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Preface

Our interest lies in continuous representations of real semisimple Lie groups concerning homogeneous holomorphic vector

bundles over elliptic adjoint orbits, especially the representation ϱ : G→ GL(VG/L) below.
Let GC be a connected complex semisimple Lie group, let G be a connected closed subgroup of GC whose Lie algebra

Lie(G) = g is a real form of gC, and let T be a non-zero, element of g such that (1) the linear transformation adT : g → g,

X 7→ [T,X], is semisimple and (2) all the eigenvalues of adT are purely imaginary. Consider the adjoin orbit AdG(T ) = G/L

of G through T , where L := {g ∈ G | Ad g(T ) = T}. These T and G/L are called an elliptic element and an elliptic adjoint

orbit (or an elliptic orbit for short), respectively. It is shown that G/L can be embedded into a complex flag manifold GC/Q
−

(which is also called a Kähler C-space or a generalized flag manifold) via ι : G/L → GC/Q
−, gL 7→ gQ−, and furthermore

the image ι(G/L) is a domain in GC/Q
−. Identifying G/L with ι(G/L) we induce a G-invariant complex structure J on

G/L from GC/Q
−. Then, the elliptic orbit G/L is a homogeneous complex manifold of G.

G/L - GC/Q
−

ι
? ?

ι♯(GC ×ρ V) GC ×ρ V

Take a finite-dimensional complex vector space V and a holomorphic homomorphism ρ : Q− → GL(V), q 7→ ρ(q), where

GL(V) is the general linear group on V. Denote by GC ×ρ V the homogeneous holomorphic vector bundle over the complex

flag manifold GC/Q
− associated with ρ, and by ι♯(GC ×ρ V) its restriction to the domain G/L ⊂ GC/Q

−. In this setting,

one may assume that

VG/L :=

{
ψ : GQ− → V

(i) ψ is holomorphic,

(ii) ψ(xq) = ρ(q)−1
(
ψ(x)

)
for all (x, q) ∈ GQ− ×Q−

}

is the complex vector space of holomorphic cross-sections of the bundle ι♯(GC×ρV); and can define a continuous representation

ϱ of G on VG/L by (
ϱ(g)ψ

)
(x) := ψ(g−1x) for g ∈ G, ψ ∈ VG/L, and x ∈ GQ−.

Here the topology for VG/L is the topology of uniform convergence on compact sets.

Notation

Throughout this note we utilize the following notation, where G is a Lie group and g is a Lie algebra:

(n1) Lie(G) : the Lie algebra of G, i.e., the real Lie algebra of left invariant vector fields on G,

(n2) G0 : the identity component of G,

(n3) Lg (resp. Rg) : the left (resp. right) translation of G by an element g ∈ G,

(n4) ad, Ad : the adjoint representation of a Lie algebra, a Lie group,

(n5) Z(G) : the center of G,

(n6) CG(A) := {g ∈ G | gag−1 = a for all a ∈ A} for a subset A ⊂ G,

(n7) CG(a) := {g ∈ G |Ad g(X) = X for all X ∈ a} for a subset a ⊂ Lie(G),
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(n8) CG(X) := {g ∈ G | Ad g(X) = X} for an element X ∈ Lie(G),

(n9) NG(m) := {g ∈ G | Ad g(m) ⊂ m} for a vector subspace m ⊂ Lie(G),

(n10) cg(X) := {Z ∈ g | adX(Z) = 0} for an element X ∈ g, which is the kernel of the linear mapping adX : g → g,

(n11) adX(g) : the image of a linear mapping adX : g → g,

(n12) Bg : the Killing form of g,

(n13) N, Z, Q, R, C : the sets of natural numbers, integers, rational numbers, real numbers, complex numbers, respectively,

where N does not contain the zero,

(n14) Z≥0 : the set of non-negative integers,

(n15) R+ : the set of positive real numbers,

(n16) K = R or C,

(n17) GL(V) : the general linear group on a vector space V over K,

(n18) m⊕ n : the direct sum of vector spaces m and n,

(n19) A⨿B : the disjoint union of sets A and B,

(n20) C∞(M) : the associative algebra of real-valued smooth functions on a smooth manifold M ,

(n21) TpM : the tangent vector space of a smooth manifold M at a point p ∈M ,

(n22) X(M) : the real Lie algebra of smooth vector fields on a smooth manifold M , which is also a C∞(M)-module,

(n23) f |A : the restriction of a mapping f to a set A,

(n24) idA or id : the identity mapping of a set A,

(n25) cA : the characteristic function of a set A,

(n26) AX or A : the closure of a subset A in a topological space X.

In addition, for a Lie group G we usually denote its Lie algebra by the corresponding Fraktur small letter g.

Remark

We say that a Lie group G is semisimple, nilpotent, or parabolic, respectively, whenever the Lie algebra g is.
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Chapter 1

Homogeneous spaces

In this chapter we review fundamental facts about homogeneous spaces. We deal with (real) homogeneous spaces in Section

1.1 and complex homogeneous spaces in Section 1.2. Finally in Section 1.3 we show that homogeneous spaces are principal

fiber bundles.

1.1 Real case

Let G be a (real) Lie group which satisfies the second countability axiom, and let H be a closed subgroup of G. Consider

the left quotient space G/H = {gH | g ∈ G} of G by H and define a surjective mapping π : G → G/H (which is called the

projection of G onto G/H) as follows:

π(g) := gH for g ∈ G. (1.1.1)

Provide G/H with the quotient topology relative to this π. Then, G/H is called a homogeneous space, and one has

Theorem 1.1.2. There exists a real analytic structure S = {(Uα, ψα)}α∈A on the homogeneous space G/H so that

(1) π : G→ G/H, g 7→ gH, is a surjective, open, real analytic mapping,

(2) µ : G×G/H → G/H, (g1, g2H) 7→ g1g2H, is a real analytic mapping.

Moreover, for each α ∈ A there exists a real analytic mapping σα : Uα → G such that π
(
σα(x)

)
= x for all x ∈ Uα.

The main purpose of this section is to demonstrate Theorem 1.1.2.

Remark 1.1.3. The condition (2) in Theorem 1.1.2 implies that π : G → G/H is real analytic, since π(g) = µ
(
g, π(e)

)
for

all g ∈ G. Here, e is the unit element of G.

Remark 1.1.4 (Uniqueness).

(i) Suppose G/H to admit another real analytic structure S ′ so that µ : G × G/H → G/H, (g1, g2H) 7→ g1g2H, is real

analytic, where the topology for G/H is the quotient one relative to π. Then, (G/H,S) is G-equivariant real analytic
diffeomorphic to (G/H,S ′) via the identity mapping of G/H. cf. Subsection 1.1.4.

(ii) Let r ∈ N ∪ {0,∞, ω}. Suppose that G acts transitively on a differentiable manifold M of class Cr as a differentiable

transformation group of class Cr, G×M ∋ (g, x) 7→ g · x ∈M . Let us denote by H ′ the isotropy subgroup of G at an

x0 ∈ M . Then, G/H ′ ∋ gH ′ 7→ g · x0 ∈ M is a G-equivariant diffeomorphism of class Cr of G/H ′ = (G/H ′,S) onto

M .1

1.1.1 Topological properties of G/H

Recall that the topology for G/H is the quotient topology relative to π.

Lemma 1.1.5.

(1) π : G→ G/H, g 7→ gH, is a surjective, open, continuous mapping.

1e.g. 定理 3.7.11 in 杉浦 [34, p.131].
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8 CHAPTER 1. HOMOGENEOUS SPACES

(2) For any open subset U ⊂ G/H, there exists an open subset O ⊂ G such that π(O) = U .

Proof. (1). It suffices to confirm that π : G→ G/H, g 7→ gH, is an open mapping. For any open subset O′ of G, we deduce

π−1
(
π(O′)

)
= O′H =

∪
h∈H

Rh(O
′)

by a direct computation, where Rh stands for the right translation of the Lie group G by h. Since each Rh(O
′) is open in G,

the union
∪
h∈H Rh(O

′) = π−1
(
π(O′)

)
is also open in G. Therefore π(O′) is an open subset of G/H.

(2). Since π : G → G/H is continuous, O := π−1(U) is an open subset of G. Furthermore, one has π(O) = U because

π : G→ G/H is surjective.

Lemma 1.1.6.

(1) G/H is a Hausdorff space.

(2) µ : G×G/H → G/H, (g1, g2H) 7→ g1g2H, is a continuous mapping.

(3) G/H satisfies the second countability axiom.

Proof. (1) follows by H being a closed subset of G and Lemma 1.1.5-(1).

(2). Take any (g1, g2H) ∈ G × G/H and any open neighborhood U of µ(g1, g2H) = π(g1g2) ∈ G/H. Lemma 1.1.5-(1)

implies that π−1(U) is an open neighborhood of g1g2 ∈ G, so that there exist open subsets O1, O2 ⊂ G satisfying g1 ∈ O1,

g2 ∈ O2 and O1O2 ⊂ π−1(U). Then, O1 × π(O2) is an open neighborhood of (g1, g2H) ∈ G × G/H, and it follows that

µ
(
O1 × π(O2)

)
⊂ U .

(3). Since G satisfies the second countability axiom, there exists a countable open base {On}n∈N for the topological space

G. Lemma 1.1.5 implies that {π(On)}n∈N is a countable open base for the topological space G/H.

Lemma 1.1.6-(2) leads to

Corollary 1.1.7. Fix a g ∈ G and define a transformation τg of G/H by

τg(aH) := gaH for aH ∈ G/H.

Then for each g ∈ G, τg is a homeomorphic transformation of G/H, and τg ◦ π = π ◦ Lg on G. Here Lg stands for the left

translation of the Lie group G by g.

1.1.2 Local cross-sections

Choose a real vector subspace m ⊂ g such that

g = m⊕ h,

and define a real analytic mapping φ : m× h → G by φ(X,Y ) := expX expY for (X,Y ) ∈ m× h. Then,

Lemma 1.1.8. There exist two open neighborhoods V1 of 0 ∈ m and B1 of 0 ∈ h such that

(1) φ : (X,Y ) 7→ expX expY is a real analytic diffeomorphism of V1 ×B1 onto an open neighborhood of e ∈ G,

(2) expB1 is an open neighborhood of e ∈ H.

Proof. It turns out that φ(0, 0) = e and the differential (dφ)(0,0) of φ at (0, 0) is a real linear isomorphism of the tangent

vector space T(0,0)(m× h) onto TeG. Thus the inverse mapping theorem assures the existence of open neighborhoods V1 of

0 ∈ m and B1 of 0 ∈ h satisfying (1); besides, one may assume that the (2) holds for this B1 by substituting a sufficiently

small open neighborhood B′
1 of 0 ∈ h for B1 (if necessary).

Let V1, B1 have the properties in Lemma 1.1.8. In this setting, we assert

Proposition 1.1.9. There exists an open neighborhood V of 0 ∈ m so that

(1) 0 ∈ V ⊂ V1,

(2) N := expV is a regular submanifold of G,
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(3) exp : V → N is a real analytic diffeomorphism,

(4) π(N) is an open subset of G/H,

(5) π : N → π(N) is homeomorphic.

Proof. Taking Lemma 1.1.8-(2) and the topology for H into account, we see that there exists an open neighborhood O of

e ∈ G satisfying

expB1 = (O ∩H). (a)

Since the mapping G×G ∋ (g1, g2) 7→ g−1
1 g2 ∈ G is continuous, one can choose a compact subset C ⊂ V1 containing an open

neighborhood of 0 ∈ m and satisfying

exp(−C) expC ⊂ O. (b)

In this setting, π : expC → π(expC) is a homeomorphism because if π(expX1) = π(expX2) with X1, X2 ∈ C, then it

follows from (b), (a) that exp(−X2) expX1 ∈ (O ∩ H) = expB1. This and Lemma 1.1.8-(1) yield X1 = X2; consequently

π : expC → π(expC) is injective, and so it is homeomorphic due to Lemma 1.1.6-(1).

Now, let V be an open neighborhood of 0 ∈ m such that V ⊂ C, and let N := expV . Then, it turns out that

(i) 0 ∈ V ⊂ C ⊂ V1,

(ii) V ×B1 is an open neighborhood of (0, 0) ∈ V1 ×B1 (∵ (i)),

(iii) φ(V ×B1) is an open neighborhood of e ∈ G (∵ (ii), Lemma 1.1.8-(1)),

(iv) φ : V ×B1 → φ(V ×B1), (X,Y ) 7→ expX expY , is a real analytic diffeomorphism (∵ (ii), Lemma 1.1.8-(1)),

(v) V × {0} is a regular submanifold of V ×B1,

(vi) N = expV = φ(V × {0}) is a regular submanifold of φ(V ×B1) (∵ (iv), (v)),

(vii) φ : V × {0} → N , (X, 0) 7→ expX, is a real analytic diffeomorphism (∵ (iv), (v), (vi)).

Therefore (1), (2) and (3) hold for the V . From expB1 ⊂ H we obtain

π(φ(V ×B1)
)
= π(N expB1) = π(N),

which assures (4) because the subset φ(V ×B1) ⊂ G is open and the projection π : G→ G/H is an open mapping. The last

(5) comes from N ⊂ expC and π : expC → π(expC) being homeomorphic.

Let V have the properties in Proposition 1.1.9, and let N := expV . Proposition 1.1.9-(4) and Lemma 1.1.5-(1) imply

that π−1
(
π(N)

)
= (expV )H is an open neighborhood of e ∈ G. For any g ∈ (expV )H there exists a unique (X,h) ∈ V ×H

satisfying

g = (expX)h

because π(g) = π(expX) ∈ π(N) and Proposition 1.1.9-(5), (3) yield (exp |V )−1
(
(π|N )−1(π(g))

)
= X; thereforeX is uniquely

determined by g, and so is h. Then, one can define a mapping χ : (expV )H → V as follows:

χ(g) := X (1.1.10)

for g = (expX)h ∈ (expV )H with (X,h) ∈ V ×H.

Lemma 1.1.11. The above χ : (expV )H → V , g 7→ χ(g), is a real analytic mapping such that

(1) χ = χ ◦Rh for all h ∈ H,

(2) π(g) = π
(
expχ(g)

)
for all g ∈ (expV )H.

Here we refer to Proposition 1.1.9 for V .

Proof. From the definition (1.1.10) of χ it is immediate that (1) and (2) hold for χ. Let us prove that χ : (expV )H → V is

real analytic. In view of Lemma 1.1.8 we see that

(i) W := expV expB1 is an open neighborhood of e ∈ G,
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(ii) φ : V ×B1 →W , (X,Y ) 7→ expX expY , is a real analytic diffeomorphism,

(iii) W ⊂ (expV )H.

Take any g = (expX)h ∈ (expV )H with (X,h) ∈ V ×H. It is natural that Rh−1(g) ∈ expV ⊂ W , and hence there exists

an open neighborhood O of g ∈ (expV )H such that

Rh−1(O) ⊂W,

where we recall that (expV )H is an open subset of G. Considering a real analytic mapping proj : V ×B1 → V , (X,Y ) 7→ X,

we conclude that proj ◦φ−1 :W → V is a real analytic mapping. Therefore

proj ◦φ−1 ◦Rh−1 : O → V is a real analytic mapping

because the right translation Rh−1 : G → G is real analytic. This enables us to conclude that χ : O → V is real analytic,

because (iii), proj ◦φ−1 = χ on W and χ = χ ◦Rh−1 on (expV )H imply that χ = proj ◦φ−1 ◦Rh−1 on O.

1.1.3 Proof of Theorem 1.1.2

From now on, let us demonstrate Theorem 1.1.2.

Proof of Theorem 1.1.2. Take an open neighborhood V of 0 ∈ m having the properties in Proposition 1.1.9, and put N :=

expV . Proposition 1.1.9-(4), (5), (3) enables us to define an open neighborhood U of π(e) ∈ G/H by

U := π(N),

and moreover, define two homeomorphisms σ : U → N and ψ : U → V by

σ := (π|N )−1, ψ := (exp |V )−1 ◦ σ, (a)

respectively.

m ⊃ V
exp -

�
(exp |V )−1

N = expV ⊂ G

U = π(N) ⊂ G/H

π

?

6

σ = (π|N )−1

@
@

@
@

@@I

ψ

Let us fix a real basis {Xi}ni=1 of the vector space m, identify m with Rn, and set

Ug := τg(U), ψg(x) := ψ
(
τ−1
g (x)

)
for x ∈ Ug (g ∈ U). (b)

Then, Lemma 1.1.6-(1) and Corollary 1.1.7 imply that

1. G/H is an n-dimensional topological manifold,

2. each pair (Ug, ψg) is a coordinate neighborhood of G/H with π(g) ∈ Ug (g ∈ G),

3. S := {(Ug, ψg)}g∈G is an atlas of G/H.

Our first aim is to show that

the above S = {(Ug, ψg)}g∈G defines a real analytic structure in G/H. 1⃝

Suppose that Ug1 ∩ Ug2 ̸= ∅ (g1, g2 ∈ G). For any X ∈ ψg2(Ug1 ∩ Ug2) ⊂ V , it follows from τg2 ◦ π = π ◦ Lg2 , N = expV , (a)

and (b) that π(g2 expX) = ψ−1
g2 (X) ∈ Ug1 ∩ Ug2 , so that π(g−1

1 g2 expX) ∈ τg−1
1

(Ug1 ∩ Ug2) ⊂ U = π(N); and furthermore,

g−1
1 g2 expX ∈ π−1(U) = (expV )H and Lemma 1.1.11-(2) yield

(ψg1 ◦ ψ−1
g2 )(X) = ψ

(
π(g−1

1 g2 expX)
)
= ψ

(
π
(
expχ(g−1

1 g2 expX)
))

=
(
(exp |V )−1 ◦ (π|N )−1

)(
π
(
expχ(g−1

1 g2 expX)
))

= (exp |V )−1
(
expχ(g−1

1 g2 expX)
)

= χ(g−1
1 g2 expX) =

(
χ ◦ Lg−1

1 g2
◦ (exp |V )

)
(X).
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Accordingly ψg1 ◦ψ−1
g2 = χ ◦Lg−1

1 g2
◦ (exp |V ), and thus ψg1 ◦ψ−1

g2 : ψg2(Ug1 ∩Ug2) → ψg1(Ug1 ∩Ug2) is real analytic, because
all the mappings χ : π−1(U) → V , Lg−1

1 g2
: G → G and exp : V → N are real analytic due to Lemma 1.1.11, Proposition

1.1.9-(3). We have shown 1⃝. Henceforth, G/H is a real analytic manifold having the atlas S = {(Ug, ψg)}g∈G.
Our second aim is to verify that

π : G→ G/H, g 7→ gH, is a surjective, open, real analytic mapping. 2⃝

By virtue of Lemma 1.1.5-(1) it suffices to verify that the projection π : G→ G/H is real analytic. Let B1 denote the open

neighborhood of 0 ∈ h given in Lemma 1.1.8, and let W := expV expB1. Here, we know that W is an open neighborhood

of e ∈ G and φ : V × B1 → W , (X,Y ) 7→ expX expY , is a real analytic diffeomorphism (cf. the proof of Lemma 1.1.11).

For an arbitrary g ∈ G, it follows that

4. gW is an open neighborhood of g ∈ G,

5. π(gW ) ⊂ Ug,

6. (gW,φ−1 ◦ Lg−1) is a coordinate neighborhood of G,

where we identify h with Rk by fixing a real basis {Yj}kj=1 ⊂ h. For any (X,Y ) ∈ (φ−1 ◦ Lg−1)(gW ) ⊂ V ×B1 we obtain(
ψg ◦ π ◦ (φ−1 ◦ Lg−1)−1

)
(X,Y ) = ψg

(
π(g expX expY )

)
= X

from (b) and (a). Consequently ψg ◦ π ◦ (φ−1 ◦ Lg−1)−1 : (φ−1 ◦ Lg−1)(gW ) → ψg(Ug), (X,Y ) 7→ X, is real analytic, and so

π : gW → G/H is real analytic.

Now, let us define a continuous mapping σg : Ug → G by

σg(x) := Lg
(
σ(τ−1

g (x))
)
for x ∈ Ug (g ∈ G). (c)

Our third aim is to prove the following proposition: for each g ∈ G

σg : Ug → G is a real analytic mapping such that σg(Ug) ⊂ gW and π ◦ σg = id on Ug. 3⃝

It is immediate from (c) and (b) that σg(Ug) = Lg(σ(U)) ⊂ Lg(N) ⊂ gW . For any x ∈ Ug = τg(U), there exists an X ∈ V

satisfying x = τg
(
π(expX)

)
, and then it follows from (c) and (a) that π

(
σg(x)

)
= π

(
Lg
(
σ(π(expX))

))
= π(g expX) = x;

hence π ◦ σg = id on Ug. Let us demonstrate that σg : Ug → G is real analytic. For any X ∈ ψg(Ug) ⊂ V , we deduce(
(φ−1 ◦ Lg−1) ◦ σg ◦ ψ−1

g

)
(X) =

(
(φ−1 ◦ Lg−1) ◦ σg

)(
π(g expX)

)
= (φ−1 ◦ Lg−1)(g expX) = (X, 0)

by (b), (a) and (c). This implies that (φ−1 ◦Lg−1) ◦ σg ◦ ψ−1
g : ψg(Ug) → (φ−1 ◦Lg−1)(gW ), X 7→ (X, 0), is real analytic, so

that σg : Ug → G is a real analytic mapping.

Our last aim is to conclude that

µ : G×G/H → G/H, (g1, g2H) 7→ g1g2H, is a real analytic mapping. 4⃝

We denote by f the multiplication in G, namely f : G × G → G, (g1, g2) 7→ g1g2. Let us take any (g1, g2H) ∈ G × G/H.

Then, G× Ug2 is an open neighborhood of (g1, g2H) ∈ G×G/H. For any (g, x) ∈ G× Ug2 we assert that

π
(
f(g, σg2(x))

)
= π

(
gσg2(x)

)
= τg

(
π(σg2(x))

)
= τg(x) = µ(g, x)

because of π ◦ σg2 = id on Ug2 . This assures that µ : G× Ug2 → G/H, (g, x) 7→ µ(g, x), is a real analytic mapping, since all

the mappings π : G→ G/H, f : G×G→ G and σg2 : Ug2 → G are real analytic due to 2⃝, 3⃝.

Theorem 1.1.2 comes from 1⃝, 2⃝, 3⃝ and 4⃝.

Lemma 1.1.6-(3) and the proof of Theorem 1.1.2 lead to

Corollary 1.1.12. The homogeneous space G/H is an n-dimensional real analytic manifold which satisfies the second

countability axiom, where n = dimRG− dimRH.

The following lemma will be needed later (e.g. Chapter 9):
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Lemma 1.1.13. Equip the homogeneous space G/H with the real analytic structure S in Theorem 1.1.2, and define a

mapping F : g → Tπ(e)(G/H) by

F (X) := (dπ)eXe for X ∈ g.

Then, F is a surjective, linear mapping and h coincides with the kernel ker(F ).

Proof. It is clear that F : g → Tπ(e)(G/H), X 7→ (dπ)eXe, is a linear mapping. In the proof of Theorem 1.1.2 we have shown

that π : G → G/H is real analytic. By the arguments we conclude that the linear mapping (dπ)e : TeG → Tπ(e)(G/H),

v 7→ (dπ)ev, is surjective. Accordingly F is surjective linear because the mapping g ∋ X 7→ Xe ∈ TeG is a linear isomorphism.

Now, let us prove that h = ker(F ). For any Z ∈ h and f ∈ C∞(G/H) one obtains
(
(dπ)eZe

)
f = d/dt

∣∣
t=0

f
(
π(exp tZ)

)
=

d/dt
∣∣
t=0

f
(
π(e)

)
= 0; and hence F (Z) = (dπ)eZe = 0. This gives rise to

h ⊂ ker(F ).

Furthermore, since F : g → Tπ(e)(G/H) is surjective linear, Corollary 1.1.12 implies that

dimR ker(F ) = dimR g− dimR Tπ(e)(G/H) = dimR h,

so that h = ker(F ) holds.

1.1.4 Supplementation

Let us confirm the proposition in Remark 1.1.4-(i) for the sake of completeness.

Suppose G/H to admit another real analytic structure S ′ so that µ : G × G/H → G/H, (g1, g2H) 7→ g1g2H, is real

analytic, where the topology for G/H is the quotient one relative to π. We denote by M the real analytic manifold G/H

having the atlas S ′. Since the topology for G/H is the same as that for M , the identity mapping id : G/H → M is a

G-equivariant homeomorphism. For any p ∈ G/H, Theorem 1.1.2 allows us to have an open neighborhood Up of p ∈ G/H

and a real analytic mapping σp : Up → G such that π
(
σp(x)

)
= x for all x ∈ Up. Then, id = π ◦ σp on Up, which implies

that id : Up → M is real analytic because π : G → M is real analytic (cf. Remark 1.1.3). Consequently id : G/H → M

is G-equivariant homeomorphic and real analytic. Since id : G/H → M is real analytic, one can consider the differential

of id at each point, which is a real linear isomorphism. Therefore the inverse mapping theorem assures that the inverse

mapping id : M → G/H is also real analytic. For this reason G/H = (G/H,S) is G-equivariant real analytic diffeomorphic

to M = (G/H,S ′) via id.

1.2 Complex case

Let G, H be the same Lie groups as in Theorem 1.1.2. Suppose further that (s1) G is a complex Lie group and (s2) H is a

complex Lie subgroup of G. Then, one can show

Theorem 1.2.1. There exists a holomorphic structure S = {(Uα, ψα)}α∈A on the homogeneous space G/H so that

(1) π : G→ G/H, a 7→ aH, is a surjective, open, holomorphic mapping,

(2) µ : G×G/H → G/H, (a1, a2H) 7→ a1a2H, is a holomorphic mapping.

Moreover, for each α ∈ A there exists a holomorphic mapping σα : Uα → G such that π
(
σα(z)

)
= z for all z ∈ Uα.

Proof. We get the conclusion by substituting the words “complex” for the words “real” in Subsections 1.1.2 and 1.1.3.

Remark 1.2.2 (Uniqueness). Suppose G/H to admit another holomorphic structure S ′ so that µ : G × G/H → G/H,

(a1, a2H) 7→ a1a2H, is holomorphic, where the topology for G/H is the quotient one relative to π. Then, (G/H,S) is

G-equivariant biholomorphic to (G/H,S ′) via the identity mapping of G/H.

Remark 1.2.3. For a complex Lie group G satisfying the second countability axiom and a closed complex Lie subgroup H

of G, we always consider the complex homogeneous space G/H to be a homogeneous complex manifold of G with respect to

the invariant complex structure J induced by the S in Theorem 1.2.1.
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1.3 Principal fiber bundles and homogeneous spaces

Let G be a Lie group which satisfies the second countability axiom, and H a closed subgroup of G. Denote by π the projection

of G onto G/H, and consider the homogeneous space G/H as a real analytic manifold having the atlas S = {(Uα, ψα)}α∈A
in Theorem 1.1.2. In addition, let σα : Uα → G be the real analytic mapping in Theorem 1.1.2 (α ∈ A). In this setting, we

will show that this (G, π,G/H) is a principal fiber bundle.

For an α ∈ A, it follows that π−1(Uα) is an open subset of G. Then we set

ζα(g) :=
(
σα(π(g))

)−1
g for g ∈ π−1(Uα). (1.3.1)

Since π(g) ∈ Uα and π
(
σα(x)

)
= x for all x ∈ Uα, it is natural that σα(π(g))H = π

(
σα(π(g))

)
= π(g) = gH, and therefore

ζα(g) =
(
σα(π(g))

)−1
g belongs to H. Moreover, the following lemma holds:

Lemma 1.3.2. For each α ∈ A, the ζα : π−1(Uα) → H, g 7→ ζα(g), is a real analytic mapping such that

(1) ζα(gh) = ζα(g)h for all (g, h) ∈ π−1(Uα)×H,

(2) ζα
(
σα(x)

)
= e for all x ∈ Uα.

Now, we see that

1. H acts real analytically and freely on G to the right, G×H ∋ (g, h) 7→ Rh(g) = gh ∈ G,

2. Rh1h2
(g) = Rh2

(
Rh1

(g)
)
for all h1, h2 ∈ H and g ∈ G,

3. π : G→ G/H, g 7→ gH, is a surjective, real analytic mapping,

4. for given g1, g1 ∈ G, π(g1) = π(g2) if and only if there exists an h ∈ H such that g2 = Rh(g1),

5. {Uα : α ∈ A} is an open covering of G/H.

Furthermore, (1.3.1) and Lemma 1.3.2 enable one to see that for each α ∈ A,

6. θα : π−1(Uα) → Uα×H, g 7→
(
π(g), ζα(g)

)
, is a real analytic diffeomorphism, θ−1

α (y, h) = σα(y)h for all (y, h) ∈ Uα×H,

7. ζα(gh) = Rh
(
ζα(g)

)
for all (g, h) ∈ π−1(Uα)×H.

These lead to

Proposition 1.3.3. (G, π,G/H) is a real analytic, principal fiber bundle over G/H with group H.

Remark 1.3.4. The principal fiber bundle (G, π,G/H) in Proposition 1.3.3 is able to be holomorphic, provided that the G

is a complex Lie group and the H is a complex Lie subgroup of G.





Chapter 2

Homogeneous vector bundles over

homogeneous spaces

In this chapter we deal with homogeneous vector bundles over homogeneous spaces. The setting of Chapter 2 is as follows:

• G is a Lie group which satisfies the second countability axiom,

• H is a closed subgroup of G,

• π is the projection of G onto the left quotient space G/H,

• S = {(Uα, ψα)}α∈A is the real analytic structure on G/H given in Theorem 1.1.2,

• σα : Uα → G is the real analytic mapping in Theorem 1.1.2 (α ∈ A).

The topology for G/H is the quotient topology relative to π : g 7→ gH, and the homogeneous space G/H is an n-dimensional

real analytic manifold having the atlas S.

2.1 Definition of homogeneous vector bundle

First of all, we are going to recall the definition of homogeneous vector bundle. Let V be a finite-dimensional real vector

space, and let ρ : H → GL(V), h 7→ ρ(h), be a continuous (group) homomorphism,1 where we fix a real basis {ei}mi=1 of V

and identify V with Rm, and we consider the vector space V and the general linear group GL(V) as a real analytic manifold

and a Lie group, respectively. For two elements (g1, v1), (g2, v2) ∈ G×V we say that (g1, v1) is equivalent to (g2, v2), if there

exists an h ∈ H satisfying

g2 = g1h, v2 = ρ(h)−1(v1). (2.1.1)

This gives rise to an equivalence relation on G× V. We denote by [(g, v)] the equivalence class of an element (g, v) ∈ G× V,

put G×ρ V :=
{
[(g, v)] : (g, v) ∈ G× V

}
, and define two surjective mappings ϖ : G× V → G×ρ V and Pr : G×ρ V → G/H

by

ϖ(g, v) := [(g, v)] for (g, v) ∈ G× V, Pr
(
[(g, v)]

)
:= π(g) for [(g, v)] ∈ G×ρ V, (2.1.2)

respectively. Provide G×ρ V with the quotient topology relative to this ϖ.

Definition 2.1.3 (cf. Bott [2, p.207]). In the setting above, G ×ρ V = (G ×ρ V,Pr, G/H) is called a homogeneous vector

bundle over G/H associated with ρ or called an associated fiber bundle of the principal fiber bundle (G, π,G/H) with fiber V.

G× V
ϖ - G×ρ V

G/H

Pr

?

We will confirm that

1Remark. Since ρ : H → GL(V), h 7→ ρ(h), is a continuous homomorphism, it is a real analytic mapping. e.g. 定理 2.3.7 in 杉浦 [34, p.48].

15
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1. G×ρ V is a real analytic manifold, cf. Section 2.2,

2. (G×ρ V,Pr, G/H) is a fiber bundle with fiber V and group ρ(H) (⊂ GL(V))), cf. Section 2.3.

In addition, we will study the real vector space Γr(G×ρ V) of differentiable cross-sections of the bundle (G×ρ V,Pr, G/H),

cf. Section 2.4.

2.2 Real analytic structures on homogeneous vector bundles

Our purpose of this section is to define a real analytic structure S = {(Pr−1(Uα), φα)}α∈A on G ×ρ V. Here, G ×ρ V =

(G×ρ V,Pr, G/H) is a homogeneous vector bundle over G/H associated with ρ. In order to accomplish the purpose, we first

define a real analytic mapping Φα needed later. By use of ζα : π−1(Uα) → H in (1.3.1), we define a real analytic mapping

Φα : π−1(Uα)× V → Uα × V as follows:

Φα(g, v) :=
(
π(g), ρ(ζα(g))v

)
for (g, v) ∈ π−1(Uα)× V (2.2.1)

(α ∈ A).

2.2.1 Topological properties of G×ρ V = (G×ρ V,Pr, G/H)

We want to deduce that G×ρV is a topological manifold (see Proposition 2.2.9). Recalling that the topologies for G×ρV and

G/H are the quotient topologies relative to ϖ : G× V → G×ρ V, (g, v) 7→ [(g, v)] and π : G→ G/H, g 7→ gH, respectively,

we first prove

Lemma 2.2.2. Pr : G×ρ V → G/H, [(g, v)] 7→ π(g), is a surjective, continuous mapping.

Proof. We only verify that Pr : G×ρ V → G/H is continuous. Let U be any open subset of G/H. By a direct computation

we obtain

ϖ−1
(
Pr−1(U)

)
= π−1(U)× V; (2.2.3)

besides, π−1(U)×V is an open subset of G×V. Hence ϖ−1
(
Pr−1(U)

)
is open in G×V, and so Pr−1(U) is open in G×ρV.

Corollary 2.2.4. {Pr−1(Uα) : α ∈ A} is an open covering of G×ρ V.

Proof. Since {Uα : α ∈ A} is an open covering of G/H, Lemma 2.2.2 enables us to get the conclusion.

For an α ∈ A, it follows from Pr
(
[(g, v)]

)
= π(g) that π(g) ∈ Uα for all [(g, v)] ∈ Pr−1(Uα). Then one can set

ϕα
(
[(g, v)]

)
:=
(
π(g), ρ(ζα(g))v

)
for [(g, v)] ∈ Pr−1(Uα). (2.2.5)

Here it is necessary to confirm that this (2.2.5) is well-defined. Let us confirm that. Suppose that (g1, v1) is equivalent to

(g2, v2) with [(g1, v1)] ∈ Pr−1(Uα). By the definition (2.1.1) of equivalence relation, there exists an h ∈ H such that g2 = g1h,

v2 = ρ(h)−1(v1). In this case it turns out that π(g2) = π(g1h) = π(g1). Moreover, Lemma 1.3.2-(1) implies

ρ(ζα(g2))v2 = ρ(ζα(g1h))v2 = ρ(ζα(g1)h)v2 = ρ(ζα(g1))
(
ρ(h)v2

)
= ρ(ζα(g1))v1

since ρ : H → GL(V) is a homomorphism. Therefore (2.2.5) is well-defined. Now, let us prove

Proposition 2.2.6. For each α ∈ A, the mapping ϕα : Pr−1(Uα) → Uα × V, [(g, v)] 7→
(
π(g), ρ(ζα(g))v

)
, is a homeomor-

phism. In addition, ϕ−1
α (x, v) = [(σα(x), v)] for all (x, v) ∈ Uα × V. cf. (1.3.1).

Proof. Let ϕ′α(x, v) := [(σα(x), v)] for (x, v) ∈ Uα × V.

(Bijective). For any [(g, v)] ∈ Pr−1(Uα) we have

ϕ′α
(
ϕα
(
[(g, v)]

))
= ϕ′α

(
π(g), ρ(ζα(g))v

)
=
[(
σα(π(g)), ρ(ζα(g))v

)] (1.3.1)
=

[(
σα(π(g)), ρ

(
(σα(π(g)))

−1g
)
v
)]

(2.1.1)
= [(g, v)].

For any (x, v) ∈ Uα × V we deduce

ϕα
(
ϕ′α(x, v)

)
= ϕα

(
[(σα(x), v)]

)
=
(
π(σα(x)), ρ(ζα(σα(x)))v

)
= (x, v)
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by π ◦ σα = id on Uα and Lemma 1.3.2-(2). Therefore ϕα is bijective and ϕ−1
α = ϕ′α.

(Continuous 1). Let us show that ϕα : Pr−1(Uα) → Uα × V, [(g, v)] 7→
(
π(g), ρ(ζα(g))v

)
, is continuous. It follows from

(2.2.3) that ϖ
(
π−1(Uα)× V

)
⊂ Pr−1(Uα), and it follows from (2.1.2), (2.2.1) and (2.2.5) that

Φα = ϕα ◦ϖ

on π−1(Uα)× V. Consequently ϕα : Pr−1(Uα) → Uα × V is continuous, because Φα : π−1(Uα)× V → Uα × V is continuous

and the topology for G×ρ V is the quotient topology relative to ϖ.

(Continuous 2). The inverse mapping ϕ−1
α : Uα × V → Pr−1(Uα), (x, v) 7→ [(σα(x), v)], is also continuous because it is

the composition of two continuous mappings Uα × V ∋ (x, v) 7→ (σα(x), v) ∈ π−1(Uα) × V and G × V ∋ (g, v) 7→ ϖ(g, v) ∈
G×ρ V.

Proposition 2.2.6 leads to

Corollary 2.2.7. For each α ∈ A, ψα(Uα)×V is an open subset of Rn+m, the mapping φα := (ψα× idV)◦ϕα : Pr−1(Uα) →
ψα(Uα)×V, [(g, v)] 7→

(
ψα(π(g)), ρ(ζα(g))v

)
, is homeomorphic, and φ−1

α (X, v) =
[(
σα(ψ

−1
α (X)), v

)]
for all (X, v) ∈ ψα(Uα)×

V. Here m = dimR V.

G×ρ V ⊃ Pr−1(Uα)
ϕα -

�
ϕ−1
α

Uα × V ⊂ G/H × V

ψα(Uα)× V ⊂ Rn+m

ψα × idV

?@
@

@
@

@@I

φ−1
α

@
@
@

@
@@R

φα

Corollary 2.2.8. G×ρ V is a Hausdorff space.

Proof. For [(g1, v1)], [(g2, v2)] ∈ G×ρ V we suppose that [(g1, v1)] ̸= [(g2, v2)]. Let us investigate two cases π(g1) ̸= π(g2) and

π(g1) = π(g2), individually.

• In case of π(g1) ̸= π(g2), there exist open neighborhoods U1 of π(g1) and U2 of π(g2) ∈ G/H such that U1 ∩ U2 = ∅
because G/H is a Hausdorff space. Then, Lemma 2.2.2 implies that Pr−1(U1), Pr

−1(U2) are open neighborhoods of [(g1, v1)],

[(g2, v2)] ∈ G×ρ V and Pr−1(U1) ∩ Pr−1(U2) = ∅.
• In case of π(g1) = π(g2), Corollary 2.2.4 and Pr

(
[(g1, v1)]

)
= π(g1) = π(g2) = Pr

(
[(g2, v2)]

)
assure the existence of an

element α ∈ A satisfying [(g1, v1)], [(g2, v2)] ∈ Pr−1(Uα). So, one has [(g1, v1)], [(g2, v2)] ∈ Pr−1(Uα) and [(g1, v1)] ̸= [(g2, v2)].

Then there exist open subsets W1,W2 ⊂ Pr−1(Uα) such that [(g1, v1)] ∈W1, [(g2, v2)] ∈W2 and

W1 ∩W2 = ∅,

because Corollary 2.2.7 implies that Pr−1(Uα) is a Hausdorff space. Remark here that both W1 and W2 are open subsets of

G×ρ V, since Pr−1(Uα) is open in G×ρ V.

Corollaries 2.2.8, 2.2.4 and 2.2.7 allow us to assert

Proposition 2.2.9. The following three items hold:

(1) G×ρ V is an (n+m)-dimensional topological manifold, where m = dimR V,

(2) each pair (Pr−1(Uα), φα) is a coordinate neighborhood of G×ρ V (α ∈ A),

(3) S := {(Pr−1(Uα), φα)}α∈A is an atlas of G×ρ V.

Here we refer to Corollary 2.2.7 for φα.

We end this subsection with proving

Proposition 2.2.10.

(i) Pr : G×ρ V → G/H, [(g, v)] 7→ π(g), is a surjective, open, continuous mapping.

(ii) G×ρ V satisfies the second countability axiom.
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(iii) ϖ : G× V → G×ρ V, (g, v) 7→ [(g, v)], is a surjective, open, continuous mapping.

(iv) ν : G× (G×ρ V) → G×ρ V, (g1, [(g2, v)]) 7→ [(g1g2, v)], is a continuous mapping.

Proof. (i). By Lemma 2.2.2 it suffices to confirm that Pr : G ×ρ V → G/H is an open mapping. For any open subset

W ⊂ G×ρV we see that ϖ−1(W ) is open in G×V. Considering an open mapping proj : G×V → G, (g, v) 7→ g, we conclude

that proj
(
ϖ−1(W )

)
is open in G, so that

proj
(
ϖ−1(W )

)
H =

∪
h∈H Rh

(
proj(ϖ−1(W ))

)
is an open subset of G.

A direct computation yields proj
(
ϖ−1(W )

)
H = π−1

(
Pr(W )

)
. Accordingly π−1

(
Pr(W )

)
⊂ G is open, and hence Pr(W ) is

an open subset of G/H.

(ii). Since G×ρ V is a topological manifold, it is enough to show that G×ρ V is a Lindelöf space. Let {Wλ : λ ∈ Λ} be an

arbitrary open covering of G×ρ V. Needless to say, {ϖ−1(Wλ) : λ ∈ Λ} is an open covering of G× V. Since both G and V

satisfy the second countability axiom, the product G× V also satisfies the same axiom. Therefore one can find a countable

subset {ϖ−1(Wk) : k ∈ N} of {ϖ−1(Wλ) : λ ∈ Λ} so that

G× V =
∪
k∈N

ϖ−1(Wk).

Then G×ρ V = ϖ(G× V) = ϖ
(∪

k∈Nϖ
−1(Wk)

)
⊂
∪
k∈NWk, which implies that G×ρ V is a Lindelöf space.

(iii). We only verify that ϖ : G × V → G ×ρ V, (g, v) 7→ [(g, v)], is an open mapping. For any non-empty open subset

Q ⊂ G× V, we are going to show that ϖ−1
(
ϖ(Q)

)
is an open subset of G× V. For any (g, v) ∈ ϖ−1

(
ϖ(Q)

)
, it follows that

ϖ(g, v) ∈ ϖ(Q), so that there exists a (a,w) ∈ Q satisfying

ϖ(g, v) = ϖ(a,w).

Since (a,w) ∈ Q and Q ⊂ G×V is open, there exist open subsets O ⊂ G and B ⊂ V such that (a,w) ∈ O×B ⊂ Q. Moreover,

a direct computation, together with (2.1.1), yields

ϖ−1
(
ϖ(O ×B)

)
=
∪
h∈H

(
Rh(O)× ρ(h)−1(B)

)
,

which implies thatϖ−1
(
ϖ(O×B)

)
is an open subset of G×V because each Rh(O)×ρ(h)−1(B) is open in G×V. Consequently,

ϖ−1
(
ϖ(O×B)

)
is an open neighborhood of (g, v) ∈ G×V and ϖ−1

(
ϖ(O×B)

)
⊂ ϖ−1

(
ϖ(Q)

)
. This implies that ϖ−1

(
ϖ(Q)

)
is an open subset of G× V.

(iv). Take any (a1, [(a2,w)]) ∈ G × (G ×ρ V) and any open neighborhood W of ν(a1, [(a2,w)]) = [(a1a2,w)] ∈ G ×ρ V.
Since ϖ−1(W ) is an open neighborhood of (a1a2,w) ∈ G× V and since ν̂ : G× (G× V) → G× V, (g1, (g2, v)) 7→ (g1g2, v), is

a continuous mapping, there exist open subsets O1, O2 ⊂ G and B ⊂ V such that a1 ∈ O1, a2 ∈ O2, w ∈ B and

ν̂
(
O1, (O2 ×B)

)
⊂ ϖ−1(W ).

Then ϖ(O2×B) is an open subset of G×ρ V due to (iii), and so O1×ϖ(O2×B) is an open neighborhood of (a1, [(a2,w)]) ∈
G× (G×ρ V); besides,

ν
(
O1 ×ϖ(O2 ×B)

)
⊂ ϖ

(
ν̂
(
O1, (O2 ×B)

))
⊂W.

Accordingly ν : G× (G×ρ V) → G×ρ V, (g1, [(g2, v)]) 7→ [(g1g2, v)], is continuous.

2.2.2 A real analytic structure on G×ρ V

We have shown that S = {(Pr−1(Uα), φα)}α∈A is an atlas of G ×ρ V (cf. Proposition 2.2.9). In this subsection we aim to

confirm that the S defines a real analytic structure in G×ρ V.

Lemma 2.2.11. Suppose that Pr−1(Uα) ∩ Pr−1(Uβ) ̸= ∅ (α, β ∈ A). Then,

(1) φβ
(
Pr−1(Uα) ∩ Pr−1(Uβ)

)
= ψβ(Uα ∩ Uβ)× V.

(2) (φα ◦ φ−1
β )(X, v) =

(
ψα
(
ψ−1
β (X)

)
, ρ
((
σα(ψ

−1
β (X))

)−1
σβ
(
ψ−1
β (X)

))
v
)
for all (X, v) ∈ ψβ(Uα ∩ Uβ)× V.

(3) φα ◦ φ−1
β is a real analytic diffeomorphism of φβ

(
Pr−1(Uα) ∩ Pr−1(Uβ)

)
onto φα

(
Pr−1(Uα) ∩ Pr−1(Uβ)

)
.
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Proof. (1). First, let us demonstrate that φβ
(
Pr−1(Uα)∩Pr−1(Uβ)

)
⊂ ψβ(Uα ∩Uβ)×V. For any (X1, v1) ∈ φβ

(
Pr−1(Uα)∩

Pr−1(Uβ)
)
= φβ

(
Pr−1(Uα ∩ Uβ)

)
, there exists a [(a1,w1)] ∈ Pr−1(Uα ∩ Uβ) satisfying (X1, v1) = φβ

(
[(a1,w1)]

)
. From

φβ = (ψβ × idV) ◦ ϕβ we obtain

(X1, v1) = φβ
(
[(a1,w1)]

)
=
(
ψβ(π(a1)), ρ(ζβ(a1))w1

)
.

This, combined with π(a1) = Pr
(
[(a1,w1)]

)
∈ Uα ∩ Uβ , implies that (X1, v1) ∈ ψβ(Uα ∩ Uβ) × V; hence φβ

(
Pr−1(Uα) ∩

Pr−1(Uβ)
)
⊂ ψβ(Uα∩Uβ)×V. Next, let us show that the converse inclusion also holds. For any (X2, v2) ∈ ψβ(Uα∩Uβ)×V,

it follows from Corollary 2.2.7 that

(X2, v2) = φβ
(
φ−1
β (X2, v2)

)
= φβ

([(
σβ(ψ

−1
β (X2)), v2

)])
.

Furthermore Pr
([(

σβ(ψ
−1
β (X2)), v2

)])
= π

(
σβ(ψ

−1
β (X2))

)
= ψ−1

β (X2) ∈ Uα ∩ Uβ , and so
[(
σβ(ψ

−1
β (X2)), v2

)]
∈ Pr−1(Uα ∩

Uβ). Consequently we have (X2, v2) ∈ φβ
(
Pr−1(Uα ∩ Uβ)

)
. Hence, ψβ(Uα ∩ Uβ)× V ⊂ φβ

(
Pr−1(Uα) ∩ Pr−1(Uβ)

)
.

(2). For any (X, v) ∈ ψβ(Uα ∩ Uβ)× V, Corollary 2.2.7 enables us to have

(φα ◦ φ−1
β )(X, v) = φα

([(
σβ(ψ

−1
β (X)), v

)])
=
(
ψα(π(σβ(ψ

−1
β (X)))), ρ

(
ζα(σβ(ψ

−1
β (X)))

)
v
)

(1.3.1)
=

(
ψα(π(σβ(ψ

−1
β (X)))), ρ

((
σα(π(σβ(ψ

−1
β (X))))

)−1
σβ(ψ

−1
β (X))

)
v
)

=
(
ψα(ψ

−1
β (X)), ρ

((
σα(ψ

−1
β (X))

)−1
σβ(ψ

−1
β (X))

)
v
)

since ψ−1
β (X) ∈ Uα ∩ Uβ and π ◦ σβ = id on Uβ .

(3) comes from (1) and (2).

By Proposition 2.2.9 and Lemma 2.2.11 we conclude

Theorem 2.2.12. The atlas S = {(Pr−1(Uα), φα)}α∈A in Proposition 2.2.9 defines a real analytic structure in G×ρ V.

Theorem 2.2.12 and Proposition 2.2.10-(ii) lead to

Corollary 2.2.13. G×ρ V is an (n+m)-dimensional real analytic manifold which satisfies the second countability axiom,

where m = dimR V.

We end this section with confirming

Proposition 2.2.14. ϖ : G× V → G×ρ V, (g, v) 7→ [(g, v)], is a surjective, open, real analytic mapping. Here G×ρ V is a

real analytic manifold having the atlas S = {(Pr−1(Uα), φα)}α∈A in Proposition 2.2.9.

Proof. We only demonstrate that ϖ : G × V → G ×ρ V is real analytic (cf. Proposition 2.2.10-(iii)). For any α ∈ A and

(g, v) ∈ π−1(Uα)× V, one has ϖ(π−1(Uα)× V) ⊂ Pr−1(Uα), and

(φα ◦ϖ)(g, v) = φα
(
[(g, v)]

)
=
(
ψα(π(g)), ρ(ζα(g))v

)
due to Corollary 2.2.7. This mapping G × V ⊃ π−1(Uα) × V ∋ (g, v) 7→

(
ψα(π(g)), ρ(ζα(g))v

)
∈ φα(Pr

−1(Uα)) ⊂ Rn+m is

real analytic; hence ϖ : π−1(Uα) × V → G ×ρ V is real analytic for each α ∈ A. Therefore ϖ : G × V → G ×ρ V is a real

analytic mapping, since G =
∪
α∈A π

−1(Uα).

2.3 Fiber bundles

For a homogeneous vector bundle G×ρV = (G×ρV,Pr, G/H) over G/H associated with ρ : H → GL(V), we will demonstrate

that it is a fiber bundle with fiber V and group ρ(H) (⊂ GL(V)), cf. Theorem 2.3.5.

2.3.1 Vector space structures on fibers

First, let us show that for every x0 ∈ G/H, the fiber Pr−1({x0}) can be a real vector space which is real linear isomorphic

to V. Since G/H =
∪
α∈A Uα, there exists an α ∈ A such that x0 ∈ Uα. Then, fα : V → Pr−1({x0}), v 7→ [(σα(x0), v)], is a

homeomorphism due to Proposition 2.2.6.2 Setting{
[(g1, v1)] + [(g2, v2)] :=

[(
σα(x0), ρ

(
(σα(x0))

−1g1
)
v1 + ρ

(
(σα(x0))

−1g2
)
v2
)]
,

λ[(g, v)] :=
[(
σα(x0), λρ

(
(σα(x0))

−1g
)
v
)] (2.3.1)

2f−1
α

(
[(g, v)]

)
= ρ(ζα(g))v for all [(g, v)] ∈ Pr−1({x0}).
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for [(g1, v1)], [(g2, v2)], [(g, v)] ∈ Pr−1({x0}) and λ ∈ R, one can assert that the fiber Pr−1({x0}) is a real vector space, where

we note that

[(g, v)] =
[(
σα(x0), ρ

(
(σα(x0))

−1g
)
v
)]

for all [(g, v)] ∈ Pr−1({x0}).

With respect to this vector space Pr−1({x0}), the homeomorphism fα : V → Pr−1({x0}), v 7→ [(σα(x0), v)], is real linear

isomorphic, and hence the vector space structure on Pr−1({x0}) is independent of the choice of α ∈ A satisfying x0 ∈ Uα.

Remark 2.3.2.

(1) For each x0 ∈ G/H we see that

Pr
(
λ1[(g1, v1)] + λ2[(g2, v2)]

)
= x0

for all [(g1, v1)], [(g2, v2)] ∈ Pr−1({x0}) and λ1, λ2 ∈ R because of (2.3.1).

(2) Hereafter, for each x0 ∈ G/H we regard the fiber Pr−1({x0}) as an m-dimensional real vector space by means of

(2.3.1). Here m = dimR V.

2.3.2 Transition functions

Let us set

gαβ(y) := (σα(y))
−1σβ(y) for y ∈ Uα ∩ Uβ (2.3.3)

whenever Uα ∩Uβ ̸= ∅ (α, β ∈ A). Since π
(
σα(y)

)
= y = π

(
σβ(y)

)
we have gαβ(y) ∈ H, and therefore gαβ : Uα ∩Uβ → H is

a real analytic mapping, where we remark that H is a regular submanifold of G. It is easy to prove

Proposition 2.3.4. For the real analytic mapping gαβ : Uα ∩ Uβ → H, y 7→ (σα(y))
−1σβ(y), the following two items hold:

(a) gαα(x) = e for all x ∈ Uα.

(b) gαβ(z)gβγ(z)gγα(z) = e for all z ∈ Uα ∩ Uβ ∩ Uγ .

2.3.3 Proof of Theorem 2.3.5

Now, we are in a position to demonstrate

Theorem 2.3.5. Provide G×ρ V with the real analytic structure S = {(Pr−1(Uα), φα)}α∈A in Proposition 2.2.9. Then, the

following two items hold:

(1) Pr : G×ρ V → G/H, [(g, v)] 7→ π(g) = gH, is a surjective, open, real analytic mapping.

(2) For each α ∈ A, the mapping ϕ−1
α : Uα × V → Pr−1(Uα), (x, v) 7→ [(σα(x), v)], is a real analytic diffeomorphism;

besides, ϕα
(
[(g, v)]

)
=
(
π(g), ρ(ζα(g))v

)
for all [(g, v)] ∈ Pr−1(Uα). cf. (1.3.1).

Moreover, for each x0 ∈ Uα it follows that

(3) Pr
(
ϕ−1
α (x0, v)

)
= x0 for all v ∈ V,

(4) the mapping V ∋ v 7→ ϕ−1
α (x0, v) ∈ Pr−1({x0}) is a real linear isomorphism.

In addition, suppose that Uα ∩ Uβ ̸= ∅ (α, β ∈ A). Then,

(5) (ϕα ◦ ϕ−1
β )(y, v) =

(
y, ρ(gαβ(y))v

)
for all (y, v) ∈ (Uα ∩ Uβ)× V.

Here we refer to (2.3.3) for gαβ.

Proof. (1). By Proposition 2.2.10-(i), it suffices to confirm that Pr : G ×ρ V → G/H is real analytic. For any α ∈ A and

(X, v) ∈ φα
(
Pr−1(Uα)

)
= ψα(Uα)× V, Corollary 2.2.7, (2.1.2) and π ◦ σα = id on Uα imply that

(ψα ◦ Pr ◦φ−1
α )(X, v) = (ψα ◦ Pr)(

[(
σα(ψ

−1
α (X)), v

)]
) = ψα

(
π(σα(ψ

−1
α (X)))

)
= X,

so that Pr : Pr−1(Uα) → G/H is real analytic. Thus Pr : G×ρ V → G/H is real analytic.

(2). For any (X, v) ∈ (ψα × idV)(Uα × V) = ψα(Uα)× V, we deduce(
φα ◦ ϕ−1

α ◦ (ψα × idV)
−1
)
(X, v) = (φα ◦ φ−1

α )(X, v) = (X, v)
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by Corollary 2.2.7. Hence ϕ−1
α : Uα × V → Pr−1(Uα) is a real analytic diffeomorphism.

(3). By a direct computation we have Pr
(
ϕ−1
α (x0, v)

)
= Pr

(
[(σα(x0), v)]

)
= π

(
σα(x0)

)
= x0.

(4). Recall that fα : V → Pr−1({x0}), v 7→ [(σα(x0), v)], is real linear isomorphic, cf. Subsection 2.3.1.

(5). For any (y, v) ∈ (Uα ∩ Uβ)× V, Proposition 2.2.6 enables us to obtain

(ϕα ◦ ϕ−1
β )(y, v) = ϕα

(
[(σβ(y), v)]

)
=
(
π(σβ(y)), ρ(ζα(σβ(y)))v

)
(1.3.1)
=

(
π(σβ(y)), ρ

((
σα(π(σβ(y)))

)−1
σβ(y)

)
v
)
=
(
y, ρ
(
(σα(y))

−1σβ(y)
)
v
)

(∵ π(σβ(y)) = y)

(2.3.3)
=

(
y, ρ
(
gαβ(y)

)
v
)
.

We end Section 2.3 with proving

Proposition 2.3.6. ν : G × (G ×ρ V) → G ×ρ V, (g1, [(g2, v)]) 7→ [(g1g2, v)], is a real analytic mapping. Here G ×ρ V is a

real analytic manifold having the atlas S = {(Pr−1(Uα), φα)}α∈A in Proposition 2.2.9.

Proof. Fix any α ∈ A. On the one hand; since ν̂ : G× (G×V) → G×V, (g1, (g2, v)) 7→ (g1g2, v), is a real analytic mapping,

it follows from Proposition 2.2.14 and Theorem 2.3.5-(2) that ϖ ◦ ν̂ ◦
(
idG×(σα × idV)

)
◦ (idG×ϕα) is real analytic on

G× Pr−1(Uα). On the other hand; for any (g1, [(g2, v)]) ∈ G× Pr−1(Uα) one has(
ϖ ◦ ν̂ ◦

(
idG×(σα × idV)

)
◦ (idG×ϕα)

)
(g1, [(g2, v)]) =

(
ϖ ◦ ν̂ ◦

(
idG×(σα × idV)

))
(g1,

(
π(g2), ρ(ζα(g2))v

)
)

=
(
ϖ ◦ ν̂

)
(g1,

(
σα(π(g2)), ρ(ζα(g2))v

)
) = ϖ

(
g1σα(π(g2)), ρ(ζα(g2))v

) (1.3.1)
= ϖ

(
g1σα(π(g2)), ρ(

(
σα(π(g2))

)−1
g2)v

)
(2.1.1)
= ϖ

(
g1g2, v

)
= ν(g1, [(g2, v)]).

Hence ν : G× Pr−1(Uα) → G×ρ V is real analytic, and so ν : G× (G×ρ V) → G×ρ V is real analytic.

2.4 Vector spaces of cross-sections of homogeneous vector bundles

For a homogeneous vector bundle G ×ρ V = (G ×ρ V,Pr, G/H) we provide G ×ρ V with the real analytic structure S =

{(Pr−1(Uα), φα)}α∈A in Proposition 2.2.9 (cf. Theorem 2.2.12). In this section we study the real vector space Γr(G×ρ V) of
differentiable cross-sections of the bundle G×ρ V.

For an r ∈ N ∪ {0,∞, ω}, let us set

Γr(G×ρ V) :=

{
γ : G/H → G×ρ V

(1) γ is of class Cr,

(2) Pr
(
γ(x)

)
= x for all x ∈ G/H

}
. (2.4.1)

Then, for any γi ∈ Γr(G×ρ V) and x ∈ G/H (i = 1, 2), it follows from (2.4.1)-(2) that γi(x) ∈ Pr−1({x}). Accordingly, since

Pr−1({x}) is a real vector space, one can define an element γ1 + γ2 ∈ Γr(G×ρ V) as follows:

(γ1 + γ2)(x) := γ1(x) + γ2(x) for x ∈ G/H. (2.4.2)

Similarly, λγ ∈ Γr(G×ρ V) as follows:
(λγ)(x) := λγ(x) for x ∈ G/H, (2.4.3)

where γ ∈ Γr(G ×ρ V) and λ ∈ R (cf. Remark 2.3.2). Hereafter, we regard Γr(G ×ρ V) as a real vector space by means of

(2.4.2) and (2.4.3).

The main purpose of this section is to verify Theorem 2.4.15 which implies that the real vector space Γr(G ×ρ V) is

isomorphic to

Vr(G×ρ V) :=

{
ξ : G→ V

(i) ξ is of class Cr,

(ii) ξ(gh) = ρ(h)−1
(
ξ(g)

)
for all (g, h) ∈ G×H

}
. (2.4.4)

Here Vr(G×ρ V) is a real vector space with respect to the following addition of vectors and scalar multiplication:

(ξ1 + ξ2)(g) := ξ1(g) + ξ2(g), (λξ)(g) := λξ(g) for g ∈ G, (2.4.5)

where ξ1, ξ1, ξ ∈ Vr(G×ρ V) and λ ∈ R.
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2.4.1 A linear mapping F1 : Vr(G×ρ V) → Γr(G×ρ V)

Let ξ be an arbitrary element of Vr(G×ρ V). From it we are going to construct an element of Γr(G×ρ V). Set Γξ as

Γξ
(
π(g)

)
:= [(g, ξ(g))] for π(g) ∈ G/H. (2.4.6)

This (2.4.6) is well-defined by virtue of (2.4.4)-(ii) and (2.1.1). So, Γξ is a mapping of G/H into G×ρ V. Moreover,

Lemma 2.4.7. In the setting of (2.4.1), (2.4.4) and (2.4.6);

(1) Γξ belongs to Γr(G×ρ V) for each ξ ∈ Vr(G×ρ V);

(2) F1 : Vr(G×ρ V) → Γr(G×ρ V), ξ 7→ Γξ, is a real linear mapping.

Proof. (1). Let ξ be an arbitrary element of Vr(G×ρ V). It is easy to see that Pr
(
Γξ(π(g))

) (2.4.6)
= Pr

(
[(g, ξ(g))]

) (2.1.2)
= π(g)

for all π(g) ∈ G/H. Thus, the rest of proof is to confirm that Γξ : G/H → G ×ρ V is a differentiable mapping of class Cr.

For each α ∈ A, it follows from Pr ◦Γξ = idG/H that Γξ(Uα) ⊂ Pr−1(Uα). Then for any X ∈ ψα(Uα) we have

(φα ◦ Γξ ◦ ψ−1
α )(X) = (φα ◦ Γξ)

(
ψ−1
α (X)

)
= (φα ◦ Γξ)

(
π
(
σα(ψ

−1
α (X))

))
(∵ π ◦ σα = id on Uα)

(2.4.6)
= φα

([(
σα(ψ

−1
α (X)), ξ(σα(ψ

−1
α (X)))

)])
=
(
ψα(π(σα(ψ

−1
α (X)))), ρ(ζα(σα(ψ

−1
α (X))))ξ(σα(ψ

−1
α (X)))

)
=
(
X, ξ(σα(ψ

−1
α (X)))

)
by Corollary 2.2.7 and Lemma 1.3.2-(2). This mapping Rn ⊃ ψα(Uα) ∋ X 7→

(
X, ξ(σα(ψ

−1
α (X)))

)
∈ φα

(
Pr−1(Uα)

)
⊂ Rn+m

is of class Cr because both σα and ψ−1
α are of class Cω and ξ is of class Cr. Consequently Γξ : Uα → G×ρ V is of class Cr

for each α ∈ A, and hence Γξ : G/H → G×ρ V is a differentiable mapping of class Cr.

(2). For any ξ1, ξ2 ∈ Vr(G×ρ V) and π(g) ∈ G/H, a direct computation yields(
F1(ξ1 + ξ2)

)
(π(g)) = Γξ1+ξ2(π(g))

(2.4.6)
=

[(
g, (ξ1 + ξ2)(g)

)] (2.4.5)
=

[(
g, ξ1(g) + ξ2(g)

)] (2.3.1)
=

[(
g, ξ1(g)

)]
+
[(
g, ξ2(g)

)]
(2.4.6)
= Γξ1(π(g)) + Γξ2(π(g))

(2.4.2)
=

(
Γξ1 + Γξ2

)
(π(g)) =

(
F1(ξ1) + F1(ξ2)

)
(π(g)).

Thus F1(ξ1+ξ2) = F1(ξ1)+F1(ξ2) for all ξ1, ξ2 ∈ Vr(G×ρV). Similarly, F1(λξ) = λF1(ξ) for all (ξ, λ) ∈ Vr(G×ρV)×R.

2.4.2 A mapping F2 : Γ
r(G×ρ V) → Vr(G×ρ V)

Fix an arbitrary γ ∈ Γr(G ×ρ V). From it we will construct an element of Vr(G ×ρ V). For any α ∈ A, Theorem 2.3.5-(2)

implies that ϕα : Pr−1(Uα) → Uα × V, [(g1, v)] 7→
(
π(g1), ρ(ζα(g1))v

)
, is real analytic, so that we can define a real analytic

mapping χα : Pr−1(Uα) → V by

χα
(
[(g1, v)]

)
:= ρ(ζα(g1))v for [(g1, v)] ∈ Pr−1(Uα). (2.4.8)

Furthermore, by use of this χα we define a differentiable mapping Ξγ,α : π−1(Uα) → V of class Cr as follows:

Ξγ,α(g1) := ρ(ζα(g1))
−1
(
χα(γ(π(g1)))

)
for g1 ∈ π−1(Uα). (2.4.9)

Then, Lemma 1.3.2-(1) assures that

Ξγ,α(g1h) = ρ(h)−1
(
Ξγ,α(g1)

)
for all (g1, h) ∈ π−1(Uα)×H. (2.4.10)

Now, in terms of γ
(
π(g1)

)
∈ G ×ρ V, we obtain a (a,w) ∈ G × V satisfying γ

(
π(g1)

)
= [(a,w)]. Then (2.4.1)-(2) yields

π(g1) = Pr
(
γ(π(g1))

)
= Pr

(
[(a,w)]

)
= π(a). Therefore g−1

1 a ∈ H, v := ρ(g−1
1 a)w ∈ V and

γ
(
π(g1)

)
= [(a,w)]

(2.1.1)
= [(g1, v)].

This gives Ξγ,α(g1)
(2.4.9)
= ρ(ζα(g1))

−1
(
χα(γ(π(g1)))

)
= ρ(ζα(g1))

−1
(
χα([(g1, v)])

) (2.4.8)
= ρ(ζα(g1))

−1
(
ρ(ζα(g1))v

)
= v. Hence,

it follows that

γ
(
π(g1)

)
=
[(
g1,Ξγ,α(g1)

)]
for all g1 ∈ π−1(Uα). (2.4.11)

In a similar way, we conclude that for any g2 ∈ π−1(Uα) ∩ π−1(Uβ), there exists a v2 ∈ V such that γ
(
π(g2)

)
= [(g2, v2)];

moreover Ξγ,α(g2) = v2 = Ξγ,β(g2). Therefore one can define a differentiable mapping Ξγ : G→ V of class Cr by

Ξγ(g) := Ξγ,α(g) if g ∈ π−1(Uα), (2.4.12)
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where we remark that G =
∪
α∈A π

−1(Uα). Needless to say, it follows from (2.4.10), (2.4.11) and (2.4.12) that{
Ξγ(gh) = ρ(h)−1

(
Ξγ(g)

)
for all (g, h) ∈ G×H,

γ
(
π(g)

)
=
[(
g,Ξγ(g)

)]
for all g ∈ G.

(2.4.13)

Summarizing the statements above, we conclude

Lemma 2.4.14. For each γ ∈ Γr(G×ρ V), Ξγ belongs to Vr(G×ρ V). Therefore, one can get a mapping F2 : Γr(G×ρ V) →
Vr(G×ρV) by setting F2(γ) := Ξγ for γ ∈ Γr(G×ρV). Moreover, γ

(
π(g)

)
=
[(
g, (F2(γ))(g)

)]
for all (γ, g) ∈ Γr(G×ρV)×G.

Here we refer to (2.4.12), (2.4.9) for Ξγ .

Now, let us verify

Theorem 2.4.15. In the setting of (2.4.1) and (2.4.4); there exists a real linear isomorphism F : Γr(G×ρV) → Vr(G×ρV),
γ 7→ F (γ), such that γ

(
π(g)

)
=
[(
g, (F (γ))(g)

)]
for all (γ, g) ∈ Γr(G×ρ V)×G. Here r ∈ N ∪ {0,∞, ω}.

Proof. By Lemmas 2.4.7 and 2.4.14 it is enough to confirm that (1) F1 ◦ F2 = id on Γr(G ×ρ V) and (2) F2 ◦ F1 = id on

Vr(G×ρ V).
(1). Let us take any α ∈ A, x ∈ Uα and δ ∈ Γr(G ×ρ V). Since δ(x) ∈ Pr−1(Uα) ⊂ ϖ(π−1(Uα) × V), there exists a

(g1, v) ∈ π−1(Uα)× V such that δ(x) = [(g1, v)]. Then we have x = π(g1), δ
(
π(g1)

)
= [(g1, v)] and(

F1(F2(δ))
)
(x) = ΓF2(δ)(x)

(2.4.6)
=

[(
g1, (F2(δ))(g1)

)]
=
[(
g1,Ξδ(g1)

)] (2.4.9),(2.4.12)
=

[(
g1, ρ(ζα(g1))

−1
(
χα(δ(π(g1)))

))]
=
[(
g1, ρ(ζα(g1))

−1
(
χα([(g1, v)])

))] (2.4.8)
= [(g1, v)] = δ(x).

Therefore we see that F1(F2(δ)) = δ on Uα (α ∈ A). This, together with G/H =
∪
α∈A Uα, assures that F1(F2(δ)) = δ on

G/H. For this reason F1 ◦ F2 = id on Γr(G×ρ V).
(2). By arguments similar to those stated in (1), one can conclude that (2) F2 ◦ F1 = id on Vr(G×ρ V). However, let us

confirm (2) for the sake of completeness. For any α ∈ A, g ∈ π−1(Uα) and η ∈ Vr(G×ρ V), we have(
F2(F1(η))

)
(g) = ΞF1(η)(g)

(2.4.9),(2.4.12)
= ρ(ζα(g))

−1
(
χα
(
(F1(η))(π(g))

))
= ρ(ζα(g))

−1
(
χα(Γη(π(g)))

)
(2.4.6)
= ρ(ζα(g))

−1
(
χα([(g, η(g))])

) (2.4.8)
= η(g).

Hence F2(F1(η)) = η on π−1(Uα) (α ∈ A), and F2(F1(η)) = η on G =
∪
α∈A π

−1(Uα). Consequently (2) holds.

2.5 The restrictions of bundles to open subsets and their cross-sections

Fix a homogeneous vector bundle G ×ρ V = (G ×ρ V,Pr, G/H) and provide G ×ρ V with the real analytic structure S =

{(Pr−1(Uα), φα)}α∈A in Proposition 2.2.9. For a non-empty open subset U ⊂ G/H we define an open subset (G×ρ V)U of

G×ρ V by

(G×ρ V)U := Pr−1(U); (2.5.1)

besides, we induce real analytic structures SU on U and SU on (G ×ρ V)U from G/H and G ×ρ V, respectively. Then,

Proposition 2.3.4 and Theorem 2.3.5 tell us that (G×ρ V)U =
(
(G×ρ V)U ,Pr |(G×ρV)U , U

)
is a fiber bundle with fiber V and

group ρ(H) (⊂ GL(V)), which is called the restriction of the bundle (G×ρ V,Pr, G/H) to U .

Let Γr(G×ρV)U be the real vector space of differentiable cross-sections of the bundle (G×ρV)U =
(
(G×ρV)U ,Pr |(G×ρV)U , U

)
,

namely

Γr(G×ρ V)U =

{
γ : U → (G×ρ V)U

(1) γ is of class Cr,

(2) Pr
(
γ(x)

)
= x for all x ∈ U

}
. (2.5.2)

This Γr(G×ρ V)U corresponds to the following real vector space:

Vr(G×ρ V)U :=

{
ξ : π−1(U) → V

(i) ξ is of class Cr,

(ii) ξ(gh) = ρ(h)−1
(
ξ(g)

)
for all (g, h) ∈ π−1(U)×H

}
. (2.5.3)

Proposition 2.5.4. In the setting of (2.5.1), (2.5.2) and (2.5.3); there exists a real linear isomorphism F : Γr(G×ρ V)U →
Vr(G×ρV)U , γ 7→ F (γ), such that γ

(
π(g)

)
=
[(
g, (F (γ))(g)

)]
for all (γ, g) ∈ Γr(G×ρV)U ×π−1(U). Here r ∈ N∪{0,∞, ω}

and U is a non-empty open subset of G/H.

Proof. Refer to Section 2.4 for the proof of this proposition.





Chapter 3

Homogeneous holomorphic vector bundles

over complex homogeneous spaces

In this chapter we deal with homogeneous holomorphic vector bundles over complex homogeneous spaces. The setting of

Chapter 3 is as follows:

• G is a complex Lie group which satisfies the second countability axiom,

• H is a closed complex Lie subgroup of G,

• π is the projection of G onto the left quotient space G/H,

• S = {(Uα, ψα)}α∈A is the holomorphic structure on G/H given in Theorem 1.2.1,

• σα : Uα → G is the holomorphic mapping in Theorem 1.2.1 (α ∈ A).

The topology for G/H is the quotient topology relative to π : g 7→ gH, and the homogeneous space G/H is a complex

manifold having the atlas S.

3.1 Definition of homogeneous holomorphic vector bundle

Let V be a finite-dimensional complex vector space, and let ρ : H → GL(V), h 7→ ρ(h), be a holomorphic homomorphism,

where we fix a complex basis {ei}mi=1 of V and identify V with Cm, and consider V and GL(V) as a complex manifold and a

complex Lie group, respectively.

Definition 3.1.1. In the setting above, the homogeneous vector bundle G×ρ V = (G×ρ V,Pr, G/H) over G/H associated

with ρ is said to be holomorphic. cf. Definition 2.1.3.

In the next section we state results about homogeneous holomorphic vector bundles.

3.2 Results about homogeneous holomorphic vector bundles

Let G×ρ V = (G×ρ V,Pr, G/H) be a homogeneous holomorphic vector bundle over G/H associated with ρ : H → GL(V).

Referring to Chapter 2 we are going to state results about this bundle.

Theorem 3.2.1. There exists a holomorphic structure S = {(Pr−1(Uα), φα)}α∈A on the homogeneous holomorphic vector

bundle G×ρ V so that

(1) ϖ : G× V → G×ρ V, (g, v) 7→ [(g, v)], is a surjective, open, holomorphic mapping,

(2) ν : G× (G×ρ V) → G×ρ V, (g1, [(g2, v)]) 7→ [(g1g2, v)], is a holomorphic mapping,

(4) Pr : G×ρ V → G/H, [(g, v)] 7→ π(g) = gH, is a surjective, open, holomorphic mapping,

(5) for each α ∈ A, the mapping ϕ−1
α : Uα × V → Pr−1(Uα), (x, v) 7→ [(σα(x), v)], is a biholomorphism; besides,

ϕα
(
[(g, v)]

)
=
(
π(g), ρ(ζα(g))v

)
for all [(g, v)] ∈ Pr−1(Uα). cf. (1.3.1).

25



26 CHAPTER 3. HOMOGENEOUS HOLOMORPHIC VECTOR BUNDLES

Moreover, for each x0 ∈ Uα it follows that

(6) Pr
(
ϕ−1
α (x0, v)

)
= x0 for all v ∈ V,

(7) the mapping V ∋ v 7→ ϕ−1
α (x0, v) ∈ Pr−1({x0}) is a complex linear isomorphism, where the complex vector space

structure on Pr−1({x0}) is defined by a similar way to (2.3.1).

In addition, suppose that Uα ∩ Uβ ̸= ∅ (α, β ∈ A). Then,

(8) gαβ : Uα ∩ Uβ → H, y 7→ (σα(y))
−1σβ(y), is a holomorphic mapping such that

(8.a) gαα(x) = e for all x ∈ Uα,

(8.b) gαβ(z)gβγ(z)gγα(z) = e for all z ∈ Uα ∩ Uβ ∩ Uγ .

(9) (ϕα ◦ ϕ−1
β )(y, v) =

(
y, ρ(gαβ(y))v

)
for all (y, v) ∈ (Uα ∩ Uβ)× V.

Proof. ref. Proposition 2.2.14, Proposition 2.3.6, Theorem 2.3.5 and Proposition 2.3.4.

Provide G×ρ V with the holomorphic structure S = {(Pr−1(Uα), φα)}α∈A in Theorem 3.2.1, and define complex vector

spaces Γ(G×ρ V) and V(G×ρ V) by

Γ(G×ρ V) :=

{
γ : G/H → G×ρ V

(1) γ is holomorphic,

(2) Pr
(
γ(x)

)
= x for all x ∈ G/H

}
(3.2.2)

and

V(G×ρ V) :=

{
ξ : G→ V

(i) ξ is holomorphic,

(ii) ξ(gh) = ρ(h)−1
(
ξ(g)

)
for all (g, h) ∈ G×H

}
, (3.2.3)

respectively. This Γ(G ×ρ V) is the complex vector space of holomorphic cross-sections of the homogeneous holomorphic

vector bundle G×ρ V, and

Theorem 3.2.4. In the setting of (3.2.2) and (3.2.3); there exists a complex linear isomorphism F : Γ(G×ρV) → V(G×ρV),
γ 7→ F (γ), such that γ

(
π(g)

)
=
[(
g, (F (γ))(g)

)]
for all (γ, g) ∈ Γ(G×ρ V)×G.

Proof. ref. Theorem 2.4.15.

For a non-empty open subset U ⊂ G/H, the restriction (G×ρ V)U =
(
(G×ρ V)U ,Pr |(G×ρV)U , U

)
of the bundle G×ρ V

to U is a fiber bundle with V and ρ(H) (⊂ GL(V)). Here we induce holomorphic structures SU on U and SU on (G×ρ V)U
from G/H and G×ρV, respectively. Let Γ(G×ρV)U be the complex vector space of holomorphic cross-sections of the bundle

(G×ρ V)U , that is,

Γ(G×ρ V)U :=

{
γ : U → (G×ρ V)U

(1) γ is holomorphic,

(2) Pr
(
γ(x)

)
= x for all x ∈ U

}
. (3.2.5)

This Γ(G×ρ V)U corresponds to the complex vector space

V(G×ρ V)U :=

{
ξ : π−1(U) → V

(i) ξ is holomorphic,

(ii) ξ(gh) = ρ(h)−1
(
ξ(g)

)
for all (g, h) ∈ π−1(U)×H

}
(3.2.6)

as follows (ref. Proposition 2.5.4):

Proposition 3.2.7. In the setting of (3.2.5) and (3.2.6); there exists a complex linear isomorphism F : Γ(G ×ρ V)U →
V(G×ρ V)U , γ 7→ F (γ), such that γ

(
π(g)

)
=
[(
g, (F (γ))(g)

)]
for all (γ, g) ∈ Γ(G×ρ V)U × π−1(U). Here U is a non-empty

open subset of G/H.



Chapter 4

Topological vector spaces of mappings

The main purpose of Chapter 4 is to study topological vector spaces. This chapter consists of four sections. In Section 4.1

we first define an important metric (which is called the Fréchet metric) on the vector space of continuous mappings of a

certain topological space into a finite-dimensional vector space, next confirm that the metric topology for the vector space

coincides with the topology of uniform convergence on compact sets, and finally conclude that the vector space is a Fréchet

space. In Sections 4.2 and 4.3 we apply the arguments in Section 4.1 to the real vector space of continuous cross-sections

of a homogeneous vector bundle and the complex vector space of holomorphic cross-sections of a homogeneous holomorphic

vector bundle, respectively. In the last section we give a proposition about complete metric spaces.

4.1 A topological vector space of continuous mappings

Let K = R or C. Let X be a locally compact Hausdorff space which satisfies the second countability axiom, let V be a

finite-dimensional vector space over K, and let

C(X,V) := {ξ : X → V | ξ is continuous}, (4.1.1)

where we fix a basis {ei}mi=1 of V, identify V with Km, and consider V as a topological space. For ξ1, ξ2, ξ ∈ C(X,V), α ∈ K,

one defines the addition ξ1 + ξ2 and the scalar multiplication αξ by (ξ1 + ξ2)(x) := ξ1(x) + ξ2(x) and (αξ)(x) := αξ(x) for

x ∈ X, respectively. In this setting we will first endow the vector space C(X,V) with a metric topology so that C(X,V) is a
Hausdorff topological vector space, and afterwards show that the topological vector space C(X,V) is a Fréchet space.

4.1.1 A metric topology, the Fréchet metric

We want to set a metric d on C(X,V). For a non-empty compact subset E ⊂ X, we first define a function dE : C(X,V) ×
C(X,V) → R by

dE(ξ1, ξ2) := sup
{
∥ξ1(y)− ξ2(y)∥ : y ∈ E

}
(4.1.2)

for ξ1, ξ2 ∈ C(X,V). Here ∥ · ∥ is an arbitrary norm on the vector space V.1 Since X satisfies the second countability axiom

and is a locally compact Hausdorff space, there exist non-empty open subsets On ⊂ X such that

1. X =
∪∞
n=1On (countable union),

2. the closure On in X is compact for each n ∈ N.

Then, we put En := On for n ∈ N. Taking (4.1.2) into consideration we set

d(ξ1, ξ2) :=

∞∑
n=1

1

2n
dEn

(ξ1, ξ2)

1 + dEn(ξ1, ξ2)
(4.1.3)

for ξ1, ξ2 ∈ C(X,V).

Lemma 4.1.4. The d in (4.1.3) is a metric on C(X,V) such that

(1) d(ξ1, ξ2) ≤ 1 for all ξ1, ξ2 ∈ C(X,V),
1Remark. Two norms on V are always equivalent to each other because of dimK V = m < ∞. e.g. 補題 1.38 in 黒田 [24, p.22].
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(2) d(ξ1, ξ2) = d(ξ1 + ξ3, ξ2 + ξ3) for all ξ1, ξ2, ξ3 ∈ C(X,V),

(3) d(αξ1, αξ2) ≤ d(ξ1, ξ2) for all α ∈ K with |α| ≤ 1 and all ξ1, ξ2 ∈ C(X,V).

Proof. For any ξ1, ξ2 ∈ C(X,V), we deduce 0 ≤ dE(ξ1, ξ2), d(ξ1, ξ2) by (4.1.2) and (4.1.3). Furthermore,

d(ξ1, ξ2) =

∞∑
n=1

1

2n
dEn

(ξ1, ξ2)

1 + dEn(ξ1, ξ2)
≤

∞∑
n=1

1

2n
= 1 <∞. 1⃝

Hence d is a non-negative function on C(X,V)× C(X,V). It is immediate from (4.1.2) and (4.1.3) that

1. d(ξ1, ξ2) = d(ξ1 + ξ3, ξ2 + ξ3) for all ξ1, ξ2, ξ3 ∈ C(X,V),

2. d(αξ1, αξ2) ≤ d(ξ1, ξ2) for all α ∈ K with |α| = 1 and all ξ1, ξ2 ∈ C(X,V),

3. d(ξ1, ξ2) = d(ξ2, ξ1) for all ξ1, ξ2 ∈ C(X,V),

4. d(ξ, ξ) = 0 for all ξ ∈ C(X,V).

Now, for ξ′1, ξ
′
2 ∈ C(X,V) we suppose that d(ξ′1, ξ

′
2) = 0. Then for each k ∈ N, one has

0 ≤ 1

2k
dEk

(ξ′1, ξ
′
2)

1 + dEk
(ξ′1, ξ

′
2)

≤
∞∑
n=1

1

2n
dEn

(ξ′1, ξ
′
2)

1 + dEn
(ξ′1, ξ

′
2)

(4.1.3)
= d(ξ′1, ξ

′
2) = 0.

This implies that dEk
(ξ′1, ξ

′
2) = 0, so that ξ′1 = ξ′2 on Ek for all k ∈ N. Therefore ξ′1 = ξ′2 on the whole X in terms of

X =
∪∞
n=1On and En = On. Consequently, the rest of proof is to confirm the triangle inequality

d(ξ1, ξ3) ≤ d(ξ1, ξ2) + d(ξ2, ξ3) for all ξ1, ξ2, ξ3 ∈ C(X,V). 2⃝

For any ξ1, ξ2, ξ3 ∈ C(X,V), it follows from (4.1.2) that dEn
(ξ1, ξ3) ≤ dEn

(ξ1, ξ2) + dEn
(ξ2, ξ3) for all n ∈ N. Therefore it

follows from 0 ≤ dEn
(ξi, ξj) that

dEn(ξ1, ξ3)

1 + dEn
(ξ1, ξ3)

≤ dEn(ξ1, ξ2) + dEn(ξ2, ξ3)

1 + dEn
(ξ1, ξ2) + dEn

(ξ2, ξ3)

=
dEn

(ξ1, ξ2)

1 + dEn(ξ1, ξ2) + dEn(ξ2, ξ3)
+

dEn
(ξ2, ξ3)

1 + dEn(ξ1, ξ2) + dEn(ξ2, ξ3)
≤ dEn

(ξ1, ξ2)

1 + dEn(ξ1, ξ2)
+

dEn
(ξ2, ξ3)

1 + dEn(ξ2, ξ3)

for all n ∈ N. This and 1⃝ lead to 2⃝. Indeed,

d(ξ1, ξ3)
(4.1.3)
=

∞∑
n=1

1

2n
dEn

(ξ1, ξ3)

1 + dEn(ξ1, ξ3)
≤

∞∑
n=1

( 1

2n
dEn

(ξ1, ξ2)

1 + dEn(ξ1, ξ2)
+

1

2n
dEn

(ξ2, ξ3)

1 + dEn(ξ2, ξ3)

)
=

∞∑
n=1

1

2n
dEn(ξ1, ξ2)

1 + dEn
(ξ1, ξ2)

+

∞∑
n=1

1

2n
dEn(ξ2, ξ3)

1 + dEn
(ξ2, ξ3)

(4.1.3)
= d(ξ1, ξ2) + d(ξ2, ξ3).

Definition 4.1.5. The metric d in (4.1.3) is called the Fréchet metric on C(X,V).

Lemma 4.1.6. The metric space (C(X,V), d) is complete. Here d is the Fréchet metric in (4.1.3).

Proof. Let {ξn}∞n=1 be an arbitrary Cauchy sequence in (C(X,V), d).
Our first aim is to prove that for any x ∈ X, {ξn(x)}∞n=1 is a Cauchy sequence in (V, ∥ · ∥). Let us take any ϵ > 0. By

x ∈ X =
∪∞
n=1On there exists a k ∈ N such that x ∈ Ok ⊂ Ek. Since ϵ/(2k(1 + ϵ)) > 0 and {ξn}∞n=1 is a Cauchy sequence

in (C(X,V), d), there exists an M ∈ N such that n,m ≥M implies

d(ξn, ξm) <
1

2k
ϵ

1 + ϵ
.

Then, it follows from (4.1.3) that
1

2k
dEk

(ξn, ξm)

1 + dEk
(ξn, ξm)

≤ d(ξn, ξm) <
1

2k
ϵ

1 + ϵ
,

so that dEk
(ξn, ξm) < ϵ; and we deduce ∥ξn(x)−ξm(x)∥ ≤ dEk

(ξn, ξm) < ϵ by virtue of (4.1.2) and x ∈ Ek. Hence {ξn(x)}∞n=1

is a Cauchy sequence in (V, ∥ · ∥) for each x ∈ X.
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Since the normed vector space (V, ∥ · ∥) is complete, one can get a mapping ξ : X → V by setting

ξ(x) := lim
n→∞

ξn(x) for x ∈ X.

Our second aim is to conclude that this ξ : X → V is continuous. For any ϵ > 0 and x0 ∈ X =
∪∞
n=1On, there exists a k ∈ N

such that x0 ∈ Ok ⊂ Ek. Moreover, there exists an N ∈ N such that n,m ≥ N implies

d(ξn, ξm) <
1

2k
(ϵ/3)

1 + (ϵ/3)
.

Then, it follows that dEk
(ξn, ξm) < ϵ/3; and ∥ξn(y)− ξm(y)∥ ≤ dEk

(ξn, ξm) < ϵ/3 for all y ∈ Ek, n,m ≥ N . For this reason

we see that ∥ξn(y)− ξN (y)∥ < ϵ/3 for all y ∈ Ek, n ≥ N . This assures that

∥ξ(y)− ξN (y)∥ =
∥∥ lim
n→∞

ξn(y)− ξN (y)
∥∥ ≤ ϵ/3 for all y ∈ Ek. 1⃝

Besides, since ξN : X → V is continuous at x0, there exists an open neighborhood Uk of x0 ∈ Ok such that z ∈ Uk implies

∥ξN (x0)− ξN (z)∥ < ϵ/3. 2⃝

The Uk is an open neighborhood of x0 ∈ X, and z ∈ Uk implies

∥ξ(x0)− ξ(z)∥ ≤ ∥ξ(x0)− ξN (x0)∥+ ∥ξN (x0)− ξN (z)∥+ ∥ξN (z)− ξ(z)∥ < ϵ

because of 1⃝, 2⃝ and x0 ∈ Uk ⊂ Ek. Consequently ξ : X → V is continuous at x0. At this stage we can assert ξ ∈ C(X,V).
Our third aim is to demonstrate lim

m→∞
d(ξ, ξm) = 0. For any ϵ > 0, one can choose an ℓ ∈ N such that

1

2ℓ
<
ϵ

2
. 3⃝

For each 1 ≤ k ≤ ℓ, one has (ϵ/2)
/(

2k(1 + (ϵ/2))
)
> 0 and there exists an Nk ∈ N such that n,m ≥ Nk implies

d(ξn, ξm) <
1

2k
(ϵ/2)

1 + (ϵ/2)

because {ξn}∞n=1 is a Cauchy sequence in (C(X,V), d). Then, it follows from (4.1.3) that

1

2k
dEk

(ξn, ξm)

1 + dEk
(ξn, ξm)

≤ d(ξn, ξm) <
1

2k
(ϵ/2)

1 + (ϵ/2)
,

so that dEk
(ξn, ξm) < ϵ/2. This and (4.1.2) enable us to verify that ∥ξn(y) − ξm(y)∥ ≤ dEk

(ξn, ξm) < ϵ/2 for all y ∈ Ek,

n,m ≥ Nk. Therefore ∥ξ(y)− ξm(y)∥ =
∥∥ lim
n→∞

ξn(y)− ξm(y)
∥∥ ≤ ϵ/2 for all y ∈ Ek, m ≥ Nk; and thus (4.1.2) tells us that

dEk
(ξ, ξm) ≤ ϵ/2 for all m ≥ Nk. 4⃝

Now, let N := max{Nj : 1 ≤ j ≤ ℓ}. Then, this N belongs to N and we deduce

dEj
(ξ, ξm) ≤ ϵ/2 for all 1 ≤ j ≤ ℓ and m ≥ N

by 4⃝. Accordingly, m ≥ N implies

d(ξ, ξm)
(4.1.3)
=

ℓ∑
j=1

1

2j
dEj

(ξ, ξm)

1 + dEj
(ξ, ξm)

+

∞∑
i=ℓ+1

1

2i
dEi(ξ, ξm)

1 + dEi
(ξ, ξm)

≤
ℓ∑
j=1

1

2j
dEj

(ξ, ξm) +

∞∑
i=ℓ+1

1

2i

≤
ℓ∑
j=1

1

2j
ϵ

2
+

∞∑
i=ℓ+1

1

2i
=
(
1− 1

2ℓ

) ϵ
2
+

1

2ℓ
< ϵ (∵ 3⃝).

Hence lim
m→∞

d(ξ, ξm) = 0 follows.

Lemma 4.1.7. With respect to the Fréchet metric d in (4.1.3),

(1) the addition C(X,V)× C(X,V) ∋ (ξ1, ξ2) 7→ ξ1 + ξ2 ∈ C(X,V) is continuous,

(2) the scalar multiplication K× C(X,V) ∋ (α, ξ) 7→ αξ ∈ C(X,V) is continuous.
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Therefore C(X,V) = (C(X,V), d) is a Hausdorff topological vector space over K.

Proof. (1). Take any η1, η2 ∈ C(X,V) and ϵ > 0. If ξ1, ξ2 ∈ C(X,V) and d(ξ1, η1), d(ξ2, η2) < ϵ/2, then the triangle inequality

and Lemma 4.1.4-(2) assure

d(ξ1 + ξ2, η1 + η2) ≤ d(ξ1 + ξ2, η1 + ξ2) + d(η1 + ξ2, η1 + η2) = d(ξ1, η1) + d(ξ2, η2) < ϵ.

Hence the addition of vectors is a continuous mapping.

(2). Fix any β ∈ K, η ∈ C(X,V) and ϵ > 0. Since ϵ > 0 there exists an N ∈ N such that

1

2N
<
ϵ

4
. 1⃝

By use of β, ϵ and the N , we define a positive real number p as follows:

p :=
ϵ

4N(1 + |β|)
. 2⃝

Now, let us suppose that α ∈ K and ξ ∈ C(X,V) satisfy

(s1) |α− β| < ϵ

4N
(
p+max{dEj (η, 0) : 1 ≤ j ≤ N}

) and

(s2) d(ξ, η) <
1

2N
p

1 + p
,

respectively. We want to get

d(αξ, βη) < ϵ. (a)

It follows from (4.1.3) and (s2) that for any 1 ≤ j ≤ N ,

1

2j
dEj

(ξ, η)

1 + dEj (ξ, η)
≤ d(ξ, η) <

1

2N
p

1 + p
≤ 1

2j
p

1 + p
,

so that

dEj
(ξ, η) < p for all 1 ≤ j ≤ N. 3⃝

On the one hand; we obtain

d(αξ, βξ)
(4.1.3)
=

N∑
j=1

1

2j
dEj

(αξ, βξ)

1 + dEj (αξ, βξ)
+

∞∑
k=N+1

1

2k
dEk

(αξ, βξ)

1 + dEk
(αξ, βξ)

≤
N∑
j=1

dEj
(αξ, βξ) +

∞∑
k=N+1

1

2k

=
( N∑
j=1

dEj (αξ, βξ)
)
+

1

2N
(4.1.2)
=

( N∑
j=1

|α− β|dEj (ξ, 0)
)
+

1

2N
≤
( N∑
j=1

|α− β|
(
dEj (ξ, η) + dEj (η, 0)

))
+

1

2N

≤ |α− β|N
(
p+max{dEj

(η, 0) : 1 ≤ j ≤ N}
)
+

1

2N
(∵ 3⃝)

<
ϵ

2
(∵ (s1), 1⃝).

On the other hand;

d(βξ, βη)
(4.1.3)
=

N∑
j=1

1

2j
dEj (βξ, βη)

1 + dEj
(βξ, βη)

+

∞∑
k=N+1

1

2k
dEk

(βξ, βη)

1 + dEk
(βξ, βη)

≤
( N∑
j=1

dEj
(βξ, βη)

)
+

1

2N

(4.1.2)
=

( N∑
j=1

|β|dEj
(ξ, η)

)
+

1

2N
≤ |β|Np+ 1

2N
(∵ 3⃝)

2⃝
=

|β|ϵ
4(1 + |β|)

+
1

2N
<
ϵ

2
(∵ 1⃝).

These yield d(αξ, βξ)+ d(βξ, βη) < ϵ. This, combined with the triangle inequality, enables us to conclude (a). So, the scalar

multiplication K× C(X,V) ∋ (α, ξ) 7→ αξ ∈ C(X,V) is continuous.

We here give a supplementation about Hausdorff topological vector spaces.

Proposition 4.1.8. Let X be a Hausdorff topological vector space over K,2 and let Y be a real or complex vector subspace

of X according as K = R or K = C. Suppose that dimK Y <∞. Then,

2This proposition can hold even if X is a topological vector space satisfying the first separation axiom.
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(1) the topological vector space Y is isomorphic to Kk, where k = dimK Y,

(2) Y is a closed subset of X .

Proof. (1). Fix a basis {ei}ki=1 of Y, and define a linear isomorphism f : Kk → Y by

f(α1, α2, . . . , αk) :=
∑k
i=1 αiei for (α1, α2, . . . , αk) ∈ Kk.

Let us show that

the linear isomorphism f : Kk → Y is homeomorphic. 1⃝

It is natural that f : Kk → Y, (α1, α2, . . . , αk) 7→
∑k
i=1 αiei, is continuous because f is the composition of the following

three continuous mappings f1, f2 and f3:

f1 : Kk → (K× Y)× (K× Y)× · · · × (K× Y), (α1, α2, . . . , αk) 7→ (α1, e1, α2, e2, . . . , αk, ek),

f2 : (K× Y)× (K× Y)× · · · × (K× Y) → Y × Y × · · · × Y, (α1, y1, α2, y2, . . . , αk, yk) 7→ (α1y1, α2y2, . . . , αkyk),

f3 : Y × Y × · · · × Y → Y, (y1, y2, . . . , yk) 7→
∑k
i=1 yi.

We need to confirm that the inverse f−1 : Y → Kk is also continuous. It suffices to confirm that f−1 is continuous at the

zero 0 ∈ Y. Let ∥x∥ :=
√

|x1|2 + |x2|2 + · · ·+ |xk|2 for x = (x1, x2, . . . , xk) ∈ Kk. We will show that for any ϵ > 0 there

exists an open neighborhood U of 0 ∈ Y satisfying

f−1(U) ⊂ Bϵ, 2⃝

where Bϵ := {x ∈ Kk : ∥x∥ < ϵ}. It turns out that the sphere Sϵ := {y ∈ Kk : ∥y∥ = ϵ} is a compact subset of Kk and

0 ̸∈ Sϵ. Therefore, since f : Kk → Y is injective continuous and Y is a Hausdorff space, we conclude that f(Sϵ) ⊂ Y is closed

and 0 = f(0) ̸∈ f(Sϵ). Accordingly there exist two open subsets U1, U2 ⊂ Y such that

0 ∈ U1, f(Sϵ) ⊂ U2, U1 ∩ U2 = ∅ (a)

because a Hausdorff topological vector space is a regular space.3 Since U1 is an open neighborhood of 0 ∈ Y and the scalar

multiplication K×Y ∋ (α, y) 7→ αy ∈ Y is continuous at (0, 0), there exist a positive real number p and an open neighborhood

V of 0 ∈ Y such that αv ∈ U1 for all |α| < p and v ∈ V . Setting U :=
∪

0<|β|<p βV , one deduces the following:

(i) U is an open subset of Y, (ii) 0 ∈ U ⊂ U1, (iii) tu ∈ U for all |t| ≤ 1 and u ∈ U, (b)

where we remark that each βV is an open neighborhood of 0 ∈ Y. Now, we are in a position to prove 2⃝. Let us use proof

by contradiction. Suppose that there exists a z ∈ f−1(U) which does not belong to Bϵ. Then, it follows from z ̸∈ Bϵ that

∥z∥ ≥ ϵ. Therefore the intermediate-value theorem enables us to obtain a real number t0 such that 0 ≤ t0 ≤ 1 and ∥t0z∥ = ϵ

(because the mapping [0, 1] ∋ t 7→ t∥z∥ = ∥tz∥ ∈ R is continuous). This ∥t0z∥ = ϵ implies t0z ∈ Sϵ, and so (a) yields

f(t0z) ∈ U2.

However, from f(z) ∈ U , 0 ≤ t0 ≤ 1 and (b) we deduce f(t0z) = t0f(z) ∈ U ⊂ U1. Hence f(t0z) ∈ U1 ∩ U2, which

contradicts (a). For this reason 2⃝ holds, and f−1 : Y → Kk is continuous at 0. This assures 1⃝.

(2). Taking the above U and f into account, we are going to prove that Y ⊂ X is closed from now on. Let x be an

arbitrary element of YX (the closure of Y in X ). By (b)-(i) there exists an open subset O ⊂ X such that

U = (O ∩ Y).

Since O is an open neighborhood of 0 ∈ X and the mapping R ∋ t 7→ tx ∈ X is continuous at 0, there exists a ν > 0 such

that (1/ν)x ∈ O. Then, one has

x ∈ (νO ∩ YX ) ⊂ νO ∩ YX (∵ νO is open in X )

= ν(O ∩ Y)X = νUX ⊂ νf(Bϵ)
X (∵ 2⃝)

= f(νBϵ)
X = f(Bνϵ)

X ⊂ f(BνϵK
k)X = f(Bνϵ

Kk

) ⊂ f(Kk) = Y,

where f(BνϵK
k)X = f(Bνϵ

Kk

) follows by f : Kk → (Y ⊂)X being continuous, f(Bνϵ
Kk

) ⊂ X being compact and X being a

Hausdorff space. Therefore x ∈ Y, and YX ⊂ Y. This implies that Y is a closed subset of X .

3More generally, a topological group satisfying the first separation axiom is a regular space. e.g. 定理 1.8 in 村上 [27, p.28].
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4.1.2 A metric topology, a topology of uniform convergence on compact sets, and a locally

convex topology

In the previous subsection we have defined the Fréchet metric d on C(X,V). So, one can consider the metric topology for

(C(X,V), d). Recalling that X =
∪∞
n=1On and each En = On is compact in X (cf. Subsection 4.1.1), we prove two Lemmas

4.1.9 and 4.1.10, and deduce Theorem 4.1.11 from them.

Lemma 4.1.9. The metric topology for (C(X,V), d) coincides with the topology of uniform convergence on compact sets.

Proof. First, let us demonstrate that the metric topology Dd for (C(X,V), d) is coarser than the topology Dcu of uniform

convergence on compact sets, namely

Dd ⊂ Dcu.

For given ξ0 ∈ C(X,V) and ϵ > 0, we set Od := {ξ ∈ C(X,V) | d(ξ, ξ0) < ϵ} and take an arbitrary element ξ ∈ Od. We want

to show that there exist a non-empty compact subset E ⊂ X and a δ > 0 satisfying

{η ∈ C(X,V) | dE(η, ξ) < δ} ⊂ Od

(see (4.1.2) for dE). Let r := d(ξ, ξ0). Since ϵ− r > 0 there exists an m ∈ N such that

1/2m < (ϵ− r)/2.

By use of m, ϵ and r we put

E :=
∪m
j=1Ej , δ := (ϵ− r)/(2m).

Then, it turns out that E is a non-empty compact subset of X and δ > 0. Moreover, (4.1.2) yields

dE1(ξ1, ξ2) + · · ·+ dEm(ξ1, ξ2) ≤ mdE(ξ1, ξ2)

for all ξ1, ξ2 ∈ C(X,V). Hence for any η ∈ C(X,V) with dE(η, ξ) < δ, we have

d(η, ξ)
(4.1.3)
=

∞∑
n=1

1

2n
dEn

(η, ξ)

1 + dEn
(η, ξ)

=

m∑
j=1

1

2j
dEj

(η, ξ)

1 + dEj
(η, ξ)

+

∞∑
k=m+1

1

2k
dEk

(η, ξ)

1 + dEk
(η, ξ)

≤
m∑
j=1

dEj
(η, ξ) +

∞∑
k=m+1

1

2k
=
( m∑
j=1

dEj
(η, ξ)

)
+

1

2m
≤ mdE(η, ξ) +

1

2m

< mδ +
1

2m
< ϵ− r.

This and d(η, ξ0) ≤ d(η, ξ) + d(ξ, ξ0) = d(η, ξ) + r imply that {η ∈ C(X,V) | dE(η, ξ) < δ} ⊂ Od, and thus Dd ⊂ Dcu.

Next, let us confirm that the converse inclusion Dcu ⊂ Dd also holds. For given ξ′0 ∈ C(X,V), ϵ′ > 0 and non-empty

compact subset E′ ⊂ X, we set Ocu := {ξ′ ∈ C(X,V) | dE′(ξ′, ξ′0) < ϵ′} and fix any element ξ′ ∈ Ocu. We are going to show

that there exists a δ′ > 0 satisfying

{η′ ∈ C(X,V) | d(η′, ξ′) < δ′} ⊂ Ocu.

Put r′ := dE′(ξ′, ξ′0). Since X =
∪∞
n=1On, En = On and E′ is compact, there exist finite elements n(1), . . . , n(k) ∈ N such

that n(1) < · · · < n(k) and E′ ⊂
∪k
i=1En(i). Then it follows from (4.1.2) that

dE′(ξ1, ξ2) ≤ dEn(1)
(ξ1, ξ2) + · · ·+ dEn(k)

(ξ1, ξ2)

for all ξ1, ξ2 ∈ C(X,V). Setting

δ′ :=
1

2n(k)
((ϵ′ − r′)/k)

1 + ((ϵ′ − r′)/k)
,

we deduce δ′ > 0. In addition; if η′ ∈ C(X,V) satisfies d(η′, ξ′) < δ′, then it follows from (4.1.3) that

1

2n(i)
dEn(i)

(η′, ξ′)

1 + dEn(i)
(η′, ξ′)

≤ d(η′, ξ′) < δ′ =
1

2n(k)
((ϵ′ − r′)/k)

1 + ((ϵ′ − r′)/k)
≤ 1

2n(i)
((ϵ′ − r′)/k)

1 + ((ϵ′ − r′)/k)
,

so that dEn(i)
(η′, ξ′) < (ϵ′ − r′)/k for all 1 ≤ i ≤ k. Consequently, if η′ ∈ C(X,V) satisfies d(η′, ξ′) < δ′, then dE′(η′, ξ′) ≤∑k

i=1 dEn(i)
(η′, ξ′) < ϵ′−r′. This and dE′(η′, ξ′0) ≤ dE′(η′, ξ′)+dE′(ξ′, ξ′0) = dE′(η′, ξ′)+r′ imply that {η′ ∈ C(X,V) | d(η′, ξ′) <

δ′} ⊂ Ocu, and so Dcu ⊂ Dd.
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Lemma 4.1.10. The metric topology for (C(X,V), d) coincides with the locally convex topology determined by a countable

number of seminorms {pn}n∈N, where pn(ξ) := dEn
(ξ, 0) for n ∈ N, ξ ∈ C(X,V). Here we refer to (4.1.2) for dEn

.

Proof. We denote by Dloc the locally convex topology determined by {pn}n∈N, and utilize the same notation Dd, Od = {ξ ∈
C(X,V) | d(ξ, ξ0) < ϵ} as in the proof of Lemma 4.1.9. We need to verify that Dloc = Dd, but Dloc ⊂ Dd is a consequence of

Lemma 4.1.9. Thus we are going to confirm Dd ⊂ Dloc only.

For given ξ ∈ Od, we put r := d(ξ, ξ0). Since ϵ− r > 0 there exists an N ∈ N such that

1

2N
<
ϵ− r

2
.

Then, any η ∈
∩N
i=1{η ∈ C(X,V) | pi(η − ξ) < (ϵ− r)/(2N)} satisfies

d(η, ξ)
(4.1.3)
=

N∑
i=1

1

2i
dEi

(η, ξ)

1 + dEi
(η, ξ)

+

∞∑
k=N+1

1

2k
dEk

(η, ξ)

1 + dEk
(η, ξ)

≤
N∑
i=1

dEi
(η, ξ) +

∞∑
k=N+1

1

2k
=
( N∑
i=1

dEi
(η, ξ)

)
+

1

2N

(4.1.2)
=

( N∑
i=1

pi(η − ξ)
)
+

1

2N
< ϵ− r;

furthermore, d(η, ξ0) ≤ d(η, ξ)+d(ξ, ξ0) < ϵ−r+r = ϵ. Hence we see that
∩N
i=1{η ∈ C(X,V) | pi(η−ξ) < (ϵ−r)/(2N)} ⊂ Od,

and Dd ⊂ Dloc.

Summarizing statements above we conclude the following (see (4.1.1), (4.1.2) for C(X,V), dEn):

Theorem 4.1.11. With respect the Fréchet metric d in (4.1.3),

(1) the metric space (C(X,V), d) is complete,

(2) the addition C(X,V) × C(X,V) ∋ (ξ1, ξ2) 7→ ξ1 + ξ2 ∈ C(X,V) and the scalar multiplication K × C(X,V) ∋ (α, ξ) 7→
αξ ∈ C(X,V) are continuous,

(3) the metric topology for (C(X,V), d) coincides with the topology of uniform convergence on compact sets; besides, it also

coincides with the locally convex topology determined by a countable number of seminorms {pn}n∈N, where pn(ξ) =

dEn(ξ, 0) for n ∈ N, ξ ∈ C(X,V).

Therefore C(X,V) is a Fréchet space over K = R or C.

Proof. cf. Lemmas 4.1.6, 4.1.7, 4.1.9 and 4.1.10.

4.2 Real vector spaces of continuous cross-sections of homogeneous vector

bundles

The setting of Section 4.2 is as follows:

• G is a Lie group which satisfies the second countability axiom,

• H is a closed subgroup of G,

• π is the projection of G onto the left quotient space G/H,

• S = {(Uα, ψα)}α∈A is the real analytic structure on G/H given in Theorem 1.1.2,

• G×ρ V = (G×ρ V,Pr, G/H) is a homogeneous vector bundle over G/H associated with ρ : H → GL(V),

• S = {(Pr−1(Uα), φα)}α∈A is the real analytic structure on G×ρ V in Proposition 2.2.9.

The topologies for G/H and G×ρV are the quotient topologies relative to π : G→ G/H, g 7→ gH, and ϖ : G×V → G×ρV,
(g, v) 7→ [(g, v)], respectively, and the homogeneous space G/H and the homogeneous vector bundle G×ρ V are real analytic

manifolds having the atlases S and S , respectively.
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Now, let U be a non-empty open subset of G/H. Since π−1(U) is open in G and the Lie group G satisfies the second

countability axiom, we see that π−1(U) is a locally compact Hausdorff space and satisfies the same axiom. For this reason

we can apply the arguments and notation “d, dEn
, ∥ · ∥” in Section 4.1 to C(π−1(U),V). Noting (2.5.3) and

V0(G×ρ V)U ⊂ C(π−1(U),V),

we demonstrate

Proposition 4.2.1. With respect the Fréchet metric d in (4.1.3),

(1) the metric space (V0(G×ρ V)U , d) is complete,

(2) the addition V0(G×ρV)U ×V0(G×ρV)U ∋ (ξ1, ξ2) 7→ ξ1+ ξ2 ∈ V0(G×ρV)U and the scalar multiplication R×V0(G×ρ
V)U ∋ (λ, ξ) 7→ λξ ∈ V0(G×ρ V)U are continuous,

(3) the metric topology for (V0(G×ρ V)U , d) coincides with the topology of uniform convergence on compact sets; besides,

it also coincides with the locally convex topology determined by a countable number of seminorms {pn}n∈N, where

pn(ξ) := dEn(ξ, 0) for n ∈ N, ξ ∈ V0(G×ρ V)U .

Therefore V0(G×ρ V)U is a Fréchet space over R.

Proof. Theorem 4.1.11, together with V0(G×ρ V)U ⊂ C(π−1(U),V), enables us to show that d is a metric on V0(G×ρ V)U ,
and to conclude (2), (3). Hence, we only prove that (V0(G×ρ V)U , d) is complete.

Let {ηn}∞n=1 be a given Cauchy sequence in (V0(G×ρ V)U , d). By V0(G×ρ V)U ⊂ C(π−1(U),V) and Lemma 4.1.6, there

exists a unique η ∈ C(π−1(U),V) such that lim
n→∞

d(η, ηn) = 0. In order to show η ∈ V0(G×ρ V)U , it suffices to confirm that

η(gh) = ρ(h)−1
(
η(g)

)
for all (g, h) ∈ π−1(U)×H

because (2.5.3). For any (g, h) ∈ π−1(U)×H, it follows from lim
n→∞

d(η, ηn) = 0 and gh, g ∈ π−1(U) that

lim
n→∞

∥η(gh)− ηn(gh)∥ = 0, lim
m→∞

∥ηm(g)− η(g)∥ = 0

(ref. the beginning of the proof of Lemma 4.1.6); and therefore

∥η(gh)− ρ(h)−1
(
η(g)

)
∥ ≤ ∥η(gh)− ηn(gh)∥+ ∥ηn(gh)− ρ(h)−1

(
η(g)

)
∥

= ∥η(gh)− ηn(gh)∥+ ∥ρ(h)−1
(
ηn(g)− η(g)

)
∥ −→ 0 (n→ ∞)

because of ηn ∈ V0(G ×ρ V)U and because the mapping ρ(h)−1 : V → V, v 7→ ρ(h)−1(v), is continuous. Consequently, one

has η ∈ V0(G×ρ V)U , and the metric space (V0(G×ρ V)U , d) is complete.4

4.3 Complex vector spaces of holomorphic cross-sections of homogeneous

holomorphic vector bundles

The setting of Section 4.3 is as follows:

• G is a complex Lie group which satisfies the second countability axiom,

• H is a closed complex Lie subgroup of G,

• π is the projection of G onto the left quotient space G/H,

• S = {(Uα, ψα)}α∈A is the holomorphic structure on G/H given in Theorem 1.2.1,

• G×ρ V = (G×ρ V,Pr, G/H) is a homogeneous holomorphic vector bundle over G/H associated with ρ : H → GL(V),

• S = {(Pr−1(Uα), φα)}α∈A is the holomorphic structure on G×ρ V in Theorem 3.2.1.

4This implies that V0(G×ρ V)U is a closed, real vector subspace of the Fréchet space C(π−1(U),V).
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The topologies for G/H and G×ρV are the quotient topologies relative to π : G→ G/H, g 7→ gH, and ϖ : G×V → G×ρV,
(g, v) 7→ [(g, v)], respectively, and the homogeneous space G/H and the homogeneous holomorphic vector bundle G×ρ V are

complex manifolds having the atlases S and S , respectively. Here we fix a complex basis {ei}mi=1 of V, identify V with Cm

and consider V as a complex manifold.

The following arguments are similar to those in the previous section. For a non-empty open subset U ⊂ G/H, it follows

from (3.2.6) and (4.1.1) that

V(G×ρ V)U ⊂ C(π−1(U),V),

and moreover

Proposition 4.3.1. With respect the Fréchet metric d in (4.1.3),

(1) the metric space (V(G×ρ V)U , d) is complete,

(2) the addition V(G×ρV)U×V(G×ρV)U ∋ (ξ1, ξ2) 7→ ξ1+ξ2 ∈ V(G×ρV)U and the scalar multiplication C×V(G×ρV)U ∋
(α, ξ) 7→ αξ ∈ V(G×ρ V)U are continuous,

(3) the metric topology for (V(G×ρ V)U , d) coincides with the topology of uniform convergence on compact sets; besides, it

also coincides with the locally convex topology determined by a countable number of seminorms.

Therefore V(G×ρ V)U is a Fréchet space over C.

Proof. By Theorem 4.1.11 and V(G ×ρ V)U ⊂ C(π−1(U),V) we conclude that d is a metric on V(G ×ρ V)U , and that both

(2) and (3) hold.

Let us prove that (V(G×ρ V)U , d) is complete. Let {ξn}∞n=1 be a given Cauchy sequence in (V(G×ρ V)U , d). By (3.2.6)

and (2.5.3), one has

V(G×ρ V)U ⊂ V0(G×ρ V)U ,

where we regard V as a real vector space here. Therefore {ξn}∞n=1 ⊂ V0(G ×ρ V)U and Proposition 4.2.1-(1) assure the

existence of a unique ξ ∈ V0(G×ρ V)U satisfying lim
n→∞

d(ξ, ξn) = 0. So, we can get the conclusion if one confirms that

the continuous mapping ξ : π−1(U) → V = Cm is holomorphic. 1⃝

For an arbitrary g ∈ π−1(U), we take a holomorphic coordinate neighborhood (P, ψ) of g such that (i) zj
(
ψ(g)

)
= 0 for

all 1 ≤ j ≤ N := dimC π
−1(U) and (ii) ψ is a homeomorphism of P onto an open subset of CN defined by |z1| < r, |z2| <

r, . . . , |zN | < r for some r > 0. Let us express ξ ◦ ψ−1 : ψ(P ) → Cm as

(ξ ◦ ψ−1)(z1, z2, . . . , zN ) =
(
ξ1(z1, z2, . . . , zN ), . . . , ξm(z1, z2, . . . , zN )

)
,

and set D := {z ∈ C : |z| < r}. If one shows that for each 1 ≤ i ≤ m and 1 ≤ j ≤ N

the continuous function D ∋ zj 7→ ξi(· · · , zj , · · · ) ∈ C of one variable is holomorphic, 1⃝′

then we can conclude 1⃝ by ψ(P ) ∋ (z1, z2, . . . , zN ) 7→ ξi(z1, z2, . . . , zN ) ∈ C being continuous and ψ(P ) = D ×D × · · · ×D︸ ︷︷ ︸
N

.

In order to show 1⃝′ we first express ξn ◦ ψ−1 : ψ(P ) → Cm as

(ξn ◦ ψ−1)(z1, z2, . . . , zN ) =
(
ξ1n(z

1, z2, . . . , zN ), . . . , ξmn (z1, z2, . . . , zN )
)
,

n ∈ N. Notice that each ξin(z
1, z2, . . . , zN ) : ψ(P ) → C is a holomorphic function (1 ≤ i ≤ m, n ∈ N) by virtue of

ξn ∈ V(G ×ρ V)U . Remark that lim
n→∞

d(ξ, ξn) = 0 and the topology for (V(G ×ρ V)U , d) coincides with the topology of

uniform convergence on compact sets. Substituting a sufficiently small r′ > 0 for r (if necessary), one can assume that

{ξn ◦ ψ−1}∞n=1 is uniformly convergent to ξ ◦ ψ−1 on the set ψ(P )—that is, for any ϵ > 0 there exists a K ∈ N such that

k ≥ K implies ∥∥(ξ ◦ ψ−1)(z)− (ξk ◦ ψ−1)(z)
∥∥ < ϵ for all z ∈ ψ(P ),

where ∥w∥ :=
√

|w1|2 + · · ·+ |wm|2 for w = (w1, . . . , wm) ∈ Cm. Consequently it follows that for each 1 ≤ i ≤ m

{ξin(z1, z2, . . . , zN )}∞n=1 is uniformly convergent to ξi(z1, z2, . . . , zN ) on ψ(P ),
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and in particular, for each 1 ≤ i ≤ m and 1 ≤ j ≤ N

{ξin(· · · , zj , · · · )}∞n=1 is uniformly convergent to ξi(· · · , zj , · · · ) on D. (a)

Now, we are in a position to demonstrate 1⃝′. Fix any 1 ≤ i ≤ m and 1 ≤ j ≤ N . Let C be any piecewise differentiable

closed curve of class C1 which is contained in D. Then we have∫
C

ξi(· · · , zj , · · · )dzj (a)
= lim

n→∞

∫
C

ξin(· · · , zj , · · · )dzj = 0

because the function D ∋ zj 7→ ξin(· · · , zj , · · · ) ∈ C is holomorphic for each n ∈ N, its domain D is a star region and Cauchy’s

integral theorem.5 Accordingly we obtain 1⃝′ from Morera’s theorem.6

4.4 An appendix (complete metric spaces, the Baire category theorem)

In Sections 4.1, 4.2 and 4.3 we have dealt with metric spaces C(X,V), V0(G×ρ V)U and V(G×ρ V)U , respectively. To these

spaces we can apply the following proposition:

Proposition 4.4.1. Let X = (X, d) be a complete, metric space. If {Fn}∞n=1 is a sequence of closed subsets of X and

X =
∪∞
n=1 Fn, then there exists an N ∈ N such that FN includes a non-empty open subset of X.

Proof. We use proof by contradiction. Suppose that each Fn cannot include any non-empty open subset of X (n ∈ N). Then,
X ̸= F1 follows, and X − F1 is a non-empty open subset of X. Thus there exist an a1 ∈ X − F1 and an r1 > 0 satisfying

r1 < 1/2, B(a1, r1) := {x ∈ X | d(x, a1) < r1} ⊂ X − F1.

Since B(a1, r1/2) is a non-empty open subset of X, the supposition assures that (X −F2)∩B(a1, r1/2) is a non-empty open

subset of X. Thus there exist an a2 ∈ (X − F2) ∩B(a1, r1/2) and an r2 > 0 satisfying

r2 < r1/2, B(a2, r2) ⊂ (X − F2) ∩B(a1, r1/2).

By repeating the arguments above, one has a sequence {an}∞n=1 ⊂ X and a sequence {rn}∞n=1 of positive real numbers such

that

rn+1 < rn/2, B(an+1, rn+1) ⊂ (X − Fn+1) ∩B(an, rn/2), n = 1, 2, . . . . 1⃝

Here we remark that

· · · ⊂ B(an+1, rn+1) ⊂
(
(X − Fn+1)∩B(an, rn/2)

)
⊂ B(an, rn) ⊂

(
(X − Fn) ∩B(an−1, rn−1/2)

)
⊂ · · · ⊂ B(a2, r2) ⊂

(
(X − F2) ∩B(a1, r1/2)

)
⊂ B(a1, r1) ⊂ X − F1.

2⃝

The 1⃝ assures that n ≥ m implies

d(am, an) ≤ d(am, am+1) + d(am+1, am+2) + · · ·+ d(an−1, an)

<
rm
2

+
rm+1

2
+ · · ·+ rn−1

2
<

r1
2m

+
r1

2m+1
+ · · ·+ r1

2n−1
<

r1
2m−1

<
1

2m
.

Consequently {an}∞n=1 is a Cauchy sequence in (X, d), so there exists a unique a ∈ X satisfying

lim
n→∞

d(an, a) = 0. 3⃝

For any k ∈ N, in terms of 3⃝ there exists a natural number Nk > k such that n ≥ Nk implies d(an, a) < rk+1/2, and then

d(ak+1, a) ≤ d(ak+1, an) + d(an, a) < rk+1

because we can deduce d(ak+1, an) < rk+1/2 from n ≥ k + 1 and 1⃝. Therefore it follows from a ∈ B(ak+1, rk+1) and 2⃝
that a ̸∈

∪k+1
j=1 Fj for all k ∈ N. This and X =

∪∞
n=1 Fn yield a ̸∈ X, which is a contradiction.

5e.g. 定理 2.2 in 杉浦 [33, p.249].
6e.g. 定理 3.4 in 杉浦 [33, p.258].



Chapter 5

Left-invariant Haar measures

In this chapter we deal with left-invariant Haar measures on topological groups. The setting of this chapter is as follows:

• G is a locally compact Hausdorff topological group.

Besides, we utilize the following notation:

• T : the set of open subsets of G,

• B : the σ-algebra on G generated by T , i.e., the Borel field on G,

• C : the set of compact subsets of G,

• U : the set of open neighborhoods of the unit element e ∈ G,

• W ◦ : the interior of a subset W ⊂ G,

• lg (resp. rg) : 2
G → 2G, A 7→ gA (resp. Ag), for g ∈ G,

• cB : the characteristic function of a subset B ⊂ G,

• C≥0(G,R) :=
{
f : G→ R (1) f is continuous, (2) supp(f) ⊂ G is compact, (3) f(g) ≥ 0 for all g ∈ G

}
.

Here 2G stands for the power set of G.

5.1 Definition of left-invariant Haar measure

We first give a lemma, next state Theorem 5.1.2 and then recall the definition of left-invariant Haar measure.

Lemma 5.1.1.

(1) C ⊂ B.

(2) lg(B) ⊂ B, rg(B) ⊂ B for each g ∈ G.

Proof. (1). Since G is a Hausdorff space, every C ∈ C is a closed subset of G, and we have (1).

(2). Since the left translation Lg−1 : G→ G is a homeomorphism, lg−1(B) is a σ-algebra on G and includes T = lg−1(T ).

Hence we see that B ⊂ lg−1(B) because B is the least σ-algebra on G including T . It follows from B ⊂ lg−1(B) that

lg(B) ⊂ B. Similarly, rg(B) ⊂ B.

Lemma 5.1.1 ensures that the conditions (p6), (p7) in the following theorem are well-defined:

Theorem 5.1.2 (cf. Haar [15], von Neumann [36]). There exists a set function µ : B → R⨿ {∞} such that

(p1) 0 ≤ µ(A) ≤ ∞ for all A ∈ B,

(p2) µ(∅) = 0,

(p3) An ∈ B (n = 1, 2, . . . ), Aj ∩Ak = ∅ (j ̸= k) imply µ(
⨿∞
n=1An) =

∑∞
n=1 µ(An),

37
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(p4) µ(A) = inf{µ(O) : O ∈ T , A ⊂ O} for every A ∈ B,

(p5) µ(O) = sup{µ(C) : C ∈ C, C ⊂ O} for every O ∈ T ,

(p6) µ(C) <∞ for each C ∈ C,

(p7) µ(gA) = µ(A) for all (g,A) ∈ G× B, (left-invariant)

(p8) µ(O) > 0 for each O ∈ T − {∅}.

In addition, the existence of µ above is unique up to a positive multiplicative constant whenever G satisfies the second

countability axiom.

Remark 5.1.3. Here are comments on Theorem 5.1.2.

(i) The conditions (p1), (p2) and (p3) are just the conditions for µ to be a measure on B.

(ii) The conditions (p3) and (p6) imply that for a g ∈ G,{
µ({g}) = µ({g} ⨿ ∅) = µ({g}) + µ(∅),
µ({g}) <∞.

Accordingly, these conditions imply (p2) µ(∅) = 0.

(iii) It seems that one can omit the supposition “G satisfies the second countability axiom” from this theorem. e.g. Theorem

9.2.6 in Cohn [11, p.290].

We will prove this theorem in the next section.

Definition 5.1.4. A measure µ on B is called a non-zero left-invariant Haar measure on G, if it satisfies the five conditions

(p4) through (p8) in Theorem 5.1.2.

5.2 Proof of Theorem 5.1.2

We take four steps to prove Theorem 5.1.2. In Subsection 5.2.1 we first define a non-negative integer ♯(C : W ) and a set

function hU : C → Q. In Subsection 5.2.2 we get a set function h• : C → R by taking ♯(C : W ) and hU into consideration.

In Subsection 5.2.3 we construct a Carathéodory outer measure µ∗ on G from the function h•. Finally in Subsection 5.2.4

we complete the proof of Theorem 5.1.2. The arguments below will be similar to those in Cohn [11, Section 9.2].

5.2.1 Step 1/4, ♯(C : W ) ∈ Z≥0 & hU : C → Q

For any C ∈ C and any subset W ⊂ G with W ◦ ̸= ∅, one puts

♯(C :W ) := min{n ∈ Z≥0 | there exist n elements g1, g2, . . . , gn ∈ G so that C ⊂
∪n
i=1 giW}. (5.2.1)

This (5.2.1) is well-defined because ∅ ̸= {n ∈ Z≥0 | there exist n elements g1, g2, . . . , gn ∈ G so that C ⊂
∪n
i=1 giW} follows

from C ∈ C and W ◦ ̸= ∅. In view of (5.2.1) we see that

♯(C :W ) ∈ Z≥0; C = ∅ if and only if ♯(C :W ) = 0. (5.2.2)

Since G is locally compact, there exists a C0 ∈ C whose interior is non-empty. By use of this C0 and a given U ∈ U , let us
define a set function hU : C → Q by

hU (C) :=
♯(C : U)

♯(C0 : U)
for C ∈ C, (5.2.3)

where we remark that (5.2.3) is well-defined due to (5.2.2), C0 ̸= ∅ and U ∈ U . The above hU has the following properties:

Proposition 5.2.4. For any U ∈ U and C,C1, C2 ∈ C,

(i) 0 ≤ hU (C) ≤ ♯(C : C0) ∈ Z,

(ii) hU (∅) = 0,
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(iii) hU (C0) = 1,

(iv) hU (gC) = hU (C) for all g ∈ G,

(v) C1 ⊂ C2 implies hU (C1) ≤ hU (C2),

(vi) hU (C1 ∪ C2) ≤ hU (C1) + hU (C2),

(vii) C1U
−1 ∩ C2U

−1 = ∅ implies hU (C1 ∪ C2) = hU (C1) + hU (C2). Here U−1 := {u−1 |u ∈ U}.

Proof. (i). It is enough to show hU (C) ≤ ♯(C : C0) because of (5.2.2) and (5.2.3). Let n := ♯(C : C0), m := ♯(C0 : U).

Then, by (5.2.1) there exist n elements g1, g2, . . . , gn ∈ G and m elements h1, h2, . . . , hm ∈ G such that C ⊂
∪n
i=1 giC0 and

C0 ⊂
∪m
j=1 hjU , respectively. Accordingly C ⊂

∪n
i=1

∪m
j=1 gihjU , and so (5.2.1) implies

♯(C : U) ≤ nm = ♯(C : C0)♯(C0 : U).

This, (5.2.3) and ♯(C0 : U) > 0 yield hU (C) ≤ ♯(C : C0).

(ii), (iii) are immediate from (5.2.2) and (5.2.3).

(iv). By (5.2.3) it suffices to show ♯(gC : U) = ♯(C : U). Let k := ♯(gC : U), ℓ := ♯(C : U). Then, by (5.2.1) there

exist g1, g2, . . . , gk, h1, h2, . . . , hℓ ∈ G such that gC ⊂
∪k
a=1 gaU , C ⊂

∪ℓ
b=1 hbU . On the one hand; from gC ⊂

∪k
a=1 gaU we

obtain C ⊂
∪k
a=1(g

−1ga)U , and hence ℓ = ♯(C : U) ≤ k by (5.2.1). On the other hand; from C ⊂
∪ℓ
b=1 hbU one obtains

gC ⊂
∪ℓ
b=1(ghb)U , and k = ♯(gC : U) ≤ ℓ. Therefore k = ℓ holds, namely ♯(gC : U) = ♯(C : U).

(v). By (5.2.3) and ♯(C0 : U) > 0 it suffices to show ♯(C2 : U) ≥ ♯(C1 : U). The supposition “C1 ⊂ C2” implies that

{n ∈ Z≥0 | there exist n elements g1, g2, . . . , gn ∈ G so that C2 ⊂
∪n
i=1 giU}

⊂ {m ∈ Z≥0 | there exist m elements h1, h2, . . . , hm ∈ G so that C1 ⊂
∪m
j=1 hjU},

and hence

min{n ∈ Z≥0 | there exist n elements g1, g2, . . . , gn ∈ G so that C2 ⊂
∪n
i=1 giU}

≥ min{m ∈ Z≥0 | there exist m elements h1, h2, . . . , hm ∈ G so that C1 ⊂
∪m
j=1 hjU}.

Consequently we deduce ♯(C2 : U) ≥ ♯(C1 : U) by (5.2.1).

(vi). By (5.2.3) and ♯(C0 : U) > 0 it suffices to show ♯(C1 ∪ C2 : U) ≤ ♯(C1 : U) + ♯(C2 : U). Let m := ♯(C1 : U),

n := ♯(C2 : U). Then, by (5.2.1) there exist h1, h2, . . . , hm, g1, g2, . . . , gn ∈ G such that C1 ⊂
∪m
j=1 hjU , C2 ⊂

∪n
i=1 giU ; and

it follows that C1 ∪ C2 ⊂
∪m
j=1 hjU ∪

∪n
i=1 giU . So, (5.2.1) yields ♯(C1 ∪ C2 : U) ≤ m+ n = ♯(C1 : U) + ♯(C2 : U).

(vii). By (vi), (5.2.3) and ♯(C0 : U) > 0 it suffices to show ♯(C1 : U)+ ♯(C2 : U) ≤ ♯(C1∪C2 : U). Let ℓ := ♯(C1∪C2 : U).

Then, there exist g1, g2, . . . , gℓ ∈ G such that

(C1 ∪ C2) ⊂
ℓ∪

a=1

gaU

by (5.2.1). Here, the supposition “C1U
−1 ∩C2U

−1 = ∅” enables us to assert that each set gaU meets at most one of C1 and

C2. Therefore one can separate {ga}ℓa=1 into two pieces {hb}nb=1 and {kc}mc=1 so that C1 ⊂
∪n
b=1 hbU and C2 ⊂

∪m
c=1 kcU .

This and (5.2.1) imply ♯(C1 : U) + ♯(C2 : U) ≤ n+m = ℓ = ♯(C1 ∪ C2 : U).

5.2.2 Step 2/4, h• : C → R

Our goal in this subsection is to demonstrate Proposition 5.2.11.

For each C ∈ C we define a closed (finite) interval IC ⊂ R as

IC :=
[
0, ♯(C : C0)

]
(cf. (5.2.1)), and denote by X the product space of the family {IC}C∈C of topological spaces. Tikhonov’s product theorem

implies that

the topological space X = ΠC∈CIC is compact. (5.2.5)

Remark 5.2.6. In general, one can identify “a set function h : C → R such that h(C) ∈ IC for all C ∈ C” with “an element

of X = ΠC∈CIC” via h 7→
(
h(C)

)
C∈C ∈ X. Under this identification we construct arguments hereafter.



40 CHAPTER 5. LEFT-INVARIANT HAAR MEASURES

Proposition 5.2.4-(i) and Remark 5.2.6 allow us to assume that hU ∈ X for all U ∈ U . For this reason, we can define a

closed subset S(V ) ⊂ X by

S(V ) := {hU |U ∈ U , U ⊂ V } (the closure in X) (5.2.7)

for V ∈ U .

Lemma 5.2.8. There exists an h• ∈
∩
V ∈U S(V ).

Proof. The family {S(V )}V ∈U consists of closed subsets of X. It has the finite intersection property. Indeed; for any finite

elements V1, . . . , Vm ∈ U one sees that V :=
∩m
i=1 Vi belongs to U , and moreover hV ∈

∩m
i=1 S(Vi); hence {S(V )}V ∈U has the

desired property. Consequently we deduce
∩
V ∈U S(V ) ̸= ∅ by (5.2.5).

We prepare two lemmas for proving Proposition 5.2.11.

Lemma 5.2.9. For each C ∈ C, the following two items hold:

(1) PrC : X → IC , h 7→ h(C) is continuous; in particular, it is a continuous mapping of X into R. cf. Remark 5.2.6.

(2) 0 ≤ h(C) ≤ ♯(C : C0) for all h ∈ X.

Proof. (1). X = ΠC∈CIC is the product topological space, and so the projection X ∋ h 7→ h(C) ∈ IC is continuous.

(2) follows by h(C) = PrC(h) ∈ IC =
[
0, ♯(C : C0)

]
.

Lemma 5.2.10. For any C1, C2 ∈ C with C1 ∩ C2 = ∅, there exist (O1, V1), (O2, V2) ∈ T × U which satisfy O1 ∩ O2 = ∅,
C1V1 ⊂ O1 and C2V2 ⊂ O2.

Proof. In case of C1 = ∅ we can get the conclusion by setting O1 := ∅ and O2 = V1 = V2 := G. Similarly one can do so in

case of C2 = ∅.
Now, let us suppose that C1 ̸= ∅ and C2 ̸= ∅. On the one hand; C2 is a closed subset of G since G is a Hausdorff space

and C2 ∈ C. On the other hand; G is a regular space since G is a Hausdorff topological group. Consequently, for an arbitrary

g ∈ C1, there exist Pg, Qg ∈ T such that

g ∈ Pg, C2 ⊂ Qg, Pg ∩Qg = ∅,

where we remark that C1∩C2 = ∅, g ∈ C1 lead to g ̸∈ C2. In terms of C1 ⊂
∪
g∈C1

Pg and C1 ∈ C, there exist finite elements

g1, . . . , gn ∈ C1 such that C1 ⊂
∪n
i=1 Pgi . Setting O1 :=

∪n
i=1 Pgi and O2 :=

∩n
i=1Qgi we deduce

O1, O2 ∈ T , O1 ∩O2 = ∅, C1 ⊂ O1, C2 ⊂ O2.

The rest of proof is to confirm that for each a = 1, 2, there exists a Va ∈ U satisfying CaVa ⊂ Oa. Fix any element h ∈ Ca.

From h ∈ Ca ⊂ Oa ∈ T we obtain a Wh ∈ U such that

hWh ⊂ Oa.

Moreover, since the mapping G×G ∋ (g1, g2) 7→ g1g2 ∈ G is continuous at (e, e) and Wh is an open neighborhood of e ∈ G,

there exists a Uh ∈ U satisfying

UhUh ⊂Wh.

In terms of Ca ⊂
∪
h∈Ca

hUh and Ca ∈ C, there exist finite elements h1, . . . , hℓ ∈ Ca such that Ca ⊂
∪ℓ
j=1 hjUhj

. Now, let

Va :=
∩ℓ
j=1 Uhj . Then it follows that Va ∈ U ; besides, for any k ∈ Ca (⊂

∪ℓ
j=1 hjUhj ) there exists a 1 ≤ i ≤ ℓ such that

k ∈ hiUhi , and hence

kVa ⊂ hiUhi
Va ⊂ hiUhi

Uhi
⊂ hiWhi

⊂ Oa.

This implies CaVa ⊂ Oa.

Now, let us prove

Proposition 5.2.11. For any C,C1, C2 ∈ C,

(i) 0 ≤ h(C) ≤ ♯(C : C0) ∈ Z for all h ∈ X = ΠC∈CIC ,

(ii) h(∅) = 0 for all h ∈ X,
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(iii) h(C0) = 1 for all h ∈ S(G),

(iv) h(gC) = h(C) for all g ∈ G and h ∈ S(G),

(v) C1 ⊂ C2 implies h(C1) ≤ h(C2) for all h ∈ S(G),

(vi) h(C1 ∪ C2) ≤ h(C1) + h(C2) for all h ∈ S(G),

(vii) C1 ∩ C2 = ∅ implies h•(C1 ∪ C2) = h•(C1) + h•(C2).

Remark here that h• ∈ S(G) ⊂ X, and (i) through (vii) hold for h•. cf. (5.2.7).

Proof. (i) follows from (5.2.2) and Lemma 5.2.9-(2).

(ii). By Lemma 5.2.9-(1), Pr∅(X) ⊂ I∅ =
[
0, ♯(∅ : C0)

] (5.2.2)
= {0}. Hence, h(∅) = Pr∅(h) = 0 for all h ∈ X.

(iii). Lemma 5.2.9-(1) implies that PrC0 : S(G) → IC0 , h 7→ h(C0), is continuous. Proposition 5.2.4-(iii), combined with

(5.2.7), implies that PrC0
= 1 on a dense subset {hU |U ∈ U} of S(G). Consequently h(C0) = PrC0

(h) = 1 for all h ∈ S(G).

(iv). By Lemma 5.2.9-(1) we see that PrgC −PrC : S(G) → R is continuous. Proposition 5.2.4-(iv) and (5.2.7) imply

that PrgC −PrC = 0 on the dense subset {hU |U ∈ U} of S(G). Thus h(gC)−h(C) = (PrgC −PrC)(h) = 0 for all h ∈ S(G).

(v). By virtue of Lemma 5.2.9-(1), Proposition 5.2.4-(v) and (5.2.7) we deduce that PrC2 −PrC1 : S(G) → R is continuous,

and that PrC2 −PrC1 ≥ 0 on the dense subset {hU |U ∈ U} ⊂ S(G). Hence h(C2) − h(C1) = (PrC1 −PrC2)(h) ≥ 0 for all

h ∈ S(G).

(vi). One can conclude (vi) by arguments similar to those in the above (v) and Proposition 5.2.4-(vi).

(vii). Since C1, C2 ∈ C with C1 ∩ C2 = ∅, Lemma 5.2.10 assures that there exist (O1, V1), (O2, V2) ∈ T × U satisfying

O1 ∩O2 = ∅, C1V1 ⊂ O1, C2V2 ⊂ O2.

By use of V1, V2, we put V3 := V1 ∩ V2. Then, it follows that V3, V −1
3 ∈ U ; and moreover, U ⊂ V −1

3 and U ∈ U imply

hU (C1) + hU (C2)− hU (C1 ∪ C2) = 0

because of Proposition 5.2.4-(vii) and (C1U
−1 ∩ C2U

−1) ⊂ (C1V3 ∩ C2V3) ⊂ (C1V1 ∩ C2V2) ⊂ (O1 ∩O2) = ∅. Consequently
we deduce that (PrC1

+PrC2
−PrC1∪C2

)(hU ) = 0 for all hU ∈ {hU |U ∈ U , U ⊂ V −1
3 }. Furthermore, one verifies that

(PrC1
+PrC2

−PrC1∪C2
)(h) = 0 for all h ∈ S(V −1

3 )

because PrC1
+PrC2

−PrC1∪C2
: S(V −1

3 ) → R is continuous and {hU |U ∈ U , U ⊂ V −1
3 } is dense in S(V −1

3 ). Therefore we

obtain h•(C1) + h•(C2)− h•(C1 ∪ C2) = (PrC1
+PrC2

−PrC1∪C2
)(h•) = 0 from h• ∈

(∩
V ∈U S(V )

)
⊂ S(V −1

3 ).

5.2.3 Step 3/4, µ∗ : 2G → R⨿ {∞}

Lemma 5.2.12. Set

µ∗
1(O) := sup{h•(C) : C ∈ C, C ⊂ O} for O ∈ T ; (5.2.13)

µ∗(A) := inf{µ∗
1(O) : O ∈ T , A ⊂ O} for A ∈ 2G. (5.2.14)

Then µ∗
1(O) = µ∗(O) holds for each O ∈ T .

Proof. On the one hand; it follows from O ∈ T , O ⊂ O that

µ∗
1(O) ≥ inf{µ∗

1(P ) : P ∈ T , O ⊂ P} (5.2.14)
= µ∗(O).

On the other hand; for an arbitrary Q ∈ T with O ⊂ Q, one has {h•(C) : C ∈ C, C ⊂ O} ⊂ {h•(K) : K ∈ C, K ⊂ Q}, and
so (5.2.13) yields µ∗

1(O) ≤ µ∗
1(Q). This enables us to show

µ∗
1(O) ≤ inf{µ∗

1(Q) : Q ∈ T , O ⊂ Q} (5.2.14)
= µ∗(O).

Hence µ∗
1(O) = µ∗(O) holds.

Our first aim in this subsection is to prove Proposition 5.2.18, which tells us that the µ∗ in (5.2.14) is a Carathéodory

outer measure on G. We are going to confirm three lemmas and conclude Proposition 5.2.18 from them.
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Lemma 5.2.15. Let C ∈ C, and let O1, O2, . . . , Ok ∈ T such that C ⊂
∪k
a=1Oa. Then, there exist C1, C2, . . . , Ck ∈ C such

that Ca ⊂ Oa (1 ≤ a ≤ k) and C =
∪k
a=1 Ca.

Proof. We prove this lemma in case of k = 2, which enables one to get the conclusion by mathematical induction on k.

Suppose that C ⊂ O1 ∪O2, where O1, O2 ∈ T . Setting Ka := C −Oa (a = 1, 2), we obtain K1,K2 ∈ C and K1 ∩K2 = ∅
from the supposition. Hence Lemma 5.2.10 assures the existence of P1, P2 ∈ T such that

P1 ∩ P2 = ∅, K1 ⊂ P1, K2 ⊂ P2. 1⃝

Now, let Ca := C − Pa for a = 1, 2. Then, it follows from 1⃝ that C1, C2 ∈ C, Ca ⊂ Oa (a = 1, 2) and C = C1 ∪ C2.

Lemma 5.2.16. For any A,A1, A2 ∈ 2G,

(1) 0 ≤ µ∗(A) ≤ ∞,

(2) µ∗(∅) = 0,

(3) A1 ⊂ A2 implies µ∗(A1) ≤ µ∗(A2).

Proof. (1) (resp. (2)) follows by (5.2.13), (5.2.14) and Proposition 5.2.11-(i) (resp. -(ii)).

(3). From A1 ⊂ A2 we deduce that {µ∗
1(O) : O ∈ T , A2 ⊂ O} ⊂ {µ∗

1(P ) : P ∈ T , A1 ⊂ P}, so that µ∗(A2) ≥ µ∗(A1) due

to (5.2.14).

Lemma 5.2.17. On ∈ T (n = 1, 2, . . . ) imply µ∗(
∪∞
n=1On) ≤

∑∞
n=1 µ

∗(On).

Proof. For an arbitrary C ∈ C with C ⊂
∪∞
n=1On, one can choose a finite subset {Oa}ka=1 ⊂ {On}∞n=1 so that C ⊂

∪k
a=1Oa.

Then, there exist C1, C2, . . . , Ck ∈ C such that Ca ⊂ Oa (1 ≤ a ≤ k) and C =
∪k
a=1 Ca by Lemma 5.2.15. Therefore

h•(C) = h•

( k∪
a=1

Ca

)
≤

k∑
a=1

h•(Ca) (∵ Proposition 5.2.11-(vi), Ca ∈ C)

≤
k∑
a=1

µ∗
1(Oa) (∵ (5.2.13), Ca ∈ C, Ca ⊂ Oa)

≤
∞∑
n=1

µ∗(On) (∵ Lemma 5.2.12, Oa ∈ T , Lemma 5.2.16-(1)),

namely h•(C) ≤
∑∞
n=1 µ

∗(On) for any C ∈ C with C ⊂
∪∞
n=1On. This and (5.2.13) yield µ∗

1(
∪∞
n=1On) ≤

∑∞
n=1 µ

∗(On).

Hence µ∗(
∪∞
n=1On) ≤

∑∞
n=1 µ

∗(On) by Lemma 5.2.12 and
∪∞
n=1On ∈ T .

We are in a position to prove

Proposition 5.2.18. The µ∗ in (5.2.14) has the following four properties:

(i) 0 ≤ µ∗(A) ≤ ∞ for all A ∈ 2G,

(ii) µ∗(∅) = 0,

(iii) A1 ⊂ A2, A1, A2 ∈ 2G imply µ∗(A1) ≤ µ∗(A2),

(iv) An ∈ 2G (n = 1, 2, . . . ) imply µ∗(
∪∞
n=1An) ≤

∑∞
n=1 µ

∗(An).

Proof. By virtue of Lemma 5.2.16 it is enough to prove (iv).

(iv). It is clear in the case where there exists a j ∈ N such that µ∗(Aj) = ∞. Henceforth, we investigate the case where

µ∗(An) <∞ for all n ∈ N. Let ϵ > 0. For each m ∈ N there exists an Om ∈ T such that

Am ⊂ Om, µ∗(Om) = µ∗
1(Om) < µ∗(Am) +

ϵ

2m

because of µ∗(Am) <∞, (5.2.14) and Lemma 5.2.12. Then, it follows that

µ∗
( ∞∪
m=1

Am

)
≤ µ∗

( ∞∪
m=1

Om

)
(∵
∪∞
m=1Am ⊂

∪∞
m=1Om, Lemma 5.2.16-(3))

≤
∞∑
m=1

µ∗(Om) (∵ Lemma 5.2.17, Om ∈ T (m = 1, 2, . . . ))

≤
∞∑
m=1

(
µ∗(Am) +

ϵ

2m

)
=
( ∞∑
m=1

µ∗(Am)
)
+ ϵ,
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so that µ∗(
∪∞
m=1Am) ≤

∑∞
m=1 µ

∗(Am).

Proposition 5.2.18 tells us that the µ∗ in (5.2.14) is a Carathéodory outer measure on G, so that we can get a σ-algebra

M on G by setting

M := {A ∈ 2G |µ∗(B) = µ∗(B ∩A) + µ∗(B −A) for every B ∈ 2G}. (5.2.19)

Our second aim is to prove Proposition 5.2.22 below. We first show two lemmas and afterwards accomplish the aim.

Lemma 5.2.20. Let A ∈ 2G. Then,

(1) µ∗(B) ≤ µ∗(B ∩A) + µ∗(B −A) for every B ∈ 2G;

(2) µ∗(B) = ∞, B ∈ 2G imply µ∗(B) ≥ µ∗(B ∩A) + µ∗(B −A).

Proof. (1). By Proposition 5.2.18-(iv) we have µ∗(B) = µ∗((B ∩A) ∪ (B −A)
)
≤ µ∗(B ∩A) + µ∗(B −A).

(2). Trivial.

Lemma 5.2.21. Let O ∈ T . Then it follows that µ∗(P ) <∞, P ∈ T imply µ∗(P ) ≥ µ∗(P ∩O) + µ∗(P −O).

Proof. Take any ϵ > 0. By Lemma 5.2.16-(3) and (P ∩O) ⊂ P , we see that µ∗(P ∩O) ≤ µ∗(P ) <∞. Therefore there exists

a C1 ∈ C such that

C1 ⊂ (P ∩O), h•(C1) > µ∗
1(P ∩O)− ϵ = µ∗(P ∩O)− ϵ 1⃝

because of (5.2.13), P ∩O ∈ T and Lemma 5.2.12. Since (P −C1) ⊂ P one can conclude that there exists a C2 ∈ C satisfying

C2 ⊂ (P − C1), h•(C2) > µ∗(P − C1)− ϵ 2⃝

in a similar way. Moreover, C1 ∪ C2 ∈ C, (C1 ∪ C2) ⊂ P , (5.2.13) and Lemma 5.2.12 yield µ∗(P ) ≥ h•(C1 ∪ C2). Hence

µ∗(P ) ≥ h•(C1 ∪ C2) = h•(C1) + h•(C2) (∵ C1 ∩ C2 = ∅, Proposition 5.2.11-(vii))

> µ∗(P ∩O) + µ∗(P − C1)− 2ϵ (∵ 1⃝, 2⃝)

≥ µ∗(P ∩O) + µ∗(P −O)− 2ϵ,

where we remark that µ∗(P − C1) ≥ µ∗(P − O) follows from (P − C1) ⊃ (P − O) and Lemma 5.2.16-(3). This µ∗(P ) >

µ∗(P ∩O) + µ∗(P −O)− 2ϵ assures that µ∗(P ) ≥ µ∗(P ∩O) + µ∗(P −O) holds.

Lemmas 5.2.20 and 5.2.21 allow us to assert

Proposition 5.2.22. The σ-algebra M on G includes B. cf. (5.2.19).

Proof. It is enough to conclude T ⊂ M , since M is a σ-algebra on G and B is the least σ-algebra on G including T . From

(5.2.19) and Lemma 5.2.20 one can obtain T ⊂ M , provided that the following inequality holds for each O ∈ T :

µ∗(B ∩O) + µ∗(B −O) ≤ µ∗(B) for any B ∈ 2G with µ∗(B) <∞. 1⃝

Let us show 1⃝ from now on. Fix any ϵ > 0, O ∈ T , and B ∈ 2G with µ∗(B) <∞. By virtue of µ∗(B) <∞ and (5.2.14) we

have a P ∈ T such that

B ⊂ P, µ∗
1(P ) < µ∗(B) + ϵ <∞. (a)

Since O,P ∈ T and µ∗
1(P ) <∞, Lemmas 5.2.21 and 5.2.12 assure

µ∗(P ∩O) + µ∗(P −O) ≤ µ∗(P ) = µ∗
1(P ). (b)

By B ⊂ P we deduce (B ∩O) ⊂ (P ∩O) and (B −O) ⊂ (P −O). Hence Lemma 5.2.16-(3) implies that

µ∗(B ∩O) + µ∗(B −O) ≤ µ∗(P ∩O) + µ∗(P −O). (c)

Consequently (a), (b) and (c) yield µ∗(B ∩O) + µ∗(B −O) < µ∗(B) + ϵ, which gives rise to 1⃝.

5.2.4 Step 4/4, the proof of Theorem 5.1.2

In this subsection we demonstrate Theorem 5.1.2. We prove the existence of a left-invariant Haar measure µ in the first half,

and prove the uniqueness of µ in the latter half (see Propositions 5.2.23 and 5.2.29).
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The existence of Haar measure First of all, let us show

Proposition 5.2.23 (Existence). There exists a set function µ : B → R⨿ {∞} satisfying the eight conditions (p1) through

(p8) in Theorem 5.1.2.

Proof. We have already known that the µ∗ in (5.2.14) is a Carathéodory outer measure on G, and that the inclusion B ⊂ M

holds for the class M of all sets measurable with respect to µ∗ (recall Proposition 5.2.18, (5.2.19), Proposition 5.2.22). Hence

we can define a measure µ on B as follows:

µ := µ∗|B. (5.2.24)

Then (5.2.14) assures that the four conditions (p1) through (p4) in Theorem 5.1.2 hold for the µ = µ∗|B. From now on, let

us confirm that the rest of conditions also hold.

(p5). Fix an O ∈ T . For a given C ∈ C, it follows from (5.2.13) that h•(C) ≤ µ(Q) for any Q ∈ T with C ⊂ Q, so that

h•(C) ≤ inf{µ(Q) : Q ∈ T , C ⊂ Q} (5.2.14)
= µ(C).

Hence we see that

h•(C) ≤ µ(C) for all C ∈ C. 1⃝

This 1⃝ gives us

µ(O)
(5.2.13)
= sup{h•(C) : C ∈ C, C ⊂ O} ≤ sup{µ(C) : C ∈ C, C ⊂ O} ≤ µ(O);

and therefore (p5) µ(O) = sup{µ(C) : C ∈ C, C ⊂ O} holds. Here, we remark that µ(C) ≤ µ(O) follows from C ⊂ O and

Lemma 5.2.16-(3).

(p6). Take any C ∈ C. Since C ⊂ G is compact and G is a locally compact Hausdorff space, we can construct an O ∈ T
so that C ⊂ O and O ∈ C. Then, for any K ∈ C with K ⊂ O, one has

h•(K) ≤ h•(O)

due to K,O ∈ C, K ⊂ O and Proposition 5.2.11-(v). Therefore it follows from (5.2.13) that

µ(O) ≤ h•(O).

In addition, C ⊂ O and Lemma 5.2.16-(3) yield

µ(C) ≤ µ(O).

Consequently we deduce µ(C) ≤ µ(O) ≤ h•(O) ≤ ♯(O : C0) <∞ by Proposition 5.2.11-(i). So, (p6) µ(C) <∞ holds.

(p7). Fix an arbitrary (g,A) ∈ G× B. For a given O ∈ T we first obtain

µ(O)
(5.2.13)
= sup{h•(C) : C ∈ C, C ⊂ O} = sup{h•(gC) : C ∈ C, gC ⊂ O} (∵ lg−1(C) = C)

= sup{h•(gC) : C ∈ C, C ⊂ g−1O} = sup{h•(C) : C ∈ C, C ⊂ g−1O} (∵ Proposition 5.2.11-(iv))

(5.2.13)
= µ(g−1O).

This µ(O) = µ(g−1O) enables us to conclude that

µ(gA)
(5.2.14)
= inf{µ(O) : O ∈ T , gA ⊂ O} = inf{µ(g−1O) : O ∈ T , gA ⊂ O}

= inf{µ(g−1O) : O ∈ T , A ⊂ g−1O} = inf{µ(O) : O ∈ T , A ⊂ O} (∵ lg(T ) = T )

(5.2.14)
= µ(A).

Hence (p7) µ(gA) = µ(A) holds.

(p8). Let us use proof by contradiction. Suppose that there exists a P ∈ T − {∅} satisfying µ(P ) ≤ 0. On the one hand;

from (p1) and µ(P ) ≤ 0 we obtain µ(P ) = 0. On the other hand; since P ̸= ∅ there exists a p ∈ P . Setting P ′ := p−1P we

conclude

P ′ ∈ U , µ(P ′) = 0

by (p7). For any C ∈ C, it follows from P ′ ∈ U that C ⊂
∪
c∈C cP

′, and so there exist finite elements c1, . . . , ck ∈ C such

that C ⊂
∪k
i=1 ciP

′. Then (p1), Lemma 5.2.16-(3), Proposition 5.2.18-(iv) imply that

0 ≤ µ(C) ≤ µ
( k∪
i=1

ciP
′
)
≤

k∑
i=1

µ(ciP
′)

(p7)
=

k∑
i=1

µ(P ′) = 0;

in particular, µ(C0) = 0. However, Proposition 5.2.11-(iii) and 1⃝ yield 1 = h•(C0) ≤ µ(C0) = 0, which is a contradiction.

For this reason one sees that µ(Q) > 0 for all Q ∈ T −{∅}, and (p8) holds. Consequently we have shown the µ : B → R∪{∞}
in (5.2.24) satisfies the eight conditions (p1) through (p8) in Theorem 5.1.2.
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The uniqueness of Haar measure Our aim is to demonstrate that the existence of left-invariant Haar measure is unique

up to a positive multiplicative constant whenever G satisfies the second countability axiom (cf. Proposition 5.2.29). For the

aim let us give four lemmas first.

Lemma 5.2.25. For any K ∈ C and O ∈ T with K ⊂ O, there exists an f ∈ C≥0(G,R) such that cK ≤ f ≤ cO on G.

Proof. Since K ∈ C, O ∈ T , K ⊂ O and G is a locally compact Hausdorff space, there exists a Q ∈ T such that

K ⊂ Q ⊂ Q ⊂ O

and Q ∈ C. Here Q is a compact Hausdorff space, so it is a normal space. Hence Uryson’s lemma assures that there exists a

continuous function h : Q→ R such that

(i) 0 ≤ h(q) ≤ 1 for all q ∈ Q, (ii) h(k) = 1 for all k ∈ K, (iii) h(p) = 0 for all p ∈ Q−Q.

Then we define a function f : G→ R by

f(g) :=

h(g) if g ∈ Q,

0 if g ∈ G−Q.

Remark here that the definition of f is well-defined because h(p) = 0 for all p ∈ Q ∩ (G − Q). About this f we assert the

following statements, which complete the proof of Lemma 5.2.25:

1. f is continuous since h : Q→ R is continuous, both Q and G−Q are closed in G and G = Q ∪ (G−Q);

2. supp(f) is compact due to supp(f) ⊂ Q and Q ∈ C;

3. it follows from (i) that 0 ≤ f(g) ≤ 1 for all g ∈ G;

4. 0 ≤ f ≤ 1, (ii) and K ⊂ Q imply cK ≤ f ;

5. it follows from (G−O) ⊂ (G−Q) that f(x) = 0 for all x ̸∈ O, so that 0 ≤ f ≤ 1 leads to f ≤ cO.

From Lemma 5.2.25 we deduce

Lemma 5.2.26. Let ν be a measure on B such that

(p5) ν(O) = sup{ν(C) : C ∈ C, C ⊂ O} for every O ∈ T .

Then, for each P ∈ T it follows that

ν(P ) = sup

{∫
G

f(g)dν(g) f ∈ C≥0(G,R), f ≤ cP

}
.

Proof. First, let us confirm that

sup

{∫
G

f(g)dν(g) f ∈ C≥0(G,R), f ≤ cP

}
≤ ν(P ). 1⃝

For any f ∈ C≥0(G,R) with f ≤ cP , both f and cP are B-measurable functions on G and 0 ≤ f ≤ cP . Therefore we have∫
G

f(g)dν(g) ≤
∫
G

cP (g)dν(g) = ν(P ).

Hence the inequality 1⃝ holds. Now, let us show that the converse inequality also holds. From (p5) it suffices to show that

for any K ∈ C with K ⊂ P , there exists an h ∈ C≥0(G,R) satisfying

h ≤ cP , ν(K) ≤
∫
G

h(g)dν(g).

That comes from Lemma 5.2.25 and ν(K) =
∫
G
cK(g)dν(g).

Lemma 5.2.27. Let ν be a measure on B such that

(p6) ν(C) <∞ for each C ∈ C.
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Then, the following three items hold:

(1) Any f ∈ C≥0(G,R) is ν-integrable on G.

(2) For any f ∈ C≥0(G,R) and g ∈ G, the non-negative function G ∋ x 7→
∫
G
f(gx)dν(g) ∈ R is continuous.

(3) The measure space (G,B, ν) is σ-finite in the case where G satisfies the second countability axiom.

Proof. (1). Since supp(f) ⊂ G is compact and f is continuous, there exists a positive real number λ such that f ≤ λcsupp(f)

on G. In addition, ν
(
supp(f)

)
<∞ due to (p6). Then, it follows from 0 ≤ f ≤ λcsupp(f) and ν

(
supp(f)

)
<∞ that∫

G

f(g)dν(g) ≤
∫
G

λcsupp(f)(g)dν(g) = λν
(
supp(f)

)
<∞.

Hence f is ν-integrable on G.

(2). The above (1) assures that the function G ∋ x 7→
∫
G
f(gx)dν(g) ∈ R and the computations below are well-defined.

Fix any ϵ > 0 and x0 ∈ G. There exists a V ∈ U satisfying V ∈ C because G is a locally compact Hausdorff space. In

view of supp(f) ∈ C, we see that supp(f)V x−1
0 is a compact subset of G, and that f is uniformly continuous on G. Then it

follows from (p6) that

0 < δ <∞ holds for δ := 1 + ν
(
supp(f)V x−1

0

)
;

and moreover, there exists a U ∈ U such that (i) U = U−1, (ii) U ⊂ V , and (iii) a−1b ∈ U implies |f(a) − f(b)| < ϵ/δ. If

x ∈ G and g ∈ G satisfy x−1
0 x ∈ U and g ̸∈ supp(f)V x−1

0 , respectively, then (i) and (ii) yield gx ̸∈ supp(f), and f(gx) = 0.

Consequently, x ∈ x0U implies∣∣∣ ∫
G

f(gx0)dν(g)−
∫
G

f(gx)dν(g)
∣∣∣ ≤ ∫

G

∣∣f(gx0)− f(gx)
∣∣dν(g)

=

∫
supp(f)V x−1

0

∣∣f(gx0)− f(gx)
∣∣dν(g) + ∫

G−supp(f)V x−1
0

∣∣f(gx0)− f(gx)
∣∣dν(g)

=

∫
supp(f)V x−1

0

∣∣f(gx0)− f(gx)
∣∣dν(g)

≤
∫
supp(f)V x−1

0

ϵ

δ
dν(g) (∵ (gx0)

−1gx = x−1
0 x ∈ U , (iii))

=
ϵ

δ
ν
(
supp(f)V x−1

0

)
= ϵ

ν
(
supp(f)V x−1

0

)
1 + ν

(
supp(f)V x−1

0

) ≤ ϵ.

So, the function G ∋ x 7→
∫
G
f(gx)dν(g) ∈ R is continuous.

(3). Since G satisfies the second countability axiom and is a locally compact Hausdorff space, there exists a sequence

{En}∞n=1 ⊂ G satisfying En ∈ C (n ∈ N) and
∪∞
n=1En = G. Thus we conclude (3) from (p6).

Lemma 5.2.28. There exists an h0 ∈ C≥0(G,R) satisfying
∫
G
h0(gx)dν(g) > 0 for all x ∈ G and all measures ν on B such

that (p8) ν(O) > 0 for each O ∈ T − {∅}.

Proof. Since G is locally compact, there exists a K ∈ C satisfying ∅ ̸= K◦. Lemma 5.2.25 and K ∈ C allow us to find an

h0 ∈ C≥0(G,R) such that h0 ≥ cK . In this setting, for each x ∈ G and each measure ν with (p8), we obtain∫
G

h0(gx)dν(g) ≥
∫
G

cK(gx)dν(g) =

∫
G

cKx−1(g)dν(g) = ν(Kx−1) ≥ ν(K◦x−1) > 0

from (p8).

Lemmas 5.2.26, 5.2.27 and 5.2.28 enable one to obtain

Proposition 5.2.29 (Uniqueness). Suppose that G satisfies the second countability axiom. Then, for non-zero left-invariant

Haar measures µ and ν on G, there exists a positive real number λ such that µ = λν.

Proof. Throughout this proof, (pk) means the condition (pk) in Theorem 5.1.2 (1 ≤ k ≤ 8).

By (p4) and Lemma 5.2.26 it suffices to confirm the following: there exists a λ > 0 such that∫
G

f(x)dµ(x) = λ

∫
G

f(y)dν(y) 1⃝
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for all f ∈ C≥0(G,R). Let us fix any f ∈ C≥0(G,R), and deal with the product measure space (G×G,R, µ×ν) obtained from

the measure spaces (G,B, µ) and (G,B, ν). Recalling that there exists an h0 ∈ C≥0(G,R) such that
∫
G
h0(gx)dµ(g) > 0,∫

G
h0(gx)dν(g) > 0 for all x ∈ G, we define a function F : G×G→ R by

F (x, y) :=
f(x)h0(yx)∫
G
h0(gx)dν(g)

for (x, y) ∈ G×G (a)

(cf. Lemma 5.2.28). On the one hand; this function F is non-negative, continuous on G × G by Lemma 5.2.27-(2). Hence

F is R-measurable on G × G. On the other hand; since supp(F ) ⊂ supp(f) × supp(h0) supp(f)
−1, we see that supp(F ) is

a compact subset of G×G, and that (µ× ν)
(
supp(F )

)
≤ µ

(
supp(f)

)
ν
(
supp(h0) supp(f)

−1
)
< ∞ by (p6). Accordingly we

conclude that

the F (x, y) is R-measurable and (µ× ν)-integrable on G×G (b)

by arguments similar to those in the proof of Lemma 5.2.27-(1). Now, (b), Lemma 5.2.27-(3) and Fubini’s theorem imply∫
G

f(x)dµ(x) =

∫
G

(∫
G

F (x, y)dν(y)
)
dµ(x) =

∫
G×G

F (x, y)d(µ× ν)(x, y)

=

∫
G

(∫
G

F (x, y)dµ(x)
)
dν(y) =

∫
G

(∫
G

F (y−1x, y)dµ(y−1x)
)
dν(y) (by x 7→ y−1x)

(p7)
=

∫
G

(∫
G

F (y−1x, y)dµ(x)
)
dν(y) =

∫
G×G

F (y−1x, y)d(µ× ν)(x, y)

=

∫
G

(∫
G

F (y−1x, y)dν(y)
)
dµ(x) =

∫
G

(∫
G

F (y−1, xy)dν(xy)
)
dµ(x) (by y 7→ xy)

(p7)
=

∫
G

(∫
G

F (y−1, xy)dν(y)
)
dµ(x)

(a)
=

∫
G

h0(x)dµ(x)

∫
G

f(y−1)∫
G
h0(gy−1)dν(g)

dν(y),

where we remark that f(x) =
∫
G
F (x, y)dν(y). Hence it turns out that∫

G
f(x)dµ(x)∫

G
h0(z)dµ(z)

=

∫
G

f(y−1)∫
G
h0(gy−1)dν(g)

dν(y). (c)

The above arguments assure that for any non-zero left-invariant Haar measure µ′ on G, the equality∫
G
f(x)dµ′(x)∫

G
h0(z)dµ′(z)

=

∫
G

f(y−1)∫
G
h0(gy−1)dν(g)

dν(y)

always holds, and thus (c) yields

∫
G
f(x)dµ(x)∫

G
h0(z)dµ(z)

=

∫
G
f(x)dµ′(x)∫

G
h0(z)dµ′(z)

; in particular,∫
G
f(x)dµ(x)∫

G
h0(z)dµ(z)

=

∫
G
f(x)dν(x)∫

G
h0(z)dν(z)

.

Setting λ :=

∫
G
h0(z)dµ(z)∫

G
h0(z)dν(z)

, we have λ > 0 and 1⃝.

Propositions 5.2.23 and 5.2.29 lead to Theorem 5.1.2.

5.3 An example of unimodular group

Suppose G to satisfy the second countability axiom. Let µ be a non-zero left-invariant Haar measure on G. For an x ∈ G,

Lemma 5.1.1-(2) enables us to define a set function δ(x)µ : B → R⨿ {∞} by

(δ(x)µ)(A) := µ(Ax) for A ∈ B. (5.3.1)

Then δ(x)µ is also a non-zero left-invariant Haar measure on G, since the right translation Rx : G→ G is a homeomorphism.

Accordingly there exists a unique positive real number △(x) satisfying

δ(x)µ = △(x)µ (5.3.2)

by Theorem 5.1.2. The function △ : G→ R+, x 7→ △(x), is called the modular function of G.1 Besides; the group G is said

to be unimodular, if △(x) = 1 for all x ∈ G. In this section, we clarify some properties of △ and show Proposition 5.3.4

which provides us with an example of unimodular group.

1Remark. Theorem 5.1.2 assures that this modular function △ is independent of the choice of µ.
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Proposition 5.3.3. Suppose that G satisfies the second countability axiom. Let △ denote the modular function of G. Then,

(i) △ : G→ R+, x 7→ △(x), is a continuous function.

(ii) △(xy) = △(x)△(y) for all x, y ∈ G.

(iii) △(x) = 1 for all x ∈ G (i.e., G is unimodular) if and only if a non-zero left-invariant Haar measure µ on G is also

right-invariant (i.e., µ(Ag) = µ(A) for all (g,A) ∈ G× B).

Proof. Let µ be a non-zero left-invariant Haar measure on G.

(i). By Lemma 5.2.28 there exists an h0 ∈ C≥0(G,R) such that
∫
G
h0(gx)dµ(g) > 0 for all x ∈ G. From (5.3.1) and

(5.3.2) we obtain
∫
G
h0(gx)dµ(g) = △(x)−1

∫
G
h0(g)dµ(g). Then, Lemma 5.2.27-(2) implies that

G ∋ x 7→ 1

△(x)

∫
G

h0(g)dµ(g) ∈ R+ is continuous.

Hence △ : G→ R+, x 7→ △(x), is continuous because
∫
G
h0(g)dµ(g) is a positive constant.

(ii). By a direct computation, together with (5.3.2) and (5.3.1), we have △(xy)µ(A) = µ(Axy) = (δ(y)µ)(Ax) =

△(y)µ(Ax) = △(x)△(y)µ(A) for all A ∈ B, and so △(xy) = △(x)△(y) by virtue of µ ̸= 0.

(iii). For each x ∈ G, it follows from (5.3.2), µ ̸= 0 and (5.3.1) that △(x) = 1 if and only if δ(x)µ = µ if and only if

µ(Ax) = µ(A) for all A ∈ B. Hence we can get the conclusion.

Now, let us show

Proposition 5.3.4. G is unimodular if G is a compact Hausdorff topological group, or G is a connected semisimple Lie

group.2 Here, we say that a Lie group is semisimple, if so is its Lie algebra.

Proof. First, let us confirm that a compact Hausdorff topological group K is unimodular. Proposition 5.3.3-(i), (ii) implies

that △ : K → R+, k 7→ △(k), is a continuous (group) homomorphism, where we note that R+ is the identity component of

GL(1,R). Thus its image △(K) is a compact subgroup of R+, and it must be {1}.3 So K is unimodular.

Next, let us prove that G is unimodular, where G is a connected semisimple Lie group. Since △ : G→ R+, g 7→ △(g), is

a continuous homomorphism, it is a Lie group homomorphism. Therefore one can set its differential △∗ : g → gl(1,R), and
obtain

△∗(g) = {0}

from g = [g, g]. Since G is a connected Lie group, for each g ∈ G there exist finite elements X1, X2, . . . , Xk ∈ g such that

g = expX1 expX2 · · · expXk, and then

△(g) = △(expX1 · · · expXk) = △(expX1) · · ·△(expXk) = e△∗(X1) · · · e△∗(Xk) = 1.

For this reason △(G) ⊂ {1}, and G is unimodular.

We end this chapter with commenting on unimodular groups.

Remark 5.3.5. Suppose that (s1) G satisfies the second countability axiom and (s2) G is unimodular. Then, for a given

non-zero left-invariant Haar measure µ on G and any µ-integrable function f on G, it follows that

(1)

∫
G

f(g)dµ(g) =

∫
G

f(xg)dµ(g) =

∫
G

f(g)dµ(xg) for all x ∈ G;

(2)

∫
G

f(g)dµ(g) =
1

△(x)

∫
G

f(g)dµ(g) =

∫
G

f(gx)dµ(g) for all x ∈ G;

(3)

∫
G

f(g)dµ(g) =

∫
G

1

△(g)
f(g−1)dµ(g) =

∫
G

f(g−1)dµ(g),

where △ is the modular function of G. Remark here, (1), (2′) △(x)−1
∫
G
f(g)dµ(g) =

∫
G
f(gx)dµ(g) and (3′)

∫
G
f(g)dµ(g) =∫

G
△(g)−1f(g−1)dµ(g) come from the measure µ being left-invariant only.

2Remark. A connected Lie group always satisfies the second countability axiom.
3(∵) Suppose that △(K) contains an element λ ̸= 1. Then, since △(K) is a subgroup of R+, we have λ, λ−1 ∈ △(K) and (0, 1)∪(1,∞) ⊂ △(K);

so △(K) = (0,∞) = R+. This is a contradiction. For this reason △(K) = {1}.



Chapter 6

Regulated integrals

In this chapter we study integrals of vector-valued functions. cf. Lang [25, Section 4, Chapter I].

6.1 An introduction to regulated integral

The setting of Section 6.1 is as follows:

• (X,B, µ) is a measure space which consists of an abstract space X, a σ-algebra B on X, and a measure µ on B,

• V is a Fréchet space over K = R or C, whose topology is determined by a countable number of seminorms {pℓ}ℓ∈N,

• d is a metric on V such that

(1) d is a suitable metric for V which induces a topology identical to the original one,

(2) the metric space (V, d) is complete,

(3) d(ξ1, ξ2) = d(ξ1 + ξ3, ξ2 + ξ3) for all ξ1, ξ2, ξ3 ∈ V.

We remark that for ξ ∈ V and {ξn}∞n=1 ⊂ V, lim
n→∞

d(ξ, ξn) = 0 if and only if for any ϵ > 0 and each ℓ ∈ N there exists an

Nℓ ∈ N such that n ≥ Nℓ implies pℓ(ξ − ξn) < ϵ.

6.1.1 The regulated integral of a step function

For an A ∈ B with µ(A) <∞, a step function

S = S(x) : A→ V

is a mapping such that there exists a finite sequence {Ai}ki=1 ⊂ 2A satisfying the following three conditions:

1. Ai ∈ B for all 1 ≤ i ≤ k,

2. A =
⨿k
i=1Ai (disjoint union),

3. the mapping S is constant on each Ai (1 ≤ i ≤ k).

For this step function S : A→ V, we define its integral
∫
A
S(x)dµ(x) on A by

∫
A

S(x)dµ(x) :=

k∑
i=1

µ(Ai)ξi, (6.1.1)

where S(Ai) = {ξi}, 1 ≤ i ≤ k. Remark that 0 ≤ µ(Ai) ≤ µ(A) < ∞ (1 ≤ i ≤ k), that the integral (6.1.1) is independent

of the choice of Ai on which S is constant, and that
∫
A
S(x)dµ(x) ∈ V. In addition,

∫
A
S(x)dµ(x) = 0 if µ(A) ≤ 0 (i.e.,

µ(A) = 0).

49
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6.1.2 Definition of regulated integral

In the previous subsection we have set the integral of a step function, (6.1.1). We want to consider the integral
∫
A
F (x)dµ(x)

on A of a more general function F : A→ V. For this reason, let us first prove Lemma 6.1.2 and afterwards show Proposition

6.1.3. This proposition grants our want.

Lemma 6.1.2. Let A ∈ B with µ(A) <∞, let S, T : A→ V be step functions, and let α, β ∈ K.

(1) αS + βT : A→ V is a step function, and

∫
A

(αS + βT )(x)dµ(x) = α

∫
A

S(x)dµ(x) + β

∫
A

T (x)dµ(x).

(2) If A = B ⨿ C and B ∈ B, then both S : B → V and S : C → V are step functions, and∫
A

S(x)dµ(x) =

∫
B

S(y)dµ(y) +

∫
C

S(z)dµ(z).

(3) Suppose that W is a Fréchet space over K and K : V → W is a K-linear mapping. Then, K ◦ S : A → W is a step

function, and K
(∫

A

S(x)dµ(x)
)
=

∫
A

(K ◦ S)(x)dµ(x).

Proof. Let

A =
⨿k
i=1Ai =

⨿h
j=1Bj , Ai, Bj ∈ B, S(x) =

∑k
i=1 cAi

(x)ξi, T (x) =
∑h
j=1 cBj

(x)ηj ,

where ξi, ηj ∈ V and cQ is the characteristic function of a subset Q ⊂ A.

(1). It turns out that Ai ∩ Bj ∈ B, A =
⨿

1≤i≤k,1≤j≤h(Ai ∩ Bj), and αS + βT =
∑

1≤i≤k,1≤j≤h cAi∩Bj
(αξi + βηj).

Consequently αS + βT : A→ V is a step function; besides,∫
A

(αS + βT )(x)dµ(x)
(6.1.1)
=

∑
1≤i≤k,1≤j≤h

µ(Ai ∩Bj)(αξi + βηj) = α

k∑
i=1

( h∑
j=1

µ(Ai ∩Bj)
)
ξi + β

h∑
j=1

( k∑
i=1

µ(Ai ∩Bj)
)
ηj

= α

k∑
i=1

µ(Ai)ξi + β

h∑
j=1

µ(Bj)ηj
(6.1.1)
= α

∫
A

S(x)dµ(x) + β

∫
A

T (x)dµ(x).

Hence (1) holds.

(2). Both S(y) =
∑k
i=1 cAi∩B(y)ξi : B → V and S(z) =

∑k
i=1 cAi∩C(z)ξi : C → V are step functions, and∫

B⨿C
S(x)dµ(x)

(6.1.1)
=

k∑
i=1

µ
(
Ai ∩ (B ⨿ C)

)
ξi =

k∑
i=1

µ(Ai ∩B)ξi +

k∑
i=1

µ(Ai ∩ C)ξi
(6.1.1)
=

∫
B

S(y)dµ(y) +

∫
C

S(z)dµ(z),

where we remark that B, C = (A − B) ∈ B, µ(B) ≤ µ(A) < ∞, µ(C) < ∞, B =
⨿k
i=1(Ai ∩ B), C =

⨿k
i=1(Ai ∩ C), and

(Ai ∩B), (Ai ∩ C) ∈ B.

(3). Since K : V → W is linear we see that (K ◦ S)(x) =
∑k
i=1 cAi

(x)K(ξi), and so K ◦ S : A → W is a step function.

Moreover,

K
(∫

A

S(x)dµ(x)
)

(6.1.1)
= K

( k∑
i=1

µ(Ai)ξi

)
=

k∑
i=1

µ(Ai)K(ξi)
(6.1.1)
=

∫
A

(K ◦ S)(x)dµ(x).

Taking the proof of Lemma 6.1.2 into account, we prove

Proposition 6.1.3. Let A ∈ B with µ(A) < ∞, and let F : A → V be a mapping. Suppose that a sequence {Sn : A →
V |Sn is a step function}∞n=1 is uniformly convergent to F on A. Then, the following two items hold:

(i) There exists a unique ξF ∈ V such that lim
n→∞

d
(
ξF ,

∫
A

Sn(x)dµ(x)
)
= 0.

(ii) If another sequence {Tm : A→ V |Tm is a step function}∞m=1 is uniformly convergent to F on A also, then the sequence{ ∫
A
Tm(x)dµ(x)

}∞
m=1

in (V, d) converges to the same limit point ξF as
{ ∫

A
Sn(x)dµ(x)

}∞
n=1

.

Proof. Let A =
⨿kn
i=1An,i, An,i ∈ B and Sn(x) =

∑kn
i=1 cAn,i

(x)ξn,i, where ξn,i ∈ V, n ∈ N.
(i). Since (V, d) is a Fréchet space, it is enough to confirm that

{ ∫
A
Sn(x)dµ(x)

}∞
n=1

is a Cauchy sequence in (V, d). In

case of µ(A) ≤ 0, we show that 0 ≤ µ(An,i) ≤ µ(A) ≤ 0 and∫
A

Sn(x)dµ(x)
(6.1.1)
=

kn∑
i=1

µ(An,i)ξn,i = 0
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for all n ∈ N; therefore
{ ∫

A
Sn(x)dµ(x)

}∞
n=1

= {0} is a Cauchy sequence in (V, d). From now on, let us consider the case

where µ(A) > 0. Fix any ϵ > 0 and an arbitrary seminorm p ∈ {pℓ}ℓ∈N. For each n ∈ N we define a subset Xn ⊂ A by

Xn :=
{
a ∈ A

∣∣ p(Sn(a)− F (a)
)
< ϵ/(2µ(A))

}
.

On the one hand; the supposition allows us to choose an Np ∈ N such that n ≥ Np implies A = Xn; and so

A =
{
a ∈ A

∣∣ p(Sn(a)− F (a)
)
< ϵ/(2µ(A))

}
for all n ≥ Np. 1⃝

On the other hand; a direct computation yields

p
(∫

A

Sn(x)dµ(x)−
∫
A

Sm(x)dµ(x)
)

(6.1.1)
= p

( ∑
1≤i≤kn,1≤j≤km

µ(An,i ∩Am,j)(ξn,i − ξm,j)
)

≤
∑

1≤i≤kn,1≤j≤km

µ(An,i ∩Am,j) · p(ξn,i − ξm,j).

Here, one estimates the last term at

µ(An,i ∩Am,j) · p(ξn,i − ξm,j) ≤ µ(An,i ∩Am,j) · ϵ/µ(A), 2⃝

provided that n,m ≥ Np. Indeed; in case of An,i ∩Am,j = ∅ we have

µ(An,i ∩Am,j) · p(ξn,i − ξm,j) = 0 ≤ µ(An,i ∩Am,j) · ϵ/µ(A).

In case of An,i ∩Am,j ̸= ∅, one can take an element a ∈ An,i ∩Am,j , and obtain Sn(a) = ξn,i, Sm(a) = ξm,j and

µ(An,i ∩Am,j) · p(ξn,i − ξm,j) = µ(An,i ∩Am,j) · p(Sn(a)− Sm(a))

≤ µ(An,i ∩Am,j) ·
(
p(Sn(a)− F (a)) + p(F (a)− Sm(a))

)
< µ(An,i ∩Am,j) · ϵ/µ(A)

from 1⃝ and n,m ≥ Np. In any case 2⃝ does hold. Consequently, it follows from 2⃝ that n,m ≥ Np implies

p
(∫

A

Sn(x)dµ(x)−
∫
A

Sm(x)dµ(x)
)
≤

∑
1≤i≤kn,1≤j≤km

µ(An,i ∩Am,j) · p(ξn,i − ξm,j)

≤ ϵ

µ(A)

∑
1≤i≤kn,1≤j≤km

µ(An,i ∩Am,j) ≤ ϵ.

Hence d
(∫
A
Sn(x)dµ(x),

∫
A
Sm(x)dµ(x)

)
→ 0 (n,m→ ∞), and (i) holds.

(ii). Suppose that a sequence {Tm : A → V |Tm is a step function}∞m=1 is uniformly convergent to F on A. Then, by

virtue of (i) there exists a unique ξ′F ∈ V satisfying lim
m→∞

d
(
ξ′F ,

∫
A

Tm(x)dµ(x)
)
= 0; and

d(ξF , ξ
′
F ) ≤ d

(
ξF ,

∫
A

Sn(x)dµ(x)
)
+ d
(∫

A

Sn(x)dµ(x),

∫
A

Tn(x)dµ(x)
)
+ d
(∫

A

Tn(x)dµ(x), ξ
′
F

)
.

Accordingly, it suffices to confirm that

lim
n→∞

d
(∫

A

Sn(x)dµ(x),

∫
A

Tn(x)dµ(x)
)
= 0. (a)

The arguments below will be similar to those in (i) above.

Now, let A =
⨿hm

j=1Bm,j , Bm,j ∈ B and Tm(x) =
∑hm

j=1 cBm,j (x)ηm,j , where ηm,j ∈ V, m ∈ N. In case of µ(A) ≤ 0 we

know that µ(Bn,j) = 0 and ∫
A

Sn(x)dµ(x) = 0 =

∫
A

Tn(x)dµ(x)

for all n ∈ N. Accordingly one has (a) in case of µ(A) = 0. So, we investigate the case where µ(A) > 0 henceforth. Let us fix

any ϵ > 0 and seminorm p ∈ {pℓ}ℓ∈N. Since {Sn}∞n=1 and {Tm}∞m=1 are uniformly convergent to F on A, there exist Np ∈ N
and Mp ∈ N such that n ≥ Np and m ≥Mp imply

A =
{
a ∈ A

∣∣ p(Sn(a)− F (a)
)
< ϵ/(2µ(A))

}
and A =

{
b ∈ A

∣∣ p(Tm(b)− F (b)
)
< ϵ/(2µ(A))

}
, 1⃝′

respectively. For any n ≥ max{Np,Mp}, one knows

µ(An,i ∩Bn,j) · p(ξn,i − ηn,j) ≤ µ(An,i ∩Bn,j) · ϵ/µ(A) 2⃝′
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in a similar way. Consequently n ≥ max{Np,Mp} implies

p
(∫

A

Sn(x)dµ(x)−
∫
A

Tn(x)dµ(x)
)
≤

∑
1≤i≤kn,1≤j≤hn

µ(An,i ∩Bn,j) · p(ξn,i − ηn,j)

≤ ϵ

µ(A)

∑
1≤i≤kn,1≤j≤hn

µ(An,i ∩Bn,j) ≤ ϵ.

Therefore d
(∫
A
Sn(x)dµ(x),

∫
A
Tn(x)dµ(x)

)
→ 0 (n→ ∞), and (a) holds.

Proposition 6.1.3 assures that the following Definition 6.1.4-(2) is well-defined:

Definition 6.1.4. Let A ∈ B with µ(A) <∞.

(1) A mapping F : A→ V is said to be regulated, if there exists a sequence {Sn : A→ V |Sn is a step function}∞n=1 which

is uniformly convergent to F on A.

(2) Let F : A→ V be a regulated mapping. Suppose that a sequence {Sn}∞n=1 of step functions is uniformly convergent to

F on A. Then, there exists a unique ξF ∈ V such that

lim
n→∞

d
(
ξF ,

∫
A

Sn(x)dµ(x)
)
= 0.

This ξF is called the regulated integral or the integral on A of F and we write
∫
A
F (x)dµ(x).

Needless to say, the above integral
∫
A
F (x)dµ(x) accords with the integral in (6.1.1) whenever F is a step function.

6.1.3 Properties of regulated integrals

Let us clarify some properties of regulated integrals.

Lemma 6.1.5. Let A ∈ B with µ(A) <∞, let F,G : A→ V be regulated, and let α, β ∈ K.

(1) αF + βG : A→ V is a regulated mapping and∫
A

(αF + βG)(x)dµ(x) = α

∫
A

F (x)dµ(x) + β

∫
A

G(x)dµ(x).

(2) If A = B ⨿ C and B ∈ B, then both F : B → V and F : C → V are regulated mappings, and∫
A

F (x)dµ(x) =

∫
B

F (y)dµ(y) +

∫
C

F (z)dµ(z).

(3) Suppose that W is a Fréchet space over K and L : V → W is a continuous, K-linear mapping. Then, L ◦ F : A → W
is a regulated mapping and

L
(∫

A

F (x)dµ(x)
)
=

∫
A

(L ◦ F )(x)dµ(x).

(4) For any continuous seminorm p̂ on V, it follows that p̂ ◦ F : A→ R is regulated, and the inequality

p̂
(∫

A

F (x)dµ(x)
)
≤
∫
A

(p̂ ◦ F )(x)dµ(x)

holds.

cf. Definition 6.1.4.

Proof. Let {Sn}∞n=1 and {Tm}∞m=1 be sequences of step functions which are uniformly convergent to F , G on A, respectively.

(1). In case of |α|+ |β| ≤ 0, one has α = β = 0; thus αF + βG = 0 is a regulated mapping and∫
A

(αF + βG)(x)dµ(x) = 0 = α

∫
A

F (x)dµ(x) + β

∫
A

G(x)dµ(x).

So, let us consider the case where |α| + |β| > 0 henceforth. Fix any ϵ > 0 and any seminorm p ∈ {pℓ}ℓ∈N. Since {Sn}∞n=1,

{Tm}∞m=1 are uniformly convergent to F , G on A, there exist Np, Mp ∈ N such that n ≥ Np, m ≥Mp imply

p
(
F (x)− Sn(x)

)
<

ϵ

|α|+ |β|
, p

(
G(x)− Tm(x)

)
<

ϵ

|α|+ |β|
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for all x ∈ A, respectively. Hence k ≥ max{Np,Mp} implies

p
(
αF (x) + βG(x)− αSk(x)− βTk(x)

)
≤ |α|p

(
F (x)− Sk(x)

)
+ |β|p

(
G(x)− Tk(x)

)
< ϵ

for all x ∈ A. Consequently the sequence {αSn + βTn}∞n=1 of step functions is uniformly convergent to αF + βG on A (cf.

Lemma 6.1.2-(1)), and αF + βG : A→ V is a regulated mapping. Furthermore, we obtain

p
(∫

A

(αF + βG)(x)dµ(x)− α

∫
A

F (x)dµ(x)− β

∫
A

G(x)dµ(x)
)

≤ p
(∫

A

(αF + βG)(x)dµ(x)−
∫
A

(αSn + βTn)(x)dµ(x)
)

+ p
(∫

A

(αSn + βTn)(x)dµ(x)− α

∫
A

F (x)dµ(x)− β

∫
A

G(x)dµ(x)
)

= p
(∫

A

(αF + βG)(x)dµ(x)−
∫
A

(αSn + βTn)(x)dµ(x)
)

+ p
(
α

∫
A

Sn(x)dµ(x) + β

∫
A

Tn(x)dµ(x)− α

∫
A

F (x)dµ(x)− β

∫
A

G(x)dµ(x)
)

(∵ Lemma 6.1.2-(1))

≤ p
(∫

A

(αF + βG)(x)dµ(x)−
∫
A

(αSn + βTn)(x)dµ(x)
)

+ |α|p
(∫

A

Sn(x)dµ(x)−
∫
A

F (x)dµ(x)
)
+ |β|p

(∫
A

Tn(x)dµ(x)−
∫
A

G(x)dµ(x)
)

−→ 0 (n→ ∞)

because of Definition 6.1.4-(2) and {αSn + βTn}∞n=1, {Sn}∞n=1, {Tm}∞m=1 being uniformly convergent to αF + βG, F , G on

A, respectively. The above computation leads to
∫
A
(αF + βG)(x)dµ(x) = α

∫
A
F (x)dµ(x) + β

∫
A
G(x)dµ(x).

(2). cf. Lemma 6.1.2-(2).

(3). Suppose that the topology for W is determined by a countable number of seminorms {qm}m∈N. Since {Sn}∞n=1 is

uniformly convergent to F on A, it follows from Definition 6.1.4-(2) that

lim
n→∞

d
(∫

A

F (x)dµ(x),

∫
A

Sn(x)dµ(x)
)
= 0. 1⃝

From now on, let us confirm that L ◦ F : A → W is regulated. By Lemma 6.1.2-(3), L ◦ Sn : A → W is a step function

(n ∈ N). We want to show that the sequence {L ◦ Sn}∞n=1 of step functions is uniformly convergent to L ◦ F on A. Take

any ϵ > 0 and any seminorm q ∈ {qm}m∈N. Since L : V → W is continuous, there exist finite pℓ1 , . . . , pℓr ∈ {pℓ}ℓ∈N and

λ1, . . . , λr > 0 such that

q
(
L(ξ)

)
≤ λ1pℓ1(ξ) + · · ·+ λrpℓr (ξ) for all ξ ∈ V. 2⃝

Then, for each 1 ≤ j ≤ r there exists an Nq,j ∈ N such that n ≥ Nq,j implies

pℓj
(
Sn(x)− F (x)

)
<

ϵ

λ1 + · · ·+ λr
3⃝

for all x ∈ A, because {Sn}∞n=1 is uniformly convergent to F on A. Therefore it follows from 2⃝ and 3⃝ that n ≥ max{Nq,j :
1 ≤ j ≤ r} implies

q
(
L(Sn(x))− L(F (x))

)
= q
(
L(Sn(x)− F (x))

)
≤

r∑
j=1

λjpℓj
(
Sn(x)− F (x)

)
<

ϵ

λ1 + · · ·+ λr

r∑
j=1

λj = ϵ

for all x ∈ A. Hence {L ◦ Sn}∞n=1 is uniformly convergent to L ◦ F on A. Consequently we assert that L ◦ F : A → W is a

regulated mapping. Note here, at this stage we see that

q
(∫

A

(L ◦ Sn)(x)dµ(x)−
∫
A

(L ◦ F )dµ(x)
)
−→ 0 (n→ ∞) 4⃝

by Definition 6.1.4-(2). The rest of proof is to verify that L
(∫
A
F (x)dµ(x)

)
=
∫
A
(L ◦ F )(x)dµ(x), which comes from

q
(
L
(∫
A

F (x)dµ(x)
)
−
∫
A

(L ◦ F )(x)dµ(x)
)

≤ q
(
L
(∫
A

F (x)dµ(x)
)
−
∫
A

(L ◦ Sn)(x)dµ(x)
)
+ q
(∫

A

(L ◦ Sn)(x)dµ(x)−
∫
A

(L ◦ F )(x)dµ(x)
)
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= q
(
L
(∫
A

F (x)dµ(x)
)
− L

(∫
A

Sn(x)dµ(x)
))

+ q
(∫

A

(L ◦ Sn)(x)dµ(x)−
∫
A

(L ◦ F )(x)dµ(x)
)

(∵ Lemma 6.1.2-(3))

= q
(
L
(∫
A

F (x)dµ(x)−
∫
A

Sn(x)dµ(x)
))

+ q
(∫

A

(L ◦ Sn)(x)dµ(x)−
∫
A

(L ◦ F )(x)dµ(x)
)

−→ 0 (n→ ∞)

because q ◦ L is continuous, 1⃝ and 4⃝.

(4). Let A =
⨿kn
i=1An,i, An,i ∈ B and Sn(x) =

∑kn
i=1 cAn,i

(x)ξn,i, where ξn,i ∈ V, n ∈ N. By a direct computation we

obtain p̂
(
Sn(y)

)
= p̂(ξn,i) if y ∈ An,i. This assures that

(p̂ ◦ Sn)(x) =
kn∑
i=1

cAn,i
(x)p̂(ξn,i),

and that {p̂ ◦ Sn}∞n=1 is a sequence of step functions. Now, let us show that {p̂ ◦ Sn}∞n=1 is uniformly convergent to p̂ ◦ F
on A. Take an arbitrary ϵ > 0. On the one hand; since p̂ : V → R is continuous at 0, there exists a δ > 0 such that η ∈ V,
d(η, 0) < δ implies

p̂(η) =
∣∣p̂(η)− p̂(0)

∣∣ < ϵ.

On the other hand; since {Sn}∞n=1 is uniformly convergent to F on A, there exists an N ∈ N such that n ≥ N implies

d
(
F (x)− Sn(x), 0

)
= d
(
F (x), Sn(x)

)
< δ

for all x ∈ A. Consequently, n ≥ N implies p̂
(
F (x)− Sn(x)

)
< ϵ, and then∣∣p̂(F (x))− p̂(Sn(x))
∣∣ ≤ p̂

(
F (x)− Sn(x)

)
< ϵ

for all x ∈ A. Hence {p̂ ◦ Sn}∞n=1 is uniformly convergent to p̂ ◦F on A, and we conclude that p̂ ◦F : A→ R is regulated. In

addition, one has∫
A

(p̂ ◦ Sn)(x)dµ(x)
(6.1.1)
=

kn∑
i=1

µ(An,i)p̂(ξn,i) ≥ p̂
( kn∑
i=1

µ(An,i)ξn,i

)
(6.1.1)
= p̂

(∫
A

Sn(x)dµ(x)
)

for all n ∈ N, and therefore∫
A

(p̂ ◦ F )(x)dµ(x) = lim
n→∞

∫
A

(p̂ ◦ Sn)(x)dµ(x) ≥ lim
n→∞

p̂
(∫

A

Sn(x)dµ(x)
)
= p̂
(

lim
n→∞

∫
A

Sn(x)dµ(x)
)

(∵ p̂ is continuous)

= p̂
(∫

A

F (x)dµ(x)
)
.

Remark 6.1.6. In terms of Lemmas 6.1.2-(1) and 6.1.5-(1), the sets of step functions and regulated mappings are vector

spaces over K, respectively.

6.1.4 A remark on regulated integrals of real-valued functions

In case of V = R, we can consider two kinds of integrals, the regulated integral in the sense of Definition 6.1.4-(2) and the

µ-integral in the sense of the measure theory, which we here dare to write
∫
A
F (x)dµ(x) the former and µ-

∫
A
F (x)dµ(x) the

latter. In this subsection we are going to confirm that∫
A

F (x)dµ(x) = µ-

∫
A

F (x)dµ(x)

for all regulated mappings F : A→ R, where A ∈ B with µ(A) <∞.

Suppose that V = R, A ∈ B and µ(A) <∞. Here, (V, {pℓ}ℓ∈N) = (R, | · |) follows.
Any step function S =

∑k
i=1 cAi

(x)λi : A→ R is µ-integrable on A, and it is immediate from (6.1.1) that

∫
A

S(x)dµ(x) =

k∑
i=1

µ(Ai)λi = µ-

∫
A

S(x)dµ(x). 1⃝
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Now, let F : A→ R be a regulated mapping. Then, by Definition 6.1.4-(1) there exists a sequence {Sn}∞n=1 of step functions

which is uniformly convergent to F on A. On the one hand; Definition 6.1.4-(2) implies that∣∣∣ ∫
A

F (x)dµ(x)−
∫
A

Sn(x)dµ(x)
∣∣∣ −→ 0 (n→ ∞). 2⃝

On the other hand; since {Sn}∞n=1 is uniformly convergent to F on A, there exists an M ∈ N such that m ≥ M implies

|Sm(x)− SM (x)| < 1 for all x ∈ A; and it follows that

|Sm(x)| ≤ |SM (x)|+ 1 for all m ≥M and x ∈ A.

This, together with Lebesgue’s convergence theorem, tells us that F is µ-integrable on A and∣∣∣µ-∫
A

Sn(x)dµ(x)− µ-

∫
A

F (x)dµ(x)
∣∣∣ −→ 0 (n→ ∞), 3⃝

since µ(A) <∞, each Sn is µ-integrable on A and {Sn}∞n=1 is uniformly convergent to F on A. In view of 1⃝, 2⃝ and 3⃝ we

see that∣∣∣ ∫
A

F (x)dµ(x)− µ-

∫
A

F (x)dµ(x)
∣∣∣ ≤ ∣∣∣ ∫

A

F (x)dµ(x)−
∫
A

Sn(x)dµ(x)
∣∣∣+ ∣∣∣ ∫

A

Sn(x)dµ(x)− µ-

∫
A

F (x)dµ(x)
∣∣∣

=
∣∣∣ ∫
A

F (x)dµ(x)−
∫
A

Sn(x)dµ(x)
∣∣∣+ ∣∣∣µ-∫

A

Sn(x)dµ(x)− µ-

∫
A

F (x)dµ(x)
∣∣∣ −→ 0 (n→ ∞).

So, one has
∫
A
F (x)dµ(x) = µ-

∫
A
F (x)dµ(x).

Remark 6.1.7. By the arguments above and the measure theory we deduce that for any A ∈ B and µ(A) <∞, all regulated

mappings f, g : A→ R are µ-integrable on A, and that the inequalities

0 ≤
∫
A

f(x)dµ(x) ≤
∫
A

g(x)dµ(x)

hold in the case where 0 ≤ f(x) ≤ g(x) for all x ∈ A.

Regulated integrals on A

µ-Integrals on A
Case V = R, µ(A) <∞:

6.1.5 An example of regulated mapping

The following proposition provides us with examples of regulated mappings.

Proposition 6.1.8. Suppose that

(s1) X is a Hausdorff (topological) space,

(s2) B includes the set of open subsets of X,

(s3) K is a compact subset of X with µ(K) <∞.

Then, every continuous mapping F : K → V is regulated. Accordingly F has a regulated integral on K.

Proof. For ξ0 ∈ V and r > 0 we set an open subset B(ξ0, r) ⊂ V as B(ξ0, r) := {ξ ∈ V | d(ξ, ξ0) < r}.
By Definition 6.1.4 it suffices to construct a sequence of step functions which is uniformly convergent to F on K. For any

n ∈ N, one has F (K) ⊂
∪
η∈F (K)B(η, 1/n). Since F (K) is compact in V, there exist finite elements η1, η2, . . . , ηℓn ∈ F (K)

satisfying F (K) ⊂
∪ℓn
i=1B(ηi, 1/n). Then, we put

Ai := F−1
(
B(ηi, 1/n)

)
−
∪i−1
j=1 F

−1
(
B(ηj , 1/n)

)
for 1 ≤ i ≤ ℓn.

Since F : K → V is continuous, it follows from (s2) that F−1
(
B(ηi, 1/n)

)
∈ B, so that Ai ∈ B (1 ≤ i ≤ ℓn). Moreover,

we deduce K =
⨿ℓn
i=1Ai by a direct computation. Now, let Sn(x) :=

∑ℓn
i=1 cAi

(x)ηi for x ∈ K. This Sn : K → V is a step

function and satisfies d
(
Sn(x), F (x)

)
< 1/n for all x ∈ K. Accordingly {Sn}∞n=1 is the desired sequence of step functions.

Remark 6.1.9. By considering Lemma 6.1.5-(3) in case W = K we see that the integral
∫
K
F (x)dµ(x) in Proposition 6.1.8

accords with the integral in Bourbaki [7, Section 3, Chapter III], the integral in Rudin [31, p.77, Definition 3.26], and so on.
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6.2 An application (K-finite vectors)

The setting of Section 6.2 is as follows:

• K is a compact Lie group,

• V is a Fréchet space over C,

• d is a suitable complete metric for V which induces a topology identical to the original one,

• ϱ : K → GL(V), k 7→ ϱ(k), is a (group) homomorphism, where it does not matter whether ϱ is continuous here.

In this section we apply the theory on regulated integrals to conclude

Proposition 6.2.1. Suppose that (S) the mapping πϱ : K × V → V, (k, ξ) 7→ ϱ(k)ξ, is continuous.1 Then,

VK := {η ∈ V | dimC spanC{ϱ(k)η : k ∈ K} <∞}

is a ϱ(K)-invariant, complex vector subspace of V, and moreover, it is dense in V.

The main purpose of this section is to prove Proposition 6.2.1.

6.2.1 A preparation for proving Proposition 6.2.1

In order to prove Proposition 6.2.1 we study C(K,C) first, where C(K,C) = {ϕ : K → C |ϕ is continuous}. Let us define a

norm ∥ · ∥ on the complex vector space C(K,C) by

∥ϕ∥ := sup
{
|ϕ(x)| : x ∈ K

}
for ϕ ∈ C(K,C),

consider C(K,C) as a complex Banach space with this norm, and define a homomorphism ρ : K → GL
(
C(K,C)

)
, k 7→ ρ(k),

as follows: (
ρ(k)ϕ

)
(x) := ϕ(k−1x) for ϕ ∈ C(K,C) and x ∈ K.

Then, it turns out that ∥ρ(k)ϕ∥ = ∥ϕ∥ for all (k, ϕ) ∈ K × C(K,C), and that the mapping πρ : K × C(K,C) → C(K,C),
(k, ϕ) 7→ ρ(k)ϕ, is continuous. Furthermore, by the Peter-Weyl theory one knows

Proposition 6.2.2 (e.g. Sugiura [32, p.27, Theorem 3.5]).

C(K,C)K := {φ ∈ C(K,C) | dimC spanC{ρ(k)φ : k ∈ K} <∞}

is a ρ(K)-invariant, complex vector subspace of C(K,C) and is dense in C(K,C).2

From now on, let us suppose that

(S) πϱ : K × V → V, (k, ξ) 7→ ϱ(k)ξ, is continuous,

and denote by µ a non-zero left-invariant Haar measure on B, where B is the Borel field on the compact Lie group K. Then,

for a ξ ∈ V, Proposition 6.1.8 and (S) allow us to define a mapping Fξ : C(K,C) → V by

Fξ(ϕ) :=

∫
K

ϕ(x)(ϱ(x)ξ)dµ(x) for ϕ ∈ C(K,C), (6.2.3)

since fϕ : K → V, x 7→ ϕ(x)(ϱ(x)ξ), is continuous and µ(K) <∞ (cf. (p6) in Theorem 5.1.2).

Lemma 6.2.4. On the supposition (S); for each ξ ∈ V, the mapping Fξ : C(K,C) → V, ϕ 7→
∫
K
ϕ(x)(ϱ(x)ξ)dµ(x), is

continuous.

Proof. Fix any ξ ∈ V, ϵ > 0, ψ ∈ C(K,C) and any continuous seminorm p̂ on V. Let us verify that Fξ : C(K,C) → V is

continuous at ψ. For ϕ ∈ C(K,C) we suppose that

∥ψ − ϕ∥ < ϵ

1 +
∫
K
p̂
(
ϱ(k)ξ

)
dµ(k)

,

1This supposition (S) means that ϱ is a continuous representation of K on V (see Definition 11.0.1).
2Remark. C(K,C)K includes the representative ring of the compact Lie group K.
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where it should be remarked that 0 ≤
∫
K
p̂
(
ϱ(k)ξ

)
dµ(k) < ∞, cf. Remark 6.1.7. The mapping fψ (resp. fϕ): K → V,

x 7→ ψ(x)(ϱ(x)ξ) (resp. 7→ ϕ(x)(ϱ(x)ξ)), is continuous, and so it is regulated due to Proposition 6.1.8. Hence one shows

p̂
(
Fξ(ψ)− Fξ(ϕ)

) (6.2.3)
= p̂

(∫
K

fψ(x)dµ(x)−
∫
K

fϕ(x)dµ(x)
)
= p̂
(∫

K

(fψ − fϕ)(x)dµ(x)
)

(∵ Lemma 6.1.5-(1))

≤
∫
K

p̂
(
(fψ − fϕ)(x)

)
dµ(x) =

∫
K

|ψ(x)− ϕ(x)|p̂
(
ϱ(x)ξ

)
dµ(x) ≤

∫
K

∥ψ − ϕ∥p̂
(
ϱ(x)ξ

)
dµ(x)

= ∥ψ − ϕ∥
∫
K

p̂
(
ϱ(x)ξ

)
dµ(x) ≤ ϵ

1 +
∫
K
p̂
(
ϱ(k)ξ

)
dµ(k)

∫
K

p̂
(
ϱ(x)ξ

)
dµ(x) ≤ ϵ

(see Lemma 6.1.5-(4), Remark 6.1.7 also). Therefore Fξ : C(K,C) → V is continuous at ψ.

Lemma 6.2.5. On the supposition (S); Fξ
(
C(K,C)K

)
⊂ VK for all ξ ∈ V.

Proof. Fix a φ ∈ C(K,C)K . There exist finite vectors φ1, . . . , φn ∈ C(K,C) and functions α1, . . . , αn : K → C such that

ρ(k)φ =
∑n
i=1 αi(k)φi for all k ∈ K 1⃝

by virtue of dimC spanC{ρ(k)φ : k ∈ K} <∞. Therefore, for any k ∈ K

ϱ(k)
(
Fξ(φ)

) (6.2.3)
= ϱ(k)

(∫
K

φ(x)(ϱ(x)ξ)dµ(x)
)
=

∫
K

ϱ(k)
(
φ(x)(ϱ(x)ξ)

)
dµ(x) (∵ (S), Lemma 6.1.5-(3))

=

∫
K

φ(x)(ϱ(kx)ξ)dµ(x) =

∫
K

φ(k−1y)(ϱ(y)ξ)dµ(k−1y) (by x→ k−1y)

1⃝
=

∫
K

n∑
i=1

αi(k)φi(y)(ϱ(y)ξ)dµ(k
−1y) =

∫
K

n∑
i=1

αi(k)φi(y)(ϱ(y)ξ)dµ(y) (∵ µ is left-invariant)

=

n∑
i=1

αi(k)

∫
K

φi(y)(ϱ(y)ξ)dµ(y)
(6.2.3)
=

n∑
i=1

αi(k)Fξ(φi).

Hence dimC spanC{ϱ(k)
(
Fξ(φ)

)
: k ∈ K} ≤ n <∞, and so Fξ(φ) ∈ VK .

Lemma 6.2.6. On the supposition (S); for any ξ ∈ V, there exists a sequence {ϕn}∞n=1 ⊂ C(K,C) satisfying

lim
n→∞

d
(
ξ, Fξ(ϕn)

)
= 0.

Proof. Fix an ϵ > 0 and a ξ ∈ V. Since K is a smooth manifold, one can construct a strictly decreasing sequence {Un}∞n=1

of open neighborhoods of e ∈ K so that

U1 ⊃ U2 ⊃ U2 ⊃ U3 ⊃ · · · ⊃ Un ⊃ Un+1 ⊃ Un+1 ⊃ Un+2 ⊃ · · · ⊃ {e} 1⃝

and a sequence {ψn}∞n=1 of smooth functions (which are sometimes called bump functions) so that

1. 0 ≤ ψn(x) ≤ 1 for all x ∈ K,

2. ψn(y) = 1 for all y ∈ Un+1,

3. ψn(z) = 0 for all z ∈ K − Un.

For these functions one can assert that 0 < µ(Un+1) ≤
∫
K
ψn(x)dµ(x) ≤ µ(Un) ≤ µ(K) < ∞ for all n ∈ N because µ is a

Haar measure on the compact Lie group K, cf. (p8), (p6) in Theorem 5.1.2. Setting ϕn :=
1∫

K
ψn(x)dµ(x)

ψn for n ∈ N, we

conclude that ϕn ∈ C(K,C),
∫
K
ϕn(x)dµ(x) = 1, and 0 ≤ ϕn(x) for all n ∈ N and x ∈ K; in addition,

ξ − Fξ(ϕn)
(6.2.3)
= ξ −

∫
K

ϕn(x)(ϱ(x)ξ)dµ(x) =

∫
K

ϕn(x)ξdµ(x)−
∫
K

ϕn(x)(ϱ(x)ξ)dµ(x)

=

∫
K

ϕn(x)(ξ − ϱ(x)ξ)dµ(x) (∵ Lemma 6.1.5-(1), Proposition 6.1.8),

2⃝

where ξ =
∫
K
ϕn(x)ξdµ(x) follows from

∫
K
ϕn(x)dµ(x) = 1.3 Now, let p̂ be an arbitrary continuous seminorm on V. Since

K ∋ k 7→ ϱ(k)ξ ∈ V is continuous at e ∈ K and ϱ(e)ξ = ξ, there exists an open neighborhood O of e ∈ K satisfying

p̂
(
ξ − ϱ(y)ξ

)
< ϵ for all y ∈ O. 3⃝

3Indeed; suppose a sequence {fm =
∑

i cAm,i
λm,i : K → R}∞m=1 of step functions to be uniformly convergent to ϕn on K. Then it follows

from Definition 6.1.4-(2) and
∫
K ϕn(x)dµ(x) = 1 that limm

∫
K fm(x)dµ(x) =

∫
K ϕn(x)dµ(x) = 1. Besides, the sequence {fmξ =

∑
i cAm,i

λm,iξ :

K → V}∞m=1 consists of step functions and is uniformly convergent to ϕnξ on K. Accordingly
∫
K ϕn(x)ξdµ(x) = limm

∫
K fm(x)ξdµ(x)

(6.1.1)
=

limm
∑

i µ(Am,i)λm,iξ =
(
limm(

∑
i µ(Am,i)λm,i)

)
ξ

(6.1.1)
=

(
limm

∫
K fm(x)dµ(x)

)
ξ = ξ. Hence

∫
K ϕn(x)ξdµ(x) = ξ.
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By 1⃝ there exists an Np̂ ∈ N such that n ≥ Np̂ implies Un ⊂ O, and then

p̂
(
ξ − Fξ(ϕn)

) 2⃝
= p̂

(∫
K

ϕn(x)
(
ξ − ϱ(x)ξ

)
dµ(x)

)
≤
∫
K

ϕn(x)p̂
(
ξ − ϱ(x)ξ

)
dµ(x) (∵ Lemma 6.1.5-(4), 0 ≤ ϕn(x))

=

∫
Un

ϕn(y)p̂
(
ξ − ϱ(y)ξ

)
dµ(y) +

∫
K−Un

ϕn(z)p̂
(
ξ − ϱ(z)ξ

)
dµ(z) (∵ Lemma 6.1.5-(2))

=

∫
Un

ϕn(y)p̂
(
ξ − ϱ(y)ξ

)
dµ(y) (∵ ϕn = 0 on K − Un)

≤ ϵ

∫
Un

ϕn(y)dµ(y) (∵ Un ⊂ O, 3⃝)

≤ ϵ

∫
K

ϕn(x)dµ(x) (∵ 0 ≤ ϕn(x))

= ϵ.

For this reason the sequence {ϕn}∞n=1 satisfies lim
n→∞

d
(
ξ, Fξ(ϕn)

)
= 0.

6.2.2 Proof of Proposition 6.2.1

Now, let us prove Proposition 6.2.1.

Proof of Proposition 6.2.1. We only prove that VK is dense in V = (V, d). Take any ξ0 ∈ V and ϵ > 0. By Lemma 6.2.6

there exists a ψ ∈ C(K,C) satisfying
d
(
ξ0, Fξ0(ψ)

)
< ϵ/2.

Since Fξ0 : C(K,C) → V is continuous at ψ (cf. Lemma 6.2.4), there exists an open neighborhood W of ψ ∈ C(K,C) such

that

d
(
Fξ0(ψ), Fξ0(ϕ)

)
< ϵ/2

for all ϕ ∈ W . Proposition 6.2.2 enables us to take an element φ ∈ W ∩ C(K,C)K . Then, it follows from Lemma 6.2.5 that

Fξ0(φ) ∈ VK , and we have

d
(
ξ0, Fξ0(φ)

)
≤ d
(
ξ0, Fξ0(ψ)

)
+ d
(
Fξ0(ψ), Fξ0(φ)

)
< ϵ.

This completes the proof of Proposition 6.2.1.



Chapter 7

Elliptic elements and elliptic adjoint orbits

In this chapter we recall the definitions of elliptic element and elliptic (adjoint) orbit, and show some fundamental properties

of elliptic elements and elliptic orbits. The setting of Chapter 7 is as follows:

• G is a connected, real semisimple Lie group,

• gC is the complexification of the Lie algebra g.

Remark that the Lie group G satisfies the second countability axiom since it is connected.

7.1 Definitions of elliptic element and elliptic orbit

Here are the definitions of elliptic element and elliptic orbit.

Definition 7.1.1 (cf. Kobayashi [19]).

(i) An element Z ∈ g is said to be semisimple, if the linear transformation adZ : g → g, X 7→ [Z,X], is semisimple.1

(ii) The adjoint orbit AdG(Z) of G through a semisimple element Z ∈ g is called a semisimple (adjoint) orbit.

(iii) An element T ∈ g is said to be elliptic, if it is semisimple and all the eigenvalues of adT are purely imaginary.

(iv) The adjoint orbit AdG(T ) of G through an elliptic element T ∈ g is called an elliptic adjoint orbit or an elliptic orbit.

Needless to say, 0 is an elliptic element of g.

7.2 Properties of elliptic elements

Let us clarify some properties of elliptic elements.

Lemma 7.2.1. Let T be a non-zero, elliptic element of g, and let S1 := {exp tT : t ∈ R}.

(1) S1 is a 1-dimensional connected, closed Abelian subgroup of G.

(2) Suppose that the center Z(G) of G is finite. Then, S1 is compact.

Remark 7.2.2. We cannot omit the supposition “the center Z(G) of G is finite” from Lemma 7.2.1-(2). cf. Example 7.2.3.

From now on, we are going to prove Lemma 7.2.1.

Proof of Lemma 7.2.1. (1). S1 coincides with the connected Lie subgroup of G corresponding to the subalgebra spanR{T} of

g. Hence, let us only verify that S1 is a closed subset of G. The element T is non-zero elliptic, so there exist λ1, . . . , λk > 0

and an ordered real basis {X1, Y1, X2, Y2, . . . , Xk, Yk, Z2k+1, . . . , ZN} of g such that

adT (Xi) = λiYi, adT (Yi) = −λiXi (1 ≤ i ≤ k), adT (Zj) = 0 (2k + 1 ≤ j ≤ N = dimR g).

1This condition is equivalent to the condition that adZ : gC → gC is represented by a diagonal matrix relative to some complex basis of gC.
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Relative to this ordered basis, Ad(exp tT ) = exp t adT : g → g is represented by

Ad(exp tT ) =


R1 O

. . .

Rk

O IN−2k

, Ri =

(
cos(tλi) − sin(tλi)

sin(tλi) cos(tλi)

)
, 1 ≤ i ≤ k,

where IN−2k stands for the identity matrix of order (N − 2k). Accordingly

AdS1 is a compact subgroup of GL(g) = GL(N,R). 1⃝

Since the adjoint representation Ad : G → GL(g) is a continuous homomorphism and the Lie group G is connected, we

conclude that

Ad−1
(
AdS1

)
= S1Z(G) is a closed subgroup of G 2⃝

by 1⃝. Here it follows from dimR Z(G) = 0 that S1 is the identity component of the Lie group S1Z(G). Therefore S1 is

closed in S1Z(G). This and 2⃝ assure that S1 is a closed subset of G.

(2). Suppose that the center Z(G) is finite. On the one hand; S1∩Z(G) is compact by the supposition. On the other hand;

S1/(S1 ∩ Z(G)) is homeomorphic to AdS1 because S1 satisfies the second countability axiom (∵ (1)) and Ad : S1 → AdS1

is a surjective continuous homomorphism with kernel S1 ∩ Z(G). Consequently, S1 is compact due to 1⃝.

Example 7.2.3. Let g := sl(2,R) =

{(
x y

z −x

)
x, y, z ∈ R

}
and let

T :=

(
0 1

−1 0

)
.

Then T belongs to g,

{
E1 :=

(
−i 1

1 i

)
, E2 :=

(
i 1

1 −i

)
, E3 :=

(
0 1

−1 0

)}
is a complex basis of gC = sl(2,C), and adT :

gC → gC is represented by

adT =

2i 0 0

0 −2i 0

0 0 0


relative to the basis. This implies that T is a non-zero elliptic element of g. Incidentally, adT : g → g is represented by

adT =

0 −2 0

2 0 0

0 0 0


relative to the real basis

{
X1 :=

(
0 1

1 0

)
, Y1 :=

(
1 0

0 −1

)
, Z3 :=

(
0 1

−1 0

)}
of g = sl(2,R). Now, spanR{T} = so(2) holds,

and one can get a Cartan decomposition g = k⊕ p of g by setting

k := spanR{T}, p :=

{(
x y

y −x

)
x, y ∈ R

}
.

Let G be a simply connected Lie group with Lie algebra g, and let G = KP denote the Cartan decomposition of G

corresponding to g = k ⊕ p. In this setting, we have {exp tT : t ∈ R} = K, but K is not compact because K includes the

center Z(G) and Z(G) is infinite (more precisely, Z(G) = Z). This implies that we cannot omit the supposition “the center

Z(G) of G is finite” from Lemma 7.2.1-(2).

The following lemma provides us with a criterion for judging whether an X ∈ g is elliptic or not.

Lemma 7.2.4. An element X ∈ g is elliptic if and only if there exists a Cartan involution θ∗ of g so that θ∗(X) = X.

Proof. Assume that X ̸= 0 (otherwise our assertions are trivial). If X is elliptic, then Lemma 7.2.1 assures the existence

of a Cartan involution θ∗ of g satisfying θ∗(X) = X (because, for a given compact subalgebra s1 ⊂ g there always exists a

maximal compact subalgebra k of g such that s1 ⊂ k).
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Conversely, suppose that a Cartan involution θ∗ of g satisfies θ∗(X) = X, and define an inner product ⟨ · , · ⟩ on g by

⟨Y, Z⟩ := −Bg

(
Y, θ∗(Z)

)
for Y, Z ∈ g, (7.2.5)

where Bg stands for the Killing form of g. For an arbitrary adX-invariant vector subspace m ⊂ g, we take its orthogonal

complement m⊥ in g with respect to ⟨ · , · ⟩. Then, g = m⊕m⊥ holds, and moreover, the vector space m⊥ is also adX-invariant

because it follows from θ∗(X) = X that

⟨adX(Y ), Z⟩ = −⟨Y, adX(Z)⟩ for all Y, Z ∈ g. 1⃝

Consequently the linear transformation adX : g → g is semisimple; besides, all the eigenvalues of adX are purely imaginary

by 1⃝. Hence, X is elliptic.

By Lemma 7.2.4 one has

Corollary 7.2.6. All elements of a compact semisimple Lie algebra are elliptic.

Corollary 7.2.6 provides us with examples of elliptic orbits.

Example 7.2.7 (A complex Grassmann manifold). Let G := SU(n) = {g ∈ SL(n,C) | tg = g−1}, and let

T :=
√
−1

(
(n− k)Ik O

O −kIn−k

)
,

where n ≥ 2 and 1 ≤ k ≤ n− 1. Then T is an element of g, and it is elliptic because g = su(n) is a compact semisimple Lie

algebra. A direct computation yields

CG(T ) =

{(
A O

O D

)
∈ SL(n,C) A ∈ U(k), D ∈ U(n− k)

}
= S(U(k)× U(n− k)),

and the elliptic orbit AdG(T ) = G/CG(T ) = SU(n)/S(U(k) × U(n − k)) is a complex Grassmann manifold; in particular,

it is a complex projective space in case of k = 1 or k = n− 1. Incidentally, the eigenvalue of adT is ±n
√
−1 or zero.

The following lemma will be needed later (e.g. Chapter 8):

Lemma 7.2.8. Let T be an elliptic element of g, and set complex vector subspaces gλ, u± ⊂ gC as

gλ := {W ∈ gC | adT (W ) = iλW} for λ ∈ R, u+ :=
⊕

λ>0 g
λ, u− :=

⊕
λ>0 g

−λ, (7.2.9)

where i :=
√
−1 and gλ = {0} in the case where iλ is different from the eigenvalues of adT . In addition, denote by lC (resp.

l) the centralizer of T in gC (resp. g), by u the image of the linear mapping adT : g → g, and by σ the conjugation of gC

with respect to g. Then, it follows that

(1) gC =
⊕

λ∈R gλ = u+ ⊕ lC ⊕ u−, lC = g0,

(2) Ad z(gλ) ⊂ gλ for all (z, λ) ∈ CG(T )× R, where CG(T ) := {z ∈ G | Ad z(T ) = T},

(2′) Ad z(lC) ⊂ lC, Ad z(u
+) ⊂ u+, Ad z(u−) ⊂ u− for all z ∈ CG(T ),

(3) [gλ, gµ] ⊂ gλ+µ for all λ, µ ∈ R,

(3′) [lC, lC] ⊂ lC, [lC, u
+] ⊂ u+, [lC, u

−] ⊂ u−, [u+, u+] ⊂ u+, [u−, u−] ⊂ u−,

(4) BgC(g
λ, gµ) = {0} if λ+ µ ̸= 0, where BgC is the Killing form of gC,

(4′) BgC(lC, u
+) = {0}, BgC(lC, u

−) = {0}, BgC(u
+, u+) = {0}, BgC(u

−, u−) = {0},

(5) σ(gλ) = g−λ for all λ ∈ R,

(5′) σ(lC) = lC, σ(u
+) = u−, σ(u−) = u+,

(6) σ
(
Ad g(W )

)
= Ad g

(
σ(W )

)
for all (g,W ) ∈ G× gC,

(i) g = l⊕ u, T ∈ l,
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(ii) Ad z(l) ⊂ l, Ad z(u) ⊂ u for all z ∈ CG(T ),

(iii) l = {Y ∈ lC |σ(Y ) = Y }, u = {V + σ(V ) |V ∈ u+}.

Proof. (1). Since T ∈ g is elliptic and (7.2.9) we obtain gC =
⊕

λ∈R gλ. Moreover, it follows from (7.2.9) that lC = g0 and⊕
λ∈R gλ =

⊕
λ>0 g

λ ⊕ g0 ⊕
⊕

µ<0 g
µ = u+ ⊕ lC ⊕ u−.

(2). For any (z, λ) ∈ CG(T )×R and Xλ ∈ gλ, one has [T,Ad z(Xλ)] = Ad z
(
[T,Xλ]

)
= iλAd z(Xλ), and Ad z(Xλ) ∈ gλ.

Hence Ad z(gλ) ⊂ gλ holds.

(3). From the Jacobi identity and (7.2.9) we deduce (3).

(4). For anyXλ ∈ gλ, Xµ ∈ gµ we see that iλBgC(X
λ, Xµ) = BgC([T,X

λ], Xµ) = −BgC(X
λ, [T,Xµ]) = −iµBgC(X

λ, Xµ),

and therefore BgC(X
λ, Xµ) = 0 if λ ̸= −µ. This yields (4).

(5). For any Xλ ∈ gλ we obtain [T, σ(Xλ)] = σ
(
[T,Xλ]

)
= σ(iλXλ) = −iλσ(Xλ), and σ(Xλ) ∈ g−λ. Thus σ(gλ) ⊂ g−λ.

This enables us to have σ(g−λ) ⊂ g−(−λ) = gλ, and moreover g−λ = σ2(g−λ) ⊂ σ(gλ) ⊂ g−λ. Consequently we can show

σ(gλ) = g−λ.

(b′) is a consequence of lC = g0, (7.2.9) and (b), where b = 2, 3, 4, 5.

(6). Take an arbitrary g ∈ G and V,W ∈ gC. On the one hand; for any X ∈ g one has

σ
(
Ad expX(V )

)
= σ

(
exp adX(V )

)
= σ

(∑
n≥0

1

n!
(adX)nV

)
=
∑
n≥0

1

n!

(
adσ(X)

)n
σ(V )

=
∑
n≥0

1

n!
(adX)nσ(V ) = Ad expX

(
σ(V )

)
because σ(X) = X. On the other hand; since the Lie group G is connected, there exist finite elements X1, X2, . . . , Xk ∈ g

such that g = expX1 expX2 · · · expXk. Accordingly

σ
(
Ad g(W )

)
= σ

(
Ad expX1(Ad expX2(· · · (Ad expXk(W ))))

)
= Ad expX1(σ

(
Ad expX2(· · · (Ad expXk(W )))

)
)

= · · · = Ad expX1(Ad expX2(· · · (Ad expXk(σ
(
W
)
)))) = Ad g

(
σ(W )

)
.

(i). Since the linear transformation adT : g → g is semisimple, we conclude that g = ker(adT ) ⊕ adT (g) = l ⊕ u. It is

natural that [T, T ] = 0 and T ∈ g, so that T ∈ l.

(ii). For any z ∈ CG(T ), we show that [T,Ad z(Y )] = Ad z
(
[T, Y ]

)
= 0 for all Y ∈ l; hence Ad z(l) ⊂ l. It follows from

u = [T, g] and Ad z(g) ⊂ g that Ad z(u) = Ad z
(
[T, g]

)
⊂ [T,Ad z(g)] ⊂ u.

(iii). For a given W ∈ gC, W ∈ l if and only if “[T,W ] = 0 and σ(W ) = W” if and only if “W ∈ lC and σ(W ) = W .”

This implies that

l = {Y ∈ lC |σ(Y ) = Y }. 1⃝

Now, let us prove that u = {V + σ(V ) |V ∈ u+}. For any U ∈ u, there exists a X ∈ g satisfying U = [T,X] in view of

u = [T, g]. Since X ∈ g ⊂ gC and (1) there exists a unique (V +, Z, V −) ∈ u+ × g0 × u− such that X = V + + Z + V −. Here

σ(X) = X yields σ(V +) = V −, and X = V + + Z + σ(V +). Therefore

U = [T,X] = [T, V + + Z + σ(V +)] = [T, V +] + [T, σ(V +)] = [T, V +] + σ
(
[T, V +]

)
.

This, together with [T, V +] ∈ [lC, u
+] ⊂ u+, enables us to assert that

u ⊂ {V + σ(V ) |V ∈ u+}. 2⃝

From {W ∈ u+ ⊕ u− |σ(W ) =W} = {V + σ(V ) |V ∈ u+} we obtain

2 dimR{V + σ(V ) |V ∈ u+} = dimR u+ + dimR u−
(1)
= dimR gC − dimR lC

1⃝
= 2(dimR g− dimR l)

(i)
= 2dimR u.

Hence one concludes u = {V + σ(V ) |V ∈ u+} by 2⃝.

7.3 The centralizer of an elliptic element

In this section we first clarify relation between the centralizer CG(T
r) of a torus subgroup T r in G and the centralizer CG(T )

of an elliptic element T ∈ g (cf. Proposition 7.3.2), and then confirm that CG(T ) is a connected, closed subgroup of G (cf.

Lemma 7.3.3). Here we utilize the following notation:
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• CG(A) := {g ∈ G | gag−1 = a for all a ∈ A} for a subset A ⊂ G,

• CG(X) := {g ∈ G | Ad g(X) = X} for an element X ∈ g.

In order to prove Proposition 7.3.2 we need the following lemma:

Lemma 7.3.1. For an X ∈ g, we put A := {exp tX : t ∈ R} and denote by A the closure of A in G. Then,

CG(X) = CG(A) = CG(A).

Proof. We will show CG(A) ⊂ CG(A) ⊂ CG(X) ⊂ CG(A) and conclude this lemma.

(CG(A) ⊂ CG(A)). The inclusion CG(A) ⊂ CG(A) is immediate from A ⊂ A.

(CG(A) ⊂ CG(X)). Take an arbitrary g ∈ CG(A). Then, for all t ∈ R one has exp tX = g(exp tX)g−1 = exp tAd g(X).

Differentiating this equation at t = 0, we obtain X = Ad g(X). Hence g ∈ CG(X), and so CG(A) ⊂ CG(X) follows.

(CG(X) ⊂ CG(A)). Take an h ∈ CG(X). For any a ∈ A, there exists a t ∈ R satisfying a = exp tX, and it follows from

Adh(X) = X that hah−1 = h(exp tX)h−1 = exp tAdh(X) = exp tX = a. Therefore

hah−1 = a for all a ∈ A. 1⃝

The mapping A ∋ x 7→ hxh−1 ∈ G is continuous, and A is dense in A. Hence 1⃝ implies that hxh−1 = x for all x ∈ A, which

allows us to show h ∈ CG(A), and CG(X) ⊂ CG(A).

From Lemma 7.3.1 we deduce

Proposition 7.3.2. For any torus subgroup T r ⊂ G, there exists an elliptic element X ∈ g such that CG(X) = CG(T
r).

Proof. Since T r is a torus, Kronecker’s approximation theorem enables us to obtain an element X ∈ Lie(T r) such that the

closure AT
r

in T r coincides with the whole T r, where A := {exp tX : t ∈ R}. This X is an elliptic element of g by Lemma

7.2.4 and Lie(T r) being a compact subalgebra of g. Furthermore, A ⊂ AT
r ⊂ AG and T r = AT

r

yield

CG(A
G) ⊂ CG(T

r) ⊂ CG(A).

Thus CG(X) = CG(T
r) follows by Lemma 7.3.1.

Recalling that the Lie group G is connected, we demonstrate

Lemma 7.3.3. For any elliptic element T ∈ g, the centralizer CG(T ) is a connected, closed subgroup of G.

Proof. Needless to say, CG(T ) is a closed subgroup of G. So, we only prove that CG(T ) is connected. By Lemma 7.2.4

there exists a Cartan involution θ∗ of g so that θ∗(T ) = T . By use of this θ∗ we put k := {X ∈ g | θ∗(X) = X}, p := {Y ∈
g | θ∗(Y ) = −Y }. Denote by G = KP the Cartan decomposition of G corresponding to g = k⊕ p. Then, it turns out that

(i) [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k,

(ii) K is a closed subgroup of G,

(iii) T ∈ Lie(K) = k,

(iv) P is a regular submanifold of G,

(v) exp : p → P , Y 7→ expY , is a real analytic diffeomorphism,

(vi) φ : K × P → G, (k, p) 7→ kp, is a real analytic diffeomorphism.

Let us prove that CG(T ) is connected by taking three steps (S1), (S2) and (S3):

(S1) CK(T ) × (P ∩ CG(T )) is homeomorphic to CG(T ) via φ, where we equip CK(T ) × (P ∩ CG(T )) with the induced

topology from K × P ;

(S2) P ∩ CG(T ) is connected;

(S3) CK(T ) is connected.
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(S1): Since φ
(
CK(T ) × (P ∩ CG(T ))

)
⊂ CG(T ) is clear, it suffices to confirm that for a given x ∈ CG(T ), there exist

k ∈ CK(T ) and p ∈ P ∩ CG(T ) satisfying kp = φ(k, p) = x by virtue of (vi). Now, let us take any x ∈ CG(T ). In view of

T = Ad(x)T one sees that

exp tT = exp tAd(x)T = x(exp tT )x−1 (t ∈ R). 1⃝

For the x ∈ G there exists a unique (k, p) ∈ K × P such that kp = x by (vi). We want to show that both k and p belong to

CG(T ). It follows from 1⃝ that x = (exp tT )x exp(−tT ), so that

k · p = x = (exp tT )x exp(−tT ) =
(
(exp tT )k exp(−tT )

)
·
(
(exp tT )p exp(−tT )

)
for all t ∈ R. Here (i), (iii) and (v) yield (exp tT )k exp(−tT ) ∈ K and (exp tT )p exp(−tT ) ∈ P ; hence we conclude

k = (exp tT )k exp(−tT ), p = (exp tT )p exp(−tT ) 2⃝

by φ : K × P → G being injective. This gives rise to exp tT = k(exp tT )k−1 = exp tAd k(T ) and exp tT = exp tAd p(T ).

Differentiating exp tT = exp tAd k(T ) = exp tAd p(T ) at t = 0, we have T = Ad k(T ) = Ad p(T ). This assures that

k, p ∈ CG(T ), and accordingly we deduce k ∈ (K ∩ CG(T )) = CK(T ) and p ∈ P ∩ CG(T ).
(S2): Let us demonstrate that P ∩ CG(T ) is (arcwise) connected. Take any y ∈ P ∩ CG(T ) and express it as y = expY

(Y ∈ p). For any t ∈ R, one deduces y = (exp tT )y exp(−tT ) by y ∈ CG(T ) and arguments similar to those in (S1). Then,

we have

expY = y = (exp tT )y exp(−tT ) = expAd(exp tT )Y.

Therefore, it follows from (v) and Ad(exp tT )Y ∈ p that Y = Ad(exp tT )Y = exp t adT (Y ) for all t ∈ R; and hence [T, Y ] = 0

holds. By [Y, T ] = 0 we conclude that for every t ∈ R,

Ad(exp tY )T = exp t adY (T ) =
∑
n≥0

tn

n!
(adY )nT = T.

This implies that the whole 1-parameter subgroup {exp tY | t ∈ R} lies in P ∩CG(T ), where exp tY ∈ P follows from tY ∈ p

and (v). So, one can joint y = exp tY |t=1 to the unite element e = exp tY |t=0 ∈ P ∩ CG(T ) by an arc in P ∩ CG(T ).
(S3): Note that K is connected because (vi) and G is connected. Since k is compact one can decompose it as

k = kss ⊕ z(k) (direct sum of Lie algebras),

where kss (resp. z(k)) stands for the semisimple part (resp. the center) of k. This and (iii) enable us to uniquely express the

T as follows:

T = Tss + Tz

(Tss ∈ kss, Tz ∈ z(k)). Denote by Kss and Z(K)0 the connected Lie subgroups of K corresponding to kss and z(k), respectively.

From now on, let us verify that CK(T ) is connected. Since the Lie group K is connected, one sees that K = Kss ·Z(K)0; so

that

CK(T ) = CKss
(Tss) · Z(K)0 3⃝

because Ad(k)Tz = Tz for all k ∈ K, and Ad(c)X = X for all (c,X) ∈ Z(K)0 × k. Since Kss is connected and kss is compact

semisimple, Kss is compact. This implies that CKss(Tss) is connected, and it follows from 3⃝ that CK(T ) is connected.

By Lemma 7.3.3 one can conclude

Proposition 7.3.4. For any elliptic element T ∈ g, the homogeneous space G/CG(T ) is simply connected.

Proof. Let (G̃, p) be a universal covering group of the connected Lie group G. Then, the differential homomorphism p∗ : g̃ → g

is a Lie algebra isomorphism, and so we assume g̃ = g via p∗. On this assumption, T is an elliptic element of g̃ and CG̃(T ) is

connected by Lemma 7.3.3. Therefore G̃/CG̃(T ) is simply connected, and hence G/CG(T ) is also simply connected because

G̃/CG̃(T ) is homeomorphic to G/CG(T ).
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7.4 An appendix (semisimple orbits)

We investigate relation between semisimple (adjoint) orbits and reductive homogeneous spaces, where we refer to Nomizu [28,

p.41] for the definition of reductive homogeneous space. Let Z be a semisimple element of g. Since the linear transformation

adZ : g → g is semisimple, it follows that

(1) its image adZ(g) is a vector subspace of g,

(2) g = ker(adZ)⊕ adZ(g),

(3) Adx(Y ) ⊂ adZ(g) for all (x, Y ) ∈ CG(Z)× adZ(g).

Here we remark ker(adZ) = Lie(CG(Z)). Hence, the semisimple adjoint orbit G/CG(Z) is a reductive homogeneous space.

Moreover, one can assert that

Lemma 7.4.1 (Uniqueness). Let X be any element of g. If m is a vector subspace of g such that (2′) g = ker(adX) ⊕ m

and (3′) Adx(Y ) ⊂ m for all (x, Y ) ∈ CG(X)×m, then m coincides with adX(g).

Proof. adX(m) ⊂ m is a consequence of (3′). Furthermore, (2′) assures that the linear transformation adX : m → m is

injective, and hence is isomorphic. From m = adX(m) we obtain m ⊂ adX(g). Therefore m = adX(g) holds because of

adX(g) = adX
(
ker(adX)⊕m

)
⊂ adX(m) ⊂ m.

Proposition 7.4.2. For an X ∈ g the following (a) and (b) are equivalent:

(a) X is a semisimple element of g.

(b) G/CG(X) is a reductive homogeneous space.

Proof. (a)⇒(b). cf. the beginning of this section.

(b)⇒(a). Suppose that G/CG(X) is a reductive homogeneous space. By the definition of reductive homogeneous space,

there exists a vector subspace m ⊂ g such that

g = cg(X)⊕m, Ad
(
CG(X)

)
m ⊂ m. 1⃝

Then, Lemma 7.4.1 implies

m = adX(g). 2⃝

Now, let h be a Cartan subalgebra of cg(X)—this is, h is a subalgebra of cg(X) such that

(i) h is nilpotent,

(ii) the normalizer of h in cg(X) coincides with h.

We will verify that this h is also a Cartan subalgebra of g. Since (ii), X ∈ cg(X) and [h, X] = {0} ⊂ h, one obtains

X ∈ h. 3⃝

We want to show that the normalizer ng(h) of h in g also coincides with h. Let Y be any element of g with [h, Y ] ⊂ h. On the

one hand; 3⃝ yields adX(Y ) ∈ h ⊂ cg(X). On the other hand; 2⃝ yields adX(Y ) ∈ m. Thus adX(Y ) ∈ (cg(X) ∩m) = {0}
by 1⃝, and hence Y ∈ cg(X). Accordingly, (ii) implies that Y ∈ h, so that ng(h) ⊂ h, and ng(h) = h. This, together with

(i), assures that h is a Cartan subalgebra of g. So, since g is a semisimple Lie algebra, adH : g → g is semisimple for each

H ∈ h. In particular, adX : g → g is semisimple. For this reason X is a semisimple element of g.

Remark 7.4.3. It is known that AdG(X) is a closed subset of g if and only if X is a semisimple element of g. cf. Proposition

7.4.2.





Chapter 8

Complex flag manifolds

By a complex flag manifold, we mean the complex homogeneous space GC/Q of a connected complex semisimple Lie group

GC over a connected, closed complex parabolic (Lie) subgroup Q ⊂ GC. Here, a complex flag manifold is also called a Kähler

C-space or a generalized flag manifold. In this chapter we study complex flag manifolds. The setting of this chapter is as

follows:

• GC is a connected complex semisimple Lie group,

• T is a non-zero, elliptic element of gC,

• LC := CGC(T ) = {x ∈ GC | Adx(T ) = T},

• gλ := {X ∈ gC | adT (X) = iλX} for λ ∈ R,

• u+ :=
⊕

λ>0 g
λ, u− :=

⊕
λ>0 g

−λ,

• U+ := exp u+, U− := exp u−,

• Q+ := NGC(
⊕

ν≥0 g
ν) = {q ∈ GC | Ad q(

⊕
ν≥0 g

ν) ⊂
⊕

ν≥0 g
ν}, Q− := NGC(

⊕
ν≥0 g

−ν),

where gλ = {0} in the case where iλ is different from the eigenvalues of adT and exp : gC → GC is the exponential mapping.

In addition, let θ∗ be a Cartan involution of gC satisfying θ∗(T ) = T (cf. Lemma 7.2.4). Since GC is semisimple, θ∗ can be

lifted to GC. Denote its lift by θ, and set closed subgroups Gu ⊂ GC and Lu ⊂ Gu as

• Gu := {k ∈ GC | θ(k) = k},

• Lu := CGu
(T ),

respectively. We remark here that T ∈ gu, that θ is an anti-holomorphic involutive automorphism of GC, and that Gu is

connected and is a maximal compact subgroup of GC.
1 One can show

Lemma 8.0.1.

(a) LC is a connected closed complex (Lie) subgroup of GC with lC = cgC(T ) = g0,

(b) Qs is a closed complex subgroup of GC with qs = {X ∈ gC : [X,
⊕

ν≥0 g
sν ] ⊂

⊕
ν≥0 g

sν} (s = ±),

(c) Lu is a connected compact subgroup of Gu and Lu = (Gu ∩ LC),

(1) gC =
⊕

λ∈R gλ = u+ ⊕ lC ⊕ u−,
⊕

ν≥0 g
ν = lC ⊕ u+,

⊕
ν≥0 g

−ν = lC ⊕ u−,

(2) Adx(gλ) ⊂ gλ for all (x, λ) ∈ LC × R,

(2′) Adx(lC) ⊂ lC, Adx(u
+) ⊂ u+, Adx(u−) ⊂ u− for all x ∈ LC,

(2′′) LC ⊂ Q+, LC ⊂ Q−,

1Here we assert that the Lie group Gu is connected since so is GC; and that Gu is compact since it is a connected Lie group whose Lie algebra

is compact semisimple.
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(3) [gλ, gµ] ⊂ gλ+µ for all λ, µ ∈ R,

(3′) [lC, lC] ⊂ lC, [lC, u
+] ⊂ u+, [lC, u

−] ⊂ u−, [u+, u+] ⊂ u+, [u−, u−] ⊂ u−,

(3′′) both u+ and u− are complex nilpotent subalgebras of gC, both
⊕

ν≥0 g
ν and

⊕
ν≥0 g

−ν are complex subalgebras of gC,

(4) BgC(g
λ, gµ) = {0} if λ+ µ ̸= 0, where BgC is the Killing form of gC,

(4′) BgC(lC, u
+) = {0}, BgC(lC, u

−) = {0}, BgC(u
+, u+) = {0}, BgC(u

−, u−) = {0},

(5) θ∗(g
λ) = g−λ for all λ ∈ R,

(5′) θ∗(lC) = lC, θ∗(u
+) = u−, θ∗(u

−) = u+,

(5′′) θ(LC) = LC, θ(U
+) = U−, θ(U−) = U+, θ(Q+) = Q−, θ(Q−) = Q+,

(6) θ∗
(
Ad k(X)

)
= Ad k

(
θ∗(X)

)
for all (k,X) ∈ Gu × gC,

(i) gu = lu ⊕ adT (gu), T ∈ lu,

(ii) Ad z(lu) ⊂ lu, Ad z
(
adT (gu)

)
⊂ adT (gu) for all z ∈ Lu,

(iii) lu = (gu ∩ lC) = {Y ∈ lC | θ∗(Y ) = Y }, adT (gu) = {A ∈ adT (gC) | θ∗(A) = A} = {V + θ∗(V ) |V ∈ u+}.

Proof. cf. Lemmas 7.3.3 and 7.2.8.

8.1 A complex flag manifold and a fundamental root system

From the next section we will prove propositions related to complex flag manifolds by taking a root system into consideration.

In this section we set up a root system and give a lemma.

8.1.1 A root space decomposition

Take a maximal torus ihR of the compact semisimple Lie algebra gu containing the element T , and denote by △ = △(gC, hC)

the (non-zero) root system of gC relative to hC, where hC is the complex vector subspace of gC generated by ihR. Let gα be

the root subspace of gC for α ∈ △. In this setting T ∈ ihR, θ∗(hC) = hC, hC = ihR ⊕ hR, θ∗ = id on ihR, θ∗ = − id on hR, and

gC is decomposed into a direct sum of vector subspaces: gC = hC ⊕
⊕

α∈△ gα. Here hR := i(ihR).

8.1.2 Chevalley’s canonical basis

For each root α ∈ △, there exists a unique Hα ∈ hC such that α(X) = BgC(Hα, X) for all X ∈ hC. Then hR = spanR{Hα |α ∈
△}, and for every α ∈ △ there exist vectors E±α ∈ g±α satisfying

(Eα − E−α), i(Eα + E−α) ∈ gu and [Eα, E−α] =
(
2/α(Hα)

)
Hα. (8.1.1)

Here it follows that gu = ihR ⊕
⊕

α∈△ spanR{Eα − E−α} ⊕ spanR{i(Eα + E−α)}, and

θ∗(Eα) = −E−α for all α ∈ △ = △(gC, hC). (8.1.2)

Remark that gα = spanC{Eα} for all α ∈ △. Setting H∗
α :=

(
2/α(Hα)

)
Hα for α ∈ △, one has [H∗

α, Eα] = 2Eα, [H
∗
α, E−α] =

−2E−α, [Eα, E−α] = H∗
α, and thus sα := spanC{H∗

α, Eα, E−α} is a complex subalgebra of gC which is isomorphic to sl(2,C)
for each α ∈ △.

8.1.3 A Weyl group W

Define a Weyl group W of GC and an action ζ of W on the dual space (hC)
∗ by{

W := NGu(ihR)/CGu(ihR),

ζ([w])η := tAdw−1(η) for [w] ∈ W and η ∈ (hC)
∗,

(8.1.3)
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where [w] stands for the left coset wCGu
(ihR). By use of Eα in (8.1.1) we set

wα := exp(π/2)(Eα − E−α) for α ∈ △. (8.1.4)

Remark that ζ : W → GL((hC)
∗), [w] 7→ ζ([w]), is a group homomorphism and Adw(gβ) = gζ([w])β for all ([w], β) ∈ W ×△.

For every root α ∈ △, it follows from (8.1.1) and (8.1.4) that Adwα(X) = X − α(X)H∗
α for all X ∈ hC, so that wα belongs

to the normalizer NGu
(ihR) and so [wα] ∈ W; besides, ζ([wα]) is the reflection along α which leaves △ invariant.

8.1.4 A fundamental root system, Borel subalgebras, and Iwasawa decompositions

Let Π△ be a fundamental root system of △ = △(gC, hC) satisfying
2

α(−iT ) ≥ 0 for all α ∈ Π△. (8.1.5)

Relative to this Π△ we fix the set △+ of positive roots, and put △− := −△+. Needless to say, β(−iT ) ≥ 0 for all β ∈ △+.

Setting

n+ :=
⊕

β∈△+ gβ , n− :=
⊕

β∈△+ g−β , b+ := hC ⊕ n+, b− := hC ⊕ n−, (8.1.6)

one has Iwasawa decompositions gC = gu⊕ hR ⊕ n± and complex Borel subalgebras b± of gC. Moreover, gC = n+ ⊕ hC ⊕ n−,

θ∗(n
±) = n∓, θ∗(b

±) = b∓ and
lC = cgC(T ) = g0 = hC ⊕

⊕
γ∈▲ gγ ,

u+ =
⊕

λ>0 g
λ =

⊕
α∈△+−▲ gα ⊂

⊕
β∈△+ gβ = n+ ⊂ b+ ⊂

⊕
ν≥0 g

ν = lC ⊕ u+,

u− =
⊕

α∈△+−▲ g−α ⊂ n− ⊂ b− ⊂
⊕

ν≥0 g
−ν = lC ⊕ u−,

(8.1.7)

where ▲ := {γ ∈ △(gC, hC) | γ(T ) = 0}. Denote by GC = GuHRN
± the Iwasawa decompositions of GC corresponding to the

gC = gu ⊕ hR ⊕ n±, respectively.

Remark 8.1.8.

(i) lC is a complex reductive Lie algebra by (8.1.7).

(ii) A complex subalgebra of gC is said to be parabolic, if it includes a complex Borel subalgebra of gC.

(iii) (8.1.7) implies that
⊕

ν≥0 g
sν = lC ⊕ us is a complex parabolic subalgebra of gC (s = ±).

(iv) We have constructed complex parabolic subalgebras lC ⊕ u± ⊂ gC from the elliptic element T ∈ gC. Similarly one can

do so from every elliptic element of gC. This construction provides us with all complex parabolic subalgebras of gC.

(v) Let {Za}ℓa=1 ⊂ hC be the dual basis of Π△ = {αa}ℓa=1. Then, by (8.1.5) one can express −iT as −iT =
∑ℓ
a=1 λaZa

with λ1, λ2, . . . , λℓ ≥ 0. In fact; for any elliptic element T ′ ∈ gC, there exist an inner automorphism ψ of gC and

λ′1, λ
′
2, . . . , λ

′
ℓ ≥ 0 such that ψ(−iT ′) =

∑ℓ
a=1 λ

′
aZa.

(vi) ▲, △+ −▲ and △− −▲ are closed subsets of △, and furthermore, ▲ is symmetric (i.e., ▲ = −▲). Here a subset Γ ⊂ △
is said to be closed, if α, β ∈ Γ and α+ β ∈ △ imply α+ β ∈ Γ.

(vii) △+ − ▲ = {α ∈ △ |α(−iT ) > 0}, △− − ▲ = {α ∈ △ |α(−iT ) < 0}.

(viii) If α(−iT ) > 0 for all α ∈ Π△ (cf. (8.1.5)), then lC = hC, u
± = n±,

⊕
ν≥0 g

±ν = lC ⊕ u± = b± and ▲ = ∅.

In addition to Remark 8.1.8 we pay attention to

Remark 8.1.9. Let

HC := CGC(hC), B± := NGC(b
±), ▲± := ▲ ∩△±, n±1 :=

⊕
α∈▲± gα, N±

1 := exp n±1 . (8.1.10)

Then it turns out that

(i) LC = LuHRN
±
1 are Iwasawa decompositions of the reductive Lie group LC,

2There is such a system with (8.1.5)—for example, consider the lexicographic linear ordering on the dual space (hR)
∗ associated with an ordered

real basis −iT =: A1, A2, . . . , Aℓ of hR.



70 CHAPTER 8. COMPLEX FLAG MANIFOLDS

(ii) If α(−iT ) > 0 for all α ∈ Π△, then LC = HC, U
± = N± and Q± = B±.

In view of (8.1.7) we see

Lemma 8.1.11. Let s = + or −.

(1) GC = GuQ
s.

(2) Ns ⊂ LCU
s.

Proof. (1). We prove GC ⊂ GuQ
s only. For any g ∈ GC, there exists a unique (k, a, n) ∈ GuHRN

s satisfying g = kan, since

GC = GuHRN
s. From (8.1.7) and Lemma 8.0.1-(3′′) we obtain [hR,

⊕
ν≥0 g

sν ] ⊂
⊕

ν≥0 g
sν , [ns,

⊕
ν≥0 g

sν ] ⊂
⊕

ν≥0 g
sν . So,

both HR = exp hR and Ns = exp ns are subsets of NGC(
⊕

ν≥0 g
sν) = Qs, and thus an ∈ HRN

s ∈ QsQs ⊂ Qs. This yields

g = k(an) ∈ GuQ
s, and GC ⊂ GuQ

s.

(2). By a direct computation with (8.1.7) we deduce ns = (lC ∩ ns)⊕ us, and both lC ∩ ns and us are subalgebras of ns.

Therefore we conclude Ns = exp(lC ∩ ns) exp us ⊂ LCU
s since the nilpotent Lie group Ns = exp ns is simply connected.

8.2 Propositions related to complex flag manifolds

8.2.1 Some properties of U s, Qs and GC/Q
s

Let us clarify some properties of U±, Q± and GC/Q
±.

Proposition 8.2.1. The following seven items hold for each s = ± :

(i) Us is a simply connected, closed complex nilpotent subgroup of GC whose Lie algebra is us, and exp : us → Us is

biholomorphic.

(ii) Lu coincides with Gu ∩Qs.

(iii) Qs = NGC(
⊕

ν≥0 g
sν) is a connected, closed complex parabolic subgroup of GC such that Qs = LC ⋉ Us (semidirect)

and qs = (lC ⊕ us) =
⊕

ν≥0 g
sν .

(iv) The product mapping U−s ×Qs ∋ (u, q) 7→ uq ∈ GC is a biholomorphism of U−s ×Qs onto a domain in GC.
3

(v) ι : Gu/Lu → GC/Q
s, kLu 7→ kQs, is a Gu-equivariant real analytic diffeomorphism.

(vi) Qs includes the center Z(GC).

(vii) Q−s ∩Qs = LC.

Proof. By Lemma 8.0.1-(5′′), (5′), (1) and θ
(
Z(GC)

)
= Z(GC), it suffices to investigate the case of s = + only. Let us obey

the setting of Section 8.1.

(i). N+ is a closed complex nilpotent subgroup of GC whose Lie algebra is n+, and exp : n+ → N+ is biholomorphic.

Hence we conclude (i) from u+ ⊂ n+ and U+ = exp u+. cf. (8.1.7).

(ii). It is immediate from Lu = (Gu ∩ LC) and Lemma 8.0.1-(2′′) that

Lu ⊂ (Gu ∩ LC) ⊂ (Gu ∩Q+).

Let us show that the converse inclusion also holds. Take an arbitrary k ∈ Gu ∩Q+. We are going to conclude k ∈ CGu
(T ).

Since Q+ = NGC(
⊕

ν≥0 g
ν) we have Ad k

(⊕
ν≥0 g

ν
)
⊂
⊕

ν≥0 g
ν . Furthermore, θ(k) = k and Lemma 8.0.1-(5) give rise to

Ad k
(⊕

ν≥0 g
−ν) ⊂⊕ν≥0 g

−ν . Therefore it follows from cgC(T ) = g0 and u+ =
⊕

λ>0 g
λ that{

Ad k
(
cgC(T )

)
= Ad k

(⊕
ν≥0 g

ν ∩
⊕

µ≥0 g
−µ) ⊂ (⊕ν≥0 g

ν ∩
⊕

µ≥0 g
−µ) = cgC(T ),

Ad k(u+) = Ad k
(
[T, u+]

)
⊂ [Ad k(T ),

⊕
ν≥0 g

ν ] = [Ad k(T ), cgC(T )⊕ u+] ⊂ u+,

where we note that adT : u+ → u+ is linear isomorphic and Ad k(T ) belongs to the center of cgC(T ). From Ad k(gu) ⊂ gu

and Ad k
(
cgC(T )

)
⊂ cgC(T ) one obtains

Ad k
(
cgu(T )

)
= Ad k

(
gu ∩ cgC(T )

)
⊂ cgu(T ). 1⃝

3This statement will be improved later (see Corollary 8.3.16-(i)).



8.2. PROPOSITIONS RELATED TO COMPLEX FLAG MANIFOLDS 71

Here ihR ⊂ cgu
(T ) and ihR is a maximal torus of the compact Lie algebra cgu

(T ). So, by 1⃝ there exists an x ∈ CGu
(T )

satisfying

Ad(xk)(ihR) = ihR,
tAd(xk)−1(▲+) ⊂ ▲+,

where ▲ = {γ ∈ △(gC, hC) | γ(T ) = 0} and ▲+ = ▲∩△+. In view of x ∈ CGu
(T ) ⊂ LC, Ad k(u+) ⊂ u+ and Lemma 8.0.1-(2′)

we see that Ad(xk)(u+) ⊂ u+. This, combined with Ad(xk)(ihR) = ihR and u+ =
⊕

α∈△+−▲ gα, assures that

tAd(xk)−1(△+ − ▲) ⊂ △+ − ▲.

Consequently it follows that tAd(xk)−1(△+) ⊂ △+, and so Ad(xk) = id on hC. Hence we conclude k ∈ CGu(T ) by T ∈ hC

and Adx(T ) = T . For this reason we show that (Gu ∩Q+) ⊂ CGu(T ) = Lu, so that Lu = (Gu ∩Q+).

(iii). First, let us verify

LCU
+ ⊂ Q+. 2⃝

It follows from (8.1.7) and Lemma 8.0.1-(3′′) that [u+,
⊕

ν≥0 g
ν ] ⊂

⊕
ν≥0 g

ν . Accordingly Lemma 8.0.1-(2′′), together with

(i), assures that both LC and U+ are subsets of NGC(
⊕

ν≥0 g
ν) = Q+, and thus one can assert 2⃝ LCU

+ ⊂ Q+Q+ ⊂ Q+.

Next, let us demonstrate

Q+ ⊂ LCU
+. 3⃝

Take an arbitrary q ∈ Q+. By q ∈ GC = GuHRN
+ there exists a unique (k, a, n) ∈ Gu×HR ×N+ satisfying q = kan. Then

HR ⊂ LC, Lemma 8.1.11-(2) and 2⃝ tell us that

an ∈ LCLCU
+ ⊂ LCU

+ ⊂ Q+.

This and (ii) yield k = q(an)−1 ∈ (Gu ∩Q+) = Lu ⊂ LC. Accordingly, q = k(an) ∈ LCLCU
+ ⊂ LCU

+, and one has 3⃝. At

this stage we know that Q+ = LCU
+, and that Q+ is a connected, closed complex subgroup of GC due to (i) and Lemma

8.0.1-(a), (b). In addition, U+ is a normal subgroup of Q+ = LCU
+ by virtue of Lemma 8.0.1-(2′) and U+ = exp u+.

Therefore, the rest of proof is to confirm

LC ∩ U+ = {e} 4⃝

because 4⃝, Q+ = LCU
+, Lemma 8.0.1-(1) and Remark 8.1.8-(iii) assure that Lie(Q+) = (lC ⊕ u+) =

⊕
ν≥0 g

ν is parabolic.

Take an arbitrary y ∈ LC ∩ U+. By y ∈ U+ and (i) there exists a unique Y ∈ u+ satisfying y = expY . It follows from

y ∈ LC = CGC(T ) that Ad y(T ) = T . So, for any t ∈ R we have y(exp tT )y−1 = exp tT , and then y = (exp tT )y exp(−tT ).
Therefore expY = expAd(exp tT )(Y ). This, together with Y,Ad(exp tT )(Y ) ∈ u+ and (i), assures that Y = Ad(exp tT )(Y ).

Differentiating this equation at t = 0, we obtain 0 = [T, Y ]. Thus Y ∈ (cgC(T ) ∩ u+) = {0}, and y = expY = e. For this

reason 4⃝ holds.

(iv). Since (i), (iii) and gC = u− ⊕ (lC ⊕ u+) = u− ⊕ q+, we only show that

U− ∩Q+ = {e}.

Take any z ∈ U− ∩Q+. On the one hand; by (i) there exists a unique Z ∈ u− such that z = expZ. On the other hand; from

z ∈ Q+ = NGC(
⊕

ν≥0 g
ν) and T ∈ g0 we have Ad z(T )− T ∈

⊕
ν≥0 g

ν . Hence⊕
ν≥0

gν ∋ Ad z(T )− T =
∑
n≥1

1

n!
(adZ)nT ∈ u− =

⊕
λ>0

g−λ.

This implies that Ad z(T )− T = 0, so that z ∈ (LC ∩ U−) = {e} by (iii). Thus U− ∩Q+ = {e} follows.

(v). By (ii) and Lemma 8.1.11-(1), ι : Gu/Lu → GC/Q
+, kLu 7→ kQ+, is bijective and Gu-equivariant real analytic.

Hence it suffices to show that the differential (dι)ou of ι at ou is a real linear isomorphism of the tangent vector space

Tou(Gu/Lu) onto Tι(ou)(GC/Q
+). Here ou denotes the origin of Gu/Lu. From (ii) we obtain lu = (gu ∩ q+), and so the

differential (dι)ou is a linear injection. Moreover, since gu (resp. lu) is a real form of gC (resp. lC), one shows

dimRGC/Q
+ = dimR gC − dimR q+

(iii)
= dimR gC − (dimR lC + dimR u+)

= 2 dimR gu − 2 dimR lu − dimR u+ = 2dimR adT (gu)− dimR u+

= dimR adT (gu) = dimR gu − dimR lu = dimRGu/Lu,

where we remark that gu = lu ⊕ adT (gu) and dimR adT (gu) = dimR u+. Thus (dι)ou : Tou(Gu/Lu) → Tι(ou)(GC/Q
+) is

linear isomorphic.
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(vi). Z(GC) ⊂ CGC(T ) = LC ⊂ Q+ by (iii).

(vii). Lemma 8.0.1-(2′′) yields LC ⊂ Q− ∩ Q+. Now, let q ∈ Q− ∩ Q+. Then, there exist elements (l±, u±) ∈ LC × U±

satisfying l−u− = q = l+u+ due to (iii). From u− = l−1
− l+u+, (iii) and (iv), we deduce that u− = e, l−1

− l+ = e, u+ = e.

Therefore q = l+ ∈ LC, and hence Q− ∩Q+ ⊂ LC.

Remark 8.2.2. By Proposition 8.2.1-(iii), Lie(Qs) = qs is a complex parabolic subalgebra of gC whose Levi factor and

unipotent radical are lC and us, respectively (s = ±).

Propositions 7.3.4 and 8.2.1-(v) and Lemma 8.0.1-(5′′) lead to

Corollary 8.2.3.

(1) Both GC/Q
+ and GC/Q

− are simply connected, compact complex homogeneous spaces.

(2) GC/Q
+ is GC-equivariant anti-biholomorphic to GC/Q

− via the mapping GC/Q
+ ∋ gQ+ 7→ θ(g)Q− ∈ GC/Q

−.

8.2.2 A complex Grassmann manifold and an invariant Kähler metric on GC/Q
s

Now, let MN,K(C) be the set of all K-dimensional complex vector subspaces of gC, where N = dimC gC, K = dimC qs and

s = + or −. The special linear group SL(gC) = SL(N,C) acts transitively on MN,K(C), so we put

MN,K(C) = SL(gC)/P
s,

where P s := {ϕ ∈ SL(gC) |ϕ(qs) ⊂ qs}. In this way, MN,K(C) is a complex homogeneous space, which is a complex

Grassmann manifold. Since AdGC ⊂ SL(gC) and GC acts on MN,K(C) as a holomorphic transformation group,

GC ×MN,K(C) ∋ (g,m) 7→ Ad g(m) ∈MN,K(C),

one can consider the orbit AdGC(q
s) of GC through the point qs ∈ MN,K(C), and equip AdGC(q

s) ⊂ MN,K(C) with the

relative topology. Then, it follows from Qs = NGC(q
s) that

fs : GC/Q
s → AdGC(q

s), gQs 7→ Ad g(qs), (8.2.4)

is a bijective continuous mapping; moreover, it is homeomorphic by Corollary 8.2.3. Providing AdGC(q
s) with the holomor-

phic structure so that fs : GC/Q
s → AdGC(q

s) is biholomorphic, we deduce that the orbit AdGC(q
s) is a simply connected,

compact, regular complex submanifold of MN,K(C). Here we remark that the mapping GC/Q
s ∋ gQs 7→ (Ad g)P s ∈

SL(gC)/P
s is a GC-equivariant holomorphic embedding.

Remark 8.2.5. Via the Plücker embedding pü :MN,K(C) → CP (∧KCN ), spanC{v1, v2, . . . , vK} 7→ [v1 ∧ v2 ∧ · · · ∧ vK ], the

orbit AdGC(q
s) can be holomorphically embedded into the complex projective space CP (∧KCN ) of dimension N !/(K!(N −

K)!) − 1. Since pü
(
AdGC(q

s)
)
= pü

(
fs(GC/Q

s)
)
is a connected, compact, regular complex submanifold of CP (∧KCN ), it

is a projective algebraic variety by Theorem V in Chow [9, p.910].

The complex homogeneous space GC/Q
s is a Kähler manifold. Indeed,

Proposition 8.2.6. The simply connected, compact complex homogeneous space GC/Q
s = (GC/Q

s, Js) admits a Gu-

invariant Kähler metric gs with respect to Js (s = ±). Here we refer to Remark 1.2.3 for the GC-invariant complex structure

Js on GC/Q
s.4

Proof. The special unitary group SU(gu) = SU(N) acts transitively on the complex Grassmann manifold MN,K(C),5 and

the complex homogeneous spaceMN,K(C) = SL(gC)/P
s admits a unique SU(gu)-invariant Kähler metric g̃s up to a positive

multiplicative constant. Accordingly one can induce a Gu-invariant Kähler metric gs on GC/Q
s by use of the GC-equivariant

holomorphic embedding GC/Q
s ∋ gQs 7→ (Ad g)P s ∈ SL(gC)/P

s, where we remark that AdGu ⊂ SU(gu).

4Remark. Js is GC-invariant, but, in contrast, gs is Gu-invariant.
5Remark. MN,K(C) may be represented as SU(N)/S(U(K)× U(N −K)).
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8.2.3 A complex projective space, an irreducible representation and GC/Q
+

Our goal in this subsection is to prove that GC/Q
+ can be holomorphically embedded into a complex projective space CP (V).

We will construct arguments by obeying the setting of Section 8.1, in particular, Subsection 8.1.4.

Let ĜC be the quotient group of the Lie group GC modulo the center Z(GC), and set Q̂+ := NĜC
(q+), where we assume

gC = ĝC.

First, let us confirm

Lemma 8.2.7. The mapping GC/Q
+ ∋ gQ+ 7→ π(g)Q̂+ ∈ ĜC/Q̂

+ is a GC-equivariant biholomorphism. Here π is the

projection of GC onto ĜC = GC/Z(GC).

Proof. π : GC → ĜC, g 7→ gZ(GC), is a surjective holomorphic homomorphism. So, we conclude this lemma from Proposition

8.2.1-(vi).

Next, let us construct a complex projective space from an irreducible representation. Denote by {ϖa}ℓa=1 the set of the

fundamental dominant weights relative to Π△ = {αa}ℓa=1. For −iT =
∑ℓ
a=1 λaZa (λa ≥ 0) one can separate the set {λa}ℓa=1

into two pieces {λaj}rj=1 and {λak}ℓk=r+1 so that λaj > 0 for all 1 ≤ j ≤ r and λak = 0 for all r + 1 ≤ k ≤ ℓ. Namely,

−iT = λ1Z1 + λ2Z2 + · · ·+ λℓZℓ with λ1, λ2, . . . , λℓ ≥ 0

= λa1Za1 + λa2Za2 + · · ·+ λarZar with λa1 , λa2 , . . . , λar > 0.

Remark here that Π△ ∩▲ = {αak}ℓk=r+1. Taking that into account, we define a dominant integral form ϖ on hC as follows:

ϖ := ϖa1 +ϖa2 + · · ·+ϖar . (8.2.8)

Here ϖ ̸= 0 comes from T ̸= 0. The Cartan-Weyl theorem enables us to obtain an irreducible representation ρ∗ of the

complex Lie algebra gC on a finite-dimensional complex vector space V which has the above ϖ as its highest weight. Since the

complex Lie group ĜC is isomorphic to the adjoint group of gC, one can take a holomorphic homomorphism ρ : ĜC → GL(V),

ĝ 7→ ρ(ĝ), whose differential homomorphism accords with ρ∗ : gC → gl(V). Now, let u0 ∈ V be a maximal vector of weight

ϖ, let [v] := spanC{v} for 0 ̸= v ∈ V, and let CP (V) = {[v] : 0 ̸= v ∈ V} denote the complex projective space of dimension

d− 1, where d := dimC V. The special linear group SL(V) = SL(d,C) acts transitively on CP (V), so we put

CP (V) = SL(V)/P,

where P := {φ ∈ SL(V) : [φ(u0)] = [u0]}. In this setting, we verify

Lemma 8.2.9. The mapping ĜC/Q̂
+ ∋ ĝQ̂+ 7→ ρ(ĝ)P ∈ SL(V)/P is a ĜC-equivariant holomorphic embedding.

Proof. Remark that ρ(ĜC) ⊂ SL(V) follows from ρ(ĜC) ⊂ GL(V) and ĜC being connected semisimple.

In this proof we temporarily denote by f̂ the mapping ĜC/Q̂
+ ∋ ĝQ̂+ 7→ ρ(ĝ)P ∈ SL(V)/P .

(well-defined). It is necessary to confirm that the f̂ is well-defined. For this reason, we aim to demonstrate ρ(Q̂+) ⊂ P .

From (8.1.7) and ▲+ = ▲ ∩△+ one has

q+ = lC ⊕ u+ = hC ⊕ n+ ⊕
⊕

γ∈▲+ g−γ .

So, for a given X ∈ Lie(Q̂+) = q+ there exists a unique (Xh, Xn, Xl) ∈ hC × n+ ×
⊕

γ∈▲+ g−γ such that

X = Xh +Xn +Xl.

By a direct computation we obtain

ρ∗(Xh)u0 = ϖ(Xh)u0 ∈ spanC{u0}, ρ∗(Xn)u0 = 0 ∈ spanC{u0} 1⃝

because u0 is a maximal vector of weight ϖ and Xh ∈ hC, Xn ∈ n+. We want to show that

ρ∗(Xl)u0 ∈ spanC{u0}, 2⃝

which is a consequence of that ρ∗(E−γ)u0 = 0 for all γ ∈ ▲+. Therefore, let us show that ρ∗(E−γ)u0 = 0 for all γ ∈ ▲+.

Take an arbitrary γ ∈ ▲+. From Π△ ∩ ▲ = {αak}ℓk=r+1 we deduce ▲+ = spanZ≥0
{αak}ℓk=r+1. This, together with (8.2.8)

and γ ∈ ▲+, gives

ϖ(H∗
γ ) = 0. (a)
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We are going to construct a complex vector subspace of V from the sγ = spanC{H∗
γ , Eγ , E−γ}. Set

un := ρ∗(E−γ)
nu0 (b)

for n ∈ N. Since dimC V < ∞ and vectors u0, u1, u2, . . . are linearly independent6, there exists a unique m ∈ N such that

up ̸= 0 (0 ≤ p ≤ m− 1) and um = um+1 = · · · = 0. Here, it follows from (a) and (b) that
ρ∗(H

∗
γ )up = −2pup for all 0 ≤ p ≤ m− 1,

ρ∗(Eγ)u0 = 0, ρ∗(Eγ)uq = −q(q − 1)uq−1 for all 1 ≤ q ≤ m− 1,

ρ∗(E−γ)um−1 = 0, ρ∗(E−γ)uj = uj+1 for all 0 ≤ j ≤ m− 2.

Then W := spanC{up}m−1
p=0 is an m-dimensional, ρ∗(sγ)-invariant complex vector subspace of V, and moreover, 0 = um =

ρ∗(E−γ)
mu0 and (b) yield 0 = ρ∗(Eγ)

(
ρ∗(E−γ)

mu0
)
= −m(m − 1)um−1; therefore m = 1. This implies that u1 = 0, and

thus ρ∗(E−γ)u0 = u1 = 0. Accordingly we conclude 2⃝. By virtue of 1⃝, 2⃝, one can assert that

ρ∗(X)u0 ∈ spanC{u0} for all X ∈ Lie(Q̂+) = q+. 3⃝

Therefore, for every X ∈ Lie(Q̂+) there exists a w ∈ C satisfying ρ∗(X)u0 = wu0, and then ρ(expX)u0 = ewu0 ∈ [u0]. This

assures ρ(Q̂+) ⊂ P because the Lie group Q̂+ is connected. From ρ(Q̂+) ⊂ P we conclude that f̂ : ĜC/Q̂
+ → SL(V)/P ,

ĝQ̂+ 7→ ρ(ĝ)P , is well-defined.

(injective). Our aim is to prove that f̂ is injective. In order to accomplish the aim, we first prepare for a moment. Fix

any α ∈ △+ − ▲. On the one hand; one has ϖ(H∗
α) > 0 since (8.2.8). On the other hand; it follows from H∗

α = [Eα, E−α]

and ρ∗(Eα)u0 = 0 that

ϖ(H∗
α)u0 = ρ∗([Eα, E−α])u0 = ρ∗(Eα)

(
ρ∗(E−α)u0

)
− ρ∗(E−α)

(
ρ∗(Eα)u0

)
= ρ∗(Eα)

(
ρ∗(E−α)u0

)
.

Consequently we can assert that

(i) ρ∗(E−α)u0 ̸= 0, and (ii) ϖ − α is a weight of the representation ρ∗ (relative to hC) for each α ∈ △+ − ▲. 4⃝

Next, let us confirm that

Y ∈ gC and ρ∗(Y )u0 ∈ spanC{u0} imply Y ∈ q+. 5⃝

For Y ∈ gC suppose that ρ∗(Y )u0 ∈ spanC{u0}. By (8.1.7) and gC = q+ ⊕ u− we have gC = q+ ⊕
⊕

α∈△+−▲ g−α. So, there

exist a Yq ∈ q+ and w−α ∈ C such that Y = Yq +
∑
α∈△+−▲ w−αE−α. Then the supposition, 3⃝ and 4⃝ yield

Vϖ = spanC{u0} ∋ ρ∗(Y )u0 = ρ∗(Yq)u0 +
∑
α∈△+−▲ w−αρ∗(E−α)u0 ∈ Vϖ ⊕

⊕
α∈△+−▲ Vϖ−α,

and therefore w−α = 0 for all α ∈ △+ − ▲, where we denote by Vϖ−α the wight subspace of V for ϖ − α. Consequently it

turns out that Y = Yq ∈ q+, and so 5⃝ holds.

Now, we are in a position to accomplish the aim. For the aim, it is enough to prove that

ρ−1(P ) ⊂ Q̂+. 6⃝

For ĝ ∈ ĜC we suppose ρ(ĝ) ∈ P . Then [ρ(ĝ)u0] = [u0] holds, and for any X ∈ q+ one has

ρ∗
(
Ad ĝ(X)

)
u0 = ρ(ĝ)ρ∗(X)ρ(ĝ)−1u0 ∈ spanC{u0}

by 3⃝. Accordingly it follows from 5⃝ that Ad ĝ(X) ∈ q+ for all X ∈ q+. Thus ĝ ∈ NĜC
(q+) = Q̂+, and one concludes 6⃝.

This 6⃝ implies that f̂ : ĜC/Q̂
+ → SL(V)/P , ĝQ̂+ 7→ ρ(ĝ)P , is injective.

(holomorphic). Since ρ : ĜC → SL(V), ĝ 7→ ρ(ĝ), is a holomorphic homomorphism, it is now obvious that f̂ : ĜC/Q̂
+ →

SL(V)/P , ĝQ̂+ 7→ ρ(ĝ)P , is a ĜC-equivariant holomorphic mapping. Moreover, we have already shown that f̂ is injective,

which also assures that its differential (df̂)p is injective at each point p ∈ ĜC/Q̂
+. Hence, the mapping f̂ is a ĜC-equivariant

holomorphic embedding.

By Lemmas 8.2.7 and 8.2.9 one establishes

Theorem 8.2.10. GC/Q
+ is able to be GC-equivariant holomorphically embedded into the complex projective space CP (V) =

SL(V)/P , where V is a representation space of the irreducible representation of gC with highest weight ϖ in (8.2.8).

6(because u0, u1, u2, . . . are eigenvectors of ρ∗(H∗
γ ) for distinct eigenvalues)
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8.3 Bruhat decompositions

In this section we generalize Bruhat decompositions of GC by following Kostant’s method [21, 22]. The setting of Section

8.1 remains valid in this section. Recalling that W = NGu
(ihR)/CGu

(ihR) and ▲ = {γ ∈ △ | γ(T ) = 0}, we set{
Φ[w] := {β ∈ △+ | ζ([w])−1β ∈ △−} for [w] ∈ W,

W1 := {[σ] ∈ W |Φ[σ] ⊂ △+ − ▲}, W1 := NLu(ihR)/CLu(ihR).
(8.3.1)

Remark here that W1 is a Weyl group of LC. Hereafter, we assume W1 to be a subgroup of the Weyl group W via the mapping

NLu
(ihR)/CLu

(ihR) ∋ τCLu
(ihR) 7→ τCGu

(ihR) ∈ NGu
(ihR)/CGu

(ihR). In addition, we utilize the following notation:

• [κ] : the unique element of W such that ζ([κ])(△−) = △+ and ζ([κ]) = ζ([κ])−1,

• n[σ] : the cardinal number of the set Φ[σ] for [σ] ∈ W1.

8.3.1 A proposition on the root system

We will verify Theorem 8.3.7 in the next subsection. For this reason we need

Proposition 8.3.2 (cf. Kostant [21, pp.359–361], [22, p.121]).

(i) Φ[w] is a closed subset of △ for any [w] ∈ W (i.e., β1, β2 ∈ Φ[w] and β1 + β2 ∈ △ imply β1 + β2 ∈ Φ[w]).

(ii) △+ = Φ[w] ⨿ Φ[wκ] (disjoint union) for all [w] ∈ W.

(iii) If [σ] ∈ W1, then ζ([σ])−1(▲+) ⊂ △+ and ζ([σ])−1(▲−) ⊂ △−.

(iv) For each [w] ∈ W, there exists a unique ([τ ], [σ]) ∈ W1 ×W1 such that [w] = [τσ].

(v) For a given [σ] ∈ W1, the following items (v.1) and (v.2) hold:

(v.1) n[σ] = 0 if and only if [e] = [σ].

(v.2) n[σ] = 1 if and only if there exists a β ∈ Π△ − ▲ satisfying [wβ ] = [σ].

Here ▲± = ▲ ∩△±, e is the unit element of GC, and we refer to (8.1.4) for wβ.

The main purpose of this subsection is to prove Proposition 8.3.2. First of all, we are going to prepare three lemmas for

proving it. The first lemma is

Lemma 8.3.3.

(1) Φ[w] is a closed subset of △ for any [w] ∈ W.

(2) △+ = Φ[w] ⨿ Φ[wκ] for all [w] ∈ W.

(3) If [σ] ∈ W1, then ζ([σ])−1(▲+) ⊂ △+ and ζ([σ])−1(▲−) ⊂ △−.

Proof. We only prove (3), since (1) and (2) are clear from the definition (8.3.1) of Φ[w] and ζ([κ])(△−) = △+.

(3). For each γ ∈ ▲+, either the case ζ([σ])−1γ ∈ △− or ζ([σ])−1γ ∈ △+ has to occur. If ζ([σ])−1γ ∈ △−, then it follows

from (8.3.1) and [σ] ∈ W1 that γ ∈ Φ[σ] ⊂ △+ − ▲, which contradicts γ ∈ ▲+. Thus the remaining case ζ([σ])−1γ ∈ △+

occurs, and ζ([σ])−1(▲+) ⊂ △+ holds.

The ζ([σ])−1(▲−) ⊂ △− comes from ζ([σ])−1(▲+) ⊂ △+, △− = −△+ and ▲− = −▲+.

The second lemma is

Lemma 8.3.4. Set △[w] := Φ[w] ⨿ (−Φ[wκ]) for [w] ∈ W. Then

(1) △[w] is a closed subset of △ for any [w] ∈ W.

(2) △ = △[w] ⨿ (−△[w]) for all [w] ∈ W.

(3) ζ([w])−1(△[w]) = △− for all [w] ∈ W.
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Proof. (1). For α, β ∈ △[w] we suppose that α+ β ∈ △. If α, β ∈ Φ[w] (resp. −Φ[wκ]), then α+ β ∈ Φ[w] (resp. −Φ[wκ]) due

to Lemma 8.3.3-(1). Now, let us investigate the case where α ∈ Φ[w] and β ∈ −Φ[wκ]. Then one has ζ([w])−1(α + β) ∈ △−

in case of α+ β ∈ △+, and ζ([wκ])−1(α+ β) ∈ △+ in case of α+ β ∈ △−. Accordingly α+ β ∈ Φ[w] in case of α+ β ∈ △+,

and α+ β ∈ −Φ[wκ] in case of α+ β ∈ △−. In any cases we obtain α+ β ∈
(
Φ[w] ∪ (−Φ[wκ])

)
⊂ △[w]. Consequently △[w] is

a closed subset of △.

(2) follows from △ = △+ ⨿ (−△+), Lemma 8.3.3-(2) and △[w] = Φ[w] ⨿ (−Φ[wκ]).

(3). On the one hand; by a direct computation with (8.3.1) we deduce ζ([w])−1(△[w]) ⊂ △−. On the other hand; the

above (2) implies that the cardinal number of △− is equal to that of △[w], which is equal to that of ζ([w])−1(△[w]). Therefore

one concludes ζ([w])−1(△[w]) = △−.

Lemmas 8.3.3 and 8.3.4 lead to

Corollary 8.3.5. Φ[w1] = Φ[w2] with [w1], [w2] ∈ W implies [w1] = [w2].

Proof. Suppose that Φ[w1] = Φ[w2] for [w1], [w2] ∈ W. From Φ[w1] = Φ[w2] and Lemma 8.3.3-(2) we see that Φ[w1κ] = Φ[w2κ].

Hence it turns out that △[w1] =
(
Φ[w1] ⨿ (−Φ[w1κ])

)
= △[w2], so that

ζ([w−1
2 w1])(△−) = ζ([w2])

−1
(
ζ([w1])(△−)

)
= ζ([w2])

−1(△[w1]) = ζ([w2])
−1(△[w2]) = △−

by Lemma 8.3.4-(3). This and (8.1.3) assure that Ad(w−1
2 w1) = id on hC, and hence [w1] = [w2].

The last lemma is

Lemma 8.3.6. Set Ψ[w] :=
(
ζ([w])(△−)

)
∩ ▲+, Ψc[w] := ▲+ −Ψ[w], and ▲[w] := Ψ[w] ⨿ (−Ψc[w]) for [w] ∈ W. Then

(1) ▲+ = Ψ[w] ⨿Ψc[w] for all [w] ∈ W.

(2) Ψc[w] =
(
ζ([w])(△+)

)
∩ ▲+ for all [w] ∈ W.

(3) Both Ψ[w] and Ψc[w] are closed subsets of ▲ for each [w] ∈ W.

(4) ▲[w] is a closed subset of ▲ for any [w] ∈ W.

(5) ▲ = ▲[w] ⨿ (−▲[w]) for all [w] ∈ W.

(6) For a given [w] ∈ W, there exists a unique [τ ] ∈ W1 such that ζ([τ ])−1(▲[w]) = ▲−.

Proof. (1) is obvious.

(2). Since Ψc[w] = ▲+ −Ψ[w] and Ψ[w] =
(
ζ([w])(△−)

)
∩ ▲+, the following six conditions (i) through (vi) are equivalent

for γ ∈ △:

(i) γ ∈ Ψc[w], (ii) γ ∈ ▲+ and γ ̸∈ Ψ[w], (iii) γ ∈ ▲+ and γ ̸∈ ζ([w])(△−),

(iv) γ ∈ ▲+ and ζ([w])−1γ ̸∈ △−, (v) γ ∈ ▲+ and ζ([w])−1γ ∈ △+, (vi) γ ∈
(
ζ([w])(△+)

)
∩ ▲+.

Hence Ψc[w] =
(
ζ([w])(△+)

)
∩ ▲+ follows.

(3). By Ψ[w] =
(
ζ([w])(△−)

)
∩ ▲+ and Ψc[w] =

(
ζ([w])(△+)

)
∩ ▲+ we conclude that Ψ[w] and Ψc[w] are closed subsets of

▲, respectively.
(4). We conclude (4) by arguments similar to those in the proof of Lemma 8.3.4-(1) together with the above (3), (2).

(5) follows from ▲ = ▲+ ⨿ (−▲+), the above (1) and ▲[w] = Ψ[w] ⨿ (−Ψc[w]).

(6) is a consequence of the above (4), (5).

Now, let us start with proving the proposition.

Proof of Proposition 8.3.2. By virtue of Lemma 8.3.3 it suffices to confirm the items (iv) and (v) only.

(iv). First, let us verify the uniqueness of ([τ ], [σ]) ∈ W1 ×W1.

(Uniqueness). For [σ1], [σ2] ∈ W1 we suppose that [τ1] := [σ1σ
−1
2 ] belongs to W1. We are going to prove [σ1] = [σ2]. In

terms of [τ1] ∈ W1, [lC, u
−] ⊂ u− and u− =

⊕
α∈△−−▲ gα one has

ζ([τ1])
(
△− − ▲) ⊂ △− − ▲. 1⃝

Let us show that

Φ[σ−1
2 ] ⊂ Φ[σ−1

1 ]. 2⃝
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For any β ∈ Φ[σ−1
2 ] we obtain β ∈ △+, ζ([σ2])β ∈ △− from (8.3.1). Hence it turns out that

ζ([σ1])β = ζ([τ1σ2])β ∈ ζ([τ1])(△−).

So, either the case ζ([σ1])β ∈ ζ([τ1])(▲−) or ζ([σ1])β ∈ ζ([τ1])(△− − ▲) has to occur. If ζ([σ1])β ∈ ζ([τ1])(▲−), then we

conclude β ∈ ζ([σ−1
1 τ1])(▲−) = ζ([σ2])

−1(▲−) ⊂ △− by Lemma 8.3.3-(3) and [σ2] ∈ W1. However, this β ∈ △− contradicts

β ∈ △+. For this reason, the remaining case ζ([σ1])β ∈ ζ([τ1])(△− − ▲) occurs. Accordingly 1⃝ implies ζ([σ1])β ∈ △−, and

moreover (8.3.1) yields β ∈ Φ[σ−1
1 ]. Hence 2⃝ Φ[σ−1

2 ] ⊂ Φ[σ−1
1 ] holds. We have deduced Φ[σ−1

2 ] ⊂ Φ[σ−1
1 ] from [σ1σ

−1
2 ] ∈ W1.

Thus one can show Φ[σ−1
1 ] ⊂ Φ[σ−1

2 ] from [σ2σ
−1
1 ] = [σ1σ

−1
2 ]−1 ∈ W1. Consequently Φ[σ−1

1 ] = Φ[σ−1
2 ]. This and Corollary

8.3.5 allow us to have [σ1] = [σ2].

Next, we are going to confirm the existence of ([τ ], [σ]) ∈ W1 ×W1.

(Existence). Take an arbitrary [w] ∈ W. By Lemma 8.3.6-(6) there exists a unique [τ ] ∈ W1 such that

ζ([τ ])−1(▲[w]) = ▲−.

Then, it is enough to confirm that [σ] := [τ−1w] belongs to W1. In order to show [σ] ∈ W1, we first prove(
ζ([σ])(△−)

)
∩ ▲+ = ∅. 3⃝

Let us use proof by contradiction. Suppose that there exists a γ ∈
(
ζ([σ])(△−)

)
∩▲+. Then γ ∈ ▲+ and ζ([τ ])γ ∈ ζ([w])(△−).

From γ ∈ ▲+ and [τ ] ∈ W1 we deduce ζ([τ ])γ ∈ ▲. So, ζ([τ ])γ ∈ ▲+ or ζ([τ ])γ ∈ ▲−.

1. If ζ([τ ])γ ∈ ▲+, then ζ([τ ])γ ∈
(
ζ([w])(△−)

)
∩ ▲+ = Ψ[w] ⊂ ▲[w] = ζ([τ ])(▲−).

2. If ζ([τ ])γ ∈ ▲−, then Lemma 8.3.6-(2) tells us that ζ([τ ])γ ∈
(
ζ([w])(△−)

)
∩ ▲− = −Ψc[w] ⊂ ▲[w] = ζ([τ ])(▲−).

These contradict γ ∈ ▲+. Hence 3⃝ holds. Now, let us show [σ] ∈ W1. We need to demonstrate that Φ[σ] ⊂ △+ − ▲. For

any α ∈ Φ[σ], it follows from (8.3.1) that α ∈ △+ and α ∈ ζ([σ])(△−). This and 3⃝ give α ∈ △+ − ▲, and Φ[σ] ⊂ △+ − ▲.
For this reason we assert [σ] ∈ W1.

From now on, we are going to prove (v).

(v.1). In view of (8.3.1) we see that n[σ] = 0 if and only if ζ([σ])(△+) = △+ if and only if Adσ = id on hC if and only if

[σ] = [e]. Hence one has (v.1).

(v.2). Suppose that a β ∈ Π△ −▲ satisfies [wβ ] = [σ]. Since β ∈ Π△ one knows that {β} = {α ∈ △+ | ζ([wβ ])α ∈ △−} =

Φ[w−1
β ] = Φ[wβ ] = Φ[σ]. Therefore n[σ] = 1.

Conversely, suppose that n[σ] = 1. By Lemma 8.3.3-(2), Π△ ⊂ △+ = Φ[σ] ⨿Φ[σκ]. If Π△ ⊂ Φ[σκ], then we conclude that

Φ[σκ] = △+ (because Φ[σκ] is a closed subset of △), which contradicts Φ[σ] ̸= ∅. Therefore there exists a γ ∈ Π△ such that

γ ̸∈ Φ[σκ]. Then we deduce γ ∈ Φ[σ], and hence the supposition assures

Φ[σ] = {γ}.

Here γ ∈ Π△ − ▲ follows from Φ[σ] ⊂ △+ − ▲. Since γ ∈ Π△ one knows that Φ[wγ ] = {γ} = Φ[σ]. This and Corollary 8.3.5

provide [wγ ] = [σ]. Consequently (v.2) holds.

8.3.2 The generalized Bruhat decomposition by Kostant

Proposition 8.3.2 enables us to establish the following theorem which is a result of Kostant [22, p.123, Proposition 6.1] with

some slight modifications:

Theorem 8.3.7. Let r = dimC u+.

(1) For each [σ] ∈ W1 we set

Γ[σ] := {γ ∈ Φ[σ−1κ] | ζ([σ])γ ∈ △+ − ▲}, u+[σ] :=
⊕

γ∈Γ[σ]
gζ([σ])γ , U+

[σ] := exp u+[σ]. (8.3.8)

Then, U+
[σ] is a simply connected closed complex nilpotent subgroup of U+ and it is biholomorphic to the (r − n[σ])-

dimensional complex Euclidean space u+[σ] (⊂ u+) via the exponential mapping exp : u+[σ] → U+
[σ]. Furthermore,

N+σ−1Q− = σ−1U+
[σ]Q

−.
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(2) For a given [σ] ∈ W1, the following items (2.i) and (2.ii) hold:

(2.i) dimC U
+
[σ] = r = dimC U

+ if and only if [e] = [σ].

(2.ii) dimC U
+
[σ] = r − 1 if and only if there exists a β ∈ Π△ − ▲ satisfying [wβ ] = [σ].

(3) GC =
⨿

[σ]∈W1 N+σ−1Q− =
⨿

[σ]∈W1 σ−1U+
[σ]Q

−.

Proof. (1). Since both Φ[σ−1κ] and △+ − ▲ are closed subsets of △, it follows from (8.3.8) that Γ[σ] is a closed subset of

△. Therefore we see that u+[σ] =
⊕

γ∈Γ[σ]
gζ([σ])γ is a complex subalgebra of the nilpotent Lie algebra u+ =

⊕
α∈△+−▲ gα.

Consequently U+
[σ] = exp u+[σ] is a simply connected closed complex nilpotent subgroup of U+ = exp u+ and is biholomorphic

to u+[σ] via exp, and dimC u+[σ] accords with the cardinal number |Γ[σ]|. Moreover,

ζ([σ])(Γ[σ])
(8.3.8)
= {ζ([σ])γ ∈ △+ − ▲ | γ ∈ Φ[σ−1κ]}

(8.3.1)
= {ζ([σ])γ ∈ △+ − ▲ | γ ∈ △+, ζ([σ−1κ])−1γ ∈ △−}

= {ζ([σ])γ ∈ △+ − ▲ | γ ∈ △+} (∵ ζ([κ])(△−) = △+, △+ − ▲ ⊂ △+)

= {ζ([σ])γ ∈ △+ − ▲ | ζ([σ])−1
(
ζ([σ])γ

)
∈ △+} (8.3.1)

= (△+ − ▲)− Φ[σ].

This implies that the number |Γ[σ]| is equal to r − n[σ] because of |△+ − ▲| = dimC u+ = r and Φ[σ] ⊂ △+ − ▲. Hence one

has dimC u+[σ] = r−n[σ]. Now, the rest of proof is to confirm that N+σ−1Q− = σ−1U+
[σ]Q

−. Proposition 8.3.2-(i), (ii) implies

that N+ (8.1.6)
= exp

(⊕
α∈△+ gα

)
= exp

(⊕
γ∈Φ[σ−1κ]

gγ
)
exp
(⊕

β∈Φ[σ−1]
gβ
)
, so that

N+σ−1Q− = σ−1 exp
(⊕

γ∈Φ[σ−1κ]
gζ([σ])γ

)
exp
(⊕

β∈Φ[σ−1]
gζ([σ])β

)
Q−

= σ−1 exp
(⊕

γ∈Φ[σ−1κ]
gζ([σ])γ

)
Q−

= σ−1 exp
(⊕

γ1∈Γ[σ]
gζ([σ])γ1

)
exp
(⊕

γ2∈{γ∈Φ[σ−1κ] | ζ([σ])γ∈▲+} gζ([σ])γ2
)
Q−

= σ−1 exp
(⊕

γ1∈Γ[σ]
gζ([σ])γ1

)
Q− (8.3.8)

= σ−1U+
[σ]Q

−,

(8.3.9)

where we note that
⊕

β∈Φ[σ−1]
gζ([σ])β ⊂ n− ⊂ q− and Φ[σ−1κ] = Γ[σ] ⨿ {γ ∈ Φ[σ−1κ] | ζ([σ])γ ∈ ▲+}.

(2) is immediate from (1) and Proposition 8.3.2-(v).

(3). By (1), it is enough to prove GC =
⨿

[σ]∈W1 N+σ−1Q−. In terms of B+ = NGC(b
+) we fix a Bruhat decomposition

GC =
⨿

[w]∈W N+w−1B+. Then, ζ([κ])(△−) = △+ yields GC = κ−1GC =
⨿

[w]∈W N−(wκ)−1B+ =
⨿

[w]∈W N−w−1B+,

namely

GC =
⨿

[w]∈W

N−w−1B+. (8.3.10)

In a similar way, one can obtain

LC =
⨿

[τ ]∈W1

N−
1 τ

−1B+
1

from (8.1.10) and B+
1 := NLC(hC ⊕ n+1 ). This, together with Q

+ = LCU
+ and B+ = B+

1 U
+, assures that for any [σ] ∈ W1,

N−σ−1Q+ = N−σ−1LCU
+ =

∪
[τ ]∈W1

N−σ−1(N−
1 τ

−1B+
1 )U+ =

∪
[τ ]∈W1

N−σ−1N−
1 τ

−1B+ =
⨿

[τ ]∈W1

N−(τσ)−1B+, (8.3.11)

where σ−1N−
1 ⊂ N−σ−1 follows from [σ] ∈ W1 and Proposition 8.3.2-(iii). Consequently, (8.3.10) and Proposition 8.3.2-(iv)

allow us to assert that

GC =
⨿

[σ]∈W1

N−σ−1Q+.

Thus GC =
⨿

[σ]∈W1 N+σ−1Q− because of θ(GC) = GC, θ(N
−) = N+, θ(σ) = σ and θ(Q+) = Q−.

Remark 8.3.12.

(1) In the proof of Theorem 8.3.7-(3) we gave Bruhat decompositionsGC =
⨿

[w]∈W N+w−1B+ andGC =
⨿

[w]∈W N−w−1B+,

and generalized Bruhat decompositions GC =
⨿

[σ]∈W1 N−σ−1Q+ and GC =
⨿

[σ]∈W1 N+σ−1Q−.

(2) Theorem 8.3.7-(1) and Proposition 8.2.1-(iii), (iv) imply that N+σ−1Q− = σ−1U+
[σ]Q

− is a connected regular complex

submanifold of GC whose dimension is dimC U
+ − n[σ] + dimCQ

− (= dimCGC − n[σ]) for each [σ] ∈ W1.

Taking the proof of Theorem 8.3.7 into consideration, we prove
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Lemma 8.3.13. For every [σ] ∈ W1, the following three items hold:

(1) N+σ−1Q− =
⨿

[τ ]∈W1
N+(τσ)−1B−, where B− = NGC(b

−).

(2) ζ([σ])−1(▲+) = {γ ∈ Φ[σ−1κ] | ζ([σ])γ ∈ ▲+}.

(3) dimCN
+σ−1Q− ≥ dimCN

+(τσ)−1B− for all [τ ] ∈ W1, and dimCN
+σ−1Q− = dimCN

+σ−1B−.

Proof. (1) comes from (8.3.11), θ(N−) = N+, θ(Q+) = Q−, θ(B+) = B− and θ(w) = w (w ∈ NGu(ihR)).

(2). On the one hand; by Proposition 8.3.2-(iii) and [σ] ∈ W1 we have ζ([σ])−1(▲+) ⊂ △+. Besides, a direct computation

yields ζ([σ−1κ])−1
(
ζ([σ])−1(▲+)

)
⊂ ζ([κ])−1(▲+) ⊂ △−. Hence we obtain ζ([σ])−1(▲+) ⊂ Φ[σ−1κ] from (8.3.1). Therefore

ζ([σ])−1(▲+) ⊂ {γ ∈ Φ[σ−1κ] | ζ([σ])γ ∈ ▲+}.

On the other hand; since ζ([σ]) : △ → △ is bijective, the cardinal number
∣∣{γ ∈ Φ[σ−1κ] | ζ([σ])γ ∈ ▲+}

∣∣ is less than or equal

to |▲+|. Consequently (2) follows from |▲+| =
∣∣ζ([σ])−1(▲+)

∣∣.
(3). For any [τ ] ∈ W1, both N

+(τσ)−1B− and N+σ−1Q− are regular submanifolds of GC, and moreover, N+(τσ)−1B− ⊂
N+σ−1Q− due to (1). Hence we conclude that dimCN

+(τσ)−1B− ≤ dimCN
+σ−1Q− for all [τ ] ∈ W1. At this stage, the

rest of proof is to deduce

dimCN
+σ−1B− = dimCN

+σ−1Q−.

In a similar way to (8.3.9) one has

N+σ−1B− = σ−1 exp
(⊕

γ∈Φ[σ−1κ]
gζ([σ])γ

)
exp
(⊕

β∈Φ[σ−1]
gζ([σ])β

)
B−

= σ−1 exp
(⊕

γ∈Φ[σ−1κ]
gζ([σ])γ

)
B−

= σ−1 exp
(⊕

γ1∈Γ[σ]
gζ([σ])γ1

)
exp
(⊕

γ2∈{γ∈Φ[σ−1κ] | ζ([σ])γ∈▲+} gζ([σ])γ2
)
B−

(2)
= σ−1 exp

(⊕
γ1∈Γ[σ]

gζ([σ])γ1
)
exp
(⊕

α∈▲+ gα
)
B− (8.3.8)

= σ−1U+
[σ]N

+
1 B

−,

where N+
1 = exp n+1 . Therefore it follows from (U+

[σ] ∩N
+
1 B

−) ⊂ (U+ ∩Q−) = {e} and (N+
1 ∩B−) ⊂ (N+ ∩B−) = {e} that

dimCN
+σ−1B− = dimC U

+
[σ]N

+
1 B

− = dimC U
+
[σ] + (dimCN

+
1 + dimCB

−)

= (dimC U
+ − n[σ]) + dimCQ

− = dimCN
+σ−1Q−.

cf. Remark 8.3.12-(2).

Lemma 8.3.13 provides us with

Proposition 8.3.14. Let [σ], [θ] ∈ W1. If N+θ−1Q− ⊂ N+σ−1Q− −N+σ−1Q−, then dimCN
+θ−1Q− < dimCN

+σ−1Q−

and n[θ] > n[σ]. Here we denote by N+σ−1Q− the closure of N+σ−1Q− in GC.

Proof. By Lemma 8.3.13-(1) and [σ], [θ] ∈ W1 we have

N+θ−1B− ⊂ N+θ−1Q− ⊂ N+σ−1Q− −N+σ−1Q− =
∪

[τ ]∈W1

N+(τσ)−1B− −
∪

[τ1]∈W1

N+(τ1σ)
−1B−

=
∪

[τ ]∈W1

N+(τσ)−1B− −
∪

[τ1]∈W1

N+(τ1σ)
−1B− ⊂

∪
[τ ]∈W1

(
N+(τσ)−1B− −N+(τσ)−1B−) 1⃝

because W1 is a finite set. Here each N+w−1B− is a Bruhat cell in GC ([w] ∈ W), so one knows that7

1. for any [w] ∈ W, N+w−1B− −N+w−1B− is a disjoint union of Bruhat cells of strictly lower dimension,

2. for [w1], [w2] ∈ W, (N+w−1
1 B− ∩N+w−1

2 B−) ̸= ∅ if and only if N+w−1
1 B− = N+w−1

2 B−

(e.g. Theorem 27.4 in Bump [8, p.252]). These, together with 1⃝, enable us to see that

N+(τσ)−1B− −N+(τσ)−1B− ⊂
⨿

[w[τ]] ∈ W with dimCN
+w−1

[τ]
B− < dimCN

+(τσ)−1B−

N+w−1
[τ ]B

−

7Remark. One can assert these statements without the supposition that the group GC is algebraic or simply connected.
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for all [τ ] ∈ W1; besides, there exist [τ2] ∈ W1 and [w[τ2]] ∈ W satisfying

N+θ−1B− = N+w−1
[τ2]
B−, dimCN

+w−1
[τ2]
B− < dimCN

+(τ2σ)
−1B−.

Consequently Lemma 8.3.13-(3) and [τ2] ∈ W1 yield

dimCN
+θ−1Q− = dimCN

+θ−1B− < dimCN
+(τ2σ)

−1B− ≤ dimCN
+σ−1Q−.

From dimCN
+θ−1Q− < dimCN

+σ−1Q− we obtain n[θ] > n[σ]. cf. Remark 8.3.12-(2).

The direct product group N+ ×Q− acts on GC by

(N+ ×Q−)×GC ∋ ((n, q), x) 7→ nxq−1 ∈ GC.

Theorem 8.3.7-(3) tells us that this orbit space coincides with {N+σ−1Q− : [σ] ∈ W1}. In addition, since the action is

continuous and W1 is finite, one can show that for any [σ] ∈ W1 there exist finite elements [θ1], [θ2], . . . , [θk] ∈ W1 such that

N+σ−1Q− = N+σ−1Q− ⨿N+θ−1
1 Q− ⨿N+θ−1

2 Q− ⨿ · · · ⨿N+θ−1
k Q−.

Furthermore, Proposition 8.3.14 leads to

Corollary 8.3.15. For any [σ] ∈ W1 there exist finite elements [θ1], [θ2], . . . , [θk] ∈ W1 such that N+σ−1Q−−N+σ−1Q− =

N+θ−1
1 Q− ⨿N+θ−1

2 Q− ⨿ · · · ⨿N+θ−1
k Q− and n[θi] > n[σ] for all 1 ≤ i ≤ k.

Theorem 8.3.7 leads to the following corollary which is an improvement of Proposition 8.2.1-(iv):

Corollary 8.3.16.

(i) The product mapping U+ ×Q− ∋ (u, q) 7→ uq ∈ GC is a biholomorphism of U+ ×Q− onto a dense, domain in GC.

(ii) N+Q− is a dense, domain in GC.

Proof. (i). We only verify that the image U+Q− is dense in GC. For every [σ] ∈ W1 − {[e]}, it follows from Theorem

8.3.7 that σ−1U+
[σ]Q

− is a submanifold of GC whose dimension is strictly lower than dimCGC, so that it has measure 0 in

the manifold GC. Hence, the finite union
⨿

[σ]∈W1−{[e]} σ
−1U+

[σ]Q
− has measure 0 in GC also, and therefore its complement

GC −
⨿

[σ]∈W1−{[e]} σ
−1U+

[σ]Q
− = e−1U+

[e]Q
− = U+Q− is dense in GC.

(ii). By Theorem 8.3.7-(1) one has N+Q− = U+Q−. Hence (ii) comes from (i).

8.3.3 An analytic continuation related to Bruhat decompositions

Our aim in this subsection to demonstrate

Theorem 8.3.17. Let

O :=
⨿

[σ] ∈ W1 with n[σ] ≤ 1N
+σ−1Q−. (8.3.18)

Then, it follows that

(i) O is a dense, domain in GC,

(ii) any holomorphic function f on O can be continued analytically to the whole GC.

For the aim we first prepare some lemmas and a proposition. We will conclude Theorem 8.3.17 by Hartogs’s continuation

theorem and GC −O being of complex codimension 2 or more.

Lemma 8.3.19. Let M be a topological manifold, let A be a subset of M , and let D be a dense domain in M . Suppose that

the subset A ∪D of M is open. Then, A ∪D is a dense domain in M .

Proof. We only confirm that A ∪D is arcwise connected. Fix a point p0 ∈ D, and take any p ∈ A ∪D. By the supposition

there exists an arcwise connected, open subset U ⊂ M such that p ∈ U ⊂ A ∪ D. Since D ⊂ M is dense, there exists a

d ∈ U ∩D. Then, p0 and d (resp. d and p) can be joined by an arc in D (resp. U), and therefore p0 and p can be joined by

an arc in A ∪D.
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Lemma 8.3.20 (Hartogs’s continuation theorem). Let P be an open subset of CN defined by |z1| < R, |z2| < R, . . . , |zN | < R

for some R > 0, and set

A := {(z1, . . . , zk, zk+1, . . . , zN ) ∈ P | z1 = z2 = · · · = zk = 0},

where 2 ≤ k ≤ N . Then, for an arbitrary holomorphic function f : (P −A) → C, there exists a unique holomorphic function

f̃ : P → C such that f = f̃ on P −A.

Proof. (Uniqueness). The uniqueness of f̃ comes from P being a domain, P − A being a non-empty open subset of P and

the theorem of identity.

(Existence). Let us confirm the existence of f̃ . Take an arbitrary 0 < r1 < R, and fix a point (z1, z2, . . . , zN ) ∈ P with

|z1| < r1. Then, for any |z1| < |w| < R it turns out that (w, z2, . . . , zN ) ∈ P −A, and hence the definition

g(w) :=
f(w, z2, . . . , zN )

w − z1
for w ∈ {w ∈ C : |z1| < |w| < R}

is well-defined. Furthermore, g(w) is holomorphic on the annular domain |z1| < |w| < R which includes the circle C0 : |w| =
r1, and consequently ∫

C0

g(w)dw =

∫
|w|=r1

f(w, z2, . . . , zN )

w − z1
dw

exists in C for every (z1, z2, . . . , zN ) ∈ Dr1 ×DR × · · · ×DR, where Dr := {z ∈ C : |z| < r}. Now, let us prove that

the function

∫
|w|=r1

f(w, z2, . . . , zN )

w − z1
dw is holomorphic on Dr1 ×DR × · · · ×DR. 1⃝

Taking Hartogs’s theorem of holomorphy into account, we will only conclude that the function is holomorphic with respect

to each variable zj (1 ≤ j ≤ N). Let us demonstrate that the function is holomorphic with respect to z1. For any w ∈ C
with |w| = r1, we see that

Fw(z
1, z2, . . . , zN ) := f(w, z2, . . . , zN )/(w − z1) is holomorphic on Dr1 ×DR × · · · ×DR. (a)

Hence for a given piecewise differentiable closed curve C =
∑m
n=1 Cn, Cn : z1 = z1n(s) (an ≤ s ≤ bn) of class C1 which is

contained in Dr1 , Cauchy’s integral theorem enables us to deduce that for any w ∈ C with |w| = r1 and any (z2, . . . , zN ) ∈
DR × · · · ×DR, ∫

C

Fw(z
1, z2, . . . , zN )dz1 = 0 (b)

because Dr1 is a star region. Therefore it follows from f(w, z2, . . . , zN )/(w − z1) = Fw(z
1, z2, . . . , zN ) and C =

∑m
n=1 Cn,

Cn : z1 = z1n(s) (an ≤ s ≤ bn) that∫
C

(∫
|w|=r1

f(w, z2, . . . , zN )

w − z1
dw
)
dz1 =

∫
C

(∫
|w|=r1

Fw(z
1, z2, . . . , zN )dw

)
dz1

=

m∑
n=1

∫ bn

an

(∫ 2π

0

Fr1eit(z
1
n(s), z

2, . . . , zN )
dr1e

it

dt
dt
)dz1n(s)

ds
ds =

∫
|w|=r1

(∫
C

Fw(z
1, z2, . . . , zN )dz1

)
dw

(b)
= 0.

Here we applied Fubini’s theorem to the continuous function [0, 2π]×[an, bn] ∋ (t, s) 7→ f(r1e
it, z2, . . . , zN )

r1eit − z1n(s)

dr1e
it

dt

dz1n(s)

ds
∈ C.

The above and Morera’s theorem allow us to assert that
∫
|w|=r1

(
f(w, z2, . . . , zN )/(w − z1)

)
dw is a holomorphic function

with respect to the variable z1 ∈ Dr1 . In a similar way, one can assert that with respect to the other variables (because of

(a)). Hence 1⃝ holds. So, one can define a holomorphic function f̃ : Dr1 ×DR × · · · ×DR → C by

f̃(z1, z2, . . . , zN ) :=
1

2πi

∫
|w|=r1

f(w, z2, . . . , zN )

w − z1
dw for (z1, z2, . . . , zN ) ∈ Dr1 ×DR × · · · ×DR. 2⃝

The function f coincides with this f̃ on (Dr1 ×DR×· · ·×DR)−A. Indeed, since DR× (DR−{0})×DR×· · ·×DR ⊂ P −A,
f(z1, z2, z3, . . . , zN ) is holomorphic on DR × (DR − {0})×DR × · · · ×DR. From Cauchy’s integral formula for z1 ∈ DR we

obtain

f(z1, z2, z3, . . . , zN ) =
1

2πi

∫
|w|=r1

f(w, z2, z3, . . . , zN )

w − z1
dw on Dr1 × (DR − {0})×DR × · · · ×DR.

This and 2⃝ assure that f = f̃ on Dr1 × (DR − {0})×DR × · · · ×DR. Therefore the theorem of identity enables us to show

f = f̃ on (Dr1 ×DR ×DR × · · · ×DR)−A
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because Dr1 × (DR − {0}) ×DR × · · · ×DR is a non-empty open subset of the domain (Dr1 ×DR ×DR × · · · ×DR) − A.

Letting r1 ↗ R one can get the conclusion. Here we remark that P = DR ×DR × · · · ×DR.

Lemma 8.3.21. O =
⨿

[σ] ∈ W1 with n[σ] ≤ 1N
+σ−1Q− is a dense, domain in GC.

Proof. Corollary 8.3.16-(ii) tells us that N+e−1Q− is a dense domain in GC. By that, Proposition 8.3.2-(v.1) and Lemma

8.3.19, it suffices to conclude that O ⊂ GC is open, which is equivalent to that GC −O is closed in GC. Since W1 is a finite

set, we deduce∪
[θ] ∈ W1 with 2 ≤ n[θ]

N+θ−1Q− =
∪

[θ] ∈ W1 with 2 ≤ n[θ]
N+θ−1Q− =

⨿
[ϑ] ∈ W1 with 2 ≤ n[ϑ]

N+ϑ−1Q− = GC −O

by Corollary 8.3.15 and Theorem 8.3.7-(3). Accordingly GC −O is closed in GC.

Lemma 8.3.22. The following two items hold for a given [σ] ∈ W1 :

(1) σ−1U+Q− is a dense, domain in GC.

(2) σ−1U+
[σ]Q

− is an analytic subset of σ−1U+Q− having complex codimension n[σ], that is to say, there exist holomorphic

functions f1, f2, . . . , fn[σ]
: σ−1U+Q− → C such that (2.i) df1∧df2∧· · ·∧dfn[σ]

̸= 0 on σ−1U+Q− and (2.ii) σ−1U+
[σ]Q

− =

{x ∈ σ−1U+Q− | f1(x) = f2(x) = · · · = fn[σ]
(x) = 0}.

(3) σ−1N+Q− is a dense domain in GC, and N
+σ−1Q− is an analytic subset of σ−1N+Q− having complex codimension

n[σ].

Proof. (1). Since the left translation Lσ−1 : GC → GC is homeomorphic, we conclude (1) by Corollary 8.3.16-(i).

(2). By Theorem 8.3.7-(1) one can choose a complex basis {Ej}rj=1 of u+ so that u+[σ] = spanC{En[σ]+k}
r−n[σ]

k=1 . Let us

consider the canonical coordinates z1, z2, . . . , zr of the first kind associated with this basis {Ej}rj=1 ⊂ u+. Then,

dz1 ∧ · · · ∧ dzn[σ] ∧ dzn[σ]+1 ∧ · · · ∧ dzr ̸= 0 on U+, U+
[σ] = {u ∈ U+ | z1(u) = z2(u) = · · · = zn[σ](u) = 0}. 1⃝

For each x ∈ σ−1U+Q−, Proposition 8.2.1-(iv) assures that there exists a unique (u, q) ∈ U+×Q− satisfying x = σ−1uq, and

then one can get a holomorphic function fi : σ
−1U+Q− → C by setting fi(x) := zi(u) for 1 ≤ i ≤ n[σ]. These f1, f2, . . . , fn[σ]

are desired functions due to 1⃝.

(3) is immediate from (1), (2), σ−1N+Q− = σ−1U+Q− and N+σ−1Q− = σ−1U+
[σ]Q

−.

For [σ] ∈ W1 we set

O[σ] := σ−1N+Q− −
∪

[τ ] ∈ W1 with [σ] ̸= [τ ] & n[σ] ≤ n[τ]

N+τ−1Q− (8.3.23)

and demonstrate

Proposition 8.3.24. For any [σ] ∈ W1, it follows that

(i) O[σ] is an open subset of GC,

(ii) N+σ−1Q− ⊂ O[σ] ⊂ σ−1N+Q−,

(iii) O[σ] −N+σ−1Q− ⊂
⨿

[η] ∈ W1 with n[η] ≤ n[σ] − 1N
+η−1Q−.

Proof. (i). Since σ−1N+Q− ⊂ GC is open and W1 is finite, we have (i) by (8.3.23).

(ii). It is natural from (8.3.23) that O[σ] ⊂ σ−1N+Q−. So, let us show N+σ−1Q− ⊂ O[σ], namely

N+σ−1Q− ⊂
(
σ−1N+Q− −

∪
[τ ] ∈ W1 with [σ] ̸= [τ ] & n[σ] ≤ n[τ]

N+τ−1Q−
)
.

Since N+σ−1Q− ⊂ σ−1N+Q− it is enough to confirm that

x ̸∈
∪

[τ ] ∈ W1 with [σ] ̸= [τ ] & n[σ] ≤ n[τ]
N+τ−1Q− for all x ∈ N+σ−1Q−. 1⃝

Let us use proof by contradiction. Suppose a y ∈ N+σ−1Q− to satisfy y ∈
∪

[τ ] ∈ W1 with [σ] ̸= [τ ] & n[σ] ≤ n[τ]
N+τ−1Q−.

Then, there exists a [τ ] ∈ W1 such that [σ] ̸= [τ ], n[σ] ≤ n[τ ] and y ∈ N+τ−1Q−. From y ∈ N+σ−1Q− and y ∈ N+τ−1Q−

one obtains

N+σ−1Q− ⊂ N+τ−1Q−.
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Here we recall that N+σ−1Q− is an orbit of the group N+×Q− and N+τ−1Q− is also. In case of N+σ−1Q−∩N+τ−1Q− = ∅
Corollary 8.3.15 and N+σ−1Q− ⊂ N+τ−1Q− cause n[τ ] < n[σ], which is a contradiction to n[σ] ≤ n[τ ]. Even if N+σ−1Q− ∩
N+τ−1Q− ̸= ∅, we have [σ] = [τ ], which contradicts [σ] ̸= [τ ]. Hence 1⃝ holds.

(iii). By a direct computation we obtain

O[σ] −N+σ−1Q− (8.3.23)
=

(
σ−1N+Q− −

∪
[τ ] ∈ W1 with [σ] ̸= [τ ] & n[σ] ≤ n[τ]

N+τ−1Q−
)
−N+σ−1Q−

⊂
(
σ−1N+Q− −

∪
[τ ] ∈ W1 with [σ] ̸= [τ ] & n[σ] ≤ n[τ]

N+τ−1Q−
)
−N+σ−1Q−

⊂ σ−1N+Q− −
∪

[θ] ∈ W1 with n[σ] ≤ n[θ]

N+θ−1Q−

⊂ GC −
⨿

[θ] ∈ W1 with n[σ] ≤ n[θ]

N+θ−1Q−.

This, combined with Theorem 8.3.7-(3), gives rise to (iii).

Utilizing the notation O[σ] in (8.3.23) we show

Lemma 8.3.25. Let D be a dense, domain in GC. For each [σ] ∈ W1, the following two items hold:

(1) O[σ] ∪D be a dense domain in GC.

(2) Suppose that (s1) 2 ≤ n[σ] and (s2) O[σ] −N+σ−1Q− ⊂ D. Then, for a given holomorphic function f : D → C, there
exists a unique holomorphic function f̃ : O[σ] ∪D → C such that f = f̃ on D.

Proof. (1) is a consequence of Lemma 8.3.19 and Proposition 8.3.24-(i).

(2). The uniqueness of f̃ : O[σ] ∪D → C follows by (1) and the theorem of identity. We are going to verify its existence.

First, let us establish the following:

For each x ∈ O[σ] ∪D, there exist an open neighborhood Px of x ∈ O[σ] ∪D and a holomorphic

function f̃x : Px → C such that f = f̃x on Px −N+σ−1Q−.
1⃝

Here we note that (s2) assures Px −N+σ−1Q− ⊂ D, so f exists on Px −N+σ−1Q−. Now, fix any x ∈ O[σ] ∪D. In either

of the cases x ∈ D and x ∈ O[σ] −N+σ−1Q−, it follows from (s2) that x ∈ D, and hence we deduce 1⃝ by putting

Px := D, f̃x := f.

Let us consider the remaining case

x ∈ N+σ−1Q−

from now on. By Proposition 8.3.24-(i), (ii) and Lemma 8.3.22-(3), there exist holomorphic functions h1, . . . , hn[σ]
: O[σ] → C

which satisfy

dh1 ∧ · · · ∧ dhn[σ]
̸= 0 on O[σ], N+σ−1Q− = {y ∈ O[σ] |h1(y) = · · · = hn[σ]

(y) = 0}.

Then, the inverse mapping theorem enables us to take a holomorphic coordinate neighborhood (Px, ψ) of x ∈ O[σ] such that

(i) zj
(
ψ(x)

)
= 0 for all 1 ≤ j ≤ N = dimCO[σ], (ii) ψ is a homeomorphism of Px onto an open subset of CN defined by

|z1| < R, . . . , |zN | < R for some R > 0 and (iii) zi ◦ ψ = hi for all 1 ≤ i ≤ n[σ]. Consequently Lemma 8.3.20 and (s1) imply

that for the holomorphic function f : (Px −N+σ−1Q−) → C, there exists a unique holomorphic function f̃x : Px → C such

that f = f̃x on Px −N+σ−1Q−. Thus 1⃝ holds. One can construct a holomorphic function f̃ : O[σ] ∪D → C from 1⃝ and

f̃ := f̃x|Px
for x ∈ O[σ] ∪D. 2⃝

Here, it is necessary to confirm that 2⃝ is well-defined. If Px ∩ Py ̸= ∅ (x, y ∈ O[σ] ∪D), then one can show that

f̃x = f̃y on Px ∩ Py

because (a) both f̃x, f̃y are continuous on Px ∩ Py, (b) f̃x = f = f̃y on Px ∩ Py −N+σ−1Q−, and (c) Px ∩ Py −N+σ−1Q−

is dense in Px ∩ Py (∵ 1 ≤ n[σ]). Accordingly 2⃝ is well-defined. For the function f̃ in 2⃝, we conclude that f = f̃ on D.
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We are in a position to accomplish the aim.

Proof of Theorem 8.3.17. (i). cf. Lemma 8.3.21.

(ii). Take any holomorphic function f on O. First, let k2 := min{n[σ] ∈ N : [σ] ∈ W1, 2 ≤ n[σ]}. For every [σ] ∈ W1 with

n[σ] = k2, Proposition 8.3.24-(iii) implies

O[σ] −N+σ−1Q− ⊂
⨿

[η] ∈ W1 with n[η] ≤ k2 − 1N
+η−1Q− =

⨿
[θ] ∈ W1 with n[θ] ≤ 1N

+θ−1Q− (8.3.18)
= O.

Hence for every [σ] ∈ W1 with n[σ] = k2, the function f can be continued analytically from O to the dense domain O ∪O[σ]

by virtue of (i), 2 ≤ k2 = n[σ] and Lemma 8.3.25. Furthermore, the theorem of identity assures that f can be continued

analytically from O ∪ O[σ] to the dense domain O2 := O ∪
(∪

[σ] ∈ W1 with n[σ] = k2
O[σ]

)
. Here Proposition 8.3.24-(ii) and

(8.3.18) yield ⨿
[θ] ∈ W1 with n[θ] ≤ k2

N+θ−1Q− ⊂ O2. (a)

Next, let k3 := min{n[ρ] ∈ N : [ρ] ∈ W1, k2 + 1 ≤ n[ρ]}. For any [ρ] ∈ W1 with n[ρ] = k3, we obtain

O[ρ] −N+ρ−1Q− ⊂
⨿

[η] ∈ W1 with n[η] ≤ k3 − 1N
+η−1Q− =

⨿
[θ] ∈ W1 with n[θ] ≤ k2

N+θ−1Q− ⊂ O2

from Proposition 8.3.24-(iii) and (a). Accordingly, we conclude that f can be continued analytically from O2 to the dense

domain O3 := O2 ∪
(∪

[ρ] ∈ W1 with n[ρ] = k3
O[ρ]

)
and

⨿
[θ] ∈ W1 with n[θ] ≤ k3

N+θ−1Q− ⊂ O3 by arguments similar to those

stated above and (a). Now, let k4 := min{n[ς] ∈ N : [ς] ∈ W1, k3 + 1 ≤ n[ς]}. Then, f can be continued analytically from

O3 to the dense domain O4 := O3 ∪
(∪

[ς] ∈ W1 with n[ς] = k4
O[ς]

)
and

⨿
[θ] ∈ W1 with n[θ] ≤ k4

N+θ−1Q− ⊂ O4. By inductive

arguments we can get the conclusion.

Remark 8.3.26. The O in Theorem 8.3.17 is also expressed as

O =
⨿

[σ] ∈ W1 with n[σ] ≤ 1N
+σ−1Q− = N+Q− ⨿

(⨿
β ∈ Π△ − ▲N

+w−1
β Q−)

=
⨿

[σ] ∈ W1 with n[σ] ≤ 1 σ
−1U+

[σ]Q
− = U+Q− ⨿

(⨿
β ∈ Π△ − ▲ w

−1
β U+

[wβ ]
Q−).

Here ▲ = {γ ∈ △(gC, hC) | γ(T ) = 0}. cf. Theorem 8.3.7-(1), Proposition 8.3.2-(v).

The following lemma will be needed in the next chapter:

Lemma 8.3.27. For each β ∈ Π△ − ▲, the following three items hold:

(1) N+Q− ∩ w−1
β N+Q− =

(
exp

⊕
α∈△+−{β} gα

)
w−1
β exp(gβ − {0})Q−.

(2) N+Q− ∩ w−1
β N+Q− is a dense domain in GC.

(3) U+Q− ∩ w−1
β U+Q− is a dense domain in GC.

Proof. (1). First, let us demonstrate that
(
exp

⊕
α∈△+−{β} gα

)
w−1
β exp(gβ −{0})Q− ⊂ N+Q− ∩w−1

β N+Q−. Since β ∈ Π△

one has ζ([wβ ])(△+ − {β}) = △+ − {β}. Hence(
exp

⊕
α∈△+−{β} gα

)
w−1
β = w−1

β

(
exp

⊕
α∈△+−{β} gζ([wβ ])α

)
= w−1

β

(
exp

⊕
δ∈△+−{β} gδ

)
⊂ w−1

β N+.

This, together with gβ ⊂ n+, gives rise to((
exp

⊕
α∈△+−{β} gα

)
w−1
β

)
exp(gβ − {0})Q− ⊂ (w−1

β N+)N+Q− ⊂ w−1
β N+Q−. (a)

Since sβ = spanC{H∗
β , Eβ , E−β} is a complex subalgebra of gC which is isomorphic to sl(2,C), the connected Lie subgroup

Sβ ⊂ GC corresponding to sβ is isomorphic to either SL(2,C) or SL(2,C)/Z2. Accordingly, for any z ∈ C− {0} we obtain

w−1
β exp(zEβ) = exp

(
(−1/z)Eβ

)
exp
(
−(log r + iθ)H∗

β

)
exp
(
(1/z)E−β

)
(8.3.28)

from (8.1.4), where z = reiθ, r > 0, −π < θ ≤ π. Then, it turns out that w−1
β exp(gβ −{0}) ⊂ (exp gβ)LCU

− ⊂ N+Q−, and

so (
exp

⊕
α∈△+−{β} gα

)(
w−1
β exp(gβ − {0})

)
Q− ⊂ N+(N+Q−)Q− ⊂ N+Q−. (b)

From (a) and (b) we conclude that
(
exp

⊕
α∈△+−{β} gα

)
w−1
β exp(gβ − {0})Q− ⊂ N+Q− ∩ w−1

β N+Q−. Next, let us show

that the converse inclusion also holds. Take an arbitrary x ∈ N+Q− ∩ w−1
β N+Q−. Proposition 8.3.2-(i), Φ[wβ ] = {β} and

Φ[wβκ] = △+ − {β} imply that N+ =
(
exp

⊕
δ∈△+−{β} gδ

)
exp gβ , and moreover

w−1
β N+Q− = w−1

β

(
exp

⊕
δ∈△+−{β} gδ

)
(exp gβ)Q

− =
(
exp

⊕
α∈△+−{β} gα

)
w−1
β (exp gβ)Q

−.
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Hence there exist n ∈ exp
⊕

α∈△+−{β} gα, z1 ∈ C and q ∈ Q− satisfying x = nw−1
β exp(z1Eβ)q. Then, we can assert that

x ∈
(
exp

⊕
α∈△+−{β} gα

)
w−1
β exp(gβ − {0})Q−, if

z1 ̸= 0. (c)

For this reason, the rest of proof is to confirm (c). Let us use proof by contradiction. Suppose that z1 = 0. Then, it follows

that x = nw−1
β exp(z1Eβ)q = nw−1

β q ∈ N+w−1
β Q−, and x ∈ N+Q− ∩ N+w−1

β Q−. This is a contradiction to Theorem

8.3.7-(3). Therefore (c) holds.

(2). (1) implies that N+Q− ∩ w−1
β N+Q− is connected; furthermore, it is a dense domain in GC by Corollary 8.3.16-(ii).

(3) is an easy consequence of (2) and N+Q− = U+Q−.





Chapter 9

Homogeneous symplectic manifolds

In this chapter we first study homogeneous symplectic manifolds and afterwards investigate relation between homogeneous

symplectic manifolds and adjoint orbits of semisimple Lie groups.

9.1 Invariant symplectic forms on homogeneous spaces and skew-symmetric

bilinear forms on Lie algebras

Let us establish the following theorem which will play a role in the next section:

Theorem 9.1.1. Let G be a (real) Lie group which satisfies the second countability axiom, let H be a closed subgroup of G,

let π denote the projection of G onto G/H, and let o := π(e). Then, the following two items (I) and (II) hold:

(I) Suppose the homogeneous space G/H to admit a G-invariant symplectic form Ω. Then, there exists a unique skew-

symmetric bilinear form ω : g× g → R satisfying the following four conditions:

(s.1) ω([X1, X2], X3) + ω([X2, X3], X1) + ω([X3, X1], X2) = 0 for all X1, X2, X3 ∈ g,

(s.2) h = {Z ∈ g |ω(Z,X) = 0 for all X ∈ g},

(s.3) ω
(
Ad z(X),Ad z(Y )

)
= ω(X,Y ) for all z ∈ H and X,Y ∈ g,

(s.4) ω(X,Y ) = Ωo
(
(dπ)eXe, (dπ)eYe

)
for all X,Y ∈ g.

(II) Suppose that there exists a skew-symmetric bilinear form ω : g× g → R satisfying the above three conditions (s.1), (s.2)

and (s.3). Then, G/H admits a unique G-invariant symplectic form Ω so that ω is related to Ω by (s.4).

Here G/H is an n-dimensional real analytic manifold in view of Theorem 1.1.2, and we identify the real constants with the

real-valued constant functions on G.

Proof. (I). Let Ω be a G-invariant symplectic form on G/H. Define a skew-symmetric bilinear form ω : g× g → R by

ω(X,Y ) := Ωo
(
(dπ)eXe, (dπ)eYe

)
for X,Y ∈ g. (9.1.2)

Needless to say, (s.4) holds for this ω. For any z ∈ H and X,Y ∈ g, we obtain

ω
(
Ad z(X),Ad z(Y )

) (9.1.2)
= Ωo

(
(dπ)e(Ad z(X))e, (dπ)e(Ad z(Y ))e

)
= Ωo

(
(dτz)o((dπ)eXe), (dτz)o((dπ)eYe)

)
= Ωo

(
(dπ)eXe, (dπ)eYe

) (9.1.2)
= ω(X,Y )

because Ω is G-invariant and π(z) = o (see Corollary 1.1.7 for τz). Hence (s.3) holds for ω. We are going to confirm that

the rest of conditions (s.1) and (s.2) holds for ω.

(s.1). Set

ω̂g(u, v) := Ωπ(g)
(
(dπ)gu, (dπ)gv

)
for g ∈ G and u, v ∈ TgG,

namely ω̂ is the pullback of Ω by π : G → G/H. Then ω̂g(Xg, Yg) = ω̂e(Xe, Ye) for all g ∈ G and X,Y ∈ g, since Ω is

G-invariant. Accordingly we see that for each X,Y ∈ g,

the mapping G ∋ g 7→ ω̂g(Xg, Yg) ∈ R is the constant function with the value ω̂e(Xe, Ye). 1⃝

87
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Identifying the real constants with the real-valued constant functions on G, one may assume that

ω(X,Y ) = ω̂(X,Y ) for all X,Y ∈ g

by (9.1.2). Hence it suffices to confirm that (s.1) holds for the ω̂. Moreover, it follows from dΩ = 0 and ω̂ = π∗Ω that dω̂ = 0,

so that for all X1, X2, X3 ∈ g,

0 = (dω̂)(X1, X2, X3)

= X1

(
ω̂(X2, X3)

)
−X2

(
ω̂(X1, X3)

)
+X3

(
ω̂(X1, X2)

)
− ω̂([X1, X2], X3) + ω̂([X1, X3], X2)− ω̂([X2, X3], X1)

1⃝
= −ω̂([X1, X2], X3)− ω̂([X3, X1], X2)− ω̂([X2, X3], X1).

Thus (s.1) holds.

(s.2). Let hω := {Z ∈ g |ω(Z,X) = 0 for all X ∈ g}. We want to show h = hω. First, let us show h ⊂ hω. Take any Z ∈ h.

Then, it is immediate from (9.1.2) and (dπ)eZe = 0 that ω(Z,X) = Ωo
(
(dπ)eZe, (dπ)eXe

)
= 0 for all X ∈ g. Therefore the

inclusion h ⊂ hω follows. Next, let us prove that the converse inclusion also holds. For Y ∈ g we suppose that ω(Y,X) = 0

for all X ∈ g. Then,

Ωo
(
(dπ)eYe, (dπ)eXe

) (9.1.2)
= ω(Y,X) = 0

for all X ∈ g. This yields (dπ)eYe = 0 because Ωo is non-degenerate on the vector space To(G/H) and the mapping

g ∋ X 7→ (dπ)eXe ∈ To(G/H) is surjective. By (dπ)eYe = 0 and Lemma 1.1.13 we conclude Y ∈ h, and hω ⊂ h. Therefore

h = hω, and (s.2) holds. Thus one can conclude (I) since (s.4) assures the uniqueness of ω.

(II). Now, suppose that a skew-symmetric bilinear form ω : g× g → R satisfies the following three conditions:

(s.1) ω([X1, X2], X3) + ω([X2, X3], X1) + ω([X3, X1], X2) = 0 for all X1, X2, X3 ∈ g,

(s.2) h = {Z ∈ g |ω(Z,X) = 0 for all X ∈ g},

(s.3) ω
(
Ad z(X),Ad z(Y )

)
= ω(X,Y ) for all z ∈ H and X,Y ∈ g.

Our aim is to construct a G-invariant symplectic form Ω on G/H, on this supposition. First, let us construct a closed

differential form ω̃ of degree 2 on G from the ω. Let {Er}Nr=1 be a real basis of g, and set

C∞(G) := {f̃ : G→ R | f̃ is of class C∞}.

Since {(Er)g}Nr=1 is a real basis of the vector space TgG for each g ∈ G, an arbitrary vector U ∈ X(G) is uniquely expressed

as U =
∑N
r=1 f̃rEr, f̃r ∈ C∞(G). Then, for V =

∑N
s=1 h̃sEs ∈ X(G) (h̃s ∈ C∞(G)) we put

ω̃g(Ug, Vg) :=
∑N
r,s=1 f̃r(g)h̃s(g)ω(Er, Es) for g ∈ G. (a)

This (a) is independent of the choice of {Er}Nr=1 because ω is R-bilinear. So, ω̃ is a differential form of degree 2 on G. From

now on, we are going to verify that the ω̃ is closed. One can express [Er, Es] as [Er, Es] =
∑N
ℓ=1 c

ℓ
rsEℓ, c

ℓ
rs ∈ R. For any

X,Y, Z ∈ g there uniquely exist ar, bs, ct ∈ R satisfying X =
∑N
r=1 a

rEr, Y =
∑N
s=1 b

sEs, Z =
∑N
t=1 c

tEt; then all ω̃(Y, Z),

ω̃(X,Z) and ω̃(X,Y ) are constant functions on G due to (a), and moreover,

(dω̃)(X,Y, Z) = X
(
ω̃(Y, Z)

)
− Y

(
ω̃(X,Z)

)
+ Z

(
ω̃(X,Y )

)
− ω̃([X,Y ], Z) + ω̃([X,Z], Y )− ω̃([Y, Z], X)

= −ω̃([X,Y ], Z)− ω̃([Z,X], Y )− ω̃([Y, Z], X)

(a)
= −

N∑
r,s,t,ℓ=1

arbsctcℓrsω(Eℓ, Et)−
N∑

r,s,t,ℓ=1

arbsctcℓtrω(Eℓ, Es)−
N∑

r,s,t,ℓ=1

arbsctcℓstω(Eℓ, Er)

= −ω([X,Y ], Z)− ω([Z,X], Y )− ω([Y, Z], X) (∵ ω is R-bilinear)
(s.1)
= 0,

namely (dω̃)(X,Y, Z) = 0 for all X,Y, Z ∈ g. This gives rise to

(dω̃)(U, V,W ) = 0 for all U, V,W ∈ X(G)

because dω̃ is C∞(G)-multilinear and X(G) is generated by smooth functions f̃ : G → R and elements X ∈ g. Thus ω̃ is

closed. Consequently ω̃ is a closed, differential form of degree 2 on G. Identifying the real constants with the real-valued

constant functions on G, one may assume that

ω(X,Y ) = ω̃(X,Y ) for all X,Y ∈ g (b)
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by (a). From now on, let us construct a G-invariant symplectic form Ω on G/H. For given vectors u, v ∈ To(G/H), we

choose X,Y ∈ g so that u = (dπ)eXe, v = (dπ)eYe, and set

Ωo(u, v) = Ωo
(
(dπ)eXe, (dπ)eYe

)
:= ω(X,Y ). (c)

Lemma 1.1.13 and (s.2) assure that (c) is independent of the choice of X and Y , and that Ωo is non-degenerate. Therefore

Ωo is a symplectic form on the vector space To(G/H). Then, one defines a symplectic form Ωπ(g) on Tπ(g)(G/H) (g ∈ G) by

Ωπ(g)(w1, w2) := Ωo
(
(dτg−1)π(g)w1, (dτg−1)π(g)w2

)
for w1, w2 ∈ Tπ(g)(G/H). (d)

Here we remark that (d) is well-defined by virtue of (s.3) and (c). From (d) it follows that Ω is G-invariant. If we show that

Ω is of class C∞ and dΩ = 0, then one can assert that Ω is a G-invariant symplectic form on G/H.

(class C∞). We are going to show that Ω is of class C∞. For any point p ∈ G/H, there exist coordinate neighborhoods(
U, (y1, . . . , yn)

)
of class Cω of G/H and

(
π−1(U), (x1, . . . , xn, xn+1, . . . , xN )

)
of class Cω of G such that p ∈ U and xi = yi◦π

on π−1(U) for all 1 ≤ i ≤ n; moreover, there exists a real analytic mapping σ : U → G such that π
(
σ(q)

)
= q for all q ∈ U

(cf. Section 1.3). Therefore, for any g ∈ π−1(U) and 1 ≤ i, j ≤ n we obtain

Ωπ(g)

(( ∂

∂yi

)
π(g)

,
( ∂

∂yj

)
π(g)

)
(d)
= Ωo

(
(dτg−1)π(g)

( ∂

∂yi

)
π(g)

, (dτg−1)π(g)

( ∂

∂yj

)
π(g)

)
= Ωo

(
(dτg−1)π(g)

(
(dπ)g

( ∂

∂xi

)
g

)
, (dτg−1)π(g)

(
(dπ)g

( ∂

∂xj

)
g

))
(∵ xi = yi ◦ π)

= Ωo

(
(dπ)e

(
(dLg−1)g

( ∂

∂xi

)
g

)
, (dπ)e

(
(dLg−1)g

( ∂

∂xj

)
g

))
.

Temporarily we express (dLg−1)g(∂/∂x
k)g ∈ TeG as (dLg−1)g(∂/∂x

k)g = Xk
e with Xk ∈ g, and then the last term is

Ωo

(
(dπ)e

(
(dLg−1)g

( ∂

∂xi

)
g

)
, (dπ)e

(
(dLg−1)g

( ∂

∂xj

)
g

))
= Ωo

(
(dπ)eX

i
e, (dπ)eX

j
e

) (c)
= ω(Xi, Xj)

(b)
= ω̃g(X

i
g, X

j
g)

= ω̃g
(
(dLg)eX

i
e, (dLg)eX

j
e

)
= ω̃g

(( ∂

∂xi

)
g
,
( ∂

∂xj

)
g

)
.

Therefore, it turns out that Ωij ◦ π = ω̃ij on π−1(U) (1 ≤ i, j ≤ n), where Ωij := Ω(∂/∂yi, ∂/∂yj), ω̃ij := ω̃(∂/∂xi, ∂/∂xj).

Furthermore, π ◦ σ = id yields

Ωij = ω̃ij ◦ σ on U (1 ≤ i, j ≤ n). (e)

This (e) implies that Ω is of class C∞ because σ : U → π−1(U) is real analytic and ω̃ij : π
−1(U) → R is smooth.

(dΩ = 0). It follows from (e) and dω̃ = 0 that for all 1 ≤ k ≤ n

∂Ωij
∂yk

=
∂(ω̃ij ◦ σ)

∂yk
=

N∑
s=1

∂ω̃ij
∂xs

∂(xs ◦ σ)
∂yk

= 0,

and thus dΩ = 0 holds.

We have proven that the Ω in (d) is a G-invariant symplectic form on G/H. From (c) it is natural that ω is related to

this Ω by (s.4). Now, the uniqueness of Ω follows from (s.4), G-invariability and Lemma 1.1.13. Hence we complete the proof

of Theorem 9.1.1.

Let g be a real Lie algebra. Suppose that ω is a skew-symmetric bilinear form ω : g× g → R satisfying

(s.1) ω([X1, X2], X3) + ω([X2, X3], X1) + ω([X3, X1], X2) = 0 for all X1, X2, X3 ∈ g.

In this setting, one can get a subalgebra hω ⊂ g by putting

hω := {Z ∈ g |ω(Z,X) = 0 for all X ∈ g}, (9.1.3)

and deduce the following proposition from the proof of Theorem 2 in Chu [10, p.149]:

Proposition 9.1.4. Let G be a simply connected Lie group with the Lie algebra g, and let Hω be the connected Lie subgroup

of G corresponding to the subalgebra hω ⊂ g in (9.1.3). Then,

(i) Hω is a connected, closed subgroup of G,

(ii) ω
(
Ad z(X),Ad z(Y )

)
= ω(X,Y ) for all z ∈ Hω and X,Y ∈ g,
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(iii) G/Hω is a simply connected homogeneous space, and there exists a unique G-invariant symplectic form Ω on G/Hω

such that ω(X,Y ) = Ωπ(e)
(
(dπ)eXe, (dπ)eYe

)
for all X,Y ∈ g.

Here π is the projection of G onto G/Hω, and we identify the real constants with the real-valued constant functions on G.

Proof. (i). It is enough to prove that Hω is closed in G. Since (s.1) holds for the ω, one can define a closed differential form

ω̃ of degree 2 on G by a similar way to (a) in the proof of Theorem 9.1.1-(II). Then one can assert that

ω(X,Y ) = ω̃(X,Y ) for all X,Y ∈ g 1⃝

where we identify the real constants with the real-valued constant functions on G. For the real vector space g∗ of left invariant

differential forms of degree 1 on G,1 the group of affine transformations of the vector space g∗ is GL(g∗)⋉ g∗ (semidirect).

Moreover, its Lie algebra is gl(g∗)⋉ g∗ and the exponential mapping exp : gl(g∗)⋉ g∗ → GL(g∗)⋉ g∗ is expressed as(
exp(B, η)

)
(ξ) = (expB)(ξ) +

(∑∞
n=1(1/n!)B

n−1
)
(η), 2⃝

where (B, η) ∈ gl(g∗)⋉ g∗ and ξ ∈ g∗. Besides, the bracket product of Lie algebra gl(g∗)⋉ g∗ is expressed as2[
(B1, η1), (B2, η2)

]
=
(
[B1, B2], B1(η2)−B2(η1)

)
. 3⃝

Now, for any X,Y ∈ g it follows from 1⃝ that ω̃(X,Y ) is a real-valued constant function on G. Accordingly one can define

a mapping ϕ∗ : g → gl(g∗)⋉ g∗ by

ϕ∗(X) := (LX , ı(X)ω̃) for X ∈ g, 4⃝

where LX and ı(X)ω̃ stand for the Lie derivative with respect to the vector field X and the interior product of ω̃ with X,

respectively. Here for any X,Y ∈ g one has

LY
(
ı(X)ω̃

)
= (d ◦ ı(Y ) + ı(Y ) ◦ d)

(
ı(X)ω̃

)
= ı(Y )

(
d(ı(X)ω̃)

)
(∵ ı(Y )

(
ı(X)ω̃

)
= ω̃(X,Y ) is constant)

= ı(Y )
(
(LX − ı(X) ◦ d)ω̃

)
= ı(Y )

(
LX ω̃

)
(∵ dω̃ = 0),

since LW = d ◦ ı(W ) + ı(W ) ◦ d for all W ∈ X(G). This shows

LY
(
ı(X)ω̃

)
= ı(Y )

(
LX ω̃

)
for all X,Y ∈ g. 5⃝

From now on, let us confirm that the mapping ϕ∗ : g → gl(g∗)⋉ g∗ in 4⃝ is a Lie algebra homomorphism. It is obvious that

ϕ∗ : X 7→ (LX , ı(X)ω̃) is linear. For any X,Y ∈ g, we obtain

[ϕ∗(X), ϕ∗(Y )]
4⃝
=
[
(LX , ı(X)ω̃), (LY , ı(Y )ω̃)

] 3⃝
=
(
[LX , LY ], LX(ı(Y )ω̃)− LY (ı(X)ω̃)

)
=
(
L[X,Y ], LX(ı(Y )ω̃)− LY (ı(X)ω̃)

) 5⃝
=
(
L[X,Y ], LX(ı(Y )ω̃)− ı(Y )(LX ω̃)

)
=
(
L[X,Y ], ı([X,Y ])ω̃

) 4⃝
= ϕ∗([X,Y ]).

Thus ϕ∗ : g → gl(g∗)⋉g∗, X 7→ (LX , ı(X)ω̃), is a Lie algebra homomorphism. Since ϕ∗ : g → gl(g∗)⋉g∗ is a homomorphism

and G is a simply connected, there uniquely exists a Lie group homomorphism ϕ of G into the identity component of

GL(g∗)⋉ g∗ such that its differential homomorphism accords with ϕ∗. Then one can take a real analytic action of G on g∗,

G× g∗ ∋ (g, η) 7→ ϕ(g)(η) ∈ g∗,

and take the isotropy subgroup H of G at 0 ∈ g∗ into consideration. Needless to say, H = {g ∈ G |ϕ(g)(0) = 0} is a closed

subgroup of G. If

hω = Lie(H), 6⃝

then 6⃝ implies that Hω coincides with the identity component of H, so that Hω is closed in H; and therefore Hω is closed

in G. For this reason, the rest of proof is to demonstrate 6⃝. For any Z ∈ hω and t ∈ R we see that

ϕ(exp tZ)(0) =
(
exp tϕ∗(Z)

)
(0)

4⃝
=
(
exp t(LZ , ı(Z)ω̃)

)
(0)

2⃝
= (exp tLZ)(0) +

∞∑
n=1

1

n!
(tLZ)

n−1(ı(tZ)ω̃) = 0

1Remark. dimR g∗ = dimR g < ∞.
2e.g. 命題 5.8.2 in 杉浦 [34, p.406].
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because ı(tZ)ω̃ = 0 comes from tZ ∈ hω, (9.1.3) and 1⃝. Hence Z ∈ Lie(H), and so hω ⊂ Lie(H). Let us show that the

converse inclusion also holds. For any A ∈ Lie(H) and t ∈ R, one has

0 = ϕ(exp tA)(0) (∵ tA ∈ Lie(H))

=
(
exp tϕ∗(A)

)
(0)

4⃝, 2⃝
=

∞∑
n=1

1

n!
(tLA)

n−1(ı(tA)ω̃) =

∞∑
n=1

tn

n!
(LA)

n−1(ı(A)ω̃).

Differentiating this equation at t = 0 we obtain 0 = ı(A)ω̃, and therefore A ∈ hω due to (9.1.3) and 1⃝. Hence Lie(H) ⊂ hω

holds. This completes the proof of 6⃝.

(ii). Since ω is skew-symmetric, it follows from (s.1) and (9.1.3) that ω
(
[Z,X], Y

)
+ ω

(
X, [Z, Y ]

)
= 0 for all Z ∈ hω,

X,Y ∈ g. Therefore (ii) holds because Hω is connected.

(iii). G/Hω is a simply connected homogeneous space by (i) and G being simply connected. Hence we can conclude (iii)

by Theorem 9.1.1-(II) together with (s.1), (9.1.3) and (ii).

9.2 Homogeneous symplectic manifolds of semisimple Lie groups

We want to first show

Lemma 9.2.1. Let g be a real semisimple Lie algebra, and let ω be a skew-symmetric bilinear form ω : g× g → R satisfying

(s.1) ω([X1, X2], X3) + ω([X2, X3], X1) + ω([X3, X1], X2) = 0 for all X1, X2, X3 ∈ g.

Then, there exists a unique S ∈ g such that

(1) ω(X,Y ) = Bg(S, [X,Y ]) for all X,Y ∈ g, (2) cg(S) = {Z ∈ g |ω(Z,X) = 0 for all X ∈ g}.

Here Bg is the Killing form of g and cg(S) = {Y ∈ g | adS(Y ) = 0}.

Proof. (Uniqueness). The uniqueness of S follows by (1), g = [g, g] and Bg being non-degenerate.

(Existence). Let us confirm that there exists an S ∈ g satisfying the conditions (1) and (2). Consider the cohomology

group Hk(g) = Zk(g)/Bk(g) for the trivial representation of g on the vector space R. On the one hand; (s.1) implies that

ω ∈ Z2(g). On the other hand; by the Whitehead lemma one knows dimRH
1(g) = dimRH

2(g) = 0, since g is real semisimple.

Hence there exists a unique linear mapping α : g → R such that

α
(
[X,Y ]

)
= ω(X,Y ) for all X,Y ∈ g.

Furthermore, there exists a unique S ∈ g such that α(V ) = Bg(S, V ) for all V ∈ g because Bg is non-degenerate. Then, this

S satisfies (1). By (1) we deduce that

ω(Z,X) = Bg

(
S, [Z,X]

)
= Bg

(
adS(Z), X

)
for all X,Z ∈ g. This implies that ω(Z,X) = 0 for all X ∈ g if and only if adS(Z) = 0. Therefore S satisfies (2) also.

From Theorem 9.1.1 and Lemma 9.2.1 we conclude

Proposition 9.2.2 (cf. Matsushima [26]3). Let G be a real semisimple Lie group which satisfies the second countability

axiom, let H be a closed subgroup of G, let π denote the projection of G onto G/H, and let o := π(e). Suppose that the

homogeneous space G/H admits a G-invariant symplectic form Ω. Then, there exists a unique S ∈ g such that

(i) Bg(S, [X,Y ]) = Ωo
(
(dπ)eXe, (dπ)eYe

)
for all X,Y ∈ g,

(ii) CG(S)0 ⊂ H ⊂ CG(S).

Here G/H is a real analytic manifold in view of Theorem 1.1.2, CG(S)0 is the identity component of CG(S) = {g ∈
G | Ad g(S) = S}, and we identify the real constants with the real-valued constant functions on G.

3Remark. Théorème 1 in Matsushima [26, p.54] and its proof enable one to make a more excellent assertion.
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Proof. By virtue of Theorem 9.1.1-(I) and Lemma 9.2.1, it suffices to verify that (ii) CG(S)0 ⊂ H ⊂ CG(S). From Lemma

9.2.1-(2) and Theorem 9.1.1-(I)-(s.2) we obtain Lie(CG(S)) = Lie(H), and therefore

CG(S)0 = H0 ⊂ H.

Hence, the rest of proof is to confirm H ⊂ CG(S). For any z ∈ H and X,Y ∈ g, Lemma 9.2.1-(1) and Theorem 9.1.1-(I)-(s.3)

imply that

Bg

(
S −Ad z(S), [X,Y ]

)
= Bg(S, [X,Y ])−Bg

(
S, [Ad z−1(X),Ad z−1(Y )]

)
= ω(X,Y )− ω

(
Ad z−1(X),Ad z−1(Y )

)
= 0.

Accordingly one has S − Ad z(S) = 0 because g = [g, g] and Bg is non-degenerate. Thus it turns out that z ∈ CG(S), and

H ⊂ CG(S).

Proposition 9.2.2 tells us that homogeneous symplectic manifolds of semisimple Lie groups are essentially adjoint orbits.

The converse also holds:

Lemma 9.2.3. Let G be a real semisimple Lie group which satisfies the second countability axiom, let S be a given element

of g, and let H be a subgroup of G such that

CG(S)0 ⊂ H ⊂ CG(S).

Then, H is a closed subgroup of G, and there exists a unique G-invariant symplectic form Ω on G/H such that Bg(S, [X,Y ]) =

Ωo
(
(dπ)eXe, (dπ)eYe

)
for all X,Y ∈ g. Here we identify the real constants with the real-valued constant functions on G.

Proof. First, we confirm that the subgroup H is a closed subset of G. Since CG(S)0 is an open subset of CG(S) and

H =
∪
h∈H Lh(CG(S)0), we see that H is an open subgroup of CG(S). Hence H is closed in CG(S); besides, CG(S) is closed

in G. So, H is a closed subset of G. At this stage h = cg(S) follows from CG(S)0 ⊂ H ⊂ CG(S).

Next, we show the existence of Ω. Define a skew-symmetric bilinear form ω : g× g → R by

ω(X,Y ) := Bg(S, [X,Y ]) for X,Y ∈ g.

Then, this ω satisfies the (s.1), (s.2) and (s.3) in Theorem 9.1.1, because of the Jacobi identity, h = cg(S) and H ⊂ CG(S).

Consequently, Theorem 9.1.1-(II) provides us with a unique G-invariant symplectic form Ω so that Bg(S, [X,Y ]) = ω(X,Y ) =

Ωo
(
(dπ)eXe, (dπ)eYe

)
for X,Y ∈ g.

9.3 An appendix (an orbit space)

The direct product group GL(1,R)× SL(2,R) acts on sl(2,R) by(
GL(1,R)× SL(2,R)

)
× sl(2,R) ∋

(
(λ, g), X

)
7→ λAd g(X) ∈ sl(2,R).

First, let us calculate this orbit space sl(2,R)/(GL(1,R)× SL(2,R)). For a non-zero, element X =

(
a b

c −a

)
∈ sl(2,R) we

investigate the following three cases individually:

(k) 0 < detX, (a) 0 > detX, (n) 0 = detX.

Case (k) 0 < detX = −a2 − bc. Setting

(λ, g) :=



(
1/
√
−a2 − bc,

√
c/ 4
√
−a2 − bc −a/(

√
c 4
√
−a2 − bc)

0 4
√
−a2 − bc/

√
c

) if c > 0,

(
− 1/

√
−a2 − bc,

√
−c/ 4

√
−a2 − bc a/(

√
−c 4

√
−a2 − bc)

0 4
√
−a2 − bc/

√
−c

) if c < 0,

we have (λ, g) ∈ GL(1,R)× SL(2,R) and λAd g(X) =

(
0 −1

1 0

)
.
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Case (a) 0 > detX = −a2 − bc. Setting

(λ, g) :=
(
− 1/

√
a2 + bc,

(
1 −(a+

√
a2 + bc)/c

c/(2
√
a2 + bc) (

√
a2 + bc− a)/(2

√
a2 + bc)

))
,

we have (λ, g) ∈ GL(1,R)× SL(2,R) and λAd g(X) =

(
1 0

0 −1

)
.

Case (n) 0 = detX = −a2 − bc. Setting

(λ, g) :=



(
− 1/c,

 c 1− a

−1 a/c

) if c ̸= 0,

(
1/b,

1 0

0 1

) if c = 0,

we see that (λ, g) ∈ GL(1,R)× SL(2,R) and λAd g(X) =

(
0 1

0 0

)
. Remark here that a = 0 and b ̸= 0 if c = 0.

Consequently the orbit space sl(2,R)/(GL(1,R)× SL(2,R)) is as follows:

sl(2,R)/(GL(1,R)× SL(2,R)) = {[K], [A], [N ], [O2]}, (9.3.1)

where K :=

(
0 −1

1 0

)
, A :=

(
1 0

0 −1

)
, N :=

(
0 1

0 0

)
and O2 :=

(
0 0

0 0

)
.

Now, the centralizers of the above K, A, N and O2 in SL(2,R) are

CSL(2,R)(K) = SO(2), CSL(2,R)(A) = S(GL(1,R)×GL(1,R)), CSL(2,R)(N) = R× Z2, CSL(2,R)(O2) = SL(2,R),

respectively. Accordingly (9.3.1), Proposition 9.2.2 and Lemma 9.2.3 ensure that a homogeneous symplectic manifold of

SL(2,R) is one of the following:

(1) SL(2,R)/SO(2) ∗ the open unit disk in C,

(2) SL(2,R)/S(GL(1,R)×GL(1,R)) ∗ a hyperboloid of one sheet,

(3) SL(2,R)/S(GL(1,R)×GL(1,R))0 ∗ a covering space of (2),

(4) SL(2,R)/(R× Z2) ∗ the light cone in the 3-dimensional Lorentz-Minkowski space R3
1,

(5) SL(2,R)/R ∗ a covering space of (4),

(6) SL(2,R)/SL(2,R) ∗ 0-dimensional manifold.





Chapter 10

Homogeneous pseudo-Kähler manifolds

It is known that elliptic (adjoint) orbits can be geometrically characterized as follows:

Any elliptic orbit G/CG(T ) is a homogeneous pseudo-Kähler manifold of G. Conversely, a homogeneous pseudo-

Kähler manifold M of G is an elliptic orbit. cf. Dorfmeister-Guan [12], [13].

In this chapter we confirm this fact.

Remark 10.0.1. We consider a Kähler manifold to be one of the pseudo-Kähler manifolds.

10.1 Projectable vector fields

The setting of Section 10.1 is as follows:

• G is a Lie group which satisfies the second countability axiom,

• H is a closed subgroup of G,

• π is the projection of G onto G/H.

The homogeneous space G/H is an n-dimensional real analytic manifold in view of Theorem 1.1.2.

In the next section we will prove Theorem 10.2.2. For this reason we need to know some properties of projectable vector

fields. Here, a smooth vector filed V on G is said to be projectable, if there exists an A ∈ X(G/H) such that

(dπ)gVg = Aπ(g) for all g ∈ G

(i.e., V is π-related to A), where X(G/H) stands for the real Lie algebra of smooth vector fields on G/H. This A is uniquely

determined by V since π : G→ G/H is surjective. So, we write π∗V for A.

Lemma 10.1.1.

(i) Let V,W ∈ X(G) be projectable, and let λ, µ ∈ R. Then,

(i.1) λV + µW is a projectable vector field on G, and π∗(λV + µW ) = λ(π∗V ) + µ(π∗W ),

(i.2) [V,W ] is a projectable vector field on G, and π∗[V,W ] = [π∗V, π∗W ].

(ii) For any A ∈ X(G/H) there exists a projectable vector field V on G satisfying A = π∗V .

(iii) All right invariant vector fields on G are projectable.

Proof. (i) follows from V (resp. W ) being π-related to π∗V (resp. π∗W ).

(ii). Let A ∈ X(G/H). Our aim is to construct a V ∈ X(G) which is π-related to A. There exist coordinate neighborhoods(
Ua, (y

1
a, . . . , y

n
a )
)
of class Cω of G/H and

(
π−1(Ua), (x

1
a, . . . , x

n
a , x

n+1
a , . . . , xNa )

)
of class Cω of G (a ∈ Λ) such that

(1) G/H =
∪
a∈Λ Ua,

(2) xia = yia ◦ π on π−1(Ua) (a ∈ Λ, 1 ≤ i ≤ n),

95
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(3)
∂

∂xjb
=

n∑
i=1

∂xia

∂xjb

∂

∂xia
(1 ≤ j ≤ n),

∂

∂xrb
=

N∑
s=n+1

∂xsa
∂xrb

∂

∂xsa
(n+ 1 ≤ r ≤ N) whenever π−1(Ua) ∩ π−1(Ub) ̸= ∅,

because (G, π,G/H) is a real analytic principal fiber bundle (cf. Section 1.3). For a ∈ Λ and 1 ≤ i ≤ n, we put Aia := A(yia).

Then, the vector field A is expressed as

A =

n∑
i=1

Aia
∂

∂yia

on each Ua, and so we define a smooth vector field Va on π−1(Ua) by

Va :=

n∑
i=1

(Aia ◦ π)
∂

∂xia

for each a ∈ Λ. Now, suppose that π−1(Ua) ∩ π−1(Ub) ̸= ∅ (a, b ∈ Λ). Then, one has

(Va)g =

n∑
i=1

Aia(π(g))
( ∂

∂xia

)
g
=

n∑
i,j=1

Ajb(π(g))
∂yia

∂yjb
(π(g))

( ∂

∂xia

)
g

=

n∑
i,j=1

Ajb(π(g))
∂xia

∂xjb
(g)
( ∂

∂xia

)
g

(3)
=

n∑
j=1

Ajb(π(g))
( ∂

∂xjb

)
g
= (Vb)g

for all g ∈ π−1(Ua) ∩ π−1(Ub), since it follows from
∑n
i=1A

i
a(∂/∂y

i
a) = A =

∑n
j=1A

j
b(∂/∂y

j
b) that A

i
a =

∑n
j=1A

j
b(∂y

i
a/∂y

j
b)

and it follows from (2) xia = yia ◦ π that

∂xia

∂xjb
(g) =

∂(yia ◦ π)
∂xjb

(g) =

n∑
k=1

∂yia
∂ykb

(π(g))
∂(ykb ◦ π)
∂xjb

(g) =

n∑
k=1

∂yia
∂ykb

(π(g))δkj =
∂yia

∂yjb
(π(g)).

Consequently one can construct a smooth vector field V on the whole G =
∪
a∈Λ π

−1(Ua) from V |π−1(Ua) := Va for a ∈ Λ.

Besides, this V is π-related to A by virtue of (2).

(iii). Denote by g′ the real Lie algebra of right invariant vector fields on G. For X ∈ g we define a right invariant vector

field X ′ on G and a smooth vector field X∗ on G/H by

X ′
g f̃ :=

d

dt

∣∣∣
t=0

f̃
(
exp(−tX)g

)
for g ∈ G and f̃ ∈ C∞(G),

X∗
pf :=

d

dt

∣∣∣
t=0

f
(
τexp(−tX)(p)

)
for p ∈ G/H and f ∈ C∞(G/H),

respectively (see Corollary 1.1.7 for τexp(−tX)). Then, the mapping g ∋ X 7→ X ′ ∈ g′ is a Lie algebra isomorphism, and the

mapping g ∋ X 7→ X∗ ∈ X(G/H) is a Lie algebra homomorphism. Moreover, X ′ is π-related to X∗ for every X ∈ g.

10.2 Invariant complex structures on homogeneous spaces and linear trans-

formations of Lie algebras

We first prove the following lemma, and afterwards demonstrate Theorem 10.2.2:

Lemma 10.2.1. Let G be a Lie group, let ȷ be a linear transformation of g, and let ȷ̂ be a tensor field of type (1, 1) on G.

Suppose that (ȷ̂X)g = ȷ̂gXg = (ȷX)g for all (g,X) ∈ G× g. Then, the tensor ȷ̂ is of class C∞.

Proof. Take a real basis {Ek}Nk=1 of g and express ȷEk ∈ g as ȷEk =
∑N
ℓ=1 ck

ℓEℓ, ck
ℓ ∈ R. Any vector U ∈ X(G) is expressed

as U =
∑N
k=1 f̃kEk (f̃k ∈ C∞(G)), and then the supposition enables us to show that for all g ∈ G and h̃ ∈ C∞(G),(
(ȷ̂U)h̃

)
(g) = (ȷ̂U)gh̃ =

(∑N
k=1 f̃k(g)(ȷEk)g

)
h̃ =

(∑N
k,ℓ=1 f̃k(g)ck

ℓ(Eℓ)g
)
h̃

=
∑N
k,ℓ=1 f̃k(g)ck

ℓ(Eℓh̃)(g) =
(∑N

k,ℓ=1 f̃k · ckℓ · (Eℓh̃)
)
(g).

The last term is a smooth function on G, so the tensor ȷ̂ is of class C∞.

Now, let us demonstrate

Theorem 10.2.2 (cf. Koszul [23, Paragraph 2]). Let G be a (real) Lie group which satisfies the second countability axiom,

let H be a closed subgroup of G, let π denote the projection of G onto G/H, and let o := π(e). Then, the following two items

(I) and (II) hold:
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(I) Suppose the homogeneous space G/H to admit a G-invariant complex structure J . Then, there exists a linear trans-

formation ȷ : g → g satisfying the following five conditions:

(c.1) ȷZ = 0 for all Z ∈ h,

(c.2) ȷ2X = −X (modh) for all X ∈ g,

(c.3) ȷ
(
Ad z(X)

)
= Ad z(ȷX) (modh) for all (z,X) ∈ H × g,

(c.4) [ȷX, ȷY ]− [X,Y ]− ȷ[ȷX, Y ]− ȷ[X, ȷY ] = 0 (modh) for all X,Y ∈ g,

(c.5) (dπ)e(ȷX)e = Jo
(
(dπ)eXe

)
for all X ∈ g.

(II) Suppose that there exists a linear transformation ȷ : g → g satisfying the above four conditions (c.1) through (c.4).

Then, G/H admits a unique G-invariant complex structure J so that ȷ is related to J by (c.5).

Here G/H is an n-dimensional real analytic manifold in view of Theorem 1.1.2.

Proof. (I). Let J be a G-invariant complex structure on G/H. Take a real vector subspace m ⊂ g so that

g = m⊕ h, 1⃝

and define a surjective linear mapping F : g → To(G/H) by

F (X) := (dπ)eXe for X ∈ g. 2⃝

Then Lemma 1.1.13 implies that

h = ker(F ). 3⃝

From 1⃝ and 3⃝ we deduce that the linear mapping F : m → To(G/H) is injective, so that

F : m → To(G/H) is a linear isomorphism

by virtue of dimR m = dimR To(G/H). For this reason one can define a linear mapping ȷ : g → m (⊂ g) as follows:

ȷX := (F |m)−1
(
Jo(F (X))

)
for X ∈ g. 4⃝

Let us prove that this ȷ satisfies the five conditions (c.1) through (c.5), from now on.

(c.1) is immediate from 4⃝ and 3⃝.

(c.2). For any X ∈ g we obtain

ȷ2X
4⃝
=
(
((F |m)−1 ◦ Jo ◦ F ) ◦ ((F |m)−1 ◦ Jo ◦ F )

)
(X)

= (F |m)−1
(
F (−X)

)
(∵ F ◦ (F |m)−1 = id, J2

o = − id on To(G/H))

= (F |m)−1
(
F (−Xm −Xh)

) 3⃝
= (F |m)−1

(
F (−Xm)

)
= −Xm = −X (modh)

by a direct computation. Here we have expressed the X ∈ g = m⊕ h as X = Xm +Xh (Xm ∈ m, Xh ∈ h).

(c.3). For any (z, u) ∈ H × To(G/H) one has

F
(
(F |m)−1

(
(dτz)ou

)
−Ad z

(
(F |m)−1u

))
= (dτz)ou− F

(
Ad z

(
(F |m)−1u

)) 2⃝
= (dτz)ou− (dπ)e

(
Ad z

(
(F |m)−1u

))
e

= (dτz)ou− (dτz)o
(
(dπ)e

(
(F |m)−1u

)
e

) 2⃝
= (dτz)ou− (dτz)ou = 0.

Accordingly it follows from 3⃝ that

(F |m)−1
(
(dτz)ou

)
= Ad z

(
(F |m)−1u

)
(modh) for all (z, u) ∈ H × To(G/H). 5⃝

Therefore for any (z,X) ∈ H × g we conclude

ȷ
(
Ad z(X)

) 4⃝
= (F |m)−1

(
Jo(F (Ad z(X)))

) 2⃝
= (F |m)−1

(
Jo
(
(dπ)e(Ad z(X))e

))
= (F |m)−1

(
Jo
(
(dτz)o((dπ)eXe)

))
= (F |m)−1

(
(dτz)o

(
Jo((dπ)eXe)

)) 5⃝
= Ad z

(
(F |m)−1

(
Jo((dπ)eXe)

))
(modh)

2⃝, 4⃝
= Ad z(ȷX) (modh)
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since J is G-invariant and π(z) = o.

(c.5). Let us verify (c.5) before proving (c.4). For any X ∈ g one shows that

(dπ)e(ȷX)e
4⃝
= (dπ)e

(
(F |m)−1

(
Jo(F (X))

))
e

2⃝
= F

(
(F |m)−1

(
Jo(F (X))

))
= Jo

(
F (X)

)
(∵ F ◦ (F |m)−1 = id on To(G/H))

2⃝
= Jo

(
(dπ)eXe

)
.

Hence (c.5) holds.

(c.4). First, let us construct a smooth tensor field ȷ̂ of type (1, 1) on G. Define a linear isomorphism α : g → TeG by

α(X) := Xe for X ∈ g.

Using this α and the ȷ in 4⃝, we define a linear mapping ȷ̂g : TgG→ TgG (g ∈ G) by

ȷ̂gu :=
(
(dLg)e ◦ α ◦ ȷ ◦ α−1 ◦ (dLg−1)g

)
(u) for u ∈ TgG.

From this ȷ̂g we construct a tensor field ȷ̂ of type (1, 1) on G as follows:

(ȷ̂U)g := ȷ̂gUg for g ∈ G and U ∈ X(G).

Then, it turns out that

(ȷ̂X)g = ȷ̂gXg = (ȷX)g for all (g,X) ∈ G× g, 6⃝

so that the tensor ȷ̂ is of class C∞ in terms of Lemma 10.2.1. Next, let us clarify a property of this ȷ̂. For any g ∈ G and

U ∈ X(G), there exists a unique X ∈ g such that Ug = Xg, and then we have

(dπ)g(ȷ̂U)g = (dπ)g
(
ȷ̂gXg

) 6⃝
= (dπ)g

(
(dLg)e(ȷX)e

)
= (dτg)o

(
(dπ)e(ȷX)e

) (c.5)
= (dτg)o

(
Jo
(
(dπ)eXe

))
= Jπ(g)

(
(dπ)g

(
(dLg)eXe

))
= Jπ(g)

(
(dπ)gUg

)
(because ȷX ∈ g and J is G-invariant). That is to say,

(dπ)g(ȷ̂U)g = Jπ(g)
(
(dπ)gUg

)
for all (g, U) ∈ G× X(G).

Accordingly, for an arbitrary V ∈ P(G) it follows that

ȷ̂V is a projectable vector field on G, and π∗(ȷ̂V ) = J(π∗V ), 7⃝

where P(G) denotes the Lie subalgebra of X(G) generated by projectable vector fields on G. Now, let us define a skew-

symmetric, smooth tensor field S of type (1, 2) onG/H and a skew-symmetric (real) bilinear mapping ŝ : X(G)×X(G) → X(G)

by {
S(A1, A2) := [JA1, JA2]− [A1, A2]− J [JA1, A2]− J [A1, JA2] for A1, A2 ∈ X(G/H),

ŝ(U1, U2) := [ȷ̂U1, ȷ̂U2]− [U1, U2]− ȷ̂[ȷ̂U1, U2]− ȷ̂[U1, ȷ̂U2] for U1, U2 ∈ X(G),

respectively. Then, 7⃝ and Lemma 10.1.1-(i) enable us to assert that

S(π∗V, π∗W ) = π∗
(
ŝ(V,W )

)
for all V,W ∈ P(G).

Furthermore, since the Nijenhuis tensor S of J vanishes we have π∗
(
ŝ(V,W )

)
= 0, and then

ŝ(V,W ) ∈ C∞(G)h 8⃝

for all V,W ∈ P(G).1 Here C∞(G)h stands for the submodule of X(G) generated by smooth functions f̃ : G→ R and vectors

Y ∈ h. From 8⃝ we are going to conclude that ŝ(U1, U2) ∈ C∞(G)h for all U1, U2 ∈ X(G). Denote by g′ the Lie algebra of

right invariant vector fields on G, and recall that g′ ⊂ P(G) (cf. Lemma 10.1.1-(iii)). On the one hand; 8⃝ yields

ŝ(X ′
1, X

′
2) ∈ C∞(G)h for all X ′

1, X
′
2 ∈ g′.

1Let us show 8⃝ for the sake of completeness. Take real bases {Ei}ni=1 of m and {Es}Ns=n+1 of h. Then, {(Ek)g}Nk=1 is a real basis of TgG

for each g ∈ G; and any vector U ∈ X(G) is expressed as U =
∑N

k=1 f̃kEk (f̃k ∈ C∞(G)). If it is projectable and π∗U = 0, then it follows that

0 = (dπ)gUg =
∑N

k=1 f̃k(g)((dπ)g(Ek)g) =
∑n

i=1 f̃i(g)((dπ)g(Ei)g) for all g ∈ G, so that f̃1 = · · · = f̃n = 0 because (dπ)g(E1)g , . . . , (dπ)g(En)g

is linearly independent for each g ∈ G. Hence U =
∑N

s=k+1 f̃sEs ∈ C∞(G)h if it is projectable and π∗U = 0.
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On the other hand; for any X ′ ∈ g′ it follows from 7⃝ and J2 = − id that π∗(ȷ̂
2X ′) = π∗(−X ′), so that ȷ̂2X ′+X ′ ∈ C∞(G)h.

Thus for given X ′
1, X

′
2 ∈ g′ and smooth function f̃ : G→ R we have

ŝ(f̃X ′
1, X

′
2) = f̃ ŝ(X ′

1, X
′
2) + (X ′

2f̃)(X
′
1 + ȷ̂2X ′

1) = f̃ ŝ(X ′
1, X

′
2) (mod C∞(G)h).

Consequently we show that

ŝ(U1, U2) ∈ C∞(G)h for all U1, U2 ∈ X(G) 9⃝

because ŝ : X(G) × X(G) → X(G) is skew-symmetric bilinear and X(G) is generated by smooth functions f̃ : G → R and

elements X ′ ∈ g′. For any X,Y ∈ g (⊂ X(G)), in view of 9⃝ one sees that

C∞(G)h ∋ ŝ(X,Y ) = [ȷ̂X, ȷ̂Y ]− [X,Y ]− ȷ̂[ȷ̂X, Y ]− ȷ̂[X, ȷ̂Y ]
6⃝
= [ȷX, ȷY ]− [X,Y ]− ȷ[ȷX, Y ]− ȷ[X, ȷY ] ∈ g,

and therefore [ȷX, ȷY ]− [X,Y ]− ȷ[ȷX, Y ]− ȷ[X, ȷY ] ∈
(
g∩C∞(G)h

)
⊂ h. Hence (c.4) holds. This completes the proof of (I).

(II). Now, let us suppose that a linear transformation ȷ : g → g satisfies the following four conditions:

(c.1) ȷZ = 0 for all Z ∈ h,

(c.2) ȷ2X = −X (modh) for all X ∈ g,

(c.3) ȷ
(
Ad z(X)

)
= Ad z(ȷX) (modh) for all (z,X) ∈ H × g,

(c.4) [ȷX, ȷY ]− [X,Y ]− ȷ[ȷX, Y ]− ȷ[X, ȷY ] = 0 (modh) for all X,Y ∈ g.

We want to construct a G-invariant complex structure J on G/H from this ȷ. For a vector u ∈ To(G/H), we choose an

X ∈ g so that u = (dπ)eXe, and put

Jou = Jo
(
(dπ)eXe

)
:= (dπ)e(ȷX)e. (a)

Lemma 1.1.13 and (c.1) assure that this (a) is independent of the choice of X because ȷ : g → g is linear. Thus Jo is a linear

transformation of the vector space To(G/H). Moreover, (c.2) and Lemma 1.1.13 imply that (Jo)
2 = − id on To(G/H). Using

this Jo we define a complex structure Jπ(g) on Tπ(g)(G/H) (g ∈ G) by

Jπ(g)w := (dτg)o
(
Jo((dτg−1)π(g)w)

)
for w ∈ Tπ(g)(G/H). (b)

This is well-defined in terms of (a), (c.3) and Lemma 1.1.13; and besides, it is immediate from (b) that J is G-invariant.

Therefore one can assert that the J is a G-invariant complex structure on G/H, if J is of class C∞ and its Nijenhuis tensor

S is vanishes.

(class C∞). Let us prove that the tensor J is of class C∞. The arguments below will be similar to the arguments in the

latter half of the proof of (I). Define a linear mapping ȷ̃g : TgG→ TgG (g ∈ G) by

ȷ̃gu :=
(
(dLg)e ◦ α ◦ ȷ ◦ α−1 ◦ (dLg−1)g

)
(u) for u ∈ TgG,

and define a tensor field ȷ̃ of type (1, 1) on G by

(ȷ̃U)g := ȷ̃gUg for g ∈ G and U ∈ X(G).

Then, it turns out that

(ȷ̃X)g = ȷ̃gXg = (ȷX)g for all (g,X) ∈ G× g, (c)

so that the tensor ȷ̃ is of class C∞ due to Lemma 10.2.1. Moreover, it follows from (c) and (c.2) that ȷ̃2X = −X (modh) for

all X ∈ g, and hence

ȷ̃2U = −U (mod C∞(G)h) for all U ∈ X(G) (d)

because X(G) is generated by smooth functions f̃ : G→ R and vectors X ∈ g. For any g ∈ G and U ∈ X(G), there exists a

unique X ∈ g such that Ug = Xg, and then

(dπ)g(ȷ̃U)g = (dπ)g
(
ȷ̃gXg

) (c)
= (dπ)g

(
(dLg)e(ȷX)e

)
= (dτg)o

(
(dπ)e(ȷX)e

) (a)
= (dτg)o

(
Jo
(
(dπ)eXe

))
= (dτg)o

(
Jo
(
(dτg−1)π(g)((dπ)gXg)

)) (b)
= Jπ(g)

(
(dπ)gXg

)
= Jπ(g)

(
(dπ)gUg

)
because ȷX ∈ g. Accordingly, for an arbitrary V ∈ P(G) we assert that

ȷ̃V is a projectable vector field on G, and π∗(ȷ̃V ) = J(π∗V ). (e)
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Now, for each point p ∈ G/H, one can find a coordinate neighborhood
(
U, (y1, . . . , yn)

)
of class Cω of G/H and a coordinate

neighborhood
(
π−1(U), (x1, . . . , xn, xn+1, . . . , xN )

)
of class Cω of G such that p ∈ U and xi = yi ◦ π on π−1(U) for all

1 ≤ i ≤ n; moreover, there exists a real analytic mapping σ : U → G such that π
(
σ(q)

)
= q for all q ∈ U . Then, xi = yi ◦ π

and (e) yield

J
( ∂

∂yi

)
= J

(
π∗

( ∂

∂xi

))
= π∗

(
ȷ̃
( ∂

∂xi

))
for all 1 ≤ i ≤ n. This and xi = yi ◦ π imply that Ji

j ◦ π = ȷ̃i
j on π−1(U) for all 1 ≤ i, j ≤ n, where J(∂/∂yi) =∑n

j=1 Ji
j(∂/∂yj) and ȷ̃(∂/∂xi) =

∑N
k=1 ȷ̃i

k(∂/∂xk). Furthermore, it follows from π ◦ σ = id that

Ji
j = ȷ̃i

j ◦ σ on U (1 ≤ i, j ≤ n).

Consequently the tensor J is of class C∞, since σ : U → π−1(U) is real analytic and ȷ̃i
j : π−1(U) → R is smooth.

(S = 0). Let us show that the Nijenhuis tensor S of J vanishes. For any X1, X2 ∈ g we obtain

[ȷ̃X1, ȷ̃X2]− [X1, X2]− ȷ̃[ȷ̃X1, X2]− ȷ̃[X1, ȷ̃X2]
(c)
= [ȷX1, ȷX2]− [X1, X2]− ȷ[ȷX1, X2]− ȷ[X1, ȷX2] ∈ h

from (c.4). Accordingly (d) implies that

[ȷ̃U1, ȷ̃U2]− [U1, U2]− ȷ̃[ȷ̃U1, U2]− ȷ̃[U1, ȷ̃U2] ∈ C∞(G)h for all U1, U2 ∈ X(G) (f)

because X(G) is generated by smooth functions f̃ : G→ R and vectors X ∈ g. For given A,B ∈ X(G/H), Lemma 10.1.1-(ii)

enables us to find V,W ∈ P(G) satisfying A = π∗V,B = π∗W , respectively. Then Lemma 10.1.1-(i), combined with (e) and

(f), yields

S(A,B) = [JA, JB]− [A,B]− J [JA,B]− J [A, JB] = π∗
(
[ȷ̃V, ȷ̃W ]− [V,W ]− ȷ̃[ȷ̃V,W ]− ȷ̃[V, ȷ̃W ]

)
= 0.

Consequently the J in (b) is a G-invariant complex structure on G/H. Besides, ȷ is related to J by (c.5); indeed (a) assures

that (dπ)e(ȷX)e = Jo
(
(dπ)eXe

)
for all X ∈ g. The uniqueness of J follows from (c.5), G-invariability and Lemma 1.1.13.

This completes the proof of Theorem 10.2.2.

Remark 10.2.3. Theorem 10.2.2-(II) assures the uniqueness of J for each ȷ; but in contrast, (I) does not assure the

uniqueness of ȷ for any J .

Modifying Theorem 10.2.2 slightly, one can assure the uniqueness of ȷ in Theorem 10.2.2-(I).

Proposition 10.2.4. In the setting of Theorem 10.2.2; let m be a real vector subspace of g so that

g = m⊕ h.

Then, the following two items (I) and (II) hold:

(I) Suppose the homogeneous space G/H to admit a G-invariant complex structure J . Then, there exists a unique linear

mapping ȷ : g → m satisfying the following five conditions:

(c.1) ȷZ = 0 for all Z ∈ h,

(c.2) ȷ2X = −X (modh) for all X ∈ g,

(c.3) ȷ
(
Ad z(X)

)
= Ad z(ȷX) (modh) for all (z,X) ∈ H × g,

(c.4) [ȷX, ȷY ]− [X,Y ]− ȷ[ȷX, Y ]− ȷ[X, ȷY ] = 0 (modh) for all X,Y ∈ g,

(c.5) (dπ)e(ȷX)e = Jo
(
(dπ)eXe

)
for all X ∈ g.

(II) Suppose that there exists a linear mapping ȷ : g → m satisfying the above four conditions (c.1) through (c.4). Then,

G/H admits a unique G-invariant complex structure J so that ȷ is related to J by (c.5).

Proof. cf. the proof of Theorem 10.2.2.
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10.3 Invariant pseudo-Kählerian structures on homogeneous spaces

By Theorems 10.2.2 and 9.1.1 we conclude

Theorem 10.3.1 (cf. Dorfmeister-Guan [14]). Let G be a (real) Lie group which satisfies the second countability axiom, let

H be a closed subgroup of G, let π denote the projection of G onto G/H, and let o := π(e). Then, the following two items

(I) and (II) hold:

(I) Suppose the homogeneous space G/H to admit a G-invariant complex structure J and a G-invariant symplectic form

Ω such that

Ω(JA, JB) = Ω(A,B) for all A,B ∈ X(G/H). (10.3.2)

Then, there exist a linear transformation ȷ : g → g and a unique skew-symmetric bilinear form ω : g× g → R satisfying

the following ten conditions:

(c.1) ȷZ = 0 for all Z ∈ h,

(c.2) ȷ2X = −X (modh) for all X ∈ g,

(c.3) ȷ
(
Ad z(X)

)
= Ad z(ȷX) (modh) for all (z,X) ∈ H × g,

(c.4) [ȷX, ȷY ]− [X,Y ]− ȷ[ȷX, Y ]− ȷ[X, ȷY ] = 0 (modh) for all X,Y ∈ g,

(c.5) (dπ)e(ȷX)e = Jo
(
(dπ)eXe

)
for all X ∈ g;

(s.1) ω([X1, X2], X3) + ω([X2, X3], X1) + ω([X3, X1], X2) = 0 for all X1, X2, X3 ∈ g,

(s.2) h = {Z ∈ g |ω(Z,X) = 0 for all X ∈ g},

(s.3) ω
(
Ad z(X),Ad z(Y )

)
= ω(X,Y ) for all z ∈ H and X,Y ∈ g,

(s.4) ω(X,Y ) = Ωo
(
(dπ)eXe, (dπ)eYe

)
for all X,Y ∈ g;

(c.s) ω(ȷX, ȷY ) = ω(X,Y ) for all X,Y ∈ g.

(II) Suppose that there exist a linear transformation ȷ : g → g and a skew-symmetric bilinear form ω : g× g → R satisfying

the above eight conditions (c.1) through (c.4), (s.1) through (s.3), and (c.s). Then, G/H admits a unique G-invariant

complex structure J and a unique G-invariant symplectic form Ω so that (10.3.2) holds, ȷ is related to J by (c.5), and

ω is related to Ω by (s.4).

Here G/H is a real analytic manifold in view of Theorem 1.1.2, and we identify the real constants with the real-valued constant

functions on G.

Here are comments on Theorem 10.3.1.

Remark 10.3.3.

1. By virtue of (10.3.2) one can construct a G-invariant pseudo-Kähler metric g on G/H from

g(A,B) := Ω(A, JB) for A,B ∈ X(G/H).

2. We refer to Dorfmeister-Guan [14, Section 1.2] for Theorem 10.3.1. Remark that the paper [14] has been created earlier

than the paper [12], but [14] is published later than [12].

10.4 Elliptic orbits and homogeneous pseudo-Kähler manifolds of semisim-

ple Lie groups

In this section we will confirm that there is no essential difference between elliptic orbits and homogeneous pseudo-Kähler

manifolds of semisimple Lie groups. The setting of Section 10.4 is as follows:

• G is a connected, real semisimple Lie group,

• gC is the complexification of the (real) Lie algebra g = Lie(G),

• σ is the conjugation of gC with respect to g.
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10.4.1 A pseudo-Kählerian structure on an elliptic adjoint orbit

The main purpose of this subsection is to prove

Proposition 10.4.1. Let T be any elliptic element of g, and let L := CG(T ). Then, the homogeneous space G/L admits a

G-invariant complex structure J and a G-invariant symplectic form Ω such that

Ω(JA, JB) = Ω(A,B) for all A,B ∈ X(G/L).

Therefore G/L is a simply connected, homogeneous pseudo-Kähler manifold of G. Here G/L is a real analytic manifold in

view of Theorem 1.1.2, and we identify the real constants with the real-valued constant functions on G.

Proof. By Proposition 7.3.4 and Theorem 10.3.1-(II), it is enough to show that there exist a linear transformation ȷ : g → g

and a skew-symmetric bilinear form ω : g× g → R satisfying the eight conditions (c.1) through (c.4), (s.1) through (s.3), and

(c.s) in Theorem 10.3.1. Taking the Killing form Bg of g we define a skew-symmetric bilinear form ω : g× g → R by

ω(X,Y ) := Bg(T, [X,Y ]) for X,Y ∈ g. 1⃝

Then, one knows that this ω satisfies the conditions (s.1) through (s.3) by the proof of Lemma 9.2.3. For this reason, the rest

of proof is to construct a linear transformation ȷ : g → g satisfying the (c.1) through (c.4) and (c.s). We quote the notation

lC, u
± and l from Lemma 7.2.8; and first define a complex linear transformation ȷC of gC = u+ ⊕ lC ⊕ u− by

ȷC(V
+ + Z + V −) := iV + + (−i)V − for V ± ∈ u±, Z ∈ lC,

where i =
√
−1. Then, we deduce

σ ◦ ȷC = ȷC ◦ σ 2⃝

by Lemma 7.2.8-(5′). Moreover,

(c.1)′ ȷC(Z) = 0 for all Z ∈ lC.

(c.2)′ For any V ± ∈ u± and Z ∈ lC we see that ȷ2C(V
+ + Z + V −) = −(V + + V −) = −(V + + Z + V −) (modlC), and thus

ȷ2C(W ) = −W (modlC) for all W ∈ gC.

(c.3)′ Lemma 7.2.8-(2′) implies that for every z ∈ L, V ± ∈ u± and Z ∈ lC,

ȷC
(
Ad z(V + + Z + V −)

)
= iAd z(V +)− iAd z(V −) = Ad z(iV + − iV −) = Ad z

(
ȷC(V

+ + Z + V −)
)
;

and ȷC
(
Ad z(W )

)
= Ad z

(
ȷC(W )

)
for all (z,W ) ∈ L× gC.

(c.4)′ For given V ±
a ∈ u± and Za ∈ lC (a = 1, 2), we obtain

[ȷC(V
+
1 + Z1 + V −

1 ), ȷC(V
+
2 + Z2 + V −

2 )]− [V +
1 + Z1 + V −

1 , V
+
2 + Z2 + V −

2 ]

− ȷC
(
[ȷC(V

+
1 + Z1 + V −

1 ), V +
2 + Z2 + V −

2 ]
)
− ȷC

(
[V +

1 + Z1 + V −
1 , ȷC(V

+
2 + Z2 + V −

2 )]
)

=− [Z1, Z2] ∈ lC

by a direct computation with Lemma 7.2.8-(3′). So, we conclude that [ȷC(W1), ȷC(W2)]− [W1,W2]− ȷC
(
[ȷC(W1),W2]

)
−

ȷC
(
[W1, ȷC(W2)]

)
∈ lC for all W1,W2 ∈ gC.

(c.s)′ Fix any V ±
a ∈ u± and Za ∈ lC (a = 1, 2). On the one hand; Lemma 7.2.8-(3′), (4′) and T ∈ lC allow us to have

BgC

(
T, [ȷC(V

+
1 + Z1 + V −

1 ), ȷC(V
+
2 + Z2 + V −

2 )]
)
= BgC

(
T, [iV +

1 − iV −
1 , iV

+
2 − iV −

2 ]
)

= BgC

(
T, [V +

1 , V
−
2 ] + [V −

1 , V
+
2 ]
)
= BgC

(
T, [V +

1 + V −
1 , V

+
2 + V −

2 ]
)
.

On the other hand; [T,Za] = 0 and BgC([P,Q], R) = −BgC(Q, [P,R]) yield

BgC

(
T, [V +

1 + Z1 + V −
1 , V

+
2 + Z2 + V −

2 ]
)
= −BgC

(
[V +

1 + Z1 + V −
1 , T ], V

+
2 + Z2 + V −

2

)
= −BgC

(
[V +

1 + V −
1 , T ], V

+
2 + Z2 + V −

2

)
= BgC

(
T, [V +

1 + V −
1 , V

+
2 + Z2 + V −

2 ]
)

= BgC

(
[V +

2 + Z2 + V −
2 , T ], V

+
1 + V −

1

)
= BgC

(
[V +

2 + V −
2 , T ], V

+
1 + V −

1

)
= BgC

(
T, [V +

1 + V −
1 , V

+
2 + V −

2 ]
)
.

Consequently BgC

(
T, [ȷC(V

+
1 +Z1+V

−
1 ), ȷC(V

+
2 +Z2+V

−
2 )]
)
= BgC

(
T, [V +

1 +Z1+V
−
1 , V

+
2 +Z2+V

−
2 ]
)
; and it follows

that BgC

(
T, [ȷC(W1), ȷC(W2)]

)
= BgC

(
T, [W1,W2]

)
for all W1,W2 ∈ gC.
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Accordingly ȷ := ȷC|g is a real linear transformation of g and satisfies the conditions (c.1) through (c.4) and (c.s), because of

g = {X ∈ gC |σ(X) = X} and l = {Y ∈ lC |σ(Y ) = Y }.

Remark 10.4.2. Here are comments on the proof of Proposition 10.4.1. One can realize the linear transformation ȷ = ȷC|g
of g = l⊕ u by setting

ȷ
(
Y + V + σ(V )

)
:= iV − iσ(V ) for Y ∈ l and V ∈ u+.

cf. Lemma 7.2.8-(i), (iii).

10.4.2 A realization of homogeneous pseudo-Kähler manifolds as elliptic adjoint orbits

We are going to inductively prove that any homogeneous pseudo-Kähler manifold of G is an elliptic orbit of G (see Theorem

10.4.7).

Let H be a closed subgroup of the connected real semisimple Lie group G. Suppose that the homogeneous space G/H

admits a G-invariant complex structure J and a G-invariant symplectic form Ω such that

Ω(JA, JB) = Ω(A,B) for all A,B ∈ X(G/H).

Then, there exist a linear transformation ȷ : g → g and a unique skew-symmetric bilinear form ω : g× g → R satisfying the

ten conditions in Theorem 10.3.1-(I). Moreover, there exists a unique S ∈ g such that

(i) ω(X,Y ) = Bg(S, [X,Y ]) for all X,Y ∈ g,

(ii) CG(S)0 ⊂ H ⊂ CG(S)

by Lemma 9.2.1 and Proposition 9.2.2. Here Bg is the Killing form of g. Let us remark h = cg(S), denote by ȷC the complex

linear extension of ȷ to gC, and prove

Lemma 10.4.3. Let hC := cgC(S), q
+ := {V ∈ gC | ȷC(V ) = iV (modhC)} and q− := {V ∈ gC | ȷC(V ) = −iV (modhC)}.

Then, it follows that for each s = ±,

(1) [hC, q
s] ⊂ qs; Ad z(qs) ⊂ qs for all z ∈ H,

(2) qs is a complex subalgebra of gC,

(3) q+ ∩ q− = hC,

(4) σ(hC) ⊂ hC, σ(q
+) ⊂ q− and σ(q−) ⊂ q+,

(5) q+ + q− = gC,

(6) dimC qs − dimC hC = dimC gC − dimC qs,

(7) hC = {Z ∈ gC |BgC(S, [Z,W ]) = 0 for all W ∈ gC},

(8) BgC

(
S, [qs, qs]

)
= {0}.

Proof. Since ȷ : g → g satisfies the conditions in Theorem 10.3.1-(I), we conclude that the complex linear transformation

ȷC : gC → gC satisfies

(c.1)′ ȷC(Z) = 0 for all Z ∈ hC,

(c.2)′ ȷ2C(W ) = −W (modhC) for all W ∈ gC,

(c.3)′ ȷC
(
adZ(W )

)
= adZ

(
ȷC(W )

)
(modhC) for all (Z,W ) ∈ hC × gC,

ȷC
(
Ad z(W )

)
= Ad z

(
ȷC(W )

)
(modhC) for all (z,W ) ∈ H × gC,

(c.4)′ [ȷC(W1), ȷC(W2)]− [W1,W2]− ȷC
(
[ȷC(W1),W2]

)
− ȷC

(
[W1, ȷC(W2)]

)
∈ hC for all W1,W2 ∈ gC,

(c.s)′ BgC

(
S, [ȷC(W1), ȷC(W2)]

)
= BgC

(
S, [W1,W2]

)
for all W1,W2 ∈ gC.
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Note that hC is a complex subalgebra of gC and σ ◦ ȷC = ȷC ◦ σ.
(1) is a consequence of (c.3)′.

(2). It is clear that qs is a complex vector subspace of gC. From (1) and (c.4)′ we obtain [qs, qs] ⊂ qs. Thus qs is a

complex subalgebra of gC.

(3). For each V ∈ q+ ∩ q− there exist Z+, Z− ∈ hC such that iV + Z+ = ȷC(V ) = −iV + Z−. Therefore one shows

V = (i/2)(Z+ − Z−) ∈ hC, and q+ ∩ q− ⊂ hC. The converse inclusion hC ⊂ q+ ∩ q− follows from (c.1)′.

(4). From hC = cgC(S) and σ(S) = S we deduce that σ(hC) ⊂ hC, which leads to σ(qs) ⊂ q−s since σ ◦ ȷC = ȷC ◦ σ and

qs = {V ∈ gC | ȷC(V ) = siV (modhC)}.
(5). For an arbitrary W ∈ gC, it follows from (c.2)′ that W = (1/2)

(
(W − iȷC(W )) + (W + iȷC(W ))

)
∈ q+ + q−, so that

gC ⊂ q+ + q−. Hence q+ + q− = gC.

(6). A direct computation yields dimC gC
(5)
= dimC(q

++q−) = dimC q++dimC q−−dimC q+∩q−
(3)
= dimC q++dimC q−−

dimC hC
(4)
= 2dimC qs − dimC hC.

(7). For a given Z ∈ gC, Z ∈ hC = cgC(S) if and only if adS(Z) = 0 if and only if 0 = BgC([S,Z],W ]) = BgC(S, [Z,W ])

for all W ∈ gC (because BgC is non-degenerate). Thus (7) holds.

(8). For any V1, V2 ∈ qs (s = ±), there exist Z1, Z2 ∈ hC such that ȷC(V1) = siV1 + Z1, ȷC(V2) = siV2 + Z2. Then

BgC

(
S, [V1, V2]

) (c.s)′
= BgC

(
S, [ȷC(V1), ȷC(V2)]

)
= BgC

(
S,−s2[V1, V2] + si[V1, Z2] + si[Z1, V2] + [Z1, Z2]

)
(7)
= BgC

(
S,−s2[V1, V2]

)
= −BgC

(
S, [V1, V2]

)
.

This implies that BgC

(
S, [V1, V2]

)
= 0, and so BgC

(
S, [qs, qs]

)
= {0}.

Set hC, q
± as in Lemma 10.4.3. In view of Lemma 10.4.3-(2), (6), (7), (8) we see that q+ is a complex subalgebra of the

complex semisimple Lie algebra gC and is a weak polarization of S. Thus,

1. q+ is a complex parabolic subalgebra of gC and includes a complex Borel subalgebra b′ of gC,

2. [S, q+] is an ideal of q+.

cf. Theorem 2.2 in Ozeki-Wakimoto [30, p.447]. In general, the intersection of two complex Borel subalgebras is not empty

and includes a Cartan subalgebra in a complex semisimple Lie algebra. Hence there exists a Cartan subalgebra c′C of gC such

that c′C ⊂ b′ ∩ σ(b′), and then

c′C ⊂
(
b′ ∩ σ(b′)

)
⊂ (q+ ∩ q−) = hC = cgC(S) (10.4.4)

by Lemma 10.4.3-(4), (3). This enables us to assert that S ∈ c′C and S is a semisimple element of g. Moreover,

Proposition 10.4.5. There exists an elliptic element T ∈ g such that h = cg(T ) and

hC = g0, [S, q+] =
⊕

λ>0 g
λ, [S, q−] =

⊕
λ>0 g

−λ, q+ =
⊕

ν≥0 g
ν , q− =

⊕
ν≥0 g

−ν ,

where gλ := {W ∈ gC | adT (W ) = iλW} for λ ∈ R. Here we refer to Lemma 10.4.3 for hC, q
±.

Proof. We are going to prepare some notation first. Since S ∈ g is semisimple, there exists a (real) Cartan subalgebra c ⊂ g

containing S. Denote by cC the complex vector subspace of gC generated by c, by △ = △(gC, cC) the root system of gC relative

to cC, by gα the root subspace of gC for α ∈ △, and by Hα (α ∈ △) the unique element of cC such that α(X) = BgC(Hα, X)

for all X ∈ cC. Taking S ∈ cC and σ(cC) = cC into account, we define a symmetric closed subset ▲ ⊂ △ and an involutive

transformation σ∗ : △ → △ by

▲ := {γ ∈ △ | γ(S) = 0}, (σ∗α)(X) := α(σ(X)) for α ∈ △ and X ∈ cC, 0⃝

respectively. Then it turns out that gC = cC ⊕
⊕

α∈△ gα, cgC(S) = cC ⊕
⊕

γ∈▲ gγ , and hC = cgC(S) is a complex reductive

Lie algebra including cC. In addition, since S is semisimple and [S, q±] ⊂ q± we have q± = cq±(S)⊕ adS(q±) = hC ⊕ [S, q±],

and there exist subsets △+
q ,△−

q ⊂ △ such that

△ = △+
q ⨿ ▲⨿△−

q , [S, q+] =
⊕

δ∈△+
q
gδ, [S, q−] =

⊕
β∈△−

q
gβ 1⃝

by [cC, q
±] ⊂ q± and Lemma 10.4.3-(5), (3). Remark that the cardinal number |△+

q | is equal to |△−
q | (because

⊕
δ∈△+

q
gδ =

[S, q+] = σ([S, q−]) =
⊕

β∈△−
q
gσ∗β follows from 1⃝, σ(S) = S and Lemma 10.4.3-(4)), and that σ∗(△−

q ) = △+
q , σ

∗(△+
q ) = △−

q

and σ∗(▲) = ▲.
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Now, c′C, cC are Cartan subalgebras of hC and hC is a complex reductive Lie algebra. cf. (10.4.4). For this reason there

exists an inner automorphism ψ of hC such that ψ(c′C) = cC. One can regard this ψ as an inner automorphism of gC, so

b := ψ(b′) is a complex Borel subalgebra of gC. Besides, it follows from [hC, b
′] ⊂ [hC, q

+] ⊂ q+ that ψ(b′) ⊂ q+, so that

cC ⊂ b ⊂ q+ 2⃝

by cC = ψ(c′C) ⊂ ψ(b′). Relative to this Borel subalgebra b ⊂ gC, we fix the set △+ (⊂ △(gC, cC)) of positive roots and put

△− := −△+. Then b ⊂ q+ = hC ⊕ [S, q+] and 1⃝ yield △+ − ▲ ⊂ △+
q . Accordingly we conclude

△+ − ▲ = △+
q , △− − ▲ = △−

q

from △ = (△+ − ▲) ⨿ ▲ ⨿ (△− − ▲), 1⃝, |△+ − ▲| = |△− − ▲| and |△+
q | = |△−

q |. Summarizing the statements above we

show that
hC = cC ⊕

⊕
γ∈▲ gγ , [S, q+] =

⊕
δ∈△+−▲ gδ, [S, q−] =

⊕
β∈△−−▲ gβ ,

gC = cgC(S)⊕ adS(gC), cgC(S) = hC, adS(gC) = [S, q+]⊕ [S, q−], q+ = hC ⊕ [S, q+], q− = hC ⊕ [S, q−],

σ∗(▲) = ▲, σ∗(△+ − ▲) = △− − ▲, σ∗(△− − ▲) = △+ − ▲.
3⃝

Let us put Z :=
∑
δ∈△+−▲Hδ. Then Z belongs to cC and it follows form

[
hC, [S, q

+]
]
⊂ [S, q+],

[
[S, q+], [S, q+]

]
⊂ [S, q+]

that for each α ∈ △,

α(Z) is


the zero if α ∈ ▲,
a positive real number if α ∈ △+ − ▲,
a negative real number if α ∈ △− − ▲,

cf. Corollary 5.101 in Knapp [17, p.330].2 Therefore 3⃝ and 0⃝ assure that for each α ∈ △, (σ∗α)(Z) = (σ∗α)(Z) and

α
(
Z − σ(Z)

)
is


= 0 if α ∈ ▲,
> 0 if α ∈ △+ − ▲,
< 0 if α ∈ △− − ▲.

4⃝

Setting T := i
(
Z−σ(Z)

)
∈ cC, we demonstrate that T = iZ+σ(iZ) is an element of g = {W ∈ gC |σ(W ) =W}; moreover, T

is elliptic, hC = g0, [S, q±] =
⊕

λ>0 g
±λ and q± =

⊕
ν≥0 g

±ν by 4⃝, 3⃝. In addition, it follows from cgC(S) = hC = g0 = cgC(T )

that h = cg(S) =
(
g ∩ cgC(S)

)
=
(
g ∩ cgC(T )

)
= cg(T ).

We will state Theorem 10.4.7 after proving

Lemma 10.4.6. Let T have the properties in Proposition 10.4.5. Then, H coincides with CG(T ).

Proof. At the beginning of this subsection one has known CG(S)0 ⊂ H ⊂ CG(S). Therefore Proposition 10.4.5 and Lemma

7.3.3 give rise to

CG(T ) = CG(S)0 ⊂ H ⊂ CG(S).

Hence, the rest of proof is to confirm that H ⊂ CG(T ). Let us denote by Ĝ the adjoint group of g, set Ĥ := AdH, and

identify g with ĝ via g ∋ X 7→ adX ∈ ĝ. Our first aim is to prove

Ĥ ⊂ CĜ(T ). 1⃝
2Indeed; let ⟨α, β⟩ := BgC (Hα, Hβ) for α, β ∈ △. Define ζ (resp. wα) in a similar way to (8.1.3) (resp. (8.1.4)).

• In case of α ∈ ▲, it follows from Eα −E−α ∈ hC and
[
hC, [S, q

+]
]
⊂ [S, q+] that Adwα(gδ) = gζ([wα])δ, ζ([wα])δ ∈ △+ −▲ for all δ ∈ △+ −▲.

Therefore α(Z) = α
(∑

δ∈△+−▲ Hδ

)
=

∑
δ∈△+−▲⟨α, δ⟩ =

∑
δ∈△+−▲

⟨
ζ([wα])α, ζ([wα])δ

⟩
= −

∑
δ∈△+−▲

⟨
α, ζ([wα])δ

⟩
= −α(Z). This implies

that α(Z) = 0.

• Suppose that α ∈ △+ −▲. If δ′ ∈ △+ −▲ and ⟨δ′, α⟩ < 0, then one has 2⟨δ′, α⟩/⟨α, α⟩ = −1, −2 or −3 (because of δ′ ̸= −α) and accordingly

ζ([wα])δ′ = δ′ + α, δ′ + 2α or δ′ + 3α. At any rate ζ([wα])δ′ belongs to △+ − ▲ since Eα, Eδ′ ∈ [S, q+] and
[
[S, q+], [S, q+]

]
⊂ [S, q+]. Besides,

one shows
⟨
ζ([wα])δ′, α

⟩
= −⟨δ′, α⟩ > 0. Consequently it turns out that

α(Z) =
∑

δ′∈△+−▲ with ⟨δ′,α⟩<0⟨δ
′, α⟩+

∑
δ0∈△+−▲ with ⟨δ0,α⟩=0⟨δ0, α⟩+

∑
δa∈△+−▲ with ⟨δa,α⟩>0⟨δa, α⟩

=
∑

δ′∈△+−▲ with ⟨δ′,α⟩<0

⟨
δ′ + ζ([wα])δ′, α

⟩
+

∑
δ∈△+−▲ with ⟨δ,α⟩>0, ζ([wα])δ ̸∈△+−▲⟨δ, α⟩

=
∑

δ∈△+−▲ with ⟨δ,α⟩>0, ζ([wα])δ ̸∈△+−▲⟨δ, α⟩ > 0.

Here we remark that α ∈ △+ − ▲, ⟨α, α⟩ > 0, ζ([wα])α ̸∈ △+ − ▲.
• If α ∈ △− − ▲, then we conclude α(Z) < 0 from −α ∈ △+ − ▲.
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Set ĜC as the adjoint group of gC. In view of Lemma 10.4.3-(1) and Proposition 10.4.5 we see that

Ĥ ⊂
(
NĜC

(
⊕

ν≥0 g
ν) ∩NĜC

(
⊕

ν≥0 g
−ν)
)
,

where we identify gC = ĝC in a similar way. That, together with Proposition 8.2.1-(vii), yields Ĥ ⊂ CĜC
(T ), and hence

Ĥ ⊂ (Ĝ ∩ CĜC
(T )) = CĜ(T ). Thus 1⃝ holds. From now on, let us confirm that H ⊂ CG(T ). For any h ∈ H, it follows that

Adh ∈ Ĥ, and 1⃝ implies Adh ◦ adT ◦ (Adh)−1 = adT . Hence we have Adh(T ) = T , and H ⊂ CG(T ).

By summarizing the statements above and by Proposition 7.3.4 we conclude

Theorem 10.4.7 (cf. Dorfmeister-Guan [12, p.335]). Let G be a connected real semisimple Lie group, and let H be a

closed subgroup of G. Suppose the homogeneous space G/H to admit a G-invariant complex structure J and a G-invariant

symplectic form Ω such that

Ω(JA, JB) = Ω(A,B) for all A,B ∈ X(G/H).

Then, there exists an elliptic element T ∈ g satisfying

H = CG(T ).

Therefore any homogeneous pseudo-Kähler manifold of G is an elliptic adjoint orbit, and it is always simply connected.

10.5 Invariant complex structures on an elliptic orbit

It is known that there are several kinds of invariant complex structures on an elliptic adjoint orbit. One can understand that

from the following example:

Example 10.5.1. Let G := SU(2, 1) = {X ∈ SL(3,C) | tXI2,1X = I2,1} and

T :=

 i 0 0

0 0 0

0 0 −i

,

where I2,1 =

−1 0 0

0 −1 0

0 0 1

. Then it turns out that

g = su(2, 1) =


 ia1 b+ ic ix− y

−b+ ic ia2 iz − w

−ix− y −iz − w ia3

 a1, a2, a3, b, c, x, y, z, w ∈ R,
a1 + a2 + a3 = 0


and T is an elliptic element of g; besides,

CG(T ) =


 ϵ1 0 0

0 ϵ2 0

0 0 ϵ3

∈ G

 = S(U(1)× U(1)× U(1)),

adT (g) =


 0 b+ ic ix− y

−b+ ic 0 iz − w

−ix− y −iz − w 0

 b, c, x, y, z, w ∈ R


and g = cg(T )⊕ adT (g). Now, let us define linear mappings ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6 : g → adT (g) by

ȷ1

 ia1 b+ ic ix− y

−b+ ic ia2 iz − w

−ix− y −iz − w ia3

 :=

 0 ib− c −x− iy

ib+ c 0 −z − iw

−x+ iy −z + iw 0

, ȷ2 := −ȷ1,

ȷ3

 ia1 b+ ic ix− y

−b+ ic ia2 iz − w

−ix− y −iz − w ia3

 :=

 0 ib− c −x− iy

ib+ c 0 z + iw

−x+ iy z − iw 0

, ȷ4 := −ȷ3,
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ȷ5

 ia1 b+ ic ix− y

−b+ ic ia2 iz − w

−ix− y −iz − w ia3

 :=

 0 ib− c x+ iy

ib+ c 0 z + iw

x− iy z − iw 0

, ȷ6 := −ȷ5,

respectively. By a direct computation we see that all the mappings ȷa (1 ≤ a ≤ 6) satisfy the conditions (c.1) through (c.4) in

Proposition 10.2.4, and therefore the elliptic orbitG/CG(T ) = SU(2, 1)/S(U(1)×U(1)×U(1)) admits sixG-invariant complex

structures Ja. Incidentally, if Ω is a G-invariant symplectic form on G/CG(T ) constructed from ω(X,Y ) := Bg(T, [X,Y ])

(X,Y ∈ g), then all (Ja,Ω) are G-invariant pseudo-Kählerian structures on G/CG(T ) and the signatures of pseudo-Kähler

metrics ga(A,B) := Ω(A, JaB) (A,B ∈ X(G/CG(T ))) are as follows:

Signature (+,+,+,+,+,+) (−,−,+,+,+,+) (−,−,−,−,+,+) (−,−,−,−,−,−)

g6 g1, g4 g2, g3 g5

This implies that g6 is a G-invariant Kähler metric on G/CG(T ).





Chapter 11

Homogeneous holomorphic vector bundles

over elliptic orbits

In this chapter we deal with continuous representations of real semisimple Lie groups concerning homogeneous holomorphic

vector bundles over elliptic orbits. Here the definition of continuous representation is as follows:

Definition 11.0.1. Let G be a Lie group, V a Fréchet space over C, and ϱ : G→ GL(V), g 7→ ϱ(g), a homomorphism, where

GL(V) is the general linear group on V and it does not matter whether ϱ is continuous here. Then, ϱ is called a continuous

representation of G on V, if the mapping πϱ : G× V → V, (g, ξ) 7→ ϱ(g)ξ, is continuous.

11.1 A realization of elliptic orbits as domains in complex flag manifolds

In this section we realize elliptic (adjoint) orbits as domains in complex flag manifolds.

Let GC be a connected complex semisimple Lie group, let G be a connected closed subgroup of GC such that g is a real

form of gC, and let T be a non-zero elliptic element of g. Let us define closed subgroups L ⊂ G and LC ⊂ GC by L := CG(T )

and LC := CGC(T ), respectively, and set

gλ := {X ∈ gC | adT (X) = iλX} for λ ∈ R, u± :=
⊕

λ>0 g
±λ, U± := exp u±, Q± := NGC(

⊕
ν≥0 g

±ν), (11.1.1)

where exp : gC → GC is the exponential mapping. Then AdG(T ) = G/L is an elliptic orbit, and GC/Q
± are complex flag

manifolds due to Proposition 8.2.1-(iii). By use of the mapping ι in Lemma 11.1.2-(2) below, we realize G/L as a simply

connected domain in GC/Q
±.

Lemma 11.1.2. Let s = + or −.

(1) L coincides with G ∩Qs.

(2) ι : G/L→ GC/Q
s, gL 7→ gQs, is a G-equivariant real analytic diffeomorphism of G/L onto a simply connected domain

in GC/Q
s.

(3) GQs is a domain in GC.

Proof. (1). By Lemma 7.2.8-(2) and L = CG(T ) one has L ⊂ NGC(
⊕

ν≥0 g
sν) = Qs; thus L ⊂ G ∩Qs. Let us confirm that

the converse inclusion also holds. Take any x ∈ G∩Qs. Proposition 8.2.1-(iii), (i) and x ∈ Qs imply that Qs = NGC(lC ⊕ us)

and there exists a unique (z, Y ) ∈ LC × us satisfying

x = z expY.

We want to show that expY = e (the unit element of GC). Let σ denote the conjugation of gC with respect to g. On the

one hand, x ∈ G, T ∈ l = lC ∩ g, LC = CGC(T ) and Q
s = NGC(lC ⊕ us) yield

g ∋ Adx−1(T ) = (Ad exp(−Y )z−1)T = Ad exp(−Y )T ∈ lC ⊕ us.

On the other hand, Adx−1(T ) ∈ g implies that Adx−1(T ) = σ
(
Adx−1(T )

)
, so that Ad exp(−Y )T = σ

(
Ad exp(−Y )T

)
∈

σ(lC ⊕ us) ⊂ lC ⊕ u−s by Lemma 7.2.8-(5′). Consequently we assert that

Ad exp(−Y )T ∈ (lC ⊕ us) ∩ (lC ⊕ u−s) = lC.

109
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Therefore lC ∋ −T +Ad exp(−Y )T =
∑∞
n=1(1/n!)(− adY )nT ∈ us, and hence

Ad exp(−Y )T = T.

This yields expY ∈ (LC ∩Us) = {e}. From expY = e we obtain x = z expY = z ∈ (LC ∩G) = L, and G∩Qs ⊂ L. For this

reason L = G ∩Qs holds.

(2). We conclude (2) from (1), dimRG/L = dimR u+ = dimRGC/Q
s and Proposition 7.3.4.

(3). Denote by πC the projection of GC onto GC/Q
s. It is immediate from (2) that GQs = π−1

C
(
ι(G/L)

)
is an open subset

of GC. Moreover, GQs is connected because the product mapping G×Qs ∋ (g, q) 7→ gq ∈ GQs is surjective continuous and

both G and Qs are connected.

Remark 11.1.3.

(i) Henceforth, we assume that the elliptic orbit G/L is a simply connected domain in the complex flag manifold GC/Q
−

via the G-equivariant mapping ι : G/L → GC/Q
−, gL 7→ gQ−. By inducing a G-invariant complex structure J on

G/L = ι(G/L) from GC/Q
− = (GC/Q

−, J−), we consider G/L as a homogeneous complex manifold of G. Here we

refer to Remark 1.2.3 for the GC-invariant complex structure J− on GC/Q
−.

the open unit disk

G/L

the unit sphere

GC/Q
−

the hemisphere (without boundary)

ι(G/L)

(ii) In general, there are several kinds of invariant complex structures on the elliptic orbit G/L (e.g. Example 10.5.1). In

this chapter we deal with the complex structure J on G/L induced by ι : G/L→ GC/Q
−, gL 7→ gQ−.

11.2 Homogeneous holomorphic vector bundles over elliptic orbits

The setting of Section 11.1 remains valid in this section.

Let V be a finite-dimensional complex vector space, and let ρ : Q− → GL(V), q 7→ ρ(q), be a holomorphic homomorphism.

Then, one can take the homogeneous holomorphic vector bundle GC ×ρ V over the complex flag manifold GC/Q
− associated

with ρ, and its restriction ι♯(GC ×ρ V) to the domain G/L ⊂ GC/Q
−. Moreover, one may assume that

VGC/Q− =

{
h : GC → V

(i) h is holomorphic,

(ii) h(aq) = ρ(q)−1
(
h(a)

)
for all (a, q) ∈ GC ×Q−

}
,

VG/L =

{
ψ : GQ− → V

(i) ψ is holomorphic,

(ii) ψ(xq) = ρ(q)−1
(
ψ(x)

)
for all (x, q) ∈ GQ− ×Q−

} (11.2.1)

are the complex vector spaces of holomorphic cross-sections of the bundles GC×ρV and ι♯(GC×ρV), respectively (cf. Chapter

3). Let us define a homomorphism ϱ : G→ GL(VG/L), g 7→ ϱ(g), as follows:(
ϱ(g)ψ

)
(x) := ψ(g−1x) for ψ ∈ VG/L and x ∈ GQ−. (11.2.2)

In this section, we first prove that this ϱ is a continuous representation of the Lie group G on VG/L, next show that every

K-finite vector φ ∈ VG/L (for the continuous representation ϱ) can be continued analytically from U+ ∩ GQ− to U+, and

finally provide a sufficient condition for the vector space VG/L to be finite-dimensional.

Remark 11.2.3.

(1) For the sake of simplicity, we write ι♯(GC×ρV), VGC/Q− , and VG/L for (GC×ρV)G/L, V(GC×ρV), and V(GC×ρV)G/L,
respectively. cf. (2.5.1), (3.2.3), (3.2.6).

(2) Corollary 8.2.3-(1) implies that GC/Q
− is a connected compact complex manifold. Thus, one knows dimC VGC/Q− <∞.

e.g. Kodaira [20, p.161].
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11.2.1 A continuous representation of a Lie group

We equip the complex vector space VG/L with the Fréchet metric d in (4.1.3), and hereafter consider VG/L as a Fréchet

space over C (cf. Proposition 4.3.1). Our goal in this subsection is to prove that πϱ : G× VG/L → VG/L, (g, ψ) 7→ ϱ(g)ψ, is

continuous (see Proposition 11.2.8). We are going to verify three lemmas first, and then obtain the goal.

Lemma 11.2.4. The following two items hold for a given ψ ∈ VG/L :

(1) For any ϵ > 0 and any non-empty compact subset E ⊂ GQ−, there exists an open neighborhood U of the unit e ∈ G

such that g ∈ U implies dE
(
ϱ(g)ψ,ψ

)
< ϵ. Here we refer to (4.1.2) for dE.

(2) The mapping G ∋ g 7→ ϱ(g)ψ ∈ VG/L is continuous at e ∈ G, namely, for every ϵ > 0 there exists an open neighborhood

U of e ∈ G such that g ∈ U implies d
(
ϱ(g)ψ,ψ

)
< ϵ.

Proof. (1). The mapping G×GQ− ∋ (g, q) 7→ g−1q ∈ GQ− is continuous, ψ : GQ− → V is continuous, and so the mapping

f : G×GQ− → V, (g, q) 7→ ψ(g−1q), is continuous. Therefore, for each y ∈ E there exist an open neighborhood Uy of e ∈ G

and an open neighborhood O′
y of y ∈ GQ− such that (g, z′) ∈ Uy ×O′

y implies

∥ψ(g−1z′)− ψ(y)∥ = ∥f(g, z′)− f(e, y)∥ < ϵ/4 1⃝

because f is continuous at (e, y). Here ∥ · ∥ is a norm on the vector space V. Since O′
y is an open neighborhood of y ∈ GQ−

and ψ : GQ− → V is continuous at the y, one can choose an open neighborhood Oy of y ∈ O′
y so that z ∈ Oy implies

∥ψ(y)− ψ(z)∥ < ϵ/4. 2⃝

Since E ⊂
∪
y∈E Oy and E ⊂ GQ− is compact, there exist finite elements y1, y2, . . . , yk ∈ E satisfying E ⊂

∪k
j=1Oyj .

In this setting, we put U :=
∩k
j=1 Uyj , and see that U is an open neighborhood of e ∈ G. Furthermore, for an arbitrary

(g, w) ∈ U × E, there exists a 1 ≤ i ≤ k such that w ∈ Oyi ⊂ O′
yi , and it follows from g ∈ (

∩k
j=1 Uyj ) ⊂ Uyi , 1⃝ and 2⃝ that

∥∥(ϱ(g)ψ)(w)− ψ(w)
∥∥ (11.2.2)

= ∥ψ(g−1w)− ψ(w)∥ ≤ ∥ψ(g−1w)− ψ(yi)∥+ ∥ψ(yi)− ψ(w)∥ < ϵ/4 + ϵ/4 = ϵ/2.

This and (4.1.2) assure that dE
(
ϱ(g)ψ,ψ

)
≤ ϵ/2 < ϵ for all g ∈ U . Hence (1) holds.

(2) follows by (1) and Proposition 4.3.1-(3).

Lemma 11.2.4-(2) leads to

Corollary 11.2.5. For each ψ ∈ VG/L, the mapping G ∋ g 7→ ϱ(g)ψ ∈ VG/L is continuous.

Proof. Fix any g0 ∈ G and ϵ > 0. Since ψ0 := ϱ(g0)ψ is an element of VG/L, Lemma 11.2.4-(2) enables us to obtain an open

neighborhood U ′ of e ∈ G such that g′ ∈ U ′ implies d
(
ϱ(g′)ψ0, ψ0

)
< ϵ. Setting U := Rg0(U

′) one can assert that U is an

open neighborhood of g0 ∈ G; moreover, g ∈ U implies

d
(
ϱ(g)ψ, ϱ(g0)ψ

)
= d
(
ϱ(gg−1

0 )ψ0, ψ0

)
< ϵ

because of gg−1
0 ∈ U ′. Thus the mapping G ∋ g 7→ ϱ(g)ψ ∈ VG/L is continuous at the point g0.

The following lemma, together with Corollary 11.2.5, tells us that πϱ : (g, ψ) 7→ ϱ(g)ψ is a separately continuous linear

action of G on VG/L:

Lemma 11.2.6. For each g ∈ G, the linear mapping ϱ(g) : VG/L → VG/L, ψ 7→ ϱ(g)ψ, is uniformly continuous.

Proof. By virtue of Proposition 4.3.1-(3) it suffices to prove that VG/L ∋ ψ 7→ ϱ(g)ψ ∈ VG/L is uniformly continuous in the

topology of uniform convergence on compact sets. For any ϵ > 0 and any non-empty compact subset E ⊂ GQ−, we set

E′ := g−1E and δ := ϵ. Then, E′ is a non-empty compact subset of GQ− and δ > 0. In addition, it follows from (4.1.2) and

(11.2.2) that dE′(ψ1, ψ2) < δ and ψ1, ψ2 ∈ VG/L imply

dE
(
ϱ(g)ψ1, ϱ(g)ψ2

)
= sup

{
∥ψ1(g

−1y)− ψ2(g
−1y)∥ : y ∈ E

}
= sup

{
∥ψ1(z)− ψ2(z)∥ : z ∈ g−1E

}
= dE′(ψ1, ψ2) < δ = ϵ.

Hence, the mapping VG/L ∋ ψ 7→ ϱ(g)ψ ∈ VG/L is uniformly continuous.
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We will show Proposition 11.2.8 after proving

Lemma 11.2.7. For any non-empty compact subset C of G and any open neighborhood B of 0 ∈ VG/L, there exists an open

neighborhood A of 0 ∈ VG/L such that ϱ(g)ψ ∈ B for all (g, ψ) ∈ C ×A.

Proof. For ϵ > 0 we set an open neighborhood Bϵ of 0 ∈ VG/L as Bϵ := {ψ ∈ VG/L | d(0, ψ) < ϵ}, and put Dϵ := Bϵ (the

closure of Bϵ in VG/L).
Since B is an open neighborhood of 0 ∈ VG/L and the addition VG/L × VG/L ∋ (ψ1, ψ2) 7→ ψ1 + ψ2 ∈ VG/L is continuous

at (0, 0), there exists an r > 0 such that

Dr +Dr ⊂ B. (a)

Lemma 4.1.4-(3) assures that

tBr ⊂ Br, tDr ⊂ Dr for all −1 ≤ t ≤ 1, (b)

and it follows from (b) that

Br ⊂ 2Br ⊂ · · · ⊂ nBr ⊂ (n+ 1)Br ⊂ · · · . (c)

Here λBr means {λψ |ψ ∈ Br} for λ ∈ R. Furthermore, one can show

VG/L =
∪∞
n=1 nBr. (d)

Indeed; for any ψ0 ∈ VG/L, the mapping C ∋ α 7→ αψ0 ∈ VG/L is continuous at 0 ∈ C, and therefore there exists an m ∈ N
such that (1/m)ψ0 ∈ Br, since Br is an open neighborhood of 0 ∈ VG/L and lim

n→∞
(1/n) = 0. Hence ψ0 = m

(
(1/m)ψ0

)
∈ mBr.

This yields VG/L ⊂
∪∞
n=1 nBr, and (d) follows.

Now, let us define

Fn :=
∩
g∈C{ψ ∈ VG/L | ϱ(g)ψ ∈ nDr} 1⃝

for n ∈ N. For each g ∈ C, Lemma 11.2.6 ensures that {ψ ∈ VG/L | ϱ(g)ψ ∈ nDr} = ϱ(g)−1(nDr) is a closed subset of VG/L
because nDr ⊂ VG/L is closed. Thus it follows from 1⃝ that

Fn is a closed subset of VG/L for each n ∈ N. 2⃝

We want to show VG/L =
∪∞
n=1 Fn. For an arbitrary ψ0 ∈ VG/L, the mapping G ∋ g 7→ ϱ(g)ψ0 ∈ VG/L is continuous by

Corollary 11.2.5. Accordingly {ϱ(g)ψ0 | g ∈ C} is a compact subset of VG/L. This, combined with (d) and (c), enables us to

find a k ∈ N such that {ϱ(g)ψ0 | g ∈ C} ⊂ kBr. Then, Br ⊂ Dr and 1⃝ give rise to ψ0 ∈ Fk ⊂
∪∞
n=1 Fn. For this reason we

conclude

VG/L =
∪∞
n=1 Fn. 3⃝

By 2⃝, 3⃝ and Proposition 4.4.1, there exist an N ∈ N, a ψN ∈ FN and an open subset ON ⊂ VG/L which satisfy

ψN ∈ ON ⊂ FN . 4⃝

Setting A′ := ON − ψN , we see that A′ is an open neighborhood of 0 ∈ VG/L. Moreover, for any (g, ψ′) ∈ C ×A′, it follows

from 4⃝, 1⃝ and (a) that

ϱ(g)ψ′ = ϱ(g)
(
ψ′ + ψN ) + ϱ(g)(−ψN ) ∈ ϱ(g)(FN ) + ϱ(g)(−ψN ) ⊂ NDr +NDr ⊂ NB,

where we note that ϱ(g)(−ψN ) = −ϱ(g)(ψN ) ∈ −ϱ(g)(FN ) ⊂ −NDr = N(−Dr) ⊂ NDr due to (b). Hence we can deduce

the conclusion from A := (1/N)A′.

Let us show

Proposition 11.2.8. The ϱ in (11.2.2) is a continuous representation of the Lie group G on the Fréchet space VG/L. Here

we refer to (11.2.1) for VG/L, and equip VG/L with the Fréchet metric d in (4.1.3).

Proof. Let us prove that πϱ : G× VG/L → VG/L, (g, ψ) 7→ ϱ(g)ψ, is continuous. Take any element (g0, ψ0) ∈ G× VG/L and

any open neighborhood O of πϱ(g0, ψ0) = ϱ(g0)ψ0 ∈ VG/L. Since the addition VG/L × VG/L ∋ (ψ1, ψ2) 7→ ψ1 + ψ2 ∈ VG/L is

continuous at
(
0, ϱ(g0)ψ0

)
, there exist open neighborhoods B of 0 ∈ VG/L and U of ϱ(g0)ψ0 ∈ VG/L such that

B + U ⊂ O. (a)
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Corollary 11.2.5 assures that G ∋ g 7→ ϱ(g)ψ0 ∈ VG/L is continuous at g0, so there exists an open neighborhood U ′ of g0 ∈ G

such that

ϱ(g′)ψ0 ∈ U for all g′ ∈ U ′. (b)

Besides, since G is a locally compact Hausdorff space, there exists an open neighborhood U of g0 ∈ G so that

U ⊂ U ′ and the closure U is a compact subset of G. (c)

By (c) and Lemma 11.2.7, there exists an open neighborhood A of 0 ∈ VG/L such that

ϱ(g)ψ ∈ B for all (g, ψ) ∈ U ×A. (d)

Putting V := A+ψ0, we assert that V is an open neighborhood of ψ0 ∈ VG/L. In addition, for any (g, ψ) ∈ U ×V we obtain

πϱ(g, ψ) = ϱ(g)ψ = ϱ(g)(ψ − ψ0) + ϱ(g)ψ0 ∈ ϱ(U)(A) + ϱ(U)ψ0 ⊂ B + U ⊂ O

from (d), (c), (b) and (a). Consequently, πϱ is continuous at (g0, ψ0).

11.2.2 K-finite vectors

Since the element T ∈ g is elliptic, Lemma 7.2.4 enables us to have a Cartan decomposition g = k⊕ p such that

T ∈ k,

where k is a maximal compact subalgebra of g. Noting that the center Z(G) of G is finite due to Z(G) ⊂ Z(GC) and that

gu := k⊕ip is a compact real form of gC, we denote by K and Gu the maximal compact subgroups of G and GC corresponding

to the subalgebras k ⊂ g and gu ⊂ gC, respectively. In addition, let θ be the (anti-holomorphic) Cartan involution of GC so

that

Gu = {gu ∈ GC | θ(gu) = gu}.

Fix a maximal torus ihR of the compact semisimple Lie algebra gu containing the T , and take the (non-zero) root system

△ of gC relative to hC, where hC is the complex vector subspace of gC generated by ihR. For each α ∈ △, we denote by gα

the root subspace of gC, and suppose vectors E±α ∈ g±α to satisfy (8.1.1). Letting ▲ = {γ ∈ △ | γ(T ) = 0}, we are going to

demonstrate three lemmas and two propositions.

Lemma 11.2.9. Let kC be the complex subalgebra of gC generated by k. For a root β ∈ △−▲, the following (a), (b) and (c)

are equivalent:

(a) gβ ⊂ kC, (b) Eβ ∈ kC, (c) (Eβ − E−β) ∈ k.

Therefore, wβ = exp(π/2)(Eβ − E−β) belongs to K ∩NGu
(ihR) whenever one of the conditions (a), (b) and (c) holds.

Proof. Since (a)⇔(b) is obvious, we only confirm (b)⇔(c). cf. Subsection 8.1.3 for wβ ∈ NGu(ihR).

(b)⇒(c). This follows by (8.1.2), θ∗(kC) ⊂ kC and k = {X ∈ kC | θ∗(X) = X}. Here we remark that (8.1.2) always holds

for any vector Eα with (8.1.1).

(c)⇒(b). Suppose that (Eβ − E−β) ∈ k. Then, from T ∈ k one obtains

β(T )(Eβ + E−β) = [T,Eβ − E−β ] ∈ [k, k] ⊂ k;

and so 0 ̸= β(T ) ∈ iR yields (Eβ + E−β) ∈ ik. Hence Eβ = (1/2)(Eβ − E−β + Eβ + E−β) ∈ k+ ik ⊂ kC.

Let Π△ be a fundamental root system of △ satisfying (8.1.5), and let △+ be the set of positive roots relative to Π△. Let

us suppose that △+−▲ consists of r-roots β1, β2, . . . , βr (r = dimC u+). Then, it turns out that {Eβj
}rj=1 is a complex basis

of u+ =
⊕

α∈△+−▲ gα =
⊕r

j=1 gβj
, and Proposition 8.2.1-(i) allows us to identify U+ with Cr via

U+ ∋ exp(z1Eβ1 + z2Eβ2 + · · ·+ zrEβr ) ↔ (z1, z2, . . . , zr) ∈ Cr. (11.2.10)

Remark that z1, z2, . . . , zr is the canonical coordinates of the first kind associated with {Eβj}rj=1 ⊂ u+. Setting ωj := βj(−iT )
for 1 ≤ j ≤ r, one has βj(T ) = iωj , ωj > 0 and

Ad(exp tT )Eβj
= eiωjtEβj

(1 ≤ j ≤ r) (11.2.11)

for all t ∈ R. About these ω1, ω2, . . . , ωr > 0 we assert
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Lemma 11.2.12. For a given ϑ ∈ R, the number of non-negative integer solutions (n1, n2, . . . , nr) to the equation

ϑ = ω1n1 + ω2n2 + · · ·+ ωrnr

is only finite or zero.

Proof. If (n1, n2, . . . , nr) is a non-negative integer solution to the equation, then it follows from ωj > 0 (1 ≤ j ≤ r) that

ϑ− ωknk = ω1n1 + · · ·+ ωk−1nk−1 + ωk+1nk+1 + · · ·+ ωrnr ≥ 0, so that 0 ≤ nk ≤ ϑ/ωk, nk ∈ Z for all 1 ≤ k ≤ r.

Now, let (VG/L)K be the set of K-finite vectors in VG/L for the continuous representation ϱ of G on VG/L, that is,

(VG/L)K := {φ ∈ VG/L | dimC spanC{ϱ(k)φ : k ∈ K} <∞}. (11.2.13)

Note that (VG/L)K is a ϱ(K)-invariant complex vector subspace of VG/L. With this notation (11.2.13) we show

Lemma 11.2.14.

(1) For each φ ∈ (VG/L)K we set a ϱ(K)-invariant complex vector subspace Vφ ⊂ VG/L as

Vφ := spanC{ϱ(k)φ : k ∈ K}.

Then, there exist a complex basis {φa}
kφ
a=1 of Vφ and µ1, µ2, . . . , µkφ ∈ R such that

ϱ(exp tT )φa = eiµatφa

for all 1 ≤ a ≤ kφ = dimC Vφ and t ∈ R.

(2) There exist a complex basis {vb}mb=1 of V and θ1, θ2, . . . , θm ∈ R such that

ρ(exp tT )vb = eiθbtvb

for all 1 ≤ b ≤ m = dimC V and t ∈ R.

Proof. Since the center Z(G) is finite and T ̸= 0, Lemma 7.2.1 implies that S1 = {exp tT : t ∈ R} is a 1-dimensional torus.

(1). It follows from T ∈ k that S1 ⊂ K. Therefore, since Vφ is ϱ(K)-invariant and kφ = dimC Vφ <∞, one can decompose

Vφ into a direct sum of 1-dimensional ϱ(S1)-invariant complex vector subspaces: Vφ = V1⊕V2⊕· · ·⊕Vkφ . Hence there exist

a complex basis {φa}
kφ
a=1 of Vφ and µ1, µ2, . . . , µkφ ∈ R such that φa ∈ Va and

ϱ(exp tT )φa = eiµatφa

for all 1 ≤ a ≤ kφ = dimC Vφ and t ∈ R.
(2). One can conclude (2) by arguments similar to those above, S1 ⊂ L ⊂ Q−, V being ρ(Q−)-invariant and m =

dimC V <∞.

We are in a position to demonstrate

Proposition 11.2.15. Let φ ∈ (VG/L)K and Vφ = spanC{ϱ(k)φ : k ∈ K}.

(i) Let {φa}
kφ
a=1 and {vb}mb=1 be the bases of Vφ and V in Lemma 11.2.14, respectively. For x ∈ GQ− we express φa(x) ∈ V

as

φa(x) = φ1
a(x)v1 + φ2

a(x)v2 + · · ·+ φma (x)vm.

Then, for each 1 ≤ a ≤ kφ and 1 ≤ b ≤ m, there exists a unique polynomial (holomorphic) function φba
′ = φba

′(z1, . . . , zr)

on U+ = Cr of finite degree such that

φba = φba
′ on U+ ∩GQ−.

Here U+ is identified with Cr via (11.2.10), and z1, . . . , zr is the canonical coordinates of the first kind associated with

the basis {Eβj}rj=1 ⊂ u+.

(ii) For a given ϕ ∈ Vφ there exists a unique holomorphic mapping ϕ′ : U+ → V such that ϕ = ϕ′ on U+ ∩GQ−.
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Proof. (i). By Lemma 11.1.2-(3), U+ ∩GQ− is an open neighborhood of e ∈ U+. Hence the theorem of identity assures the

uniqueness of φba
′, where we remark that the restriction φba|U+∩GQ− is holomorphic since U+ is a regular complex submanifold

of GC. From now on, let us confirm the existence of φba
′. Since φba : U+ ∩GQ− → C is holomorphic, we can find an R > 0

so that the following (a1) and (a2) hold for P := {u ∈ U+ : |zj(u)| < R, 1 ≤ j ≤ r} :

(a1) P is an open subset of U+ ∩GQ− containing e, and

(a2) on P we can express φba|U+∩GQ− as

φba(z
1, z2, . . . , zr) =

∑
n1,n2,...,nr≥0

αn1n2···nr (z
1)n1(z2)n2 · · · (zr)nr

(the Taylor expansion of φba|U+∩GQ− at e = (0, 0, . . . , 0)).

Remark, it follows from (11.2.11) that sPs−1 ⊂ P for all s ∈ S1 = {exp tT : t ∈ R}. For any t ∈ R and u ∈ P we obtain∑m
b=1 e

iθbtφba(u)vb = ρ(exp tT )
(∑m

b=1 φ
b
a(u)vb

)
(∵ Lemma 11.2.14-(2))

= ρ(exp tT )
(
φa(u)

)
= φa

(
u exp(−tT )

)
(∵ φa ∈ VG/L, (11.2.1)-(ii))

(11.2.2)
=

(
ϱ(exp tT )φa

)(
(exp tT )u exp(−tT )

)
= (eiµatφa)

(
(exp tT )u exp(−tT )

)
(∵ Lemma 11.2.14-(1))

=
∑m
b=1 e

iµatφba
(
(exp tT )u exp(−tT )

)
vb.

This provides us with

ei(θb−µa)tφba(u) = φba
(
(exp tT )u exp(−tT )

)
. 1⃝

If u = exp(z1Eβ1 + z2Eβ2 + · · ·+ zrEβr ), then it follows from (a2), 1⃝ and (11.2.11) that∑
n1,n2,...,nr≥0

ei(θb−µa)tαn1n2···nr
(z1)n1(z2)n2 · · · (zr)nr = ei(θb−µa)tφba(z

1, z2, . . . , zr)

= ei(θb−µa)tφba(u) = φba
(
(exp tT )u exp(−tT )

)
= φba(e

iω1tz1, eiω2tz2, . . . , eiωrtzr)

=
∑

n1,n2,...,nr≥0

ei(ω1n1+ω2n2+···+ωrnr)tαn1n2···nr (z
1)n1(z2)n2 · · · (zr)nr .

Therefore we see that

ei(θb−µa)tαn1n2···nr = ei(ω1n1+ω2n2+···+ωrnr)tαn1n2···nr

for all t ∈ R and n1, n2, . . . , nr ≥ 0. Differentiating this equation at t = 0 we deduce

(θb − µa)αn1n2···nr
= (ω1n1 + ω2n2 + · · ·+ ωrnr)αn1n2···nr

. 2⃝

Here Lemma 11.2.12 implies that the number of non-negative integer solutions (n1, n2, . . . , nr) to the equation

θb − µa = ω1n1 + ω2n2 + · · ·+ ωrnr

is only finite or zero, so that the number of the non-zero coefficients αn1n2···nr
is only finite. Consequently φba(z

1, z2, . . . , zr) =∑
n1,n2,...,nr≥0 αn1n2···nr

(z1)n1(z2)n2 · · · (zr)nr must be a polynomial function on the open subset P ⊂ U+ of finite degree.

Moreover, one can extend it as a polynomial function on U+ of finite degree, since z1, z2, . . . , zr is a global coordinate system

in U+.

(ii). For any ϕ ∈ Vφ there exist α1, . . . , αkφ ∈ C such that ϕ =
∑kφ
a=1 αaφa. Hence (ii) follows from (i).

Proposition 11.2.15-(ii) leads to

Corollary 11.2.16. For any φ ∈ (VG/L)K , there exists a unique holomorphic mapping φ′ : U+ → V such that φ = φ′ on

U+ ∩GQ−. Here we refer to (11.2.13) for (VG/L)K .

Recalling that ▲ = {γ ∈ △ | γ(T ) = 0}, we establish the following proposition which will play a role in the next subsection:

Proposition 11.2.17. Suppose that the fundamental root system Π△ satisfies not only (8.1.5) but also

gβ ⊂ kC for all β ∈ Π△ − ▲.

Then, for each φ ∈ (VG/L)K there exists a unique h ∈ VGC/Q− such that φ = h on GQ−.
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Proof. The uniqueness of h comes from the theorem of identity, Lemma 11.1.2-(3) and GC being connected. So, let us

prove the existence of h. Fix an arbitrary φ ∈ (VG/L)K . By Corollary 11.2.16 there exists a unique holomorphic mapping

φ′ : U+ → V so that φ = φ′ on U+ ∩ GQ−. Then, Proposition 8.2.1-(iv) enables us to construct a holomorphic mapping

φ′′ : U+Q− → V from

φ′′(uq) := ρ(q)−1
(
φ′(u)

)
for (u, q) ∈ U+ ×Q−.

Here it follows from φ ∈ VG/L, (11.2.1)-(ii) and (U+Q− ∩GQ−) = (U+ ∩GQ−)Q− that

φ = φ′′ on U+Q− ∩GQ−. 1⃝

For every β ∈ Π△−▲, the supposition and Lemma 11.2.9 assure wβ ∈ K, and thus ϱ(wβ)φ belongs to (VG/L)K since (VG/L)K
is ϱ(K)-invariant. Consequently, for each β ∈ Π△ − ▲ there exists a unique holomorphic mapping (ϱ(wβ)φ)

′′ : U+Q− → V

such that

ϱ(wβ)φ = (ϱ(wβ)φ)
′′ on U+Q− ∩GQ−, 2⃝

where we remark that U+Q− is connected (cf. Proposition 8.2.1-(iv)). Taking these φ′′, (ϱ(wβ)φ)
′′ : U+Q− → V (β ∈ Π△−▲)

into account, we define a holomorphic mapping φ̂ of D := U+Q− ∪ (
∪
β∈Π△−▲ w

−1
β U+Q−) into V as follows:

φ̂(x) :=

φ′′(x) if x ∈ U+Q−,

(ϱ(wβ)φ)
′′(wβx) if x ∈ w−1

β U+Q− (β ∈ Π△ − ▲).
3⃝

Here D = U+Q− ∪ (
∪
β∈Π△−▲ w

−1
β U+Q−) is a dense domain in GC by Corollary 8.3.16-(i) and Lemma 8.3.19. We need to

confirm that 3⃝ is well-defined. For any y ∈ GQ− ∩U+Q− ∩ (
∩
β∈Π△−▲ w

−1
β U+Q−) one has wβy ∈ U+Q−, wβy ∈ KGQ− ⊂

GQ−, and

(ϱ(wβ)φ)
′′(wβy)

2⃝
= (ϱ(wβ)φ)(wβy)

(11.2.2)
= φ(y)

1⃝
= φ′′(y).

Thus 3⃝ is well-defined by the theorem of identity and Lemma 8.3.27-(3). In addition, from the above computation we deduce

φ = φ̂ on D ∩GQ−. 4⃝

Now, Lemma 8.3.22-(2) and Remark 8.3.26 imply that the domain D of φ̂ includes the O in Theorem 8.3.17. Therefore there

exists a unique holomorphic mapping h : GC → V such that

φ̂ = h on D

by Theorem 8.3.17-(ii). This h satisfies

φ = h on GQ−, h(aq) = ρ(q)−1
(
h(a)

)
for all (a, q) ∈ GC ×Q−. 5⃝

Indeed; since GQ− is connected, it follows from φ̂ = h|D, 4⃝ and the theorem of identity that φ = h on GQ−. Furthermore,

it follows from φ = h|GQ− that for all (x, q) ∈ GQ− ×Q−

h(xq) = φ(xq) = ρ(q)−1
(
φ(x)

)
(∵ φ ∈ VG/L, (11.2.1)-(ii))

= ρ(q)−1
(
h(x)

)
.

This and the theorem of identity imply that h(aq) = ρ(q)−1
(
h(a)

)
for all (a, q) ∈ GC × Q−, since GQ− ⊂ GC is open.

Accordingly 5⃝ holds. By (11.2.1) and 5⃝ we conclude h ∈ VGC/Q− and this proposition.

11.2.3 A sufficient condition for VG/L to be finite-dimensional

In order to state Theorem 11.2.18, let us fix its setting.

• GC is a connected complex semisimple Lie group,

• G is a connected closed subgroup of GC such that g is a real form of gC,

• T is a non-zero elliptic element of g,

• g = k⊕ p is a Cartan decomposition of g with T ∈ k,
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• ihR is a maximal torus of gu := k⊕ ip containing T ,

• △ = △(gC, hC) is the root system of gC relative to hC, where hC is the complex vector subspace of gC generated by ihR,

• gα is the root subspace of gC for α ∈ △,

• L = CG(T ),

• Q− = NGC(
⊕

ν≥0 g
−ν), where gλ = {X ∈ gC | adT (X) = iλX} for λ ∈ R,

• kC is the complex subalgebra of gC generated by k,

• V is a finite-dimensional complex vector space,

• ρ : Q− → GL(V), q 7→ ρ(q), is a holomorphic homomorphism,

• VGC/Q− and VG/L are the complex vector spaces defined by

VGC/Q− :=

{
h : GC → V

(i) h is holomorphic,

(ii) h(aq) = ρ(q)−1
(
h(a)

)
for all (a, q) ∈ GC ×Q−

}
,

VG/L :=

{
ψ : GQ− → V

(i) ψ is holomorphic,

(ii) ψ(xq) = ρ(q)−1
(
ψ(x)

)
for all (x, q) ∈ GQ− ×Q−

}
,

respectively.

In the setting above we establish

Theorem 11.2.18 (cf. [5]1). Suppose that (S) there exists a fundamental root system Π△ of △ satisfying

(s1) α(−iT ) ≥ 0 for all α ∈ Π△, and

(s2) gβ ⊂ kC for every β ∈ Π△ with β(T ) ̸= 0.

Then, the complex vector space VGC/Q− is linear isomorphic to VG/L via

F : VGC/Q− → VG/L, h 7→ h|GQ− ;

and therefore dimC VG/L = dimC VGC/Q− <∞. Here h|GQ− stands for the restriction of h to GQ− (⊂ GC).

Proof. Needless to say, the mapping F : VGC/Q− → VG/L, h 7→ h|GQ− , is complex linear. Lemma 11.1.2-(3) and the theorem

of identity imply that F is injective because GC is connected. Consequently, the rest of proof is to demonstrate that F is

surjective, cf. Remark 11.2.3-(2). Fix an arbitrary ψ ∈ VG/L. By Propositions 11.2.8 and 6.2.1, and by (11.2.13) we deduce

that (VG/L)K is a dense subset of VG/L = (VG/L, d). So, there exists a sequence {φn}∞n=1 ⊂ (VG/L)K satisfying

lim
n→∞

d(ψ,φn) = 0.

On the one hand; the supposition (S) and Proposition 11.2.17 assure that (VG/L)K ⊂ F (VGC/Q−), and thus

{φn}∞n=1 ⊂ F (VGC/Q−).

On the other hand; since F : VGC/Q− → VG/L is injective linear, Proposition 4.1.8-(2) and dimC VGC/Q− < ∞ enable us to

see that

F (VGC/Q−) is a closed subset of VG/L.

Therefore ψ = lim
n→∞

φn ∈ F (VGC/Q−), and hence F is surjective.

Remark 11.2.19. If the supposition (S) in Theorem 11.2.18 holds for the elliptic orbit G/L, then one can clarify several

properties of G/L—for example,

1. any holomorphic function on G/L is constant,

2. the group Hol(G/L) of holomorphic automorphisms of G/L is a (finite-dimensional) Lie group,

1We improve the proof of Theorem 3.1 in [5].
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and so on.

Let us give examples which satisfy the supposition (S) in Theorem 11.2.18, and give examples which do not so.

The first example is

Example 11.2.20 (G/L = G2(2)/(SL(2,R) · T 1)). Let gC be the exceptional complex simple Lie algebra (g2)C of the type

G2. Assume that the Dynkin diagram of △ = △(gC, hC) is as follows (cf. Bourbaki [6, p.289]):

α1e
3

��
@@

α2e
2

gC:

Then Π△ = {α1, α2}, and the set △+ of positive roots is

△+ = {3α1 + 2α2, 3α1 + α2, 2α1 + α2, α1 + α2, α1, α2}. 1⃝

Let us fix a non-compact real form g ⊂ gC. Taking Chevalley’s canonical basis {H∗
α1
,H∗

α2
} ⨿ {Eα |α ∈ △} of gC we first

construct a compact real form gu ⊂ gC from

hR := spanR{H∗
α1
,H∗

α2
}, gu := ihR ⊕

⊕
α∈△ spanR{Eα − E−α} ⊕ spanR{i(Eα + E−α)},

and denote by {Z1, Z2} (⊂ hR) the dual basis of Π△ = {α1, α2}. By use of this Z2 we next construct an involutive

automorphism θ of the complex Lie algebra gC from

θ := expπ ad(iZ2). 2⃝

Since θ(gu) ⊂ gu one can get a non-compact real form g ⊂ gC by setting

k := {X ∈ gu | θ(X) = X}, ip := {Y ∈ gu | θ(Y ) = −Y }, g := k⊕ p.

Here we remark that gu = k⊕ ip, k = sp(1)⊕ sp(1), g = g2(2) and

kC = {V ∈ gC | θ(V ) = V }, 3⃝

where kC stands for the complex subalgebra of gC generated by k.

α1e −3α1 − 2α2ekC:

In this setting, each T ∈ ihR is an elliptic element of g and we know that for l := cg(T ),

(A) l = sl(2,R)⊕ t1 in case of T = i(Z1 − 2Z2), (B) l = sl(2,R)⊕ t1 in case of T = i(Z1 − 3Z2).

cf. Proposition 5.5 in [4, p.1157].

Case (A). Let T := i(Z1 − 2Z2) and ΠA := {2α1 + α2,−3α1 − 2α2}. Then ΠA is a fundamental root system of △ by 1⃝.

2α1 + α2e��
@@

−3α1 − 2α2eΠA:

From a direct computation with αk(Zj) = δk,j we obtain

(2α1 + α2)(−iT ) = 0, (−3α1 − 2α2)(−iT ) = 1 ≥ 0.

This assures that ΠA satisfies the condition (s1) in Theorem 11.2.18. Moreover, 2⃝ yields θ(E−3α1−2α2
) = E−3α1−2α2

, and

so 3⃝ yields g−3α1−2α2
⊂ kC. Therefore ΠA satisfies the condition (s2) also. Hence, the supposition (S) in Theorem 11.2.18

holds in this case.

Case (B). Let T := i(Z1−3Z2) and ΠB := {α1,−3α1−α2}. Then, one can conclude that the supposition (S) in Theorem

11.2.18 holds, by arguments similar to those above,

α1e��
@@

−3α1 − α2eΠB :

and α1(−iT ) = 1, (−3α1 − α2)(−iT ) = 0.
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Remark 11.2.21. In case of Example 11.2.20-(A), Π′ := {−2α1 − α2, 3α1 + α2} is another fundamental root system of △,

and

(−2α1 − α2)(−iT ) = 0, (3α1 + α2)(−iT ) = 1.

Thus Π′ satisfies the condition (s1) in Theorem 11.2.18. However, it follows from 2⃝ that θ(E3α1+α2
) = −E3α1+α2

, so that

the condition (s2) cannot hold for this Π′.

The second example is

Example 11.2.22 (G/L = SU(2, 1)/S(U(1)× U(1, 1))). Let

GC := SL(3,C) = {g ∈ GL(3,C) | det g = 1}, G := SU(2, 1) = {X ∈ GC | tXI2,1X = I2,1},

where I2,1 =

−1 0 0

0 −1 0

0 0 1

. Then one has

g =


 ia1 b+ ic ix− y

−b+ ic ia2 iz − w

−ix− y −iz − w ia3

 a1, a2, a3, b, c, x, y, z, w ∈ R,
a1 + a2 + a3 = 0


and obtains a Cartan decomposition g = k⊕ p,

k =


 ia1 b+ ic 0

−b+ ic ia2 0

0 0 ia3

∈ g

= s
(
u(2)⊕ u(1)

)
, p =


 0 0 ix− y

0 0 iz − w

−ix− y −iz − w 0

∈ g

.
Setting gu := k⊕ ip and

hR :=


 a1 0 0

0 a2 0

0 0 a3

 a1, a2, a3 ∈ R,
a1 + a2 + a3 = 0

,
we assert that gu is a compact real form of gC = sl(3,C) and

gu =


 ia1 b+ ic x+ iy

−b+ ic ia2 z + iw

−x+ iy −z + iw ia3

 a1, a2, a3, b, c, x, y, z, w ∈ R,
a1 + a2 + a3 = 0

 = su(3);

besides, ihR is a maximal torus of gu. Remark that each T ∈ ihR is an elliptic element of g = su(2, 1) due to ihR ⊂ k.

Now, let us define complex linear mappings α1, α2 : hC → C by

α1


 ϵ1 0 0

0 ϵ2 0

0 0 ϵ3


 := ϵ1 − ϵ2, α2


 ϵ1 0 0

0 ϵ2 0

0 0 ϵ3


 := ϵ2 − ϵ3,

respectively. Then Π△ := {α1, α2} is a fundamental root system of △(gC, hC).

α1e
1

α2e
1

gC:

By setting

Z1 :=
1

3

 2 0 0

0 −1 0

0 0 −1

, Z2 :=
1

3

 1 0 0

0 1 0

0 0 −2

,
we have hR = spanR{Z1, Z2} and αk(Zj) = δk,j (k, j = 1, 2).

• Case T = iZ1. Let T := iZ1. Then it follows from T ∈ ihR that T is an elliptic element of g = su(2, 1). From a direct

computation with αk(Zj) = δk,j we obtain

α1(−iT ) = 1, α2(−iT ) = 0.
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Hence Π△ = {α1, α2} satisfies the condition (s1) in Theorem 11.2.18. Since

gα1
=


 0 ϵ 0

0 0 0

0 0 0

 ϵ ∈ C

 ⊂ kC,

it satisfies the condition (s2) also. For this reason the supposition (S) in Theorem 11.2.18 holds for the T = iZ1. Incidentally,

L := CG(T ) = S(U(1)× U(1, 1)) and G/L = SU(2, 1)/S(U(1)× U(1, 1)).

• Case T = iZ2. Let T := iZ2. Then T is an elliptic element of g, and one has

α1(−iT ) = 0, α2(−iT ) = 1,

so Π△ = {α1, α2} satisfies the condition (s1) in Theorem 11.2.18. However, the condition (s2) cannot hold for this T = iZ2

because

gα2 =


 0 0 0

0 0 ϵ

0 0 0

 ϵ ∈ C

 ⊂ pC.

Incidentally, G/L = SU(2, 1)/S(U(2)× U(1)) and is a symmetric bounded domain in C2.

The third example is

Example 11.2.23. The supposition (S) in Theorem 11.2.18 cannot hold for any symmetric bounded domain D in Cn at all.

Let us explain the reason why. In order to do so, we take an elliptic orbit G/L = G/CG(T ) in the setting of Theorem

11.2.18, and put u := adT (g). Since adT : g → g is semisimple, g is decomposed into g = l ⊕ u; and furthermore, it is

decomposed into

g = (k ∩ l)⊕ (p ∩ l)⊕ (k ∩ u)⊕ (p ∩ u)

because of T ∈ k. Then, Lemma 11.2.9 implies that

k ∩ u ̸= {0}

is a necessary condition for the (s2) to hold. However, if G/L is a symmetric bounded domain in Cn (where G is the identity

component of Hol(G/L)), then it follows that

(k ∩ l) = k, (p ∩ l) = {0}, (k ∩ u) = {0}, (p ∩ u) = p.

For this reason the supposition (S) cannot hold.

We end this chapter with stating

Remark 11.2.24. For each complex flag manifold GC/Q
− one can determine the complex Lie algebra O(T 1,0(GC/Q

−)) of

holomorphic vector fields on GC/Q
− by Theorem 7.1 in Onishchik [29, pp.52–53]. Accordingly we deduce that

1. G/L = G2(2)/(SL(2,R) · T 1) and O(T 1,0(G/L)) = (g2)C in case of Example 11.2.20-(A),

2. G/L = G2(2)/(SL(2,R) · T 1) and O(T 1,0(G/L)) = so(7,C) in case of Example 11.2.20-(B),

3. G/L = SU(2, 1)/S(U(1)× U(1, 1)) and O(T 1,0(G/L)) = sl(3,C) in case of Example 11.2.22 with T = iZ1

from Theorem 11.2.18.
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