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NONLINEAR SCHRÖDINGER EQUATIONS

NAOYASU KITA AND CHUNHUA LI

Abstract

This paper presents the decay estimate of solutions to the initial
value problem of 1D Schrödinger equations containing a sub-critical
dissipative nonlinearity λ|u|p−1u, where 2.468 ≈ p0 ≤ p < 3, Imλ < 0
and (p−1)|Reλ| ≤ 2

√
p|Imλ|. Our aim is to obtain the decay estimate

of the solutions, without assuming size restriction on the initial data
and under the extended lower bound of nonlinear power.

1 Introduction and main results

We consider the Cauchy problem of 1D-nonlinear Schrödinger equation:{
i∂tv + 1

2
∂2

xv = λ|v|p−1v,
v(0, x) = φ(x),

(1.1)

where t ∈ R, x ∈ R, 1 < p < 3 and λ = λ1 + iλ2 (λ1, λ2 ∈ R) satisfying

λ2 < 0, |λ2| ≥
p − 1

2
√

p
|λ1|. (1.2)

It is well known that the asymptotic behavior of solutions to (1.1) with
1 < p ≤ 3 is different from that of solutions to the corresponding free equation
(see [1]). There is some research on the small initial problem (1.1)(see e.g., [2]
and [6] ). The large initial problem (1.1) with (1.2) was first considered in [5],

where the L∞-decay estimates of the global solutions for 2.686 · · · ≈ 5+
√

33
4

<
p ≤ 3 was investigated. Jin-Jin-Li also considered the large initial problem
(1.1) with (1.2) and improved the previous result in [5]. They proved the
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L∞-decay estimate of the global solutions to (1.1) with(1.2), i.e., ‖v(t)‖L∞ ≤
C(1 + t)−1/(p−1) for t > 0, if 2.586 · · · ≈ 19+

√
145

12
< p < 3 holds; ‖v(t)‖L∞ ≤

C(1 + t)−1/2 (log(1 + t))−1/2 for t > 0, if p = 3. Since 19+
√

145
12

< 5+
√

33
4

,
Jin-Jin-Li extended the lower bound of p by using the operator J2 (t) =
U (t) x2U (−t). Our purpose is to investigate L2- decay estimates of solutions
and achieve a better L∞-decay estimates of solutions to (1.1) with (1.2) for
arbitrarily large initial data.

Let Lq (R) denote the usual Lebesgue space with the norm

‖φ‖Lq(R) =

(∫
R
|φ (x)|q dx

) 1
q

if 1 ≤ q < ∞ and
‖φ‖L∞(R) = ess.sup

x∈R
|φ (x)| .

For m, s ∈ R and 1 ≤ q ≤ ∞, weighted Sobolev space Hm,s
q (R) is defined by

Hm,s
q (R) =

{
f ∈ Lq (R) ; ‖f‖Hm,s

q (R) =
∥∥(1 − ∂2

x)
m
2 (1 + |x|2)

s
2 f

∥∥
Lq(R)

< ∞
}

.

We write Hm,s
2 (R) = Hm,s and Hm,0 (R) = Hm for simplicity.

Let us introduce some more notations. We define the dilation operator
by

(Dtφ) (x) =
1

(it)
1
2

φ
(x

t

)
and define M = e

i
2t

x2
for t 6= 0. Evolution operator U (t) is written as

U (t) = MDtFM,

where the Fourier transform of f is

(Ff)(ξ) =
1√
2π

∫
R

e−ixξf(x)dx.

We also have
U (−t) = M−1F−1D−1

t M−1,

where the inverse Fourier transform of f is

(F−1f)(x) =
1√
2π

∫
R

eixξf(ξ)dξ.

We denote by the same letter C various positive constants.
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The standard generator of the Galilei transformations is given as

J (t) = U (t) xU (−t) = x + it∂x.

We have
J2 (t) = U (t) x2U (−t) = M(−t2∂2

x)M
−1.

We also have commutation relations with Jα and L = i∂t +
1
2
∂2

x such that

[L, Jα] = 0,

where α = 1, 2.
Before stating our main theorem, we introduce the function space

X2,T = {y ; U(−t)y ∈ C([0, T );H1 ∩ H0,2), ‖y‖X2,T
< ∞},

where ‖y‖X2,T
= sup0≤t<T ‖U(−t)y‖H1∩H0,2 . Our main result is

Theorem 1.1. Let p0 < p ≤ 19+
√

145
12

, where p0 ≈ 2.486 · · · is a unique real
root of

12p3 − 41p2 + 35p − 18 = 0.

We assume that φ ∈ H0,2 ∩ H1 (without size restriction) and the strong
dissipative condition (1.2) holds. Then (1.1) has a unique global solution
v ∈ X2,∞ satisfying the following time-decay estimates :

‖v(t)‖L2 ≤ C(1 + t)−(2/3)d, (1.3)

‖v(t)‖L∞ ≤ C(1 + t)−1/(p−1), (1.4)

for t > 0, where d = 1/(p − 1) − 1/2.

Combining Theorem 1.1 and theorems in [3], we have

Corollary 1.2. Let p0 < p < 3, where p0 ≈ 2.486 · · · is a unique real root of

12p3 − 41p2 + 35p − 18 = 0.

We assume that φ ∈ H0,2 ∩ H1 (without size restriction) and the strong
dissipative condition (1.2) holds. Then (1.1) has a unique global solution
v ∈ X2,∞ satisfying the following time-decay estimates :

‖v(t)‖L∞ ≤ C(1 + t)−1/(p−1), (1.5)

for t > 0.
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Remark 1.1. In fact, we have L2- decay (1.3) under the same assumptions
as in Corollary 1.2. This will be proved in Section 2 (see Proposition 2.1).

Remark 1.2. The decay rate of ‖v(t)‖L∞ is similar to that of the solution to
the ODE: i∂tv = λ|v|p−1v. This suggests that the nonlinear effect is dominant
to the dispersion emerging from 1

2
∂2

x for large t > 0.

In our strategy for the proof, we are going to be engaged in the refinement
of the estimate of ‖J2v(t)‖L2 , where J = x + it∂x. In [3], they derived, from
(1.1) and (1.2),

d

dt
‖J2v‖L2 ≤ C‖v‖p−2

L∞ ‖Jv‖L∞‖Jv‖L2

≤ Ct−1/2‖v‖p−2
L∞ ‖J2v‖1/2

L2 ‖Jv‖3/2

L2 ,

and used ‖v‖L∞ ≤ Ct−1/2‖v‖1/2

L2 ‖Jv‖1/2

L2 together with ‖v‖L2 + ‖Jv‖L2 ≤ C
and φ ∈ H0,2. Let 2 < p < 3. Solving the above differential inequality, they
obtained

‖J2v‖L2 ≤ C(1 + t)3−p (1.6)

for t > 0, which played an important role to control the remainder terms
appearing in the process to determine the decay estimate of v(t). On the
other hand, we will, more carefully than Jin-Jin-Li did, treat ‖v‖L∞ (refer
to Proposition 2.3) after deriving some decay estimate of ‖v(t)‖L2 (refer to
Proposition 2.1), and obtain

‖J2v‖L2 ≤ C(1 + t)p(11−4p)/6 (1.7)

for t > 0, if p0 < p ≤ 19+
√

145
12

. We remark here that the growth order in
(1.7) is better than that of (1.6), since p(11− 4p)/6 < 3−p holds sufficiently

if p0 < p ≤ 19+
√

145
12

. Finally, making use of (1.7), we will obtain the sharp
decay rate of ‖v(t)‖L∞ . The number p0 will arise in the estimate of (3.5)
below. In (3.5), we will regard t−1/(p−1)+1/2 as a dominant to t−(12p2−29p)/12

for t > 1. This observation is valid if p0 < p.

2 Preliminaries

We first consider the L2-decay estimate of v(t). This will be used later for a
rough L∞-decay estimate (see Proposition 2.3).
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Proposition 2.1 (L2-Decay). Assume the same assumptions as in Corollary
1.2. Let v ∈ X2,∞ be the global solution to (1.1). Then it satisfies

‖v(t)‖L2 ≤ C(1 + t)−(2/3)d, (2.1)

for t > 0, where d = 1/(p − 1) − 1/2.

When we prove Proposition 2.1, the lemma below will be often taken into
account, the proof of which follows from [3] and [5]. We note that, to derive
Lemma 2.2 without size restriction on φ, the strong dissipative condition
(1.2) is useful.

Lemma 2.2. Let v ∈ X2,∞ be the global solution to (1.1). Then it satisfies

‖∂xv(t)‖L2 ≤ ‖∂xφ‖L2 , (2.2)

‖Jv(t)‖L2 ≤ ‖xφ‖L2 . (2.3)

Proof of Proposition 2.1. We first note that FU(−t)v satisfies

∂t(FU(−t)v) = −iλt−(p−1)/2|FU(−t)v|p−1FU(−t)v + R(t), (2.4)

where U(t) = exp(it∂2
x/2) and

R(t) = −iλt−(p−1)/2
(
FM−1F−1|FMU(−t)v|p−1FMU(−t)v

−|FU(−t)v|p−1FU(−t)v
)

(2.5)

with M = exp(ix2/2t). By (2.4), we have

∂t‖FU(−t)v‖2
L2

= −2|λ2|t−(p−1)/2‖FU(−t)v‖p+1
Lp+1 + 2Re(FU(−t)v,R(t)). (2.6)

To estimate ‖FU(−t)v‖p+1
Lp+1 on the RHS of (2.6) from the below, we firstly

use Hölder’s inequality : ‖f‖L2 ≤ ‖f‖(p−1)/2p

L1 ‖f‖(p+1)/2p

Lp+1 and secondly use

‖f‖L1 ≤ C‖f‖1/2

L2 ‖ξf‖1/2

L2 . Considering also

‖R(t)‖L2 ≤ Ct−(p−1)/2−1/2‖FU(−t)v‖p−1
L∞ ‖Jv‖L2

≤ Ct−p/2‖FU(−t)v‖(p−1)/2

L2 ‖∂ξFU(−t)v‖(p−1)/2

L2 ‖Jv‖L2

≤ Ct−p/2‖FU(−t)v‖(p−1)/2

L2 ‖Jv‖(p+1)/2

L2 ,

in which the following Sobolev embedding

‖f‖L∞ ≤ C‖f‖
1
2

L2‖∂xf‖
1
2

L2
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is used, we see that

∂t‖FU(−t)v‖L2 ≤ −Ct−(p−1)/2‖FU(−t)v‖(3p−1)/2

L2

‖∂xv‖(p−1)/2

L2

+Ct−p/2‖FU(−t)v‖(p−1)/2

L2 ‖Jv‖(p+1)/2

L2 .

By (2.2) and (2.3),

∂t‖FU(−t)v‖L2 ≤ −Ct−(p−1)/2‖FU(−t)v‖(3p−1)/2

L2

+Ct−p/2‖FU(−t)v‖(p−1)/2

L2 . (2.7)

Young’s inequality : ab ≤ hθa1/θ + h−θ/(1−θ)(1 − θ)b1/(1−θ), where 0 < θ < 1
and h > 0, gives

t−p/2‖FU(−t)v‖(p−1)/2

L2

≤ εt−(p−1)/2‖FU(−t)v‖(3p−1)/2

L2 + Cεt
−(2p−1)(p+1)/4p

for any ε = h(p−1)
3p−1

> 0. Applying this inequality to (2.7) and using ‖v‖L2 ≤
C, we have

∂t‖FU(−t)v‖L2 ≤ −Ct−(p−1)/2‖FU(−t)v‖(3p−1)/2

L2

+ Ct−(2p−1)(p+1)/4p. (2.8)

To solve (2.8), we invoke Sunagawa’s idea [4]. The quantity tγ‖FU(−t)v‖L2

with γ > 0 sufficiently large satisfies the following differential inequality:

∂t(t
γ‖FU(−t)v‖L2)

= γtγ−1‖FU(−t)v‖L2 + tγ∂t‖FU(−t)v‖L2

≤ γtγ−1‖FU(−t)v‖L2 − Ctγ−(p−1)/2‖FU(−t)v‖(3p−1)/2

L2

+Ctγ−(2p−1)(p+1)/4p. (2.9)

Young’s inequality gives

tγ−1‖FU(−t)v‖L2 ≤ εtγ−(p−1)/2‖FU(−t)v‖(3p−1)/2

L2 + Cεt
γ−2p/3(p−1),

where ε > 0. Let ε > 0 be so small that γε < C. Then, applying this
inequality to (2.9), we see that

∂t(t
γ‖FU(−t)v‖L2) ≤ γεtγ−(p−1)/2‖FU(−t)v‖(3p−1)/2

L2

−Ctγ−(p−1)/2‖FU(−t)v‖(3p−1)/2

L2

+γCεt
γ−2p/3(p−1) + Ctγ−(2p−1)(p+1)/4p

≤ γCεt
γ−2p/3(p−1) + Ctγ−(2p−1)(p+1)/4p (2.10)
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Integrating (2.10) over [1, t], we have

‖FU(−t)v(t)‖L2

≤ t−γ‖FU(−1)v(1)‖L2 + Ct1−2p/3(p−1) + Ct1−(2p−1)(p+1)/4p. (2.11)

Since the second term of (2.11) is dominant if p > p0, taking γ > 0 sufficiently
large and noting that 1 − 2p/3(p − 1) = −(2/3)d yield

‖FU(−t)v(t)‖L2 ≤ Ct−(2/3)d

for t > 1. By Plancherell’s identity, ‖FU(−t)v‖L2 = ‖v‖L2 . This completes
the proof of Proposition 2.1. 2

We next derive a rough decay estimate of ‖v(t)‖L∞ by making use of
Proposition 2.1.

Proposition 2.3 (Rough L∞-Decay). Assume the same assumption as in
Theorem 1.1. Let v ∈ X2,∞ be the global solution to (1.1). Then it satisfies

‖v(t)‖L∞ ≤ C(1 + t)−(4p−3)/12, (2.12)

for t > 0.

Proof of Proposition 2.3. Since

‖v‖L∞ = t−1/2‖FMU(−t)v‖L∞

≤ t−1/2‖FU(−t)v‖L∞ + t−1/2‖F(M − 1)U(−t)v‖L∞

≤ t−1/2‖FU(−t)v‖L∞

+Ct−1/2‖F(M − 1)U(−t)v‖1/2

L2 ‖∂ξF(M − 1)U(−t)v‖1/2

L2

≤ t−1/2‖FU(−t)v‖L∞ + Ct−3/4‖Jv‖L2 (2.13)

in which the Sobolev embedding

‖f‖L∞ ≤ C‖f‖
1
2

L2‖∂xf‖
1
2

L2

is used, it is enough to observe the decay of ‖FU(−t)v‖L∞ . From (2.4) and

‖R(t)‖L∞ ≤ Ct−(p−1)/2−1/4(‖FMU(−t)v‖p−1
L∞ + ‖FU(−t)v‖p−1

L∞ )‖Jv‖L2 ,

it follows that

∂t|FU(−t)v|
≤ −|λ2|t−(p−1)/2|FU(−t)v|p

+Ct−(p−1)/2−1/4(‖FMU(−t)v‖p−1
L∞ + ‖FU(−t)v‖p−1

L∞ )‖Jv‖L2 .(2.14)
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Since

‖FMU(−t)v‖L∞ ≤ ‖FU(−t)v‖L∞ + Ct−1/4‖Jv‖L2

holds from (2.13) and ‖Jv‖L2 ≤ C due to Lemma 2.2, we have

∂t|FU(−t)v| ≤ −|λ2|t−(p−1)/2|FU(−t)v|p

+Ct−(p−1)/2−1/4(‖FU(−t)v‖p−1
L∞ + t−(p−1)/4). (2.15)

To estimate ‖FU(−t)v‖p−1
L∞ in (2.15), we use the Sobolev embedding :

‖FU(−t)v‖L∞ ≤ C‖FU(−t)v‖1/2

L2 ‖∂ξFU(−t)v‖1/2

L2

= C‖v‖1/2

L2 ‖Jv‖1/2

L2 .

Apply Proposition 2.1 to ‖v‖1/2

L2 and Lemma 2.2 to ‖Jv‖1/2

L2 . Then we see
that

∂t|FU(−t)v| ≤ −|λ2|t−(p−1)/2|FU(−t)v|p

+Ct−(p−1)/2−1/4(t−(p−1)d/3 + t−(p−1)/4). (2.16)

Since (p−1)d/3 < (p−1)/4 and −(p−1)/2−1/4−(p−1)d/3 = −(4p+3)/12,
(2.16) yields

∂t|FU(−t)v| ≤ −|λ2|t−(p−1)/2|FU(−t)v|p + Ct−(4p+3)/12. (2.17)

We now invoke Sunagawa’s idea again. By (2.17), we see that

∂t(t
γ|FU(−t)v|)

≤ γtγ−1|FU(−t)v| − |λ2|tγ−(p−1)/2|FU(−t)v|p + Ctγ−(4p+3)/12.(2.18)

Young’s inequality : tγ−1f ≤ εtγ−(p−1)/2fp + Cεt
γ−1/(p−1)−1/2 with ε > 0 and

γε<|λ2| gives

∂t(t
γ|FU(−t)v|) ≤ Ctγ−1/(p−1)−1/2 + Ctγ−(4p+3)/12. (2.19)

Since p0 < p ≤ 19+
√

145
12

, then the second term on the RHS of (2.19) is
dominant for large t > 0. Integrating (2.19) over [1, t], we have

‖FU(−t)v(t)‖L∞ ≤ Ct−γ + Ct−(4p−9)/12

≤ Ct−(4p−9)/12, (2.20)

if γ > 0 is taken large enough. Combining (2.13) and (2.20), we obtain
Proposition 2.3. 2

In virtue of Proposition 2.3, we achieve the estimate of ‖J2v‖L2 , which is
a refinement of Jin-Jin-Li’s estimate.
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Proposition 2.4 (Estimate of J2v). Assume that p0 < p ≤ 19+
√

145
12

. Let
v ∈ X2,∞ be the global solution to (1.1). Then it satisfies

‖J2v(t)‖L2 ≤ C(1 + t)p(11−4p)/6, (2.21)

for t > 0.

Proof of Proposition 2.4. By (1.2), we see that

∂t‖J2v‖L2 ≤ C‖v‖p−2
L∞ ‖JvJv‖L2

≤ C‖v‖p−2
L∞ ‖Jv‖L∞‖Jv‖L2

≤ Ct−1/2‖v‖p−2
L∞ ‖J2v‖1/2

L2 ‖Jv‖3/2

L2 . (2.22)

Apply Proposition 2.3 to ‖v‖p−2
L∞ and Lemma 2.2 to ‖Jv‖3/2

L2 . Then we have

∂t‖J2v‖1/2

L2 ≤ Ct−1/2−(p−2)(4p−3)/12. (2.23)

Integrating (2.23) over [1, t], we obtain Proposition 2.4. 2

3 Proof of Theorem 1.1

Since Proposition 2.1 proves (1.3), we are going to concentrate ourselves into
the proof of (1.4).

Proof of Theorem 1.1. By (2.4) and

‖R(t)‖∞ ≤ Ct−(p−1)/2−3/4(‖FU(−t)v‖p−1
L∞ + t−(p−1)/4)‖J2v‖L2 , (3.1)

we have

∂t|FU(−t)v|
≤ −|λ2|t−(p−1)/2|FU(−t)v|p

+Ct−(p−1)/2−3/4(‖FU(−t)v‖p−1
L∞ + t−(p−1)/4)‖J2v‖L2 . (3.2)

Apply (2.20) to ‖FU(−t)v‖p−1
L∞ and Proposition 2.4 to ‖J2v‖L2 . Also notice

that ‖FU(−t)v‖p−1
L∞ is dominant to t−(p−1)/4 in (3.2). Then, after some careful

computation to determine the decay order of the remainder term, we have

∂t|FU(−t)v| ≤ −|λ2|t−(p−1)/2|FU(−t)v|p + Ct−(12p2−29p+12)/12. (3.3)
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Similarly to the derivation of (2.19),

∂t(t
γ|FU(−t)v|) ≤ Ctγ−1/(p−1)−1/2 + Ctγ−(12p2−29p+12)/12. (3.4)

Integrating (3.4) over [1, t], we see that

|FU(−t)v| ≤ Ct−γ + Ct−1/(p−1)+1/2 + Ct−(12p2−29p)/12. (3.5)

We here want to regard t−1/(p−1)+1/2 as a dominant term and t−(12p2−29p)/12

as a remainder one. Such observation becomes true if

− 1

p − 1
+

1

2
> −12p2 − 29p

12
,

which is equivalent to

12p3 − 41p2 + 35p − 18 > 0.

There is only one real root of the polynomial 12p3 − 41p2 + 35p − 18, which
is numerically described as p = p0 ≈ 2.486 · · · . This is the main reason why
the weird number p0 is included in the assumption of Theorem 1.1. Anyway,
if p0 < p, (3.5) yields

‖FU(−t)v‖L∞ ≤ Ct−1/(p−1)+1/2

for t > 1. Applying the above inequality to ‖FU(−t)v‖L∞ , we get

‖v (t)‖L∞ ≤ Ct−
1
2 ‖FU (−t) v‖L∞ + Ct−

1
2 ‖F (M − 1) U (−t) v (t)‖L∞

≤ Ct−
1

p−1 + Ct−
3
4 ‖xU (−t) v (t)‖

≤ Ct−
1

p−1

for t > 1. 2
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