a1 (—iT) =1, (=31 — ag)(—iT) = 0.
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Remark 11.2.21. In case of Example 11.2.20-(A), I := {—2a; — a2, 3a;1 + as} is another fundamental root system of A,
and
(—2&1 — ag)(—iT) =0, (3a1+ Oég)(—iT) =1.

Thus IT" satisfies the condition (s1) in Theorem 11.2.18. However, it follows from @) that 6(Esq,+a,) = —F3a,+a,, S0 that
the condition (s2) cannot hold for this IT'.

The second example is
Example 11.2.22 (G/L = SU(2,1)/S(U(1) x U(1,1))). Let

Gc:=SL(3,C)={g € GL(3,C) | detg =1}, G:=8U(2,1)={X € Gc| X121 X =1>1},

-1 0 O
where [5,1 = | 0 —1 0. Then one has
0 0 1
ia b+ic |ix—
1. . . Y al,ag,ag,b,c,x,y,z,weR,
g= —b+ic a9 12 — W

5 - - a1 +az+a3 =0
—ir—y —zz—w‘ ias

and obtains a Cartan decomposition g = €& p,

1a; b+ic| O 0 0 -y
t= —b+ic day | 0 |€gr=su2)dul)), p= 0 0 iz—w |€g
0 0 | ias —iz—y —iz—w]| O
Setting g, := ¢t ® ip and
aq 0 0
f)R — 0 ay| 0 ai,as,a3 € R,
0 0 | a3 a1 +as+az3 =0

we assert that g, is a compact real form of g¢ = s((3,C) and

a1 b+ ic T+ iy
. . . a17a2»a3»b707$ay727weR7
Ou = —b+ic ias z 4w = s5u(3);
ay+az+a3 =0

—x + 1y feriw‘ ias

besides, ihg is a maximal torus of g,. Remark that each T € ibg is an elliptic element of g = su(2,1) due to ihg C &.

Now, let us define complex linear mappings a1, as : hc — C by

€1 0 0 €1 0 0
a; 0 e |0 =€ — €2, Qg 0 e |0 1= €9 — €3,
0 0 ]es 0 0 |e3
respectively. Then IIa := {a1, a5} is a fundamental root system of A(gc, be).
(&3] (65)
gc: O—=O
1 1
By setting
0
1
Zl = s Z2 = § 0 s
-2

we have hr = spang{Zi, Zo} and ai(Z;) = 0 ; (k,j =1,2).
e Case T =1Z;. Let T :=1Z;. Then it follows from T € ihr that T is an elliptic element of g = su(2,1). From a direct

computation with a(Z;) = dj,; we obtain

Oq(—iT) = 1, Oég(—iT) = 0.
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Hence ITn = {aq, s} satisfies the condition (s1) in Theorem 11.2.18. Since

Goy =

oo o
SOl O

0
0 ecCp Ctc,
0

it satisfies the condition (s2) also. For this reason the supposition (S) in Theorem 11.2.18 holds for the T' = iZ;. Incidentally,
L:=Cq(T)=5SU(1)xU(1,1)) and G/L = SU(2,1)/S(U(1) x U(1,1)).
e Case T'=1Z5. Let T :=1iZ5. Then T is an elliptic element of g, and one has

ar(—iT) =0, ay(—iT) =1,

so ITn = {aq, s} satisfies the condition (s1) in Theorem 11.2.18. However, the condition (s2) cannot hold for this T' = iZ,
because

o

oy = eecC ) Cpc.

oo O
oo O

€

0

Incidentally, G/L = SU(2,1)/S(U(2) x U(1)) and is a symmetric bounded domain in C2.
The third example is

Example 11.2.23. The supposition (S) in Theorem 11.2.18 cannot hold for any symmetric bounded domain D in C™ at all.
Let us explain the reason why. In order to do so, we take an elliptic orbit G/L = G/Cq(T) in the setting of Theorem
11.2.18, and put u := adT'(g). Since adT : g — g is semisimple, g is decomposed into g = [ ® u; and furthermore, it is
decomposed into
g=CEnHae(pnhaEnu) e (pnu)

because of T' € £. Then, Lemma 11.2.9 implies that
enu# {0}

is a necessary condition for the (s2) to hold. However, if G/L is a symmetric bounded domain in C™ (where G is the identity
component of Hol(G/L)), then it follows that

€nH=¢ (pnD)={0}), (ENu)={0}, (pNu)=p
For this reason the supposition (S) cannot hold.
We end this chapter with stating

Remark 11.2.24. For each complex flag manifold G¢/Q~ one can determine the complex Lie algebra O(T*%(G¢/Q ™)) of
holomorphic vector fields on G¢/Q~ by Theorem 7.1 in Onishchik [29, pp.52-53]. Accordingly we deduce that

1. G/L = Gy)/(SL(2,R) - T') and O(T*°(G/L)) = (g2)c in case of Example 11.2.20-(A),
2. G/L = Ga(2)/(SL(2,R) - T*) and O(T*°(G/L)) = s0(7,C) in case of Example 11.2.20-(B),
3. G/L=SU(2,1)/S(U(1) x U(1,1)) and O(T*°(G/L)) = sl(3,C) in case of Example 11.2.22 with T' = iZ;

from Theorem 11.2.18.
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