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This is a set of notes for my lecture fREFHKiFm [V delivered in the second semester of 2018-
19 school year. The lecture was meant to give an introduction/survey of the first 2 parts of a
recent monumental work by Riche and Williamson [RW]. Appendix A is a class note for Z#
BEGR 1T on July 17, 2018, and Appendix B is a set of notes for my lectures at 3K during the
final week of May 2019.

I am grateful to [LIF{=, who attended the entire course at OCU and read these notes, for
pointing out numerous inaccuracies, and to OCAMI for the inclusion of the notes in its preprint
series. Thanks are also due to the audience at B K for their close attention.

We will consider the representation theory of GL, (k) over an algebraically closed field k of
positive characteristic p.

1° Preliminaries

(1.1) Set G = GL, (k). We will consider only algebraic representations of G, that is, group
homomorphisms ¢ : G — GL(M) with M a finite dimensional k-linear space such that, choosing
a basis of M and identifying GL(M) with GL,(k), r = dim M, the functions y,, o ¢ on G,
v, i € [1,7], all belong to k[z;,det™" |i,5 € [1,n]], where y,,(¢") = 9., is the (v, p)-th element
of ¢ € GL,(k) and x;;(g) = gi; is the (4, j)-th element of ¢ € GL, (k) [J, 1.2.7, 2.9]. Given a
representation ¢ we also say that M affords a G-module, and write gm for ¢(g)m, g € G;m € M.
Set k[G] = Kk[z;, det ™" |i,7 € [1,n]].

A basic problem of the representation theory of GG is the determination of simple represen-
tations. A nonzero G-module M is called simple/irreducible iff M admits no proper subspace
M’ such that gm € M' Vg € G Vm € M'.

(1.2) Let B denote a Borel subgroup of G consisting of the lower triangular matrices and

T a maximal torus of B consisting of the diagonals. Let A = Grpy(7T,GL;(k)), called the

character group of T. Recall that A is a free abelian group of basis €1, ...,¢, such that ¢; :

diag(aq,...,a,) — a;. We write the group operation on A additively; for mq,...,m, € Z,
*supported in part by JSPS Grants in Aid for Scientific Research 15K04789
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o mue; - diag(as, ..., a,) = at.oapm. Let R = {e; —&;]i,7 € [1,n],7 # j} be the set of
roots, and put R™ = {e; —¢;]i,j € [1,n],7 < j}, the set of positive roots such that the roots of
Bare —R": B=TwxU withU = [[,cp+ U-a, U—a = {z_a(a)|a € k} such that if —a = ¢;—¢;,
Y, i € [1,n],

1 ifv=uyp,
r_q(a)y,=1qa ifv=iand u=j,
0 else.
If o :=¢e; —ei1, 1 € [I,n], R® = {aq,...,a, 1} forms a set of all simple roots of R*. For

a=¢; —¢; € Rlet a¥ € AV denote the coroot of a such that

1 if k=1,
<€k,OéV> =q-—1 ifk= j,
0 else.

Let AT = {X € A|(\,a") > 0Va € R}, called the set of dominant weights of 7. We introduce
a partial order on A such that A > piff A\ —ped’ . Na.

(1.3) Any T-module M is simultaneously diagonalizable:

M =]] M\, with M, ={meMltm=\t)mVteT}.
AEA

We call M) the \-weight space of M, A a weight of M iff M # 0, and the coproduct the weight
space decomposition of M. Let Z[A] be the group ring of A with a basis e*, A € A. We call

ch M = "(dim My)e* € Z[A]
AEA

the (formal) character of M; if M is a G-module, for ¢ € G write g = g,9gs is the Jordan-
Chevalley decomposition of g € G. Then the trace Tr(g) on M is given by

Tr(g) = Tr(gugs) = Tr(gs)
= Tr(t) if g, is conjugate to some t € T'

= " A(t) dim M),
A

which does not make much sense in positive characterstic.

(1.4) Assume for the moment that k is of characteristic 0. Here the representation theory of
G is well-understood. Any G-module is semisimple, i.e., a direct sum of simple G-modules [J,
I1.5.6.6]. For A € A regard X as a 1-dimensional B-module via the projection B=Tx U — T,
and let V(A) = {f € k[G]|f(gb) = Ab)"'f(g)Vg € GVb € B} with G-action defined by
g+ f = f(g7'?7). The Borel-Weil theorem asserts that V(\) # 0 iff A € AT [J, 11.2.6]. Any
simple G-module is isomorphic to a unique V(A), A € AT, and ch V()\) is given by Weyl’s
character formula. To describe the formula, we have to recall the Weyl group W = Ng(T)/T
of G and its action on A: Yw € W, Vu € A, we define wu € A by setting (wu)(t) = p(wtw)
Vt € T. More concretely, identify A with Z® via Y " | pie; — (pa,. .., fty). Then W ~ G,
such that we; = e, 1.€., Wi = (11, - - -, fh—1n). Let also ¢ = (0,—1,...,—n + 1) € A, and
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set w e A = w(A+ () — ¢; we replace the usual choice of p = 3> i @, which may not live in

A, e.g., in the case of GLy(k), by ¢. Then [J, I1.5.10] for A € AT
> wey det(w)ev@ %7 det(w)e*?
e det(w)ews 3 det(w)ewe0”

In particular, V(\) has highest weight A of multiplicity 1: any weight of V()) is < A, and
dim V() = 1.

acR

chV(\) =

(1.5) Back to our original setting, each V() in (1.4) is defined over Z and gives us a standard
module, denoted by the same letter, having the same character [J, 11.8.8]; this is a highly
nontrivial result requiring the universal coefficient theorem [J, 1.4.18] on induction and Kempf’s
vanishing theorem [J, I11.4] among other things. In particular, the ambient space V' of our G
is V(e1); if vy,...,v, is the standard basis of V| each v; is of weight ;. More generally, let
S(V) = Kk[vy,...,v,] denote the symmetric algebra of V', and S™(V) its homogeneous part
of degree m. Then S™(V) ~ V(me;) [J, 11.2.16]. Note, however, that SP(V') has a proper
G-submodule > 7"  ko?, and hence V(A) is no longer simple in general; for information on
when V() remains simple see [J, 11.6.24, 8.11]. Nonetheless, each V(A) has a unique simple
submodule, which we denote by L(A) [J, I1.2.3]. It has highest weight A, and any simple G-
module is isomorphic to a unique L(p), p € AT [J, 11.2.4]. Thus, our basic problem is to find
all ch L(p).

For that, as any composition factor of V() is of the form L(u), p < A, with L(\) appearing
just once, the finite matrix [([V(v) : L(n)]) of the composition factor multiplicities for v, u < A
is unipotent, from which ch L(\) can be obtained as a Z-linear combinations of ch V(v)’s.

(1.6) To find the irreducible characters, some reductions are in order. First, let A; = {\ €
AT\, oY) < pVa € R°}. It w; i=e1+ - +¢;, 1 € [1,n], A =[], Zw;, w, = det, and
At = Zdet+ 3" No;. Thus, A, = Zdet +{3.1"] a;ewila; € [0,p[}. One can write any
A€ AT in the form A = Y77 p'A, A € Ay. Then

Steinberg’s tensor product theorem [J, I11.3.17]:
L) ~ LX) @ LAY @ - @ L),
where L(N¥) is L(\F) with G acting through the k-th Frobenius F* : G — G wvia [g;;)] — [(gf]k)]

Thus, if ch L(A*) = 37 myue*, ch LAF)F = > mye? . and our problem is reduced to
finding ch L()\) for A € Ay or ch (3217 Ny for \; € [0,p[; Vm € Z, V(mdet + 327 Niwy) ~
det®" @V (327! \iw;) by the tensor identity [J, 1.3.6], and hence also L(m det + 37— \jww;) ~
det®" QL3 \iwy).

(1.7) There is a direct way to compute ch L(\), A € Ay, due to Burgoyne, which goes as
follows [HMR, 4.2]: let p € A with L(X), # 0. Thus A — pp € > p+ Na. Let Dist(Gy) (resp.
Dist(U;), Dist(B;)) be the algebra of distributions of the Frobenius kernel Gy of G (resp. U,
BT the Borel subgroup of G opposite to B consisting of the upper triangular matrices) [J, 1.7-
9]. Then Dist(G;) admits a k-linear triangular decomposition Dist(G;) ~ Dist(U;) ® Dist(B;").
Regarding A as a B™-module by the projection B* = U* x T — T with U" = [[,cp+ Ua, put
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A(\) = Dist(Gy) ®pise(pr) A 1t comes equipped with a structure of GiT-module [J, 11.3.6],
called the GyT-Verma module of highest weight A, and L()\) is the head of A(\): L(\) ~
A(N)/radA(N) [J, IL3.15]. For o € R let 2o = xo(1) —id = (dao)(1) € M, (k) = g = Lie(Q).
Fix an order of the positive roots f31,..., By, N = |[RF|. For m = (my,...,my) € [0,p[" put
Vin =275 . 275 and Xy = 25t ... 25, Then Vi, (resp. Xpm), m € [0, p[", forms a k-linear
basis of Dist(U;) (resp. Dist(U;"), U;" denoting the Frobenius kernel of UT). Put vm =1®1 €
A\ and P = {m = (my,...,my) € [0,p[N| o, mifli = A — p}. Then A()) admits a basis
Ymv™ of weight A — Zfil m;f;, m € [0,p[Y, and hence Yy,vt, m € P, forms a k-linear basis
of A(\),. Now let ¢(m, m’) € k such that Xy Ymvt = ¢(m, m’)vt for m, m’ € P, which one
can compute using the commutator relations among the 25’s; X Vi € Dist(U;)Dist(B;) and
Dist(B; )vt € k. In fact, as the structure constants of the commutation lie in F,, ¢(m, m’) € F,,.

Define a k-linear map ¢ : A(\), — kIP! via Vvt = (¢(m, m’)|m’ € P). As v* is a Dist(G,)-
generator of A(A),

ker ¢ = {v € A(N),|(Dist(U;)v) Nkvt =0} = A(\), NradA(N),

and hence

~

imeé ~ A(N),/ ker = AN),/{AN), NradA(N)} = A(N),,/radA(N),,
A(N)/radA(N)}, =~ L),
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It follows that
dim L(\), = rk [e(m, m") ] p.

But we want a more systematic description of ch L(\).

(1.8) Just to show how much information V' carries, put A™" = {(A1,...,\,) € N*|A; > \g >
e > At CATD TEXN = (A, ) € ATNATT N — A det € AT For A € AT put
Al = A1+ -+ A,. Then

(Ve V(M) #0.

To see that, we argue by induction on |A|. If [A] = 1, A = ¢y, and V() = V. If |A| > 1,
A= p+¢g; for some p € AT and i € [1,n]. As (V®u : V(1)) # 0 by induction, it is enough
to show that (V @ V(i) : V(X)) # 0. One has V@ V(i) ~ V(u® V) by the tensor identity [J,
1.3.6]; V stands really for the induction functor ind§ : Rep(B) — Rep(G) from the category
Rep(B) of B-modules to Rep(G) defined by V(M) = {f : G — M|f(gb) = b= f(g) Vg €
G Vb € B} = (M ®Kk[G]))?, M € Rep(B). Now p ® V admits a filtration of B-modules of
subquotients p+¢;, j € [1,n], with all p+¢; € (+ AT +Zdet; Vk € [1,n], (¢;,0)) > —1. It
follows from Bott’s theorem [J, T1.5.4] that R'ind%(u + ¢;) = 0, and hence V ® V(1) admits
a G-filtration with the subquotients V(u + ¢;), 7 € [1,n], such that u +¢; € AT. In fact,
(Ve V(N)) is explicitly known [H, Th. 7.6, p. 38]/[J, A.23].

Let us recall also that

Theorem [J, 11.4.2146.20]: VA, u € AY, V(A) ® V(u) admits a filtration of G-modules
M=V ®@V(u) > M > - > M >0 such that each M*/M" is isomorphic to some
V(v;), v; € AT, i € [0,7], and that v; £ viyq Vi. In particular, V(A + u) appears at the top of
such a filtration.



(1.9) Let W, = WX ZR, called the affine Weyl group of W, acting on A with ZR by translation.
For a € R let s, € W such that s, : A= A= (A, a")a, A € A, and sq1 0 A = A— (A, o )ap+
with ag = a1 + -+ -+ a1 = €1 — €,. Under the identification W ~ &,, one has s,, +— (i,i+ 1),

€ [l,n[. S ={sa|la € R} and S, = SU {sa1}, W, S,) forms a Coxeter system with a
subsystem (W, S) [J, 11.6.3]. Let ¢ : W, — N denote the length function on W, with respect
to S,, and let < denote the Chevalley-Bruhat order on W,.

We let also W, act on A by setting

xO)\:pm(%(AjLC))—C VA e AVreW,.

Let Rep(G) denote the category of finite dimensional representations of G. By Extg (M, M)
we will mean the SKH-extension of M by M’ in Rep(G) [Weib, pp. 79-80], [dJ, 27]; Rep(G)

admits no nonzero injectives nor projectives.
The linkage principle [J, I1.6.17]: VA p € At
Extg (L), L(p)) #0 =X €W, o .

In particular, if L(\) is a composition factor of V(u), A € W, e u. By the linkage principle
one has a decomposition

Rep(G) = [ RepalG).

QeEA/ W,

where Repq(G) consists of G-modules whose composition factors are all of the form L(\),
A€ QNAT. For Q 5 0 we abbreviate Repg(G) as Rep,(G) and call it the principal block of G.

(1.10) We extend the W,e-action on A to one on Ag := A ®7 R. For each « € R and m € Z
let Hypm = {z € Ag[{x+(, ") = mp}. We call a connected component of Ag \ Une g+ mezHam
an alcove of Ag. Thus, W, acts on the set of alcoves A in Ag simply transitively [J, 11.6.2.4].
We call AT = {x € Ag|(z + (,a”) > 0Va € R, (x + (,ay) < p} the bottom dominant alcove
of A. Thus the action induces a bijection W, — A via w + w e A*. The closure A¥ is a
fundamental domain for W, on Ag [J, 11.6.2.4], i.e., Vo € Ag, (W, ®x) N AT is a singleton. For
A={z € Ag|p(ma — 1) < (z+(,a") < pmy Vo € RT} € A, m, € Z, a facet of A is some
{x € Al pl{z +(,a") Ya € Ry}, Ry € RT, and a wall of A is a facet with |Ro| = 1. Also, we
call A = {z € Ag|p(ma — 1) < (z+¢,a") < pmg Va € R} the upper closure of A. One has
7, IL.6.2.8]
ANA#£PIAc A iff 0€ AT iff p>n,

in which case each wall of an alcove contains an element of A [J, 11.6.3]. Assume from now on
throughout the rest of §1 that p > n.

For v € A let pr, = pry,,,, : Rep(G) — Rep(G) denote the projection onto Repyy, ,,(G).
Now let A, u € AN AT. We choose a finite dimensional G-module V' (), 1) of highest weight v €
AT NW(u — A) such that dim V(A p), = 1, e.g., V(A ) = V(v), L(v). Define the translation
functor 7Y : Rep(G) — Rep(G) by setting T3'M = pr,(V (A, p) @ pryM) VM € Rep(G). A
different choice of V' (A, ) yields an isomorphic functor [J, I1.7.6 Rmk. 1]. Each T} is exact.



As le‘ may be defined with V(A p) replaced by V (A, u)*, T and Tﬁ\ are adjoint to each other
[J, I1.7.6]: VM, M’ € Rep(G),

(1) Rep(G)(T{ M, M") ~ Rep(G)(M, T, M’).

The translation principle: Let \,u € AN A*.

(i) If X and p belong to the same facet, T} and T’;\ induce a quasi-inverse to each other

between Repyy, o) (G) and Repyy, ., (G) [J, 11.7.9].
(i) If X belongs to a facet F and if p € F, Yo € W,, T{NV (v e \) =~V (x e p) [J, I1.7.11].

(iii) If X € AY and if p € A% with Cyy,o(p) = {1,5} for some s € S,, then Ya € W, with
re A€ AT and xse X\ > x e\, there is an exact sequence [J, I1.7.12]

0—>V(mo/\)—>T2V(wou)—>V(xsoA)—>0.

We note also that the morphisms V(z @ \) — TV (z @ p) and T,V (z @ ) — V(zs e \) are
unique up to kK*;

Rep(G)(V(ze)), T,V (zep)) = Rep(G)(T3V(ze)), V(zep)) = Rep(G)(V(zep), V(zepn)) = k.

(iv) If X\ € AT and if p € AT, then Vo € W, with x e X € A* [J, I1.7.13, 7.15],

L(zep) z'fxouem,

T'L ) ~
A (zed) {O else.

(1.11) For M, L € Rep(G) with L simple let [M : L] denote the multiplicity of L in a composition
series of M. Recall that each V(X), A\ € AT, is of highest weight A of multiplicity 1, and has
the simple socle L()). It follows from the linkage principle that

chL(N) € Y ZchV(p).
HEW 0\
150N

Moreover, to find all ch L()), one may assume A € W, @0 by the translation principle. In 1978
Lusztig proposed a formula for ch L(x e 0) with 2 ¢ 0 € AT and such that (z ¢ 0 + (, ) <
p(p—n+2). If p>2n—3, all xe0 € A, satisfy the condition, and hence all the irreducible
characters should be obtained from the conjectured formula by Steinberg’s tensor product
theorem. To explain the conjecture, let H be the #¥-Hecke algebra of (W,,S,) over the
Laurent polynomial ring Z[v,v™!]. This is a free Z[v,v~']-module of basis H,, x € W,, subject
to the relations H, = 1, e denoting the unity of W,, H,H, = H,, if {(z) + {(y) = {(xy),
and H? = 1+ (v! —v)H, Vs € S, [S97]. For this and other reasons we will often denote
the unity e of W, by 1. Under the specialization v ~» 1 one has an isomorphism of rings
7 Qg1 H =~ ZW,]. Thus, H is a quantization of Z[W,].

As (Hy)™' = Hi+ (v—v7") Vs € S,, every H, is a unit of H. There is a unique ring
endomorphism ? of H such that v — v™! and H, — (H,-1)"' Vo € W,. Then Vo € W,,
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there is unique H, € H with H, = H, and such that H, € H, + Y ., vZ[v]H,, in which
case H, € H, + ), _, vZ[v|H, [S97, Th. 2.1]. In particular, H, = Hs; +v Vs € §,. For
z,y € W, define h,, € Z[v] by the equality H, = >~ ,,, hy.H,. The h,, are the celebrated

1 2 .on
n—1 ... 1
of W. Then Lusztig’s conjecture reads [S97, Prop. 3.7], [F, 2.4], [RW, 1.9] that Yz € W, with
z o0 € At and such that (ze 0+ (,a) < p(p — n+ 2),

(1) chL(ze0)= > (=) Why, ., .(1)ch V(y e 0),

YEW,

Kazhdan-Lusztig polynomials of H. Let wy = denote the longest element

which should hold for any simple algebraic group as long as p > h the Coxeter number of
the group. Lusztig formulated his conjecture with respect to the Coxeter system (W,, woS,wp)
[L]/[W17, 1.12]. Let hl,, be the KL-polynomial associated to x,y € W, with respect to woS,wo.
The original conjecture was for x ¢ 0 € AT as in (1)

(2) chL(ze0)=chL(zxwye (w,e0)) = Z (—1)£(xw°)_£(yw°)h;w07w0(1)Ch V (ywq @ (wo @ 0))
yEW,,
= > (- WR e (D)ch V(g 0 0).
YyEW,

There is a Z[v, v !]-algebra automorphism of H via H, — Hyyew, Yr € W,, which exchanges
S, with wyS,w, and is compatible with ?. Then Vz,y € W,, Ry = Puvgawo woywo, and hence (2)
reads

Ch L(x b O) = Z (_1)€(x)_e(y)hwoyw0w07wﬂxw0w0(1)Ch v(y b O)’

YyEW,

which is (1).

The bound on x e 0 was called Jantzen’s condition, introduced as follows [J, I11.8.22]: it
was expected that the irreducible character should be independent of p for large enough p,
dependent only the type of G, i.e., on W,. Assume thus that for z € W, with z e 0 € A; there
are ay, € Z, y € W, with ye0 < 20, independent of p such that ch L(ze0) = > a,.ch V(ye0).
Note that there may be y appearing in the sum with y @ 0 ¢ Ay such that a,, # 0. Let now
r €W, with ze0 € AT\ Ay and write ze0 = 09+ p0. with 0° € A;. If 01 € A;, we should have
ch L(x e0) independent of p by Steinberg’s tensor product theorem; L(z ¢0) ~ L(02)® L(01)1.
Meanwhile, ch L(0%) @ V(0})!] would also be independent of p as ch V(01) is given by Weyl’s
formula. Then whether or not ch L(02) ® L(0%)M = ch L(0%) ® V(01)!M) should be independent
of p. We have, however, L(0%) < V(0.), in general, which is dependent on p. If 0} € AT,
L(0%) = V(0.) by the linkage principle, and hence ch L(0°) ® L(0}) = ch L(02) @ V(0})[.
Jantzen’s condition on z was imposed to assure that 0L € AT. But then for small p > h not
all z e (0 € A! satisfies Jantzen’s condition, e.g., if p = 3 for GL3(k), which raised a question
about the initial assumption that all ch L(z @ 0) with z ¢ 0 € A; should be independent of p. If
p > 2h — 3, such a problem dissappears. Subsequently, /% [Kat] showed that if (1) holds for
all x with x @ 0 € Ay, then (1) will also hold for all y € W, with y e 0 satisfying the Jantzen
condition. Based on that he conjectured for p > h that (1) should hold for all x € W, with
re0 € A



Lusztig’s conjecture was then solved for p > 0 by the combined work of Andersen, Jantzen
and Soergel [AJS], Kazhdan and Lusztig [KL], [L94], and i and & [KT]; [AJS] reduced the
G T-version of the conjecture to one for the quantum algebras at a p-th root of unity for p > 0,
the conjecture for the quantum algebras was related by [KL] and [L] to the one for the affine Lie
algebras, where the conjecture was solved in [KT]. In the case of quantum algebras Jantzen’s
condition is irrelevant as Lusztig’s quantum version of Steinberg’s tensor product theorem says
for any simple module L,(x ¢ 0) of dominant highest weight z 0, L,(ze0) ~ L,(02) ® V(0%)1
where V(01) is the old simple module V(0!) for the corresponding G over the base field of
characteristic 0 twisted by the quantized Frobenius, c.f. [J08], [Ta] for more details. Fiebig [F11]
showed the G;T-version of Lusztig’s conjecture for p > 0 without appealing to [KL], [L], [KT],
using the moment graphs on the affine flag varieties. Fiebig [F, Th. 3.5] also shows for p > h
that Jf#%’s conjecture is equivalent to its G;T-version in terms of periodic Kazhdan-Lusztig
polynomials. Then, Williamson [W] has come up with counterexamples to the conjecture; the
bound on p for Lusztig’s conjecture to hold must be much larger than n. The subsequent
sections of the present lecture is then an introduction/survey of Riche’s and Williamson’s effort
to remedy the situation and to give a new irreducible character formula for p > 2(n — 1).

2° Overview

We will assume from now on throughout the rest of the lecture that p > n, unless otherwise
specified, which comes partly from the requirement to have well-behaved diagrammatic Soergel
bimodules.

(2.1) For an abelian category C let [C] denote the Grothendieck group of C, which is the free
Z-module of basis (M), M € Ob(C), modulo a submodule generated by all (M) + (M') — (M")
whenever there is an exact sequence 0 — M — M"” — M’ — 0 in C. We write [M] for the
image of (M) in [C]. If M and M’ are isomorphic in C, [M] = [M'] in [C]. Thus, [Rep,(G)] has
a Z-linear basis [L(z ¢ 0)], x € (W, e0) N AT. As each V(A\), A € AT, has highest weight \ of
multiplicity 1 and has simple socle L()), the [V(z0)], z € (W, e0)NAT, also form a Z-linear
basis of [Rep,y(G)].

On the other hand, let Z[W,| (resp. Z[W]) be the group ring of W, (resp. W), and let
W = {z € W,[l(wz) > {(z) Vw € W}. Then, Z[W,] is a free left Z[W)]-module of basis w,
w € W, and there is a bijection /W — (W, e 0) N A via w — we0. Let sgn, = Z be the sign
representation of W, defining a right Z[W]-module such that s — —1 Vs € S. There follows
an isomorphism of Z-modules

(1) sgny, @z ZW,] — [Repy(G)] via 1®@w — [V(w e0)].

We call sgny, @zpw) Z|W,] the antispherical module of Z[W,]. Thus, Repy(G) gives a “categori-
fication” of sgny, ®zpy) Z[W,]; by categorification we néively mean that the Grothendieck group
of the category Repy(G) recovers the abelian group sgn, ®zpy) Z[W,], c.f. [Maz] for a more
sophisticated notion.

For each s € S, choose u € AN AT such that Cyy, () = {1,s}, and let T* = T} be a
translation functor into the s-wall of AT and T, = TB a translation functor out of the s-wall.
We call ©, = T, T® an s-wall crossing functor. If we let 1+ s, s € S,, act on [Repy(G)] by
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©s, the isomorphism (1) is made into an isomorphism of right Z[W,]-modules by (1.10.iii); if
w €W and ws ¢ 'W, s € S,, then there is t € S such that ws = tw [S97, p. 86]: Vs,s' € S,

1@ w)(1+s)(1+5) — [V(we0)]0,0, = [0,0,V(we0).

A main theorem of [RW] categorifies the W,-action on [Repy(G)] by the right action of the
diagrammatic Bott-Samelson Hecke category Dgg of the affine Weyl group W, on the principal
block Repy(G).

Theorem [RW, Th. 8.1.1]: For p > n > 3 there is a strict monoidal functor
Dgs — Cat(Repy(G), Repy(G))®  such that Bg(m) — O, Vs € S, Vm € Z.

Here Cat(Repy(G), Repy(G)) denotes the category of functors from Rep,(G) to itself with the
morphisms given by the natural transformations, and °P signifies the right action of Dgg. To
describe Dgg, for w € W, we mean by w = s1 ... s, a sequence of simple reflections sq,...,s, €
S, such that the product s;...s, yields w, in which case we call w an expression of w. Then
Dgs is a category equipped with a shift of the grading autoequivalence (1), whose objects are
By, (m), parametrized by pairs of an expression w, w € W,, and m € Z, such that (B, (m))(1) =
B,(m+1). It is also equipped with a product such that B, (m) e Bg(m’> = By(m +m').

Definition [#[E, Def. 3.5.2, p. 211]/[Bor, Def. 11.6.1.1, p. 292]: A strict monoidal
category is a category C equipped with a bifunctor ® : C x C — C, an object I € Ob(C), and
a natural “associativity” identity asapc: (A® B)® C = A® (B ® (), a natural “left unital”
identity Ay : I ® A = A, and a natural “right unital” identity ps, : A® [ = A.

Thus, Cat(Repy(G), Repy(G)) is a strict monoidal category under the composition of functors
while Dgg is a strict monoidal category with respect to the product.

Definition [Mac, pp. 255-256]: Given two strict monoidal categories (C,®, I, a, A, p) and
(C', &' I',o/, N, p') a strict monoidal functor (F, Fy, Fp) : C — C' consists of the following data

(M1) F: C — (' is a functor,

(M2) VA, B € Ob(C), bifunctorial identity F»(4, B) € C'(F(A) @' F(B), F(A® B)),

(M3) an identity Fy € C'(I', F(I)).

Thus the strict monoidal functor in the theorem is really just a homomorphism of monoids.

(2.2) The proof of the theorem is given, using the theory of 2-representations of 2-Kac-Moody
algebras Ll(g[ ), Ll(g[ ): one constructs 3 strict monoidal functors, first Z/{+(g[ Nw,w) —

Cat(Repy(G), Repy(G)) with a quotient U (g[p) of the Khovanov-Lauda-Rouquier 2-category
U (g/[;) associated to Kac-Moody Lie algebra 5@, secondly its “restriction” U (@L)(w,w) —
Cat(Repy(G), Repy(G)) to a quotient UM (gl,) of the Khovanov-Lauda-Rouquier 2-category

U(gl,) associated to Kac-Moody Lie algebra gl,,, and finally Dgg — U™ (g[;)(w, w). In fact,
all 3 indivisual steps were known and available for use. The basic strategy follows one for the

category of g, (C)-modules locally finite over a Borel subalgebra and of integral weights due to
Mackaay, Stoci¢, and Vas [MSV].



Definition [[E, Def. 3.5.22, p. 220]/[Bor, 1.7]: A strict 2-category C consists of the
data

(i) a class |C|, whose elements are called objects,

(ii) YA, B € |C|, a small category C(A, B), whose elements are called 1-morphisms and
written as f : A — B with the morphisms in C(A, B) denoted as a : f = g and their
compositions written

f==y

ﬂ@oz.::‘ “"3:4 ﬂﬁ
h,

(iii) VA, B,C € |C|, a bifunctor ¢4 g : C(A, B) x C(B,C) — C(A, C), written

AL.p t.¢ A ¢
aﬂ/ 5ﬂ €A.B.C > ﬂ,@*a
A—=B—=C A——=C,
f! o 2of!

(iv) YA € |C|, there is a 1-morphism 14 € C(A, A),
subject to the axioms that VA, B,C, D € |C|,

C(A,B)XCB(;’D

C(A, B) x C(B,C) x C(C, D) C(A, B) x C(B, D)
cA,B,ch(C,D)l O \LCA,B,D

C(A,C) x C(C, D) C(A, D)

CA,C,D
and CA,A,B(lA; 7) = idC(A,B) = CA,B,B<?7 13). We WIH denote idlA - C(A,A)(lA, 1A) by LA.
Then, Va, f € Mor(C(A, B)), Vu,v € Mor(C(B, C)), the “interchange law” holds:

(v*xB)O (n*xa)=capc(f,v)®capc(a,u) by definition
=capc((B,v) ® (a,u)) by the functoriality of ca 5 c
=capc(BOa,vOp)
=vou*(Boa);

A-Ll,p_Lt,¢C A C
aﬂ ﬂu C ﬂu*a Aty tyc
A— B z,>cﬂ>A£Tf,>C: oo [ves
, e A—— B ——C
LT b, AT
! 14 'of
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Thus, a strict 2-category C is just a category enriched in the category Cat of small categories.
A strict monoidal category C is just a 2-category with one object pt and C(pt, pt) = C.

The KLR 2-category U ( @) is a strict k-linear additive 2-category, which is a strict 2-category
enriched in the category of k-linear additive categories.

(2.3) The proofs of Lusztig’s conjecture (1.10) by [AJS] and [F] were actually done in terms of
G1T-modules, an analogue of the representation theory of the Lie algebra of G, (G; denoting
the Frobenius kernel of G. There the standard (resp. simple) G;T-modules are parametrized
by the whole of A, which we denote by V(X) (resp. L(\)), A € A, with L(\) = L()\) as long
as A\ € A;. Each V()\) has highest weight A of multiplicity 1 and L()) is a unique simple
submodule of V());

. 1 — b
chV()\) = e H .

Thus, to find the irreducible characters ch j)()x), it is enough to compute the composition factor
multiplicities [@()\) : ﬁ(,u)], A€ Ay [J, 11.9.9]. Moreover, this category admits enough
injectives/projectives. If we let Q(/\) denote the injective hull of [:(A), it is also the projective
cover of L()\) [J, 11.11.5.4], and admits a filtration with subquotients of the form V(u), i € A,
and of the form A(y) from (1.7). As ExtS,(A(N),V(u) = 6iodr,k YA\, u € A Vi € N [J,
11.9.9], the multiplicity (Q(X) : V(x)) of V(1) appearing in such a filtration of Q()) is given by
(Q(N) : V() = [V(1) : L(N)] [J, 11.11.4). What Andersen, Jantzen and Soergel (resp. Fiebig)
did is to compute (Q(x () : @(y 00)), z,y € W,, for p > 0, by relating to the correponding
multiplicity in the quantum group at a p-th root of 1 (resp. by using the moment graph of
W,); Fiebig provides an explicit bound for the first time though it is enormous above which
Lusztig’s conjecture holds. There is now an algorithm to compute the weight space multiplicities
of T(xe0), z € /W, for p > h + 1 by Fiebig and Williamson using the Braden-MacPherson
algorithm [FW, Th. 9.1], and a proof of Lusztig’s conjecture for p > 0 without using G1T by
Achar and Riche [AR].

Now, in Rep(G) the modules corresponding to G;7-injectives are tilting modules. We call
the dual G-module V(A\)* of V(A), A € AT, a Weyl module, which has highest weight —wyA and
simple head L(—woA) = L(A\)*. We denote V(A)* by A(—wpA). We say a G-module is tilting iff
it admits a filtration with subquotients of the form V() and also a filtration with subquotients
of the form A(X), A € A*; in fact, V(1)* ~ V(2(p — 1)p — v) Vv € A with 2p = Y ocrt @ [J
11.9.2]. To get A(v) from V(v) by dualization one needs Chevalley involution [J, I1.9.3]. One
has [J, 11.4.13], VA, u € AT, Vi € N,

Exti (AN, V(1) = Gi00nk,

and hence a tilting module has no higher self-extension, which should explain the term tilting.
It is a theorem of Donkin [J, E.6] that for each A € A" there is up to isomorphism a unique
indecomposable tilting module of highest weight A, which we denote by T'(A). In T(\) the
multiplicity of A is 1. Note that the use of tilting modules in [RW] is also influenced by
Soergel’s success in the quantum case [S98], c.f. also [Maz, 8.1].

(2.4) Let Tilto(G) denote the principal tilting block of G, the full subcategory of Repy(G)
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consisting of tilting modules. If A\ € A* belongs to the bottom dominant alcove A", one has by
the linkage principle V() = L(A) = A(\), and hence also T'(\) = L(A). It follows by induction
on the partial order on A* that [Rep,(G)] admits a basis [T'(w e 0)], w € YW. The Dgg-action
on Repy(G) induces an action on Tiltg(G), which in turn will imply a character formula of all
T(we0), w € /W, in terms of the p-canonical basis of # in place of the Kazhdan-Lusztig basis
for Lusztig’s conjecture as we describe in the next subsection.

For A\, n € A we write 1 A iff there is a sequence of reflections sg, mys- - -, Sg.m.» Bi € RT,
m; € Z, such that A > sg, 1, @\ = 535, @ A+pm1 81 > 58, 1myS8,,m1 OAN =+ > S8 m, - - - SBmy O\ =
pi. For p>2(n—1) each Q(\), X € Ay, lifts to a tilting module T(2(p — 1)p 4+ woA) [J, E.9.1].
Using the lifting, one can show [J, E.10.2] YA € Ay, Vi 1 2(p — 1)p + wo,

(T2(p = Dp+wor) : V(p) = [V(n) : L(N)],
which then yields the irreducible characters of the principal block of G.

(2.5) Recall from (1.11) the A ¥#i-Hecke algebra H of the Coxeter system (W,,S,). Let H; be
the & J#i-Hecke algebra of the Coxeter subsystem (W,S). Thus, H; is a Z[v, v~ ']-subalgebra
of M, having the standard basis H,, w € W. Let sgn = Z[v,v'] be a right H-module
such that H, — —v Vs € S. We set M*Ph = sgn ®3, H and call it the antipherical right
module of H, denoted N' = N7 in [S97, p. 86] and N* = N/ in [S97, line -3, p. 98]. Then
M®Ph has a standard Z[v,v1]-linear basis 1 ® H,, w € YW, and from [S97, line -2, p. 88] a
Kazhdan-Lusztig Z[v, v1]-linear basis 1 ® H,, w € /W. Thus, M®P! is a quantization of the
antispherical Z[W,]-module sgn;, ®zpy) Z[W,|: under the specialization v — 1

(1) 7 Qzfp,p-1] MEPh ~ sghy, @z ZIW,).

Now let D be the diagrammatic Hecke category over k, which is the Karoubian envelope of
the additive hull of Dgg [Bor, Prop. 6.5.9, p. 274]. We will call D the Elias-Williamson category
after their introduction in [EW]. Tt is defined by diagrammatic generators and relations, graded
with shift functor (1). It is generated as a graded monoidal category by objects B, s € S,, and
is Krull-Schmidt. The indecomposables of D are the B,(m), parametrized by (z,m) € W, x Z.
We will write B, for B,(0). As D is only additive, we consider the split Grothendieck group
[D] of D [, Def. 3.3.35, p. 170]: it is a free Z-module of basis consisting of Ob(D) subject
to the relations M; + My = Mj iff there is a split exact sequence 0 — M; — Ms — My — 0.
We denote the image of M € D in [D] by [M]. Then, [D] comes equipped with a structure of

Zlv,v~-module such that v e [M] = [M(1)], and there is a natural isomorphism of Z[v, v~
algebras [EW]|
(2) H ~ [D] such that H > [B] Vs €S,

under which we define the p-canonical basis of ‘H to be the preimage of [B,], € W,: PH,
[B.]. In M®Ph put N, = 19 H, and PN, = 1®PH,, w € /W, and write N, = Zyeprnway,
Pny, € Z[v,v™t]. The Pn,, are called antispherical p-Kazhdan-Lusztig polynomials. If we define
Nyw € Z[v.v™1] likewise from N, = 1® H,,, we have from [S97, Prop. 3.1 and 3.4] that n,,, =0
unless y < w, Ny = 1, Ny, € vZ[v], and

Ny = Z(—l)“%zy,w.

zEW
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Let 721 be the full additive subcategory of D generated by the B, (m), w € W,\'W,m € Z,
and let D*Ph = D //T8Ph he the quotient of D by Z#P® [Hifd, Prop. 3.2.51, p. 150]: VX,Y € D,
let Z(X,Y) = {f € D(X,Y)|f factors through some Z € Z*Ph}. Then D*P! is the category
with objects Ob(D) and VX,Y € D, D*PY(X,Y) = D(X,Y)/Z(X,Y). Then D*P! is a graded
category inheriting shift functor (1), and the indecomposables of D*P! are the images B, (m)
of B,(m), w € W, m € Z. Let [D*Ph] denote the split Grothendieck group of D*Ph with
a Z[v, v~ -action v[X] = [X(1)]. By the natural right D-module structure on D*P! it comes
equipped with a structure of right H-module under (2). As such there follows an isomorphism
of right H-modules

(3) MEPh L [DAP] i PN [By,] Yw € W,

Thus, the PN, w € W, form a Z[v, v™!]-basis of M®P! and D*P! provides a categorification
of MasPh,

Finally, let D3P" be the degrading of D*Ph: Ob(D3E") = Ob(D™P!) but VX, Y € Ob(DiE"),

Dgzgh(X, V) = [1,.cz D*P(X,Y(m)). In particular, Vm € Z, X ~ X(m) in Dgzgh; idy €
DPh(X X)) < Dgzgh(x, X (m)) admits an inverse idx ,y € D*P"(X (m), X (m)) < DP"(X (m), X).

deg
Thus, under the specialization v — 1

(3)

Masph - [Dasph]
Z Qz[ww-1] Masph Z Qz[vw-1] ['DaSph]

(1)% )
sghz, Qzw) Z[Wa] [Dgzgh]'

[Repy(G)]

R

By the categorical action of Dgg it will turn out that Tilty(G) is equivalent, as a right
“module” of Dgg, to the degraded categorification Dgzgh of M3Ph via

T(we0) i B, YweW.
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Thus, Tilty(G) gives a categorification of the antispherical module sgn, ®zpy ZW,): Yw € W,
1® H, = N,
1@7H, =N,

[ By
sgn @y, H = Masph . = [pasph] l
[Bu)

T

2 sy MO < 2 g [D] 25 (D] — DB < Tilko(G)

] i

sghy, @z LW, ~ [Repy (G)]
1®PN,, |[T(w e 0)]

\T'(w e 0)

1® Ny 1[V(w e 0)].

In particular, the character formula for the indecomposable tilting modules in the principal
block will be given by

chT(zre0) = Z Pny.(1)chV(y e 0) Vo e /W,
yefw

(2.6) It is now a theorem of Achar, Makisumi, Riche and Williamson [AMRW] that the character
formula for the indecomposable tiltings in (2.5) holds for general reductive groups as long as
p > 2(h — 1), h the Coxeter number of the group.

3° The affine Lie algebra g/;\[N

We start by showing that the complexified Grothendieck group C ®z [Rep(G)] of Rep(G)

admits an action of the affine Lie algebra g/;g,, due to Chuang and Rouquier [ChR]. We will also
show that the same holds for G;T. We will assume n > 3, see e.g., (3.8).

(3.1) Let N > 2. We define the affine Lie algebra é\[N associated to gl (C) as follows. Consider
first the Lie algebra sly = sly(C[t,t7]) @ CK & Cd with sly(C[t,t7!]) = sly(C) ®c C[t, t 7]
and the Lie bracket defined, for x,y € sly(C) and k,m € Z, by

[z @ty @™ = [2,y] © "™ + kb m o Tr(zy) K,
[d,z ®@t"] = mz ™, [K,;[N} =0,

which is the affine Lie algebra of type Ag\l,ll in [&l&, p. 164]. Then QT[N = 5A[N @ C with
(0,1) = diag(1,...,1) central in gly, so gly(C) =sly(C) & C < gly.

Let e(i,7) € gly(C), 4,5 € [1, N], denote a matrix unit such that e(i, j)u = a0, Va,b €
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[1,N]. Vi € [0, N[, let

o Jreany im0, o [ile(V) iti=o,

©)e(i+1,i)  else, e i+1)  else,
“ . e(l,1) —e(N,N)+ K if:=0,
hi = [é, fi] = ( ) . ( ) .
e(i+1,i+1) —e(i,i) else.

Set h=h; P CK ®Cd < QT[N with b denoting the CSA of gl (C) consisting of the diagonals.
Define (&;, K*,0|i € [1, N]) to be the dual basis of (e(i,4), K, d|i € [1, N]) in h*. Let P = {\ €

h*|A(h;) € Z Vi € [0, N[}. The simple roots of h* are defined by &g = § — (éxy — €1) and
G; = 241 — &1, i € [L, N[. Thus, ¥4, € [0, N,

0 if]i—j|>2,

2 ifi=j,
[ﬁwéj] = é‘](i%)éjv [ilwfj] = _djdlz)f]
0
o)
/ﬂ.o\o
1 2 N -2 N -1

(3.2) Let A = [[Y, Ca; denote the natural module for gly(C). Then A ®@¢ C[t,t™"] affords a
module for sl (C[t,¢7!]) such that (z®@tF)- (a®t™) = (za)@t*™ Vz € sly(C), Ya € AVk,m €
Z. One may extend it to a representation of g[N by letting K act by 0, diag(1,...,1) by the
identity, and d by the formula d - (a ® t"™) = ma @ t™ VYa € A, Ym € Z. We call the resulting

gly-module the natural module and denote it by naty.

For A\ € Z write A\ = X\g + NA\; with \g € [1, N] and \; € Z. Put my = ay, ® t*'. Then
naty = [[,c,Cma: Vi € Z, ay @ t* = migny, as @ tH = magny,...,an @ " = myin,, and
éoCLN = t€<1, N)CLN = ta1 = a1 Rt = Mi4N- Vi € [O,N[,

(1) P myyq if ¢ = A mod N,
0 else,
. my_1 ifi=X—1mod N,
2 imy =
2) fima {O else,
and Vh € b,
(3) hmy = (€x, + A10)(h)m.

In particular, all h-weight spaces of naty are 1-dimensional.

(3.3) Recall the natural module V' = k% for G with the standard basis vy, ...,v,, and its
dual V* with the dual basis vj,...,v5. Thus, V = L(g;) = V(e1) = A(e1) = T'(e1) and

n:
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V* = L(—wee1) = L(—¢,) = V(—¢,) = A(—¢,) = T(—¢,). Define 2 exact endofunctors E
and F' of Repy(G) by £ = V®? and F = V*®7, resp. Define n € Rep(G)(k,V* ® V) such
that m (1) = >, v ® v; and gx € Rep(G)(V ® V* k) such that v ® g — p(v); under a k-
linear isomorphism V* ® V ~ Mody(V, V) via f ® v — f(?)v with inverse > . v} @ ¢(v;) <+ ¢,
> vi®w; corresponds to idy, and hence fixed by G. In turn, 7y defines a natural transformation
n : idrep(q) = F'E via

]\f nm >FE(M)
) H
k@MWV*@)V@M,

while g, defines a natural transformation ¢ : EF' = idgep(q) via

EF(M) M - M
VeV oM —— koM

to make 1 (resp. €) into the unit (resp. counit) of an adjunction (E, F) [F1f, Cor. 2.2.9, pp.
65-66] such that

(1)  Rep(G)(M,FM") = Rep(G)(EM, M') via ¢ + ey o Erp with inverse F'¢ o nys < ¢.

Explicitly, Vm € M,
(Foom)(m) = v @¢(vi®m),

i

while, if we write ¢(m) = ). v ® ¢¥(m);, Vv € V,

(monwﬂv®ﬂ0::Z:ﬁﬁﬁwWﬂr

Now, let g = gl,, (k) equipped with the structure of G-module Ad: gex = grg~' Vg € GV €
g; we identify g with Lie(G) = Modg(m/m? k), m = (z5,z4 — 1]5,5 € [1,n],i # j) <k[G].
VM € Rep(G), the g-action on M given by differentiating the G-action Ay : M — M ® k[G]

g M ! =M z(f)m

oss| /

g MRK[G] z@me f

is G-equivariant [J, 1.7.18.1]. Let n, : k = V ® V* via 1 = ) . v; ® v} to define the unit of
an adjunction (F, E) as above. Using a natural isomorphism g ~ V* ® V via u(?)v <+ p ® v,
define for M € Rep(G)

VoM M VoM
77]1;®V®MJ/ Tvem

VoaV*eVeM—Veg M,
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which is functorial in M. Thus, one obtains an endomorphism X € Cat(Rep(G), Rep(G))(E, E)
of F, i.e., a natural transformation from E to itself. In particular, each X, is G-equivariant.
In turn, X induces by adjunction (F, F') an endomorphism X' of F"

Ve M e -V M
Uk®V*®Ml TV*@)Ek@M
V*VeV e M . Ve VeV M.
Vv ®XV*®M
Thus, VM’ € Rep(G),
(2) Rep(G)(EM, M') <2 M) pon(Gy(EM, M)

EJVI/OETN O NTEM/OE

Rep(G)(M, FM') Rep(G)(M, FM').

Rep(G)(M.X /)

Let Dist(G) denote the algebra of distributions on G. As G is defined over Z, Dist(G) has
a Z-form Dist(G7) which coincides with Kostant’s Z-form of the universal enveloping algebra
U(ge) of go. Put @ = S0, e(i, ) ® e(4,1) € 9.9 ; Trle(is (k. 1)) = dTr(e(i, 1)) = b
Forz e gput A(z) =2 ®1+1®@ax. If M and M’ are G-modules, recall that Dist(G) acts on
the G-module M ® M’ via x — A(x), x € g.

Lemma: (i) Vv, o' €V, Q- (v @) =0 Q.

(1)) Vo € g, QA(x) = A(z)Q in Dist(G) @ Dist(G), and hence the action of Q on M @ M’
for M, M'" € Rep(G) commutes with Dist(G).

Proof: (i) Let k,l € [1,n]. One has
Q- (v @) = Z e(i, g @ e(g,i)vy = Z 0KV ® 6;v; = U @ V.

i,j=1 i,j=1

(ii) We may assume = = e(k,l), k,l € [1,n]. One has

QA(e(k, 1)) = Z{e(i,j)e(k’, 1) ®e(j,i) + eli, §) ® e(j,i)e(k, 1)}
- Ze(z’, 1) @ e(k,i) + Ze(k,j) ®e(j,1)

while

Ae(k,1)Q = Z{e(k:, De(i,j) @ e(4,i) +e(i,§) @ e(k,1)e(],7)}

- Ze(m) ®e(5,1) + Ze(i, 1) @ e(k, ).
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(3.4) We now describe X and X' using ().
Lemma [RW, 6.3]: Let M € Rep(G).
(1)) Xy : EM =V @M —V®&M=EM is given by the action of .
(1)) Xy : FM =V*@ M — V*®@ M = FM is given by the action of —nidy«gyr — .
(ii1) (V @ Xpr) o Xyen = Xyem o (V @ Xyy).
(iv) (V& ® Xar) 0 Xyergy = Xyeaga 0 (V2 @ Xir).
(v) Xpay o (VO XYy) = (Ve Xy)oXpy.
(vi) Xy o (VFXy) =V eXy) oXyyy,-

Proof: (i) Ym € M, Vs € [1,n],
[ QVOM
vs®mm Zvi®vf®vs®mr—)Zm@v;‘(?)vS@m:Zvi@)e(s,i)@m

)

— > v ®e(s,i)m
V®a -
(2

while

Q- (vs @m) = (e(i ) @ e(j,0)) (v, @ m) = D _(ei, j)uvs) @ (e(j, 1)m)

ihj

17;7
= Z 050 ®e(g,i)m = Z v; ® e(s,i)m.
,J

Thus, X}, is given by the multiplication by €2-.
(i) Recall first from [HLA, 10.7, p. 76] that Vz € g Vf € V* Ym € M,
z-(fom)=(@f)em+ f@rem=—f(z?)@m+ f@am.
In particular, x acts on V* via —z' with respect to the dual basis:

(1) e(i, j)vg = =00y
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Now,
M@V *QM
v, @m —— E U ®U; QU @m

LR, N @ Q- (0, 0f ®m) by (i)
= Z vl @ Z(e(j, kyvi) ® e(k, j) (v @ m)

—ZU @5,%@]@{( (k, ))v¥) @ m + v @ e(k, j)m}

ik
= va ®v; ® {—0isv; @ m +v; ®@e(i,j)m} by (1)
Y]
:—Zv ® v; ® v} ®m+Zv ®v; @ vs ® e(i,j)m
j ij
W —n(vi @ m) + Zvi ® e(i, s)m
while
Q-(;@m) = eli,j)v; @e(ji)m =Y —b0; ®e(j,i)m by (1) again

9 Z]
= — Z’U; ® e(j,s)m

J
Thus, X/, is given by the action of —nidy«gy — Q.

(iii) Yu,v" € V, ¥Ym € M,

{(VOXu) o Xven (v @ v @m) = (VoXy) Y {ei i) Al i) ©m)}

ij=1

= Ze(i,j)v@.@QA(e(jai)) v @m) Z{e i, §) ©@ QA(e(j, 1) Ho ® v' @ m)

while

{Xvemo(VeoaXy)vev @m)=Xyeu{v® Qv @m)}

= > A{eli, v @ Ale(h,))Q0 @m)} =Y {e(i, j) © Ale(),1)2}H (v @ v @ m)

= 3 He.5) @ QAL NHe e @ m) by (33
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(iv) Let 2 € V.® M. Then

Vs QU QT tm) Ze(i,j)vs ®e(j, 1) (@) = Zvi ®e(s, i) (v @ x)

2,7 7

:Zvi®{e(s,i)vt®x+vt®e(s,i)x}:vt®vs®x+2vi®vt®e(s,i)x

®
wvt®vs®9x+Zvi®vt®Qe(s,i)x

while

V®2@X
Vs QU @ T ————5 1y @ v @ Qa
X

SAACLLIN Ze(i,j)vs@)e(j, (v ® Q) = sz e(s, i) (v @ Q)
i,

= Z v; @ {e(s,i)v @ Qx + v, ® e(s,1)Qx}

= zz: v; @ e(s,i)v ® Qu + Z v; @ v ® e(s,1)Qx

= U:@ Ve @ Qx + Zvi ® v :XJ e(s,1)Q.

The assertion now follows from (3.3.ii).
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(v) One has
Vs QU @m IR Ze(z’,j)vs ® {e(j, i)y @m + v ® e(j,i)m}
1,J
= Zvi ® {e(s,i)v; @ m+ v} R e(s,i)m}
= zl: v; @ {050 @ m + v} R e(s,i)m}
5stzvz®v ®m+zvz®vt ® e(s,i)m

s ——— —0gt Z v; ® (—nid — Q) (v ® m) + Z v; ® (—nid — Q) (v; ® e(s,1)m)

= ndg v; @V} ®m+55t2v,®z (k,D)vf @e(l, k)m

%

—nZvl®vt®esz Z%@Z (k, Do @ e(l, k)e(s.i)m
—néstZw@v ®m+5st2vl®z ) @ e(l,i)m

—nZUl®vt®e(sz sz@gz e(s, Do ® e(l,i)m
—n63t2U1®U ®m— 65152@@ Zvl@)elz

—nZvl®vt®eszm+sz®Z5swl®elz

= ndg vi®vi®m—n2vi®vt®e(s,z)m

i
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while

VX, ,=Ve(—nid—Q .. ..
Vs @V @M | T A —nvs®v:®m—vS®Ze(z,j)vf®e(j,z)m

i,
= —nv, @ vF ®m+vs®zv; ® e(j, t)m
J
S Y e(k, Do @ {el, kyvf @ m+vp @ e(l, k)m}
k,l
+ Y ek, @ {e(l, k)o; @ e(j,t)m + v} @ e(l, k)e(j, tym}

Jok,l

= —nz v, @ {e(s, k)v; @ m+v; @e(s, k)m}
k

+ ka ® {e(s, k)vj @e(j,t)m +v; @ e(s, k)e(j, t)m}

gk

= —nz v @ {—dstvy @ m +v] ®e(s, k)m}
k
—ka®v,’:®e(s,t)m+2vk®v,’;®e(s,t)m
k k

= ndg vk®v}:®m—n2vk®v:®e(s,k)m
p k

(vi) One has
(V*@Xy) o Xy (v @ vy @m) = (V@ X)) (—nid — Qpar) (v @ vy @ m)
= =0} ® Quar( @ m) = (V@ Xar) Y e(i, j)vi @ (e(j, i)u @ m + v @ e(j,i)m)

,J
= —nu; © Z (i, o @ e(G,iym — (V* @ Xap) Y =03 @ (e(f, k)v @ m + v @ e(j, k)m)
J
= —nu; ® Zvl e(l,iy)m+ (V* @ Xy) ZU; ® (Ov; @ m~+ v ® e(j, k)m)

J

——nvk®2m e(l,iym+ 6 > v;® Y e(s, )y ®e(t, s)m
+Zu ®Z (s, ) ® J )e(j,k;;

——nvk®ZvZ lzm—i—éklZv ®sz j,
+Zu ®sz®els j,/{;)

——nvk®ZvZ lzm—i—éklZv ®sz e(J, s m—i—Zv ®v; ®e(l, k)m

J
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while
Xlgpr 0 (VF @ X)) (vf @ vy @m) = Xy (07, @ > e(i, v @ e, i)m)
Y]
= X ( Uk®2vz e(l,i)m) = (—nid — Qpupr)( vk®sz e(l,i)m)
= —nvZ@Zvi@Je(l,i) Z s,t) vk®z (t,s)v; @ e(l,i)m +v; ® e(t, s)e(l,i)m)
= —nvk®sz e(l, 1) m—l—th ®Z (t,k)v; @e(l,i)m +v; @ e(t, k)e(l,i)m)

:—nvk@)Zvl lzm+th®vt® (lkm—i—th@Zéklvl@e(tz)
(3.5) Recall from (3.3) the unit n and the counit € of an adjoint pair (E, F'), and also the unit

n' and the counit ¢’ of an adjoint pair (F, £) induced by nj, :k = V@ V* via 1 — > . v, @ v}
and g V* @V = k via { @ v — £(v).

Lemma: Let M € Rep(G) and r € N.
(i) Xga)" o = (V" @Xy) oy, emo (Xpu)" =emo (VX))

(i) Xem)" o nyy = (V@ Xy) omy,  ehro (Xpy)" = ey o (V@ Xy)"

Proof: Let m € M.

(i) By definition ny : M — FEM =V*®@V ® M reads m — ., v ® v; ® m. Then

(Xigar 0 mar)(m) = (—nid = Quegpa) Y vp @ (v ® m) by (3.4.)

k=1
= _nnM(m) - Ze(%])vz ® ( (]7 )Uk @m+ v & 6(],2)7%)
i,k
= —nny(m) — Z(—(S,-kv;‘) ® (dikv; @ m + v, ® e(g, i)m)
g,k

= —nur(m) = ) () @ (v; ®m + v; @ e(j, ))m)
1]
= —nny(m) + nnp(m) + Zv; ®v; ®e(j,i)m = Zvj* ®v; ® e(j,i)m
i.j irj

—Zv ®sz Jst ZU;@?Q'(UJ'@?”):(V*®QV®M)(77M(m))

= (V* ® XM) onu(m) by (3.4.ii),
and hence X5, oy = (V* @ Xpr) oy Then (X)) oy = (V@ Xpy)" omar by (3.4.v1).
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One has

(eamr o Xpar)(ve @ vf @ m) = €M(Z e(i, j)uk @ e(j, i) (v; @m)) by (3.4.)

=en(Y_vi@e(k,i)(vf @m)) =en () vi @ (e(k, )] @ m+ v} ® ek, i)m))

i

= eM(Z 0; @ (—0pv; @ m~+ v @e(k,i)m)) = —oynm + e(k,l)m

while

e (VX)) (v, @ vy @m)) = ep(vp @ (—nid — Quegrr) (v @ m)) by (3.4.1)
= en(—n(vy ® of @m) — v, ® Y eli, j)vf ® e(j,i)ym)
1,J
= —ndm — en(0p @ Y (=00} @ e(j,i)m)) = —ndgm + ey (v @ Y 05 @ e(j, 1)m)
1,J J
= —6kmm + 6(/{7, l)m

Thus ey 0 Xppy = epro (V @ X)), and hence ey o (Xpp)" = ey o (V@ X)) by (3.4.v).
(ii) Likewise,

(Xpar oy (m) = Querpar - Y vp @ (v @ m)
k

= Z e(i, j)vr @ (e(g,1)vy @ m + v ® e(j,1)m)

igik
= Z v; @ (e(k,i)v;, @ m+ v @ e(k,i)m)
ik
= Zvi ® (—vf @m + vy R e(k,i)m) = —ny,;(m) + Zvi ® v; @ e(k,i)m

= =iy (m) = > 0 @ Quegar - (0 @ m) = —nify(m) — (V @ Quegar)nly (m)

= {—nidgrar = (V @ Qvegnr) by (m) = {V @ (—nid = Quegar) yny (m),
and hence Xppronyy = (V@ X)) onyy. Then (Xpp)" onyy, = (V@ X,,)" onjy, by (3.4.v).
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Finally, ¢/, reads £ ® v ® m — £(v)m. Then
(€ © Xgar) (v ® v @ m) = )y (—nid — Qv ) (v ® v @ m)
= —nvi(v)m — &y 0 Quen) (Vi @ vy @ m)
= —ndum —n Y eli, )op @ (e(f,d)u @ m + v, @ e(j, i)m)}
i3

= —n5klm — 8/]\4{2 —U; & (e(j, k)”l @m+ v & 6(j7 k)m>}
J

= —ndum —h Y —v © (B @ m+ v @ e(j, k)m)}
J
= —ndym + ndgm + e(l, k)m = e(l, k)m

while
{hro (V' @ Xan)}vf @ v @ m) = ey (v @ D eli, j)u & e(j, i)m)
i,J

=i @Y v @e(l,i)m) = e(l, k)m.

Thus €, 0 Xy = €y 0 (V* ® Xyy), and hence the assertion by (3.4.vi).

(3.6) Ya € k, let E, (resp. F,) denote the direct summand of E (resp. F') given by the
generalized a-eigenspace of X (resp. X') acting on E (resp. F'): VM € Rep(G),

EM =[[(E.M) with E,M = U,evker(Xy — aidgy)",

ack

FM = H(FaM) with  F,M = Uyen ker(X), — aidpa)’

ack

As Xjs and X, are G-equivariant, each E, (resp. F,) is a direct summand of E (resp. F') as
an endofunctor on Rep(G).

Lemma [RW, 6.3]: Let a € k.

(i) The unit n and the counit € of the adjunction (E, F) induce a unit n, : id — F,E, and
a counit e, : E,F, — id, resp., making (E,, F,) into an adjoint pair.

(11) The unit ' and the counit €' induce a unit ), :id — E,F, and a counit €, : F,E, — id
of an adjunction (Fy, E,).

Proof: (i) We first show that 7 (resp. ¢) factors through [], . 7. : id = [[,c FaFu (resp.
Hock€a : ok EaFa — id)

(1) id —— FE and EF d > id
Hae]ku"r]a;’ e ~ J\ J{ L : Hag]k Ea
Hae]k FaEa Hae]k EaFa
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Let M € Rep(G), m € M and d = dim FEM. Let n(m), be the F,E,M component of
na(m). Then

= (Xgyy — aid)™n(m)ay  as n(m)a € Fo( EyM)
= (V*®Xy) — aid)™n(m)q by (3.5.1)
= (V* @ (Xps — aid))n(m)q.
On the other hand, 0 = (V* ® (Xj3; — bid))¥n(m)aw as n(m)e € V* @ (E,M). It follows that

n(m)a = 0 unless a = b, and hence im(nys) < [, o FaEaM.

Let next x € E,F,M with a # b. Take polynomials ¢, € k[t] with (t —a)%¢+ (t —b)%) = 1.
Then
em(x) = exr({6(Xear) (Xpar — aid)? + o (Xpar) (Xpar — bid)}a)
= e (V(Xpar) Xpar — bid)%2)  as 2 € E,(FM)
= en(V(Xpa)(V @ X)), — bid)?z) by (3.5.)
evt(V(Xpar)(V @ (X}, — bid)Y)z)
=0 asze€ E(FM),

and hence (1) holds.

Recall from (3.3.1) the adjunction Rep(G)(EM,M') ~ Rep(G)(M,FM’) given by f —
(F'f) o nay with inverse g — epp 0 Eg. As each E, (resp. F,) is a direct summand of E (resp.
F'), one obtains commutative diagrams

Rep(G)(EM, M') ——~—— Rep(G)(FEM,FM') Rep(G) (v, F M)

[ Rep(G)(EaM, M) —F> [[Rep(G)(FE.M,FM')

‘ [

ITTIRep(G)(FyEoM, F, M) [[Rep(G)(M, FoM")

l H Rep(G) (Ma,nr, FaM')

[[Rep(G)(F.E.M, F,M')

> Rep(G)(M,FM’)

and

Rep(G)(M, FM') ——=—— Rep(G)(EM, EF M) Rep(G)(EM € 1)

E[Rep(G)(M, F,M') HE> E[Rep(G)(EM, EF,M')

‘ [

T TIRep(G)(EuM, E,F.M") [[Rep(G)(EuM, M).

a b b
l H Rep(G)(EpM, ep,n1)
b

[[Rep(G)(EuM, E,F, M)

» Rep(G)(EM, M)
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One thus obtains for each a € k isomorphisms Rep(G)(E, M, M') ~ Rep(G)(M, F,M’) via
f = Fo(f) onan and e, v 0 Ey(g) <+ g inverse to each other.

(i) Asin (i) it suffices to show that the induced counit 7’ : id — E'F (resp. unit &’ : FE — id)
factors through [, Eof (vesp. [[,cx FaFa)

id —" 5 EF FE —< 4 id.
B
T I o l
Ha EGFG Ha FaEa

Let n'(m)q be the E,F,M-component of 1},(m). One has
0= (Xpa — aid)™y'(m) ey = (V @ X)) — aid)™’ (m)e by (3.5.ii)

while 0 = {V ® (X, — bid)}¥n),;(m)ap, and hence n},(m) = 0 unless n + a = n + b. Thus,
im(ny,) <[, EoFuM.

Let finally y € F,E,M with a # b. Then, with ¢, € k[t] as above,

e (y) = e ({o(Xpn) (Xear — aid)d + P (Xpar) Xgar — bid)d}y) = (Y (Xpar) Xgar — bid)dy)
— (VX ) (V" @ Xy — bid)%y) by (3.5.ii)
=0, as desired.

(3.7) Recall now from (3.1) the affine Lie algebra g, over C and from (3.2) its natural repre-
sentation nat,.

Proposition [RW, 6.3]: (i) Va € k\F,, E, = 0 = F,, and hence £ = [[,ep, Ea, F =
HaE]Fp Fa‘

(i1) Let ¢ : C ®z [Rep(G)] — A"(nat,) be a C-linear isomorphism via
1R [AN)] = ma, Amay_1 A Amy,—ns1 VA= (A1,..., ) € AT,

Va € T, regarding it as an element of [0, p[, one has a commutative diagram

A"(nat,) <= C ®z [Rep(G)] ———— A"(nat,,)

éaJ/ C@Z[Ea]l lC®z[Fa] ifa

A" (nat,) ; C ®z [Rep(G)] A"(nat,).

Thus, we may regard the exact functors E,, F,, a € [0,p], as part of an action of g/g on

C ®z [Rep(Q)] through ¢.

(iii) The “block” decomposition CRz[Rep(G)] = [ljep w,o C®z[Rep,(G)] reads as the weight
space decomposition of A"(nat,) under ¢; each ¢(C ®z [Rep,(G)]) provides a distinct weight
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space on N"(naty) of weight 331\ (Ni—i+1)10+370_ nié; withn; = [{k € [1L,n]|\,—k+1=
mod p}| if A= (A1,...,\,) €D.

Proof: See (3.9) below.

(3.8) From (3.7.iii) we see that the set of weights of A"(nat,) is

p p
P(A"(nat,)) = {kd + anéz\k € Z,n; €N, an =n}.

i=1 i=1
We will denote the bijection P(A™(nat,)) — A/(W,®) by t,. Note that A/(W,e) is infinite;
AN=7Zdet® ]_[?Z_ll Zwo; with W, acting trivially on the Z det-component.

Let now @ = &1 + -+ + &,. As ¢([A(n,...,n)]) has weight @, t,(@w) = W, e (n,...,n) =
W, endet with ndet € A*. Vi € [1,n[, ¢([A(n,...,n,n+1,n,...,n)]) has weight @ + &;, and

n—1i

hence ¢, (w+a;) = W,e(n,...,n,n+1,n,...,n) = W,e(ndet +c,_i11). Put p,, = ndet +¢;,1,

n—i

j €L nl Vk e [0,n],

(o +Capy =41 T (€541, ) if k70,
J n—1+(g,ef —¢y) ifk=0
(0 if k = j,
2 ifk=j+1

=qn—1 ifk=0and j#n—1,
n—2 ifk=0and j=n—1,
(1 else,

and hence pi, lies in the s, -wall of A™. For A € A, let us abbreviate WV, @ A as [A], and write
iy : Reppy(G) — Rep(G). Then

En_]|Rep[ndet](G) = En_J|Rean(w)(G) = prbn(w+&nfj)(v®?) by (37)
= pr[usj](v X pr[ndet]?) o i[ndet] = pr[usj](V(gl) X pr[ndet]?) o i[ndet]-

We could abbreviate pry, ;as pr, —after the convention in (1.10). As u,, —ndet = ¢;1 € Wey,
J °J

pr[usj](V ® DI, qer)?) may be taken to be the translation functor TZSC{et by (1.10), and hence

_ s
En_j |Rep[n det) (@) — Tn det |Rep[n det] (G)-

Likewise, as ndet —p,, = —gj41 € W(—¢,) = W(—wpe1) and as V* ~ V(—wpe1), one may
regard Fn_j|Rep[“ () 8s the translation functor Tzdet|Rep[l [(@)-
5j i ‘5j

Consider next pus, = (p+1,n,...,n) € A*. Vk € [0,n],

P if k=0,
<M50+Cval\§/>: p_n+2 lkaL
1 else,
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and hence ps, lies in the s,,1-wall of AT.

Corollary [RW, Rmk. 6.4.7]: (i) Vj € [1,n[, one may regard E,_; (resp., F,_;) as the
translation functor Tzsdjet (resp. Tzsdjet) restricted to Repy, gt (G) (Tesp. Rep[usj](G) ).

(i) One may take EyE,_; ... En+1En|Rep[ndet](G) (resp. FnFhiq... FP—1F0|RGP[;LSO](G)) to be
the translation functor T0 = (resp. TZ:)‘*) restricted to Repy, g (G) (Tesp. Rep[uso](G)).

Proof: We have only to show (ii). One checks first that ¢([A(e; + ndet)]) has weight &; +
oo+ En 1+ Ena1 = W+ Gy, and that Vi € [0,n],

n ifi=0
(e1+ndet+¢,0)) =<2 ifi=1
1 else.

Thus, t,(@w + &,) 3 €1 +ndet = (n+ 1,n,...,n) € AT. Then
En|Rean(w)(G’) = pan(w+dn)(V®?) by (37>
= pf[el+ndet](v(51) ® pr[ndet]?> © %[, det] -
As g1 = (g1 + ndet) — ndet, one may take pr., 4, 4et)(V(€1) @ DI, g0t 7) to be TeErdet by (1.10).

One checks next that ¢([A(n + 2,n,...,n)]) has weight w + &, + &,+1 and that (n +

2,n,...,n) =2 +ndet € A*. Then
En+1|RePLn(w+dn)(G) = pan(w+dn+dn+1)(V®?) = pr[251+ndet}(v(€1) & pr[51+n det}?) o i[51+ndet]-

As e = (2e;+ndet)— (g1 +ndet), one may take prip., 4, det)(V(€1) © DI, 14 7) tO De T2etnaet
by (1.10) again. If 2e;+ndet ¢ A™, repeat the argument to find ¢,,(@w+ay, + a1+ +8p-1)
(p—n)ey + ndet = (p,n,...,n) € AT, and that
Ep—l|Repbn(w+&n+m+dp72)(G) = prbn(w+dn+“'+&p_1))(V®?)
- pr[(P—n)81+ndet](v(61> ® pr[(P—n—l)al—i-ndet]?) © i[(p—n—l)q—i-ndet]

. —n)e1+n det
With Pri, e, 1ndet) (V(E1) @ PI(p_p—1)e, 4nder /) ONE May take to be Tgi_n)ﬂ)eﬁndot.

Finally, ¢([A(p+1,n,...,n)]) has weight § +2e1 + o+ -+ 1 =W+ G+ Q1+ +
Gp1 + & with (p+1,n,...,n) = (p+ 1 —n)e; +ndet = py,. Then

EO’Rean(w+dn+m+&p,1)(G) = pr[(p+1fn)€1+ndet](v<€1) ® pr(pfn)lerndet?) © i[(P*”)ElJrndEt]

. +1—n)e1+ndet s
With Pri,11-n)er 4 det] (V (€1) @PT((p— e, 4nder ) ONE may take to be Tgfn)el)j; et = T’;pﬂn)sﬁn dot-
Put B = ngﬂn)sl n detTEZ :Z)fi)t Tff: ot - - Tt Thus, B’ is a direct summand of pr,, ©

(V@=nt1@pr,, 4o ?) While TH®  ~ pr,, o(V((p—n+1)e1)®pr, qe7) a8 ps, —n det = (p—n+1)e;.
Recall from (1.8) that one has an epi V&t = V(g )®+1 — V((p—n+1)e1). There follows

a morphism of functors E' — T4 . As ie; + ndet € AT Vi € [0,p — n[, and as pg, is lying on
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the s4,1-face of AT, V&€ € ATN{W, e (ndet)}, Vo € /W with z endet < xs,,1 ® ndet, chasing
a highest weight vector yields a nonzero morphism E'V(z e ndet) — T.*0 V(z e ndet):

ndet
E'V(x e ndet) TI0 V(x e ndet),
\ O /
V(x e ps)

which is therefore invertible; Rep(G)(V(z @ us,), V(2 @ 115,)) ~ k. In turn, the isomorphism
E'V(vendet) — T V(rendet) induces an isomorphism E'L(zendet) — T.0 L(xendet).

n det
As E'L(284,1 @ ndet) = 0 = T0* L(25,,1 ® ndet), the morphism E' — T induces an

isomorphism E'L(y e ndet) — T,°° L(y e ndet) Yy € /W, and hence T.%, ~ E’ by the
5-lemma.

. . . / __ mndet (p—n—1)er1+ndet(p—n)e1+ndet . .
Likewise, if we put I = T2 qer - T ye inder Lhso , there is a morphism of
functors

F > Tn det

|
Pry det © (v<_€n)®pin+1 ® pr,uso?) = Pl'yget © (V(_(p —n+ 1)571) ® pr,uSO?)‘

For each x € W, with z e u,, € AT we may assume z endet < xs,, 1 ®ndet. Chasing a highest
weight vector again yields a commutative diagram

F'V(z e g,) V(284,1 @ ndet),
T3V (@ pus, )

and hence a commutative diagram of short exact sequences

0——=V(zendet) —— F'V(z o s) — V(25,,1 ® ndet) —=0

|

0——=V(r endet) — TZietV(x o lis,) — V(254,1 @ ndet). —0

Then the middle vertical arrow is invertible by the 5-lemma. There follows an isomorphism
F' — Tzsiet by the 5-lemma.

(3.9) Analogous assertions hold for G;T-modules with A™ replaced by ®™ and A(X), A € AT, by
A()\) = Dist(G)) Bpist(pr) A A € A As the [A(N)], A € A, do not span the whole of Rep(GT)
[J, 11.9.9], we consider the additive full subcategory Rep'(G1T) of Rep(G1T') consisting of those
admitting a filtration with subquotients A()\), A € A, and hence the Grothendieck group
[Rep(G1T)] of Rep'(G1T) has Z-basis [A(N)], A € A; although Rep'(G1T) does not form a
Serre subcategory of Rep(G1T") we may talk about its Grothendieck group [CR, 16.3].
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Note that, as 7 and a are both G-equivariant, X, is G17T-equivariant VM € Rep(G,T),
and hence all E,, a € k, are GT-equivariant on Rep(G17T'). Likewise for the F;,’s. One could
also argue with (3.3.ii).

Proposition: (1) Va € k\F,, E, =0=F,, and hence E = [[,z Eo, F'=]]

ae]Fp
(ii) Let ¢' : C ®z [Rep’(G1T)] — ®@"(nat,) be a C-linear isomorphism via
[AN)] = my, @may_1 @ @ma,—np1 VA= (A1, \) €A
Va € F,, regarding it as an element of [0, p[, one has a commutative diagram

®"(nat,) C ®z [Rep' (G1T)] (i, ®™(nat,)

éal C@Z[Ea]l l(c@)z[Fa] ifa

®"(nat,) C @z [Rep/(G1T)] —5—— " (nat).

Thus, we may regard the exact functors E,, F,, a € [0,p[, as part of an action of g@, on
C ®z [Rep'(G1T)] through ¢'.

(iii) The “block” decomposition C @z [Rep'(G1T)] = [I,ep m,. C @z [Repy(GiT)] reads as
the weight space decomposition of ®@"(nat,) under ¢'; each ¢'(C ®gz [Rep,(G1T)]) provides a
distinct weight space on ®"(nat,) of weight Y i (A — i+ 1)10 + Y 0_ n;é; with n; = [{k €
[,n)|]\ —k+1=j mod p} if \=(\,...,\,) €D.

Proof: Let U(g) be the universal enveloping algebra of g, and let C' = Y77, e(i,j)e (j, )
U(g) be the Casimir element with respect to the trace form on V: Tr(e(j,i)e(k,l)) =
Then

(1) C' is central in U(g).

For let x € g. Enumerate the e(i,j) as z1,...,zy, N = n? and let yi,...,yy be their dual
basis with respect to the trace form. In U(g)

N N
Cx = Z TYT = Z Ty, o] + ray;) = 2C + Z[xiyi, ]
i=1 i=1
with [z,y;, 2] = [z, 2]y; + xi{ys, x]. Write [z, 2] = Zjv léijxi and [y;,x] = Z;V 1 &ijvi for some

574]7 4 € k. Then §Z] - TI'([ZL};, x]%) TI'(ZEZ[I' y]]) ]z? and hence [I’La I]yl - Zjvzl gjzxjyz -
- Zj:1 & yys while x[y;, 2] = Z] 1 &ijriy;. 1t follows that

N N

Z[l’zyzﬁ] = Z([l’mﬂﬂ]yz + xiyi, ]) = Z Zfﬂ%?/z + Zf@]l'zy]

i=1 i=1

and hence Cz = zC. As Dist(G) = Dist(Gz) ®z k, C is central in Dist(G) also.
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Let us denote by A : U(g) — U(g) ® U(g) the comultiplication on U(g). Then in U(g) @ U(g)
one has

AC) =) (e(i) @1+ 1@el(j,i)(e(i,j) ® L+ 1@e(i,j))

= Z(e(j, ie(i, j) @ 1+e(i, j) ®e(j, i) + e(j,4) @ e(i, j) + 1 @ e(j,9)e(t, 7)),
and hence |
@) Q:l{A<C)—0®1—1®O},

which also explains (3.3.ii) at least when p # 2. Write C' =237, . e(j,i)e(i, ) + >, e(i,9)* +
Zz<j (6(@, Z) (j’j))

Let A = (Ar,- -, M) = Sy Miei € A As A(N) = Dist(Gh) ®pypp) A and as U(g) —
Dist(G), C acts on A(\) by the scalar

(3) bA—ZAQJrZ)\—/\

1<j

For e(i,i) acts on 1 ® 1 by scalar A(e(i,4)) = A\;. If i > j, e(j,7) € Dist(U;") annihilates 1 ® 1,

and hence, for i < 7, e(i, j)e(7, i )—B(J, )e ( ) [ (Z J),e(,1)] = e(d, i)e(i, j) + e(i, 1) —e(j, J)
acts on 1 ® 1 by scalar \(e(i,1) —e(j,7)) =

One has
EAN) =V @A) =V eindSP (A —2(p—1)p) [J, 11.9.2)
~ indgiBJr(V ® (A—=2(p—1)p)) by the tensor identity [J, 1.3.6],
and hence FA()) admits a filtration with the subquotients A(XA +¢;), i € [1,n]. As C acts on
V ® A(X) through the comultiplication and as V' = A(e;), we see from (2) and (3) that Q acts
on A(g; + A\) by scalar
1
(4) §(b,\+€i - bgl - b)\) == )\z —1 + 1.

It follows from (3.4.i) that all the eigenvalues of X, on EA()) belong to F,. Thus, [Tocr, (XM—

a)¥mM annihilates any M € Rep’(G1T). Then E = 0 unless a € F,, and hence £ =[], E

By (4) Va € F, VA € A,
(5) EJANI = > A+

i€[l,n]
Ai—i+1=a mod p

For p € A write A —, p iff there is i € [1,n] with \; =i+ 1 = a mod p such that p = X\ +¢;.
Then (5) reads

(6) [EJIAN] = > [A(w).

HEA
A=t
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Turning to F, as FA(\) = V* @ A()) ~ indg}fﬁ(v* ® (A —2(p—1)p)), the subquotients of
FA()) in its A-filtration are A(A —&;), i € [1,n]. It follows that the eigenvalues of Xz on
FA(N) are, as V* = A(—¢,), —n — $(ba—e; —b_c, —by) = X; —i by (3.4). Then F, = 0 unless
a € F,, and hence F' =[],z Fio. Va € F, VA € A,

(7) FIAN = Y [Al-e)= D> [A).
Ai—zgg’ﬂod P Jffx

Now,
(¢ 0 [E)AN] = ¢'( D AW = Y myy @mMpy 1 @ -+ @ My g
Alfi\u Affu
while

(a0 AN = almr, @ My, 1 @ -+ @ My, ny1)
= (€amy,) @My, 1 @ -+ @My, _ni1
+my, ® (EgMay—1) @My, @ - @My, _pi1 + ...
+my ® @My, nt2 @ (EaMa, —nt1)-
For 1 € A with A —, p there is j € [1,n] with A\; —j+ 1 =a mod p such that Vk € [1,n],

M +1 if k=7,
Ak else.

M =

On the other hand, by (3.2.1)

R Mmy,—ite A\ —74+1=a mod p,

€aMM);—i+1 =
0 else.

Thus,

(éa © (ﬁ/)[A(A)] - Z mx, ® Mi,—1 Q@ my;, 1 —i+2 & M, —i+2 & m)\¢+1—i®
)\i—i—&—lEZa mod p

C @M, —nt1
= (¢ o [EIA(N)].
Likewise, f, 0 ¢/ = ¢/ o [F,] Ya € [0, p].

(iii) The weight of m,, ® --- ® m,,, € ®™(nat,) is, writing v; = v;o + vup with vy € [1, pl,
n n n p
(Bong +1110) 4+ oy Fvm10) = O _vi)d + > G = O _vin)d + > njé;
i=1 i=1 i=1 =1

with n; = [{i € [L,n]|vic = j}| = [{i € [L,n]|v; = j mod p}|; in particular, > .n; = n. It
follows YA, 1 € A that ¢/ ([AN)]) = ma, @ may_1 @ -+ @ my, ni1 and ¢ ([A(u)]) = My, @
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Myy—1 @ -+ @ My, —nt1 have the same weight iff

S =i+ D = S (i — i+ 1)y and Y € [1p], [{i € [Lallh —i+1=j mod p}| =
€ [Lnllu —i+1=7 mod p}

i 37 (A + O = S0 (1 + G and ) € [1,p), [ € [Lnl(A+ ) = j mod p}] = [{i €
[1,n]|(n+¢);i =7 modp} as=(0,—1,...,—n+1)

iff 3o €S, and vy,...,v, € Zwithvy+--+v, =0 A+()—oa(p+{) =pv,...,v)
fA+CeWL(u+ ) as {(v1,...,vn) €21+ + v, =0} =ZR

ift A € W, e pu, as desired.

(3.10) Let a € [0,p[. We have seen above that C ® [Rep’(G1T)] admits a structure of sly(C)-
module such that

x:(g é)v—MC@[Ea] and y:<(1) 8>'—>C®[Fa].

We show that the action extends to C ® [Rep(G1T)].

Corollary: (i) There is a structure of sly(C)-module on C®&[Rep(G1T)] such that x — CR[E,]

~

and y — C® [F,]. As such, each 1 ® [L(N)], A € A, has weight {> ;. (N — i+ 1)10 +
> 01 néj}(ha) with respect to [x,y]. Thus, Rep(G1T) provides an sly-categorification of C @
Z[Rep(G1T)| in the sense of [ChR]/[Ro].

(ii) ¥§ € [1,n[, one may regard E,_; (resp., F,_;) as the translation functor Tisdjet (resp.
Tzsdjet) restricted to Repyp,qeq(G1T)  (Tesp. Rep[usj](GlT) ). Also, one may take
EoE, ... En+1En|Rep[n 4oy (G1T) (resp. FoFn 1. .. Fp,lFo\Rep[Mo](GlT)) to be the translation func-
tor T (resp. TZift) restricted to Repy, 4o (G1T) (resp. Repy,, 1(GiT)).

Proof: (i) As E, and F, are exact on Rep(G;T'), they define
[Eal, [Fa] € Modz([Rep(G1T)], [Rep(G1T)]),

and hence also C ®z [E,],C ®z [F,] € Mod¢(C ®z [Rep(G1T')], C ®z [Rep(G1T)]), which we
will abbreviate as [E,]| and [F,], resp. We thus get a C-algebra homomorphism 6 : T:(z,y) —
Mod¢(C ®z [Rep(G1T)], C ®z [Rep(G1T)]) such that z — [E,] and y — [F,], where T¢(z,y)
denotes the tensor algebra of 2-dimensional C-linear space Cx & Cy. Put z =z @y — y ® x.
We show that

2Rr—r®z2—20,20Y —y® z+ 2y € kerf,

and hence C ® [Rep(G17T)] is equipped with a structure of U(sly(C))-module.

Now, we know from (3.9) that both z®z —2®2z—2x and 2®y—r® z+ 2y annihilate C-linear
subspace C®z[Rep’(G1T)] of C®z[Rep(G1T)]. We are to show that they both annihilate [L(\)]
VA € A. We have an exact sequence of G;T-modules

0= M =M, —---— M — L\ =0

such that all M; € Rep'(G) and that all of the composition factors L(u) of M’ have pu < \.
As A(p) — L(p), the composition factors of E,L(u) (resp. F,L(u)) are among those of
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E,A(p) (vesp. F,A(n)). For X € [Rep(GiT)] write X = 3", ., X,[L(v)] with X, € Z and set
supp(X) = {L(v)| X, # 0}. Thus,

supp((22 — 72 — 22)[B()]) ©
supp(zyz)[A(w)]) Usupp (yz)[A (1)) Usupp (zzy) [A (1)) Usupp (zyz ) [A (1)]) Usupp(z[A (1)]).

Vv € A, we have

@A) = U supp((A(w+e0)),
supp(u[AW)) = U supp([A( = <))

v;—i=a mod p

It follows, as u is far from A, that

supp((zz — 2z — 22)[L(u)]) N supp((za — w2 — 2¢)[L(N)]) = 0.

As (zz — xz — 22)[M;] = 0 Vi € [1,7], we must then have (zz — zz — 22)[L(\)] = 0 =
(2 — xz — 22)[M"]). Likewise, (zy — yz + 2y)[L(\)] = 0.

As all [M;]’s have weight > 7" (A — i + 1)10 + Y7 n;é;, so does [L(\)]; again 0(z) —
Qi N =i+ 1)0+ 378, n,é;)(h,) annihilates [L(\)].

(i) The assertion holds on the [ndet]-block of Rep'(GiT) by (3.8) and (3.9). Let A €
W, e (ndet). As L()\) is a quotient of A(X), E,L()) is a quotient of E,A()), and hence E,L()\)
belongs to the same block in the whole of Rep(G1T) as E,A()) does. Likewise for F,L()).
The assertion follows from the construction.

(3. 11) Remark: The same argument as in (3 10) yields that C®[Rep(G17")] admits a structure
of g[ -module; Vi € [0,p[, Vm € Z, if é; - [V(N)] = ZN[V(M)], (é; ® tm) - [V(A)l = > V(u+
pmdet)] = Z#[V(,u) ®pmdet]. Accordingly, we define (&; ®t™) o [L(A)] = >_ [L(u) ® pm det].

Likewise for f; @ t™. We let d act on [L(A)], A € A, by the scalar (327 (A — i + 1)16 +
> né)(d) = > (A —i+ 1)1 We let K annihilate the whole [Rep(G1T)] and (0,1) =
diag(1l,...,1) act as the identity on [Rep(G1T)].

4° 2-Kac-Moody action on Rep(G)

We now wish to upgrade the g/g—action on C ®z [Rep(G)] to a categorical action of the

Khovanov-Lauda-Rouquier, KLR for short, 2-category U (Q/EL) on Rep(G) in such a way that
C® [E,) and C® [F,], a € [0, p], are upgraded to form translation functors on Rep(G) as in

(3.8). The U(gl,)-action on Rep(G) will provide ample 2-morphisms to realize an action of the
Bott-Samelson diagrammatic category Dgs. We will see that exactly the same argument gives

an upgrading of gg)—action on C ®z [Rep(G,T)] in (3.10) to a U(g[;)—action on Rep(G1T'). We
first take N = p in §3 to consider g/[;.
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(4.1) We recall the definition of Rouquier’s strict k-linear additive 2-category U (g/[;) categori-

fying the enveloping algebra of 5[; after Brundan [Br, Def. 1.1]. First, a k-linear category is
a category C such that VXY € Ob(C), C(X,Y) is a k-linear space and that the compositions
C(X,Y)xC(Y,Z) — C(X, Z) are k-bilinear [FHf], Def. 3.1.11]. It is a k-linear additive category
iff it has, in addition, a zero object and admits a direct sum of any 2 objects [#[if], Def. 3.2.3,
p. 130).

Definition [RW, 6.4.5]: A strict k-linear additive 2-category U (g/[;) consists of the following
data:

1 =il
i) Vi,j € F, with i # j, t;; = ’
(i) Vi,j € F, with i # j, t; {1 loc .
(ii) the objects on/{(g;) are P = {\ € h*|\(h;) € Z Vi € [0,p[} from (3.1),

(iii) VA € P, Vi € [0, p[, generating 1-morphisms E;1, € U(gl)(A, A+a,), Fily € U(gl) (A, A—
ai)v

(iv) VA € P, Vi, j € [0, p[, generating 2-morphisms

A B 4G,
Tyr; = i A EZ/l(g[p)()\,)\—l—dz)}(Ezl)\,Ezl,\) ﬂx,w
7 .
A —>Ei1)\ A + (678
/ i Y W
TN Gi) = / A€ U(glL) (M A+ & + &) (B 51y, B E;1y) ﬂ%(m)

where EiEjl)\ = (EilAerj) ° (Ele) = CA,A+dj,/\+ozj+&i(Ej1,\7 Ei1A+dj) and EjEil)\ = (Eledi) ©
(Eily) = capraintata; (Eily, Ejlaga,):

Ejl)\ . E;ily R

A —2 % At 4y PP SN )
EiEjl/\.A.,,”...) lEilA-&-&j EjEil)\m""-._) lE‘j].)\_Hg‘i
A+ & + by, A+ a; +

and
)

i = UA € U(gL)(A N (1, FE L)

with 1, denoting the unital object ole(g[;)()\, A) from (2.2.iv), and F;E; 1) = (Filyta,) o (Eily),

and finally
ci= O\ eU@ONERL, L)

l
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with E;F;1y = (E;1x_4,) o (£515). In the notation 7, ;) we follow [RW, p. 90] to write (j,%)
instead of (i, 7) in accordance to the order of composition reading from the right.

By (2.2.iv) one has Vf € U(g[\)()\ u) foly= fand 1,0 f = f. We will denote the
ol

identity 2-morphism tp,1, of E; 1>\ in U(gl,) (A, A+ &;)(Eily, Ejly) (vesp. Fily in U(g/g))(/\, A —

&;)(F;1y, F;1y)) by T/\ (resp. l
1

1
LtEn, = 1dg1, = T A tp, = idp1, = l A
)

Those 2-morphisms are subject to the relations in [Br, Def.1.1], e.g.,

0 A_ T i =,
/ else,

where

/ A
/)\ = / = 7—)\7(]',2') @ (Ik—i-dj,i * LEjl)\) & Z/{(g[p)(k, )\ -+ (363' + O%)(EzE]l)\, EjEil)\),

! J 1\>\+&j
i J
E;1y . Bilaya, . . E;Ej1x
A=A+ a; —=A+ 4, + & A——= A+ +q
CAA+é . A A, +é;
LE;1y, ﬂmwﬂ | Fog At Txta;,i*E 1y
P A R y A
A i, >\+OZJEi1A+aj)\+Oé]+az AEE“)\—I—%%—OW
EiEjl)\ N
A A+ +
Tx+a i*LEjb\H/
- A A o A ikl
A E;E;1, A+ Qj + Q; TG O@rragi*tm;1y)
T )i \U/
(4,1) 4
A A&+ &
E;E;1y + a; + ay,
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A= / A= (LEle@i * Txi) O Ta () € U(@)(/\, A& + &) (EE;1y, E;Eql),

>\ — ['Eil)\+&j * ['Ejl)\ = LEZ-EJ-I)\ c U(g[p)()\, /\ + dj + OAéZ)(EIEjl)\, EjEil)\),
etc. We also impose, among others,

(0 if i = g,
& tz‘j% b —{—tjiW A ifi—7=41 mod p,

RE
4 | e,

the left hand side of which reads 7y ; ;) © 7, and

(3) tijw I)\ ifi=jand k—j =41 mod p,
AT A= i Jk
‘ . 0 else,
1)k 1 ]k

etc. On the LHS of (3) the first (resp. second) term reads (Tatay,k.g) * tEi1,) © (LEj1, 4, 14, *
Taki) © (Tatan, () * tets) (e8P (Ta,Gia) * tm1s) © (Tasay, (ki) * Li10) © (LB oy ia, * TAGKD) )-

Recall from (2.2.ii) that each U (5[;)()\,#) forms a k-linear additive category, and hence
VX, Y eU(gl,)(\ 1), U(gl,) (A, 1)(X,Y) carries a structure of k-linear space. The 1-morphisms

—

belonging to U(gl,)(\, p) are direct sums of those

EfmFpm . ERFRMy ik i € [0,p], ak, by € Nowith = A+ (axdy, — brdy,)
k=1

[Ro12, 4.2.3]. In case pn = A, L{(ﬁg)()\, A) forms a strict monoidal category with ® in (2.1) given
by the “composition” @ of 1-morphisms from (2.2) and I € Ob(U (@)(A, A)) given by 1,.
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If EfmFm . EMFMy = EfmFm  ECEES . EPFIL, with a = a; — 1, ¢ = by — 1,
V:/\—blOAéjl—i‘CLlOAéil —"'+Cdi,

nyﬂ; = 1 Ve Ll(g/[;)(l/, v+ OAZZ)(EZL,, EZL,)
1

* :El/,’i * LEicmE;lll F;’l 1y € u(g[p)(A7 )\ + Zranl (akdlk - bkd]k:))

induces a 2-morphism ¢ b
p EfmEbm B i

u+o<,b-

m, Ibm a1 by am Ibm a1 7oby .
(Eim F}m T Eil F}l 1>‘7 Eim F}m T Eil Fj1 1>‘)

Ec..E1Fb1, Eom pbm | pay
v 11 T J1 Eily ~ im T gm T vtoy m ~ ~
A > > U+ & A+ D> (akdy, — brdy,)
L ay b L
EZ.CMEl.ll Fjlllkﬂ wu,iﬂ ﬂEmef&”-»-Eflwdi
\ \ A m ~ ~
A > v > U+ Q A+ >0 (agby, — brag,).

E{mEI™ B8, 4,

m ~Jm

ay by E;1,
EfE21 Fj1 1, i

If E{mFim . EMFMy = EfmFrm . EfEE;ES. . ENFM, with a = a; — 1, ¢ = by — 1,

m = Jm

v=A—bi&; +at; — -+ cq;,

Ty,(j,i) = IS Z/{(g/g,)(y, v+ OAéZ + dj)(EiEjlz/; EjEi1u>7

. . - m A~
induces a 2-morphism Lgem pim *To(ii) * Lpe pet gt € U(gl,) (M A+ D0 (ardy, —

bl ) (B Fom  ESEEGES . ERFN L Efm e ECE B ES . B FL):

~Eiluta;vay

a1 ;b1 b
B BV FM EiE;L, A _BIMEIT LB, 6 s, . X X
rv » Vit P A+ D (b, — bray,)
L b
E;Ejll £l IAﬂ Tu,u+ai+ajﬂ ﬂLEfTT F;.’;n...Efb.llu+di+d],
~ N m ~ ~
)\ aq by r v EE1> v + az + aj am pbm a ’ )\ + Zkz].(akalk - bka]k)
E]CE’Ll Fj1 1A Vit d Elm ij E,L 1V+d7l+6‘j

(4.2) Definition [RW, 6.4.5]: A 2-representation of U (gg) is a k-linear functor from U (E;E,)
to the 2-category of k-linear additive categories, i.e., it consists of the following data:

(i) VA € P, a k-linear additive category C,,

(ii) YA € P, Vi € [0, p[, k-linear functors F;1, € Cat(Cy,Cyr+4,) and F;1, € Cat(Cy,Cxr_q,),
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(iii) VA € P, Vi, j € [0,p],

zy; € Cat(Cy,Crya,) (Eily, Eily),
aGi) € Cat(Cy, Cavayra, ) (B, EjEi1y) with EjE;1\ = (Ejlyya,) o (E;1)) and
BBl = (Ejlysa,) o (Eily),
i € Cat(Cy,Cy)(ide, , FiE;1)) with FyE; 1) = (Filaya,) o (Eily),
exs € Cat(Cy, G (E:Fily, ide,) with EFi1y = (Eily_a,) o (Fily),

subject to the same relations as @ ;, Tx (i), Mx,i; €, for U(@,) from (4.1).

(4.3) We now define a 2-representation of U (@,) on Rep(G).

Let T € Cat(Rep(G), Rep(G))(E?, E?) be a natural transformation defined by associating
to each M € Rep(G) a k-linear map Ty, : E?°M =V @V @ M — E?M such that v ® v @ m
vVRvemVYv, v eV VYm e M. Then

(1) (V& Tu) o Xysspn = Xysagn 0 (V @ Tar).
Using (3.3.i), one also checks
(2) TMO(V®XM)—XV®MOTM == —ldEZM

Recall from (3.8) the bijection ¢, : P(A™nat,) — A/(W,e). For A € P let us write

Repbn()\) (G) if A € P(/\”natp),
0 else.

R, (G) = {

Consider the following data:
(i) VA e P, let C\ = R’LH(A)(G)'

(11) VA € P, Vi € [O,p[, let Ezl)\ = EilRLn(A)(G) : R,Ln()\)(G) — R‘Ln(>\+5¥i)<G> and Fll)\ =
Filr,, @) : R, (G) = R, n-a)(G) from (3.7). In particular, £;1y = 0 (resp. F;1y = 0)
unless A and A+ @&; (resp. A and A — &;) € P(A"nat,). Put for simplicity E? = Eilr,, (@) and
F} = Filr,, (@)

7

(iii) YA € P, Vi, j € [0,p[, define z,; € Cat(R,,n(G), R, 014 (G))(E}, E}) by associating
to each M € R, (»)(G) a k-linear map xy; = Xy — didygar:

Xpr—tid

(3) VoM VoM
EMM ~ EMM.

Define 7, ;) € Cat(R,,(»)(G), Rbn(,\+di+&j)(G))(E;\+&j E?, EJ’\J””E}) by associating to each M €
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R..(0)(G) a k-linear map 7ys,(j;) : B E}M — Ej”rdiEf‘M such that

(2

(4) TGy =
{id + (V@ Xu) = Xveu} (Ty —id) if j =1,
(V ® Xy — XV@M)TM +idyevem if j =4 —1 mod p,

(V X XM — XV@M){ld + (V X XM) — XV@)M}il(TM — ld) + id else,

which is well-defined by [Ro, Th. 3.16]/[RW, Th. 6.4.2]; a verification will formally be done
using (4.6) and (4.7). In case j = i, E; " E}M is a generalized i-eigenspace of both V ® Xy,
and Xygy. As V ® Xy and Xy commute by (3.4.ii), (V @ Xjr) — Xyga is nilpotent on
EMYEMM, and hence id + (V ® Xy) — Xygas is invertible on E}M*EMM. Likewise the 3rd
case.

Define 7, to be the unit 7, € Cat(R,,x)(G), R, (G))(id, F; T E}) of the adjunction
(£, F5) on Ry, (»)(G) from (3.6). Define finally €, ; to be the counit ; € Cat(R,, () (G), Ri,()(G))
(B} %F2,id) of the adjunction (Ej, F}) on R,, (y)(G) from (3.6) also.

Theorem [RW, Th. 6.4.6]: The data above constitutes a 2-representation of Z/{(g/g).

(4.4) To see that the theorem holds, we must check that the 2-morphisms in (4.3.iii) satisfy the
relations of those for U(gl,) as given in (4.1).

Consider for example the relation from (4.1.1)

T TA if i =7,
else.

Accordingly, we must verify

id ifi=y
(1) TaGa) © (avayi * b)) — (LE;“% *Tri) O Th (i) = {0 else,

i.e., in case i = j, for example, one must show on E} T EXM for M € R,, (y)(G) that
{V® Xy —iid)} o {id + (V@ Xyy) — Xyeu} H(Ta —id) = id.

For that the KLR-algebra H3(F,) and the degenerate affine Hecke algebra Hj of degree 3 come
to rescue.

(4.5) To define the KLR-algebra, recall first ¢;; € {1} from (4.1) for i, j € F, with ¢ # j. Let G5
act on F? such that ov = (Vy-11, Vg-12, Vp-13) for v = (v1,10,13) € F3. Put o}, = (k,k+1) € &g,
k e {1,2}. The algebra H3(IF,) is really a k-linear additive category with objects Ff; and
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morphisms generated by z,, € H3(F,)(v,v) and 7., € H3(F,)(v,0.v), 2 € [1,3], ¢ € [1,2],
v € I}, subject to the relations

(KLRl) :Ez’ymz/,y/ == $Z/,V$Z,Vl7
(

0 if v, = veyq,
(KLR2) TeowTew = § trewerrTew T toer weTet,y  if either veyn =ve+1or ve = vey + 1,
 idy else,
(KLR3)
(—idy ifc=zand v, = v,
TevTzy = ToozowTy = § 1dy if z=c+ 1 and v, = v.41,

0 else.
\

We do not care what z,, : v — v and 7., : ¥ = ov are as maps.
A representation of H3(IF,) consists of the data
(i) Vv € F3, a k-linear space V;,
(ii) Vv € F, ¥z € [1, 3], a k-linear map z., : V, = V,,
(iii) Vv € Ff;, Ve € [1,2], a k-linear map 7., : V,, = V,_,,

satisfying the relations (KLR1-3). For H3(F,) the conditions [RW, (6.5.3) and (6.5.5), p. 86]
are irrelevant.

(4.6) Recall next the degenerate affine Hecke algebra, daHa for short, H,, of degree m; DAHA
already stands for “double affine Hecke algebra”. Thus, let k[X] = k[Xi,..., X,,] be the
polynomial k-algebra in indeterminates X, ..., X,, with a natural &,,-action: o : X; — X;@).
For transposition o, = (¢,c+1) € &,,, ¢ € [1,m], let 0. denote the Demazure operator on k[X]|
defined by

f - Ucf

_
f )(c-i—l_)(c7

which differs from the standard one by sign. The daHa H,, is a k-algebra with the ambient
k-linear space k&,, @y k[X] having k&,, and k[X] as k-subalgebras such that, letting T, denote
o. €6, in H,,

(1) JT. = Teoo(f) + 0:(f)T. Vf € k[X], Ve € [1,m].
If » < m, one has naturally H, < H,,.
Lemma [RW, Lem. 6.4.5]: There is a k-algebra homomorphism

H,, — Cat(Rep(G), Rep(G))(E™, E™)

such that VM € Rep(G), X, —= VO @ X e.1g), 2 € [1,m] and T, = VO 1 QT o1 gy,
cel[l,m].

Proof: One checks that the relations T2 = 1 Ve € [1,m], and the braid relations T.T}, = T,T.
for b,c with |b — ¢| > 2, T.T.;1T. = Te11 T, 1.1 on Cat(Rep(G), Rep(G))(E™, E™). Also, the
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relations X, X, = X, X,, z,y € [1,m], hold on the RHS by generalizing (3.4). To check (1), we
may assume f € {Xy,...,X,,} as Vg € k[X], (fg)T. = f(T.g). Then the relations hold on the
RHS by generalizing (4.3.1, 2).

(4.6") The lemma carrie over to Rep’(G1T) and to Rep(G1T).

(4.7) Tt follows for M € Rep(G) that E3>M comes equipped with a structure of Hz-module. By
(3.7)

E°M =[] EiM
veFs

with E2M = E,,E,,E,, M and E,,(V®-1 ® M) forming a generalized eigenspace of eigenvalue
vi for Xye,_14,, 1 € [1,3]. Thus, E3M affords a generalized eigenspace of eigenvalue v; for each
X; by (4.6). As such, it follows from a theorem of Brundan and Kleschev [BrK| and Rouquier
[Ro], cf. [RW, Th. 6.4.2], that E3M affords a representation of Hs(F,) with z,, = X, — v, and

(1 -+ Xc — Xc+1)_1(Tc — 1) if Ve = Vet
TCV — (Xc — XC+1)TC + 1 lf VC+1 == VC + 1,
1+ X, — X)) M Xe = Xoo)(T.— 1)+ 1 else.

Then (4.4.1) follows from the middle case of (KLR3) with ¢ = 1.

(4.8) We have yet to verify [Br, (1.5), (1.7)-(1.9)]:

0 NT L/Tl

~

(2) E;Fil\y ~ FiE;1y i AM(h;) =0,

(3) EiFly ~ BEL & 1,°" i A(hy) > 0,
(4) EiFily~ FEL, @1, if M) <0,
respectively.

Now, the LHS of the first relation in (1) should read

(5) (5)\+l3ti,i * LE¢1>\) © ([’Eil/\ * 77>\,i) © ([’Eilx * LlA)

= (Extani O tEi1y O tEny) * (Lein, O Mai O L1y) = (Extani © Ley) * (Le1, © M)
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A > A+
Il
1 E;1y ~
A > A AN+
nA,iﬂ ﬂLEﬂ/\
FiE;1y E;1x A
A — >H)\ —— A+ &
E;F,E;1y ~
A ZHZ - > A+ Q;
E‘.1>\ N EiFil)\+d, ~
A —25 ) + o ! s A —+ o
LEilkﬂ H€A+di,i
E;ly R Ixtay R
A — A+ (o7} : > A+ o
\ Il g
\ .
Bl > A+ Q.

This follows from the fact that E; and F; are adjunction morphisms Rep(G)(E;M, E;M') ~
Rep(G) (M, F;E;M'") via ¢ — F;¢ony with inverse e g, yr0Esth <+ ). Thus, for f € Rep(G)(M, M)

Ef = EE;M’ © EZ(EEZf o 77M) = Eg;M’ © E,FE;f o Einwu,

and one has a commutative diagram

lEiﬁM EinM'l

E,FE; )
idpar | B FEM 255 R M idg e

lez-M €E; I\4’l

To see the invertibility of (2)-(4), we note that the E} : R,,\(G) — R,,(+an(G) and
EF} : R,,n(G) — Ry, (p—a:)(G) define an sly-categorification [Ro, Def. 5.20. p. 58: an sl,-
categorification on the 2-category of k-linear abelian category Rep(G) of finite dimensional
G-modules [Ro, p. 5] is the data of an adjoint pair (E;, F;) of exact functors Rep(G) — Rep(G)
and 2-morphisms X € Cat(Rep(G),Rep(G))(E;, E;) and T € Cat(Rep(G), Rep(G))(EZ, E?)
such that under the isomorphism C ® [Rep(G)] — A"(nat,) from (3.7)

(i) the actions of [E;] and [F;] on [Rep(G)] give a locally finite representation of sl,

(ii) the classes of simple objects are weight vectors,

)
)
(iii) F; is isomorphic to a left adjoint of FEj,
(iv) X has a single eigenvalue i,

)

(v) the action on E* of X; := E"XE/™" for j € [1,m] and of T; := E" " 'TE!"! for
J € [1,m[ induce an action of the degenerate affine Hecke algebra H,,.
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Then (3) and (4) (resp. (2)) follow from [Ro, Th. 5.22 and its proof] (resp. [Ro, Th. 5.25 and
its proof]).

(4.8) As we have observed in (3.9), the set P(®"nat,) of ®"(nat,) coincides with P(A™nat,) =
Z6 + {325 miéjln; € N, 370 nj = n}, and hence we may denote the bijection P(®"nat,) —
A/(W,e) by 1, from (3.8). Define T € Cat(Rep(G1T), Rep(G1T))(E?, E?) just as on Rep(G)
and for cach A € P let
Ru, o (GiT) = Rep,, () (G1T) if A € P(®"nat,) = P(A™nat,),
0 else.

As Ei\ : R‘L’,L(A)(GIT) — RLH()\—&—Q (Gl ) and F)‘ Ln (Gl ) — R

2O—an(GiT), i € Fp, form
an sly-categorification by (3.10), exactly the same arguments for Rep( ) yi elds

Corollary: The data defined on Rep(G1T) just as on Rep(G) constitutes a 2-representation
of U(gl,).

(4.9) Recall w =é; 4+ --- + ¢, € P(A"(nat,))) from (3.8). Vs € S,, set

- e .
o _ BT, if s = s4,,J € [1,n],
= Flin+etbp 1 @Gt ta n :
EE Ot pEttatetps | petinpe gf g g
WG j : _ y
T — E if s = s4;,J € [1,n],
= n-téin Han -ty 1 p@an oty 160
Fton prfonttnss | preaetettm pret@n et @ t6 e g = g0,

and ©, = T, T*. By (3.8) each ©, may be taken to be the s-wall crossing functor on Repy, 4o (G)-
We have obtained a strict monoidal functor

(1) U(gl)(w. @) — Cat(Repy, geq (G), Reppr oy (G))

such that F,_;E, _jls +— Oy, j € [1,n], and F,Fy1 ... Fy 1o EgE, 1 ... By By lg — Osag1-
This is really a homomorphism of monoids with respect to o (resp. the composition of the

wall-crossing functors) on the 2-category U (g/g) (resp. Repy, qer) (G)); Ob(U(gl,)(w, @) admits
an addition by direct sum, but not a structure of abelian group.

As tp(w) = ndet = det® € A*, we may regard R,, ) (G) = Repy, 4o (G) as the principal
block Repy(@); Repy(G) ~ R, (=) (G) via M + det® @M. Then (1) reads as a strict monoidal
functor

(2) U(gl)(w, @) — Cat(Repy(G), Repy(G)).

In order to obtain a strict monoidal functor Dgg — Cat(Repy(G), Repy(G)) such that
Bs(m) — O, Vs € S, Ym € Z, it now suffices to construct a strict monoidal functor Dgg —

Z/l(@,)(w,w) such that Vj € [1,n[, Ym € Z, B, (m) — F,_jE, jlg and that By, ,(m) —
FoFo .. . Fy  FoEGEy ... By Byl Instead of constructing a strict monoidal functor Dgg —
U(gl,)(w, @), however, we make some further reductions.
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(4.10) First let P, = {kd + D% nié&; € Plk € Z,n; € NVi} D {ké + Y7 nigilk €
Z,n; € NVi,>? n;, = n} = P(A"nat,). Let L{+(g/[;) denote the 2-category having the
same data as that of U(gl,)) but VA, u € P, VX,Y € U(gL)(\ u), {Us(gh) (A ) }(X,Y) =
{L{(@)()\, WHX,Y)/Z(X,Y) with Z, (X,Y) denoting the k-linear span of those f: X =Y

which factors through some Z5 o Z; with Z; € Z/l(g[;)()\, v) Jve P\ P,

f
X Y, .
ZQ 0] Zl 14

u+(§[;)(>\, ) is just an additive category, not having enough structure to define its quotient.

AsR,,)(G) = Ounless v € P(A"nat,) C Py, the 2-representation ofU(gg)) on (R, (G))repr
in (4.3) induces a 2-representation of u+(§\(p).

(4.10") As P(®™nat,) = P(A"nat,), the 2-repsresentation ofbl(gg) on (R,,»)(G1T))rep induces

a 2-repsresentation on Uy (gl,,)

(4.11) We “restrict” next the 2-representation of Z/{+(g/§) to L{(g/[;) As p > n, one can imbed
s[,(C) as a subalgebra of s[,(C) via
(2 0
x 0 0/

As the trace form on sl,(C) restricts to the one on sk, ((C) the imbedding extends to an imbed-

ding ofs[ into 5[p, and further to an imbedding of g[ = 5[n ¢ C into g[ = 5[ @®C with (0,1) =
diag(1, 1) — diag(1,...,1) = (0,1). In particular, bam = bai( @)@CK@Cd byt (c) denoting
_~ -~ b

n P
the CSA of gl,,(C) consisting of the diagonals, is a direct summand of Bot,c) PCK ®Cd = h i
as a C-Lie algebra with diag(1,...,1) — diag(1l,...,1), and hence one may regard
—— ———

n p

Pi ={\ € (b)) \(h) €ZVi € [0,n[} — {\ € (hg@)*m(hi) eZVie|0,p[} =P

If we let nat,, denote the natural module for 5@, it may be imbedded as a direct summand of
nat, as gl,-modules

natp:(ﬁ(:ai)@c@[t,t H(Caz ) @¢ Ct, 7} & {( ]_[ Ca;) ®c C[t, t71]}

i=n+1

= nat,, @ {( H Ca;) ®c C[t,t ']}

1=n-+1

with g/a acting on the 2nd summand by annihilating sl,,(C). Let us denote the direct summand
nat,, by natI[J"]. Then the set of weights on nat[ " is given by P(natp ) ={é& +md € Pli
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[1,n],m € Z}, and A™nat,, is a direct summand of

Anat, ~ ]_[ Nmatl) @ AT ]_[ Ca;) ®c C[t,t71]}

i=n+1

[ARES, Prop. 21.3, p. 125] as a g/[;—module. Explicitly, one may identify A"nat, with
A" (nat?) = [)ep(amnat,) (A" naty)x with P(Amnatl) = {0 nié+md e Pln; e N,Y " n; =
n,m € Z}; the other summand has weights involving some €;, j > n.

Note, however, that the imbedding of g/a into E;Q is not compatible with the Chevalley
elements associated to the index 0, e.g., & = te(1,n), fo =t 'e(n,1) in QT[\ while éy = te(1, p),
fo=1t""e(p,1) in gl,. Although te(1,n) and t~'e(n, 1) have complicated expressions in terms

of Chevalley elements in g[ their actions on nat[ " are given, resp., by

(1) éOép—l cee én-‘rlén and fnfn-i—l s fp—lfo-
Recall from (3.7) the isomorphism C ®z [Rep(G)] — A"nat,, and set
Rep[n](G) = H Repbn(x)(G)-

/\GP(/\"nat[pn])

One thus obtains an action of g[ on C ®z [Rep™(G)] ~ /\”(nati,n]) To avoid confusion about
the nodes 0 on g[ and on g[ we will write oo for the node 0 in g[ after [RW]; é,, and f. act

on /\”(nat[n]) as the elements in (1), resp.

Omne can, moreover, upgrade the action to a 2-representation of U (@) on [Rep™(@)] as

follows: in the notation from (4.3), VA € P,

(i) let
Rep,, )(G) if A € P(A Amat"),

0 else,

Cr =R, n(G) = {

(i) Vi € [1,n[, let
E) = Bl
A =

7

. Rm()\) (G) — R‘Ln(>\+di)(G)7
@ R, (G) = Ri,(a—an)(G),

Ln (A)

and, corresponding to E 1, and F1, in Z/{(g/a), let

EY = (EoEp_1 ... EniEy)
FX = (B Fpyr... Fy 1 Fy)

@) * Riu)(G) = Ri,(tntngr+otipi1+d0) (G);
R‘Ln(A)(G) : R’Ln()\) (G> - R’Ln()\*dofap—l*"'7dn+17&n)(G)'
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(iii) Vi, j € [1,n], define
2} € Cat(R,, ) (G), Ri,ran) (G) (B}, EY),
)€ Cat<RLn 1(G), Reyrranran) (G (BT BN, EMTO B,
m € Cat(R,, () (G), R, o0 (@) (id, FMED),
e} € Cat(R,, ) (G), Lnu( DB} F}id)

ln

to be T4, Ta,(ji)s Mhir Exis a8 in (4.3.ili), resp. Define

xéo S Cat(RLn()\) (G)7 R’»n()\"rdn“l‘&nle‘i‘“"‘l‘dpfl+6CO)(G))<Eéo7 Ei\o)
to be

A= )‘7
o0 0 p—1 n+1l n
which reads
LEyEp 1..Eni2Eni1|r NN 5”2
tn(A+én)
= LE(/)\+an+an+1+ tap_q X LE:+f¢n+an+1+ Ay g KoK LE;}il‘ln * I)\

Define
Ab-@nt by o6y 1 +6 Py
7-(>\<>o,i) € Cat<R‘Ln()‘)(G)7R’Ln(A+&i+dn+dn+l+"'+dp—1+d0)(G))(E’i oty 1+a0E<i\ov Eé\:_ lE?)?

to be
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which reads

*7'();1’@-))@...

>\+6¢n+dn+1 +"'+6¢p73
. *
T(p—2,0) LEP—B"'E"“E”'RMA)(G) )

(LEOEpfl---En+2En+1 |Rbn</\+&n+di>(c)

© (¢
( EOEp—l|RLn(A+&n+an+1+m+dp72+&i)(G)

>\+0Aén+dn+l+"'+dp72
L . XL
© ( EOIRLn(A+dn+dn+1+...+dp—l+di)(G) (p—1,) EpiQ”.EnJﬁlEanbn(}\)(G))
>\+dn+dn+l+"'+&p—1

@ (7—(0’2-) * LEpfl“‘E"JrlEn'RLn(A)(G))
B A
= (LEg+dn+dn+1+'”+é‘p71+ai * LE;\jldn+&n+1+'“+&p72+di * LE;j§n+&"+1+'“+é‘p73 Kok LEif?nMi T(“yi))

©...

A"!‘0/\é'r7,'i‘&n+l"l“""'_dp—Q *

O] (LEA+an+an+1+m+&p,1+ai K LA tantan it tapota; * T

0 Epfl i,p—2)

Lphtantanste iy K0 K Lpytan * L)
© (LEg+a"+é‘"+1+"'+‘ip—1+‘5‘i * T(?;ﬁ;ramﬁmwp_l KLt antangttayg KoK g X L5}
o (T(i\):‘!;;in+@n+l+-..+@pfl .l iy oK L X L),

ie, with v = A+ &y, + Qg1 + -+ + Q1 + Qo + @, suppressing the restrictions and the
superscripts,

EiEoEpfl‘..EﬂA,lEn

A T
Il
Epfl“‘En+1E ~ ~ ~ EiEO
N = N Gy G+ Gy al
LEp_1...Epy1Bn ﬂT(M)
Epfl..‘En+1E7 ~ ~ ~ EOEi
A T N G gt e Gy "y
E, 2..En1E, . . E;E, 1 R Eo
A > A+ Ay + -+ Gpo > v — & >y
LEp_o...Epi1Bn T(p—1,i) JJLEO
Ep_2...Eni1En . R E, 1E; N Eq
A D T R L 7 | > v — Qo >y
Ep_3..Eni1En R R EiEp_» R R EoEp—1
A > A+ G+ Gp3 >y —Gg—Gpg ————————
LEp_3»..En+1Enﬂ ﬂT(p*ZJ) HLEO
EE ) . EoEp_1...Ent1
A i S ?
ﬂ‘r(n,i) ﬂLEng,l...En+1
A YA+ G+ & ’
E,.E; ! T an + ” EoEp—1...Enia T
A T
EoEp 1...Ent1EnE; i
Define

Ty € Cat(Ru, () (G, Rup (it bty o) (G)) (BT B, ot imattnmutao ph )

,00)
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to be

0 p—1 n o1

which reads

A tb@ntbntittapon
(70,0 " PR LR, By Baln ) @
tn(X)
A+&n+dn+l
2 X T, Xl
® ( EOEp_l...En+3|Rbn()\+&n+&n+l+&n+2+&i)(G) (4,n+2) En+1En|Rbn(A))
At+én,
2 X* T/, Xl
O ( EOEp—l...En+3En+2|RLn(/\+&n+dn+1+di)(G) (4,n+1) En|RLn(/\))
A
® (LEOE”*L"E"J&E"J’IIRLn(A+@n+di)(G) * T(i,n))
)\+é¥n+dn+l+"'+dp—l
= (7T, X L _Atan+a +odby_g KU _Atantan,1+ota,_g Koo kK Lo Atanta;
At+an+8@nt1++ap—2
© (LE/\+‘S‘"+‘5‘n+1+"'+é‘p—1+‘5‘i) * T(i,p:i) " 7 % LE>\+&n+&n+1+~~+&p73 * LEA+dn+an+l+m+dp,4>k
0 p—2 p—3
Sk Lptan Lgy)
©...
AM-é
@ (LEA+&n+dn+1+"'+dp71+&i) % LEA+‘3‘"+‘3‘n+1+"'+é‘p—2 PR X Atbn+bpy1+6; * T(Z n_"_nl) * LEé)
0 p—1 n+2 ’
A
© (LEA+an+an+1+-.-+ap_1+ai) * [’E)‘+d”+d’ﬂ+1+'”+dp72+di koeee ok LE/\+dn+di * T(i,n))‘
0 p—1 n+1
Define

A
T(so,00) € Cat(Ro, 0 (G), Rt 26n 42601 +428p 1 +280) ()
(Eé\o+dn+"'+&p—2+&p—l+d0Eg\o’ Eso+dn++&p—2+&p—l+d0Eé\o)

to be

oo oo

0 p—1 n 0 p—1 n
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. R . . o0
Define 7%, € Cat(R,,(3)(G), Ru, (@) (id, B =292 B2 ) - denoted U , to
A

be
>\+dn+&n+1+"'+dp71
* *
(LFnFn+1...Fp—1|Repbn()\+dn+m+&p_1)(G) Mo [/Ep*l--.ErrFl---En‘Repbno\)((}))
)\+0Aén+&n+l
@ @ <LFnFn+1|Repbn()\+dn+dn+1(G) ¥ nn+2 * LEn+1En|Rean()\)(G)>
A+ A
© (LFn|Rean()\+an)(G) * g1 ¥ LEn\Rean()\)@)) ON/
. At-Gun+Gim 41+ +p— At +émprtotdior . .
with g o land p CnTOH i € [n,p|, as in (4.3.iii): suppressing the super-
scripts
id
A : ﬂ > A
FoB,
A > A
l
E, N i N F,
A > A+ @, id > A+ &y, > A
LEnﬂ ﬂj’hﬁrl ﬂbFn
E, R Frnt1En41 A Fn
A > A+ an > A+ Qp >\
l
En1Ey, N N id N R FrpFnia
A > A+ Gy + Apyr : > X+ Gy + G > A
LEn+1Enﬂ ﬂnn+2 ﬂLFnFn-H
LBy _1...Epi1En ﬂno LFPpFpy1. Fp_1
Ey 1. En1 B N N N FoE N ~ N FpFny1...Fpq
N3 A+ a, +@np1+ -+ a1 —> A+ + Qg1 + oo+ Gy ),
A > A

FnFn+1...Fp_lFoEoEp_l...En+1En
Define finally £, € Cat(R,, ()(G), Ry, (G)) (Ea o~ 427170 pA ) denoted mﬂ
oo
to be

A
€0 © (LEoan(A—aO)(G)) * [/F0|Rean(>\)(G)) ©

A=Go—Gp—1——Cn42
© (LEoEP—1~~-En+2|Rep —G&n—3& I (G) * €n+1 * LF”+2"'FP—1FO‘R6P (G))
in(A=&p—ap_1 Gp42) tn ()
A—&p—Gp—1——Gn+1
®© (LEOEpfl...ErH*l|Rean(A7d07&p_l,_..,dTH_l)(G) * ey * LFn+1---Fp71F0|Rean(>\)(G))
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with g and ¢;, i € [n,p|, as in (4.3.iii):

EoEp1..Enp1EnFpnFpi1...Fp_1Fp

A 1 > A
Fpi1...Fp_1Fy R R R E,.F, R R R EoEp_1...Ent1
AN———— A== Q1 — = Q1 —————F A= —Qp_1 — — Oy —— A
LFpy1-Fp_1Fg €n LBqEp_1--Fpit1
Fpy1..Fp1Fy R R R id . . R EoEp_1...Enqy
AN——— A= —Gp1— = Qpy1 ———— A= —Qp1 — - — Oy ——— A
Frya...Fp_1F R R R Ent1Fnta R R R EoEp_1...Eny2
AN N — Qg — Gy — = Ay S A — g — Gpg — - — Gy —— 8\
LFpyo. Fp_1Fg ﬂanJrl ﬂLEOEpfl...EnJrQ
Frq2..Fp_1Fy R . « id A A . EoEp—1...Enyg
A A=Gp—Gpq1— —Qppg —————> A—Gp—Gp_1— - —Qppa —— A
Frys... Fp_1F A A A Ent1Fni2 A A A EoEp_1...Enqs
AN A N — Qg — Gy — - — Ay — S A —@g— Gpg — - — Gy —— X

LFn+3...FP,1FOJJ ﬂanJrz ﬂLEOEp,l,..EnJrS

LFOH ﬂsp,1 ﬂLEO

A fo S A — dg ”id s A — dy o .Y
A ol s A
I
A s A

To check that the so defined generating 2-morphisms satisfy the required relations, one can
lift the 2-morphisms to those in U, (gl,) and check a number of the relations there [RW, 7.3].
For the rest see [RW, pp. 101-102].

Theorem [RW, Th. 7.4.1]: The data above defines a 2-representation of U (5@)

(4.11") To check that (4.11) carries over to Rep(GT), one has ®"nat,, a direct summnad of
@"nat, ~ [y (®naty") ® @9 {(I12_,., Ca;) ®c Clt,t ']} as a gl,-module;

®"nat, ~ "(naté”]) = H (®"naty)
AEP(®™naty,)

with P(®™nat,) = {d I, né +md € Pln; € N,Y°" n; = n,m € Z}. As P(®"nat,) =
P(A"nat,), the arguments of (4.11) carry over to Rep(G1T).

(4.12) Could we lift the 2-representation in (4.11) to a 2-functor U(g/a) — U (g/[;)?

Definition [Bor, Def. 7.2.1, pp. 287-288]: Given two strict 2-categories A and B, a
2-functor ® : A — B consists of the data

(i) for each object A of A, an object ®A of B,

(ii) VA, A" € |A|, afunctor @4 4 @ A(A, A") — B(PA, PA’) compatible with the compositions
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and the units: VA, A/, A// c |A|, ®A,A” O CA,A’,A” = C@A,@A’,@A” o (¢A7Al X ¢A/7A”>

A(A, A) x A(A, A") Al A(A, A"
‘D‘Dl 0 l«»
B(®A, ®A') x B(OA, @A) —————~ B(DA, DA")
and @4 4 0us = Ugpa
1" A(A, A)
i‘b
B(®A, DA).

In the case of the 2-representation we defined C, = 0 unless A € P(A™nat,) while we
cannot associate 0 to E;1, for A € P \ P(A"nat,). To compensate that, consider now a data

o L{(g/[;) — L{+(§g) such that
(P1) |td(gl,)| = Py — P = [U(gl,)l,

(@2) YA, i € Py, define @y, Ugl,)(A 1) — Uy (gl,) (@A, Dp) = Uy (gl,) (A, 1) to be a

strict monoidal functor such that Vi € [1, n[U{oo} Vv € P,

E1l E()Ep_l c. En+1En]-u if 1 = o0, Fl FnFn—l—l C Fp—lFO]-V if 1 = o0,
Y E; else, Y E;1, else,

and for the generating 2-morphisms such that V\ € P@ , Vi, 5 € [1,n],

IO B g 25 {5 SUTIONEIL ) )< Pt
no e 0 else,

—

Ugl,) (M A+ & + &) (EE;j Ly EjE L) 57—

{T € Uy (g0) (M A + & + &) (BiEjLy, BjEiL) if A A+ g, A+ @, A+ & + &; € P(A™nat,,),
0 else,

UGE) (AN Iy, FE L) 5 17—

{n €U (GL)N AN (1, FiELY) if A A+ d; € P(A™nat,),
0 else,

UGL )N N (EiFily, 1)) 3 e
{5 €U (gL)N\N)(EiFLy, 1y) if A\ — d; € P(A™nat,),

0 else,

etc. Does @ : L{(g[;) — L{+(g/1g)) define a 2-functor?
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(4.13) Just as we defined Z/l+(g/;g), define a 2-category U™ (5[;) to be the 2-category having the
same data as that of (gl ) but setting, VA, yu € P, VX,Y € Ul (A, ), {UM (gL ), 1) HX,Y) =
{U(gL) (A, ) HX, V) /I (X, V) with Z(X,Y) denoting the k-linear span of those f : X = Y
which factors through some Z,0 7y, Z; € Z/l(g[;)()\, V), Zy € U(g[;)(u, p), v € Py \ P(A"naty,).

By construction the 2-representation of U (5[2) factors through U (g/[;) to induce a strict
monoidal functor U (gl,)(w, @) — Cat(Repy, qeq (G); ReDp qeq (G)) such that F, jE, jlg —
Oy, Vj € [1,n], and F FEyly — @Sao’l. We are now reduced to construct a strict monoidal

functor Dgg — UM (g/a)(w, w).

(4.13") As P(®"nat,) = P(A"nat,) again, the 2-representation ofU(g/[;) on (Rep,, ) (GiT)|\ €

P(®"nat,)) factors through ¢ (ng) to induce a strict monoidal functor U™ (gl,)(w, @) —
Cat(Repyp, qe) (G17T), Repyp, qeq (G1T)) such that F, B, _jlg = O, V) € [1,n], and Fio By lg =

Os,,.- It follows that the functor Dps — Ul (5[;)(@, w) of (4.13) will suffice to yield a strict
monoidal functor Dps — Cat(Repy, qe (G17T), Repy, qeq (G1T))-

5° The Elias-Williamson diagrammatic category

We now attempt to give a “reasonably” precise definition of the Bott-Samelson diagrammatic
category Dgg and of the Elias-Williamson category D. The assumption p > n is enforced
here [RW, Rmk. 4.2.1]. We state the fundamental existence theorem of a strict monoidal

functor from Dgg to the category U™ (@)(w, w), a quotient of Z/{(@l)(w, w) the category of

1-endomorphisms of weight w of the affine Lie algebra gl,. We leave, however, the lengthy
proof consuming [RW, 8] as a black box.

(5.1) Let R = Sk(k ®z ZRY) =k ®z Sz(ZR") endowed with gradation such that deg(RY) = 2.
An expression is a sequence (si, S, ...,s,) of simple reflections s; € S,, which we denote by
$189...8.. If w = s189...5. € W,, we often abbreviate the sequence as w. We also write
¢(w) = r. A subexpression of w is an expression x obtained from a subsequence of w, in which
case we write z C w.

The category Dgs is endowed with a shift of the grading autoequivalence (1), rather than a
structure of graded category, consisting of objects, B, (m), w an expression of w € W,, m € Z,
such that (B,(m))(1) = B,(m + 1). This is not even an additive category; the Karoubian
envelope of its additive hull D appearing later, on the other hand, is a graded category [RW,
1.2, p. 3]. We will abbreviate B,,(0) as B,. Under the product defined on the objects such
that (By,(m)) - (By(m')) = Byw(m +m’) with wv denoting the concatenation of w and v, Dgg
comes equipped with a structure of monoidal category. Thus, By is the unital object of Dgsg.
For s € §, by s we mean a sequence s, but we will abbreviate Bgs(m) as Bg(m).

We will use diagrams to denote morphisms in Dgg. An element of Dgg(B,(m), B,(m')) is
a k-linear combination of certain equivalence classes of diagrams whose bottom has strands
labelled by the simple reflections with multiplicities appearing in v, and whose top has strands
labeled by the simple reflections with multiplicities appearing in w. Diagrams should be read
from bottom to top. The monoidal product correspond to a horizontal concatenation, and
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the composition to a vertical concatenation. The diagrams, i.e., morphisms, are constructed
by horizontal and vertical concatenations of images under autoequivalences (m), m € Z, of 4
different types of generators:

(G1) Vf € R homogeneous, By — By(deg(f)) represented diagrammatically as f with empty
top and bottom,

(G2) Vs € S,, the upper dot By — By(1) (resp. the lower dot By — Bs(1)) represented as

I

(resp. i );

(G3) Vs € S,, the trivalent vertices By — Bgs(—1) (resp. Bgs — Bs(—1)) represented as

(G4) Vs, t € S, with s # ¢ and ord(st) = mg in W,, the 2mgy-valent vertex Bgp = — Bpg
~— S~

mst mst

represented as

t S t s t t st s t st st s

s ¢ s t s st s ¢ St 8t St
if mg = 2 (resp. 3, 4, 6).

Those generators are subject to a number of relations described in [EW, §5]. The relations
define the “equivalence relations” on the morphisms. We recall only that isotopic diagrams are
equivalent, and that, Yo € R®, the morphism " € Dgg(By, Bp(2)) in (G1) is the composition
of morphisms in (G2) [EW, 5.1]:

By(2)
I<1> A wper dot)(1)
(1) al= 5 = B,(1).
l Asrr dot
By

As R = kl[a|a € R®], the morphisms in (G2)-(G4) are, in fact, sufficient to generate all the
morphisms in Dgs.
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(5.2) There is also a monoidal equivalence 7 : Dgs — Dpg sending each B, (m) to B, (—m) and
reflecting diagrams along a horizontal axis [RW, 6.3].

VX.,Y € Dgs, set Dpg(X,Y) = H Dgs(X, Y (m)), which is equipped with a structure of

meZ

graded bimodule over R such that Vf € R homogeneous, V¢ € Dpg(X,Y),

X =By- X L% (By(deg f)) - X = X(deg f)

¢l qu ld)(dogf)
N

Y =B, Y — (Boldeg f)) - Y = Y {deg f),

X =X - By —Ls X - (By(deg f)) = X (deg f)

Y=Y By o Y- (Byldeg J)) = ¥ (deg f).
One has [EW, Cor. 6.13] that Djo(X,Y) is free of finite rank as a left and as a right R-module.

(5.3) Recall from (4.9) weight @w = &, +--- 4+ ¢, € P(Amnatf?). We now construct a strict
monoidal functor Dgg — UM (gl,)(w, @) as follows: Vj € [1,n[, Vm € Z, we assign

Bsan_]- <m> = FiEily = (Fjlw—l-dj> © (Ej1W>’

while

Bs, ,(m) = FyuFEoly = (Folpias,) © (Fooly),

Sao,l

where Qoo = 0 + €1 — €, is a root for g[; As to the generating morphisms of Dgg, as for the
objects we let j € [1,n] correspond to s,_; := 5,,_,, and let oo correspond to sq,,1, S0 we will
let j vary over [1,n] and read n as oo on the RHS. The assignment goes as follows: Vm € Z,

Sp—j B5n7j<1> ™ & ™ g
A S LSO NI
By W w
By(1) v — @ &
L”” = Jm = fems = f\ ,
Sn—j BSWJ_ w W w J

where e/ ; € U™ (g/a)(w, @)((Fjlwya,) 0 (Ejls), 1) [Br, 1.10] is distinct from e, ; € U (g/[;)
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(w,@)(Ejlg_a,Fjleg, 15) depicted as /‘\w in (4.1),

J
Spn—j Sn—j
EjFjleoya; Filgia,
J
Bsn,jsn,j<—1> w —> w + &; T mt Q; TV w
(m) = T<m) = LEJ‘WW n,erdjvjﬂ WLFﬂwMa‘
B, w—)w—i—aj—)w—l—aj—)w
n—j w+cx F1w+a

\ / = lF; lota; nw—i-a g ¥ UlBjle,

where 70,4 ; € L{["}(g[ @ + a5, @ + &;)(lova;, BiloFjlors,) [Br, 1.10] is distinet from
Narvayg € UM (L) (@ + 6, @ + &5) (Lo, Filw Bileora,),

FiBjle
w > W
- I
1w+o¢ Fj 1W+D‘
B, (-1 o L5 — s i d Y w
(m) = T<m) = LEHWW 8w+da‘ﬂ'ﬂ ﬂbFilej
By o, T TG g W
\ Sn—jdn—j w Ejleg @+ EjFjloya; wrg jlwta “
Snj Sneg ||
w » W
FE;FjEjly

w
= = LFj1w+&j * Ewtay,j * lEjlg-
./_\/
J
Replace now the quiver in (3.1) by
00
O
) o/, ) ,o\ o
1 2 n—2 n—1
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Vi, j € [1,n] with (n — i) / (n — j) in the new quiver,

Bsn—an—i
(m) = T(m) =

Bsnfisnfj

Sn—i  Sn—j
FE;F;E;il
w > W
Eile ~ Fi1w+di Ejlw . Fj1w+dj
w —— W+ Q > W rwta; —— w

w— o+l ———— o+ o+ ———— > wt+ —— w
Eily ! Ejlgia, ! J Filota;va, ]Fjler&j

Tw,u,i)ﬂ WT/

Ejlw N Eiloya, R . Filoya;rey )
w— W+ wHa;+o — WH

w— w+ G > w ywH QG —— W
Eile J Filaoya, ! File ! " Filoya,

Filgpta,

which is

where o € U"! (@)(w%—ég, W+ &;)(EiFjloya,, FiEiloya,;) (resp. 7' € Z/{["](g{;)(w—i-dj + &, @)
(FiFjlmia, a0 FiFiloa a,), 0 € UM(gl,) (@ + i, @ + &) (FiEjlmya,, EjFilgia,) ) is taken
from [Br, 1.6] (resp. [Br, 1.10], [Br, 1.11]). Finally, Vi, j € [1,n] with (n — j) — (n — 1) in the
quiver (3.1),

Sn—i Spn—j

Theorem [RW, Th. 8.1.1]: The data above defines a strict monoidal functor Dgs —
u(gl,)(w, ).
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(5.4) Composed with the strict monoidal functor /™ (5[;) (w, @) — Cat(Repy, qer) (G), ReDy, 4o (G))
from (4.13) we have obtained a strict monoidal functor Dps — Cat(Repy, 4t (G), ReDy, qer) (G))
such that Vs € S,, Vm € Z, Bs(m) — O; recall from (4.9) that

B, (m) = F,_;E,_jl, — Oy, VJ € [1,n], By i (m) = FooBoolg = O, 4,
and
Sa,
l<m> = Newn—j 7 777 € Cat(R‘ep[ndet](G)7 R‘ep[ndet]<G))(id7 @saj) vj S [1, n[,
Sag,1

= Moo > N
l<m> oo T2 11

wHGo+ap 14 Fhnt1

= (LR Py Fusilorageay 1ioran iy * T *LBp i1 By Eole )@

w+ao+ap_1 w+ag
(PP 1 mragay 1 * Tlp—2 * LB, 1Boln) O (LRyln s * Mot * LEgle) O 1)

< Cat(R’ep[ndet](G)v Rep[ndet ( ))(ld @Sao,l)'

Finally, there is an autoequivalence ¢ : Dgg — Dpgg such that By, s (m) — B, 5 (m) ¥V
sequences s ... S, in S,, Vm € Z, and on each morphism reflecting thﬁrespondmg dlagrams
along a vertical axis [RW, 4.2]. In particular, VX,Y € Ob(Dgs), ¢(XY) = «(Y)e(X). Thus,
combined with ¢, we have obtained a strict monoidal functor Dps — Cat(Repy, 4eq) (G); Repp, qery (G))P
such that Vs € S,, Ym € Z, Bs(m) — O,. As Repy, 4 (G) is equivalent to the principal block

Rep,(G) by tensoring with det®—", we have now

Corollary [RW, Th. 1.5.1]: There is a strict monoidal functor ¥ : Dgg — Cat(Repy(G), Repy(G))°P
such that Vs € S,, Ym € Z, Bs(m) — ©.

(5.4") Together with (4.13) we have also obtained

Corollary: There is a strict monoidal functor ¥ : Dgg — Cat(Repy(G1T'), Repy(G1T))P such
that Vs € S,, Ym € Z, Bs(m) — O.

(5.5) Recall that a Coxeter system (X)) is the free group X with a finite set ) of generators
subject to the relations that each y € )Y is an involution and that Vy,z € ) distinct with

ord(yz) = my,, yz... = zy...; we allow m,, to be oo, in which case we impose no such
— ~——
My My

relation. Given z € X, the minimal length of sequences of elements of ) to express x as a
product is called the length of z and is denoted £(z), in which case the expression = y; ... yy(x)
is called a reduced expression of x. There is a PO on (X, )), called the Chevalley-Bruhat order,
such that x < 2’ iff z is obtained as the product of a subsequence of a reduced expression of
«’. Our pairs (W,,S,) and (W, S) form Coxeter systems.
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Let now H (resp. H;) denote the #5J#i-Hecke algebra over the Laurent polynomial ring
Zlv,v™!] associated to the Coxeter system (W,,S,) (resp. (W,S)). Thus, H has generators
{H,|s € S,} subject to the quadratic relations H2 = 1+ (v™! —v)H, Vs € S, and the braid
relations HyH, ... = HH... Vs,t € S, distinct with mg = ord(st). It follows that each H,

—_— =
s € S,, is invertible with H; ! = H, + (v —v™!). Setting Vz,y € W, with £(z) + ((y) = {(zy),
H,, = H,H,, one has that H (resp. H;) admits a standard Z[v, v—']-linear basis { H,|x € W, }
(resp. {H.|r € W} with H, = 1. For this and other reasons we often write 1 for e. Under the
specialization v ~» 1 one has an isomorphism of rings

(1) Z ®Z[v,v*1] H ~ Z[Wa]

There is ? € Rng(H,H) such that © = v~! and that H, = (H,1)"! Vo € W,. On H
there is also a Kazhdan-Lusztig basis {H |z € W,} such that H, = H, Vx € W, and H, €
H,+ 3, vZ[v]H, [S97, claim 2.3, p. 84]. In particular, H, = H. =1, H, = H;+v Vs € S,,
and Hy = [{,ep Zlv, v '|H,,. f w = s1...s, is an expression in W,,set H, = H, ...H, . In

particular, Hy = H, =1 and H, = H Vs € S,. '

Recall from [S97, p. 86] a Z[v, v~!]-algebra homomorphism H; — Z[v,v™!] such that s — —v
Vs € 8, which defines a structure of right H -module on Z[v,v™!], called the “sign” represen-
tation and denoted sgn. We define the “anti-spherical” right H-module as M®P! = sgn ®4, +H,
which is denoted N (resp. NY) in [S97, p.86 (resp. p. 98)]. Recall from [S97, Th. 3.1]
that M®Ph has a standard basis {N, = 1 ® H,|lzr € W} and a Kazhdan-Lusztig basis
{N,=1® H_|v € "W}, 'W = {x € W,[l{(wz) > {(z) Yw € W}.

Let ¢ € ModH(H, M?*Ph) via H — 1 ® H. Then [S97, pf of Prop. 3.4]

ifref
2) ¢(ﬂz)={ﬂx b e v

0 else.

Also [S97, p. 86] Vs € S, Vo € IW,

Ngs +vN, if ts € fW and zs > z
(3) N,H. =< N,s+v N, ifzse W and zs <z

S

0 else.
Under the specialization v ~» 1 one has an isomorphism
(4) Z ®gjy 1) M = sgng @) ZIW.a] = [Repy (G)]

such that 1@ N, = 1®x — [V(ze0)] Vo € FW. If y = s1...5, is an expression in W,, set
also N, =MNH, ..H, =1®H, ...H, . By (3) and the translation principle (1.10), under
(4) one has

(5) 1ON, = 1@ (s1+1)... (s, + 1) = [0, ... 0, V(0)].

S

(5.6) Let D = Kar(Dgg) denote the Karoubian envelope of the additive hull of Dgg [Bor, Prop.
6.5.9, p. 274]. Thus an object of D is a direct summand of a finite direct sum of objects of
Dgs.
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The category D is a graded category inheriting the autoequivalence (1), is Krull-Schmidt,
and remains strict monoidal [RW, 1.2, 1.3]. By a Krull-Schmidt category we mean an additive
category in which every object is isomorphic to a finite direct sum of indecomposable objects,
and an object is indecomposable if and only if its endomorphism ring is local [EW, 6.6]. Recall
from [EW, Th. 6.25] that Yw € W,, 3! indecomposable B,, € Ob(D) such that B,, is a direct
summand of each B, for a reduced expression w of w but is not a direct summand of any B,
for an expression v with ¢(v) < ¢(w). Any indecomposable object of D is isomorphic to some
B, (m) for a unique w € W, and a unique m € Z. In particular, By = By and B; = B, for
each s € S,. The split Grothendieck group [D] of D admits a structure of Z[v,v~!]-module
such that v - [X] = [X(1)]. As such there is an isomorphism of Z[v, v~']-algebras [EW]

(1) H — [D] such that H, > [Bs] Vs € S,.

Then the right action of Dgg on Rep,(G) implies that the isomorphisms (5.5.4) are isomorphisms
of right H-modules.

Vo € W, set PH, € H to be the pre-image of [B,] under (1). As the [B,] form a Z[v,v™]-
linear basis of H, so do (PH |z € W,) on H, called the p-Kazhdan Lusztig basis of H.

The auto-equivalence (resp. anti-auto-equivalence) ¢ (resp. 7) on Dgg induces one on D
denoted by the same letter. Thus, Yw € W,, «(By) = By-1, T(Bw) = Buw.

(5.7) Let s € S,. Take 6 € R with 0,0 = 1, and let

s s B (1)

VA w
i = (1) T = By (2)

B,(1) 0 Ta

s S s DB
S S By
S
s [ By(-1)
i? = B£<_2> ’ D2 =

=N /N s,

s s o

S B§<_1>
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Then

s s
By(1)
proi = = 0 T
B,(1)
(1) (1)
s s
s
s
= sO 4 050 by the nil Hecke relation [EW, 5.2]
o o
s
s
S S
——e
s0 0.6
= +
——e
(1)
(1)
s s
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P20y =
(1)
s
s
s
= —0 + 00 by the nil Hecke relation [EW, 5.2]
s
s

s
=1 ‘ (—1) by the needle relation [EW, 5.5] and the Frobenius unit [EW, 5.4]
s

= ing;(*l)?

S

P2 0y = <> =0 by the needle relation [EW, 5.5],
(1)
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by the nil Hecke relation [EW, 5.2]
=0 by the needle relation [EW, 5.5] as 05(d(sd)) = 0,

and
s s
s s
N 50 B,
i1opr+igopy = + (—1) T
J Bss
S S /\
s s
s s s s
—50 . L
= + by the Frobenius associativity [EW, 5.3]
J
s s s s
s s
\ s s
—50
- 5 T >
\ s s
s s
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™~

s s
—30
= 50 + 0.0 + > i
\ s s

S T
AN

s
by the nil Hecke relation [EW, 5.2]

s s
s s
) —30
= + 1 +
s s
s s

by the Frobenius associativity [EW, 5.3].
We have thus obtained

Lemma [RW, Lem. 4.3.1]: In the additive hull Add(Dgs) of Dgs one has
By - By ~ B,(1) & By(—1).

(5.8) Lemma [RW, Lem. 4.2.3]: Given an expression sy ...s, in Wy, if By(m), m € Z, is
an indecomposable direct summand of B, . in D, siyx < x in the Chevalley-Bruhat order.

(5.9) Let Dyg be the set of objects B, (m) with expression w starting with some s € S and
m € Z, and set DEP" = Dpg//Dps [RW, 4.4], [thi, Prop. 3.2.51, p. 150]; as Dpg is not
additive, we define for X, Y € Ob(DAP") the morphism set DEP'(X,Y) to be

X f %

Dys(X,Y)/(f € Dps(X,Y)| . T 3Z e D).

sy

7z

We will denote the image of X € Dgg in Dpg " under the quotient functor Dgg — DA by X
VX € Dgg, one has that X = 0 iff idy factors through some Y € Dgq [Fif], Cor, 3.2.46, p.

148]. The auto-equivalence (1) on Dgg induces one on DEP" denoted by the same letter. Thus,
B.(m) = B,(m) Ya,Ym € Z.

VX,Y € Ob(Dgg), put (DEM)*(X,Y) = H DEPM(X, Y (m)). Consider the quotient map

meZ
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Do (X,Y) = (DEPM)*(X,Y). Ya € R®, Vé € Dpg(X,Y (m)), one has from (5.1.1) a commuta-
tive diagram

By X=X % YVim+2) = (Y (m)){
l o’ X T¢><2>
(Bs(1)) - X —— (By(2)) - X = X(2)

2)

As (By(1)) - X € Djyg, a¥¢ = 0 in DEP'. As R = k[a¥|a € R?], if we regard k as the trivial
R-module, one obtains

,D]%S (X’ Y) ” (D%SSph).(Xv }7)

k ®R DI.SS(Xa Y)

As Dpg(X,Y) is a free left R-module of finite rank (5.2), (D32")*(X,Y) forms a finite dimen-
sional k-linear space.

Let Dyy,\sw be the additive full subcategory of D consisting of the direct sums of objects
By, (m), w € W,\!W, m € Z, and set D**P" = D//D,y, \ 1)y, which inherits a structure of graded
category. Yw € YW, let B,, denote the image of B,, under the quotient functor D — DaPh.
We will see presently in §6 that B, remains nonzero in D*P"; we will first see that the right
D-action on Repy(G) factors through D*Ph. If w is a reduced expression of w € YW, V(0)B,,
has highest weight w e 0. As B, is a direct sum of B,, and some B,’s with y < w, we must
have V(0)B,, # 0, and hence B,, # 0 in D*P". Then, as a quotient of a local ring remains
local [AF, 15.15, p. 170], the indecomposable objects of D*P! are B,,(m), w € /W, m € Z. Tt
follows from (5.8) that D*P" = Kar(DEP").

Strange as it may appear, if a reduced expression w of w € W contains s € S, B, = 0 while
B, # 0 as observed above, and hence B, # 0. Nonetheless, (5.8) implies that D*P admits
a structure of right D-module. For let ¢ € D(X,Y’) factor through some Z € Dy, \ry. Let
B, (m) be a direct summand of Z, so = admits a reduced expression s; ... s, with s; € S. Given
an expression y in W,, each direct summand B, (k) of B,(m)B, has s;w < w by (5.8), and

hence w ¢ W and B, (k) € Dyy,\sw. As such, under the isomorphism of Z[v, v~!]-algebras
‘H — [D] from (5.6) one has an isomorphism of right H-modules

(1) Masph SN [Dasph]_

For each w € /W let PN, be the pre-image of [B,] € [D*P]: PN, = 1 ®PH,. Thus
(PN, |w €/ W) forms a Z[v, v~!]-linear basis of M*P! called the p-canonical basis. Writing
PNoy = D erw " MywNys Py € Zv,v™'], we call Pny,, an antisphereical p-Kazhdan-Lusztig
polynomial.

(5.10) Fix now an expression w = s;...5,. Each e(w) € {0,1}" defines a sub-expression

e(w) — (si@)l, . e(w)r>

w' ., Sy of w by deleting those terms with e(w); = 0, in which case we also

let we@ — s‘i@)l L s?Wr W The Bruhat stroll of e(w) is the sequence zy = e,z; =
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St gy = ghgelwh g gehgewl2 el e 11, 7], we assign a symbol
Ul ife(w); =1and z; = ;_15; > 7,1,
D1 ife(w); =1and z; = z;_18; < x;_1,

(w)
(w); =

U0 if e(w); =0 and x; = xj_15; > x;_1,
(w);

j=0and z; = x;_18; < 1,

“U” (resp. “D”) standing for Up (resp. Down). Let d(e(w)) denote the number of U0’s minus
the number of D0’s, called the defect of e(w) [EW, 2.4]. For W' C W, we say e(w) avoids W'
iff z, ¢ W' and z;_1s; ¢ W' Vj € [1,7r]. We understand e(w) avoids any W' in case r = 0.

Lemma [RW, Lem. 4.1.1]: For each expression w one has in M?Ph

MH, = Z Ud(e(w))Nwe(y).
e(w) avoiding Wo\fW

(5.11) Let w € W,. Define the rex graph I',, to have the vertices consisting of the reduced
expressions of w and the edges connecting vertices iff they differ by one application of a braid
relation st.., = ts.. for s,t € S, distinct with my = ord(st) [RW, 4.3]. If z and y are 2

Mmst Mmst

reduced expressions of w, a rex move z ~ y is a directed path in I',, from the vertex x to the
vertex y. To such a path one can associate a morphism from B; to By in Dgg by composing
the 2mg-valent morphisms (5.1.G4) associated to the braid relations encountered in the path.

Lemma [RW, Lem. 4.3.2]: Let x ~ y be a rex move in I'y, and let y ~ x be the rex move
in the reverse order. Let vy € Dpg(By, B, ) associated to the concatenation x ~ y ~> x. Then
there is a finite set J and ¢; € Dps(By, By), j € J, factoring through some B, (k;)

éj

with z; obtained from x by deleting at least 2 simple reflections and k; € Z such that v =
ing + ZjEJ ¢j-

(5.12) Let w = s;...s, be an expression. One has from [EW, Prop. 6.12] that Dyg(Buw, Bp)
admits a basis of left R-module consisting of the light leaves L) Ve(w) expressing the unity
of W,.

Proposition [RW, Prop. 4.5.1]: Let w be an expression of an element in W,. One can
choose the light leaves Le(y) with e(w) expressing 1 and avoiding W, \ /W to k-linearly span
(D5S™)* (Bu: Bo).
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6° Tilting characters

(6.1) One has from (5.4) a functor Dgs — Rep,(G) such that B +— V(0)B. If z = s155... 5, is
an expression of x € W,

B, — V(0)B, =V(0)Bs,Bs, ... Bs, = 6, ...0,,0,,V(0),

the RHS of which we will denote by V(z). The functor naturally extends to another functor
D — Repy(G), which we will denote by W.

Vs € S, U(B,) = V(0)B, = ©,V(0) = 0. Yz € W,\ /W, 35 € S and y € W, with
{(z) = £(y) + 1 such that z = sy. If y is a reduced expression of y, B, is a direct summand of
B,y = B,B,, and hence U(B,) is a direct summand of @(Bﬂ) = @(BS)BE = 0. It follows that

¥ factors through D*P":

D ; » Repy(G),

l

D//Dwa\fw = Dasph
which we denote by W. Composing with isomorphisms (5.5.4) one now obtains isomophisms of
right H-modules
(1) Z ®Z[’U,v*1} ['DaSph] — 7 ®Z[v,v*1} MaSph — Sgly, Qziw) Z[Wa] — [RepO(G)]
under which, Vw € "W, if w = s;...s,,
(2) 1®[By,] = 1®"N,,
1®[By 10N, = 1®(s1+1)...(5, +1) =[O, ...0,.:V(0)] = [V(w)],

1® Ny ¢+ > [V(w e 0)].
The image of 1 ® PN, turns out to be the indecomposable tilting module T'(w) of highest
weight we(. As?N = Zyefw Pn, »N, in M?P2 with p-Kazhdan-Lusztig polynomials Pn,, ,, €
Zlv, v, we will obtain

chT(w) = Pny,(1)ch V(y).

yefw

(6.2) We say that M € Rep(G) admits a A- (resp. V-) filtration iff it possesses a filtration
M=M"> M'">--- > M" =0 in Rep(G) such that Vi € [0,r[, there is \; € AT with
MM ~ A(N;) (resp. V()\;)), in which case we denote by (M : A(N)) (resp. (M : V(X))
the multiplicity of the appearance of A(\) (resp. V(A)) in a A- (resp. V-) filtration; we will see
in (6.8) that (M : A(N)) = dim Rep(G)(M, V(A)) while (M : V(X)) = dim Rep(G)(A(N), M),
and hence the number is independent of the choice of a filtration. We say that M is a tilting
module iff it admits both a A- and a V-filtration. For each A € A" there is a unique, up to
isomorphism, indecomposable tilting module of highest weight A, which we denote by T'(\).
Any tilting module is a direct sum of T'(\)’s [J, E.3, 4]. By the linkage principle each T'(\)
belongs to single block Repyy, o1 (G).
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Let Tilt(G) denote the full additive subcategory of Rep(G) consisting of tilting modules.
We set Tilto(G) = Tilt(G) NRep(G). As V(0) = T'(0), as the translation functors send a tilting
module to a tilting modele, and as Tilty(G) is Karoubian [J, E.1], ¥ factors through Tilty(G):

Dasph. | L} Repo (G)

Tilto(G).

(6.3) Let w = s155...s, be an expression of w € /W, and write
T(w) = T(0)B, = O, ...0,,0,T(0) =0, ...0,,0, V().

Let us also abbreviate T'(w ¢ 0) as T'(w).

Let DyP" be the degrading of D*Ph: Ob(DIE') = Ob(D*P) but VX,V € Ob(DIE"),
Dgzgh(X, V) = (D**")*(X,Y) = [,z D*"*(X, Y (m)). In particular, Vm € Z, X ~ X (m) in
DYP idy € D*PM(X, X) < DEPM(X, X (m)) admits an inverse idx,y € D*P(X (m), X (m)) <

deg deg

l?gzgh(X (m), X). By construction ¥ induces a functor Dgzgh — Tilte(G), which we denote by

Vgee. We will show that Cor. 5.3 implies

Theorem [RW, Th. 1.3.1]; The functor Wge, : Dzzzh — Tiltog(G) is an equivalence of
categories such that Yw € 'YW, B, — T(w) and B, — T(w).

(6.4) Corollary [RW, Cor. 1.4.1]: Yw € /W,
chT(w) = Pny,(1)ch V(y).

yefw

(6.5) To obtain only the character formula of T'(w), w € /W, one has only to show that
U(B,) =T (w).

To see the equivalence of \I/deg : Dgzzh — Tiltg(G), we first show that it is fully faithful. For
that we have by (5.6) only to show for each pair of expressions z and y of z,y € /W that ¥
induces an isomorphism (D*P")*(B,, B,) ~ Repy(T(z), T (y)); if w is a reduced expression of
w e W, -

By = By ® H(By<k>)®m(y’k) Im(y, k) € N,

y<w
kEZ

from which the density of \Tldeg will also follow. For that we will make use of the structure of
highest weight category on Repy(G).

We thus start with some generalities on highest weightcategories. Let A be a k-linear abelian
category whose objects all have finite length. Let = denote a set parametrizing the isomorphism
classes of simple objects of A, and for A\ € = let L(\) denote the corresponding simple object
in A. Assume that = is equipped with a PO <. We say 2 C = forms an ideal of = iff
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YA€ QVu € = with u < A\, € Q, in which case we will write 2 < =Z. Wesay ' C Zis a
coideal of = iff =\ Q' is an ideal.

VQ C =, we let Ag denote the Serre subcategory of A generated by the L(\), A € Q [,
Def. 4.2.47, p. 260]; Agq is the smallest full subcategory of A containing all L(\), A € Q, such
that V exact sequence 0 - X — Y — Z = 0, Y € Aq, iff X,Z € Ag. We will abbreviate
Agueziu=ny (resp. Afuezju<ay) as A<y (resp. A.</\). Assume also that each L(A), A € Z, is
equipped with nonzero morphisms A(A) — L(A) and L(A\) — V(A) in A for some objects
A(X), V(A). The following definition derives from [CPS]|, [BGS, Def. 3.2].

Definition [RW, Def. 2.1.1]: The category A is called a highest weight category iff Y\ € =,
the following holds:

(HW1) {p € Z|p < A} is finite,

)
(HW2) A(L(A), L(A)) = kidL),
)

(HW3) V ideal © of Z such that A is maximal in 2, the structure morphism A(X) — L(\)
(resp. L(A) — V(X)) is a projective cover (resp. injective hull) in Ag,

(HW4) ker(A(X) — L(X)), coker(L(A) — V(X)) € Axy,
(HW5) Yu € =, Ext% (A(N), V(1)) = 0,

in which case we call (2, <) the weight poset of A, and A(X) (resp. V(A)) a standard (resp.
costandard) object of A. Here Ext’;(X,Y) = D(A)(X,Y]i]) with D(A) denoting the derived
category of A, which may be described by the KH-extensions [Weib, pp. 79-80], [dJ, 27]: on
the set of exact sequences £4 in A of the form

0—=Y A7 5 A ... 5 A" 5 X =0

one defines an equivalence relation such that £4 and £p is equivalent iff there is another exact
sequence {¢ and a commutative diagram

0 y AV A2 y A° > X > 0
H [ I [

0 y O —— 021 y A° > X > 0
H | | L]

0 » Bl=t —— B! » BY > X > 0.

An equivalence class of such exact sequences is called a KH-extension of X by Y of degree 1.
Given an exact sequence €4, one has a qis s

> 0 y Y y Al y A2 » Al » AV y 0 >
> 0 > 0 > 0 > 0 > 0 > B > 0 >
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and a morphism f of complexes
> 0
> 0

which define an element £ of D(A)(X,Y[i]). In turn, given ¢ € D(A)(X, Y[i]), write g : Z* —
X and t : Z* 25 YTi]. Replacing Z°* by the truncation 7<¢Z® : ... Z"% — Z~' — ker(8°) —

\
7

y Al70 — 5 A% y A0 )

\0 \O \ \0 \
? 7 7 e 7 ?

2\

~

\
7

\
7oy

0 — ..., we may assume that Z7 = 0 ¥j > 0. Thus, one can write
g O g O e O 2 Y —— 0
| b
0 > X > 0
with the top row exact. Then the sequence &4
00— X — (ZVeX)/Z70 —— 7% > > > 70 »Y — 0

r—— [0, 7]
[Z,ZL‘] — alii(Z%
using Freyd-Mitchell imbedding theorem [Weib, p. 25], is exact; regarding (Z'™' & X)/Z 7" =
{(07(2),9(2)|z € Z7*}, if [0,2] = 0, there is 2 € Z~* such that 97%(z) = 0 and g(z) = z. Then
z€kerd™" =imd "1 and hence x = g(z) = 0. If 3'7(2) = 0, z € imd~". Writing z = 97%(2’)
with 2/ € Z7%, one has [07%(2'), z] = [0, z].

The assignments [4] — é and ¢ — [£z] give a bijection between the >KH-extensions of
degree i and D(A)(X,Y[i]). With an addition on the KH-extensions as defined in [Weib, p.
79], the bijection is an isomorphism of abelian groups. In particular, the zero extension

05Y Ly 500 2502X -5 X0

is assigned a mophism of complexes
Y Y > 0
Y 0 > 0

which is homotopic to 0.

id |
7

0 >

)

2\
2\
~

O —— O

0 5

\
7

2\
2\
~

2\
=

Throughout the rest of §6, unless otherwise specified, (A, Z, <) will denote a highest weight
category.

(6.6) We verify that (Rep(G),A™,1) forms a highest weight category, where 1 is the strong
linkage on A defined as follows. For A € A, @ € R and m € Z we write A T 5o, 8\ = s, A\ +pma
iff A < som A, and we let 1 denote the patial order 1 generates; by abuse of notation we
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abbreviate 11 simply as 7. We say A is strongly linked to p iff either A 1 g or T A. VA € AT,
each composition factor L(u) of V(A) has p 1 A, called the strong linkage principle [J, 11.6.13].

Put A = Rep(G) and let A denote the category of all rational G-modules, not necessarily
finite dimensional. We actually show that both A and (A, AT, <) form highest weight categories.

To check (HW3) holding, assume A € = maximal in an ideal Q of Z. Given a diagram

V()

s

M — M

in Aq let I(\) be the injective hull of V() in A [J, 1.3.9]. Thus, f extends to some f €
A(M';I(N)). As I(N)/V(N) admits a filtration whose subquotients are all of the form V(v),
v > A\ [J, 11.4.16, 6.20] and as soc V(A) = L(A), by the maximality of A in 2 we must have

imf < V(\).
To see that A()) is projective in Agq, given
A(N)
|s
M —— M

in Ag, we may assume M, M’ € A. Taking the Chevalley dual [J, I1.2.12], the assertion follows
from the injectivity of TA(X) = V() in Ag.
In A the condition (HW5) holds [J, I1.4.16], and hence also in A by [BGS, Lem. 3.2.3]:
Ext%(AN), V(i) < Ext3(A(X), V(u)).
(6.7) Back to a general highest weight category (A, =, <), by (HW4) and (HW3) the structure

morphism L(A) — V() defines an injective hull in A<,, and hence is an essential mono [AF,
pp. 72, 207); VM < V(A) with M N L(\) =0, M = 0. Then

(1) soc 4AV(A) = L(A).

From the exact sequence 0 — L(A\) — V(A) — V(X)/L(A) — 0 one obtains
(2) A(L(A), V(A) = A(L(A), L(A)) by (HW4)
~k by (HW2).

In turn, from the exact sequence 0 — A(V(X)/L(A),V(A)) = A(V(N),V(A)) = A(L(N),V(N))
one obtains by (HW4) that

(3) A(VN), VN)) ~ k.
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Dually, the structure morphism A(\) — L(A) is a superfluous epi [AF, pp. 72, 199]: VM <

A(X) with ker(A(X) = L(A\)) + M = A(N\), M = A(N). Then
(4) hd4A(N) = L( );
(5) AAR), LA)) =k = A(A(A), A(N)).

Lemma: Let \,u € =.
(i) I Extl (LN, V(1)) £ 0, A= o
(i) I Xt (AON), () £ 0, A < o
Proof: (i) Just suppose A % p. If Q = =25, U =<, p is maximal in Q, and hence V(u) is

injective in Ag. Then

0= Extly, (L)), V(n) as L(A) € Ag
~ ExtY (L(\), V(1)) with respect to the KH extension [Weib, p. 79],

absurd.
Likewise (ii).

(6.8) For an object M of A a filtration of M whose subquotients consist all of standard (resp.
costandard) objects is called a A- (resp. V-) filtration of M.

Proposition [RW, (2.1.1)]: VA, p € =, Vr € N,
Ext’ (AN, V(1)) 2= 0r.00 ukk.

In particular, any nonzero morphism A(XN) — V(\) factors L(X\), and is unique up to scalar.
Also, for X € A admitting a V- (resp. A-) filtration, the multiplicity of each V(\) (resp.
A(N)), A € Z, is equal to dim A(A(X), X) (resp. dim A(X,V(A))), which we will denote by
(X : V(X)) (resp. (X : A(N))).

Proof: Assume that A(A(X), A(u)) #0. Then A < u < X by (HW4) and (6.7.2, 3), and hence
A = p. From the exact sequence 0 — L(A\) — V(A) — V(A) / (A) — 0 one obtains
A(AA), V(A) = AAN), L(A)) by (HW4) and (6.7.4)
~k by (6.7.5).

Just suppose Ext!(A(N), ( )) # 0. Then there is v < X such that ExtYy(L(v), V(1)) # 0.
Then A > v > u by (6.7.1). As A()\) is projective in A<y,

0 = Extly_, (AN, V() ~ Extl (AN, V(u)),

absurd.

Just suppose Ext? (A(N), V(1)) # 0 with an exact sequence
(1) 0=V — X1 —Xo— X5 AN =0
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representing a nonzero extension. In Ext®(A()), V(u)), 0 is represented by an exact sequence

0 —— V(p) —4 V() ) s AN —95 A(N) —— 0 [Weib, p. 79]. Let Q
be a finite ideal of = such that Ag contains all V(u), X1, Xa, X3, A(A). Recall from [BGS,
Lem. 3.2.3] that Aq forms a highest weight category. As 2 is finite, V(i) posseses an injective
hull 7(p) in Ag such that I(p)/V(n) admits a finite V-filtration with subquotients of the form
V(v),v = 1 [BGS, pfof Cor. 3.2.2]. Then Ext?_(A(N), I(p)/V (1)) — Ext’ (A(N), V(1)) with
Ext? (A\), I(p)/V (k) = 0 by (HW5) [BX, Th. 7.5.1], and hence Ext’_(A(X),V(y)) = 0
Then (1) vanishes [BX, Th. 7.5.1], absurd. Repeat the argument to get all Ext’y(A(N\), V(i) =
0, r>2.

(6.9) Remark: If 2 is a finite ideal of AT, Rep(G)q admits enough injectives and projectives
[BGS, 3.2]; VA € Q, an injective hull of L(\) in Rep(G)q is given by I'g(Z(\)) with I()\) an
injective hull of L(\) in the category of all rational G-modules [BGS, Th. 3.2.1(T)].

(6.10) Let C be an abelian category and C" a Serre subcategory of C. The Serre quotient C/C’
[Ga, II1.1] consists of the same objects as of C, and for X,Y € Ob(C/C’)

c/e)x.y)=  lim  CX.Y/Y)
X'<X with X/X'eC’
Y'el!

where the (X', Y”) are directed such that (Xi,Y]) < (X, Ys) iff Xy < Xj and Y} < Y5, in which
case one has

X, —— Y)Y,
Xy s Y/ Y.

Given arbitrary (X;,Y;) with X/X; and Y; € C', i = 1,2, one checks that X/(X; N X3) and
(Y1 ®Y2)/(Y1 NY,) € C'; using the Freyd-Mitchell imbedding theorem, (Y; @ Y3)/(Y1 NYs) =
Vi Xviny, Yo = Y1+ Y5, Xi/(X1NXy) ~ (X7 + X2) /X2 < X/X,, and hence X; /(X1 NX3) € C.
Then the exact sequence 0 — X;/(X; N X3) — X/(X71 N X)) = X/X; — 0 yields that
X/(XinXy) el If feC(X1,Y/Y1) and g € C(Ya, Z/Z,), one composes f and g as follows:

X, ! Y)Y, Yy g AR

J J } |

[N+ Y)/Y1) e (M +Y2) /Y ——= Yo/ (YiNYa) o Z)(Z1 + g7 (g(Y1 N Y2))).

Thus,
(i) C/C’ is abelian and the quotient functor ~: C — C/C’ is exact [Ga, Prop. 1, p. 62],

(ii) Vf € C(X,Y), f = 0 (resp. monic, epic) iff imf € C’ (resp. ker f, cokerf € C') [Ga, Lem.
2, p.366]. In particular, idx vanishes in C/C" iff X € C'.

(iii) Vf € C(X,Y), f is invertible iff imf and cokerf € C' [Ga, Lem. 4, p.367].
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Let S = {f € Mor(C)| ker f and cokerf € C'} and let Cg be the localization of C with respect
to the multiplicative system S [F1[¥, Prop. 4.2.28, p. 260, Prop. 2.4.26, p. 113|. By (ii) and
(iii) the universality of Cs [H1if], Def. 2.4.3, p. 99| yields

c ——(C/C.
l B
Cs

If X € Ob(C’), the zero morph X — 0 in C is invertible in Cg [H1fif], Def. 2.4.3, p. 99], and
hence the universality of C/C" [Ga, Cor. 2, p. 368] yields a quasi inverse of C¢ — C/C’ above

C —— Cs.

c/c

One has also [Hfi], Cor. 3.2.50]

c—2 ¢/

M) l fathful
c/ic.

For a coideal Q of Z put A% = A/ Az\o.

Lemma [AR, Lem. 2.2]/[BGS, 3.2]/[RW, Lem. 2.1.3]: (i) If Q is an ideal of Z,
(Agq, Q, X) forms a highest weight category with the standard (resp. costandard) objects A(N)
(resp. V(N)), A € Q.

(ii) If Q1 is a coideal of Z, (AQ,_Q, <) forms a highest weight category with the standard (resp.
costandard) objects A(X) (resp. V(N)), A € Q.

(6.11) Let (A, =, =) be a highest weight category.
Corollary: Let Q2 be a coideal of =. YM € A admitting a A-filtration, VM' € A admitting a

V-filtration, one has
AM, M) — A (M, M').

Proof: By (6.8) and (6.10) and by the snake lemma [F1[f], Lem. 4.2.21, p. 244] we may assume
that M = A(X) and M’ = V(u) for some A, u € Q, in which case the assertion follows from
(6.8) and (6.10) again.

(6.12) Let X € A admitting a V-filtration. A canonical V-flag of X is the data ['o X < X for
each ideal €2 of = such that
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(i) UpTo X = X,

(i) if €' C 2 is another ideal of Z, 'y X < T'g X,

(iii) VQ < E, VA € Q maximal, with Q' = Q\ {A\}, ToX/To X ~ [[V(N).
We set T'p X = 0.

Lemma [RW, Lem. 2.2.1]: VX € A with a V-filtration, a canonical V-flag exists and
uniquely. By the unicity we will call a canonical V-flag of X simply the V-flag.

Proof: VA, u € 2, Ext},(V()\),V(u)) = 0 unless u < A by (6.7), and hence the existence; if
X=X">X'>...> X" =0 with X?/ X" ~ V()\;), \; € AT, one can arrange the filtration
such that 7 < jif A\; > ;.

To see the unicity, it is enough to show that for minimal A € = with (X : V(\)) # 0 there is
unique X’ < X with X’ = [[ V() such that X/X’" admits a V-filtration and (X/X': V() =
0. But Vu € =, A(V(A\),V(r)) = 0 unless u < X as soc 4V () = L(u) by (6.7.1). Also,
A(V(A), V(X)) =k by (6.7.2). We must then have X' =3, v x)im/f.

(6.13) We call X € A tilting iff it admits both a V- and a A-filtrations. We denote by
Tilt(A) the additive full subcategory of A consisting of the tilting objects. Thus, Tilt(.A) is
Krull-Schmidt and the isomorphism classes of indecomposables are parametrized by = [AR,
Prop. A4]/[J, E.3, E.6]/[Ri, 7.5]; VA € E, the corresponding indecomposable tilting T'(\) is
characterized up to isomorphism by the properties

(1) (T(A\):V(A) =1 and Vue = with (T(\):V(u) #0,pu =< A\
Recall also from [loc. cit] that

(2) (T(A): A(N) =1 and VueZ with (T(A): A(u)) #0, 10 = A
Lemma [RW, Lem. 2.3.1]: Let A € =.
(1) A(AN),T(N) =k, and nonzero morphism A(X\) — T(X) is injective.
(i) A(T'(N), V(X)) =k, and nonzero morphism T(\) — V() is surjective.
(iii) Vo € A(A(N),T(A)\ 0, Vi € A(T(A), V(X)) \ 0, oo #0.

(1) AN ~V(A\) ~ LA ~T(\) in A=

Definition [RW, Def. 2.3.2]: Let X € A admitting a V-filtration. A section of the V-flag
of X is a triple (I, e, (¢2X |7 € II)) such that

(i) e : I — = is a map,
(ii) Vmr € II, ¢ € A(T(e(m)), X) such that VA € =, (¢2X|m € e"}()\)) forms a k-linear basis

76



of A=MT(\), X)

~ AZMA(N), X) under the quotient A — A=*. In particular, for A € = with
AFNT(N), X) =0, ¢

(
(A) = 0. Such exists by (6.11).

A=A
-1

VA € =, one has

(2)  dim AZNT(N), X) = dim A= (A(N), X)
= (X : V(A\)a=» the multiplicity of V(A) in X in A= by (6.10.ii)
~ (X V()

and hence

{ox|m e e (W = (X V), M=) (X:VQ).

AEE

(6.15) Lemma [RW, Lem. 2.3.4]: Let X € A with a V-filtration, and let (H e, (¢X|m € 1I))
be a section of the V-flag of X. Let Q < Z and put Ilg = e 1(Q). V1 € Ilg, ¢X € .A( (e(m)), X)
factors through I'o X — X

If eq = €|, (g, eq, (pLoX |7 € 1lg)) forms a section of the V-flag of To X.

Proof: Let A € Q. An exact sequence 0 — ' X — X — X/T'gX — 0 induces another
short exact sequence 0 — A(T(A),I'oX) = A(T(A),X) = A(T(N),X/T'qX) = 0. Yu € E
with (X/ToX : V() # 0, u £ A, and hence A(T (), g X) — A(T(X), X) is bijective. Thus,
Vr € e Y(N), ¢X factors through I'oX. Also,

dim A=NT(\), X) = (X : V(\)) by (6.14.2)
(FQX V(A)
= dim A=NT'(\), ToX) by (6.14.2) again.

The assertion follows.
(6.16) Likewise

Lemma [RW, Lem. 2.3.5]: Let X € A with a V-filtration, and let (I, e, (¢X |7 € I1)) be a
section of the V-flag of X. Let Q< Z and put 11 = 11\ Il = 1\ e (). Vr € 11, define
T X 16 be the composite of ¢X € A(T(e(r)), X) with the quotient X — T'qX
¢X
Tle(r) ——— X

¢f/FQ;'”“-A l
X/TaX.

If € = e|pa, (I, €%, (¢5/FQX|7T € I1%)) forms a section of the V-flag of X/TqX.
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(6.17) Back to Rep(G) under the standing hypothesis that p > n, for \,v € AT let us write
v} Atomean A Tv. Thus, [A={v e ATy [ A\} ={v e AT\t v}

Now, for each s € S, take u, € A* N AT as in (3.8), and let Rep,(G) be the block of .
Let T* : Repy(G) — Rep,(G) and T : Rep,(G) — Repy(G) be the adjoint pair of translation
functors as in (4.9). If A = AT N (W, e0) (resp. AT = AT N (W, epu,)), (Repy(G), Ay, T |at)
(resp. (Rep,(G),Af, T [4+)) forms a highest weight category; A7, Af <A™, and Repy(G) =
Rep(G) 4, Rep,(G) = Rep(G),+- If A € A, by LA we will mean a coideal {v € Ag| v | A} =
{veAf| AN v} of Af. Likewise for p € Af. Writing A = w e 0, w € TW, set \* = ws o 0.

Assume A 1 A%, and let u € A such that A belongs to an alcove whose closure contains .
Then [J, E.11]

(1) T.T () = T(X).

We fix such an isomorphism once and for all. As (T*T(\) : V(u)) = 1 with g maximal
in {v € AF(T*T(N) : V(v)) # 0}, T(n) is a direct summand of T*T'(\) of multiplicity 1.
Accordingly, we fix a split mono and a split epi

@) T(y) T T°T(V).
One has also [J, E.11]
(3) TT(N) =~ T(u) © T ().
(6.18) Lemma [RW, Lem. 3.2.2]: Lety € /W and s € S, such that ys > y and that
ys € IW. If A\ = y @ 0, under the quotient Rep(G) — Rep(G)*(G) one has an isomorphism
Repg(G)(A(N), ©,A(N)) — Repy(G)(A(N), ©,A(N)),
both of dimension 1.
Proof: Let € A} lying in the closure of the alcove containing A\. Then
Repy (G)(A(A), ©:A(N)) =~ Rep (G)(T*A(A), T°A(A)) =~ Rep (G)(A(u), Ap)) ~ k.

If ¢ : A(X) — L(A) is the quotient and i : L(A) < V(\), one has commutative diagrams

Repy(G)(A(N), O,A(N)) 2 DEDED, Rep (G)(AN), O,L(N))
~| I~
Rep, (G)(A(), Alk)) o Repa(G)(A(k), L(n))

and
Repy(G)(A(N),04i

Repy(G)(A(N), ©,L(N)) L Repy(G)(A(N), ©,V(1))
Nl lN

Rep, (G)(A(0), L) —m s Rep.(G)(A(R), V(p))
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Putting these together, the composite A(X) —— L(A\) —= V()) induces a commutative di-
agram

Repy(G)(A(N),O5(i0
Repo(G)(A(N), O,A(N)) — P CERNOED) R epo(G)(A(N), 0.V(N))

(1) ! !
Repg(G)(A(), ,4(0)) > Rep, (G)A(A(), 0,V ().

Repg(G)** (A(X), T (iog))

If L(v) is a composition factor of ker(q), there is an epi A(v) — L(v). As v < A\, ©;A(v)
vanishes in Rep(G)**, and so therefore does ©,L(v) in Rep(G)**. Then ©,q is invertible in
Rep(G)*, and so is ©,i likewise. It follows that the bottom horizontal map of (1) is invertible.

If * =yse0,as O,V(A) has a V-filtration such that 0 — V(A) = O,V(A) — V(A*) = 0

is exact, and as Rep,(G)* is a highest weight category, one has a commutative diagram

k =~ Repy(G)(A(A), V() —— Repy(G)(A(N), 0.V (}))

~l l
k > Repy(G)*(A(A), V(X)) —= Rep,(G)*(A(A), O,V (V).

Thus, the right vertical map in (1) is bijective, and hence also the left and the assertion follows.

(6.19) Recall also

Lemma: Let s € S,. Y\ € AJ with \* ¢ AT, VM € Rep,(G) with a V-filtration,
(TsM : V(N)) = dim Repy(G)(A(N), TsM) = dim Rep, (G)(T*A(XN), M) = 0.
(6.20) To compute Repy(G)(T'(z), T(y)) inductively, let M € Repy(G) with a V-filtration. We

now give a prescription to construct a section of the V-flag of ©,M = O,M, s € S,, from one
on M.

Let (IL, e, (¢M|r € 1)) be a section of the V-flag of M. Set II* = {m € Il|e(m)* € AT}.
Define a map e® : II* — Al by defining e*(7) € A, 7 € II°, to be the one lying in the closure
of the alcove containing e(m). As |II| = Z,\eAg(M : V()A)) and as T*V(A) =0 for A € IT\ II°,

)= 3 (T°M : V().

We now define ¢X M € Rep,(G)(T(e(r)), T*M) for 7 € II°.

Case 1: e(m) | e(m)®, i.e., e(m)® 1 e(m).
Recall from (6.17.1) a fixed isomorphism T T'(e*(7)) ~ T'(e(7)). Then

Repy(G)(T(e(m)), M) =~ Repy(G)(TT(e*(r)), M) =~ Repy(G)(T'(e*(7)), T* M),
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under which we define ¢2"™ to be the image of ¢M:

adjl TTS(W)

TST T (e (1)) —s T5T(e(m)).
By construction, defined under the isomorphisms, ¢X" = (.

Case 2: e(m) 1 e(m)*.
Then T'(e*(m)) is a direct summand of T*T'(e(w)). Using a split mono fixed in (6.17.2), define

T(e(m)) —— T°T(e(m))
¢TM) |
T M.
To see that ¢X M #£ 0, put A = e(m) and p = €*(7), and take Q = AZN(TA). Asim(¢pM) = V()
mod ToM, [im(¢2!) : L(A\)] = 1, and hence
AT (M) : ()] = [Tim(6) - L] = 1 = [T°T(N) - L(w)] = [T(0) - (o).
One must therefore have [im¢X™™ : L(u)] = [imT*¢M : L(p)] = 1.

Proposition [RW, Prop. 3.3.2]: (II*, ¢, (o2 M| € 11%)) constructed above gives a section
of the V-flag of T*M .

Proof: We are to show that, Vu € AT, the image of (¢1 M|r € (e*)~'(u)) forms a basis of
Rep, (G)*(T(), T5M). In particular,
()7 ()] = dim Rep, (G) (T (), T*M) = (T*M : V(p)).

Assume first that M ~ V(\)®ml for some A € Ad. Vr € I, put M, = im(¢M) ~ V()). Then
M = [1,eq Mr. and hence we may assume M = V(A), Il = {7}, e(7) = A and oM T(\) —
V(A) is the quotient. If A* € AT, T*V()\) = 0, II* = (), and we are done. If \* € AT II* = {x}.
Put pu = e*(m) € A*. As dim Rep,(G)*(T(u), T*M) = dim Rep,(G)**(T (), V(i) = 1, the
assertion follows from the fact that ¢7Trsv(,\) # 0.

In general, we may assume 0 # Rep,(G)*(T'(u), T*M) for some p € AF; otherwise TSM = 0
and II* = (). Then there is a unique A € AJ with p lying in the closure of the alcove containing
A such that A T A%, in which case Vr € II%, e*(7) = p iff e(7) € {A, A*}. Thus,

(€") () = e T\ Le ().

Let @ = AFN(1TA), @ = Q\{\}, and Q" = QU {N*}. Thus, Q, 0, Q" < A, ToM —
LoM — TonM < M with ToM/ToM ~ V(\)®oarven = V(\)etol and TonM/ToM ~
V()\S)@(M:VO‘S)) = V()\S)EBW*I(AS)'. Then TS<FQ/M> — TS<FQM) — TS(FQ//M) — T M with

(1) T¥(CoM)/TqM) ~ T5(TqM)/T*(Doy M) ~ V(p)Ee '™ and
T5(Tor M) /ToM) ~ T5(Tqn M) )T (TqM) ~ V(1) Pleto01,
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A short exact sequence 0 — I'gn M — M — M /T'gn M — 0 induces by (6.8), as T is exact,
another short exact sequence

(2) 0= Rep,(G)*(T(u), T*(CarM)) — Rep,(G)*(T(n), T°M)
s Rep,(@)*(T (), T*(M /T M)) = 0.
As (T*(M/TqnM) : V(u)) = 0, one has
Rep, (G)"(T'(n), T*(TqvM)) = Rep,(G)*(T(n), T*M).
By (6.15) all oM, 7 € e7*(\) (resp. e }(\?%)), factor through oM (resp. T'qnM):

oM oM
T\ —— M T(/\S) — M
] (resp. _ ]
£QA1 ) o Q//M
FQM FQ//M

with (¢LeM|r € e 1(\)) (resp. (¢LeM |7 € e1(\%)) ) giving a k-linear basis of Repy(G)¥(T'(\), Tq M)
(resp. Repy(G)™ (T(N%),TgrM)). In particular, all M 7 € e71(\) U e 1()\*), factor through
Lo M. By construction in Case 2 (resp. Case 1) one has a commutative diagram

¢TS(FQ//1\4)
TS
| T(n) — 5 DM e T (T )
Tp) —m M oo™ (resp. adjl Ts(d)M)T /FQI/M )
T S
(b;lr“s(l“ﬂj\l)

T*(To M)

if we write T(1) < T°T(\) and T*(TqM) < TM,
"oy 1M =i o T(gr2M) 0i = T(¢7") 0i = o7 .

™

Thus, all ¢2"™™ 7 € e 1(u), factor through T¢(T'qvM). It suffices then by (3) to show that
( ES(FQ”M)M € (e®)7Y(u)) forms a k-linear basis of Rep,(G)*(T(u), T*(TqnM)), i.e., we may
now assume that M = I'qvM.

Consider next a short exact sequence 0 — I'oM — M — M/I'oM — 0. As in (2) one
obtains a short exact sequence

0 = Rep,(G)*(T(n), T*(TorM)) — Rep,(G)*(T(u), T° M)
— Rep,(G)*(T (), T*(M /Ty M) — 0.
As (T*(M /T M) : V(1)) = 0, one has

Rep, (G)*(T (1), T>M) = Rep (G)"(T(u), T*(M /Ty M))
=~ Rep, (G)*(T(n), T°M/T*(Co M)).
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Denoting the image of each ¢X"M by ¢I°M it now suffices to show that (¢X"M|r € (e)~(p))
forms a k-linear basis of Rep,(G)*(T (i), T*M/T*(T'qsM)). One has

(T Mm € () () = (¢n " |r € e (V) U ($TM |7 € 7' (M),
the union on the RHS being disjoint from a short exact sequence

0 —= Rep, (G)*(T(n), T*(ToM/Ter M)) = Rep, (G)*(T (), T*(M /Ty M)
— Rep, (G)"™(T'(p), T5(M/ToM)) — 0.

y (6. 16) (MMM e e e=1(N)) (resp. (¢2/TM |z € e1(X%))) gives a k-linear basis of
RepO(G) MT(N),ToM/To M) (resp. Repy(G)¥N (T(\*), M/TqM)). By construction in Case 2

¢T—sM _ ¢$S(FQM/FQ/M) ifr e 6_1()\),
T gzﬁg (M/TaM) if € e (\%);

one has a commutative diagram

T3 (o M
o (M)
m

N) SO (P M)

= T°T
s( FQM/FQ,M
T (FQM/FQ,M)

T*(ToM /Ty M)

We are finally reduced to showing that (¢,T,S(FQM/FQ'M)|7T € e t(N) (resp pr M/l 7 o
e~1(\%))) forms a basis of Rep, (G)*(T'(i), T*(ToM /TqrM)) (resp. Rep,(G)¥(T (1), T¢(M/TqM)).
This has, however, already been done at the outset as ToM/ToM =~ V(A)®e 'l (resp.
M/ToM ~ V(X3)Preto0n),

(6.21) Consider next the case M € Rep,(G), s € S,, with a V-filtration. Out of a section
(I, e, (pM|m € 1)) of the V-flag of M we will construct a section of the V-flag of T M.

Put IT' =11 x {0, 1} and define a map ¢’ : II" — AJ as follows: Vr € I, €/(m,0) and ¢/(m, 1)
are such that €'(7,0) 1 ¢/(m,1) = €/(7,0)® and that e(m) belongs to the closure of the alcove
containing €'(m,0). Recall from (6.17.1) the isomorphism T T(e(w)) ~ T'(¢/(m, 1)), and define

T(€(m, 1)) —— T T'(e(nm))

lm%

TR
T,M.
Recall also from (6.17.2) the projection T*T'(¢/(w,0)) — T'(e(w)), and define

T(e(m,0)) BN 0,7 (e (m,0))

TeM
o) l

TSM (W TST(e(’YT))
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M
As ¢(T;’g§ corresponds to the composite T*7T'(¢/(m,0)) — T'(e(n)) “*, M under the isomorphism
Rep(G)(T'(¢/(m,0)), TsM) ~ Rep(G)(T*T'(¢'(m,0)), M), it remains nonzero.

Proposition [RW, Prop. 3.4.2]: (II',¢, (¢-M|n’ € 1)) constructed above forms a section
of the V-flag of TsM .

Proof: Consider first the case M = V(u)®1l for some g € AF. As in (6.20) we may assume

M = V(u). Thus we may assume that II = {7}, e(m) = u, and that oy T(u) — V(u) is
the quotient. Put A = €/(m,0) T A* = €/(m, 1). By definition

TO) — 4 0,T7(\) T(N) —— TsT(u)
¢(T;g)(u); l ¢Tsv(';-)._..___d lTs(@'f(‘”)
B8
TSV(N) «W TST(,u), TSV(N>'
m

On the other hand, one has from (6.14.2)
dim Repy(G)(T(N), TsV (1)) = (T, V(1) : V(V)) = 1
= (TsV(n) : V(X)) = dim Repy (G)™ (T (), TsV ().
The assertion follows.

In general, let u € im(e), 7 € e '(u), and put A\ = €'(7,0) + A = €'(7,1). Let Q =
(tp) and @ = Q\ {u}. Thus, ToM < TqM < M and TqoM/ToM ~ V()i As
Repy(G)AT(A), To(M/ToM)) = 0 = Repy(G)*(T(A), Ts(T'or M)), one has

(1) Repy (G)(T(N), To(TaM)) = Repy(G)NT(N), T, M),

(2) Repg(G)A(T'(), To(TaM)) = Repy(G)(T(N), Ts(CoM/Tar M)).
Likewise,

(3) Repg(G)™ (T(X), Ty(TaM)) = Repy(G)™ (T(A), T, M),

(4) Repy(G)*(T(X*), Ts(TaM)) = Repy(G)™ (T(N°), Ty (ToM/To M)).

By (6.15) with

(e M (w), ele-1(), (52| € e ! (p))) forms a section of the V-flag of TgM. In turn, by (6.16)
with
roM

T(u) —2—— ToM

¢£Q]\1/FQ/1W) l
oM /Toy M
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FQM/FQ,M’

(e M (), ele-1(u), (¢n 7 € e '(u))) forms a section of the V-flag of ToM /Ty M.

By above, corresponding to (¢£QM/FQ'M|7T € e Y(u), (qi>(7r € Repy(G)(T(N),

T,(CaM /T M))|r € e () (resp. (o 5" ™) € Repy(G)(T(N), To(ToM/To/M))|7 €

e 1(n))) induces a k-linear basis of Repy(G)*(T'(\), Ts(Po/ToM)) (resp. RepO(G)“S (T()\S)
Ts(Tq/ToM))). Then, by (2) (resp. (4)), corresponding to (¢pLoM|r € e (p)), (qb(Tr (T M)
Repy(G)(T(V), To(TaM))|x € 7 (1)) (resp. (675" € Repy(G)(T(X), To(TaM))|7 € e (p )))
gives a k-linear basis of Repy(G)*(T'(N), Ts(Tq)) (resp. Repy(G)¥ (T( %), T4(T'q))). Finally,
by (1) (resp. (3)), corresponding to (¢M|r € e7'(u)), (¢ T7:0)|7T € e Y(u)) (resp. (¢ Tﬂ?]lv)f|7r €
g‘l.(ug)) gives a k-linear basis of Rep,(G)*M(T'(\), TsM) (resp. Repy(G)¥ (T'(\®), T,M)), as

(T M/T oy M)

(6.22) We now consider the wall-crossing functor ©5 = O, : Repy(G) — Repy(G), s € S,. If
w = (s1,...,8n)is areduced expression of w € /W, T'(we0) is a direct summand of multiplicity
lin T'(w) = O, ... 0,,T(0).

Proposition [RW, Prop. 3.5.1]: Let s € S,, z a reduced expression of x € W and
v an arbitrary expression. Put A = z 0 and \* = ws e (. Let us denote the quotients
Repy(G) — Repy(G)* and Repy(G) — Repy(G)¥ by ?.

(i) Assume X\ T X\°. Thus xs is a reduced expression of vs € /W. Let I be a finite set,
fi € Repy(G)(T(2),T(v)), i € I, such that Y,.;kfi = Repy(G)N(T(z),T(v)); such exist
by (6.11). Let J be a finite set, g; € Repy(G)(T'(zs),T(v)), j € J, such that ) . ;kg; =
Repy(G) (T'(zs),T(v)). Then there exist f| € Repy(G)(T(z),0,T(x)), i € I, and g; €
Rep,(G)(T'(z), 0T (xs)), j € J, such that

Rep, (G (T'( => kO,(fi)o fl+ ) kO,(g;) o g

el jeJ

(i1) Assume that x = ys for some reduced expression y of y € IW. Thus \* =ye0 € Af
with X* + X. Let I be a finite set, fi € Repy(G)(T(z),T(v)), i € I, such that >, kf; =
Repo(G)MT(z),T(v)). Let J be a finite set, g; € Repy(G)(T(y),T(v)), j € J, such that
> ics kg = = Repo(G)"™M (T(y), T(v)). Then there exist f] € Repy(G)(T(z),0,T(z)), i € I, and
g; € RepO(G)( (2),0T(y)), j € J, such that

Rep, (G)N(T( = kO,(fi)o fi+ ) kO.(g;) o g}

el jeJ

Proof: (i) One has T(z) ~ T(x) in Repy(G)* and T'(zs) ~ T(xs) in Repy(G)**". Fix split
monos ¢ : T'(A) — T(z) and ¢* : T(N°) — T'(zs). By shrinking I if necessary, we may assume
that f; ot € Repy(G)(T'(N\),T(v)), ¢ € I, constitute the part of a section, with domain 7'(\), of
the V-flag of T'(v). Likewise for g; o ¢® € Repy(G)(T'(A\*), T(v)).

Let p € Al belonging to the closures of the alcove containing A. If o : T'(u) < T*T()\) is
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the fixed mono, one has from (6.20) that

together with
T(/"L) ............................................. > TST(Q), ] E J)

adjl TTS (95)

form the part of a section, with domain 7'(u), of the V-flag of T*T'(v). Then by (6.21)
T()‘) """""""""""""""""""""""""""""""""""" s @sT(y) = GST(Q)7 1€ ]7
ot Jews=e.t0

together with

() ovreremesss s y 9,1 (v) = 0,T(v), jeJ,
adjl T@s(gj)=@s(gj)
QST(/\) = @sT()‘) — TST(M) QST(E) - GST(E)

Ts(T*(¢%)oadj

form the part of a section, with domain T'(\), of the V-flag of ©,7(v) = T'(vs). Thus, taking

T =9 0,7(\) — T.T(n)

T lTS (T2 (¢)oL*)

T(ZL’) """""""""" f’ """"""""" > @ST(Q), 1€ ],

and .
T(\) -2 ©,T(\) — T.T(u)

T lTS(TS(LS)oadj)

will do. Likewise (ii).

(6.23) Recall from (5.11) a rex move between reduced expressions of an element of W,, a path
from one to the other by consecutive applications of braid relations.

Lemma [RW, Lem. 5.2.2]: Let z,y be 2 reduced expressions of w € TW. Let z ~ y be
a rex move and let ¢, € Dps(By, By) be the associated morphism. If A\ = w e 0, \if(qﬁgg) €
Tilto(G)"MT' (), T(y)) is invertible.
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Proof: Let y ~» z be the rex move reversing z ~» y, and let ¢,, € Dgs(By, B;) be the
associated mo_rphism. By (5.11) one can write Py © Gy = 1dp, + ijeJ ¢; for some finite set
J such that each ¢; € Dps(By, By) factors through some B, (k;) with ((z;) < {(w) — 2 and
k‘j e Z

i

s s
6.24) Vs € §,, recall € Dgs(By, Bs(1)). By construction (5.3), cf. (3.6), ¥ €
| |

Cat(Repy(G), Repy(G))°P (idRrep, (c), ©s) is the unit associated to the adjunction (T*, Ty). Thus,
VM € Repy(G), under the isomorphism Rep,(G)(M,O;M) ~ Repy(G)(T*M,T*M) one has

s s
U( l )ar corresponding to idrsps. In particular, if T*M # 0, ¥( l )ar # 0, and hence

Lemma [RW, Lem. 5.2.3]: VM € Rep,(G) with O,M # 0,

S

U( l Jar € Repy(G)(M,0©,M) \ 0.

(6.25) For 2 expressions z,y of elements of W, let oy, : Dpg(Bz, By) — Repo(G)(T(z), T (y))
denote the k-linear map induced by ¥: V¢ € Dpg(B,, By,(m)), ¥(¢) € Cat(Rep,(G), Repy(G))°P
(V(By), ¥(B,(m))) is a natural transformation from functor ¥(B,) to functor ¥(B,), and we

set o, (@) = T(¢) = (&)1 € Repy(G)(T(z), T(y)). In case x is a reduced expression for an
element z € 1YW and if A = x ¢ 0, define

Dis(By, By) —> Repy(G)(T(z), T(y))

Boy ey l

Repy(G) (T (@), T(y)).

We first show

Lemma [RW, Lem. 5.3.2]: Assume that y is a reduced expression of y € W. Let s € S,
with ys >y such that ys € W. Then Bys.yss Bys,ysss Byyss Byyss are all surjective.

Proof: By (5.9) one has By, >~ By (1) @ By(—1) in D. Then, letting Dgs(B,, Bys) =
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Dgs(By, Bys(—m)) Vm € Z, one has for z € {y, ys} a commutative diagram

D].SS(B@ Bgﬁ) —_— D]t%gl(Bza Byg) S D].;S_I(B@ Bgé)

&
a&»fﬁl laz st

Repo(G)(T'(z), T (yss)) ——=— Repo(G)(T'(z), T'(ys))**

Thus, one has only to show both By, and B, ,s are surjective.

Put A = ye0 and \* = yse0. As Rep,(G)* (T'(ys), T(ys)) ~ Repy(G) (L(X®), L(X*)) ~k,
Repy (G)™ (T'(ys), T(ys)) = kidg(ys). As Bysys(id) = id, Bys s is surjective.

Fix f € Repy(G)(A(N), T(y))\ 0, which is the composite of inclusions A(X) < T'(A\) — T'(y)

s
and is unique up to k*. Put n = ¥( ‘ ) € Cat(Repy(G), Repy(G))(id, Oy), which is the unit of
[ ]

an adjoint pair (T°,T;). Thus one has a commutative diagram

AN

AN 0,A()

(1) fl l@sm

T(y) = OsT(y) = T(ys).

= y = =

Note that f is invertible in Repy(G)*. As coker(O,f) ~ O,coker(f) = 0 in Repy(G)*, O,f is
also invertible in Repy(G)**. As na(y) # 0 in Repy(G)** by (6.18), in Repy(G)** one has from
(1) that

s BQB§<1> - Bg§<1>
0# Nriy) = By@(ing * l ) = ﬁg@( T )-
BQ
Finally, RepO(G)i’\(T(g),T(gg)) ~ Repy(G)MA(N), 0.1 (y)) ~ Repo(G)MA(N), O,V(N)) is of

dimension 1, and hence f3, ;s is surjective.

(6.26) Keep the notation of (6.25). Although we need it only in the case of z = () for the proof
of Th. 6.3,

Proposition [RW, Prop. 5.3.1]: 3., is surjective.
Proof: We argue by induction on £(y). Put A = z e 0.

Assume first ((y) = 0. Thus, T(y) = T(0) = T(0). Then Repy(G)"(T(z),T(9)) = 0
unless z = () in which case Repy(G)*°(T'(0),T(0)) = kidr@g). As Dpg(By, By) > idp, and as
Bp,0(idp,) = idp(), the assertion holds.

Assume next £(y) > 0. Write y = vs with some s € S,. Then T(y) = O,T(v), and we
assume the assertion holding with 7'(v). put A\* = zs e 0.
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Case 1: \* ¢ AT,
As (T(y) : V(X)) = dim Rep(G)(A(N), T(y)) = dim Rep(G)(O:;A(N), T(v)) = 0 and as Rep,(G)**
forms a highest weight category,

Repy(G)(T(2), T(y)) = Repo(G)(A(N), T(y) = 0,
and there is nothing to prove.

Case 2: \* € AT and A\* 1 A, which does not happen if {(z) = 0.
One has zs < z and xs € fW. If u is a reduced expression of xs, there is a rex move from x
to us, and hence we may assume x = us by (6.23). As £(v) < {(y), there are by the induction
hypothesis {fi|i € I} C im(ag,) < Repy(G)(T'(z),T(v)) such that Repy(G)NT(z), T'(v)) =
Sierkfi and {g;]j € J} C im(a Ey) such that Repo(G)"MT(u),T(v)) = .., kg;. By (6.22)
one has f; € Repy(T'(x),T(zs)), i € I, and g; € Repy(T(x), T'(us)), j € J, such that

Rep, (G)NT'(z = kO,(fi) o fi+ ) kO.(g;) o g}

el JjeJ

By (6.25) applied to u both 3, , and (3, .5 are surjective, and hence we may assume f; € im(oy )
and g; € im0, Vi € 1, € J. Then ©,(£) > f} and ©,(g;) o g} € im(a) Vi, . and henee
Bey 18 surjective. y

Case 3: AT \°.
One has s > z and zs € /W. By induction there are {fili € I} C im(ay,,)
J} C im(ags,) such that Repy(G)*(T(z), T(v)) = Yo kfi and Repo(G)™(T'(zs
> jeskgj. By (6.22) again one has f; € Repy(1'(z),T'(zs)), i € I, and g; € Repy(T'(z
7 € J, such that

and {g;j
), ( ))
), T'(2ss)),

Rep, (G)"MT(z Zk@ (fi)o fi + Zk@ gj) © g;-

i€l jeJ

By (6.25) applied to « both ;.5 and [, .4 are surjective, and hence we may assume f; €
im (o) and g; € im(agqss) Vi € 1, Vj € J. Then O,(f;) o fi,04(g;) 0 g; € im(ay,) Vi, j, and
hence [, , is surjective. -

(6.27) Specialization v — 1 yields H ~ Z®zjy 1) H ~ ZW,] and M*P! s ZQg, 1) M?PP =
Z @751 580 g, M~ sgiy Qzpy) Z[W,], the last of which we will abbreviate as M*P". Thus,
M®Ph has a Z-basis N/, = 1 ®@ w, w € /W. For an expression w = s;...s, of an element
weWpwt N, =1® (1+s1)...(1+s,) in M?Ph,

Lemma [RW, Lem. 5.4.1, 5.4.2]: If w is an expression of w € /W,

dim D (By, By) < (T(w) : V(0)).

Proof: Recall first from (5.5.3) that Vs € S,, Vw € /W,

N! + N! . ifwse /W,

0 else.

N{U-(l—i-s):{
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Then by the translation principle (1.10), under the isomorphism of abelian groups M?®Ph —
[Repy(G)] via N/ +— [V(w e 0)] Vw € W, one has for each s € S, a commutative diagram

Mot —=— [Rep(G)]

Hsl le.

MaPh s [Rep,y(G)].
As N, o> [T(w)] by (61.2), Ny € (T(w) : VO)N] + Xperyps ZN?.

Using the anti-equivalence 7 from (5.2) such that B,(m) + B,(—m) Va, Vm € Z, one has
dim(D*P")*(By, B,,) = dim(D*P")*(B,,, By), which is equal to dim(D%")*(B,, By) as DA
is a full subcategory of D*Pt = Kar(DEP") by (5.9) [Bor, Prop. 6.5.9, p. 274]. In turn,
dim(DEP)* (B, By) < t{e(w)|e(w) is an expression of the unity avoiding W, \ /W} by (5.12).
On the other hand, from (5.10) one has

NiH, = Z Ud(e@))Nwe@),
e(w) avoiding W, \fW

which under the specialization v ~» 1 yields

ﬂlﬂ == Z Nwe(ﬂ)
e(w) avoiding W\ W
€ #{e(w)|e(w) is an expression of the unity avoiding W, \ "WIN] + Z NN,
zefW\1

(6.28) We are finally ready to prove Th. 6.3. We first show that ¥ is fully faithful. V ex-
pressions z and y, ag, : Dig(By, By) — Repy(G)(T'(z), T(y)) induces a, : Dzzgh(ég, Bg) =
(D*Ph)*(By, By) — Repy(G)(T(z), T(y)). By (5.6) and the additivity of U we have only to

show that each .y is bijective. We argue by induction on £(x).

If {(z) = 0, z = 0. Then Repy(G)(T(z), T(y)) = Repy(G)**(T(0), T(y)), and gy = Ba, is

surjective by (6.26). On the other hand, dim Repy(G)(T(0),T(y)) > dim(DaSph)‘(B@,Bg)iby
(6.27), and hence &y, is bijective.

Assume now that ¢(z) > 0 and write z = ws for some s € S,. Recall from (5.3) that

S S
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As the LHS is the unit, say n”, associated to an adjunction (7B, ?B;) [EW], it induces a unit

of adjunction (?B;,?B,) on Dgzzh, so therefore is W(n") associated to an adjunction (O, Oy)

[Hl, Cor. 2.2.9]. One has then a commutative daigram

asph / 15
Ddeg (BM7 g)

@M,gl Ow,ys

As @y ys is bijective by induction, S0 is Qs y = Qg y-

Finally, to see that Wae(B,) = ¥(B,) = T(w e 0) Yw € /W, we have only by (5.6)
again to show that \deeg(Bw) remains indecomposable. For that it suffices to show that
Repg(Vaeg(Buw), Vaeg(Byw)) is local [AF, p. 144], and hence to show that Dzzgh(Bw,Bw) is
local by what we have shown above; recall that a ring X is local iff Vax,y € X with z +y € X*,
either x € X* or y € X*. In particular, if X is local, the idempotents of X are just 0 and 1;
if e is an idempotent of local X, 1 = e+ (1 —¢). If e € X*, 1 —e =0 from e(1 — ¢) = 0; if
1—e e X* e =0 likewise. We also have for local X, taking contrapositive of the definition,
that X \ X is a unique maximal ideal of X.

As B, is indecomposable in D*P! and as D*P(B,,, B,,) is finite dimensional, D*PY(B,,, B,,)
is local; we have only to show that V noninvertible ¢ € D*PY(B,,, B,,), ¢ is nilpotent [AF, pf
of Lem. 12.8]. As D*P*(B,, B,,) is finite dimensional, ¢ admits a minimal polynomial m in
k[z]. If mg = (¥ —a1)™...(z — a,)" be a prime decomposition, put mg; = [[,,(x — a;)™.
Then one can write 1 =) . fymg; for some f; € k[z]. Asidg, =, evg(fime,i), my must be a
power of x.

As Dzzgh(f?w,éw) is finite dimensional, Dgzgh(Bw,Bw) = (D*"")*(B,, B,,) remains local
(GG, Th. 3.1].

(6.29) Under the standing hypothesis p > n, in order to determine all the irreducible characters
for G, it suffices by Steinberg’s tensor product theorem (1.6) and by the translation functor to
determine the irreducible characters of the G-modules of highest weight z ¢ 0 with x e 0 € A;.
Thus, let Wy = {x € "W|(z 00+ p,a") < p(n — 1) Va € RT}. YA € (p — 1)¢ + AT, write
A= (p—1)C+ N+ p\, with \) € Ay and X} € A*, and set A = (p — 1)C + woN, + pA,. One
has then a bijection (p — 1)¢ + AT — A* via A — \. Let AT — (p — 1)¢ + A" be its inverse,
denoted A — A [S97, p. 98]; if A = A% 4 pAl with A\ € Ay, A = wy @ A2+ p(A! +2¢). Vy € 'W,
define § € /W to be such that e 0 = y/o\O

Proposition [RW, Prop. 1.8.1]: Assume p > 2(n —1). Vz,y € Wy,

Az e0): Liye0)] = (T(Ge0): V(zo0)),
Proof: Let Ai_p(n—l) = {re0 € AT|z € "W, (z00, ) < p(n—1)}, ap = a1+ - -+, = €1—&,.
Thus, x 0 € AT ) Vz € fW. Let Rep(G)<pmn-1) denote the Serre subcategory of Rep(G)

<p(n—1
generated by the L()\), X € AT As AT ) forms an ideal of (AT, 1), Rep(G) <pn—1)

<p(n—1)" <p(n—1
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forms a highest weight category by (6.10). Let Opn—1) : Rep(G) — Rep(G)<pn-1) denote the
truncation functor sending M to the largest submodule of M whose composision factors all
belong to Rep(G)<pmn—1). As Ocpn_1) is right adjoint to Rep(G)<pmn-1) — Rep(G) [J, A.1.3],
we have only to show that Ocpin- 1)T(y e 0) is the injective hull of L(y ® 0) in Rep(G)<p(n—1);

[A(‘T ® 0) : L(y d 0)] = dim Rep(G)<p(n—1)(A(x hd 0)7 O<p(n—1)T<g b 0))
— Rep(G)(A( #0), T(j 2 0))
=[T(ye0):V(re0).
Put A = y ¢ 0 and write A = A\ + pA! with A\ € A; and \! € AT. Then j e 0 = )?)er)\l. As
y € Wo,

(PN + Q) a9) <A+ C+(p—1)¢ ag) <pn—1) +
)

p—Dn—1)=(2p—1)n-1)
—p2n—1)—(n—1) <P — (n—1) < p,

(
<p?
and hence (A + (,ap) < p. Then A(N') = V(A!) = T(\') = L(A\) by the linkage principle,
and
(1) T(je0) =T(N +pAl) =~ T(N0) @ T(AHY  [J, E.9]

— T(\0) @ LAY

Now, T(/@) is the injective hull of L(AY) in the category of Rep(Gy) [J, E.9.1] and also in
Rep_o(n—1)(G) defined anagolously to Rep_,,_1)(G) [J, [1.11.11]. In particular, soc gT'(\°) =
L()\°). Then

soc T (y @ 0) ~ soc G(T()F)) ® L(AHM)
~ {soca(T(A\)} @ L(AHM)  [AK, Lem. 4.6]
~ LA @ LOHM ~ L(N),

and hence soc Rep@(n_l)(g)(’)@(n,l)T(g) e0)=L(\). Vv e Aip (n—1)

~

(2) Extg(L(v), T(j0)) = Extg(L(v), T(A) @ L(AHY) by (1)
~ Extl(L(v) @ L(—woA)Y, T(N0)) = Ext(L(v — pwoAl), T(\?))
~ Extﬁepdp(n_l)(g)(l)(y — pwoAt), T ()T )) using the KH-extensions as
(v = pwod' + p,ag) < p(n—1) + (pA',ag) < p(n—1) + (N, ag) < 2p(n — 1)
= 0.

Then VM — M’ in Rep_,(,_1)(G), one obtains a commutative exact diagram
Rep_ (1) (G) (M, Ocpn-1)T( # 0)) — Repp1)(G)(M, Ocpn-1)T(i 0 0))

N| |~

Rep(G)(M', T (7} »0)) > Rep(G) (M, T(jj 8 0)) ——— Extg(M'/M,T(j «0))

with Extg(M'/M,T(j e 0)) = 0 by (2). It follows that Opu-1yT(§ ® 0) is injective in
Rep_,(,-1)(G), as desired.
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(6.30) We now obtain under the hypothesis p > 2(n — 1) that Va € W,

[A(ze0)] = Pruy(1)[L(y e 0)]

yEWDH

in [Rep(G)]. Inverting the unipotent matrix [Pn, ;(1)).yew, yields ch L(xz o 0) Vo € W, from
which one can derive all the irreducible characters of G.

Appendix A: The structure of the general linear groups as algebraic groups

This is meant also to be a preliminary to my lectures scheduled next semester on recent
advances in the modular representation theory of algebraic groups.

Fix a field k and let G = GL, (k) denote the general linear group of invertible matrices over
k. We will describe some basic structure of G as an algebraic group. All the details can be
found in Jantzen’s (resp. Carter’s) classic [J] (resp. [C]). We will often abbreviate GL, (k) as
GL,.

Precisely, given a category C let C(X,Y’) denote the set of morphisms from the object X
in C to the object Y in C. Let Commrng denote the category of commutative rings and Set
the category of sets. A scheme is a functor from Commrng to Set. If A is a commutative
ring, let SpA be a scheme such that (6pA)(C') = Commrng(A,C). For any scheme X if
f € Sch(6GpA, X), one has for any ¢ € Commrng(A, C') a commutative diagram

f(A)

idg  Commrng(A, A)=(SpA)(A) X(A)
I Commrng(A@)l (GpA)(tt))i lx(@
o Commrng(A,C)=(6pA)(C) 5o X(C).

X, = f(A)(ida), f(C)(¢) = X(¢)(Xy), and hence f is uniquely determined by X;. Conversely,
given z € X(A), VC € Commrng, define f,(C) € Set((SpA)(C),X(C)) by ¢ — X(¢)(x).
Thus, f, defines a morphism of schemes from GpA to X. We have obtained Yoneda’s lemma:

Sch(GpA, X) ~ X(A) via f — X with inverse f, <+ z.
In particular, if A’ is another commutative ring,

Sch(GpA, GpA’) ~ (GpA’)(A) = Commrng(A4’, A).

Let Z[&;, ﬁﬁ,j € [1,n]] be the polynomial ring in indeterminates &;;, 14, j € [1,n], localized
at det, i.e., it is the subring of the rational function field Q(&;;]7,7 € [1,7n]) in indeterminates
&; generated by the &;’s and <. Then GL, is a functor Commrng(Z[&;, =i, J € [1,n]],?) :
Commrng — Set from the category Commrng to the category Set. Thus GL, (k) is just the
set of invertible matrices over k of degree n. We often denote the ring Z[&;, i, 7 € [1,n]] by
Z|GL,]. It is, moreover, equipped with an extra structure of Hopf algebra, which makes GL,,
into a group functor from Commrng to the category Grp of groups.
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(A.1) Let T be the subgroup of daiagonals of G, called a maximal torus of G. Thus, T is
isomorphic to GL} via (ay,...,a,) — diag(ay,...,a,). Set A = Grp,(T,GLy). If ¢; € A such
that diag(ay, ..., a,) — a;, A is endowed with a structure of abelian group isomorphic to Z®" via
(r1, .., m) > >0 rigi, where Y0 ey ot [[,€:(¢)". In particular, Grp,(GLy, GL;) ~ Z
via r —7". We are thus dealing only with a special kind of group homomorphisms, morphisms
of algebraic groups. We call A the character group of 7'

(A.2) For each i,j € [1,n] with ¢ # j define z;;(a) € G,a € k, to be the matrix such that
zij(a)e = 1 Vk and x;5(a)m = didjia Vi # j, and set U(4, j) = {z;;(a)|a € k} an elementary
subgroup of G. Then U(, j) is isomorphic to the additive group G, = k via a — z;j(a). In
particular, x;;(a)™! = z;;(—a).

Vt € T and b € k, one has tz;; (b))t~ = z;;((g; — g;)(£)b), i.e.,
diag(ay, . .., an)zy(b)diag(ar, . .., an) " = xij(asa; 'b).

We let R = {g; — ¢;|i # j} and call it the set of roots. If a = ¢; —¢; € R, we will write

U, (resp. x,) for U(i,j) (resp. z;;) and call U, the root subgroup of G associated to a. If
Rt = {Ei — Ej‘i < ]}, R=R"U (—R+)

(A.3) Let o, 5 € R with o+ 8 # 0. Let &, = xo(1) — I with I denoting the identity matrix,
and define Zg (resp. Toyp if a+ B € R) likewise. Define N,5 € {0, %1} to be

No3To if € R,
Tolp — Tola = plats fat+p
0 else.

Then Va,b € k

atrs(Nag(—a)b) if R,
23(0) (@) s B a) = § e Pes(aP) H @t T
1 else,

which is called Chevalley’s commutator relation. It follows that U = [] ., U_o forms a sub-
group of G consisting of the unimodular lower triangular matrices. Thus there is an isomorphism
of schemes

AT S U via (a0)acrs — H T_o(ay).

a€ERT

Likewise for U = ], cp+ Ua. Both U and U" are normalized by T, and we set B = TU,
BT =TUT, called opposite Borel subgroups of G.

(A.4) Dualizing A let AY = Grp,(GL,T). Ife/ € AV is defined by ¢ +— diag(1,...,1,¢,1,...,1)
with ¢ at the i-th place, AV is endowed with a structure of abelian group isomorphic to Z%»
via (r1,...,1n) = Yoo i), where Y e e [ ) (). Again we deal only with this
kind of group homomorphisms.

VYA € A,y € AV, one has A oy € Grp,(GLy,GL;) ~ Z defining (\,v) € Z such that
o79)(c) = ™) Ve € GL;. One thus obtains a perfect pairing (?,?) : A x AY — Z via
,7) — (A,y). We thus call AV the cocharacter group of T.
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(A.5) Fix @ € R. Let SLy = SLo(k) = {g € GLs| det(g) = 1} the special linear groupf of degree
2. There is a group homomorphism ¢, : SL, — G such that Va € k,

Ga ((1) ‘1‘) — zo(a) and g, (i (1)) = 2_q(a).

For ¢ € k* let ny(c) = ¢q (_2_1 8) and a(c) = ¢, (8 C(_)1>. Then

Na(c) = za(c)r_o(—c Haa(c) € Ng(T) and a(c) = na(c)na (1)~ €T.
More explicitly, if we let E(i,j) € M, (k) such that E(i, j)u = didj,
berve, (Z fl) — aB(ii) + bE(i. ) + cEG.i) + dEG.J) + 3 E(k, k).
ktisg
We call oY € AY the coroot of a, and set RY = {a"|a € R}. One has (a,a¥) = 2. In case

a=¢g;—¢j, a’ =g/ —¢. Wesay that the quadruple (A, R, A\, R¥) forms a root datum of G,
which is used to classify the reductive algebraic groups.

(A.6) Let W = Ng(7T')/T. As W acts on T', so does it on A and AY via
(wA)(t) = Mw Htw) and  (wy)(c) = wy(c)w™ Yw e W, A€ AN teT,ve A

Thus the pairing (7,7) is W-invariant: (w\, wy) = (\,7). As A separates T, the action of W
on A is faithful.

Va € R, set s, = ny(1). Then

(1) W = (sq|la € R),
(2) sad=A— (N, a")a Vae R, \eA.
More specifically, if « =¢; —¢j, 1 # j, and A = ¢, k € [1,n],
€j if k= i,
Sei—e,Ck = €k — (€ry&] — &) )(ei —¢g5) =& if k=],
g, else.

It follows that the injective group homomorphism W — &, induces an isomorphism W — &,,
such that Vi # 7,

Se—e; > (1 7).
Thus, if w +— o,

wdiag(ay, ..., a,)w™ " = diag(ag-101), ..., @Gp-1(1)), W Z Nig; = Z Ai€oli) = Z Ao-1(i)Ei-

If €1,..., e, is the standard basis of k% affording G, we; = e,(;) up to k*. In particular,
(3) s2=1 VacR,

(4) WR=R, WRY=R,

(5) WSuw ' = Spo Yw € W,Va € R,

(6) W = (sili € [1,n[) with s; = s,, and a; = &; — €;41.
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We call ay, ...,y the simple roots, and put R* = {a;|i € [I,n[}. The matrix [(a;, o)) of
degree n — 1 is called the Cartan matrix.

Also, Vw € W, Va € R, a € k,
(7) Wro(a)w ™ = Tye(Fa).
We cannot control £ as w is defined up to 7.

(A7) We call Rt = RN Y7 Ney = {&; — ;|1 < i < j < n} the positive system of R
determined by the simple roots aq, ..., a,_ 1. We define a partial order on A such that A > u
iff A —pe S0 Nay =Y, p+ Na.

If S ={sili € [1,n[}, (W,S) forms a Coxeter system. Define a length function ¢: W — N
such that {(w), w € W, is equal to the smallest number m with w = s, ...s;,,, s;; € 5, in
which case we say such a sequence is a reduced expression of w. Yw € W, Vs; € 9,

0 g = {0 T e
(2) l(w) = {a € RTlwa < 0}].
There is a unique wy € W such that wgR* = —R™, which corresponds to (i . 3 1 T) .
Thus,
(3) wy =1,

(1 ttun) = 1141 = (3).

Let p=>_"  (n—1i)s. Ya € R?,
<p7&v>:: )
and hence s,p = p — a. Then wp — p € ZR Yw € W. A new action of W on A defined by
wel=wA+p)—p

will be important in the representation theory of G.

(A.8) For each w € W let BwB denote BwB with a lift w0 € Ng(7') of w. One has a Bruhat
decomposition
G - uwGWBwB.

The multiplication induces an isomorphism of schemes

[[vaxTx J] V- = U'B,

aeRt aeRt

and U™ B is open in G, called a big cell, the closure U+ B being the whole of G. More generally,
let RT(w) = {a € RT|w™la < 0}. If U(w) = (U_s|a € R (w)), the multiplication induces an
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isomorphism [],c g+ () U-a = U(w). One has an isomorphism of schemes

A" x B~U(w) x B— BwB via ((¢a)acrtw),b) = ( H T_o(aq))wh,

where A“Y) = &p(Z[¢1, ..., &) is called the affine ¢(w)-space.

There is a partial order on W, called the Chevalley-Bruhat order, such that = > y iff
BxB O ByB. Then

BwB = U<, BxrB with BwB open in BuwbB.

Given g € (G, by elementary row operations there is by € B such that the first column of b;g
is e; for some i € [1,n]. Then by elementary column operations there is b} € B such that the
i-th row of bygb] is (1,0...,0). Repeating the procedure, by elementary row operations there is
by € B such that the second column of byby gb is e; for some j € [1,n]\ {i}. Then by elementary
column operations there is b, € B such that the j-th row of bybygbib} is (0,1,0...,0). Thus,
eventually there are b, 0’ € B such that bgl’ is equal to a permutation matrix w.

S >t x>

r € [1,min{n —i+1,7}] let
k if rke;(g) >,

O (g) =
il9) 0 else.

Then
BwB = {g € G[o};(g) = 0;;(w) Vi, j,7}.

Also, = < y iff z is the product of a subsequence of a reduced expression of .

Appendix B: Representation theory of the general linear groups
after Riche and Williamson /&

The lecture is meant to give an introduction/survey of the first 2 parts of a recent mon-
umental work by Riche and Williamson [RW]. We will consider the representation theory of
GL, (k) over an algebraically closed field k of positive characteristic p.

1° AiEH

(H 1) Set G = GL, (k). We will consider only algebraic representations of G, that is, group
homomorphisms ¢ : G — GL(M) with M a finite dimensional k-linear space such that, choosing
a basis of M and identifying GL(M) with GL,(k), r = dim M, the functions y,, o ¢ on G,
v, pu € [L,7], all belong to k[z;;,det™" |i, j € [1,n]], where y,,.(¢') = g/, is the (v, u)-th element
of ¢ € GL,(k) and z;;(g) = ¢;; is the (4, j)-th element of ¢ € GL, (k) [J, 1.2.7, 2.9]. Given a
representation ¢ we also say that M affords a G-module, and write gm for ¢(g)m, g € G,m € M.
Set k[G] = k|[z;, det™" |3, € [1,n]].
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A basic problem of the representation theory of GG is the determination of simple represen-
tations. A nonzero G-module M is called simple/irreducible iff M admits no proper subspace
M’ such that gm € M' Vg € G Vm € M'.

(H 2) A classification of the simple G-modules is well-known. To describe it, let B denote a Borel
subgroup of GG consisting of the lower triangular matrices and 7" a maximal torus of B consisting
of the diagonals. Let A = Grp, (T, GL;(k)), called the character group of 7. Recall that A is
a free abelian group of basis ¢y, ..., &, such that ¢; : diag(aq, ..., a,) — a;. We write the group
operation on A additively; for my,...,m, € Z, > m;e; : diag(as, ..., a,) — ai" ...al"". Let
R = {e; —¢jli,j € [1,n],i # j} be the set of roots, and put RT = {e; — ¢;|i,j € [1,n],i < j},
the set of positive roots such that the roots of B are —R": B =T x U with U = [[,cp+ U-a,
U_o ={2_s(a)|a € k} such that if —a =¢; —¢j, Vv, € [1,n],

1 ifv=uyp,
r_q(a)yy=<qa ifv=iand u=yj,
0 else.
If o :=¢e; — €41, 1 € [I,n], R* = {aq,...,a,_1} forms a set of all simple roots of R*. For

a=¢; —¢e; € Rlet a¥ € AV denote the coroot of a such that

1 ifk=1,
(ep, 0’y =< =1 if k=3,
0 else.

Let AT = {\ € A|(\,a") > 0Va € R}, called the set of dominant weights of 7. We introduce
a partial order on A such that A > piff \—pe >’ . Na.

(H 3) Any T-module M is simultaneously diagonalizable:
M= ][ My with M, ={me Mtm = \(t)mVt € T}.
AEA

We call M) the A-weight space of M, its dimension the multiplicity of A in M, A a weight of
M iff M # 0, and the coproduct the weight space decomposition of M. Let Z[A] be the group
ring of A with a basis e*, A € A. We call

ch M = (dim My)e* € Z[A]
AEA

the (formal) character of M; if M is a G-module, for g € G g is conjugate to gsg, in the Jordan
cannical form with g, € T and g, € U such that gsg, = gugs- Then the trace Tr(g) on M is
given by

Tr(g) = Tr(gsgu) = Tr(gs)
= > A(t) dim Mj,

which does not make much sense in positive characterstic.
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(H 4) Assume for the moment that k is of characteristic 0. Here the representation theory of
G is well-understood. Any G-module is semisimple, i.e., a direct sum of simple G-modules [J,
I1.5.6.6]. For A € A regard A as a 1-dimensional B-module via the projection B=Tx U — T,
and let V(A) = {f € k[G]|f(gb) = Ab)"'f(g)Vg € GVb € B} with G-action defined by
g+ f = f(g7'?7). The Borel-Weil theorem asserts that V(\) # 0 iff A € AT [J, 11.2.6]. Any
simple G-module is isomorphic to a unique V(\), A € AT, and chV()\) is given by Weyl’s
character formula. To describe the formula, we have to recall the Weyl group W = Ng(T)/T
of G and its action on A: Yw € W, Vu € A, we define wu € A by setting (wu)(t) = p(wtw)
Vt € T. More concretely, identify A with Z® via Y " | pe; — (pa,. .., fty). Then W ~ G,
such that we; = e, 1.€., Wi = (11, - -, fh—1n). Let also ¢ = (0,—1,...,—n + 1) € A, and
set w e A = w(A+ () — ¢; we replace the usual choice of p = 5> i o, which may not live in
A, e.g., in the case of GLy(k), by ¢. Then [J, I1.5.10] for A € AT

> e det(w)e? <) _ > weny det(w)e?
Y wew det(w)ews Y wew det(w)ews0”

In particular, V(\) has highest weight A of multiplicity 1: any weight of V() is < A, and
dim V(M) = 1.

chV()\) =

(H 5) Back to our original setting, each V() in (H 4) is defined over Z and gives us a standard
module, denoted by the same letter, having the same character [J, 11.8.8]; this is a highly
nontrivial result requiring the universal coefficient theorem [J, [.4.18] on induction and Kempf’s
vanishing theorem [J, I1.4] among other things. In particular, the ambient space V of our G
is V(ey); if vy,...,v, is the standard basis of V| each v; is of weight €;. More generally, let
S(V) = Kk[vq,...,v,] denote the symmetric algebra of V', and S™(V') its homogeneous part of
degree m. Then S™(V) ~ V(me;) [J, 11.2.16]. Note, however, that SP(V') has a proper G-
submodule Y "  ko?, and hence V() is no longer simple in general. Nonetheless, each V()
has a unique simple submodule, which we denote by L(A) [J, 11.2.3]. It has highest weight A,
and any simple G-module is isomorphic to a unique L(u), p € AT [J, 11.2.4]. Thus, our basic

problem is to find all ch L(u).

For that, as any composition factor of V() is of the form L(u), p < A, with L(\) appearing
just once, the finite matrix [([V(v) : L(n)]) of the composition factor multiplicities for v, u < A
is unipotent, from which ch L(\) can be obtained as a Z-linear combinations of ch V(v)’s.

(H 6) To find the irreducible characters, some reductions are in order. First, let A; = {\ €
AT\, oY) < pVa € R°}. It w; =1+ - +¢;, 1 € [1,n], A =[], Zw;, w, = det, and
AT = Zdet—i—Z?:_ll Nw;. Thus, A; = Zdet —i—{Z?:_ll a;wila; € [0,p[}. One can write any
A€ AT in the form A = Y77 p'A, A € Ay. Then

Steinberg’s tensor product theorem [J, I11.3.17]:
L) ~ L) @ LAY @ ... @ LN,

where L(N¥)) is L(\F) with G acting through the k-th Frobenius F* : G — G wvia [g;;)] — [(gf]k)]
Thus, if ch L(A*) = 37 myue*, ch LAF)F = Do my,e? . and our problem is reduced to
finding ch L()\) for A € Ay or ¢h L3215 Ny for \; € [0,p[; Vm € Z, V(mdet + 3277 Niwy) ~
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det®" @V (327 \iw;) by the tensor identity [J, 1.3.6], and hence also L(m det + 37— A\jww;) ~

1=

det® @L(Y20 ) \wi).

(H7)Let W, = WXZR, called the affine Weyl group of W, acting on A with ZR by translation.
For a € R let s, € W such that s, : A= A= (A, a")a, A € A, and 5401 : A —= A— (A, oy ) + o
with ag = a1 + -+ -+ ay—1 = €1 — €,. Under the identification W ~ &,, one has s,, — (i,i+ 1),

€ [lin[. IS ={sq|la € R} and S, = S U {sap1}, W, S,) forms a Coxeter system with a
subsystem (W, S) [J, 11.6.3]. Let ¢ : W, — N denote the length function on W, with respect
to S,, and let < denote the Chevalley-Bruhat order on W,.

We let W, act on A by setting

1
l")\:pflﬁ(];()\—i—C))—C VA €AV eW,.
Let Rep(G) denote the category of finite dimensional representations of G. By Extg, (M, M’)
we will mean the KH-extension of M by M’ in Rep(G) [Weib, pp. 79-80], [dJ, 27]; Rep(G)
admits no nonzero injectives nor projectives.

The linkage principle [J, I1.6.17]: VA, pu € AT,
Extg (L), L(p)) #0 =X €W, o .

By the linkage principle one has a decomposition

Rep(@) = [] Repa(@),

QeA/ W,

where Repq(G) consists of G-modules whose composition factors are all of the form L(\),
A€ QN AT, In particular, for A € Q

ch L(A) € ch V(A) + > ZchV(p).
HEQ
p<A

We will abbreviate Repyy, ,o(G) as Repy(G) and call it the principal block of G.

(H 8) We extend the W,e-action on A to one on A := A ®z R. For each « € R" and m € Z
let Hym = {z € Ag[(z+(, ") = mp}. We call a connected component of Ag \ Une g+ mezHam
an alcove of Ag. Thus, W, acts on the set of alcoves A in Ag simply transitively [J, 11.6.2.4].
We call AT = {x € Ag|(z+ (,a") > 0Va € R, (x + (,ay) < p} the bottom dominant alcove
of A. Thus the action induces a bijection W, — A via w — w e A*. The closure A+ is a
fundamental domain for W, on Ag [J, 11.6.2.4], i.e., Vo € Ag, (W, @ 2) N AT is a singleton. For
A={z € Ag|p(ma — 1) < (z+ (,a") < pmy Vo € RT} € A, m, € Z, a facet of A is some
{x € Al pl{x + (,a") Ya € Ry}, Ry C RT, and a wall of A is a facet with |Ry| = 1. Also, we
call A= {z € Ag|p(ms — 1) < (x4 ¢, ") < pmy Yo € R} the upper closure of A. One has
[J, 11.6.2.8]
ANA#£PIAe A iff 0e A" iff p>n,

in which case each wall of an alcove contains an element of A [J, I1.6.3]. Assume from now on
throughout the rest of this section that p > n.
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For v € A let pr, = pry,,, : Rep(G) — Rep(G) denote the projection onto Repy,, ,,(G).
Now let A\, u € AN A+. We choose a finite dimensional G-module V' (), i) of highest weight v €
AT NW(u — A) such that dim V(A p), = 1, e.g., V(A p) = V(v), L(v). Define the translation
functor TY' : Rep(G) — Rep(G) by setting Ty'M = pr, (V(A, u) ® pryM) VM € Rep(G). A
different choice of V(A, ) yields an isomorphic functor [J, I1.7.6 Rmk. 1]. Each T} is exact.
As T/;\ may be defined with V(A p) replaced by V (A, u)*, T and le are adjoint to each other
[J, I1.7.6]: VM, M’ € Rep(G),

(1) Rep(G)(T{ M, M") ~ Rep(G)(M, T} M’).

The translation principle: Let \,u € AN A*.

(i) If X and p belong to the same facet, T} and T’;\ induce a quasi-inverse to each other

between Repyy, o) (G) and Repyy, ., (G) [J, 11.7.9].
(ii) If X belongs to a facet F and if p € F, Yo € W,, T{NV (v e \) =~V (x e ) [J, I1.7.11].

(iii) If X € A* and if p € A% with Cyy,o(p) = {1,5} for some s € S,, then Yo € W, with
reX€ AT and xse X\ > x e\ there is an exact sequence [J, I1.7.12]

0= V(zeX) > T V(zeu) = V(zse) =0

with T)V(z e pu) ~ TYT{V(ze ) ~ T\'V(zse)). We note also that the morphisms V(z e X) —
TV (z e ) and T)V(x e p) = V(zs e \) are unique up to k*;

Rep(G)(V(ze)), TV (zep)) ~ Rep(G)(T{V(ze)), V(zep)) ~ Rep(G)(V(zeu), V(zeu)) ~ k.

(i) If \ € A* and if p € A+, then Yo € W, with e X € A+ [J, I1.7.18, 7.15],

L(zep) ifxouem,

0 else.

T/{‘L(a:o)\)g{

Thus, all the irreducible characters are obtained by the translation principle from those
belonging to the principal block.

(H 9) Weyl’s character formula was described using the Weyl group W of G. To describe the
irreducible characters in Repy(G), we require W,. Let /W = {z € W,|l(yx) > ((x) Vy € W}.
There is a bijection YW — (W, e0)NAT via w — we0, and Z|W,] is a free left Z[W)]-module of
basis w, w € fW. Let sgn, = Z be the sign representation of W, defining a right Z[WW]-module
such that s — —1 Vs € S. If [Rep,(G)] denotes the Grothendieck group of Repy(G), it has a
Z-linear basis [V(w e 0)], w € /W, by the linkage principle. There follows an isomorphism of
Z-modules

(1) sgny, @z ZIW,] — [Repy(G)] via 1®@w — [V(w e0)].

We call sgn; Qzw Z[W,] the antispherical module of Z[W,] and denote by M*Ph Thus,
Repy(G) gives a “categorification” of sgny, ®zpy) Z[W,]. The bijection is, moreover, an iso-
morphism of right Z[W,]-modules as follows. For each s € S, choose € A N AT such that
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Cw, (1) = {1, s}, and let T* = T§ be a translation functor into the s-wall of A* and T, = T, a

translation functor out of the s-wall. We call ©, = T, T* an s-wall crossing functor. In M2Ph
one has from [S97, p. 86], Vs € S,, Yw € TW,

low(l+s)=

1Qws+ 1w ifwsefw
else.

Then, letting 1 + s, s € S,, act on [Repy(G)] by Oy, makes (1) into an isomorphism of right
Z[W,]-modules by the translation principle (H 8.iii): Vs € S,,

1@w(l+s)— [V(we0)]O; =[0;V(we0).
Thus, [Repy(G)] admits a right W,-action.

For x € /W let now 2® € M®*P® such that z° ~ [L(x @ 0)]. Thus, Yy € /W, if 2° =
Zyefw Ay Y Oy o € L,
chL(ze0) = Z aychV(ye0).

yefw

(H 10) As M®Ph does not possess enough structure to describe the z* or a,, internally, we
quantize Z[W,] to & li-Hecke algebra H,. It is a free Z[v,v™']-module of basis H,, z € W,,
subject to the relations H. = 1, e denoting the unity of W,, H, H, = H,,, if {(z)+{(y) = {(xy),
and H2 = 1+ (v! —v)H, Vs € S, [S97]. For this and other reasons we will often denote the
unity e of W, by 1. Under the specialization v ~» 1 one has an isomorphism of rings

(1) Z ®Z[v,v—1] H ~ Z[Wa]

Under the isomorphism we will regard Z[W,| as a right H-module, and hence also [Rep,(G)]
as a right H-module.

As (Hy)™' = Hi+ (v—v") Vs € S,, every H, is a unit of H. There is a unique ring
endomorphism ? of H such that v +— v~' and H, — (H,1)"" Vo € W,. Then Vz € W,,
there is unique H, € H with H, = H, and such that H, € H, + ), ., vZ[v|H,, in which

case H, € H, + 3 _ vZ[v]H, [S97, Th. 2.1]. In particular, H, = Hs +v Vs € S,. For
z,y € W, define h,, € Z[v] by the equality H, = > hy .H,. The h,, are the celebrated

YEWa

Kazhdan-Lusztig polynomials of H. Let wg = (i n 3 1 ' ZL

of W. Then Lusztig’s conjecture, which is now a theorem for p > 0, reads [S97, Prop. 3.7], [F,
2.4], [RW, 1.9] that Vo € W, with z ¢ 0 € Ay,

denote the longest element

(2) chL(ze0)= > (=)~ Wh, . .(1)ch V(ye0).

YEW,

A few years ago, however, Williamson [W] astonished the community of representation theory
by exhibiting counterexamples to the formula for not so small p. The present work by Riche
and Williamson [RW] is their effort to remedy the situation.
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(H 11) We have seen a commutative diagram of right H-modules: Yw € /W, Vs € S,,

Z Rgpp-1 H 1®H, 1®H,Hs+v)=1®H,H,

~ ‘

Z[Wa]

W |

MaPh = sgng @zpy) ZWa] ————— [Repy(G)]

1wt > [V(w e 0)]

l1Quw(s+1)+ > [O:V(we0)] = [V(wse0)]+ [V(we0)].

Lusztig’s conjecture predicted for p > n that, writing H, = EyEWa hy . H, with the Kazhdan-
Lusztig polynomials h,, for z € YW such that z 0 € Ay,

Z (_1)€(x)_€(y)hwoyywox(1) ® Hy — [L(w o 0)],
YEW,

which turned out to be false for not so small p.

To remedy the the scheme, enter the tilting G-modules. For v € A let A(v) = V(—wov)*.
Thus, it is nonzero iff v € AT, in which case it is called the Weyl module of highest weight v.
VA, v e AT Vi € N, one has [J, 11.4.13]

(2) Extl(A(v), V(A)) = §;005,k.

We say a G-module M admits a A- (resp. V-) filtration iff it possesses a filtration M = M° >
M' > .- > M" =0 in Rep(G) such that Vi € [0, r[, there is \; € AT with M*/M*™! ~ A()\;)
(resp. V(X\;)), in which case we denote by (M : A(X)) (resp. (M : V(A))) the multiplicity

of the appearance of A(\) (resp. V(X)) in a A- (resp. V-) filtration. A tilting module is a
G-module that admits both a A- and a V-filtration. Thus, for tilting M, M’ one has, Vi > 0,

Ext (M, M') =0
and, VA € AT,
(M : A(N) =dimRep(G)(M,V(N)), (M :V(N\) = dimRep(G)(A(N), M).

For each A € A there is a unique, up to isomorphism, indecomposable tilting module T'(\) of
highest weight A, and any tilting module is a direct some of those T'(\)’s [J, E.3, 4]. Writing
A=A+ pA! with \° € Ay, put A =wy e\ +p(\t +2¢). Yy € fW, define § € W to be such
that je0 =y e0. Let Wy = {z € TW|(z e 0+ p,a”) < p(n—1) Va € R*}.

Reciprocity [RW, Prop. 1.8.1]: Assume p > 2(n —1). Va,y € W,
V(ze0): L{ye0)] = (T(7+0) : V(ze0)).

Thus, in order to determine the irreducible characters for p > 2(n— 1), by Steinberg’s tensor
product theorem and by the translation principle, we may now transform the problem into
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finding the multiplicities (7'(z ¢ 0) : V(y 0)) Vz,y € fW. If Pz € M*P with Pz s [T'(x e 0)]
under the bottom horizontal bijection in (1), one has in M?Ph

Pr= (T(ze0):V(ye0)(1®y).

yefw

(H 12) To describe Pz, € W, Riche and Williamson lift it to an element of H, but a little
more elaborately. Let H; be the & Ji-Hecke algebra of the Coxeter subsystem (W, S). Thus,
Hy is a Z[v, v~ ']-subalgebra of H, having the standard basis H,,, w € W. Let sgn = Z[v,v ]
be a right H-module such that Hy — —v Vs € S. We set M*P! = ggn @3, H and call it
the antipherical right module of H. Then M?*P! has a standard Z[v, v~!]-linear basis 1 ® H,,,
w € 'W, and the Kazhdan-Lusztig Z[v, v!]-linear basis 1 ® H,, w € /W [S97, line -2, p. 88].
Thus, M*P! is a quantization of the antispherical Z[W,]-module M*P" = sgn, ®zpy Z[W,]:
under the specialization v — 1

(1) Z Q1] MPPY = MAPP ~ [Repy(G)].

Lifting y € YW to H,, we are after a favorable lift PH, € H of Px € M?P" x € FW, such that
under (1)

2) 1®PH, v Pz v [T(x #0)].

(H 13) Recall that (H 12.1) is an isomorphism of right H-modules: we are to have
[T'(ze0)] = [V(0)]"H, = [T(0)]"H,.

Thus, to realize PH,, x € /W, [RW] exploits a categorification of H by the diagrammatic
Hecke category D over k introduced by Elias and Williamson [EW], and shows that D act on
Repy(G) from the right. The category D, which we will call the EW-category for short, is a
strict monoidal category generated by objects Bs(m), s € S,, m € Z, and its indecomposable
objects are the B,(m), © € W,, m € Z. The split Grothendieck group [D] of D comes equipped

with a structure of Z[v, v™']-module such that v e [M] = [M(1)], and there is an isomorphism
of Z[v,v~']-algebras, thabks to [EW],
(1) H ~ [D] such that H,+— [Bs] Vs € S,,

under which [RW] chooses PH, — [B,] Yz € W,.

To verify that the choice is correct, i.e., correspondence (H 12.2) holds, let Cat(Rep,(G), Repy(G))
denote the functor category on Repy(G), which is strict monoidal with respect to the compo-
sition.

Theorem [RW, Th. 8.1.1]: For p > n > 3 there is a strict monoidal functor
U : D — Cat(Repy(G), Repy(G))  such that Bg(m) — O, Vs € S, Vm € Z.

Thus, the right action of W, on [Rep,(G)] is now categorified to an action of D on Repy(G).

(H 14) The functor ¥ induces another functor D — Rep,(G) such that
Bs(m) — T(0)Bs(m) = ¥(Bs(m))T(0) = 0,7(0) VseS,,Vm € Z.
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Theorem [RW, Th. 1.3.1]: Under the same hypothesis of (H 13), Yw € W,
T(0)B, = V(B,)T(0) ~T(we0).

2° KBEH

We will assume from now on throughout the rest of the lecture that p > n, unless otherwise
specified, which comes partly from the requirement to have the Elias-Williamson categorifica-
tion D of the Soergel bimodules to be well-behaved.

(K 1) To define the EW-category D, we start with the diagrammatic Bott-Samelson Hecke
category Dpg. For that we have first to define a strict monoidal category.

Definition [f[#, Def. 3.5.2, p. 211]/[Bor, Def. 11.6.1.1, p. 292]/ [Mac, pp. 255-256]:
A strict monoidal category is a category C equipped with a bifunctor ® : C x C — C, an object
I € Ob(C), and a natural “associativity” identity s pc : (A®B)®C = A®(B®C), a natural
“left unital” identity A4 : I ® A = A, and a natural “right unital” identity p4 : A® I = A.

Thus, the category of endo-functors Cat(Rep(G), Rep(G)) from Rep(G) to itself is a strict
monoidal category under the composition of functors.

Given two strict monoidal categories (C, ®, I, a, A, p) and (C', &', I', o/, X, p') a strict monoidal
functor (F, Fy, Fy) : C — C’ consists of the following data

(M1) F: C — C' is a functor,
(M2) VA, B € Ob(C), bifunctorial identity Fy(A, B) € C'(F(A) @ F(B),F(A® B)),
(M3) an identity Fy € C'(I', F(I)).

(K 2) Let now R = Sp(k®zZR") = k®2Sz(ZRY) endowed with gradation such that deg(R") =
2. An expression of an element x € W, is a sequence (s1, s, . . ., s,) of simple reflections s; € S,
such that £ = s1s5...5,. We often denote the sequence by s1s,...s,.. We will even refer to an
expression z. The length of an expression z is denoted ¢(x).

The objects of Dgg are denoted B,(m), x € W,, m € Z, parametrized by the expressions
of elements of W, and Z. Dgg is endowed with a shift of the grading autoequivalence (1)
such that (B,(m))(1) = B,(m + 1); this is not even an additive category, admitting no direct
sums. We will abbreviate B,(0) as B,. Under the product defined on the objects such that
B,(m) - By(m') = By,(m + m/) with zy denoting the concatenation of z and y, Dps comes
equipped with a structure of monoidal category. Thus, By is the unital object of Dgg. For
s € S, by s we mean a sequence s, but we will abbreviate By(m) as Bs(m). The morphisms in
Dgs are defined using diagrams. An element of Dgg(B,(m), B,,(m')) is a k-linear combination
of certain equivalence classes of diagrams whose bottom has strands labelled by the simple
reflections with multiplicities appearing in v, and whose top has strands labeled by the simple
reflections with multiplicities appearing in w. Diagrams should be read from bottom to top.
The monoidal product correspond to a horizontal concatenation, and the composition to a ver-
tical concatenation. The diagrams, i.e., morphisms, are constructed by horizontal and vertical
concatenations of images under autoequivalences (m), m € Z, of 4 different types of generators:
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(G1) Vf € R homogeneous, By — By(deg(f)) represented diagrammatically as f with empty
top and bottom,

(G2) Vs € S,, the upper dot B; — By(1) (resp. the lower dot By — B(1)) represented as

I (resp. i );

(G3) Vs € S,, the trivalent vertices By — Bgs(—1) (resp. Bgs — Bs(—1)) represented as

(G4) Vs, t € S, with s # ¢ and ord(st) = mg in W,, the 2mgy-valent vertex Bg; = — Bpg
~— ~—

mst mst

represented as

t S t s t t s t s t st st s

.
Bl
°

S ¢ s t S S t S ¢t S t St S ¢t

if mg, = 2 (resp. 3, 4, 6).

Those generators are subject to a number of relations described in [EW, §5]. The relations
define the “equivalence relations” on the morphisms. We recall only that isotopic diagrams are
equivalent, and that, Vo € R®, the morphism o € Dgg(By, By(2)) in (G1) is the composition
of morphisms in (G2) [EW, 5.1]:

By(2)

) A wper dot)(1)

|
(1) a'= 5 = By(1).
l ;

Aerr dot

As R = kl|aY|a € R®], the morphisms in (G2)-(G4) are, in fact, sufficient to generate all the
morphisms in Dgs.

By

There is also a monoidal equivalence 7 : Dgg — Dpq sending each B, (m) to By, (—m) and
reflecting diagrams along a horizontal axis [RW, 6.3].
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(4K 3) The EW category D is the Karoubian envelope Kar(Dgg) of the additive hull of Dgg [Bor,
Prop. 6.5.9, p. 274]. Thus an object of D is a direct summand of a finite direct sum of objects
of Dps. The category D is a graded category inheriting the autoequivalence (1), is Krull-
Schmidt, and remains strict monoidal [RW, 1.2, 1.3]. By a Krull-Schmidt category we mean an
additive category in which every object is isomorphic to a finite direct sum of indecomposable
objects, and an object is indecomposable if and only if its endomorphism ring is local [EW,
6.6]. Yw € W,, 3! indecomposable B,, € Ob(D) such that B, is a direct summand of each B,
for a reduced expression w of w but is not a direct summand of any B, for an expression v
with ¢(v) < ¢(w). Any indecomposable object of D is isomorphic to some B,,(m) for a unique
w € W, and a unique m € Z [EW, Th. 6.25]. In particular, B; = By and B; = B; for each
s € S,. Thus, D is generated by objects Bs, s € S,. We will write B, for B,(0).

Our first task is to define a strict monoidal functor Dgg — Cat(Rep(G), Rep(G))°P such
that By(m) — O, Vs € S, Ym € Z. The difficulty lies in assignment of generating morphisms
and verification of their relations in Cat(Rep(G), Rep(G)). We have to find enough relations

among the ©,’s. For that we first make use of an action of the affine Lie algebra g/;g over C on
C ®z [Rep(G)], due to Chuang and Rouquier [ChR]. From now on throughout the rest of the
lecture we will assume n > 3.

(K 4) We define the affine Lie algebra g[N associated to gly(C) as follows. Consider first the
Lie algebra sly = sly(C[t,t7!]) & CK ¢ Cd with sly(C[t,t7!]) = sly(C) ®¢ C[t,t7!] and the
Lie bracket defined, for z,y € sly(C) and k,m € Z, by
[z @tF y@t™] = [2,9y] @ "™ + kdpymoTr(zy) K,
[d,z @ t™] = mz ™, [K,;[N} =0,

which is the affine Lie algebra of type Ag\l,)_l in [, p. 164]. Then gA[N = sly ® C with
(0,1) = diag(1,...,1) central in gly, so gly(C) =sly(C) & C < gly.

Let e(i,7) € gly(C), 4,5 € [1, N], denote a matrix unit such that e(i, j)u = a0, Va,b €
[1, N]. Vi € [0, N[, let

L Jrean) =, . Jtle,1) ifi=o,
©e(i+1,i)  else, C e, i+1)  else,

b = e, fi] = e(1,1) —e(N,N) + K ifi=0,
T le(i+ i+ 1) —e(iyi)  else.

The nonstandard indexing of é and f is chosen so that é; (resp. fz) correspond to the endo-
functor E; (resp. F;) of Rep,(G) later in (K 9).

Set h = hy ® CK & Cd < QT[N with b denoting the CSA of gly(C) consisting of the

diagonals. Define (&;, K*,4|i € [1, N]) to be the dual basis of (e(i,), K,d|i € [1, N]) in bh*. Let
P ={Xeb*|A\(h;) € Z Vi € [0, N[}. The simple roots of h* are defined by &y = — (éxy — £1)
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and &; = &,41 — &;, 1 € [1, N[. Thus, Vi, j € [0, N]|,

0 if]i—j|>2,

ai(h;) = 4 =1 if[i—j| =1 or (i,§) € {(0,N = 1),(N — 1,0)},
2 ifi =7,
[i%éa] - OA‘J(BZ)éyv [B'wfj] - _&JUA%)-]E]
0
o]
o/,,,o\o
1 2 N -2 N -1

(K 5) Let A =[], Ca; denote the natural module for gly(C). Then A ®c C[t, ] affords a
module for sl (C[t,t71]) such that (x®t*)- (a®t™) = (za)@t**™ Vx € sly(C), Ya € AVk,m €
Z. One may extend it to a representation of g[N by letting K act by 0, diag(1,...,1) by the
identity, and d by the formula d - (a ® t"™) = ma ® t™ Va € A, Vm € Z. We call the resulting
g/;\[N—module the natural module and denote it by naty.

For A € Z write A = \g + NA; with \g € [1, N] and \; € Z. Put my = ay, ® t*. Then
naty = [[,c,Cmx: Yu € Z, a; @ ' = mygny, a2 @ t* = Moy, ..., an @ t* = myyn,, and
éoay =te(1,N)ay =ta; = a1 @t =myn. Vi € [0, N],

(1)

. myy1 if ¢ = A mod N,
émy =
0 else,

A my_1 ifi=X—1mod N,
2 i -
2) fuma {0 else,
and Vh € b,
(3) hm)\ = (é)\o + )\16)<h)m)\

In particular, all h-weight spaces of naty are 1-dimensional.

(X 6) Recall the natural module V' = k% for G with the standard basis vy, ..., v,, and its
dual V* with the dual basis vf,...,v:. Thus, V = L(g1) = V(e1) = A(e1) = T'(e1) and
V* = L(—wee1) = L(—¢,) = V(—¢&,) = A(—¢,) = T(—¢,). Define 2 exact endofunctors E
and F of Repy(G) by E = V®? and F = V*®7, resp. Define n, € Rep(G)(k,V* ® V) such
that ne(1) = >, v ® v; and e € Rep(G)(V ® V*, k) such that v ® g — p(v); under a k-
linear isomorphism V* ® V' ~ Mody(V, V) via f ® v — f(?)v with inverse ) . v’ @ ¢(v;) <+ ¢,
> Ui ®@w; corresponds to idy, and hence fixed by G. In turn, 7y defines a natural transformation
n: idRep(G) = F'F via

M m ~FE(M)
|

|

107



while g defines a natural transformation ¢ : EF' = idgep(q) via

EF(M) M - M
VeV oM —— koM

to make 1 (resp. €) into the unit (resp. counit) of an adjunction (E, F) [f1f, Cor. 2.2.9, pp.
65-66] such that

(1)  Rep(G)(M,FM') = Rep(G)(EM, M') via 1) + ey 0 Evp with inverse F'¢ o nys < ¢.

Explicitly, Vm € M,
(Fpon)(m) =Y v ®¢(v; @m),

(2

while, if we write ¢)(m) = ). vf @ ¥(m);, Vv € V,

(e EO)(0 @ m) = 3l (@)p(m);.

Now, let g = gl,, (k) equipped with the structure of G-module Ad: gex = grg~!Vg € GV €
g; we identify g with Lie(G) = Modg(m/m? k), m = (z, 74 — 1]5,j € [1,n],1 # j) <k[G].
VM € Rep(G), the g-action on M given by differentiating the G-action Ay : M — M ® k[G]

g M : =M x(f)m

sos /

g MK[G] z@me f

is G-equivariant [J, 1.7.18.1]. Let n : k = V ® V* via 1 = >, v; ® v] to define an adjunction
(F, E) as above. Using a natural isomorphism g ~ V* ® V via u(?)v <4 p ® v, define for
M € Rep(G)

VM Mo sVeM
m@@V@Ml TV@a
VoaVeVeM-—Vegr M,

which is functorial in M. Thus, one obtains an endomorphism X € Cat(Rep(G), Rep(G))(E, E)
of F, i.e., a natural transformation from FE to itself. In particular, each X, is G-equivariant.
In turn, X induces by adjunction (F, F') an endomorphism X' of F":

X’

Ve M M V*Q M
7711(®V*®Ml TV*®Ek®M
V'eVeV e M— VeV eV e M.

V* @Ky gar
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Thus, VM’ € Rep(G),

Rep(G)(Xps,M")

(2) Rep(G)(fM, M) Rep(G)(TEM M)
eyroE |~ O ~|epokE

Rep(G)(M, FM") Rep(G)(M, FM").

Rep(G)(M.X) /)

Let Dist(G) denote the algebra of distributions on G. As G is defined over Z, Dist(G) has
a Z-form Dist(Gz) which coincides with Kostant’s Z-form of the universal enveloping algebra
Ulge) of ge. Put © = 0, e(i, ) @ e(4,1) € 0@ g; Tr(eli, j)e(k, 1)) = S5Trle(i, 1)) = b
Forzegput A(z) =2®1+1®ax. If M and M’ are G-modules, recall that Dist(G) acts on
the G-module M ® M’ via x — A(z), = € g.

Lemma: (i) Vu,o' €V, Q- (v @) =0 Q.

(1)) Vo € g, QA(x) = A(z)Q in Dist(G) @ Dist(G), and hence the action of Q on M @ M’
for M, M'" € Rep(G) commutes with the action of Dist(G).
Proof: Exercise.

(1K 7) We now describe X and X' using . Recall from [HLA, 10.7, p. 76] that Vo € g Vf € V*
VYm € M,

z-(fom)=(xf)em+ fRrm=—f(2?)@m+ f Q@ zm.

In particular, x acts on V* via —z* with respect to the dual basis:

(1) e(i, j)vi = —0ixv;.

Lemma [RW, 6.3]: Let M € Rep(G).

(1)) Xy : EM =V @M —V®&M=EM is given by the action of .

(1)) Xy : FM =V*®@ M — V*® M = FM is given by the action of —nidy«ga — 2.

(ii) (V & Xar) 0 Xveon = Xvew o (V @ Xa).

(iv) (V& @ Xur) o Xyeagnr = Xyeagur o (V2 @ Xur).

(v) Xparo (VX)) =(VeXy,)oXey.

(vi) Xigpro (V@ Xpy) = (V@ Xy) o Xy,
Proof: Exercise.
(1K 8) Recall from (2K 6) the unit  and the counit € of an adjoint pair (E, F'), and also the unit
n" and the counit ¢’ of an adjoint pair (F, F) induced by n, -k = V@ V* via 1 — > v, ® v}
and e : V'@V = k via E ®@ v — £(v).
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Lemma: Let M € Rep(G) and r € N.
(1) (Xpar)" o = (V*@Xy) ony,  enmo(Xpy)" =enyo(VeXy) .

(ii) Xem)" o nyy = (V@ Xy) ompy, ey o (Xpy)" = ey o (V@ Xy)"

Proof: Exercise.

(’K9) Va € k, let E, (resp. F,) denote the direct summand of E (resp. F) given by the
generalized a-eigenspace of X (resp. X') acting on E (resp. F): VM € Rep(G),

EM =[[(E.M)  with E,M = Ueyker((Xas — aidgar)"),

ack

FM =][](F.M) with F,M = Upenker((X}, — aidp)").

ack

As Xy and X, are G-equivariant, each E, (resp. F,) is a direct summand of E (resp. F) as
an endofunctor on Rep(G).

Lemma [RW, 6.3]: Let a € k.

(i) The unit n and the counit € of the adjunction (E,F) induce a unit n, : id — F,E, and
a counit €, : E,F, — id, resp., making (E,, F,,) into an adjoint pair.

(11) The unit ' and the counit €' induce a unit n), : id — E,F, and a counit €, : F,E, — id
of an adjunction (F,, E,).

Proof: (i) We first show that 7 (resp. ¢) factors through ], ., 7. @ id = [[,cx Fafu (resp.
ek €a : Hyex EoFa —id)

(1) id — FE and EF 2 = id
Hockna JA l Tl
Haelk FaEa Hae]k EaFa

Let M € Rep(G), m € M and d = dim FEM. Let n(m)q, be the F,E,M component of
nar(m). Then

0= (X — aid)¥(m)e,  as n(m)q, € Fy(E,M)
= ((V* ®Xu) — aid)™n(m)e by (K 8.4).

On the other hand, 0 = (V* ® (X3, — bid))¥n(m)a as n(m)ey € V* @ (E,M). Tt follows that
n(m)q = 0 unless a = b, and hence im(ny) < [[,cp FaEoaM.

Let next » € E, [, M with a # b. Take polynomials ¢, € k[t] with (t —a)%¢+ (t —b)%) = 1.
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Then
en(@) = enr({0(Xpar) (Xpar — aid)? +(Xear) (Xpar — bid)})
= en(V(Xpar) (Xpps — bid)?z)  as 2 € E,(FM)
= enr(V(Xpar) (V @ X, — bid)%) by (K 8.)
= en(Y(Xpar)(V @ (X — bid)*)z)
=0 asxe€ E(F,M),
and hence (1) holds.

Recall from (K 6.1) the adjunction Rep(G)(EM, M') ~ Rep(G)(M, FM') given by f
(EF'f) o mpy with inverse g — ey 0 Eg. As each E, (resp. F,) is a direct summand of E (resp.
F'), one obtains commutative diagrams

Rep(G)(EM7 M’) ;) Rep(G)(FEM, FM/) Rep(G)(nm,FM")

[[Rep(G)(Eo, M) W [[Rep(G)(FE.M, FM')

‘ [

[T TIRep(G)(FyEoM, Fy,0) [[Rep(G) (M, F,017)

l [ Rep(G) (a0, Fub')

[[Rep(G)(F.E.M, F, M)

» Rep(G)(M, FM)

and
Rep(G)(EM e 1)

Rep(G)(M, FM') —~—— Rep(G)(EM, EFM’)
[ [

E[Rep(G)(M, F,M') HE> E[Rep(G)(EM, EF,M")

‘ [

ITTIRep(G)(EuM, E,F.M") [ Rep(G)(ExM, M).

a b b
l [T Rep(@)(BM, 2101
b

[[Rep(G)(EuM, E,F, M)

> Rep(G)(EM, M)

One thus obtains for each a € k isomorphisms Rep(G)(E,M,M') ~ Rep(G)(M, F,M’) via
[ Fo(f) onan and e, v 0 Ey(g) <+ g inverse to each other.

(i) Asin (i) it suffices to show that the induced counit 7’ : id — E'F (resp. unit ¢’ : FE — id)
factors through ], Eofy (vesp. [[,cx FaFa)

id —" 5 pF FE — 4 id.
.J ] and l
Ha EaFa Ha FaEa
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Let n'(m)ap be the E,F,M-component of n,(m). One has
0= (Xpa — aid) ' (m)ay = (V @ X)) — aid)™'(m)e by (K 8.ii)

while 0 = {V @ (X, — bid) }¥n};(m)ap, and hence nj,;(m) = 0 unless n + a = n + b. Thus,
im(n)) < L1, BaFuM.

Let finally y € F,E,M with a # b. Then, with ¢, € k[t] as above,
e (y) = e ({o(Xpn) Xar — aid)d + (X)) Xpar — bid)d}y) = (Y (Xpar) Xpar — bid)dy)

= & (VX)) (VF @ Xy — bid)%y) by (K 8.ii)
=0, as desired.

3° JKBEH

To answer the question of the choice of PH,, for w € YW we note that, as those correspond
to the indecomposables B,, of D, they extend to PH,, x € W,, to form a Z[v,v™!]-linear basis
of H, and coincide with the H, for p > 0. Just like the latter have geometric counterpart the
intersection cohomology over the affine flag variety, the PH  are related to the parity sheaves
on the affine flag variety. Thus, the ?H are named p-KL polynomials.

(7K 1) Recall now from (X 1) with N = p the affine Lie algebra g/[; over C and from (/K 2) its
natural representation nat,,.

Proposition [RW, 6.3]: (i) Va € k\F,, E, = 0 = F,, and hence E = [[,cp Eo, I =
HQEFP Fa'

(i1) Let ¢ : C ®z [Rep(G)] — A*(nat,) be a C-linear isomorphism via
1® [A()\)] = my, A My,—1 A AMy, —nt1 VA = ()\1, RN )\n) e AT,

Va € F,, regarding it as an element of [0, p|[, one has a commutative diagram

A"(nat,) <= C ®z [Rep(G)] ———— A"(nat,,)

éaJ/ C@Z[Ea]l lC®z[Fa] ifa

A" (nat,) ; C ®z [Rep(GQ)] A"(nat,).

Thus, we may regard the exact functors E,, F,, a € [0,p], as part of an action of g/[;7 on
C ®z [Rep(G)] through ¢.

(iii) The “block” decomposition C®z[Rep(G)] = [1cp/w,o C®z[Rep,(G)] reads as the weight
space decomposition of N"(nat,) under ¢; each ¢(C ®z [Rep,(G)]) provides a distinct weight
space on A"(nat,) of weight > i (Ni—i+1)10+ >0 nié; withn; = [{k € [I,n]|]\—k+1=
mod p}| if A= (A1,...,\,) €b; for r € Z we write r = ro + pry with rq € [1, p).

Proof: Details will be given in (7K 3) with G replaced by G1T.
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(7K 2) From (7K 1.iii) we see that the set of weights of A"(nat,) is
p p
P(A"(nat,)) = {kd + Y niéilk € Z,n; €N,y n; =n}.
i=1 i=1

We will denote the bijection P(A"(nat,)) — A/(W,e) by t,. Note that A/(WW,e) is infinite;
AN=7Zdet® ]_[;:11 Zw; with W, acting trivially on the Z det-component.

Let now @w = é; + -+ + &,. As ¢([A(n,...,n)]) has weight w, t,(w) = W, e (n,...,n) =
W, endet with ndet € A*. Vi € [1,n[, ¢([A(n,...,n,n+1,n,...,n)]) has weight w + &;, and
—_——

hence ¢, (w+a;) = Wye(n,...,n,n+1,n,...,n) = W,e(ndet +¢,_i1). Put p,, = ndet +¢;,1,

n—i

Jj € [l,n]. Yk € [0,n],

1+ (gj51,a)) itk #0
A I+ 2k )
<lu8j + Cvak> {n — 14+ <5j+175Y i 8;{) k=0
(0 ith=j
2 ifh=j+1,

=qn—1 ifk=0and j#n—1,
n—2 ifk=0and j=n—1,
gl else,

and hence i, lies in the so;-wall of A*. For A € A, let us abbreviate W, @ X as [A], and write
i : Reppy(G) = Rep(G). Then

Enfj’Rep[ndet](G) = Enfj‘Rean(w)(G) = pan(w+dn_]~)<v®?) by (7J< 1)
as the action of é,_; increases the weight by &,_; (K 4)

— pr[usj](v ® pr[ndet]?) (@) i[ndet] = pr[usj]<V(€1) ® pr[ndet]?) @) i[ndet]'
We could abbreviate prj, ,aspr, after the convention in (H 8). As py;, —ndet = ¢;,1 € Wey,
°J °J
pry,,, 1(V & pry, e ?) may be taken to be the translation functor T by (H 8), and hence
J
Hs
En_j|Rep[n det](G) = Tn éet|Rep[n det] (G)

Likewise, as ndet —p,, = —gj41 € W(—¢,) = W(—wpe1) and as V* ~ V(—wpe1), one may
regard Fn_j|Rep[M /(@) as the translation functor T}, det|Rep[# (G-
5j i 5j

Consider next us, = (p+ 1,n,...,n) € A*. Vk € [0,n],

P it k=0,
<,u50—|—<,0(]\€/>: p_n+2 1fk:17
1 else,

and hence p, lies in the s,,1-wall of A™. This proves part (i) of the following
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Corollary [RW, Rmk. 6.4.7]: (i) Vj € [1,n[, one may regard E,_; (resp., F,_;) as the
translation functor Tizet (resp. TZiet ) restricted to Repy, g (G) (Tesp. Rep[usj](G) ).

(i1) One may take EyE,_; . -~En+1En|Rep[ndet](G) (resp. FoF,i1... Fp,1F0|Rep[HSO](G)) to be
the translation functor T0°  (resp. Tziet) restricted to Repy, 40 (G) (resp. Repy,, 1(G)).

(7K 3) Analogous assertions hold for G;T-modules with A" replaced by ®™ and A(X), A € AT, by
A()\) = Dist(G)) Opise() M A € A As the [A(N)], X € A, do not span the whole of Rep(G,T)
[J, 11.9.9], we consider the additive full subcategory Rep'(G1T) of Rep(G1T') consisting of those
admitting a filtration with subquotients A()\), A € A, and hence the Grothendieck group
[Rep(G1T)] of Rep'(G1T) has Z-basis [A(N)], A € A; although Rep’(G1T) does not form a
Serre subcategory of Rep(G17T) we may talk about its Grothendieck group [CR, 16.3].

Note that, as 7 and a are both G-equivariant, X,, is G;T-equivariant VM € Rep(G,T),
and hence all E,, a € k, are GT-equivariant on Rep(G1T'). Likewise for the F;’s. One could
also argue with (K 6.ii).

Proposition: (1) Va € k\F,, E, =0=F,, and hence E = [[,cp Ea, F' = [1,er, Fa-

(ii) Let ¢' : C @z [Rep'(G1T)] — ®™(nat,) be a C-linear isomorphism via

[A(A)] = LUON! ® Miy—1 IR my, —n+1 VA = ()\17 te >\n> € A.
Va € F,, regarding it as an element of [0, p[, one has a commutative diagram

®"(nat,) <2 C @y [Rep'(G1T)] ®" (nat,)

éal C@Z[Ea]l lC®Z[Fa] ifa

®"(nat,) ;, C ®z [Rep'(G1T)] ;, ®™(nat,).

(z)/

Thus, we may regard the exact functors E,, F,, a € [0,p], as part of an action of g/[;7 on
C ®z [Rep'(G1T)] through ¢'.

(iii) The “block” decomposition C @y [Rep (G1T)] = [ren .o C ®2 [Rep,(G1T)] reads as
the weight space decomposition of @™ (nat,) under ¢'; each ¢'(C @z [Rep,(G1T)]) provides a
distinct weight space on ®@"(nat,) of weight ;" (N — i+ 1)10 + Y0_ n;é; with n; = [{k €
[L,n)|]\, —k+1=j mod p} if A\=(\,...,\,) €D.

Proof: By the standing hypothesis p > 3. Let U(g) be the universal enveloping algebra of g,
and let C'= 37" e(i,j)e(j, i) € U(g) be the Casimir element with respect to the trace form
on V: Tr(e(j,i)e(k,l)) = dir0;;. Then

(1) C' is central in U(g).

For let x € g. Enumerate the e(i,j) as z1,...,zy, N = n? and let yi,...,yy be their dual
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basis with respect to the trace form. In U(g)

N N
Cx = Zl’zyﬂ = Z iy, x) + xay;) = 2C + Z[l’il/i,x]
i=1 i1

with [x;y;, 2] = [x;, 2]y + x3[y;, x]. Write [z;, 2] = Zjvzl &jixi and [y, x] = Zjvd 1y for some
N

&ij» &1y € k. Then &§; = Tr([xy, 2ly;) = Tr(wi[z, y5]) = —&;, and hence [v, zly; = > ;7 §irjy =

— Zj:1 & ys while x(y;, x] = ZJ 1 &ijiyy. It follows that

N N
Z[xiyiv ZE] = Z([xza ]yz + xz[yza = Z Z&jlx‘]yl + Zéz]mly]
=1 i=1 1=

and hence Cx = 2C.

Let us denote by A : U(g) — U(g) ® U(g) the comultiplication on U(g). Then in U(g) @ U(g)
one has

A(C) = (e(fi) @1+ 1®e(j,1)(e(i, ) ® L+ 1@ e(i, )

:Z(e(jai)e(i,j)®1+6(i,j)® e(j, i) +e(j, 1) ®e(i, j) + 1 @ e(j, i)e(i, 7)),
and hence
@) Q:l{A(C)—0®1—1®(J},

which also explains (3.3.ii) at least when p # 2. Write C' =237, . e(j,i)e(i, j) + >, e(i,9)* +
> icje(iyi) = e(j, 7)), using the fact that e(i, j)e(j, i) = e(j,i)e(i, j) + e(i,i) — (], j).

Let A = (Ar,- -, M) = Yy Mies € A As A(N) = Dist(Gh) ®pypp) A and as U(g) —
Dist(G4), C' acts on A()\) by the scalar

(3) bA_ZAQnLZ)\—/\

1<J
ifi < j,e(i,7) € Dist(U;") annihilates 1®1 while each e(7, ) acts on 1&1 by scalar A(e(i,1)) = A;.
One has
EAN) =V@AN) =V @indS P (A —2(p—1)p) [J, 11.9.2]
~ indgiBJr(V ® (A—=2(p—1)p)) by the tensor identity [J, 1.3.6],

and hence FA()) admits a filtration with the subquotients A(XA +¢;), i € [1,n]. As C acts on
V ® A(A) through the comultiplication and as V = A(eq), 2 acts by (2) and (3) on A(g; + )
by scalar

1 .
(4) 5(())\4_51. — b51 - b)\) = )\z -1+ 1.
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It follows from (XK 7.i) that all the eigenvalues of Xy, on EA()) belong to F,. Thus,
[Locr, Xar — @)™ annihilates any M € Rep'(G1T). Then E, = 0 unless a € F,, and
hence E' =[], Ei.

By (4) Va € F, VA € A,

(5) BJANI = > A+
'Jif[zléznlnod p

For u € A write A —, p iff there is i € [1,n] with \; — i+ 1 =a mod p such that = X\ +¢;.
Then (5) reads

(6) [EJJAN] = Y [A(w).

HEA
A—ra b

Turning to F, as FA(\) = V* @ A()) ~ indgﬁr]3+ (V*®(A=2(p—1)p)), the subquotients of
FA()) in its A-filtration are A(XA — &;), i € [1,n]. It follows that the eigenvalues of Xz on
FA(/\) are, as V* = A(—¢,), —n — %(b,\_ai —b_., —by) =X\ —1by (3.4). Then F, = 0 unless
a € Fy, and hence F' =[] F,. VYaeF,V\eA,

(7) FJAN = ) [Ad—=)= > [Apw)
,\i—fgg’ﬂod » ;fffx
Now,

(¢ o [EDIAW] = (D AW = Y 1y @ myy 1 @ -+ @ My

HEA HEA
A—a b A—ra b

while

(éa0 @A) = éa(mr, @ Mmpy_1 @+ @ Mr,—ns1)
aMa,) @ My, @ -+ @ My, —ni1
+my, ® (éam)\2_1) QMg @@ - @My, —py1+ ...

+Tmy, K- @My, ;—ni2 & (éam,\n_n+1).

—¢é,
= (¢

For 1 € A with A —, p there is j € [1,n] with A\; —j+ 1 =a mod p such that Vk € [1,n],

A+l iR =,
Hie = Ak else.

On the other hand, by (X 5.1)

. Mmy,—ite A\ —74+1=a mod p,
Callri—i+l = 0 else
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Thus,
(éq 0 ¢/>[

>

W= D) my@may 1 ®@ @M, i @My ir @My, ©
)\ifi+1zia mod p
c @My, —nt1
= (¢' o [E])[AN)].
Likewise, f, 0 ¢/ = ¢ o [F,] Va € [0, p].

(iii) The weight of m,, ® --- ® m,, € ®"(nat,) is, writing v; = v, + v;p with v € [1, p),
n n n p
(o +1110) + -+ F Eupy +vm10) = O_vi)6 + D> &y = O_vaa)d + > _mjé;
i=1 i=1 i=1 j=1

with n; = [{i € [1,n]|vio = j}| = [{i € [1,n]|v; = j mod p}|; in particular, > n; = n from the
middle expression. It follows YA, i € A that ¢/ ([A(N)]) = my, ® my,_1 @ --- @ My, _pi1 and
O ([A()]) = My, @My 1 @ -+~ @My, _ny1 have the same weight iff

SN —i+ 1)y =" (i—i+ 1) and Vj € [1,p], [{i € [L,n]|]\ —i+1=j mod p}| =
1{i € [1,n]|pi —i +1 =4 mod p}|

i 37 (0 Ot = S0+ Ot and ¥ € [1Lp], [ € [Lnll(v+ Qi = § mod p}| = [{i €
[17n]|(:u+€)i =Jj mod p}| as ¢ = (07_17"'7_n+ 1)

iff Joe &, and vy,...,v, €Z withvi+-- 4+, =0 A+() —oa(p+) =plr,...,v)

it AN+ ¢ eWalu+Q) as {(v1,...,vn) €25y + -+ v, =0} =ZR

ift A € W, e pu, as desired.

(7K 4) Let a € [0,p[. We have seen above that C ® [Rep'(G1T)] admits a structure of sly(C)-
module such that

x:(g é)w@@[Ea] and y:<(1) 8>'—>C®[Fa].

We show that the action extends to C ® [Rep(G1T)].

Corollary: (i) There is a structure of slo(C)-module on C&[Rep(G1T')] such that x — CR[E,]

A

and y — C ® [F,]. As such, each 1 ® [L(N)], X € A, has weight {> ;. (A — i+ 1)10 +
> 01 njéj}(he) with respect to [x,y]. Thus, Rep(GiT) provides an sly-categorification of C @
Z[Rep(G1T)] in the sense of [ChR]/[Ro].

(it) Vj € [1,n[, one may regard E,_; (resp., F,_;) as the translation functor Tstjet (resp.
TZiet) restricted to Repp,qeq (G1T)  (resp. Rep[usj](GlT) ). Also, one may take

EQEp_l e En+1En|Rep[n det](GlT) (T@Sp. FnFn+1 . Fp_1F0|Rep[uso](G1T)) to be the translation fU,?’LC-
tor T (resp. TZiet) restricted to Repy, 4o (G1T) (resp. Repy,, 1(GiT)).

Proof: (i) As E, and F, are exact on Rep(G1T), they define
[E.], [Fu) € Modz([Rep(G1T)], [Rep(G1T))),
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and hence also C ®y [E,],C ®z [F,] € Modc(C ®z [Rep(G1T)],C ®z [Rep(G1T)]). Let us
abbreviate those as [E,] and [F,], resp. We thus get a C-algebra homomorphism 6 : T (z,y) —
Mod¢(C ®z [Rep(G1T)], C ®z [Rep(G1T)]) such that z — [E,] and y — [F,], where T¢(z,y)
denotes the tensor algebra of 2-dimensional C-linear space Cx & Cy. Put z =2y —y ® x.
We show that

Z2Rr—rR®z2—20,20Y —y® z+ 2y € kerf,

and hence C ®z [Rep(G1T)] is equipped with a structure of U(sly(C))-module.
Now, we know from (7K 3) that both 2 ® x — 2 ® z — 22 and z ® y —  ® z + 2y annihilate C-

linear subspace C®z[Rep'(G1T)] of C®z[Rep(G1T)]. We are to show that they both annihilate
[L(N\)] VA € A. We have an exact sequence of G1T-modules

0— M — M, —--— M, = L(\) =0

such that all M; € Rep'(G) and that all of the composition factors L(p) of M’ have p < .
As A(u) — L(p), the composition factors of E,L(u) (resp. F,L(y)) are among those of
E A(p) (vesp. F,A(p)). For X € [Rep(GiT)] write X =5\ X, [L(v)] with X, € Z and set

supp(X) = {L(V)]Xy # 0}. Thus,

supp (2 — 22 — 20)[L()]) €
supp(ayz) [A(u)]) Usupp (yz2)[A(u)]) Usupp(azy) [A (u)]) Usupp (zy2) [A(1)]) Usupp(a[A (u)]).
Vv € A, we have from (7K 3.5)

sppelA) = U swp(Aw+ <)),
sppGAM) = U supp(A - <))

v;—i=a mod p

It follows, as w is far from A, that

supp((zz — w2z — 22)[L(1)]) N supp((zz — 2 — 22)[L(N)]) = 0.

As (s2 — 2z — 20)[M;] = 0 Vi € [L,7], we must then have (zx — xz — 22)[L(\)] = 0 =
(22 — 2 — 22)[M"]). Likewise, (zy — yz + 2y)[L(\)] = 0.

As all [M;]'s have weight 37" (A — 4 + 1)10 + >0_ né;, so does [L(\)]; again 6(z) —
(3 (A — i+ 110+ 322 n;é;) (hg) annihilates [L(A)].

(i) The assertion holds on the [ndet]-block of Rep’(G,T) by (7K 2) and (K 3). Let A €
W, e (ndet). As L()\) is a quotient of A()\), E,L()\) is a quotient of E,A()), and hence E, L()\)
belongs to the same block in the whole of Rep(G1T) as E,A()) does. Likewise for F,L()).
The assertion holds by construction.

(7k5) Remark: As nat, is locally finite with respect to the generators of @,, the same argument
as in (/K 4) yields that C ® [Rep(G1T')] admits a structure of g/lg,—module; Vi € [0,p[, Vm € Z,
if &0 [V = X[V, (& @t™) o [V(N)] = 32, [V(k + pmdet)] = 3 [V (1) ® pm det].
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Accordingly, we define (¢; @ t™) o [L(\)] = > [L(11) ® pmdet]. Likewise for f; @ t™. We let d
act on [L(\)], A € A, by the scalar (Z"Zl()\ i+ 110+ >0 i) (d) = Y (N — i+ D)1
We let K annihilate the whole [Rep(G;T)] and (0,1) = dlag( ..., 1) act as the identity on
[Rep(G1T)].

4° KBEH

(K1) We now wish to upgrade the g/jg—action on C ®z [Rep(G)] to a categorical action of the

Khovanov-Lauda-Rouquier, KLR for short, 2-category U (g/;[\ ) on Rep(G) in such a way that
C®|[E,] and C® [F,], a € [0, p], are upgraded to form translation functors on Rep(G) as in (7K
2). The 2-categorical action will provide ample 2-morphisms to realize an action of the Bott-
Samelson diagrammatic category Dgg on Rep(G). We will see that exactly the same argument

gives an upgrading of gl -action on C ®z [Rep(G1T)] in (7K 5) to a L{(g/;;)—action on Rep(G1T).

We first take N = p in § K to consider 5@,. We recall the definition of Rouquier’s strict

k-linear additive 2-category U (g/g) categorifying the enveloping algebra of g/g after Brundan
[Br, Def. 1.1]. First, a k-linear additive category is a category C with a zero object such that
VX,Y € Ob(C), a direct sum X @Y exists with C(X,Y') forming a k-linear space and that the
compositions C(X,Y) x C(Y, Z) — C(X, Z) are k-linear [H1f, Def. 3.1.11]. Next,

Definition [#fE, Def. 3.5.22, p. 220]/[Bor, 1.7]: A strict k-linear additive 2-category C
consists of the data

(i) a class |C|, whose elements are called objects,

(ii) VA, B € |C|, a k-linear additive category C(A, B), whose elements are called 1-morphisms
and written as f : A — B with the morphisms in C(A, B) denoted as « : f = g and their
compositions written

==y

B@oéi::"q ﬂﬁ
h,

(iii) VA, B, C € |C|, a k-bilinear bifunctor ¢4 o : C(A4, B) x C(B,C) — C(A,C) [#i#, Def.
3.1.11}, written

AL.pt.¢ A5 ¢
aﬂ/ ﬁﬂ €A,B.C > ﬂ,@*a

A—=B—=C A——sC,
f! o 2of!

(iv) VA € |C|, there is a 1-morphism 14 € C(A, A),

119



subject to the axioms that VA, B,C, D € |C|,

C(A,B)XCB7C’D

C(A,B) xC(B,C) xC(C,D) C(A,B) xC(B, D)
CA’B’cXC(C,D)\L O \LCA,B,D

C(A,C) x C(C, D) C(A, D)

CA,C,D
and caa,8(14,7) = idea,B) = ca,,B(?,1). We will denote id;, € C(A, A)(14,14) by ta.
Then, Yo, f € Mor(C(A, B)), Yu,v € Mor(C(B,C)), the “interchange law” holds:

(v*xB)O (p*xa)=capc(f,v) ®capc(a,u) by definition
=capc((B,v)® (o, 1)) by the functoriality of ca g ¢
=capc(BOa,vOp)
=@opx*Boa)

A-Lsp-t,cC AL o
aﬂ ﬂu . ﬂ#*a A-Ll,sp_t,¢
A I B——C T A o c = u@aﬂ ﬂu@ﬁ
, e A—— B——C
A le}/ » B g > C E//l}f,,ﬁ C ! Z

(A 2) We now define

Definition [RW, 6.4.5]: A strict k-linear additive 2-category U (g/;g,) consists of the following
data:

o L 1 ifj=it1
i)V 5 S F ith 5 tl - ’
(i) Vi, j » With @ £ 7, ;5 {1 else
(ii) the objects ofl/{(g/[;) are P = {\ € b*|\(h;) € Z Vi € [0,p[} from (K 4),

(iii) VA € P, Vi € [0,p|, generating 1-morphisms E;1, € L{(g/g,)()\,)\ + &), Fil) € U(g;)
(A A — &),

(iv) YA € P, Vi, j € [0, p|, generating 2-morphisms

PRI W
Tr; = l A€ Z/l(g[p)()\, A+ @i)(Eil)\,Eil)\> ﬂxm
7 R
A —>Ei1A A -+ (07N
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/ pRpaic 5 WIS
G = / A €U(GL)(N A+ & + &) (B By, B E;Ly) ﬂfuj,i)

i ,] /\E]Til)\))\—'—ai—i_aj’

where F,E;1) = (EZ-1A+5¥J.) o (E;ly) = C>\7)\+6¢j,>\+6¢j+di(Ej1>m E¢1A+aj) and E;E;1\ = (Ejlyia,) 0
(Eily) = canraintasta; (Eily, Ejlaga,):

Eily ~ E;1 ~

S LN Wy UL S W
EiEj]_)\“.""-._j lEil)\-Hi]- EjEil)‘.“""-._) lEj].)Hrdi
)\+dj+di, )‘+dl+d]’

and
1

i = UA e U(gL)(\, N)(1y, FiEiLy)

with 1) denoting the unital object ofU(@)()\, A) from (K 1.iv), and F,E;1) = (Filyga,)o(Eily),
and finally
Exi = /\A € U(gl) (N V) (EiFily, 1))
1

with E;Fily = (E;1x_4,) o (F;15). In the notation 7 ;) we follow [RW, p. 90] to write (j,1)
instead of (4, 7) in accordance to the order of composition reading from the right.

By (K 1.iv) one has Vf € M(@)(A, p), foly= fand1,0f = f. We will denote the identity
2-morphism of E; 1y in U(gl)(A, A+ ;) (Eily, Eily) (resp. Fily in U(gh)(\ A —a;)(Fily, Fi1,))

i
by T A (resp. l A):
1
1
tEn, = idg, = T A tp, = idp1, = l A
1

Those 2-morphisms are subject to the relations in [Br, Def.1.1], e.g.,

) / T ifi=j,
(1) P A= A - A= Qi
/. 0 else,
A

]

121



where

/)\ / _T)\]Z)Q(J})\_HXZ*LElA)GZ/{(g[)(/\ )\"‘ij‘l'az)(EEl)\vEE]-)\)

)\—l—aj
l J
E;1 Eilxta, E;E;1y
A=A+ & —= A+ &; + & A—= A+ a; + q
CX, Atéj A +é5+6 o
LEjl)\ a})\_'_@jﬂ' } x)\+aj,z*LEj1>\
B
)\Ele)\—i—ajEM )\+Ozj+az )\EEI)\—l—aj—i—Oz@,
El'E]l)\ ~ N
A A + Qy + oy
xk-‘—&j’i*LEjl/\‘H/
-_ > A . A . . A X
A BB A+ a; + o A Gy) Q@ tay,i%tm;1y)
T Ji \U/
(5,%) 4
A B, Bl )\+Oéz'+()zj,

A= LEilaia, ¥ L1, = LEE, € U(g/\lp)(A, A& + &) (B Ejly, E;Eqly),

etc. We also impose, among others,

(0 if i = 7,
A\ tij{ A +tj7j[ A if1—7=41 mod p,
@ A= o
RE
( o else,
i L
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the left hand side of which reads 7y ; ;) © 7, and

(3) tz’j]\ T)\ ifi=jand k —j=+1 mod p,
AT A= ik
. ‘ 0 else,
v )k vt ]k

etc. On the LHS of (3) the first (resp. second) term reads (Taia,(k.g) * tE1y) © (LB, sy s, *

Ta(ki)) © (Taran, (i) * tets) (1eSD- (T i) * te1s) © (Tatay () * LEi1) © (LBl agra, * TAGR)) )

Recall from (K 1.ii) that each U (g@)(/\, p) forms a k-linear additive category, and hence
VX, Y eU(gl,) (A p), U(gl,) (A, 1) (X, Y) carries a structure of k-linear space. The 1-morphisms
ol

belonging to U(gl,)(A, i) are direct sums of those

E{mFom  ESFMM, ik € [0,p], ak, by € N with p= A+ Z(ak&ik — brd;,)
k=1

[Rol12, 4.2.3]. In case p = A, L{(@)()\, A) forms a strict monoidal category with ® in (K 1)
given by the “composition” ® of 1-morphisms from (K1) and I € Ob(U(gl,)(\, A)) given by
1y.

If EfmFem . ERFN, = EfmFm BSEEY . EPFIL with v = A — bidy, + a1dy, —
e _|_ a/di’

T = l A eUL) (v, v + @) (Eil,, Bil,)

1

vta; *xV,i * LEg"“E?ll F]bll 1y e u(g[p)()\7 A + ZZL:]_ (akdlk - bkd]k))

a by, a1 b1 a b a1 b .
(EZ:F},;L e E’Ll F}l 1)\7 EZ’,:LF]TZL “e e Ell F]l 1>\).

induces a 2-morphism ¢ b
p Eim b B

b1

! a
EY L ENFE Ly B, EfmEY™ Bl s,

At S R 5] A im © Jm m ~ ~
A : > U+ Q > A+ (akdy, — brdy,)
bpb o1 phbl _ . b
Ep..E; LFj U1y Ty EZZLFJ.T"”"...EEII,,_,_&Z_
A 7 » U+ Q A+ 5300 (apdy, — brd,).
E‘-", EalFl?llA, Eily, lEL-lmFl-)m...E‘.llu_'_di k:=].< ky, k ]k)

e TR A | tm JIm 4

If BfmFym  ERFN, = EfmEn . ECEEES . ERFM, with v = A — bidy, + a1dy, —
N + a,&j’

Ty,(j,i) = v € Z/[(@,)(V, v+ OAéZ + dj)(EiEjlz/; EjEi1u>7
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. . - m N
induces a 2-morphism Lgem pim * Tuii) * g pen gy, e U(gl,) (A X+ >0 (apdy, —

bby ) (EimFim . ECEE;EY . ENF!My EfmFim  ECE;EES . EMFML):

"'E?1V+@i+dj

’ b b
E? EalF'11A E;E;1, Ef‘mF.m...Eglu+di+@j
\

J iy T ~ ~ im ~ Jm m N N
A > v > U+ G+ G > A+ (akdy, — brdy,)
3 b
E?E:lll Fjll IAH' TV’V+&1‘+&J.H ﬂLEZZL Fj;n"'Eglv+di+‘3‘j
~ ~ m ~ ~
A o Vppp VTt —— > A+ D (akdy, — brdy,).
Ej Ell Fjl 1A Mankiatd Eim ij Ez 1”+di+d]’

(K 3) Definition [RW, 6.4.5]: A 2-representation of U (g/g) is a k-linear functor from U (g/[;)
to the 2-category of k-linear additive categories, i.e., it consists of the following data:

(i) VA € P, a k-linear additive category Cj,
(ii) VA € P, Vi € [0, p[, k-linear functors F;1) € Cat(Cy,Crra,) and F;1, € Cat(Cy,Cr—_s,),
(iii) VA € P, Vi, j € [0, pl,

Ty; € Cat(C,\, C>\+di)(Ei1)\a Eil/\),
i) € Cat(Cy, Crrarsa, ) (EiEy1y, BjEily) with EEj1y = (Eilya,) o (Ej1,) and
E;Eily = (Ejlysa,) o (Eily),
s € Cat(Cy, Cy)(ide,, FiEily) with EE1, = (Filysa,) o (Eily),
eri € Cat(Cy, ) (EiF)ly, ide,) with EiFi1y = (Eily_a,) o (Fily),

subject to the same relations as @ ;, Tx (i), Mx,i; €x,i for L[(g/lg) from (K 2).

(K 4) We now define a 2-representation of U (g/;g,) on Rep(G), which is also due to [ChR]. Let
T € Cat(Rep(G), Rep(G))(E?, E?) be a natural transformation defined by associating to each
M € Rep(G) ak-linear map Ty : E?M = V@V @M — E*M such that v@v' @m +— v @u@m
Vo, o' € V. Vm € M. Then

(1) (V@ Twm) o Xyosga = Xyeagy © (V & Tar).
Using (K 6.1), one also checks
(2) TMO(V®XM)_XV®MOTM:_1dE2M

Recall from (7K 2) the bijection ¢, : P(A™nat,) — A/(W,e). For A\ € P let us write

Rep, ) (G) if A € P(A™nat,),
R, (G) = {0 ) P

else.
Consider the following data:

(1) Ve P, let Cy = RLn()\)(G)
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(ii) VA € P Vi e [O,p[, let E;1, = E; R, (@) ° RLn()\)(G) — RLn(A+&i)(G) and F;1, =
Eilr,, @ @ R (G) = Ri,a-a)(G) from (K 1). In particular, i1y = 0 (resp. Fily = 0)

)

unless A and XA+ @&; (resp. A and A — &;) € P(A"nat,). Put for simplicity £ = Eilr,, (@) and

Fi)\ =F R, (n)(G):

(iii) YA € P, Vi, j € [0,p[, define z,; € Cat(R,,\(G), R, 014 (G))(E}, E}) by associating
to each M € R, (»)(G) a k-linear map xy; = Xy — didygar:

Xpr—tid

(3) VeM VoM
EMM -~ BXM.

Define 7 () € Cat(R,, ) (G), RLn(Hdﬁ@j)(G))(E;wdj E?, EJ/\JFO”EZ)‘) by associating to each M €
R,, (v (G) a k-linear map 7ay ;) E;\+aj E]’\M — E;‘er"Ei)‘]\/[ such that

(4) Tam e =
(VoXy —Xvem)Ty + idvevenm if j =4 — 1 mod p,

(V ® X — XV®M){1d + (V (059 XM) — XV@M}_l(TM — ld) +id else,

which is well-defined by [Ro, Th. 3.16]/[RW, Th. 6.4.2]; verification may formally be done using
the degenerate affine Hecke algebra. In case j = 1, E?eriEf‘M is a generalized i-eigenspace of
both V X XM and XV@M' As 'V X XM and X\/@M commute by (J( 7111), (V X XM) - XV@M
is nilpotent on E}*EMM, and hence id + (V ® Xyy) — Xygar is invertible on B} EMM.
Likewise in the 3rd case.

Define 7; to be the unit 7, € Cat(R,,(G), R, (G))(id, F}*E}) of the adjunction
(Ei, Fi) on R, (»)(G) from (4K 9). Define finally €, ; to be the counit ¢; € Cat(R,, ) (G), R, (G))
(B} F2,id) of the adjunction (E;, F;) on R,,(y)(G) from (K 9) also.

Theorem [RW, Th. 6.4.6]: The data above constitutes a 2-representation of L{(a;).
5° &iEH

(4 1) To see that Th. K 4 holds, we must check that the 2-morphisms in (/K 4.iii) satisfy the
relations of those for U(gl,) as given in (/K 2).

Consider for example the relation from (K 2.1)
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Accordingly, we must verify

id ifi=j

(1) ™Ga) © (Tagay i * LE;) - (LE;MZ- *Txi) O T (i) = {0 else,

i.e., in case ¢ = 7, for example, one must show on EZ’\J“O‘E;\M for M € R, (G) that

(Ve (X —iid)} o {id + (V @ Xpr) — Xyeu} (T — id) = id.

For that the KLR-algebra H3(F,) and the degenerate affine Hecke algebra Hj of degree 3 come
to rescue.

(% 2) To define the KLR-algebra, recall first t;; € {£1} from (K 2) for i,j € F, with i # j. Let
Ss act on F2 such that ov = (V,-11, Vy-12, Vp-13) for v = (11, 15,13) € Fo. Put oy = (k,k+1) €
S, k € {1,2}. The algebra H3(F,) is really a k-linear additive category with objects F> and
morphisms generated by z,, € H3(F,)(v,v) and 7., € Hs(F,)(v,0.v), z € [1,3], ¢ € [1,2],
v e IF?,, subject to the relations

(KLRl) LTyt = Ty p Ty,

(

0 if v, = vy,
(KLR2) TeoerTew = A tvewer1 Tew + tooprve®er1y if either vy = ve+ 1 or ve = veyr + 1,
\id,, else,
(KLR3)
(—id,, ifc=zand v, = v,
TewvTay — TowzowTer = & 1dy if z=c+1and v, = v 41,

0 else.
\
We do not care what z., : v — v and 7., : ¥ = ov are as maps.
A representation of H3(IF,) consists of the data
(i) Vv € F3, a k-linear space V;,,
(ii) Vv € F, V2 € [1, 3], a k-linear map z.,, : V, = V,,
(iii) Vv € F3, Ve € [1, 2], a k-linear map 7., : V, = V.,
satisfying the relations (KLR1-3).

(4 3) Recall next the degenerate affine Hecke algebra, daHa for short, H,, of degree m; DAHA
already stands for “double affine Hecke algebra”. Thus, let k[X] = k[X},...,X,,] be the
polynomial k-algebra in indeterminates Xy, ..., X,, with a natural &,,-action: o : X; — X;@).
For transposition . = (¢,c+1) € &,,, ¢ € [1,m], let 0. denote the Demazure operator on k[X]
defined by

f _ Ucf

_
f )(c-l—l_)(c7
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which differs from the standard one by sign. The daHa H,, is a k-algebra with the ambient
k-linear space k&,, @y k[X] having k&,, and k[X] as k-subalgebras such that, letting T, denote
o. €6, in H,

(1) fT.=Teo(f) +0.(f)T. Vf €k[X],Vce[l,m].
If » < m, one has naturally H, < H,,.

Lemma [RW, Lem. 6.4.5]: There is a k-algebra homomorphism
H,, — Cat(Rep(G), Rep(G))(E™, E™)

such that VM € Rep(G), X, = VO =@ X e._1g), 2 € [1,m] and T = VO 1 QT o1 gy,
c€[l,m].

Proof: One checks that the relations T2 = 1 Ve € [1,m], and the braid relations T, T, = T,T.
for b,c with |b —¢| > 2, T.T.;1T. = To11 T, 1.1 on Cat(Rep(G), Rep(G))(E™, E™). Also, the
relations X, X, = X, X, z,y € [1,m], hold on the RHS by generalizing (!X 7). To check (1),
we may assume f € {Xy,..., X} as Vg € k[X], (fg)T. = f(T.g). Then the relations hold on
the RHS by generalizing (/K 4.1, 2).

(4 4) Tt follows for M € Rep(G) that E3M comes equipped with a structure of Hz-module.
By (7K 1)
E*M =[] EiM
veFs
with E3M = E,,E,,E,, M and E, (V®-1 @ M) forming a generalized eigenspace of eigenvalue
v; for Xyeio1g,, ¢ € [1,3]. Thus, E3 M affords a generalized eigenspace of eigenvalue v; for each
X; by (42 3). As such, it follows from a theorem of Brundan and Kleschev [BrK] and Rouquier

[Ro], cf. [RW, Th. 6.4.2], that E*M affords a representation of Hs(FF,). Then (42 1.1) follows
from (KLR3).

(5) Remark: As the set P(®"nat,) of ®"(nat,) coincides with P(A"nat,) = Zo+{>_7_, n;é,|
n; € N,>°%_ nj =n}, we may denote the bijection P(®"nat,) — A/(W,e) by v, from (/K 2).
Define T € Cat(Rep(G1T), Rep(G1T))(E?, E?) just as on Rep(G), and for each A € P let

Rep,, n(G1T) if A € P(®™nat,) = P(A"nat,),
0 else.

R, ) (GiT) = {

Exactly the same arguments for Rep(G) yield a 2-representation of U (g/;) on Rep(G1T).

(% 6) Recall w = ¢ + -+ + &, € P(A"(nat,))) from (7K 2). Vs € S,, set

T5 — {E;Lﬂ—j if s = 54,

w+dn++&p—1 w+&n++dp—2 w+an : _
E, Ep_1 L ERIET it s = 8401,

Fw—i—dn_j E
s A +an+a w+Gn++ap— w+ban+-+a&p—1+a& .
Fw+an FW QnT0n41 o F n p—1 F n p—1 0 1[‘ s »

n+1 T p—1
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and ©, = T,T5. By (/K 2) each ©, may be taken to be the s-wall crossing functor on
Repy,, 4o (G). We have obtained a strict monoidal functor

(1) u(g[p>(w’ w) — Cat(Rep[ndet}(G)7 Rep[ndet}(G))
such that Fn—jEn—j]-w — @5]. j S [1, TL[, and FnFn+1 Ce Fp—lFOEOEp—l . En+1En]-w — O

Sag,1°”

As 1p(w) = ndet = det® € A", we may regard R,, (=) (G) = Repy, 4 (G) as the principal
block Repy(G); Repy(G) ~ R, (=) (G) via M — det®* @M. Then (1) reads as a strict monoidal
functor

(2) U(gl)(w, @) — Cat(Repy(G), Repy(G)).

(% 7) In order to obtain a strict monoidal functor Dps — Cat(Repy(G), Repy(G)) such that
Bs(m) — O, Vs € S, Ym € Z, it now suffices to construct a strict monoidal functor Dgs —
U(@)(w,w) such that Vj € [1,n[, Vm € Z, B,, (m) = F,_jE, ;1 and that B, ,(m) —
F.Fo .. . Fp  FoEyEy,_ ... By 1Eyl,. Such had been done by Mackaay, Stosi¢ and Vas
[IMSV], Mackaay and Thiel [MT15], [MT17].

.E,11E, 1, however,[RW] con-

—

Instead of dealing directly with F,,Fy, 41 ... Fy_1 FyEgE,_1

siders “restriction” of the 2-representation of U(gl,) to U(gl,). We omit further details to
state

Theorem [RW, Th. 8.1.1]: There is a strict monoidal functor
DBS - Cat(Rep[ndet](G)a Rep[ndet](G))
such that Vs € S,, Ym € Z, Bs(m) — Oy, and Vj € [1,n],

Sa;

l<m> = 771?7]' € Cat(Rep[ndet}(G)7 Rep[ndet}(G»(ida @Saj>7

Sao,l
w+&7t+dn+1+"'+&p71
= (¢ * L
J<m> ( FnFn+1...Fp—1‘Rean(w+&n+“‘+dp_l>(G) 770 Ep—l~-.En+1~-.En|Rean(W) (G))
WHGn+Gni1
@ @ (LFnFn+1|R6an(w+&n+dn+l (@) nn+2 LE"+1ETLIRean(w)(G>)

© (LFn |R‘3PLn(w+an)(G) * 7]7?—:1&” * [‘En|Rean<w)(G)) © 771? € Cat(Rep[n det] (G)7 Rep[n det] (G)) (1d7 @Sa0,1>‘

(% 8) Finally, there is an autoequivalence ¢ : Dgg — Dpg such that By, (m) — By, s (m) ¥
sequences s ... s, in S,, Vm € Z, and on each morphism reflecting the corresponding diagrams
along a vertical axis [RW, 4.2]. In particular, VX, Y € Ob(Dgs), t(XY) = «(Y)u(X). Thus,
combined with ¢, we have obtained a strict monoidal functor Dgs — Cat(Repy,, qe (G), Repy, e (G))P
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such that Vs € S,, Ym € Z, Bs(m) = O,. As Repy, 4 (G) is equivalent to the principal block
Rep,(G) by tensoring with det®-", we have now

Corollary [RW, Th. 1.5.1]: There is a strict monoidal functor
U : Dps — Cat(Repy(G), Repy(G))°P
such that Vs € S,, VYm € Z, B;(m) — O;.

(42 9) The functor ¥ induces another functor ¥ : Dg — Rep,(G) such that B — V(0)B. If
T = $1S9...S, is an expression of x € W,, one has

By = V(0)B, = V(0)B,, By, ... By, = O, ...0,,0,,V(0).

T

(42 10) Recall now from (X 3) the EW-category D = Kar(Dgg). The functor ¥ naturally
extends to a functor D — Rep,(G), which we denote by the same letter. Our final objective is
to show

Theorem [RW, Th. 1.3.1]: Vw € W,
V(B,) =V(0)B, =T(we0).
As V(0) = T(0), ¥(B,) is tilting, and hence we have only to show that it is indecomposable.
For that we will show that Rep(G)(7T'(0) B, T(0)B,,) is local. Let Tilto(G) = Tilt(G) "Rep(G).

As V(0) = T'(0), as the translation functors send a tilting module to a tilting module, and as
Tiltg(G) is Karoubian [J, E.1], ¥ factors through Tilty(G):

D L Repy(G)

Tilto(G).

(% 11) Lemma [RW, Lem. 4.2.3]: Given an expression si ..., in W,, if B.(m), m € Z,
15 an indecomposable direct summand of By, s, in D, syx < x in the Chevalley-Bruhat order.

This may appear strange. Recall, however, an isomorphism of Z[v, v~!]-algebras H — [D]
such that H, — B, Vs € S,. Let s,t € §, with s # t. One has

H.H, = (Hs +v)(H +v) = Hy +v(H, + Hy) + v?
= H,, by the characterization of KL-basis elements [S97, Th. 2.1],
H?=(H,+v)? =H> 4+ 20H, +v* =1+ (v ' —v)H, + 20H, +v*
=1+v°+ (' +v)H, = (v +v)(v+ Hy),

and hence

H’H, = (v +v)(v+ Hy)(Hy +v) = (v +0){Hg +v(Hs + Hy) +0*} = (v +v)Hy,.
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AS pﬂs = ﬂm pﬂt = ﬂﬁ and as pﬂst = ﬂsu
[Bsst] = (v +0)[B] = [Bu(=1)] + [Bu(1)],

and the lemma indeed holds in this case.

(4212) Let Dyy,\sw be the additive full subcategory of D consisting of the direct sums of objects
By, (m), w € Wy \ /W, m € Z, and let D***" = D//Dy )y be the quotient of D by Dy, \ryy
[H1fE, Prop. 3.2.51, p. 150): VX, Y € D, let Z(X,Y) = {f € D(X,Y)| f factors through some
Z € Dy sw}- Then DaPh i5 the category with objects Ob(D) and VX,Y € D, D*Ph(XY) =
D(X,Y)/I(X,Y). Vs € S, ¥(B,) = V(0)B, = ©,V(0) = 0. Yz € W, \ /W, Is € S and
y € W, with £(z) = £(y) + 1 such that x = sy. If y is a reduced expression of y, B, is a direct
summand of By, = B,B,, and hence ¥(B,) is a direct summand of ¥(B,,) = ¥(B,)B, = 0. Tt
follows that ¥ factors through DasPh:

D . » Repy(G),

D//Dyy sy = D*Ph

which we denote by W. If w is a reduced expression of w € YW, V(0)B,, has highest weight
we0. As B, is a direct sum of B,, and some B,’s with y < w, we must have V(0)B,, # 0, and
hence B, # 0 in D*P", Then, as a quotient of a local ring remains local [AF, 15.15, p. 170], the
indecomposable objects of D*P are B,,(m), w € /W, m € Z. Thus, D*" is a graded category
inheriting shift functor (1), and the indecomposables of D*P! are the images B, (m) of B, (m),
w €W, m € Z. Also, (& 11) implies that D*P® admits a structure of right D-module. For
let ¢ € D(X,Y) factor through some Z € Dy \ry. Let B,(m) be a direct summand of Z,
so x admits a reduced expression s;...s, with s; € §. Given an expression y in W,, each
direct summand B, (k) of B,(m)B, has sjw < w by (% 11) again, and hence w ¢ /W and
Bw<k> € DWa\fW'

Let D3P be the degrading of D*P': Ob(D3E') = Ob(D™P') but VX,Y € Ob(DiE"),
Dgzgh(X, V) = (D*")*(X,Y) = [,z D*"*(X, Y (m)). In particular, Vm € Z, X ~ X (m) in

DY idy € DM (X, X) < DEPM(X, X (m)) admits an inverse idx () € D*P (X (m), X (m)) <

deg deg

Dgzgh(X (m), X). By construction ¥ induces a functor Djzgh — Tiltg(G), which we denote by

Wieg. Y € W, Dzsegh(Bw, B,) = (D*P")*(B,, B,,) remains local [GG, Th. 3.1]. Our objective

(4 10) will thus follow from

Theorem [RW, Th. 1.3.1]; The functor Wge, : Dzzzh — Tiltg(G) is an equivalence of
categories.

(% 13) For an expression z = $153...5, of v € W, put T'(z) = T(0)B, = O,, ...0,,0,,T(0).
To establish the categorical equivalence, it suffices by induction and (K 3) to show that ¥
induces an isomorphism Dzzzh(By B,) = Repy(T(z),T(y)) V,y. Let oy, : Dgzgh(By B,) —
Repy(T'(z),T(y)) denote the k-linear map induced by W. The surjectivity of oy, requires
introduction of highest weight categories and the Serre quotient of a highest weight category
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by a Serre subcategory. We will only show that

dim Dgff;h (B@ Bg) < dim Rep,(7T'(2), T(?j))

If z = ws for some s € S,. Recall from (4 7) that

S S

Bss 6?2

1

(1) B(1) "~ e,
I |

By id.

As the LHS is the unit, say n®, associated to an adjunction (?Bs, ?Bs) [EW], it induces a unit
of adjunction (?Bs,?B;) on Djzgh, so therefore is W(n®) associated to an adjunction (O, O;)
[H1h, Cor. 2.2.9]. One has then a commutative daigram

_ _ (?Bg)onfgﬂ

asph asph / 15
Dy (Bus, By) = > Do (Bu, Bys)

aw,yl Qw,ys

Repo(T'(ws), T(¥) 5 mrauer 3 RepolT(w), T(ys))-

Thus the bijectivity is reduced to that of ay s, and hence to the case z = 0.

(42 14) For any expression z of an element of W, one has

dim Repy(T'(0), T(x)) = dim Repy(A(0), T(2)) = (T(x) : V(0)).

Lemma [RW, Lem. 5.4.1, 5.4.2]: If w is an expression of w € IW,
dim D3P (By, By) < (T(w) : V(0)).

(42 15) To see Lem. 4 14, fix an expression w = s;...s,. Each e(w) € {0,1}" defines a sub-

expression w*®@ = ({1 58"y of w by deleting those terms with e(w); = 0, in which
case we also let w® = si(w)l s ¢ W,. The Bruhat stroll of e(w) is the sequence
zo = e,11 = .9 gy = si(w)lsg@h,...,xr = si@)lsg@h...sfn@)”. Vj € [1,7], we assign a
symbol

Ul ife(w); =1and z; = xj_18; > x;_1,

D1 ife(w); =1and x; = xj_15; < x;_1,

U0 ife(w); =0and z; = x;_15; > 1,

DO if e(w); =0 and z; = xj_18; < m;_1,

“U” (resp. “D”) standing for Up (resp. Down). Let d(e(w)) denote the number of U0’s minus
the number of D0’s, called the defect of e(w) [EW, 2.4]. For W' C W, we say e(w) avoids W'
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iff z, ¢ W and x;_1s; ¢ W' Vj € [1,r]. We understand e(w) avoids any W' in case r = 0. For
each z € W put N, =1 ® H, in M*P" and for each expression w = s;...s, of w € W, put
H =H._. H_.

w 2251

Lemma [RW, Lem. 4.1.1]: For each expression w one has in M*Ph

MH, = Z Ud(e(g))Nwe@) .
e(w) avoiding Wo\fW

(4 16) Let w = s1...s, be an expression. One has from [EW, Prop. 6.12] that Dgq(By,, Bp)
admits a basis of left R-module consisting of the light leaves L) Ve(w) expressing the unity
of W,.

Proposition [RW, Prop. 4.5.1]: Let w be an expression of an element in W,. One can
choose the light leaves L) with e(w) expressing 1 and avoiding W, \ W to k-linearly span

(D5E")* (B, By).
(4 17) We are now ready to show Lem. < 11. Recall from (H 10) an isomorphism of right
H-modules M*P" = sgn; @zpy,) Z[Wa| ~ [Repy(G)]. If we put N, =1 @ w, w € W, w e IW
forms a Z-linear basis of M®P! and for each s € S, one has a commutative diagram
N), —— V(w e0)
M#Ph —=— [Rep(G)]

| Jo

MaPh s [Repy(G)].

For an expression w = s1...s, of an element w € /W put Niy = 1® (1 +s1)...(1 + s,) in
M, As Ny o [T(w)], N € (T(w) : TO)N + ey N

Using the anti-equivalence 7 from (X 2) such that B,(m) + B,(—m) Vz, Ym € Z, one has
dim(D*P")*(By, B,,) = dim(D*P")*(B,,, By), which is equal to dim(D%")*(B,, By) as DA
is a full subcategory of D*P! = Kar(D%P") by (4 11) [Bor, Prop. 6.5.9, p. 274]. In turn,
dim(DEP")*(By, By) < #{e(w)]e(w) is an expression of the unity avoiding W,\/W} by (£ 16).
On the other hand, from (42 15) one has

NH, = Z vd(e@))Nwe@,
e(w) avoiding W, \f W
which under the specialization v ~» 1 yields

N, = Z Nyew)

e(w) avoiding Wo\fW

¢ #{e(w)|e(w) is an expression of the unity avoiding W, \ YW}N| + Z NN,
zefW\1
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One thus obtains

dim(DEPM)*(By, By) < t{e(w)|e(w) is an expression of the unity avoiding W, \ "W}

= (T(w) : V(0)).

References

[AMRW] Achar, P.N., Makisumi, S., Riche, S. and Williamson, G., Koszul duality for Kac-

[AR]
[AF]

[AJS]

Moody groups and characters of tilting modules, JAMS 32 No. 1 (2019), 261-310

Achar, P.N.,; and Riche, S. Reductive groups, the loop Grassmannian, and the
Springer resolution, Inv. Math. 214 (2018), 289-436

Anderson, F. and Fuller, K., Rings and Categories of Modules, 2nd. ed., GTM 13,
1992 Springer

Andersen, H.H., Jantzen, J.C. and Soergel, W., Representations of quantum groups
at a p-th root of unity and of semisimple groups in characteristic p : independence
of p, Astérisque 220, 1994 SMF

Andersen, H.H. and Kaneda, M., Rigidity of tilting modules, Mosc. Math. J. 11
(2011), 1-39

Beilinson, A., Ginzburg, V. and Soergel, W. Koszul duality patterns in representation
theory, J. Amer. Math. Soc. 9 (1996), 473-527

Borceux, F., Handbook of Categorical Algebra I, II, Encyclopedia of Math. and its
Appl. 50, 1994, Camb. UP

Bourbaki, N., Algebre X, 1980, Hermann

Brundan, J., On the definition of Kac-Moody 2-category, Math. Ann. 364 (2016),
353-372

Brundan, J. and Kleshchev, A., Blocks of cyclotomic Hecke algebras and Khovanov-
Lauda algebras, Invent. Math. 178 (2009), 451-484

Carter, R. W., Simple Groups of Lie Type, Pure and App. Math. 28, 1972, Wiley

Chuang, J. and Rouquier, R., Derived equivalences for symmetric groups and sls-
categorification, Ann. of Math. 167 (2008), 245-298

Cline, E., Parshall, B. and Scott, L., Finite-dimensional algebras and highest weight
categories, J. reine angew. Math. 391 (1988), 85-99

Curtis, C. W. and Reiner, I., Methods of Representation Thoery I, Pure and App.
Math. 1981, Wiley-Interscience

de Jong, J, Stack Project
Elias, B. and Williamson, G., Soergel calculus, Rep. Th., 20 (2016), 295-374

133



[Kat]

[KL]

L80]
[L94]
[Mac]

[MSV]

Fiebig, P., Sheaves on affine Schubert varieties, modular representations, and
Lusztig” s conjecture, J. Amer. Math. Soc., 24 (2011), 133-181

Fiebig, P., Lusztig’s conjecture as a moment graph problem, Bull. Lond. Math. Soc.,
42 (2010), 957-972

Fiebig, P. and Williamson, G., Parity sheaves, moment graphs and the p-smooth
locus of Schubert varieties, Ann. Inst. Fourier (Grenoble), 64 (2014), 489-536

Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90, (1962), 323-448
Gordon, R. and Green, E. L., Graded Artin algebras, J. Algebra 76 (1982), 111-137

Humphreys, J.E., Introduction to Lie Algebras and Representation Theory. Springer-
Verlag, New York (1972)

Humphreys, J.E., Modular representations of finite groups of Lie type, London Math.
Soc. Lecture Note Series, 326, Cambridge Univ. Press, Cambridge, 2006

ARESHA, BAARRER Y, 1968 BHAE K

Jantzen, J. C., Representations of Algebraic Groups, Math. Surveys and Monographs
107, 2003 AMS

Jantzen, J.C., Character formulae from Hermann Weyl to the present, In: Groups
and Analysis, London Math. Soc. Lecture Note Ser., 354, Cambridge Univ. Press,
Cambridge, 2008, pp. 232-270

Kashiwara, M. and Tanisaki, T., Kazhdan-Lusztig conjecture for symmetrizable Kac-
Moody Lie algebras with negative level II. Nonintegral case, Duke Math. J. 84 (1996),
771-813.

Kato, S., On the Kazhdan-Lusztig polynomials for affine Weyl groups, Adv. Math.
55, (1985), 103-130

Kazhdan, D. and Lusztig, G., Tensor structures arising from affine Lie algebras I,
II, J. AMS 6 (1993), 905-1011; Tensor structures arising from affine Lie algebras
III, 1V, J. AMS 7 (1994), 335-453

Lusztig, G., Some problems in the representation theory of finite Chevalley groups,
In: The Santa Cruz Conference on Finite Groups, Univ. California, Santa Cruz, CA,
1979, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, pp.
313-317

Lusztig, G., Hecke algebras and Jantzen’s generic decomposition patterns, Adv. math
37 (1980), 121-164

Lusztig, G., Monodromic systems on affine flag manifolds, Proc. R. S. London A
445(1994), 231-246; Errata, 450(1995), 731-732

MacLane, S., Categories for Working Mathematicians, 2nd ed., GTM 5, 1998
Springer

Mackaay, M. , Stosi¢, M, Vaz, P, A diagrammatic categorification of the g-Schur
algebra, Quantum Topol. 4 (2013), p. 1-75

134



Mackaay, M. and Thiel, L A diagrammatic categorification of the affine q-Schur
algebra S(n,n) for n > 3, Pacific J. Math. 278 (2015), 201-233

Mackaay, M. and Thiel, L Categorifications of the extended affine Hecke algebra and
the affine q-Schur algebra S(n,r) for 3 <r < n, Quantum Topol. 8 (2017), 113-203

Magzorchuk, V., Lectures on Algebraic Categorification, 2012 EMS
HR 21T, R DFIE, 2015 H AR At
] IR —, HELE O RS & fAaG D ~, B S ) — X 4, 2006 57 A&

Riche, S., Geometric Representation Theory in positive characteristicc HAL Id: tel-
01431526

Riche, S. and Williamson, G., Tilting Modules and the p-Canonical Basis, Astérisque
397, 2018 SMF

Rouquier, R., 2-Kac-Moody algebras, arXiv:0812.5023

Rouquier, R., Quiver Hecke Algebras and 2-Lie Algebras , Alg. Coll. 19 no. 2 (2012),
359-410

Soergel, W., Kazhdan-Lusztig polynomials and a combinatoric for tilting modules,
Rep. Th. 1, (1997), 83-114

Soergel, W., Character formulas for tilting modules over Kac-Moody algebras, Rep.
Theory 2 (1998), 432-448

Soergel, W., Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln tiber Polynom-
ringen, JIM. Jussieu 6 (2007), p. 501-525

B, ) — R e &R, BURBUEE ORI, 2002 17tk

Tanisaki, T., Character formulas of Kazhdan-Lusztig type, Fields Inst. Comm. 40
2004, p. 261-276

Weibel, C., An Introduction to Homological Algebra, Camb. Stud. Adv. Math. 38,
1997, CUP

Williamson, G., Schubert calculus and torsion explosion, JAMS 30 (2017), 1023-1046

Williamson, G., Algebraic representations and constructible sheaves, JJM 12, (2017),
211-259

135



