RESTRICTION OF EISENSTEIN SERIES AND
STARK-HEEGNER POINTS

MING-LUN HSIEH AND SHUNSUKE YAMANA

ABSTRACT. In a recent work of Darmon, Pozzi and Vonk, the authors
consider a particular p-adic family of Hilbert Eisenstein series Ex(1, ¢)
associated with an odd character ¢ of the narrow ideal class group of a
real quadratic field F' and compute the first derivative of a certain one-
variable twisted triple product p-adic L-series attached to Ex(1,¢) and
an elliptic newform f of weight 2 on I'g(p). In this paper, we generalize
their construction to include the cyclotomic variable and thus obtain a
two-variable twisted triple product p-adic L-series. Moreover, when f
is associated with an elliptic curve E over Q, we prove that the first
derivative of this p-adic L-series along the weight direction is a product
of the p-adic logarithm of a Stark-Heegner point of E over F' introduced
by Darmon and the cyclotomic p-adic L-function for F.

1. INTRODUCTION

In the work [DPV19], to each odd character ¢ of the narrow ideal class
group of a real quadratic field F', the authors associate a one-variable p-adic
family E,(f )(1, ¢) of Hilbert Eisenstein series on I'g(p) over a real quadratic

field F and give the explicit spectral decomposition of the ordinary projection

of the diagonal restriction Gy (¢) of E,(gp )(1, ¢) around k = 1. The coefficient
Af(k) of each normalized Hecke eigenform f of weight two on I'g(p) in the
spectral decomposition can be viewed as a certain (one-variable) twisted

triple product p-adic L-function associated with E,gp )(1, ¢) and f, and it is
proved in [DPV19, Theorem C(2)] that the first derivative of Af(k) at k =1
can be expressed in terms of the product of special values of the L-function
for f and the p -adic logarithms of Stark-Heegner points or elliptic units over
F introduced in [Dar01| and [DDO06|.

The purpose of this paper is to provide some partial generalizations of this
work to the two-variable setting by introducing the cyclotomic variable. To
begin with, we let F' be a real quadratic field and let 9 be the different of
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F/Q. Let z — T denote the non-trivial automorphism of F' and let N : F' —
Q, N(z) = 2T be the norm map. Let Ap be the discriminant of F//Q. Let
CIT(OF) be the narrow ideal class group of F. Let ¢ : C1* (Op) — Q~ be
an odd narrow ideal class character, i.e. ¢((0)) = —1 for any § € Op with
6 = —0. Let L(s,¢) be the Hecke L-function attached to ¢. Fix an odd
rational prime p unramified in F. For x € Z, let w(z) be the Teichmiiller
lift of z (mod p) and let (x) := 2w (z) € 1 + pZ,. Let 2 = {x € C,, |
|z|, < 1} be the p-adic closed unit disk and let A(2") be the ring of rigid
analytic functions on 2°. Fix an embedding ¢, : Q < C, througout. For
each ideal m << O corpime to p, define oy(m) € A(Z" x Z°) by

gom)(k.s) = > é(a) (N(@) T (N(ma 1)) = .

a<dOp, ajm

Let 27 := {k € Z=? | k=2 (mod 2(p — 1))} be the set of classical points
in 2. Let h = #C1"(OF). Fix a set {ta\}r=1, p of representatives of the

narrow ideal class group C17(Op) with (t),pOp) = 1. For each classical
point k € 2, the classical Hilbert-Eisenstein series Ex (1, ¢) on SLa(OF)
2

of parallel weight % is determined by the normalized Fourier coefficients
c(m, E% (17 ¢)) = Ud,(l'ﬂ)(k, 8)7 C)\(Oa Eg (17 ¢>) = 471L(1 - k/27 ¢)

Let Ir be the set of integral ideals of F'. Let n € Ir and p be coprime.
Let M®) (n) be the space of two-variable p-adic families of Hilbert semi-cusp
forms! of tame level n, which consists of functions

filp—> A (X xZ), me—c(m,f)

such that the specialization f(k,s) = {c(m, f)(k, s)} is the set of normalized
Fourier coefficients of a p-adic Hilbert semi-cusp forms of parallel weight
k on T'o(pn) for (k,s) in a p-adically dense subset U C Z, x Z,. Define

EW Iy — A(2Z x 27) by the data
c(m, ") = o4 (m) if (m,pOp) = 1,
c(m, Eép}) = 0 otherwise.

By definition, for (k,s) € 27 x 2" with k > 2s, we have

s—2 s—

E\d{)p}(k’s): <AF> 2 .0 22Em#_23(17¢)7

where E,gp}(l,gb) is the p-depletion of Ei(1,¢) and 6 is Serre’s differen-
tial operator 6(3 g5 agq®) = 2.8 N(B)agq®. Therefore, E’qu}(k,s) is a p-
adic Hilbert modular form of parallel weight k for all (k,s) € ZZQ,, and

1Recall that a Hilbert semi-cusp form is a Hilbert modular form having no constant in
the Fourier expansion around the cusps at the infinity.
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Eép) € M®(Op). For each prime ideal q, define Ug: M@ (n) — M@ (ng)
by ¢(m,Uqf) := c(mq, f). Let NV be a positive integer such that p{ N and
(Splt) NOp =9, (MN,N) =1.

Define B, € M@ (N) by

E; = H(l G <N(Q)>23_2’2_k Uy) 'Eép}
qn

and the diagonal restriction Gy € A(Z x Z')[q] of E4 by

Gy = Z( Z c(ﬁb,E@)q",

n>0 gea ' Tr(B)=n

where D:Ll is the additive semigroup of totally positive elements in o L.

By definition Gg(k,s) is the g-expansion of a p-adic elliptic modular on
Lo(pN) of weight k obtained from the diagonal restriction of Eip }(k:, s) for
(k,s) € 2 x 2 with k > 2s. Let % be an appropriate neighborhood
around 2 € 2. Let S°4(N) be the space of ordinary A(%)-adic elliptic
cusp forms on I'g(Np), consisting of g-expansion f = > _,c(n, f)¢" €
A( )[q] such that the weight k specialization f} is a p-ordinary cusp forms
of weight k on To(pN) for k € 2°°'. By Hida theory, we know S°*(N) is
a free A(% )-module of finite rank. It can be shown that the image eG
under Hida’s ordinary projector actually belongs to S'4(N)® A AU <
Z"), where A(Z") is regarded as a subring of A(%Z x Z°) via the pull-back
of the first projection Z x 2 — % . We can thus decompose

¢Gy=> Lp, s+ (oldforms), Lp, s AU xZ),
f

where f runs over the set of primitive Hida families of tame conductor N. We
shall call Lg, 5 € A(% x Z7) the twisted triple product p-adic L-function
attached to the p-adic Hilbert Eisenstein series E4 and a primitive Hida
family f. We provide the following derivative formula for Lg, ¢, which
partially generalizes [DPV19, Theorem C(2)| to elliptic newforms of split
tame conductor.

Theorem (Corollary 7.3). Let E be an elliptic curve over Q of conductor
pN with N satisfying (Splt). Let f € A(%)[q] be a primitive Hida family of
tame level N such that the weight two specialization fq is the elliptic newform
associated with E. Suppose that p is inert in F'. Then LE@f(Z, s) =0 and

d 1 _
%(£E¢,f(k, $+1))|jee = 5L+ () Ywy) -logy Py - Ly(E, s)
X — L (Ap)*T
m3,20(B) T

where
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e logp Py is the p-adic loagrithm of the twisted Stark-Heegner point
P, € E(F,) ® Q(¢) introduced in |[Dar01, (182)],

o L,(E,s) is the Mazur-Tate- Teitelbaum cyclotomic p-adic L-function
for E,

LTS Z>0 is the congruence number for f, mp € QX is the Mainn
constant for E and 2°F) = [H,(E(C),Z) : Hy(E(C),Z)T®H,(E(C),Z)].

Remark 1.1.

e The definition of Stark-Heegner points P4 for odd ¢ in [Dar01] de-
pends on a choice of the purely imaginary period Q5. In the above
theorem, we require (v/—1)"'Q% to be positive.

e Our main motivation for this two-variable generalization is that we
have the non-vanishing of the p-adic L-function L,(E,s) thanks to
Rohrlich’s theorem [Roh84|, so logy Py can be computed from the
twisted triple product p-adic L-function even when the central value
L(FE,1) vanishes.

e The Eisenstein contribution in the spectral decomposition in Part
(2) of [DPV19, Theorem C] is connected with the p-adic logatithms
of elliptic units over F', while in our two-variable setting, eGy is a
p-adic family of cusp forms, so we do not get any information for
elliptic units.

We briefly outline the proof. Let £,(f/F, ¢, k) be the (odd) square-root p-
adic L-function associated with the primitive Hida family f and the character
¢ constructed in [BD09, Definition 3.4| with wo = —1 and let L,(f, k, s) be
the Mazur-Kitagawa two-variable p-adic L-function so that L,(f,2, s) is the
cyclotomic p-adic L-function for f,. In Theorem 7.1, we prove the following
factorization formula of Lg o f:

(1.1) C*(k) - Lg,s(k,s+1) = Ly(f/F, ¢, k) - Lp(f, k,s),

where C*(k) is a meromorphic function on 2" holomorphic at all classical
points k € 2% with C*(2) = 1. By the very construction, the square
root p-adic L-function L,(f/F, ¢, k) interpolates the toric period integrals
Bje)k. Thus we get Lg, 7(2,5) = L,(f/F,¢,2) = 0 by a classical theorem of
Saito and Tunnell. Moreover, from the formula [BD09, Corollary 2.6], it is
not difficult to deduce that the first derivative of L,(f/F, ¢, k) at k = 2 is
2711+ wn (M) 1) logy Py, and hence we obtain Theorem from (1.1). The
factorization formula (1.1) is established by the explicit interpolation for-
mulae on both sides. In particular, the interpolation formula for Lg, r(k, s)
(Proposition 5.7) is the most technical part of this paper. Roughly speaking,
for (k,s) € 2% x 27 with k > 2s, Hida’s p-adic Rankin-Selberg method
shows that Lg o #(k, s) is interpolated by the inner product between the di-
agonal restriction of a nearly holomorphic Hilbert Eisenstein series E4(k, s)
and f,. Therefore, a result of Keaton and Pitale [KP19, Proposition 2.3|
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tells us that Lg, (k, s) is a product of (i) the Waldspurger toric period in-
tegral B?k of f; over F twisted by ¢, (ii) the special value L(f},s) of the
L-function for f; and (iii) local zeta integrals Zp(s, By, ) for every place of
Q in (4.5). Now items (i) and (ii) are basically interpolated by L(f/K, ¢, k)
and L,(f, k, s), so our task is to evaluate explicitly these local zeta integrals,
which occupy the main body of Section 4. By the explicit interpolation for-
mulae of these p-adic L-functions, we find immediately that the ratio C*
between L,(f/F,¢,k) - Ly(f,k,s) and Lg, y(k,s + 1) is independent of s,
and hence C* is a meromorphic function in £ only. Finally, by a standard
argument using Rohrlich’s result on the non-vanishing of the cyclotomic p-
adic L-functions for elliptic modular forms, we can conclude that C*(k) is
holomorphic at all £ € 2! and C*(2) is essentially the congruence number.

This paper is organized as follows. After preparing the basic notation for
modular forms and automorphic forms in Section 2, we give the construction
of Hilbert Eisenstein series and compute the Fourier coefficients in Section 3.
In Section 4, we compute the inner product between the diagonal restriction
of Hilbert Eisenstein series and a p-stablized newform. The main local cal-
culations are carried out in Proposition 4.3 for the split case, Proposition 4.4
for the non-split, and Proposition 4.5 for the p-adic case. In Section 5, we use
p-adic Rankin-Selberg method to construct the p-adic L-function Lg, ¢ and
obtain the interpolation formula in Proposition 5.7 by combining the local
calculations in Section 4. In order to make the comparison between p-adic
L-functions easier, the interpolation formulae shall be presented in terms of
automorphic L-functions in this paper. In Section 6, we review the theory of
A-adic modular symbols in [Kit94] and the construction of the square root
p-adic L-function £,(f/F, ¢, k). Our treatment for modular symbols is semi-
adelic, which allows simple descriptions of Heck actions and are amenable to
the calculations from the automorphic side. The connection with Greenberg-
Stevens’ approach [GS93] is explained in Remark 6.6. In Proposition 6.9, we
give the complete interpolation formula for £,(f/F, ¢, k), including the eval-
uation at finite order characters of p-power conductors. Finally, we deduce
the factorization formula and the derivative formula for Lg, ¢ in Section 7.

2. CLASSICAL MODULAR FORMS AND AUTOMORPHIC FORMS

In this section, we recall basic definitions and standard facts about classical
elliptic modular forms and automorphic forms on GL2(A), following the
notation in [Hsi20, §2] which we reproduce here for the reader’s convenience.
The main purpose of this section is to set up the notation and introduce some
Hecke operators on the space of automorphic forms which will be frequently
used in the construction of p-adic L-functions.

2.1. Notation. We denote by Z, Q, R, C, A, R, the ring of rational
integers, the field of rational, real, complex numbers, the ring of adeles of Q
and the group of strictly positive real numbers. Let u,(F') denote the group
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of nth roots of unity in a field F'. For a rational prime ¢ we denote by Zy,
Qy and ordy : Qy — Z the ring of f-adic integers, the field of f-adic numbers
and the additive valuation normalized so that ord,(¢) = 1. Put 7= I, Z,.
Define the idele w; = (wy,) € A* by wyy = and wy, = 1if v # L.

Let F' be a number field. We denote its integer ring by Op. We write
Tr/q and Ng/q for the trace and norm from F' to Q. For each place v of F
we denote by F}, be the completion of F" with respect to v. Let Ap = ARq F
be the adele ring of F. Given t € A7}, we write t, € F for its v-component.
We shall regard F, (resp. F) as a subgroup of Ap (resp. A}) in a natural
way. Let ap, = | |, be the normalized absolute value on F,. If v = q is
finite, then |wq|F, = dq !, where w, is a generator of the prime ideal of the
integral ring Oq4 of Iy and ¢4 denotes the cardinality of the residue field of
Oy. Define the complete Dedekind zeta function by (¢ (s) =[], ¢r,(s), where
(r(s) = 77*/?I'(), and if v = q is finite, then (g, (s) = (1 — 7 *)"'. When
F = Q, we will write o, = | |, and (,(s) = (q,(s). Let ¢ : A/Q — C* be
the additive character whose archimedean component is ¥ (z) = 2™V~1=
and whose local component at ¢ is denoted by 1, : Q; — C*. We define the
additive character ¥ = [[, ¥ p, : Ap/F — C* by setting ¢ := Yo Trp/q.
Let S(A) = ®,S(F]") denote the space of Schwartz functions on A%

For any set X we denote by Ix the characteristic function of X. If R is a
commutative ring and G = GLy(R), we define homomorphisms t : R* — G
and n: R — G by

t(a) = <g ?) n(z) = <é f)

We denote by p the right translation of G on the space of C-valued functions
on G, ie., p(9)f(d) = f(d'g), and by 1 : G — C the constant function
1(g) = 1. For a function f : G — C and a character w : R* — C*, let
f®w: G — C denote the function f ® w(g) = f(g)w(det g). The subgroup
B(R) (resp. N(R)) of GLg(R) consists of upper triangular (resp. upper
triangular unipotent) matrices.

2.2. Characters. If F' is a number field and x : F*\A} — Q" be a Hecke
character of A%, we denote by x, : F) — C* the local component of
x at a place v of F. When w is a Hecke character of A*, we denote by
wr :=woNp/q : F*\Aj — C* the base change of w.

If v is non-archimedean and A : F° — C* is a character, let ¢(\) be the
exponent of the conductor of A.
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2.3. Automorphic forms on GLy(A). Fix a positive integer N. Define
open compact subgroups of GLy(Z) by

Uo(N) :{g € GLy(Z) ‘ g= <; :) (mod Ni)},

UL (N) :{g € Uy(N) ‘ g= (3 T) (mod NZ)}.

Let w : Q*\A* — C* be a finite order Hecke character of level N. We

extend w to a character of Uy(N) defined by w <(CCL Z)) = Hg|ng(dg)
for <CCL 2) € Uy (N) For any integer k the space Ay (N, W) of automorphic

forms on GL2(A) of weight k, level N and character w consists of automor-
phic forms ¢ : GL2(A) — C such that

— cosf sinf
p(2vgrgur) :W(Z)@(g)eﬁkew(uf)’ o = <— sinf cos 9)

for 2 € A%, v € GL2(Q), 0 € R and ug € Up(N). Let A (N, w) be the space
of cusp forms in Ai(N,w).

Next we introduce important local Hecke operators on automorphic forms.
At the archimedean place, let Vi : Ag(N,w) — Ags2(N,w) be the normal-
ized weight raising/lowering operator in [JL70, page 165] given by

(2.1)

Vi = (_187r) <((1) _01) ®1+ ((1) é) ® ﬁ) € Lie(GL2(R)) ®g C.

Define the operator U, acting on ¢ € Ag(N,w) by
wy T
U= > p<< o 1)) @,
IEEZ[/ZZ(

and the level-raising operator V; : Ax(N,w) — Ap(N/,w) at a finite prime ¢
by
Vip(g) == p(t(z, ).
Note that U;Vpp = fp and that if £ | N, then Uy € Endc A (NV,w). For each
prime £ 1 N, let Ty € Endc Ak (N, w) be the usual Hecke operator defined by
Ty = Uy + we(0) V.

Define the GLa(A)-equivariant pairing (, ) : A%, (N,w) ® Ax(N,w™1) = C
by

(2.2) (0, ) = / o) (9) g,
AX GL2(Q)\ GL2(A)

where d7g is the Tamagawa measure of PGL2(A). Note that (Typ,¢’) =
(o, Typ') for £4 N.
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2.4. Classical modular forms. We recall a semi-adelic description of clas-
sical modular forms. Let C°°($)) be the space of C-valued smooth func-
tions on the half complex plane $) := {z € C | Im(z) > 0}. The group
GLy(R)T := {g € GL2(R) | detg > 0} acts on $ and the automorphy
factor is given by

az+b
’7(’2) cz + d’ (")/,Z) cz +
b
d
Let k be any integer. The Maass-Shimura differential operators d; and ¢

on C*($) are defined by

for v = (ch € GLx(R)" and z € §.

5 = 1 ( 6 k > o 1 2 0
21/ =1\ 0z  2y/—1y 27r\/7 0z
(cf. [Hid93, (1a,1b) page 310]), where y = Im(z) is the imaginary part of z.
Let x be a Dirichlet character of level N. For a non-negative integer m let
N, lim] (N, x) denote the space of nearly holomorphic modular forms of weight
k, level N and character y. In other words N,Lm](N ,X) consists of smooth
slowly increasing functions f : ) x GLQ(Q) — C such that
o f(vz,7gru) = (det )" J (v, 2)" f(2, 90)x " (u) for any v € GLa(Q)*
and u € Up(N);
o e f(z,90) =0
(cf. [Hid93, page 314]). Let Ni(N, x) = US_y N™ (N, x) (cf. [Hid93, (1a),
page 310]). By definition N,LO](N, X) coincides with the space My (N, x)
of classical holomorphic modular forms of weight k, level N and character
X- Denote by Si(N,x) the space of cusp forms in My (NN, x). Let 6" =

Ok+om—2 " Opr20k. IE f € Nip(N,x), then 6" f € Nypom(N,X) ([H1d93
page 312|). Given a positive integer d, we define

Vaf(z,gr) = f(dz, gs); Uaf(z,91) Zf<z gf <0 {>>

The classical Hecke operators T for primes 1 N are given by

Tof = Uf + xe(£HF2V, f.

We say that f € Ni(N,x) is a Hecke eigenform if f is an eigenfunction of
all the Hecke operators Ty for £{ N and the operators Uy for ¢ | N.

2.5.  To every nearly holomorphic modular form f € N (N, x) we associate
a unique automorphic form @(f) € Ap(N,x~!) defined by the formula

23)  B()(9) = F(goo(V/ 1), g6) T (goor V—T)*(dlet goc) |det g 3"
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~

for g = googr € GL2(R) GL2(Q) (cf. [Cas73, §3]). Conversely, we can recover
the form f from &(f) by

@0 St vTna) =i e ((§])a) lecaly "

We call @(f) the adelic lift of f.

The weight raising/lowering operators are the adelic avatar of the dif-
ferential operators 6;' and ¢ on the space of automorphic forms. A direct
computation shows that the map @ from the space of modular forms to the
space of automorphic forms is equivariant for the Hecke action in the sense
that

(2.5) D" f) = Vi (f), b(ef) = V-o(f),
and for a finite prime £

(2.6) O(Tyf) = 71T, 0(f), O(Uf) = 2710, (f).

In particular, f is holomorphic if and only if V_ &(f) = 0.
2.6. Preliminaries on irreducible representations of GL3(Q,).

2.6.1. Measures. We shall normalize the Haar measures on F, and F* as
follows. Let dz, be the self-dual Haar measures of F, with respect to v p .
Put d*z, = (g, (1) dzo_ If F = Q, then das denote the usual Lebesgue

‘x’v‘Fv
measure on R and day be the Haar measure on Qg with vol(Z,,day) = 1.

The Tamagawa measure of Ay is dz = [ [, dz, while the Tamagawa measure
of A% is defined by d*x = ¢! [[, dz)*, where cp denotes the residue of (p(s)
at s = 1.
Define the compact subgroup K =[], K, of GLa(A) by Ko = O(2,R)
and Ky = GL2(Zy). Let du, be the Haar measure on K, so that vol(K,, du,) =
1. Let dg, be the Haar measure on PGLy(Q,) given by d” g, = |av\;1 dz,d*a,du,

for g, = <av x”) u, with a, € QX, =, € Q, and u, € K,,. The Tamagawa

0 1
measure on PGLy(A) is given by d"g = (q(2) "' [[, d"gu-

2.6.2. Representations of GL2(Q,). Denote by pHv the irreducible principal

series representation of GL2(Q,) attached to two characters p,v : Q)5 — C*

such that ov™! # aff. If v = oo is the archimedean place and k& > 1 is an

integer, denote by Dy (k) the discrete series of lowest weight k if k£ > 2 or the

limit of discrete series if & = 1 with central character sgn® (the k-the power
X

of the sign character sgn(xz) = —— of R*).

[7] oo



10 MING-LUN HSIEH AND SHUNSUKE YAMANA

2.6.3. Whittaker models and the normalized Whittaker newforms. Every ir-
reducible admissible infinite dimensional representation 7 of GL2(Q,) admits
a Whttaker model W(r) = W(m,v,,) with respect to 1p,. Recall that W(r)
is a subspace of smooth functions W : GL2(Q,) — C such that

e W(n(z)g) = v, ()W (g) for all 2 € Q,,

e if v = oo is archimedean, then there exists an integer M such that
W(t(a)) = O(|a]) as |a|e — 0.
The group GL2(Q,) (or the Hecke algebra of GL2(Q,)) acts on W(7) via the

right translation p. We introduce the (normalized) local Whittaker newform
Wy in W(7) in the following way: if v = co and m = Dy(k), then W, € W(r)
is defined by

e2my

o W (+(§ 7)) =Tt gt el

for y,z € R* and z,0 € R; if v is finite, then W, is the unique function
in W(m)™" such that W;(12) = 1. The explicit formula for Wy (t(a)) is
well-known (See [Sch02, page 21| or [Sah16, Section 2.2| for example).

2.6.4. L-factors and e-factors. Given a € Q,, we define an additive charac-
ter % on Q, by ¥¢(x) = ¥, (az) for z € Q,. We associate to a character
0: QX — C* the L-factor L(s, ) and the e-factor (s, g, 9%) (cf. [Sch02,
Section 1.1]). The gamma factor
L(l - S, Q_l)

L(s, 0)
is obtained as the proportionality constant of the functional equation

(2.8) V(S,Q,iﬁg)/qx ¢(a)o(a)laly d*a = /Qx $(a)o(a) " Ya|t—* d%a

v v

v(s, 0,93) = (s, 0,93)

for ¢ € S(Qy), where

o) = [ el ) dn
is the Fourier transform with respect to 1¢,. When a = 1, we write

e(s,0) =¢e(s,0,%,), v(s,0) = (s, 0,%,)-

When v = £ is a finite prime, we denote the exponent of the conductor of o
by ¢(p). Recall that

(2.9) e(s, 0,9%) = o(a)lal, 'e(0, 0)¢ ="

Let 7 be an irreducible admissible representation of GL2(Q,) with central
character w. Denote by L(s,m) and e(s,7) = (s, m,,) its L-factor and
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e-factor relative to 1), defined in [JL70, Theorem 2.18|. We write 7" for the
contragredient representation of m. The gamma factor
L(1—s,7)

L(s, )

is obtained as the proportionality constant of the functional equation
(2.10)

1
Y <8 - 2#?) / W(t(a)g)lalyd*a= [ W(t(a)J; 'g)w(a) " |al,*d"a
Q Q7

v(s,m) =¢e(s,m)

for every W € W(r).

2.7. p-stabilized newforms. Let 7 be an irreducible cuspidal automorphic
representation of GLa(A). The Whittaker function of ¢ € m with respect to
the additive character 1 is given by

(2.11) W,(g) = /A () do

for g € GLa(A), where dz is the Haar measure with vol(A/Q,dz) = 1. We

have the Fourier expansion:

plg) = > Wy(t(B)g)
BeQX

(cf. |Bum98, Theorem 3.5.5]). Let f = > a(n,f)q" € Si(INV,x) be a
normalized Hecke eigenform whose adelic lift @(f) generates 7 = ®! m, of
GL2(A), having central character x~!. If f is a newform, then the conductor
of wis N, the adelic lift @(f) is the normalized new vector in 7 and the Mellin

transform
1
[ o Dl =5+ 5.7)
AX/QX

is the automorphic L-function of 7. Here |y|o =[], |¥,|, and d*y is the
product measure [[, d*ys.

Definition 2.1 (p-stabilized newform). Let p be a prime and fix an iso-
morphism ¢, : C ~ Qp. We say that a normalized Hecke eigenform f =
Yoo a(n, f)g" € Sp(Np,x) is a (ordinary) p-stabilized newform (with re-
spoect to ¢p) if f is a new outside p and the eigenvalue of U, i.e. the p-th
Fourier coefficient ¢y(a(p, f)), is a p-adic unit. The prime-to-p part of the
conductor of f is called the tame conductor of f.

The Whittaker function of @(f) is a product of local Whittaker functions
in W(my,,) by the multiplicity one for new and ordinary vectors. To be
precise, we have

Wa)(9) = W (gp) [ [ W (90)
vFEp
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for g = (gy) € GL2(A). Here Wy, is the normalized Whittaker newform of
7, and W;ﬁ;d is the ordinary Whittaker function characterized by

1
(2.12) Wﬁ;"d(t(a)) = of(a) |a|? -1z, (a) for a € Q,
where o : Q) — C* is the unramified character with or(p) = a(p, f) -
pI=k)/2 (See [Hsi20, Corollary 2.3, Remark 2.5]).

3. THE CONSTRUCTION OF HILBERT-EISENSTEIN SERIES

3.1. Eisenstein series. We recall the construction of Eisenstein series de-
scribed in [Jac72, §19]. Let F be a real quadratic field with integer ring Op.
We denote the set of real places of F' by ¥g = {01,029}, the different of F’
by 0, the discriminant of F' by Ap and the unique non-trivial automorphism
of F' by x — Z. For each finite prime q of F' we write Oy for the integer ring
of Fy.

Let (p1,v) be a pair of unitary Hecke characters of Aj. For each place v
we write B(fuy, vy, s) for the space of smooth functions f, : GLy(F,) — C

which satisfy
(5 7)) mt@m@]5 £t

for a,d € FX and b € F,. Recall that S(F?) denotes the space of Schwartz
functions on F2. We associate to ®,, € S(F?2) the Godement section f,, ,,.®,,s €
B(pws v, 8) by

(3.1)

+3 _
fuv,l/v,%,S(gv) = py(det gy) |det gy ;v ? / D4, ((0,t0)gv) (o, l)(tv) ’tvﬁ«?_l d*t,.
FX

v

s+%
Fy

Let ® = ®,®, € S(A%). Define a function Jupvad,s : GLa(Ap) — C by
fu,u,@,s (g) = Hv f/h;,wﬁim,s (gv)' The series

EA(Q, fu,u,(b,s) - Z fu,z/,@,s(’yg)

YEB(F)\ GL2(F)

converges absolutely for Re(s) > 0 and has meromorphic continuation to
s € C. It admits the Fourier expansion

(32) EA(gv fu,l/,q),s) = fu,u,@,s(g) + f,/’“’ff.,,s(g) + Z W(t(ﬁ)g7 fu,l/,@,s)a
BeFX

where ® := ®,®, is the symplectic Fourier transform defined by
Dy (z,y) = // @y (2, u)Y R, (2y — ux) dzdu.
F?

We tentatively write f, s = fu,u,,®.,,s- There exists an open compact sub-
group U of F, such that for any open compact subgroup U’ containing U

/ufv,s(Jln(xv)gv)’(va(_xv) dx, = » fv,s(Jln(xv)gU)’lﬁva(_xv) dzy,
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where J; = ((1] _01> We define the regularized integral by
st
W(gvv fuv,uv,<1>v,s) = fv,s(Jln(xv)gv>'lva(_xv) da,

Fy

= / fv,s(Jln(xv)gv)'l/)Fv (_xv) dx,.
u

Then W(g, fu,u,@,s) = Hv W(gvv fv,s) for g = (gv) S GLQ(AF)-

3.2. The Eisenstein series Ej(u,v). Let N and C be positive integers
such that NAp and C are coprime. We assume that

(Spl) every prime factor of NC splits in F.
Then there are ideals 91 and ¢ of Op such that
(3.3) NOp =9, MN) =1 COp =c¢, (c¢,0)=1.

Fix a positive integer k. Assume that vy, i, = sgn® for i = 1,2. We recall a
construction of certain classical Eisenstein series Fj(u,v) of parallel weight
k, level ' (NC) and central character pv following [Jac72]. We impose the
following hypothese for (u,v):

Hypothesis 3.1.

e 4 is unramified outside p,
e the prime-to-p part of the conductor of v has a decomposition ¢¢’
with ¢ C ¢.

Definition 3.2. Let k > 2 be an integer. The quintuple
D := (u,v, k,N,c)

is called an Eisenstein datum of weight k. The Fourier transform of ¢ €

S(F,) is defined by

- / (), () dy,
Fy

where the Haar measure dy is so chosen that (}5(:0) = ¢(—x). When q is a
finite prime, we associate to a character x : Fy* — C a function ¢ € S(Fy)
by ¢y (z) = I[qu (x)x(x). We associate to D the Bruhat-Schwartz function

op = Q) o, € S(AT)

defined as follows:
o Op,(z,y) = Z_k(x + \ﬁy)k —m(@*49%) if y € TR,
o Opy(x,y) = 6,1 (2)6,1(y) if v | p,
o Op,(z,y) = Hmco (z )¢VU( ) if v | Ne,
(z,y) =

o Op (x lo,(z)¢,-1(y) if v |,

7
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1
o Opy(z,y) =h-10,(@)h-10,(y) - [Apli if v{pMNe.
We define the associated Godement section by fp s = fuvép,s and fp s, =
‘fy”lhl/vy@'D,’UyS'

Remark 3.3. If v € ¥R, then fp, is the unique function in B(p, vy, 5)
such that

fp.sltig) = eV 97k (/ZT)hp =+ 50D ( + k;l>

(see the proof of Lemma 3.6). If v = q is a finite place, then for any integer
M, let Uy (M) be the open-compact subgroup of GL2(Oy) given by

_ Oq Oq
Z/[l(M) = GLQ(Oq) N <M0q 1 +M0q> ,

and fp.sq € B(fg, Vg, 5) is invariant by U (p" NC') under the right translation
for some sufficiently large r.
Definition 3.4. Define the classical Eisenstein series E,:f(u, v): H R — C

by

B () (& + yv/=T) :=y’éEA((g f’f) , fp,s> (r€R% y e R2).

_ 1 k-1
s—i—Q

Then E,:f(,u, v) is a Hilbert modular form of parellel weight &, level p" NC
and character y~'v~!. By definition

P(E;f (1.1)19)(9) = Eal(9.9). fps)l, oy
for g € GLa(A), where @ is the adelic lift defined in (2.4).
Proposition 3.5. For every non-negative integer t, we have
B(SLEy (1, v)) = Ea(fDis)lsmpizts
where Dy = (u, v, k + 2t,M, ¢) is an Eisenstein datum of weight k + 2t.

Proof. Recall the differential operator V, defined in (2.1). Proposition 3.5
follows from (2.5) in view of the relation VI fp oo = fp, 500 (see [JLT0,
Lemma 5.6 (iii)]). O

3.3. Fourier coefficients of Eisenstein series.

Lemma 3.6. For a € R*, we have

k

W(t(a)’ fD,s,oo)‘S:% :W(t(a)’ fD,s,oo)‘S:% = a56727m . HR+ (a)
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Proof. By definition, W (t(a), fp.sc) equals

Q_kﬂas+%(a) /R /RX th(a + \/—1x)ke_”t2(x2+a2) sgn(t) [t[> T (—z) A tda

—petti(a) - (—2v=1)F r<s T 1)W<S+%“>
X / (x + \/—la)_(SJ“%)(a; - —la)_(s_%)d;oo(—x) dz.
R
By Cauchy’s integral formula we find that

. e—?ﬁ\/jl$
W (t(a), fD,s,oo)|5:1€2;1 =pa2(a) - (—27T\/—71)*k -T'(k) /R m dx

—p(a) - aze ™ Ig, (a),

and that
ok B k1 (l’— _1a)k—le—2ﬂﬁx
W(b(0), foa)l 150 =pdH (@) (2 [ VS @
=p(a) - aze~2ma. Ir, (a).
Since p is a quadratic character, the lemma follows. O

Let qq = |mwy| ™! = #(OFr/q) denote the cardinality of the residue field.
Lemma 3.7. Let v =q be a prime ideal of Op. Let a € FJ. Put

Xa = Hg Vo, 7= Xa(®a),  dq =gl = 8(Or/q), m = ordy(a).
Then W (t(a), fp,s,q) equals

1erordq(D) 4
(91 pc) pa(a)lal™z > (yql®),
=0
m—ordgq (M) m—ordgq (M)
1 S\ 7 — S\J
@0 @i ey gt Y ).
=0 j=——1
1 _
(g]¢) pig(a)|al® 2 - e(=2s,xq) " - 1o, (a),
_ sil
(g]°) piq(a)lal** 21, (a),
@=plp Loy (0)

Proof. Fix a local uniformizer wy € Oy of the prime ideal q. Note that if
P=Px b€ S(FCIQ), then
(3.4)
0 -1\ (fa =z 1 _
fpsg <<1 0 ) (0 1) )z pa(@lal** [t (ta) gy DO 470

q
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and hence

W(t(a). fo.na) = a(a)lal*™s [ @10 @a(—t") (g O 0

q

If g ple, then @p g =19, ® -1, and hence

W(t(a), fp,s.4) :Mq(a”as—’—;/x L-10,(t a)lo, (—)xq(t)[t| 7> d*¢t

Fy
m-+ordq(?)

l . .
=pg(a)lal**2 Y xq(w])as”.
j=0

If q | Nc, then pq is unramified by assumption. It is easy to verify that
A To, () — 5 -1, () it q |,
(ZSVq (x) =

1 -1 .
e(L, v )y, (x )Hw;c@q)(gqx () ifq]ec.

One can readily prove the case q | 91. If ¢ is divisible by q, then

pa(e) ol B 6. fog) = [ Teo, ()~ gty DO 0

(Vq))q—25‘3(”q)]1

1
= 5(1,1/q )uq(—l),uq(wg 4 cw;c(Uq)oq(a).

Note that COy = @y c(yq)(’)q for q | ¢ by our assumption on the conductor of
v and that
_ c(v —2sc(v — —
e(1, 1 Yry(—Dpig (w5 ) gy 2 = vy (= De(1 + 25, x5 1) = (25, xq) "
by (2.9). If q | ¢, then W (t(a), fp,sq) equals
PEES — — s s+1
pa(@lol*t [ To,(at)o, (7 ngry DO 4t = po(@)laf** o a)

q

Finally, if v = p|p, then we find that W (t(a), fpsp) equals
1 - — S
mo@lal*H [ 6,02 (@t)0,0 07y DO 4t = o (o)
p

by a similar calculation. O

For each non-zero element 3 € F'* we define the polynomials Pg, and
Qg in Zgy)[X, X 71| by
(3.5)

Pﬂ,q(X) = {Zgjgizqf;m ; ordg(BN™Y)  —(j+1) 4 ?f Gt
Zj:oq dq 1XI — ijil dq ITUXTf q| M,
Qx,q(X) = 5(07Xq)71 ’ (quil)C(Xq)'
Let 8 € F. We write 8 > 0 if 0;(8) > 0 for i = 1,2.
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Corollary 3.8. We have the following Fourier expansion around the infinity
cusp:
EEuo)(rmm) = S otk Ima@nne),
0<per—t, (p.B)=1

where
Jﬁ(u,uk H,P/B, Vg Qq H Q “lyg Qq
dtep al(c,5)
o5 (v, k) =Npyq(B) - 1, (B) [ Poa(ra- 27 T] Qu-rvalay ™
dep al(e.)

Proof. Note that if ® = ¢1 ® ¢y € S(F?), then ®(z,y) = ¢a(—2)¢1(y).
Since ®p(0,y) = 0 and @pp(O y) = qﬁ 1(0 )¢#;1(y) = 0 for a prime p
lying above the distinguished prime p, we see that

(3.6) fosp(9) =T, (9) =0 for g € B(F}).

p,ﬂp,@'D,'”—S

This in particular implies that

o5 1)) Famins (6 1) )0

In view of (3.2) and Lemma 3.6, we find that

B (/"L)V k H W f’D7s7q)‘S:i%'
q<oo

The assertion follows from Lemma 3.7 by noting that ,uq_lyq (wq) = w~(q)
if q is the prime induced by v. O

4. RESTRICTION OF EISENSTEIN SERIES

1. Optimal embeddings. Let F' be a real quadratic field whose discrim-
inant is denoted by Ap. Define § € F' by 0 = D/%/E, where D' = Ap or
% according to whether Ap is odd or even. Then Op = Z + Z0, and if ¢
is ramified in F', then 60 is a local uniformizer of Q4. Denote by x +— T the

unique automorphism of Gal(F/Q). Put

§:=0—0=+\/Ap.

We choose an embedding o1 : F' < R such that 0;(6) > 0. Define an
algebraic group T over Q by T(R) = (F ® R)* for any commutative field
R of characteristic zero. We view T as a maximal torus of GLsy via the
embedding ¥: F' — M3(Q) defined by

w(0) = <T(19) _1\(1)@)) |
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0= (_11 _99> 51— <f f) e CLy(P).

It is important to note that for t € F

(4.1) (e = <3 ?) .

Let N and C be positive integers such that

Put

e C and NAp are coprime;
e Every prime factor of NC' is split in F'.

Fix decompositions NOp = M9 and COp = c¢ once and for all. Fix a prime
ideal p of O lying above p.
We define special elements ¢, ¢(©) and ¢(°?") in GLy(A) as follows:

e At the archimedean place, put

Soo = <”21(0) ”11(9)> € GLy(R).

e For each rational prime ¢ we fix a prime ideal q of Op above ¢ and
define ¢; € GL2(Qq) by

Sq = (? ?) 61 € GLo(F,) = GL2(Q,) if ¢ = qq is split,

¢q =1 otherwise.

e Put

c -1
G = (0 ) ) € GL(Qy);
Pt 1 . e
01 € GLo(F,)  if p=pp is split in F

" € GL2(Qp) if pis inert in F.
—D

Finally, we define
s=[leo =[P = O,
v qC

Let Oc = Z 4+ COp be the order of F' of conductor C. It is not difficult to
verify immediately that the inclusion map ¥ : K < My(Q) is an optimal
embedding of O¢ into the Eichler order Ry := Ma(Q) N ¢(OIMy(Z)(¢(@)~1
of level N. In other words,

(4.2) U HRy)NF = Oc.
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4.2. A result of Keaton and Pitale. Let 7 ~ ® 7, be an irreducible cusp-
idal automorphic representation of GL2(A) generated by ®(f) € AJ, (N, w).
Let p and v be unitary Hecke characters of A} such that p has p-power
conductor and such that the restriction of uv to A* is w. Define the Hecke
character x : F*\Aj; — C* by

(@) = p(@)v(3).
Given ¢ € 7, we define the global zeta integral by

Zp(s, @) = / EA(g, fp,s)¢(g)w(det g) ' d7g,
AX GL2(Q)\ GL2(A)

where fp s is the section defined in Definition 3.2 associated with the datum
D = (u,v, k,M, c). This integral converges absolutely for all s away from the
poles of Ea (g, fp,s) and defines a meromorphic function in s.

We define the Tamagawa measures d*x of A} and d*a of A in §2.6.1.
We define the Tamagawa measure dt of T(A) as the quotient measure of
d*z and d*a. Let dg denote the quotient measure of d"g and dt. Given
p € m, we define the toric period integral by

(1.3 Bio)= [ etwee

Theorem 4.1 (Keaton and Pitale). Let ¢ € . Then

Zn(s,0) = / BX(g) dg.
T(A)\ GL2(A)

Proof. This is nothing but Proposition 2.3 of [KP19]. O

4.3. Global setting. Now we let f = > a(n, f)¢" € Sop(Np",w™!) be
a p-stablized newform and ¢ = &(f) € A9, (N,w) be the automorphic form
associated with f in (2.3). For each prime factor ¢ of C' we choose a root
ay(f) of the Hecke polynomial X2 — a(q, )X +w™1(q)g** . Let f be the
unique form in Sor (NCp", w™1)[f] such that a(1, f) = 1 and Uqf = aq(f)f.
Let ¢ = @( f ) be the adelic lift of f. We impose the following assumptions:

e w has a square root w%;
e 1 and w are unramified outside p;
_1 1
e COF is the conductor of xwp?* (wp = w3 o N).
Note that these assumptions imply that the COp is the prime-to-p part of
the conductor of v. Define the matrices J», and t, for each integer n in
GL2(A) by

4d) T = (‘01 (1)> € GLo(R), ty = (?Dn pg") € GLa(Q,).
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4.4. Local zeta integrals. For each place v of Q we set fp s, = ®V|v IDsv-
Assume that ¢ has the factorizable Whittaker function W, (g) = [[, Wu(9v)
for ¢ = (gv) € GL2(A). We associate to each Whittaker function W, €
W(my,4,) a Bessel function By, : GLa(Q,) — C by

Bw,(gv) = / Wv(ggl‘l'(tv)gv)Xv(tv)il diy
QI\F

unless v = p is inert in F. Here dt, is the quotient measure of d*z, and
d*a, (see §2.6.1). This integral is absolutely convergent (see the proof of
Proposition 4.3). If v = p is inert in F, then we will explicitly choose a
Whittaker function W € W(W;/,i,b;l) in the proof of Proposition 4.5 so

that p(t)W = Xp(t)*lw. Recall the standard GL2(Qp)-invariant pairing
(. ) W(m,,vp,) x W(r), ¥, ") = C defined by

(Wi, Wa) = [ Wi(t(ap))Wa(t(ap)) d”ap.
Q;
Define the Bessel function By, : GL2(Q,) — C by Bw, (g) := (p(g)W), w).
The integral

(4.5)  Zp(s,Bw,) = / FD.50(Ng)wy(det g,) " Bw, (g) dgo
T(Qv)\ GL2(QU)

makes sense by (4.1), where dg, is the quotient measure of d"g, and dt,.

4.5. Convergence. In this and next subsections we fix a place v of Q and
suppress the subscript v from the notation. Thus

F=F3Qu vY=1, =1 b=, v=1,
T = Ty, @'D :®V"U@D,V 68(F2),....

Lemma 4.2. The integral defining Zp(s, Byy) converges absolutely for Res >
0.

Proof. Put T, = T(Q,). For W € W(x) we have

Zp(s, Byy) = / Iposg(ng)w(det 9) " By (g) dg
Ty\ GL2(Qq)

= / fpsq(ng)w(det h)~! / W (s, 'tg)x(t)~* dtdh
Ty\ GL2(Qq) QA\T,

-/ | oealutg)o(det(tg)) (s, Hg) dedg
Ty\ GL2(Qq) / Q4 \Ty
by definition. We combine the iterated integral to obtain

Zn(s, Buy) = / Fpsa(n9)(det g) W (s g) 7.
PGL2(Qq)
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First assume that v = ¢ = qq is split in F'. Since ng, = 51 and NSq =

(01
) <1 0),We get
. 0 1 i}
ZoeiBw) = [ foataelders) oaa( (1 ) )Wl
PGL2(Qq)

(4.6) = /N @ L@ )fp,s,q(g)w(detg)lwq«é _01> 9>W(9) d’g,

where W5(g) := W (g, fp,s5)- This is nothing but the local Rankin-Selberg
integral for GLo X GLg, which is absolutely convergent for Re s > 0.

Next assume that v = ¢ remains prime in F'. It suffices to show that the
integral

A [ S peam@@)e) e W )

converges absolutely in view of the Iwasawa decomposition. Since n =

51 <11 _09>, the inner integral is

(67 a) ‘5 1 ’S+2 //F ) |t|25+1<13<(0,t) (_11 _99> (g f))@b(x)dxtdx.

Put £ := puv~ a25+1. Let ® = ®&; ® $3. We may assume that |1 (z)| <1
and ®y(zc) = ( ) for z € F and ¢ € OF. Since the integral

) d
/ / 11 (—at) Do (0 — 2) |dXtdx</ / 1) w-mmﬁﬁ

converges for Re s > 0, the double integral (4.7) is absolutely convergent for
Res > 0. O

4.6. Local calculations. We shall compute the local zeta integrals Zp(s, By, )
occurring in the factorization of the global integral Zp(s, p(Jootn)@f). Put
vy = V|qx. Recall the normalized Whittaker newform Wr € W(m, v) (see

§2.6.3). For each prlme factor v = ¢ of C, if we write 7 = p, H v, with
04(7) = ag(f)g =, then

o 1 _

Wi 1= Wi —vg(q) lg]2 7(t(g™")) Wi
Then W, is characterized uniquely by Wﬁ(lg) =1land UqI/T/7r = 04(q) ]q\_% Wi

In the case v = p, we denote by Wfr’rd an ordinary vector of eigenvalue
a(p, f)p'~*. By our assumptions,

\ -

2

p and v are unramified outside p; xwp? is only ramified at primes dividing C.

Proposition 4.3. Let v # p be a place of Q which is split in F'. We have
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e Ifv =00 is the archimedean place, then B,z _yw, () 7 0, and

Zp(8, By(gooyw) = 4(=4V/=1) " 15, (=1)Tc(25 + k) - By )w, (Soo)-
e Ifv=gq and NC are coprime, then

1
Zp(s,Bw,) = L<23 + 5,7r & I/_T_l)BWW(Q]).

e Ifv=gqis a prime factor of N, then Bw, (sq) # 0 and

2)INC
Zp(s,Bw,) = W : L(23 + %,W ® V_:1>BWW(§q).

e When v = q is a prime factor of C, then By, (gng ) #0 and

¢(2)|INC e(0, x5
ZD(S,BWW):W-L(QS-F; ™ +1>(Cq(xlq))'B (§q§(§ ))

Proof. We first treat the archimedean case. Let W = p(Joo)Wr,.. By
definition, By (soon(x)) equals

/ Wi (t (2) Too) s (@)™ 1’/01(61)71 d*a

(o3 ) (~1) /0 e 2 (VD 4% = (j1,,170,) (—1)(20) H(1 + 2v/=T) FT()

by (2.7), where we have shifted the coutour of integration. By the Iwa-
sawa decomposition GL2(R) = B(R)K« and Remark 3.3, the local integral
Zp(s, By) equals

[ @ o ( (] ) ne))Butean(o) as

R N IS N )
R A

< [ (D14 a1 (x ﬁ)’“ . e

V1+ 2?2 V-1)k
I'(k) - _
= 2(2m) @RI (25 + k) - 4(—4) g, (—1).
e 22 IS ) A (1)
Let v = ¢ = qq be a finite split prime. Then
1 _ 1 .
(4.8) BWW(Cq):L<2’7T®Xq 1>:L<2,7T®Mquq 1)'

If ¢ and Nc are coprime, then
1 _ 1 1
Zp(s,Bw,) = L(Qs + = 5 Mg v, 1Vq 1)L(2,7rq ® g lyq 1)

by (4.6). The unramified case follows from (4.8).
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Suppose that v = ¢ divides NC. Then pq, pg are unramified, the conduc-
tors of vy and v are CZ,, and
s+1 :
We(t(a)) = pg(a) lal* "2 Iz,(a) ifq|C,
! WHa if q )f C

Here Wiy, is the spherical vector for Il = pza® B ryga™. Put

Uo(NCZ,) = {(;‘ :) € GLy(Z,)

We claim that fp 4 is supported in B(Qq)Uyg(NCZy). Indeed, if fp sq(9) #

0 for g = <(cl Z) € GL2(Qq), then @p4((0,t)g) # 0 for some t € Q.

According to the recipe in Definition 3.2, we find that (tc,td) € NCZ,®Z;,
and hence cd™! € NCZ,. Since fpsq4(12) =1, we see that

cE NC’Zq}.

Zn(s. B) =IGLa(2,) s Uo(NCZ,)] [ (g™ ) @lal** W (4(a)) Wi (b(a))a
Qg
q(2) INC] 1 -1 1 —1 -1
:WL 28—|—§,7T®I/+ L §,W®ua Vg o |-
The case of a prime factor g of N follows from (4.8).
Finally, we assume that C'is divisible by . Since Wy (t(a)) = g4(a) |a]% Iz, (a),

we have
B (C) _ T C -1 —1 d><
w s = [ Wi (5 ) st @aa

q

1 1
— [CJ} 0,(C) /Q al? x; " egl@)P(a)da,

q

where ®(a) = 9 (—a)lg-17,(a). The integral above equals

-1
(') [ @0 e
_ vol(C™1Zgy,da)
N 5(%0(5_19!1)
R c N ¢)
(2Xq ) 20,33 eg(C)[C)2
by the local functional equation (2.8) for GL;. In the final stage we utilized
(2.9). O

vol(1 4+ CZy,d”a)

Proposition 4.4. If v = ¢ remains a prime in F' and does not divide pNC,
then

_s 1 1
Zp(s, Bw,) = p(8) o] 2 L<2s + 507 ® uj)Bwﬂug).
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Proof. By assumption 7 and y are both unramified. Thus W, = W9 is the
normalized spherical Whittaker function, and so by the Iwasawa decompo-
sition GL2(Qq) = B(Qq) GL2(Z,), we have

Zp(s, Byo) = G(a) - WO (t(a)) d*a,
Q;
where
G = el fo TPsalm@@)w) ar
Recall that ®p , = ‘5@?]16*10 ws—10, and n =61 < ! _9>. Put ®° =
: 4®5710, 1 9

lo,e0, and & := ,uy_laifﬂ. The computation in the proof of Lemma 4.2

shows that

u(6) 1815 G(a) =’(‘F) /Q S (g™ (—ag™ " (0 — ) (x) da.

4 meZ

If F/Qq is unramified, then Byo(12) =1 and

Iz, (a).

v( -mz, v(a)

It follows that

b S o
Gla) = 753" Topa™s(a™) | blw)de =
m=0 q

2s
Zp(s, Byo) = /QX |ya(’a) Iz, (a)W°(t(a))d*a = L<2s + %,7‘( ® VJ:1>.

Next we consider the case where ¢ is ramified in F'. Then 6 is a uniformizer.
We see that

1 _ 1
Byyo(12) = WO(12) - |Ap|2 + WO(L(6)x ™ (0) |AF|2
from the decomposition F* = QO U Q Or6 and vol(OF, dt,) = |AF|%.
Writing m = p B v, a = o(q) and 5 = v(q), we get
_1 1 _ 1
16152 Bwo(12) = 1+ x(0) (e + ) la]? = 1+ () (071) |q]? (a+ B)

by the Iwasawa decomposition of ¥(#). On the other hand, u(9) |0 G(a)
equals

’(“ﬂ / Y (E(*)R(ab*, 07™(0 — ) + £(6°" 1)@ (a6, 6276 — 2))) () dar
9 meZ

=v(a)~" |a]* (Iz, (@) + £(0)Iz, (a) + £(07") la| - Loz, () -

Since

2 W0<(q§ (1)> >q_2ms”<q>_m — [ql***2 v(q)~ (a+B—aBu(q) " g*+? ),
m=1
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we conclude that
1
Zp(s, Byo) =u(671) |6]5° L<2s + 37 ® VJ:1>

x {1+£(0)+€07Y) [l a2 v(@) " (o + 8 — aBr(g) gl 2) ).

Since (,U,I/)|Q;< = w, the second factor equals

S — 1 — S 1
L+ (™) (0) [a* ™ + (m)(071) gl (a + 8 — (v'w)(q) |g**"2)
_1
=1+ (u)(07Y) |a]? (a+ B) = Byo(12) 16157 |
which finishes the proof of the ramified case. O

Proposition 4.5. In the p-adic case, if 71 = o B v with o unramified and
v(=1) =1, then for n > 0, we have

ngrd(gzgn))
7(25 + 3, Qerl

((2)
(r, (1)

Proof. We first assume that p = pp is split. Then F' = Q, ® Q, and
®) = Py ® Op, where &, =@ -1 ® ¢,—1 with v = p or p. From (4.6)

- 10 o T
Zp(8, By, ywerd) = / fp.sp(g)w(det g) le<<0 _1> g) W (gt,)dTg.
N(Qp)\ PGL2(Qp)

Put u(z) = (_01 :313) Using the integration formula

Byyena(5) # 0, Zp(s, By ywer) = )(w’lg)( ") P2

T, CP(2)
/PGLz(Qp) ig)d’g = (1)

for an integrable function h on PGL2(Q;), we see that Zp(s, B, ywerd)
equals

n(z))|a| ™ dyd*adz

2 @)1al*# s (Jin()) Wi(t(a)u(z)

ord 0 1 0 X
W ) e

~

Since fpsp(Jin(z)) = ¢,-1(x) by (3.4), if n > 0, then Zp(s, B, ypora)

equals

Cp(2) — S—
Cp(l)w(pn)/;/p(w lﬂp)(a)|a|

N

B, (2)Wi(t(@)u(a)) W™ (b(ap™)) dad*a,
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Since the function a — aygl(x)Wg(t(a)u(m)) has a bounded support uni-
formly with respect to x, if n > 0, then the integral is equal to

o) [ [ @ @) faf 8, @) Wit (@u(@) o)l 2z, () ded"a
=00 "1 [ [ 07 )@ ol 6, (Wit doda

Put Il; = pyo® B vya™. We use the local functional equation (2.10) for
GL> to see that the last integral equals the ratio of

L )@ al ™6, @Wi(t(a) T ) gri(a ™) dado

divided by

1 _ 1 1 _
7(8 + éwu‘pv ! ®Hp>: 7(23 + 27QV+1)’7<27QX’31>'

Since
W = QU = [ipVp Vs, t(a)J; 'u(z) = n(—az)t(—a), Ws(t(a)) = Hzg (a)

by Lemma 3.7, this integral equals

~

/X(Qll/p)(aﬂa]s Wp(t(—a))/ ¢,-1(x)P(—ax)dzd*a

Qp , P
:/QX Q(a)—l |a|*5 HZIT (G)Wﬁ(t(—a))dxa 1

P

On the other hand, we see by (2.8) that

Byyora(si) = / ) word <t(a) (’g _11> ) xp(a) " d*a

P

= [ olaplap" (-l (@ xsla) ! 07

1/2 vol(p™"Zy, da)
7(3.0067)

Now we consider the case where p is inert in F' and 7 is a principal series.
Using the decomposition GL2(Q,) = V(F™) - B(Q,), we have

Gp(1)
(3,061

—o(p™) Ip"| vol(1 + p"Zy, d%a) = o(p™) |p"["/?

ZD(Sa Bp(tn)WT?rd) = /

/ I spnt(@)n(@))(@) By (t(a)n(@)ts) |a] d* ada.
QP QP
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We proceed to compute

Fpsp(nt(a)n(z)) = <uu><6—1>fas,p(<_11 99) <3 i ) )

= (5 ) ofy [ Bop(ta b0 — ) )0 0%

_g—1 _
= (6wl [ ot — ) () 0%
FX
Since @pp = ¢,-1 @ 5,,_1, we find that

Fpsp(mt(@n()) = p(~ (s o]z 2 3,1 (a0 — a).

In particular, the function z +— gg,, 1(a=0 — z) has a bounded support with
respect to a. Hence for n >, 0

w(=1)v(8)Zp(s, By, ywerd) / / a)lal ™ ¢,-1(a 719—:c)w(a)leWT?rd(t(a)tn)dxada:
_ /Q vl@) ™ [af* @y(a)w(a) By (t(a” )t d¥a,

P

where ®3(a) € §(Q,) is defined by

Do(a) := by (z + af) dz.
Qp

Observe that if $2(a) # 0, then
1 —~
w(a) Byyora (t(a™")tn) = w(p™) ™ Byyera (J 't(ap™)) = w(p™) " o(ap™) [ap™ | Z(W),

where

207) = [ oft) il o (ats™ W (tl0)) 47t = [ o(0) o W (e(e)) 4"t

P D

for n > W 0. Thus we find that

u(=1)v(8)Zp(s, By, ywera) = (w1 0*) (0") !p”!Z(W)/QX(V1@)(a)|a!25+5 Py(a) da.

p

The last integral equals

1 ! 1 gy~
(v ger) [ @l g

by (2.8), where
5Q(Q) :/ al/—l(m + y@)'z/)(ay) dedy = / au—l(z)q/)F(a(Silz) dz = ¢V—1(_a571)'
» v Qp F

We conclude that

1 - - - ny [N 7
Zo(5, By pwet) = (25 3002t @ AN 7o) - 207,
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On the other hand, for n > 0,

l o~
Byyora(s§) = o(p") [p"]2 Z(W).

The following lemma will complete our proof. O

Lemma 4.6. Z(W) # 0.

1 1

Proof. Let & :== x~tvp. If € is unramified, then so is QQ; =w ? = o1y,

which implies that both 7 and x are unramified, so that W is the spherical
Whittaker function, and

Z(W)=L(1,7V ® o) # 0.

_1
Suppose that § is a ramified character. Since ywj? is assumed to be unram-
ified, we find that c({]Q;) =c(o ) =c(w) > 0. Let f € v ' H o ! be the

unique section such that

“((a b _ -1 -1]@

(6 2)e0)=vt o]
for a,d € Q;, b € Qp and t € F*. Then we can choose W(g) = W(g, ]?),
and W(t(a)Jl) equals

/S: f((?cl _0a> >¢(—$) dz = o(a)"! |a|? /QS: f((;l _01) )¢(—am) da.

a0

Since
-1 0\ (N@zfd-1)1 x«
(m _1)_( . 1>\I/(:m9—1),
we find that
_ _ 1 50 g(x0 -1
W(t(@n) = o) alt [ =Dy an)ae,
Q |20 — 1]

Put &y (x) := 5(55_9_1) L,-~gz,(z). We have seen that

for N > B, where
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Note that I; = 0 unless j = ord,(a) + c¢(w). Recall an additive character )“
defined by ¥*(x) = ¥ (ax). Then

oot = 6002~ 5007, 972 ) = @)oo (-allal e 5,007

by (2.9). Since pv~! is ramified, we get

27) = [ (Bala) + €0)e )l (500 Jpor-cg, @) ) o] a7

—5(0)Gy(1) £ 0.
]

4.7. The explicit pull-back formula. Now we are ready to give the ex-
plicit formula of Zp(s, p(Jsotn)ps). The notation is as in §4.3. Let 7p be
the quadratic Dirichlet character associated to the extension F/Q.

Theorem 4.7. Let \ be a Hecke character of A* of p-power conductor and
¢ be a finite order Hecke character of A} with ¢|ax =1 and the conductor

1
COp. Put x = wpo and
1
D = (w2Ap, ¢ AL kM, 0).
Forn > 0, we have

Zp(3, p(Jooln)Pf) _ 1 ip} 1 (I
B;f(j . (<o) =1L 23—1—5 7r®u+ 2s+§,gpu+7p

— n n|2 Cp(z) L(lvTF)fooframe’
x (wp 10p) (") 191, () CQ@BLa(2) : To(NO)"

where foo, fram and fo are local fudge factors given by

Foo 1= 4(—4v/=1) 7" (A 0o )(—1),  fram = H wq |AF|Qq )
qlAr
L (0 )
fo =] ws(C -
Heateh=g

Proof. There exists a nonzero constant ¢ such that B3(g) = ¢[], Bw, (gv)
for ¢ € m with W,(g) = [[, Wu(gv) by the uniqueness and the existence of
the Waldspurger models. Put

0 = p(Tsctn)r, Wo = p(Je) W, Wy = plta) W2,
The Whittaker function of ¢* is given by

Wor (9) = W (goo) - Wi (gp) - [ Wy (90) T Wee(90)-
qlC opC
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It follows that

B;)J((Joo)qﬁf(g(cpn)) = cBwg, (S0) - Byygra (%gn)) : HBWM (<q<,§C>) H W, (se)-
q/C 4pC

On the other hand, Theorem 4.1 gives

ZD(S, p(jootn)(,@f) = cM

CQ(Q) . ZD(S, ngo) . ZD(S, ng) H ZD(S, Bwﬁq).

q#p

1
Theorem 4.7 now follows from Propositions 4.3, 4.4 and 4.5 with p = Wi AR,

1
V= cb*l)\;wl and X = wpo. (]

5. THE CONSTRUCTION OF p-ADIC TWISTED TRIPLE PRODUCT
L-FUNCTIONS

5.1. Notation. Define the p-adic cyclotomic character by

Ecye : Q\NA™ = Z7,  ecye(a) = laly alay.
Let w : Q*\A* — p,-1(Cp) be the Teichmiiller character. Fix isomor-
phisms 1 : Q = C and ¢, : Q < C,, once and for all. For every arithmetit
point Q € X, we shall view the finite part g as a Hecke character of A via
egla) = LOOL;1(6Q(€Cyc(a)w_l(a))). The set of embeddings ¥r = {01,02}
from F' to R is identified with Gal(F/Q) via (.

Let O = Oy, for some finite extension L of Q, containing ¢,(F). Let
A = O[1 +pZ,] and write [-] : 1 + pZ, — O[1 + pZ,]* for the inclusion of
group-like elements. Let u = 1+p. For a variable X, let (-) i : Z)0 — Z,[X]*
be the character defined by

logpa
(5.1) (a)y = (14 X)'oepm,
Write N = Np/q : ' — Q for the norm map. If a is a fractional ideal of F’
coprime to p, put (a) y = (N(a))y. If Iis a finite extension of A, recall that a
point ) € SpecI(C,) is called a locally algebraic point of weight k and finite
part € if the map Q|a : 1+ pZ, l> A% 2 Q; is given by Q(z) = zFe(x)
for some integer k¥ > 1 and a finite order character € : 1 4 pZ, — iy (Qp).
For a locally algebraic @, denote by kg the weight of @ and eg the finite
part of Q). Let %f be the set of locally algebraic points @ in Spec I(C,) with
kg > 1. A locally algebraic point Q) € %;r is called arithn/l\etic if k:QAZ 2.

If A and B are two complete O-modules, we write AQB for AQnB for
simplicity.

5.2. Preliminaries on Hida theory for modular forms. Let I be a
normal domain finite flat over A. Let N be a positive integer prime to p
and let x : (Z/NpZ)* — O* be a Dirichlet character modulo Np. De-
note by M(N, x,I) the space of I-adic modular forms of tame level N
and (even) branch character x, consisting of formal power series f(q) =
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Y ons1aln, £)¢" € Ifg] with the following property: there exists an in-
teger ay such that for every point Q € X{ with kg = 0(mod 2) and
kg > ag, the specialization 1,(f(q)) is the g-expansion of a cusp form
fo € M, (Npe,xwz_erQ). For a positive integer d prime to p, define
Vg @ M(N,x,I) = M(Nd, x,I) by Va(3>,a(n, f)¢") = dY, a(n, f)g™.
Let S(N, x,I) € M(N,x,I) be the space of I-adic cusp forms, consisting of
elements f € M(N, x,I) such that f is a cusp form for a Zariski dense
subset @ € %fr

The space M(N, x,I) is equipped with the action of the usual Hecke op-
erators Ty for £4 Np as in [Wil88, page 537| and the operators Uy for ¢ | pN
given by Uy(>_, a(n, f)g") = >, a(nl, f)¢". Recall that Hida’s ordinary
projector e is defined by

. |
e:= lim U;'.
n—oo

This ordinary projector e is a convergent operator on the space of classi-
cal modular forms preserving the cuspidal part as well as on the spaces
M(N, x,I) and S(N, x,I)(cf. [Wil88, page 537 and Proposition 1.2.1]).

For a divisor M | N, let T(N,M) C EndS(N,x,I) be the I-algebra
generated by Hecke operators {Tq}qu and {Uq}q‘Mp. The space eS(N, x, I)
is called the space of ordinary I-adic forms defined over I. A key result in
Hida’s theory of ordinary I-adic cusp forms is that if f € eS(V, x,I), then
for every arithmetic points Q € X7, we have fo € eSkQ(Npe,xwszQeQ).
We say f € eS(N,x,I) is a primitive Hida family if for every arithmetic
points Q) € X1, f is a p-stabilized cuspidal newform of tame conductor N.

Let T°"(N) be the image of T(N,N) in End(eS(N, x,I)). A classical
result in Hida theory for modular forms asserts that T°'(N) is a free of finite
frank over I. Let f € eS(IV, x,I) be a primitive Hida family. Then f induces
the I-algebra homomorphism Ag : T"4(N) — I with A\¢(T}) = a(q, f) for
q 1 Np and A\p(Uy) = a(q, f) for ¢ | Np. By the primitiveness of f, there
exists an unique idempotent 15 in T°"4(N) ®p FracI such that Ag(15) = 1.

Remark 5.1. Recall that the congruence ideal C(f) of f is defined by
C(f) = Ap({t e TYN) | 14t =t}) C 1.

By definition, C(f) - 1§ C T°'4(N) and C(f) is the annihilator of the con-
gruence module of As. For each arithmetic point @ € 35;“ , let po = ker Q.
By control theorem for the Hecke algebras and the congruence modules
(cf. [Hid88b, (0.4b), (5.8a)]), we find that Q(C(f)) is the congruence ideal
for Ag,, : T"(N)/pg — I/pq. In particular, this implies Q(C(f)) # 0 and

hence 1¢ belongs to the localization Tord(N)pQ at pq.

5.3. A two-variable p-adic family of Eisenstein series. We shall make
the identification

(5.2)  ARA=0[X,T], X=(u-1)®1,T=1® ([u] -1).
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Let (x1,x2) be a pair of finite order Hecke characters of A% of level pOp
and pCOp respectively. We assume that (x1,x2) satisfies Hypothesis 3.1
and x1x2 is totally even. A Hecke character x of A% will be viewed as a
ideal class character by

x(9) = x(o7g) !
for any prime ideal q away from the conductor of x. Define the AQA-adic
g-expansion by
— B e ASAlRT
E(x1,x2)(X,T) :== > Aslax2)d® € ABA[ ],
pea L (p,(8)=1
where Ag(x1,Xx2) € A®A is defined by
As(x1.x2) = {(B)x (BN 7" X1 () [ [ Poalxaxa (@) (%" (@)7)

gfep

X H Qs ol (@7),
c

q

where Pg 4 and QX1X2_17q are polynomials defined in (3.5). If R is an Op-

algebra, the theta operator 0, € End(R[[qa:rl]]) for 0 € Gal(F/Q) is defined
by

(5.3) HU(Z agqﬁ) = Z U(ﬂ)agqﬂ.
B

B
For Q € X, let £ be the finite order Hecke character of A7 given by

g = eQw_kQ oN.

Proposition 5.2. For every (Q, P) € .'{X X %X with kg < kp, we have the
interpolation

ke kPE;E;P kQ(leélfp, x26p')  if 2kp > ko
9kQ_1EkQ_2kP+2(X1§{21§P7 X285t if 2kp < ko,

where § = 05,0, is the theta operator 0(3_ 4 agq’®) = PP N(B)agq”.

E(x1,x2)(Q, P) =

Proof. Let = Xlﬁélfp and v = X2§;1. Put k = 2kp — kg. For an integer
n prime to p, we have

As(x1,x2)(Q, P) =N(B)k e~ r 1= ((8) [ [ Pa.a (i (a)ak)
afep
x T Qa0 i ™ (a)a).
ql(c,B)

~! is unramified outside p, one verifies that

Qxflxz,q(Xl_lXZMVil(q)X) = Quflvvq(X)'

Since X1_1X2/~W
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By Corollary 3.8, we find that

N(ﬁ)kQ—kP . O'+(Mv v, k) if k >0,
P) = 7
As(x1, x2)(Q, P) {N(ﬁ)lkJrkPl ‘o5 (2 -k) ifk<O0.

The proposition follows immediately. ([

5.4. The construction of the twisted triple p-adic L-function. For
any Op-algebra R, define the diagonal restriction map by

resp/q R[qbllﬂ — R[q], resF/Q( Z agqﬁ): Z( Z ag)qﬁ.

pevt n>0 - pgeyt
Trp/q(B)=n

For an even integer a and a finite order Hecke character
(54)  ¢: FX\AX/O% — O* such that ¢,(—1) = (—1) for o € Xg,

we define the two-variable g-expansion EE;] (X,T) € A@A[[qajrl]] by

a—j _a
EJ/(X,T) = Bwy wp?9)(1+X)? —1,(1+1)/7 1)
and define its diagonal restriction G (X, T) € A@A[q] by
GYN(X,T) = resp)q (B (X,T)).
We regard A as a subring of AQA via z — xz ® 1. Let
Xt ={Qex{ | kog=0(mod 2)} C X{.

Lemma 5.3. The g-expansion G[;] belongs to M(NC,w =2, )@ (A @ A).

Proof. Let Z = (1+T)(1+ X)™' —1 and write G(X, Z) = GlU(X, (1 +
X)(1+42)—1). If ¢ € pp(C) is a p-power root of unity, let a¢ : A7 — C*
be the Hecke character a¢(a) = (N(a))y |x=¢c—1. By Proposition 5.2, for
any point Q) € f{;r+, we have

G(Q’C - 1) = E]:_Q/Q(:U‘Q,Q VQ,C)LVJ S MkQ (CN7 wj72£Q)7
a—j _a _1
where pg¢ = wp* a¢ and vg ¢ = szag_ngQ. This shows that G(X,{ —
1) € M(NC, w2, A)®00|[(] for every ¢ € pp=(C,). By [Hid93, Lemma 1 in
page 328, we see that G € M(NC, w2, A)RO[Z] = M(NC, w2, A)@x(ARA).
([

In view of the above lemma, we can apply the ordinary projector e ® 1 to
G!% and obtain an A-adic ordinary modular form eG([Z] =(e® 1)G([;] with
coefficients in AQA.

Lemma 5.4. We have eGE;} € eS(N, w2, M )D(ARDA).
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Proof. Notation is as the above Lemma 5.3. For (Q,() € X771 X e (C)

as above, let 1 = pg¢ and v = vg¢. Then G(Q,( — 1) is the diagonal

restriction of the holomorphic Eisenstein series Ele /2(/% v). The adelic lift

of B} Jolp,v) is given by Ep(g, fps)| _kg/e-1 with D = (v, kq/2,M,¢).
@ s=—5—

By (3.2), the constant term function of Ea(g, fp,) is given by fu,aop.s +

fivép.s and by (3.6) its values at g € GLa(AF) all vanish whenever g, is

upper triangular. The lemma follows from [HY20, Lemma 6.7]. U
Definition 5.5. Let

f=> a(n, f)g" € eS(N,/ % 1)
n>0
be a primitive Hida family. The p-adic twisted triple product L-series £ Bl f
¢ b

is defined by
:= the first Fourier coefficient of lf(eGE;]) € (I®A) ® Fracl.

By Remark 5.1, £ ) f(Q, P) is finite at every arithmetic point @ € X{ and
¢ b
P € Spec A(C,).

5.5. The interpolation formula of the p-adic twisted triple product
L-series. Define the weight space of critical points by

(5.5) XM :={(Q,P) € X{ x X} | kg > kp, kg = kp = 0(mod 2)}.
The purpose of this subsection is to give the precise formula of £ pla] f(Q, P).
d) b}

We begin with some notation. For an arithmetic point @, denote by fz?
the normalized newform of weight kg and conductor Ng = Np"®@ corre-
sponding to fq. Let ”.fOQH%O(NQ) be the usual Petersson norm of f¢, and
let &,(fg,Ad) € C* be the modified p-Euler factor for the adjoint motive
associated with f defined in [Hsi20, (3.10)]. Define the modified period

(5.6) Per'(fq) = (—=2V=D)" " f§1F (vg) - En(f o Ad) € C*.

Let of,p : Q, — C* be the unique unramified character with

1-k

(5.7) 0fop(P) =alp, fo)r 2

Definition 5.6 (The test vector). Let eS(NC,w’~2 I)[f] be the subspace of
eS(NC,w’~2 1) consisting of ordinary I-adic forms h such that th = Ag(t)h
for all t € T(NC, N). For each prime ¢ | C, let {aq(f), 54(f)} be two roots
of the g-th Hecke polynomial H,(z, f) := 2% — a(q, f)z + ¢ 'w’(q) (¢) x-
We fix a choice of roots {ay( f)}q‘c. Enlarging the coefficient ring O if
necessary, we can assume oy(f) € I. Let f be the unique Hida family in
eS(NC,wi=2 1)[f] such that a(1, f) = 1 and U,f = a,(f)f for ¢ | C.
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N

_ 1 ~
Proposition 5.7. Let (X, T) := (ArC) > (Ar)} € (A®A)*. For every

(Q, P) € X" we have
kQ

(_2)(_05\/ _1) 2 L(LTF) .BzCQ(g(Cp"))

Hq|C C‘I<1) fo

L{p}(kp — @,ﬂ"fQ &® wa_kpép)

PerT(fQ)

ﬁEE;]’f(Q,P) =

kg +1
2

x (—y/—1)kr1
X f(QvP)Ch

v(kp -

_1 kg-2
where xq = ¢ - GQQw 2~ oNp/q and c; is the constant

wy 2 (C)wp® (AF) [ (0, 6q) € Zyy,-
qlc

a=j

c1 = 4(—1) 2

Proof. Since f( is a p-stabilized newform of tame conductor N, by the
multiplicity one for new and ordinary vectors, we have

(5.8) Lo Tonepw (e(GUH(Q. P))) = L ((Q.P) - Fo.
We put
(5.9) w2 = e_%wg and \ = e%wa_zk

. 0 2

Put k1 = kg/2 and ky = kp/2. By Proposition 5.2, we have

1
ok B L (WEAR AR'®) if 2ko > ky,

E{(Q.P) = 1
’ O M B o (WRAR, AR ) if 2k < K.

Applying the argument in the proof of |[Hid88a, Lemma 6.5(iv)]|, it is not
difficult to see that for a Hilbert modular form h over F' of weight (k1, k2)
and non-negative integers a, b,

(5.10) e Hol (0, 0,080 0uP)ls) ) = € ((62,08,1)]5)

where 0g, 5,’;2’ o, 18 the Maass-Shimura differential operator and Hol is the
holomorphic projection as in [Hid93, (8a), page 314]. It follows that

(5.11) eGU(Q, P) = e(E(Q, P)ly) = eHol(E'|),

where

(5.12) D L sy (WIAp, AF10) if 2o > Ky

1
0 B o o (WEAR, AR G) i 2k < Ky
where 67 = 07" 87" . Let f := fg € Sio (N, eqw? @) and let

k,o1"k,02°

o5 = B(fo) € Al (NP \w), w=eglwhe.

—k _
0fop @wp Tepp)

1
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Let n be a sufficiently large positive integer. Let J and t,, € GL2(A) be the
matrices introduced in (4.4). Let [—, —] : .AQQ (Np™, w) X Ak (Np",w) — C
be the pairing defined by

[p1, 2] = (p(Tootn)p1 @ w ™, 02),

where (, ) is the pairing defined in (2.2). Pairing with the form ¢;® on the
adelic lifts on both sides of (5.8), we obtain that

(513) £E£§L]7f(Q7P) : [Safa(pf]: [@f:1fQTrcN/N€¢(H01(ET‘5))]a

where 1¢, € (ToY(N)/pg) ®C C End eSkq (Np"™,w™1) is the specialization
of 1y at Q. Since the Hecke operators {Tq}qu and U,, the holomorphic
projection Hol and the trace map Troy/n are self-adjoint operators with
respect to the pairing [—, —] (¢f. the proof of [Hsi20, Proposition 3.7]), we
thus obtain

(5.14) Ly (@ P) - [or,04]= [Uo(CN) : Uo(N)] [or, 2(E"19)].

On the other hand, according to (5.12) and Proposition 3.5, we have
O(E'o) = Ea(9, fps)] _2ta-1a-1, 9 € GLa(A),

where D is the Eisenstein datum

1 k
(5.15) D= (wiAr, o 1AL, TQ’ ¢, N).

Therefore, from (5.14) we see that

£, P) - o701 =ICo(CN)  To(N)] - (p(Toctn) o1, B (= fp.0) @), _atass
=[Co(CN)  To(N)] - Z (s, p(Toct )1 _mia s

By [Hsi20, Lemma 3.6], we have

(05 0f] = (p(Txtn)pr @ w™t, p)

~1
- [Sszg)(Q:)PO(N)] (=2V/=1) et Perl(f) -

w, Lot (p") P"lq, ¢ (2)
Cp(1)

Then we have the interpolation formula

Ll (@ P) =Zp(s, p(Tootn)p1))l _ tphg/a-1

. $a(2)[SL2(2) : Lo(CN)J(=2v/=1)re Gp(1)
Per!(fq) wp ' 03 (P") P q, G (2)
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for any sufficiently large positive n. From the above equation and the formula
of Zp(s, p(Tsctn)@y) in Theorem 4.7 with the fudge factors given by

foo = 4(—4y/—1)7Fe/2(—1 HZ*P,

fam =B85 F = (AR Q) (AR ()T () 5%,
. e0:94) _ 173 (o). Wb e(0,¢q) - te

fC_ P( )](;c[ Qq(l) <C>X (Q) P (C)Ec[ Cq() C >

we get the desired interpolation formula by noting that

_ @, P~ Yo o Ty—ko—1( /7 —kp
Foolramf = ey (VIO - (F2VED) TRV

O

6. p-ADIC L-FUNCTIONS FOR MODULAR FORMS OVER REAL QUADRATIC
FIELDS

In [BD09], the authors construct a square root p-adic L-functions for Hida
families over real quadratic fields, interpolating the toric periods integrals of
Hida families over real quadratic fields. The purpose of this section is to give
a mild improvement of this construction and give more general interpolation
formulae.

6.1. Preliminaries on modular symbols. We review the theory of clas-
sical modular symbols in the semi-adelic language. Let P := P(Q) and
let Dy := Z[Div’P] x GLy(Q). For each r € P, denote by {r} its im-
age in the divisor group of P. Let v € GL2(Q) and u € GL2(Q) act on
= ({r} = {s},9r) € Do by
vDu = ({y-r} = {v-s},7g1u).
For a ring R, let L, (R) be the space of two-variable homogeneous polyno-

mials of dergee n with coefficients in R. For P = P(X,Y) € L,(R) and
g € GLa(R), define

P (a Z) (X,Y) = P(aX +bY,cX +dY),
Let L}(R) = Hompg(L,(R),R). If R is a p-adic ring, let GLQ(i) acts on
L} (R) by (pn(u)€)(P) = &(P|up). For an integer N and a Hecke character
x modulo N valued in R, we denote by MSk(N, x, R) the space of p-adic
modular symbols of weight k, level N and character y, consisting of maps

£: D9 — Lj_5(R) such that

E(vDu) = X~ (u) - pr—2(u, 1 E(D) for v € GL3(Q),u € Uy(N).
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This space MSi(N, x, R) is known to be a finitely generated R-module
equipped with the Hecke action. The Hecke operators Ty for ¢ t+ Np act
on MSk(N>X7R) by

- 10 q b

on  mem=¢(n(y 1))+ X «(o(d V)
beZq/qZq
the operator Uy for ¢ | N, ¢ # p is given by
_ q b
(6.2) UgD)y= > g(D (0 1)) for ¢ | N.
beZq/qZq

and the operator U, is given by by

_ p a p a

a€Zy/pZy

The ordinary projector e := lim,, 00 U;)“ is a convergent operator on MSk (N, x, R).
Choosing any element v € GL2(Q) with dety < 0, we define an involution
[c] on £ € MSk(N, x, A) by

[c]¢(D) :=¢&(v- D).
This definition does not depend on the choice of such v. We define

rom () e om (15

6.2. Modular symbols associated with modular forms. To each clas-
sical cusp from f = f(z,gf) € Sk(N,x), we associate a classical modular
symbol n¢ : D9 — L;_,(C) defined by

nr({r) = (s} 90(P)i= [ F.0 PG 1)
It is easy to see that for « € GL (Q) and u € Up(N),

ng(aDu) = pr_s(@)ns(D)x " (u).

The involution [c] acts on the classical modular symbol 7 by [c]ns(D) =
pr—2(7)ns(yD), where v € GL2(Q) is any element with dety < 0. By
definition,

[clns (D) = —ny, (D),

where f,(z,9t) = f(—%, <_01 (1)> gf). On the other hand, the associated

p-adic modular symbol &5 € MSj(N, x, Cp) is defined by

(6.3) Er(D)(P) = 1p(ng(D)(Plg, 1)) for D = (d, gr) € Do.
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If f is a Up-eigenform with the eigenvalue a € Z;, then &y is also an eigen-
vector of U, with eigenvalue a. Following the discussion in [Kit94, p.95|, for
each D € g we define the p-adic measure ps(D)(x) on Z, by the rule

(6.4) / . pp(D)(z) = a (D <pg ‘1‘>)(YH) for n € Zo.

Lemma 6.1. For any P € Ly_»(Z,),

[, P =aem (e 9

Proof. This is [Kit94, Lemma 4.6]. We paraphrase the computation there
in our semi-adelic formulation. Note that {; has bounded denominators in
the sense that p4 - & € MSi(N, x,Z,) for some A > 0. Let 0 < j <k —2
be an integer. For every m > A 4+ n, we have

«a(p (1) (ol D)

m—n—1

_ 7mp g D pm a’+pnc ijk‘72fj‘ pm a’+pnc
=" ) g 0 1 0 1
c=0

=a ™ zc:(a +pe)es <D (po “ +1pnc> ) (Y572 (mod p™1Z,).

Therefore, we find that

m—n—1

p
j —m noNd M a+p'c _
[ a0 = 3 o X g (o (% 1) ot
a+p"Zp m—o0 c=0
n " oa ko (P a
~e(o (5 5)) (e (5 5))
This shows the lemma. O

6.3. Hida theory for modular symbols. We review the I-adic symbols
developed in [Kit94] in the semi-adelic formulation. Let I be a normal and
finite domain over A = O[X] with X = [u] — 1 and let N be a positive

integer coprime to p. Put
b
uy = (g 1>,aezg,bezp}.

For each non-negative integer n, let (™ be the principal ideal of I generated
by (u=2(14+X)—1)P" —1. Define the A-adic Hecke character ccx : Q*\A* —
A* by

Ul(Npoo) = {u S Ul(N)

ax(z) = (Ecye(2)) x <€cyC(Z)>72
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Definition 6.2. Define the space of I-adic modular symbols of tame level
N by

MS(N, 1) := lim lim MSz(Np"™, ax,1/p™).

n m
In other words, MS(N,I) consists of continuous functions = : ®y — I such
that
(yDu) = E(D) for v € GL3 (Q) and u € Uy (Np™);
(Dz) = ax(z71) - E(D) for z € Q%;
e = is continuous in the sense that for any n, there exists r, such that
the function = : ® — I/p™ factors through Do/U; (Np'™).

(1] [1]

The space MS(N,I) is an I-module equipped with the action of Hecke
operators {Tg} ., abd {Ug}, y as in (6.1) and (6.2), while the Up-operator

is defined by
- - P a
U,E(D) = E :(D (0 1) )

a€Zy/pZy

For (d,pN) = 1, define the level-raising operator Vyz : MS(N,I) - MS(Nd,I)
by

(6.5) ViE(D) =d L - E(D (d(_)l [1)) )

The involution [c] on MS(N,I) is defined by [c]2(D) := Z(yD) for any
v € GL2(Q) with dety < 0. Put

eMS(N,I)* := (1 £ [c])eMS(N,T).
The ordinary project e = lim U, exists in End; MS(N,I). The space

n—0o0

eMS(N, 1) is called the space of the ordinary I-adic modular symbols. We
remark that eMS(N, 1) is nothing but M S°"4(I) = Homy(UM4(0),1)
defined in [Kit94, §5.5]. The following is proved in [Kit94, Proposition 5.7].

Theorem 6.3. The space e MS(N, 1) is free of finite rank over I.

We recall the I-adic measure associated with ordinary I-adic modular
symbols. Let C(Zjp,I) be the space of continuous I-valued functions on Z,
and D(Zy,I) := Homy(C(Z,,I),I) be the space of I-adic measures on Z,. To
each ordinary I-adic modular symbol = € e MS(N, I), we associate a unique
linear map D — pz(D)(x) in Hom(®g, D(Z,,I)) such that for D € ®( and
PeC(Z,I)

(6.6) /Z P=(D)() = n}i_r)rloopmzlP(a)UIij<D <p(;” Cll) )e I

a=0

It is straightforward to verify that the right hand side is a p-adically con-
vergent Riemann sum valued in I. For P € C(Z,,I) and u € Uy(p) with
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Up = <CCL Z), define

(6.7) Plu(z) = p(

Lemma 6.4. For P € C(Z,,I), we have
(1) For m € Z=Y,

/p ., PE=(D)) = / PO (D (pg" 2) )

(2) For u € Uy(pN), we have

ar +b
cr+d

> oux (ca + d).

P@)uz(Du)(a) = | Plu(@)uz(D)(x).
Z, Z,

Proof. The verification of part (1) is straightforward by (6.6). To see part

(2), it suffices to show the equation for u, of the form <i ?) and <8 Z) :

Let u, = <i ?) with ¢ € pZ,. By definition, the left hand side equals

p"—1

. —me 1 0\ /p™ a
i Z_(:) P(a)U, “<D <c 1) (0 1>>
= lim pm_lP( yu-mz(p (P el +a™h (A+ag™ 0
T m5oo g “ P 0 1 cpm 1+ac )

Making change of variable a = z(1 — cz)~!, we find that the last Riemann
sum equals

pm—1 m
. —1 —m= D z —1
n}gnoo ZO P(z(1—c2)")U, H(D ( 0 1) )aX(l —cz)

= [ P2 7))

The case for u, = ( b> is similar. We omitted the details. O

a
0 d

For an arithmetic point @ in %EL , we denote by pg the kernel of the
specialization @ : I — C,. Let O(Q) = I/pq and let rg = max {1, c,(eQ)}-
Here ¢y (eq) is the exponent of the p-conductor of €. For any O(Q)-algebra
A, we put

MSFYA) = eMSy, (Np'?, w* F2eq, A).
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Theorem 6.5 (Control Theorem). For each arithmetic point Q, there is a
Hecke-equivariant specialization isomorphism

spg: eMS(N,I)/pg ~ MSFO(Q)),
E(mod pg)  spg(E) == Eq,
where Zq is the p-adic modular symbol of weight kg defined by

EQ(D)<P):Q< / P(a:,wE(D)(x)), P(X.Y) € Liy2(0(Q)).

We call Z¢ the specialization of 2 at Q.

Proof. First we note that Z¢ is a p-adic modular symbol of weight kg and
character wQ_erQ by Lemma 6.4. It is straightforward to verify that the
map sp, is Hecke-equivariant, so Z¢ belongs to MSggrd(O(Q)). We proceed
to show spg is an isomorphism. Let n = kg — 2, O = O(Q) and xq =
ax (mod pq) = egy.w "eg. We have

eMS(N,1)/pq = @@eMSz(NpT, XQs o/ph).
t r

For any Z,-module R, define ¢, : L} (R) = R, ,(¢) = ¢(Y™). By [Kit94,
Corollary 5.2], ¢, induces a Hecke-equivariant isomorphism

tn: eMSyo (Np", eqw™", O/p") ~ eMSy(Np, xq,O/p") for r > t.

Note that 1,(EqQ(D)) = E@(D)(Y") = Q(ZE(D)). We deduce that spg, is
indeed given by the isomorphism

MS(N, 1)/ pq = limlim eMS, (N7, xg: O/r)
t T
1
& @@eMSkQ(NpT,GQw_",O/pt) = eMSp, (NP2, eqw™, 0),
t T

where the last equality is the base change property [Hid88b, Lemma 1.8
and Corollary 2.2] for ordinary p-adic modular symbols. This completes the
proof. ([l

Remark 6.6. Let L{, be the set of primitive elements in Z,, x Z,,, consisting
of elements in Z, x Z,, which are not divisible by p. We recall the connection
of A-adic symbols and the modular symbols with valued in the space D(L{)
of p-adic measures on L, described in [GS93, §5]. For each k € C, with
k|, < 1, let Qx € Spec A(Cp) be the unique point with Qx([u]) = u” and
let .%; be the set of homogenous functions of degree k on Lj, i.e. continuous
functions h : L{j — Z, such that h(az,ay) = (@) h(z,y) for all a € Zy.
Then to each = € eMS(N, A), we can associate a modular symbol uSS €
Homyy, vy (Do, D(Ly)) characterized by the property that any k € Z, and
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h € %o, we have

/prz; h(z, y)pg™(D)(w,y) = Qs </ Wz, 1)@1})(@);

Zy,

/z; . h(z, y)ugS (D) (z,y) = Qk (/Z h(1l, —py) 1= (D (_Op (1)> >(y)>-

P

By a similar computation in Lemma 6.4, one verifies that the map ,ug's is
Up(N)-invariant, namely for any u € Uy(N)

(6.8) /L B (2, y)uSS (D) (z, y) = / Wz, y)uSS (Du)(z, ).

Ly
6.4. The Mazur-Kitagawa two variable p-adic L-functions. Let f €
eS(N,1,I) be a primitive Hida family of tame conductor N and let A :
T(N,I) — I be the corresponding homomorphism. For any integer C' prime
to N, let e MS(NC,I)*[f] be the space of I-adic ordinary modular symbols
= € eMS(NC,I)* such that t-= = A\¢(¢)Z for all t € T(NC, N). The space
eMS(N,1)*[f] @1 FracI has a rank one over FracI as f is primitive of tame
conductor N. For an arithmetic point @, the space MSgd(O(Q))i[_fQ] is
free of rank one over O(Q). On the other hand, Shimura in [Shi77| proved
that 0 # 5}; € MS&rd(Cp)i[fQ]. Therefore, having fixed a basis ﬂ}tQ of

MSgd(O(Q)), we can define the period QJTQ € C, associated with the
p-stablized newform f g by

/
0

+ _ 0ot pt
&f Q 2 Q By Q'
Definition 6.7 (p-adic error terms). Let = € e MS(N,I)[f]. We define the
plus/minus error terms Er® (Eq) € C, by the equation

e
To each 2 € eMS(N,I)[f] and a finite order Hecke character x with
x(=1) = (—1)*, Kitagawa in [Kit94, Theorem 1.1] associates the two-variable
p-adic L-function L,(Z, x) € I®A satisfying the interpolation property: for
every pair of arithmetic points (Q, P) € X{ x X} with kg > kp,

L} (kp — @’ Tty @ xw FPep)

Lp(E,0)(Q, P) = (—v _1)kp_1 ' Q(—l)i
(6.9) fa
ko+1 _ I
X 7<kp — T g P Wy kPer) ErV(Eg),
Note that the relation between L-functions associated with modular forms
and the automorphic L-functions is given by

kg +1 _
L<kp — QT’ﬂfQ ®X>: 2(27T)1 kPF(kp —1)-L(kp — 1,fQ ® X)-
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6.5. The square root p-adic L-functions associated with Hida fami-
lies over real quadratic fields. We review the construction of the square
root of p-adic L-functions for Hida families over real quadratic fields in
[BD09]. Let Fy be the group of totally positive elements in F' and let
CIH(O¢) == FL\F*/ @é denote the narrow ring class group of conductor
C. For t € F*, write [t] = Fyﬁ@é for the class represented by t. Let ec be
a generator of the units group F; N @é Let Py(X,Y) = (X —0Y)(X —0Y)
and § =0 — 0 = /Ap. Define 9x: Z; — A= by

Ix(z) = (o)} ()"
So ¥% = O‘X’Z,f' Let ¢ be a finite order Hecke character of A% as in (5.4).
Equivalently, ¢|5, is an even/odd character of C1"(O¢), depending on the
sign of ¢oo(6) = (—1)% or the parity of %

Definition 6.8. Let = € e MS(NC, I)*[f]. For D € ©g, we define L=(D) €
I as follows: if p is split in F', put

£2(0) = | ix@=(D)@) €

if p is inert in F', put

£=(D) = / 9 (Py (. 1))u=(D) (z)

rap [ ﬁX<P@<1,—px>>ua(D (_Op (1)))@;).

'y

Fixing any base point r € P, we define the (square root) p-adic L-function
'CEi/F(X)qﬁ S I for f/F by

C
Loijpag = . S0Ix(Eee(N(1)) - Lzx({r} — {®(ec)r}, U(t) ).
[tleC1t (Oc)
Note that the above definition does not depend on the choice of r and does

not depend the representatives [t] in CIT(O¢).

6.6. The interpolation formulae. For an elliptic modular form f € S,(Np",w™1)
and a finite order Hecke character x of Ay with x|ax = w, writing ¢y =
&(f) for the adelic lift of f, define the global toric period by

Bi(e) == By 0) = | ey PO

Let f € eS(NC,1,1)[f] be the test vector in Definition 5.6. Then f can be
expressed as

F@) =T[0=8(HV) - f,

qlC
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where 3,(f) is the fixed choice of roots of the Hecke polynomial H,(x, f) of
f at q. Let 2 € e MS(N,I)[f] and define

(6.10) E:= ] = By(H)Vy) - E € eMS(NC,T)[f],
qlC

where Vj is the level-raising operator defined in (6.5). The next result shows
that L= JF®s interpolates p-adically the toric period associated with f for

Qex{ .

Proposition 6.9. For arithmetic point @ € %;r+ with even kg, set xg =
1 ko—2

¢.652w% oNp/q- Let £ = ¢oo() = (—1)%. We have

k XQ ((Cp™)
u (oD F L B L
'CEi/F®¢(Q) - Hq|C Cq(]-) Q?Q E (‘—‘Q)
LG

kA 0

Cr (e, p"lg,
where n > max {cy(xQ), 1} is any sufficiently large integer.

Proof. For simplicity, we write f = 5‘@ and ¢ = &(f) and put

_1
2

Then xg = ¢wp?. Let m(y) = <y y91 for y € RX. For t € F¥, define
the partial period by
C 7
D)= [ % elem@und ™oy
+/€& [U]Eéé/éépn

Then we see that the toric period B Fo (<(€P")) equals

XQ

n Cr, (1)
U(t (Cp™) Hdt = vol(OX p s ’
/AXFX\A; (U (t)s' P ) xq(t)dt =vol( c)pncp(l) [t]eCEIJF(:OC)XQ( )L ()

where vol(OF) is the volume of the image of O in Q*\F* with respect to
the quotient measure dt/d*t~ explicitly given by

vol(O) ™ = V/ApL(1, ) #(Z/CZ)* = L(1,7x)0C [[(1—q7Y).
qlC

By a direct computation, if z = ¢oom(y) - V=1 = ¢ - y?v/—1, then
J(goom(y), \% _1)_2 = P‘P(Zv 1) ) (_ v _1AF)_1’
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and dz = (20v/—1) - J(soom(y), v/—1)"2d*y. It follows that
k-2

Lig(e) = (2V=1) " (—V=1A5) 5 6"5 [CP"N(1)| &
V(ec)r
></ S xo) - £(5 W) Py (5,1) T e

[U]E@\é/é\cpn

=0-INOI2 Y xeng({r} — {Bec)r}, U(tu)t P (P ),
[u]€DZ /0% n

where r can be chosen to be any point in P and

= 2V-1) N (-Cov-1)T |29|2
Forteﬁx,weset

= ({r} — {¥(ec)r}, U(1)s(”) € Dy
Putting
SR (1)
pnCp(1)7

by = 0""L(1,mr) 'O [ (1)
qlC
we have

Bj o=t Y xat)Ly(e)

[t]eCI* (Oc)

k=2 k=2
=t Y x@®NOL D xen(Dust)(Py® ).
[t)eCIt(Oc) (€05 /O n

On the other hand, if we replace the base point r by ¥(d)r, noting that
N(4) < 0, we obtain that

k2
B}Q,XQ (s{OP™)) = 0145 Z xQ(t8¢) IN(t)| 2
[t]eClt (Oc)

Y e (=) (D (P,

[u] eoc /Ocpn

where [c] is the involution on classical modular symbols. Since xg(df) =
bt

(—1)%%0(5) = (=1) 2 !, we conclude that

k=2
BRIy =0ty > xq(t) IN(2)] 4

[tleCI* (Oc)

] k=2
< Y xeun T (D) (Py? ).
(W€D /OF n

(6.11)
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Now we proceed to work on the left hand side of the assertion

Lop@= Y xo®INOIS Nt,)'F - Zee(D(Q).
[tle FX\Fx /O

(=

Put Og = w. In view of (6.11), we need to verify the following inter-
fao
polation formula

2—k
2

L5 (D)(Q) = Va7 N(t;) 2"

1 n k=2
x Y w r(N(W)nf (Dusi™) (Py® ),
[u]E@é/@épn

(6.12)

m) _ (p" =1\ .. . . (n) _ 0o 1\.. ..
where ¢, 7 = <O 1 ) if p is split, and ¢ ' = (—p” 0 if p is inert.
For d | C, it is straightforward to verify that VdEg = Ugq - f‘jﬁde, and

hence ég = Ugq - fjf It follows that for D = ({r} — {s},¢t) € Do and
P(X,Y) € Li,—2(Zp), we have

o[, Penu0)m)

(6.13) = (D <pg 61‘> > <P| <pg 61‘> > by (6.6)

=6Q-a;gnjf(D (%" ‘{))(P\gpl) by (6.3).

Now we verify (6.12) in the case where p is split in F'. By Definition 6.8,
Lz:(Dt)(Q) equals

ae(zp%:"zp)x “ (a)Q</a+p"Zp v Méi(Dt)(w)) (QWx(2)) = wp (@) 7)
=g - ;" wp 2 (art (Do (B0 1) () g e )
¢ fQ aG(Zp/%LZp)X ! < (0 1 ) )

1
by (6.13). Then (6.12) follows from the equations wj (—1) = (—1) 2 , and

(XY 0 (t51) = (X)) (’3’ 2) <11 _09> — N(5Y) - Pu(X,Y).
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In the inert case, Lz (Dy)(Q) equlas

SN0 [ N0 T (0

+aj! pngw%mu o) [N sy (00 (0, §) )
=N(t) "7 Vgay pgw-%m(a (o (%) 1) )

+N<tp>2-;a;gz;@pn§ sy (o (0 ) (7))

We thus obtain (6.12) from the observations below

(5 - sn (. o

-p

(2 o) (7 e =espn (O 3) oo,

This verifies (6.12) in both cases and finishes the proof. O

7. THE FACTORIZATION OF p-ADIC L-FUNCTIONS AND STARK-HEEGNER
POINTS

7.1. In this section, we show the twisted triple product p-adic L-function
L Bl ¢ in Definition 5.5 can be essentially factorized into a product of the
¢ b

square-root p-adic L-function Lg_ ey for f over F' and the Mazur-Kitagawa
p-adic L-function L,(E1, w®).

Theorem 7.1. Let a be an even integer. Let f € eS(N,1,I) be a primitive
Hida family of tame conductor N and ¢ : C17(O¢) — O* be an odd character
of the exact conductor C. For every Z € e MS(N,I)[f] and an even integer
a, there is an element C= € FracI such that

Cz- L

= L p = Lo gy Lo(ET ") -for,

where § € (A@A)* and the constant ¢; € Z(Xp) are defined in Proposition 5.7
with j = 2. Moreover, Cz € Fracl is holomorphic at every arithmetic point

rt
Q € X{ with the value C=(Q) = (Pz(}; g;) -Ert(E2g)Er (Zg).
Q fe

Proof. For a primitive Hida family g € J[¢] for some normal domain J finite
over A, let

LI(f ®g) € I®IRA) @1 FracI
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be the primitive Hida’s three-variable Rankin-Selberg p-adic L-function as-
sociated with f and g. For each point (Q1,Q2, P) € %f X %_}L x X1 with
kg, < kp < kg,, this p-adic L-function enjoys the interpolation formula:

LI(f ®9)(Q1,Q2, P)

koi+k
LY (kp — w’ﬂfcgl X Tgq, ® w=kP)

— (v/—1)itka,—2kp
(7.1) ( ) ’ PerT(le)
koi + k -1
Rl

where Of g, p Q, — C* is the unramified character defined by (5.7).
(See [CH20, Theorem 7.1] for the above form of the interpolation formula).
Choose a Dirichlet character x with y(—1) = —1 and an imaginary qua-
dratic field K where p is split. Let xx := x o Ng/q be a finite order Hecke

character of Aj. Let g denote a primitive Hida family such that the weight

one specialization gq is a p-stablized theta series 9;[(  associated with yg.
Define the two-variable p-adic L-function Ly(f,x ® xx) by

Lp(f/k @ xK) = (10 Qo ® 1)(L£(f ® g))€ IRA.

Let .’{5\2) be the set of arithmetic points P of weight kp = 2. For P € %5\2),
define

Czp:=(1®P)

)

<Lp(5_a X)Lp(E", XTr/q)
Ly(f )k ® XK )

Let Py be the point with kp, = 2 and ep, = 1 and set C=z = Cz p, € Fracl.

Let P € %5\2). From the interpolation formulae (6.9) and (7.1), we see that

> € Frac(I®p O(P)).

for all Q € 3€I+ with kg > 2, so we can conclude that Uz = Cz p for all
P e %5\2). Thanks to a result of Rohrlich [Roh84]|, for any arithmetic point

Q € X{, there exists a point Py € :{5\2) such that L,(f/x ® xx)(Q, Po) # 0.
This implies that Cz = Cz p, is holomorphic at (). Now the theorem follows
immediately from the interpolation formulae in Propositions 5.7, 6.9 and

(6.9). O

Remark 7.2. If the residual Galois representation associated with f is ab-
solutely irreducible and p-distinguished, then the Gorensteiness of the local
component of the Hecke algebra T°'4(N) corresponding to f is known thanks
to the work of Wiles, et.al. It follows that the I-module e MS(N,T)*[f] is
free of rank one by [Kit94, Lemma 5.11|. there exist a I-adic modular symbol
= € eMS(N,I)*[f]. Choose a basis Z* in each space and put = = =+ +=~.
Then p-adic error terms Er™* (Eq) are p-adic units for all Q € X] by [Kit94,
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Proposition 5.12|, and Cz is a generator of the congruence ideal C'(f) by a
result of Hida [Hid88b, Theorem 0.1].

7.2. The derivative of the twisted triple product p-adic L-functions.
We shall keep the notation in Remark 6.6. Let E be an elliptic curve over
Q of conductor pN. There exists a primitive Hida family f € I[g] such
that fq is the elliptic newform f associated with E for some weight two
point Q@ € X{. Here I is the local component of T°"4(N) corresponding
to Af. Let 2" = {k € Cp, | [k[, <1} and write j : X < Spec A(Cp) for
the map k +— (Qg : [#] — z¥). Let po be the kernel of Q3. Then we have
I CI,, = Ay, since f has rational coefficients. This implies that there
exists a neighborhood % around 2 € 2" such that j : % — SpecI(C,). We
put
’CE‘[;],f(k’S):EEE],f(Qk’QS)’ (k,s) cEU x X

Corollary 7.3. Suppose that p is inert in F and ¢ : C1T(Op) — O is an
odd narrow ideal class character, i.e. C = 1. Let wy € {£1} be the sign of

the Fricke involution at N. Then we have L ) (2,s) =0 and
6
s—1
d 1 1 ¢y Lp(E,s)(Ap) =
%(ﬁEg]’f(kas_‘_l))hﬁ:Q = 5(1+¢(m) wN) logp; P¢ ’I’)’LQEQO‘(E) ’
where

o P, c E(F,) ® Q(¢) is the Stark-Heegner point in [Dar01, (182)],

o oy € F* is some finite idele such that (oqOp N F) =N,

o L,(E,s) is the Mazur-Tate-Titelbaum p-adic L-function for E.

o c; € Z~ is the congruence number for f, mg € Q* is the Mainn
constant for E and 2F) = [H,(E(C),Z) : Hy(E(C),Z)T®H,(E(C),Z)].

Proof. For each E € e MS(N,A) @ A(%)[f], put

Ly(E/F, ¢, k) = Lz )pee(Qr), k€ X.
Shrinking % if necessary, we may assume that the function £,(Z2/F, ¢, k)
is analytic at k € %. Since 7y is special at p and p is inert in F, it is
well-known that the local root number of the base change BCp(7¢) ® ¢ is
—1, and hence the toric period B? = 0 must vanish by a classic theorem of
Saito and Tunnell. We obtain £,(Z2/F, ¢,2) = 0 in view of Proposition 6.9,
and hence EEEZ]vf(Q’ s) = 0 for all even a. By Theorem 7.1,

C=(2) 2 (
:dilk(ﬁp(z/zf, 6, 5)) k2 - Lp(ET,w?)(2,5 + 1)

To get the derivative formula, we first compute the derivative of £L,(E/F, ¢, k)
at k = 2 for suitable normalized Z. Let uS5(x,y) be the p-adic measure on

£E<[§],f(k’ s+ 1)) ’k=2

(7.2)
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L{, attached to Z~ introduced in Remark 6.6. By definition, we have the
expression

- k=2
Ly(E/F ¢, k) = > 6(t) (Eeye(N(1))) 2
[tleCIt (Oc)
_ k=2
< (@0 =) T 1) — (e} W) )
0
Here €; is the totally positive fundamental unit in O and ¢ is the finite

~

part of ¢ € GL2(Q) defined in §4.1. Choosing a branch of p-adic logarithm
log : F) — F,, we obtain

(13) AL EFo R =5 3 SOl + ),

[tleCI* (OF)

where for 7 € C, with 7 ¢ Q,,

It = [ Tosta = rn€E((r} = {W(en)r} W) )
_1 T(0)

Letjz(o 1

> € GLy(Q) — GLy(Q). Write Jp and J®) for its

image in GL2(Q,) and GLQ(Q(p)) respectively and let 7y = <_3\7 (1)> €

GLQ(Q(p)) be the Fricke involution at N. Since J? = 1 and g, = 1, one
verifies that

cJIp =TTV = TU(om)st - T

for an appropriate choice of og. It follows from J(6) = @ and the Uy(N)-
invariance (6.8) that

Toltl = [ 10g, (o = 0SS ({r} = {¥(er)r} W0 1)

0

T = [ oo~ 0 (el(tr) ~ {¥(e)r}  Wltomr)) .v)

0

= (=1 - (=1) - wy - Jpltomei].
Now we fix the normalization of Z. The Ay,-module
eMS(NDF[f] @115, = (eMS(N,A)* @ Ay, f]

is free of rank one. Let =* be the basis normalized so that the weight two
+

specialization E$ = % with the periods QF = (27T\/—1)_1Q:Et, where jSg

are the plus/minus periods for E such that Qf and (v/—1)7'Qp are real

and positive. With this choice of periods, it straightforward to deduce from
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[BD09, Corollary 2.6 that the p-adic logarithm of Stark-Heegner point Py
is given by
logp Py = Y ¢(t)Jolt].
[tleCI* (OF)
We thus obtain from (7.3) and (7.4) that

d

%ﬁp(E/F, ¢, k)|ke2 = 271 (1 + ¢p(om)wn) log g P

By the inspection on the interpolation (6.9), we see easily that the associated
Mazur-Kitagawa p-adic L-function L,(E",w?)(2,s + 1) is the cyclotomic
p-adic L-function 2L,(E,s) for the elliptic curve E. This extra 2 comes
from the factor 2 in the definition of the archimedean I'-factor I'c(s) =
2(27)~*I'(s). On the other hand, it is clear that f(2,s + 1)c; = 4 <AF)%
with a = j = 2, and by the formulae in [Hid81, p.255],

£ I1Eo () = ermp 22 P r 2 (V=1) " Qp 0.
We thus obtain

C=(2) = Per'(f) B _(_2V_1)3“f‘|%0(1v) 8¢y
Q0 (4l mE2eE)
Putting these together, we get the corollary from (7.2). O

Remark 7.4. The same argument applies to more general ring class char-
acters with split conductor (i.e. C # 1 is a product of primes split in F),
but the formulae are more complicated due to the non-canonical choice of
the test vector = in the construction of Lx_ JF&o"
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