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Abstract

This paper treats a system of nonlinear Schrödinger equations with single δ-
functions as initial data. By imposing δ-functions on the initial data, the partial
differential equations are reduced into a couple of ODEs, and the behaviors of the
solutions are observed in detail. Doi-Shimizu [2] considered a similar problem in
case that the powers of nonlinearities coincides in both equations. But this paper
removes this coincidence, considers the global existence and finite time blow-up of
the solutions.

1 Introduction and Main Results

We consider the Cauchy problem for the coupled nonlinear Schrödinger equations:
i∂tu + 1

2m1
∆u = λ1|v|p1−1u,

i∂tv + 1
2m2

∆v = λ2|u|p2−1v,

u(0, x) = µδa(x), v(0, x) = νδb(x),

(1.1)

where the complex-valued unknown functions u and v are defined on t ∈ R+, x ∈ Rn with
n ≥ 1, m1, m2 are nonzero real numbers. The Laplacian is given by ∆ =

∑n
j=1 ∂2/∂x2

j . In
the nonlinearities, the powers satisfy p1, p2 ∈ (1, 1 + 2/n) and the coefficients λ1, λ2 takes
values in C. We will solve (1.1) with δ-functions as initial data, where δc(x) denotes the
Dirac δ-function supported at x = c ∈ Rn and µ, ν ∈ C with µν 6= 0. In particular, when
Imλ1 or Imλ2 is negative, the corresponding nonlinearity affects as dissipation. On the
other hand, when it is positive, the corresponding nonlinearity affects as amplification.
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When the initial data are given by single δ-functions, the problem in (1.1) is re-
duced into that of ODEs. In fact, assuming that u(t, x) = A(t)Um1(t)δa(x) and v(t, x) =
B(t)Um2(t)δb(x) where Um(t) = exp(it∆/2m) denotes the one-parameter group for the lin-
ear Schrödinger operator − 1

2m
∆ and A(t), B(t) are functions depending only on t-variable,

we see that (1.1) is transformed into
i
dA

dt
Um1(t)δa = λ1|BUm2(t)δb|p1−1AUm1(t)δa,

i
dB

dt
Um2(t)δb = λ2|AUm1(t)δa|p2−1BUm2(t)δb,

A(0) = µ, B(0) = ν.

Note here that Um1(t)δa = (m1/2πit)n/2 exp(im1|x − a|2/2t) etc. Then, matching the
coefficients on both hand sides, we have the following coupled ODEs :

i
dA

dt
= η1t

−d1 |B|p1−1A,

i
dB

dt
= η2t

−d2|A|p2−1B,

A(0) = µ,B(0) = ν,

(1.2)

where η1 = λ1(m2/2π)(p1−1)n/2, η2 = λ2(m1/2π)(p2−1)n/2 and dj = (pj − 1)n/2 (j = 1, 2).
Since p1, p2 < 1 + 2/n which implies that d1, d2 < 1, t−d1 and t−d2 are integrable around
t = 0, it is easy to show the local well-posedness of the solution (A(t), B(t)) to (1.2)
in C([0, T ); C × C) ∩ C1((0, T ); C × C) due to the simple application of the contraction
mapping principle. Remark here that we have focused on the well-posedness on (1.2), and
we do not consider the uniqueness of the solution to the original nonlinear Schrödinger
equations (1.1) since it causes a very difficult problem in the nonlinear estimate under
the function spaces of low regularity. Then what one can conclude for (1.1) is only the
existence of a solution. The aim of this paper is to make sure whether the interval [0, T )
in which the solution to (1.2) exists can be extended to [0,∞) or not, and to classify
the decay estimates of u(t) = A(t)Um1(t)δa and v(t) = B(t)Um2(t)δb if the solution exists
globally in time. Doi-Shimizu [2] solved this kind of problem in the case that the nonlinear
powers coincide, i.e., p1 = p2 = p ∈ (1, 1 + 2/n) by deriving the conservative quantity :

|A(t)|p−1

Im η1

− |B(t)|p−1

Im η2

. (1.3)

It is easy to make sure that (1.3) is conserved. In fact, multiplying Imη2|A(t)|p−3A(t) on
the first equation of (1.2) and Imη1|B(t)|p−3B(t) on the second, taking subtraction and
taking the imaginary part, we will find that the quantity of (1.3) is conserved. By the
conservation of (1.3), the ODE system (1.2) is reduced into two single equations, and
the standard approach based on the method of separation of variables works well. The
conservation of (1.3) is , however, obtained in virtue of the coincidence of p1 and p2.
Hence we need to employ another approach in the present case p1 6= p2. Before stating
our theorems, a rough sketch of the results on global existence or blow-up in finite time of
the solution to (1.2) is exhibited on Table 1.1. The behaviors of the solutions (A(t), B(t))
are classified by the sign of Imλ1 and Imλ2.
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Imλ2 < 0 Imλ2 = 0 Imλ2 > 0

Imλ1 < 0 Global Global Global
(Theorem 1.1) (Theorem 1.3) (Theorem 1.2)

Imλ1 = 0 Global Global Global
(Theorem 1.3) (Theorem 1.3) (Theorem 1.3)

Imλ1 > 0 Global Global Blow-up
(Theorem 1.2) (Theorem 1.3) (Theorem 1.4)

Table 1.1: Classification of global existence or blow-up in finite time

Our goals are to obtain decay estimates of the global solutions, and to clarify the
blowing-up rate of the non-global solutions. Theorem 1.1 treats the case that the both
nonlinearities of (1.1) plays a role of dissipation. It assets that the relation of the coeffi-
cients µ, ν in the initial data determines which unknown variable rapidly decays.

Theorem 1.1. Let Imλ1 < 0 and Imλ2 < 0 which indicates Imη1 < 0 and Imη2 < 0
respectively in (1.2). Then there exist solutions to (1.1) described as u = A(t)Um1(t)δa

and v = B(t)Um2(t)δb globally in time, where

(A(t), B(t)) ∈ C([0,∞); C × C) ∩ C1((0,∞); C × C).

Furthermore, let α = 1/(p2 − 1)− n/2 and β = 1/(p1 − 1)− n/2. Then, for the solutions
u and v, we have

(i) if |µ| is small in comparison with |ν| in the sense that the inequality :

|µ|β
(

α

|Imη1|e

)α/(p1−1)

< |ν|α
(

β

|Imη2|e

)β/(p2−1)

holds, there exist some positive constant C1 such that

‖u(t, ·)‖L∞ = O(t−n/2 exp(−C1t
(p1−1)β)), (1.4)

‖v(t, ·)‖L∞ = O(t−n/2) (1.5)

as t → ∞.

(ii) if |µ| is large in comparison with |ν| in the sense that the inequality :

|µ|β
(

α

|Imη1|e

)α/(p1−1)

> |ν|α
(

β

|Imη2|e

)β/(p2−1)

holds, there exist some positive constant C2 such that

‖u(t, ·)‖L∞ = O(t−n/2), (1.6)

‖v(t, ·)‖L∞ = O(t−n/2 exp(−C2t
(p2−1)α)) (1.7)

as t → ∞.
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(iii) if |µ| and |ν| are balanced in the sense that the equality :

|µ|β
(

α

|Imη1|e

)α/(p1−1)

= |ν|α
(

β

|Imη2|e

)β/(p2−1)

holds, the ‖u(t, ·)‖L∞ and ‖v(t, ·)‖L∞ decay in polynomial order. Precisely speaking,
we have

‖u(t, ·)‖L∞ = O(t−1/(p2−1)), (1.8)

‖v(t, ·)‖L∞ = O(t−1/(p1−1)) (1.9)

as t → ∞.

Theorem 1.2 below treats the case that one nonlinearity is dissipation and the other
is amplification. It asserts that the solution does not blow up but exists globally in time.

Theorem 1.2. Let Imλ1Imλ2 < 0 which indicates Imη1Imη2 < 0 in (1.2). Then there
exist solutions to (1.1) described as u = A(t)Um1(t)δa and v = B(t)Um2(t)δb globally in
time, where

(A(t), B(t)) ∈ C([0,∞); C × C) ∩ C1((0,∞); C × C).

Furthermore, we have

(i) if Imλ1 < 0 and Imλ2 > 0, there exist some positive constant C1 such that

‖u(t, ·)‖L∞ = O(t−n/2 exp(−C1t
1−n(p1−1)/2)), (1.10)

‖v(t, ·)‖L∞ = O(t−n/2) (1.11)

as t → ∞.

(ii) if Imλ1 > 0 and Imλ2 < 0, there exist some positive constant C2 such that

‖u(t, ·)‖L∞ = O(t−n/2), (1.12)

‖v(t, ·)‖L∞ = O(t−n/2 exp(−C2t
1−n(p2−1)/2)) (1.13)

as t → ∞.

Theorem 1.3 treats the case that at least one nonlinearity is of mass-conservation.

Theorem 1.3. Let either Imλ1 = 0 or Imλ2 = 0 hold. Then there exist solutions to (1.1)
described as u = A(t)Um1(t)δa and v = B(t)Um2(t)δb globally in time, where

(A(t), B(t)) ∈ C([0,∞); C × C) ∩ C1((0,∞); C × C).

Furthermore the solutions u(t) and v(t) admit
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(i) if Imλ1 = 0,

‖u(t, ·)‖L∞ = O(t−n/2), (1.14)

‖v(t, ·)‖L∞ = O(t−n/2 exp

(
2Imη2|µ|p2−1

2 − n(p2 − 1)
t1−n(p2−1)/2

)
) (1.15)

as t → ∞.

(ii) if Imλ2 = 0,

‖u(t, ·)‖L∞ = O(t−n/2 exp

(
2Imη1|ν|p1−1

2 − n(p1 − 1)
t1−n(p1−1)/2

)
), (1.16)

‖v(t, ·)‖L∞ = O(t−n/2) (1.17)

as t → ∞.

It remains to consider the case that both nonlinearities of (1.1) are amplification.
Theorem 1.4 asserts that the solutions blows up in finite time. Of course, it is difficult
to obtain the explicit descriptions of the solutions. However sharp blowing-up rate of the
solution is determined.

Theorem 1.4. Let Imλ1 > 0 and Imλ2 > 0. Then there exist solutions to (1.1) described
as u = A(t)Um1(t)δa and v = B(t)Um2(t)δb, where

(A(t), B(t)) ∈ C([0, T ∗); C × C) ∩ C1((0, T ∗); C × C)

for some T ∗ > 0. Furthermore |A(t)| and |B(t)| blow up simultaneously at T ∗. Precisely
speaking, we have

lim
t↑T ∗

(T ∗ − t)|A(t)|p2−1 =
(T ∗)(p2−1)n/2

(p1 − 1)Imη2

, (1.18)

lim
t↑T ∗

(T ∗ − t)|B(t)|p1−1 =
(T ∗)(p1−1)n/2

(p2 − 1)Imη1

, (1.19)

where α = 1/(p2 − 1) − n/2 and β = 1/(p1 − 1) − n/2.

The single nonlinear Schrödinger equation with a δ-function as initial data, i.e.,{
i∂tu + 1

2
∆u = λ|u|p−1u,

u(0, x) = µδa(x)
(1.20)

was considered in [1, 3, 4, 5]. If 1 < p < 1+2/n, Banica and Vega [1] constructed a solution
of the form u(t, x) = A(t)U(t)δa(x), where A(t) denotes an amplitude depending only on
t-variable and U(t) = exp(it∆/2) denotes the Schrödinger group. In their work, solutions
with the perturbed initial data described as u(0, x) = µδa(x) + v(x), where v(x) ∈ L2(R)
were also investigated. Kita [5, 4] treated the case that the initial data is given by the
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superposition of multiple δ-functions. The idea on the construction of solutions to (1.1)
is based on these works. However, in coupled case, the solutions sometimes present the
exponential decay or grow-up as in Theorem 1.1-1.3, which is distinguished from the single
case. It is interesting to refer to Kenig-Ponce-Vega’s work [3], which considered the case
of n = 1 and p = 3 – their idea can be also applied to the case of n ≤ 2 and 1 + 2/n < p.
They proved the ill-posedness of the solution to (1.20), and their theorem asserts that there
exist no solution or more than two solutions to (1.20) in C([0, T );S ′(R)), where S ′(R)
denotes the space of tempered distributions. Hence the condition 1 < p1, p2 < 1 + 2/n
is required in this paper to avoid the ill-posedness on (1.1). As for another singular
initial data, Wada [6] considered the Cauchy problem when the initial data consists of
p.v.x−1 + (L2(R)-function), and the global existence of solutions was proved.

2 Deformation of the Coupled ODEs

Unlike Doi-Shimizu’s approach [2], our method of the proofs is based on the change of
variables. Let A(t) = t−αÃ(t) and B(t) = t−βB̃(t) where α and β will be found to be
α = 1/(p2 − 1) − n/2 > 0 and β = 1/(p1 − 1) − n/2 > 0 later. Substituting them into
(1.2), we have 

dÃ(t)

dt
= (αt−1 − iη1t

−d1−(p1−1)β|B̃(t)|p1−1)Ã(t),

dB̃(t)

dt
= (βt−1 − iη2t

−d2−(p2−1)α|Ã(t)|p2−1)B̃(t).

Choosing α and β so that 1 = d1 + (p1 − 1)β and 1 = d2 + (p2 − 1)α, we have
dÃ(t)

dt
= t−1(α − iη1|B̃(t)|p1−1)Ã(t),

dB̃(t)

dt
= t−1(β − iη2|Ã(t)|p2−1)B̃(t).

(2.1)

Let Ã(t) = A](s) and B̃(t) = B](s) with s = log t ∈ (−∞,∞). Then the t−1 in (2.1) is
dropped out, and we have

dA](s)

ds
= (α − iη1|B](s)|p1−1)A](s),

dB](s)

ds
= (β − iη2|A](s)|p2−1)B](s).

We are interested in the feature of |A](s)| and |B](s)|, which satisfy
d|A](s)|

ds
= (α + Imη1|B](s)|p1−1)|A](s)|,

d|B](s)|
ds

= (β + Imη2|A](s)|p2−1)|B](s)|.
(2.2)
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For |A]| and |B]| satisfying (2.2), an explicit constraint is derived, which is described in
Lemma 2.1 below.

Lemma 2.1. The solutions |A](s)| and |B](s)| to (2.2) vary under the constraint :

|A](s)|β

|µ|β
exp

(
Imη2

p2 − 1
|A](s)|p2−1

)
=

|B](s)|α

|ν|α
exp

(
Imη1

p1 − 1
|B](s)|p1−1

)
. (2.3)

Proof of Lemma 2.1. From (2.2), it follows that

d|B]|
d|A]|

=
(β + Imη1|A]|p2−1)|B]|
(α + Imη2|B]|p1−1)|A]|

.

Since this is the differential equation of separation of variables, we see that∫
β + Imη2|A]|p2−1

|A]|
d|A]| =

∫
α + Imη1|B]|p1−1

|B]|
d|B]|,

which leads us to

|A]|β exp

(
Imη2

p2 − 1
|A]|p2−1

)
= C|B]|α exp

(
Imη1

p1 − 1
|B]|p1−1

)
(2.4)

with some constant C. To determine the constant C, we are going to use the profile of
|A](s)| and |B](s)| as s → −∞. Since |A](s)| = tα|A(t)| and |B](s)| = tβ|B(t)|, (2.4)
yields

tαβ|A(t)|β exp

(
Imη2

p2 − 1
|tαA(t)|p2−1

)
= Ctαβ|B(t)|α exp

(
Imη1

p1 − 1
|tβB(t)|p1−1

)
. (2.5)

Divide the both hand sides of (2.5) with tαβ, and take the limit t → +0. Then we see
that |µ|β = C|ν|α and obtain (2.3). 2

3 Proof of Theorem 1.1

From the view of the dynamical system, the presence of three kinds of classifications in
Theorem 1.1 is easy to be understood. Before the rigorous proof is exhibited, we will
overview how to observe the behavior of the solutions by applying the dynamical system
approach to the ODE system (2.2). The stationary point of (2.2), i.e., the point where
d|A]|/ds = d|B]|/ds = 0 holds are (|A]|, |B]|) = (0, 0) or ((β/|Imη2|)1/(p2−1), (α/|Imη1|)1/(p1−1)).
Let (as, bs) = ((β/|Imη2|)1/(p2−1), (α/|Imη1|)1/(p1−1)). Then, observing the sign of the right
hand side of (2.2), we know that

(i) if 0 < |A]| < as and 0 < |B]| < bs, both |A](s)| and |B](s)| are monotone increasing.

(ii) if as < |A]| and 0 < |B]| < bs, the |A](s)| is monotone increasing, and the |B](s)| is
monotone decreasing.

(iii) if 0 < |A]| < as and bs < |B]|, the |A](s)| is monotone decreasing, and the |B](s)|
are monotone increasing.
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Figure 3.1: solution curves

Combining these properties together with
lim

s→−∞
|A](s)| = lim

s→−∞
|B](s)| = 0, the solution

curves on the |A]|-|B]| coordinate plane are ex-
pected to be the flows shown in Figure 3.1. The
curves (i) suggest the rapid decay of u(t) and
slow decay of v(t) as in the statement (i) of The-
orem 1.1, and the curves (ii) suggest the slow
decay of u(t) and rapid decay of v(t) as in the
statement (ii). The curve (iii) which connects
the origin O and stationary point (as, bs) sug-
gests the polynomial decay of both u(t) and v(t)
(but it presents more rapid decay than the free
solutions) as in the statement (iii). We also remark that the curve (iii) is the boundary
between the regions of curves (i) and (ii). This observation let us presume that the situ-
ation as in the statement (iii) emerges under the exquisite conditions on the initial data
and so it scarcely takes place.

We are now going to prove Theorem 1.1.

Proof of Theorem 1.1. We define two functions f and g by

f(ξ) =
ξβ

|µ|β
exp

(
Imη2

p2 − 1
ξp2−1

)
, (3.1)

g(ξ) =
ξα

|ν|α
exp

(
Imη1

p1 − 1
ξp1−1

)
. (3.2)

Figure 3.2: Transition of |A](s)| and
|B](s)|

Then, from Lemma 2.1, it follows that |A](s)|
and |B](s)| vary while satisfying f(|A](s)|) =
g(|B](s)|) as in Figure 3.2. It is helpful in
our proof to sketch graphs of f and g. Since
Imη1 < 0 and Imη2 < 0 are assumed, both f
and g take critical values. Considering f ′(ξ) = 0
and g′(ξ) = 0, we see that the function f takes
maximum value at ξ = (β/|Imη2|)1/(p2−1)(=
as) and so does g at ξ = (α/|Imη1|)1/(p1−1)(=
bs). The function f monotonically increases on
the interval (0, as) and monotonically decreases
on (as,∞). The function g monotonically in-
creases on (0, bs) and monotonically decreases on
(bs,∞). Keeping these properties in our mind,
we proceed in the proof.

(i) (Step 1) We first show that |B](s)| → ∞ as s → ∞. From (2.2), the global existence
of B](s) follows by considering

d|B](s)|
ds

≤ β|B](s)|,
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which yields |B](s)| ≤ |B](s0)|eβ(s−s0) for s > s0. (The global existence for A](s) analo-
gously follows.) Note that the assumption in (i) suggests the relation of maximum values
: f(as) > g(bs). Let ξ∗ = min{ξ ≥ 0; f(ξ) = g(bs)}. Then the solution |A](s)| never
exceeds ξ∗ since two solutions |A](s)| and |B](s)| are continuous with respest to s and
must satisfy f(|A](s)|) = g(|B](s)|). Then we have |A](s)| ≤ ξ∗ < as. This implies that,
for some ρ > 0, it holds that β + Imη2|A](s)|p2−1 > ρ. By the second equation in (2.2),
we see that

d|B](s)|
ds

> ρ|B](s)|,

which yields

|B](s)| > |B](s0)|eρ(s−s0) (3.3)

for any s > s0. Hence we see that |B](s)| → ∞ as s → ∞.
(Step 2) We will show that |A](s)| → 0 as s → ∞. In fact, by the first equation of (2.2),
we have, for s > s0,

|A](s)| = |A](s0)| exp

(∫ s

s0

(α + Imη1|B](σ)|p1−1)dσ

)
.

Applying (3.3), we see that

|A](s)| ≤ |A](s0)| exp

(∫ s

s0

(α − Ceρ(p1−1)(σ−s0))dσ

)
≤ C1 exp

(
α(s − s0) − Ceρ(p1−1)(s−s0)

)
≤ C2 exp(−C3e

C4s) (3.4)

→ 0 (as s → ∞).

(Step 3) We will show that |B](s)| = O(eβs). In fact, by the second equation of (2.2), we
have, for s > s0,

|B](s)| = |B](s0)| exp

(∫ s

s0

(β + Imη2|A](σ)|p2−1)dσ

)
.

Since (3.4) yields
∫ ∞

s0
|A](σ)|p2−1dσ < ∞, it follows that

|B](s)| = Ceβs × exp

(
|Imη2|

∫ ∞

s

|A](σ)|p2−1dσ

)
= Ceβs + CR(s), (3.5)

where the remainder is given by

R(s) = eβs

{
exp

(
|Imη2|

∫ ∞

s

|A](σ)|p2−1dσ

)
− 1

}
.

By (3.4), we see that

R(s) ≤ Ceβs

∫ ∞

s

|A](σ)|p2−1dσ

≤ CCp2−1
2 eβs

∫ ∞

s

exp(−C ′′eC′σ)dσ. (3.6)
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By l’Hôpital’s rule, we have

lim
s→∞

∫ ∞
s

exp(−C ′′eC′σ)dσ

exp(−C ′′eC′s) × e−C′s

= lim
s→∞

− exp(−C ′′eC′s)

−C ′′C ′ exp(−C ′′eC′s) − C ′ exp(−C ′′eC′s) × e−C′s

=
1

C ′′C ′ .

Hence, from (3.6), it follows that R(s) = O(exp(−C ′eCs)) as s → ∞, and so we obtain
the asymptotic profile of |B](s)|, i.e.,

|B](s)| = Ceβs + O(exp(−C ′′′eC′s)) (3.7)

as s → ∞.
(Step 4) We will show the sharp decay estimate of |A](s)| as s → ∞. By Lemma 2.1, we
have

|A](s)|

= |µ| × |B](s)|α/β

|ν|α/β
exp

(
Imη1

(p1 − 1)β
|B](s)|p1−1 − Imη2

(p2 − 1)β
|A](s)|p2−1

)
.

Applying (3.4) and (3.7), we see that

|A](s)| = |µ| × Cα/βeαs

|ν|α/β
exp

(
Imη1C

p1−1

(p1 − 1)β
e(p1−1)βs

)
×

(
1 + O(exp(−C ′′′eC′s))

)
(3.8)

as s → ∞. Recall the deformation of A(t) and B(t) in §2. Then we see that |A(t)| =
t−α|A](log t)| and |B(t)| = t−β|B](log t)|. By (3.7) and (3.8), we obtain

|A(t)| = |µ| × Cα/β

|ν|α/β
exp

(
Imη1C

p1−1

(p1 − 1)β
t(p1−1)β

)
×

(
1 + O(exp(−C ′′′tC

′
))

)
(3.9)

and

|B(t)| = C + O(exp(−C ′′′tC
′
)) (3.10)

as t → ∞. Since ‖u(t)‖L∞ = |A(t)Um1(t)δa| and ‖v(t)‖L∞ = |B(t)Um2(t)δb| together with
‖Um(t)δc‖L∞ = (m/2πt)n/2, (3.9) and (3.10) yield Theorem 1.1 (i).

(ii) By exchanging the roles of |A]| and |B]|, the proof follows analogously in the proof
of (i).

(iii) The assumption in the statement (iii) suggests that f(as) = g(bs). Both the solutions
|A](s)| and |B](s)| satisfying (2.2) are monotonically increasing while they do not exceed
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as and bs respectively. The |A](s)| never reaches as for finite s, and |B](s)| never reaches
bs either. In fact, if there exists some s0 for which |A](s0)| = as, then, for the same s0,
|B](s0)| = bs. Note that (as, bs) is the stationary solution to (2.2), and the uniqueness
of the solution yields (|A](s)|, |B](s)|) = (as, bs) for s ∈ (−∞, s0]. But it contradicts the
fact that lim

s→−∞
|A](s)| = 0 and lim

s→−∞
|B](s)| = 0. Hence we see that lim

s→∞
|A](s)| ≤ as and

lim
s→∞

|B](s)| ≤ bs.

Suppose that lim
s→∞

|A](s)| = a∗(< as) and lim
s→∞

|B](s)| = b∗(< bs). Then we will have

contradiction. In fact, from (2.2), it follows that

|A](s)| − |A](s0)| =

∫ s

s0

(α + Imη1|B](σ)|p1−1)|A](σ)|dσ

>

∫ s

s0

(α + Imη1|b∗|p1−1)|A](s0)|dσ

= (α + Imη1|b∗|p1−1)|A](s0)|(s − s0).

Taking s → ∞, we see that this inequality causes a contradiction. Therefore we have
lim
s→∞

|A](s)| = as. Since f(as) = g(bs), we also have lim
s→∞

|B](s)| = bs, which implies that

|A(t)| ∼ ast
−α and |B(t)| ∼ bst

−β as t → ∞. Hence it follows that

‖u(t)‖L∞ = ‖A(t)Um1(t)δa‖L∞ ∼
(m1

2π

)n/2

ast
−1/(p2−1),

‖v(t)‖L∞ = ‖B(t)Um2(t)δb‖L∞ ∼
(m2

2π

)n/2

bst
−1/(p1−1)

as t → ∞. Now the proof of (iii) is complete. 2

4 Proof of Theorem 1.2 and 1.3

We will prove only Theorem 1.2 (i) and Theorem 1.3 (i).

Figure 4.1: Transition of |A](s)| and
|B](s)|

Proof of Theorem 1.2 (i).
(Step1) We first show that |B](s)| → ∞ as
s → ∞. Let f(ξ) and g(ξ) as defined in
(3.1) and (3.2). By Lemma 2.1, the solu-
tion (A](s), B](s)) is subject to f(|A](s)|) =
g(|B](s)|), and |A](s)|, |B](s)| are monotone in-
creasing as long as |B](s)| < bs where bs is de-
fined at the beginning of §3. Let ξ∗ be the
uniquely determined value such that f(ξ∗) =
g(bs). Then, by Lemma 2.1, |A](s)| ≤ ξ∗ always
holds, which may be easily understood by refer-
ring to Figure 4.1. From the second equation of
(2.2), it follows that

d|B](s)|
ds

≤ (β + Imη2(ξ
∗)p2−1)|B](s)|,
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which yields

|B](s)| ≤ |B](s0)| exp
{
(β + Imη2(ξ

∗)p2−1)(s − s0)
}

< ∞

for s > s0. Hence the solution (A](s), B](s)) exists globally in time. By the second
equation in (2.2), we see that

d|B](s)|
ds

> β|B](s)|,

and so we have

|B](s)| > |B](s0)|eβ(s−s0) (4.1)

for any s > s0. Hence it follows that |B](s)| → ∞ as s → ∞.
(Step 2) We will show that |A](s)| → 0 as s → ∞. In fact, by the first equation of (2.2),
we have, for s > s0,

|A](s)| = |A](s0)| exp

(∫ s

s0

(α + Imη1|B](σ)|p1−1)dσ

)
.

Applying (4.1), we see that

|A](s)| ≤ |A](s0)| exp

(∫ s

s0

(α − Ceβ(p1−1)(σ−s0))dσ

)
≤ C1 exp

(
α(s − s0) − C ′eβ(p1−1)(s−s0)

)
≤ C2 exp(−C3e

β(p1−1)s) (4.2)

→ 0 (as s → ∞).

(Step 3) We will show that |B](s)| = O(eβs). In fact, by the second equation of (2.2), we
have, for s > s0,

|B](s)| = |B](s0)| exp

(∫ s

s0

(β + Imη2|A](σ)|p2−1)dσ

)
.

Since (4.2) yields
∫ ∞

s0
|A](σ)|p2−1dσ < ∞, it follows that

|B](s)| = Ceβs × exp

(
−Imη2

∫ ∞

s

|A](σ)|p2−1dσ

)
= Ceβs + CR(s), (4.3)

where the remainder is given by

R(s) = eβs

{
exp

(
−Imη2

∫ ∞

s

|A](σ)|p2−1dσ

)
− 1

}
.

By (4.2), we see that

R(s) ≤ Ceβs

∫ ∞

s

|A](σ)|p2−1dσ

≤ Ceβs

∫ ∞

s

exp(−C ′eβ(p1−1)σ)dσ. (4.4)
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By l’Hôpital’s rule, we have

lim
s→∞

∫ ∞
s

exp(−C ′eβ(p1−1)σ)dσ

exp(−C ′eβ(p1−1)s) × e−β(p1−1)s

= lim
s→∞

− exp(−C ′eβ(p1−1)s)

−β(p1 − 1) exp(−C ′eβ(p1−1)s)(C ′ + e−β(p1−1)s)

=
1

C ′β(p1 − 1)
.

Hence, from (4.4), it follows that R(s) = O(exp(−C ′′eβ(p1−1)s)) as s → ∞, and so we
obtain the asymptotic profile of |B](s)|, i.e.,

|B](s)| = Ceβs + O(exp(−C ′′eβ(p1−1)s)) (4.5)

as s → ∞.
(Step 4) We will show the sharp decay estimate of |A](s)| as s → ∞. By Lemma 2.1, we
have

|A](s)|

= |µ| × |B](s)|α/β

|ν|α/β
exp

(
Imη1

(p1 − 1)β
|B](s)|p1−1 − Imη2

(p2 − 1)β
|A](s)|p2−1

)
.

Applying (4.2) and (4.5), we see that

|A](s)| = |µ| × Cα/βeαs

|ν|α/β
exp

(
Imη1C

p1−1

(p1 − 1)β
e(p1−1)βs

)
×

(
1 + O(exp(−C ′eCs))

)
(4.6)

as s → ∞. Recall the deformation of A(t) and B(t) in §2. Then we see that |A(t)| =
t−α|A](log t)| and |B(t)| = t−β|B](log t)|. By (4.5) and (4.6), we obtain

|A(t)| = |µ| × Cα/β

|ν|α/β
exp

(
Imη1C

p1−1

(p1 − 1)β
t(p1−1)β

)
×

(
1 + O(exp(−C ′tC))

)
(4.7)

and

|B(t)| = C + O(exp(−C ′tC)) (4.8)

as t → ∞. Since ‖u(t)‖L∞ = |A(t)Um1(t)δa| and ‖v(t)‖L∞ = |B(t)Um2(t)δb| together
with ‖Um(t)δC‖L∞ = (m/2πt)−n/2, (4.7) and (4.8) yield Theorem 1.2(i). The proof of the
statement (ii) follows in similar way. 2

The proof of Theorem 1.3 is easy.

Proof of Theorem 1.3 (i). By the first equation of (1.2), we see that |A(t)| = |µ|.
Substitute it into the second equation, we have

dB(t)

dt
= −iη2|µ|p2−1t−d2B(t).
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It is easy to solve this equation, and we obtain

B(t) = ν exp

(
−i

2η2|µ|p2−1

2 − n(p2 − 1)
t1−n(p2−1)/2

)
.

This completes the proof. The proof of (ii) similarly follows. 2

5 Proof of Theorem 1.4

In this final section, we will prove the blowing-up result by making use of Lemma 2.1.

Figure 5.1: Transition of |A](s)| and
|B](s)|

Proof of Theorem 1.4. We only consider the
case of p1 < p2.
(Step 1) We first show that |A](s)| and |B](s)|
blow up in finite time by the contradiction argu-
ment. Suppose that the solution (A](s), B](s))
exists globally in time. By the equations in (2.2),
d
ds
|A](s)| > α|A](s)| and d

ds
|B](s)| > β|B](s)|

hold. Then we have |A](s)| > |A](s0)|eα(s−s0)

and |B](s)| > |B](s0)|eβ(s−s0) for any s > s0,
which implies that lims→∞ |A](s)| = ∞ and
lims→∞ |B](s)| = ∞. Note that Lemma 2.1
yields f(|A](s)|) = g(|B](s)|), where f and g
were defined at the beginning of §3. Since p1 <
p2 is assumed, there exists some ξ0 > 0 such that
f(ξ) > g(ξ) holds for any ξ > ξ0. This means that |A](s)| < |B](s)| holds for sufficiently
large s > 0 as in Figure 5.1. Then, from (2.2), it follows that

d|A](s)|
ds

> (α + Imη1|A](s)|p1−1)|A](s)|

> Imη1|A](s)|p1 .

Solving this differential inequality, we have

|A](s)|−(p1−1) < |A](s0)|−(p1−1) − (p1 − 1)Imη1(s − s0).

But this inequality fails by taking s sufficiently large. Thus there exists some s∗ ∈ R such
that lims↑s∗ |A](s)| = ∞. Since f(|A](s)|) = g(|B](s)|), we also have lims↑s∗ |B](s)| = ∞.
(Step 2) We will determine the blowing-up rates of |A](s)| and |B](s)|. When s is closely
lower than s∗, both |A](s)| and |B](s)| take large values. Applying Lemma 2.1 and noting

that exp
(

Imη2

p2−1
|A](s)|p2−1

)
is remarkably lager than |A](s)|β etc., we see that, for any

ε > 0, there exists some s′ ∈ R such that, if s ∈ (s′, s∗), then

exp

{
(1 − ε)

Imη2

p2 − 1
|A](s)|p2−1

}
< exp

{
(1 + ε)

Imη1

p1 − 1
|B](s)|p1−1

}
and

exp

{
(1 + ε)

Imη2

p2 − 1
|A](s)|p2−1

}
> exp

{
(1 − ε)

Imη1

p1 − 1
|B](s)|p1−1

}
.
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Obviously, these inequalities are equivalent to

(1 − ε)
Imη2

p2 − 1
|A](s)|p2−1 < (1 + ε)

Imη1

p1 − 1
|B](s)|p1−1 (5.1)

and

(1 + ε)
Imη2

p2 − 1
|A](s)|p2−1 > (1 − ε)

Imη1

p1 − 1
|B](s)|p1−1. (5.2)

Apply (5.1) and (5.2) to the first equation of (2.2). Then we see that

α|A](s)| + 1 − ε

1 + ε
× p1 − 1

p2 − 1
Imη2|A](s)|p2 <

d|A](s)|
ds

,

d|A](s)|
ds

< α|A](s)| + 1 + ε

1 − ε
× p1 − 1

p2 − 1
Imη2|A](s)|p2 .

It is written in the way that

1 − ε

1 + ε
× p1 − 1

p2 − 1
Imη2e

(p2−1)αs
(
e−αs|A](s)|

)p2
<

d

ds

(
e−αs|A](s)|

)
,

d

ds

(
e−αs|A](s)|

)
<

1 + ε

1 − ε
× p1 − 1

p2 − 1
Imη2e

(p2−1)αs
(
e−αs|A](s)|

)p2
.

By taking the integration from s to s∗, it turns out to be

1 − ε

1 + ε
× p1 − 1

p2 − 1
Imη2(e

(p2−1)α(s∗−s) − 1) < α|A](s)|−(p2−1),

α|A](s)|−(p2−1) <
1 + ε

1 − ε
× p1 − 1

p2 − 1
Imη2(e

(p2−1)α(s∗−s) − 1).

Multiply (s∗ − s)−1 and taking the lim infs↑s∗ and lim sups↑s∗ , we have

1 − ε

1 + ε
(p1 − 1)Imη2

≤ lim inf
s↑s∗

(s∗ − s)−1|A](s)|−(p2−1)

≤ lim sup
s↑s∗

(s∗ − s)−1|A](s)|−(p2−1)

≤ 1 + ε

1 − ε
(p1 − 1)Imη2.

Taking ε ↓ 0, we see that

lim
s↑s∗

(s∗ − s)−1|A](s)|−(p2−1) = (p1 − 1)Imη2. (5.3)

Let T ∗ = es∗ and t = es. Recall |A(t)| = t−α|A](log t)|. Then, from (5.3), it follows that

lim
t↑T ∗

(T ∗ − t)|A(t)|p2−1 =
(T ∗)(p2−1)n/2

(p1 − 1)Imη2

.
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The proof of (1.18) is complete. The proof of (1.19) similarly follows. 2
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