
SHARP HARDY-LERAY INEQUALITY FOR CURL-FREE

FIELDS WITH A REMAINDER TERM

NAOKI HAMAMOTO AND FUTOSHI TAKAHASHI

Abstract. In this paper, we give a new and a simpler approach to the result in
[7] concerning the best constant of Hardy-Leray inequality for curl-free fields.
As a by-product, we obtain an improved inequality with a remainder term.
The non-attainability of the best constant is an easy consequence of the new

inequality. The proof is based on a decomposition of curl-free fields into radial
and spherical parts.

1. Introduction

In this paper, we concern the classical functional inequality called the Hardy-
Leray inequality for smooth vector fields and its improvement.

Let N ∈ N be an integer with N ≥ 2 and put x = (x1, · · · , xN ) ∈ RN . In the
following, C∞

c (Ω)N denotes the set of smooth vector fields

u = (u1, u2, · · · , uN ) : Ω ∋ x 7→ u(x) ∈ RN

having compact supports on an open subset Ω of RN .
Let γ be a real number. Then it is well known that(

γ +
N

2
− 1

)2 ∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx

holds for any vector field u ∈ C∞
c (RN )N , as far as the integral on the left-hand

side is finite (or equivalently u(0) = 0 for γ ≤ 1−N/2). This was first proved by
J. Leray [10] when the weight γ = 0, see also the book by Ladyzhenskaya [9]. It

is also known that the constant
(
γ + N

2 − 1
)2

is sharp and never attained by any
non-zero vector field.

In [2], Costin and Maz’ya proved that if the smooth vector fields u are axisym-
metric and subject to the divergence-free constraint divu ≡ 0, then the constant(
γ + N

2 − 1
)2

can be improved and replaced by a larger one. More precisely, they
proved the following:

Theorem A. (Costin-Maz’ya [2]) Let N ≥ 2. Let γ ̸= 1 − N/2 be a real number
and u ∈ C∞

c (RN )N be an axisymmetric divergence-free vector field. (If N = 2, the
axisymmetric assumption is not needed). Assume that u(0) = 0 if γ < 1 − N/2.
Then

CN,γ

∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx
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holds with the optimal constant CN,γ given by

CN,γ =



(
γ + N

2 − 1
)2 N + 1 +

(
γ − N

2

)2
N − 1 +

(
γ − N

2

)2 (N ≥ 3, γ ≤ 1),

(
γ + N

2 − 1
)2

+ 2 +min
κ≥0

(
κ+ 4(N−1)(γ−1)

κ+N−1+(γ−N
2 )

2

)
(N ≥ 4, γ > 1),(

γ + 1
2

)2
+ 2 (N = 3, γ > 1),

C2,γ =

{
γ2 3+(γ−1)2

1+(γ−1)2
if

∣∣γ + 1
∣∣ ≤ √

3,

γ2 + 1 otherwise.

Note that the expression of the best constant CN,γ is slightly different from that
in [2] when N ≥ 4, but a careful checking the proof in [2] leads to the above formula
in Theorem A. (See also [3, §2.1].)

Later, the first author of this paper has succeeded in removing the axisymmetric
assumption in Theorem A to obtain the best constant [6, 4]. See also [8] for another
improvement of [2]. We refer to [3, 5] for the Rellich-Leray inequality for divergence-
free vector fields.

For curl-free vector fields, we have recently obtained the following result.

Theorem B. ([7]) Let N ≥ 2. Let γ ̸= 1 − N/2 be a real number and let u ∈
C∞

c (RN )N be a curl-free vector field. We assume that u(0) = 0 if γ < 1 − N/2.
Then

HN,γ

∫
RN

|u|2

|x|2
|x|2γdx ≤

∫
RN

|∇u|2|x|2γdx

with the optimal constant HN,γ given by

(1) HN,γ =


(
γ + N

2 − 1
)2 3(N−1)+(γ+N

2 −2)
2

N−1+(γ+N
2 −2)

2 if
∣∣γ + N

2

∣∣ ≤ √
N + 1,(

γ + N
2 − 1

)2
+N − 1 otherwise.

The method of the proof of Theorem B, which followed from that of Costin-
Maz’ya [2], consists of the following items: A representation of curl-free vector fields
in the spherical polar coordinates, a transformation of vector fields called Brezis-
Vázquez-Maz’ya, the one-dimensional Fourier transform in the radial direction, and
the eigenvector expansion for the Laplace-Beltrami operator in L2(SN−1).

A main purpose of this paper is to give another and a simpler approach to
Theorem B. We avoid the use of Fourier transform, in the hope of being helpful for
the possible extension of the result to Lp-setting or to domains other than the whole
space. As a by-product, we obtain the sharp Hardy-Leray inequality for curl-free
vector fields with a remainder term, which is the main result of this paper:

Theorem 1. Let N ≥ 2. Let HN,γ be defined in (1) and let u ∈ C∞
c (RN )N be a

curl-free field such that u(0) = 0 if γ ≤ 1− N
2 . Then the inequality∫

RN

|∇u|2|x|2γdx ≥ HN,γ

∫
RN

|u|2|x|2γ−2dx(2)

+

∫
RN

(
(N − 1)EN,γ [u] +

∣∣x · ∇
(
|x|γ+N

2 −1u
)∣∣2) |x|−Ndx
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holds with the nonnegative function EN,γ [u] given by

EN,γ [u](x)

=



((
γ + N

2

)2 −N − 1
)
φ2 + (x · ∇φ)2 for

∣∣γ + N
2

∣∣ ≥ √
N + 1,(

N + 1−
(
γ + N

2

)2)
f2 + 4(1− γ)(x · ∇φ)2(

γ + N
2 − 2

)2
+N − 1

for
∣∣γ + N

2

∣∣ < √
N + 1.

Here f and φ are scalar fields defined by

f(x) = ω−1
N−1|x|

γ+N
2 −1

∫
SN−1

σ · u(|x|σ)dσ,

φ(x) = |x|γ+N
2 −2

(
ϕ(x)− ω−1

N−1

∫
SN−1

ϕ(|x|σ)dσ
)
,

in terms of the scalar potential ϕ of u (that is, u = ∇ϕ), and ωN−1 denotes the
surface measure of the unit sphere SN−1 in RN . Moreover, the equality in (2) is
realized if and only if the equation

−△σφ(rσ) = (N − 1)φ(rσ)

holds for all r > 0 and σ ∈ SN−1, where △σ denotes the Laplace-Beltrami operator
on SN−1.

Remark 2. We directly see from (2) that the equation∫
RN

|∇u|2|x|2γdx = HN,γ

∫
RN

|u|2

|x|2
|x|2γdx

does not hold for any u ∈ C∞
c (RN )N \ {0} as far as the integral on the right-hand

side is finite. Indeed, this equation together with (2) implies that the function

R+ × SN−1 ∋ (r,σ) 7→ rγ+
N
2 −1u(rσ)

is independent of r, which violates the finiteness of the integral unless u ≡ 0.

The remaining content of this paper is organized as follows: In §2, we give a
quick review of some differential formulae with respect to radial-spherical variables
and derive an equivalent condition to the curl-free condition for vector-fields on
RN (the Poincaré lemma); there Proposition 4 gives a characterization of curl-free
fields, which serves as a key tool for the proof of our main theorem. In §3 we
prove Theorem 1 by making full use of Proposition 4. In §4 we prove the sharp
Rellich-Leray inequality for curl-free vector fields with a remainder term, as another
application of the method described in §2–§3.

2. Representation of curl-free fields in terms of radial-spherical
variables

In this section, we recall the Poincaré lemma, which gives a scalar-potential
representation of smooth curl-free fields on RN . By deforming this potential via
Brezis-Vázquez-Maz’ya transformation, we derive another equivalent condition for
test vector fields to be curl-free.

2.1. Radial-spherical variables and the Poincaré lemma. First of all, we
introduce the transformation

R+ × SN−1 → RN \ {0}, (r,σ) 7→ x = rσ

together with its inverse

RN \ {0} → R+ × SN−1, x 7→ (r,σ) =

(
|x|, x

|x|

)
∈ R+ × SN−1.
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Let u = (u1, u2, · · · , uN ) : RN \ {0} → RN be a vector field. Then its radial
scalar component uR = uR(x) and spherical vector part uS = uS(x) are defined
by the formulae

u = σuR + uS , σ · uS = 0

for all x = rσ ∈ RN \ {0}. In a similar way, we denote by ∂r and ∇σ the radial
derivative and the spherical gradient, respectively:

∂rf = σ · ∇f, ∇σf = r(∇f)S

for all f = f(x) ∈ C∞(RN \ {0}), or equivalently

(3) ∇ = σ∂r +
1

r
∇σ, σ · ∇σ = 0.

The Laplace operator △ =
∑N

k=1 ∂
2/∂x2

k is known to be represented in terms of
radial-spherical variables by the formula

(4) △ =
1

rN−1
∂r
(
rN−1∂r

)
+

1

r2
△σ,

where △σ denotes the Laplace-Beltrami operator on SN−1. In the following, we use
a convention with some ambiguity that for smooth scalar fields and vector fields on
RN \ {0}, we think of them as functions of σ ∈ SN−1 for r = |x| fixed, when we
apply ∇σ or △σ to them. As a simple example, the operation of (3) and (4) on the
scalar field r = |x| or its powers gives
(5) ∇r = σ and △rs = αsr

s−2, where αs = s(s+N − 2)

for all s ∈ R.
For later use, we prove the following lemma:

Lemma 3. For any f ∈ C∞(SN−1),

(6)

{
△σ(σf)− σ△σf =

(
2∇σ − (N − 1)σ

)
f,

△σ∇σf −∇σ△σf =
(
(N − 3)∇σ − 2σ△σ

)
f

holds for all σ ∈ SN−1.

Proof. Take any f ∈ C∞(SN−1). We identify f with f̃ ∈ C∞(RN \ {0}) by the

formula f̃(x) = f(σ) where σ = x
|x| ∈ SN−1. Note that △σσ = −(N − 1)σ since

0 = △x =

(
∂2
r +

N − 1

r
∂r +

1

r2
△σ

)
(rσ) =

N − 1

r
σ +

1

r
△σσ.

Thus we compute

△σ(σf) = (△σσ)f + σ(△σf) + 2(∇σf · ∇σ)σ

= −(N − 1)σf + (△σf)σ + 2∇σf,

where we have used (∇σf ·∇σ)σ = (∇σf ·∇)x = ∇σf . This proves the first identity
of (6).

To prove the second identity, we note from (3) resp. (4) that ∇σf = r∇f resp.

△σf = r2△f , since f = f̃ is independent of the radial variable r. Also recalling
from (5)s=1 the formulae ∇r = σ and △r = (N − 1)r−1, we have

(△σ∇σ −∇σ△σ)f = r2△
(
r∇f

)
− r∇

(
r2△f

)
= r2

(
(△r)∇f + 2(∇r · ∇)∇f

)
− r
(
∇r2

)
△f

= (N − 1)r∇f + 2r2∂rr
−1∇σf − 2r2σ△f

= (N − 3)∇σf − 2σ△σf,

as desired. □
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The curl of a vector field u = (u1, · · · , uN ) ∈ C∞(RN )N is defined as the differ-
ential 2-form

curlu = d(u · dx) = d

(
N∑

k=1

ukdxk

)
,

where d denotes the exterior differential. This can be expressed in terms of the
standard Euclidean coordinates as

d(u · dx) =
N∑

k=1

duk ∧ dxk =
∑∑

j<k

(
∂uk

∂xj
− ∂uj

∂xk

)
dxj ∧ dxk.

Thus the curl-free condition d(u · dx) = 0 holds if and only if

(7)
∂uk

∂xj
=

∂uj

∂xk
for all j, k ∈ {1, · · · , N}.

Here we claim that any curl-free vector fields u can be represented by

(8) u(x) = ∇ϕ(x), ϕ(x) =

∫ |x|

0

x

|x|
· u
(
ρ
x

|x|

)
dρ for all x ∈ RN ,

which we say that u has the scalar potential ϕ ∈ C∞(RN ). Conversely, the existence
of such a potential implies d(u · dx) = d(∇ϕ · dx) = ddϕ = 0, that is, u is curl-free.

The proof of the claim (8) is standard: For every i ∈ {1, · · · , N}, we have

ui(x) =

∫ 1

0

d

dt
{tui(tx)}dt =

∫ 1

0

ui(tx) + t
N∑
j=1

∂ui(tx)

∂xj
xj

 dt

=

∫ 1

0

ui(tx) + t
N∑
j=1

∂uj(tx)

∂xi
xj

 dt

=

∫ 1

0

∂

∂xi

 N∑
j=1

uj(tx)xj

 dt =
∂

∂xi

∫ 1

0

u(tx) · x dt ∀x ∈ RN ,

here we have used (7) in the third equality. Thus we see that ϕ(x) =
∫ 1

0
u(tx) ·x dt

is a scalar potential of u. An easy change of variables leads to (8). □

2.2. Radial-spherical decomposition of curl-free fields. In the following, λ ∈
R denotes a fixed real number. Let u be a curl-free field on RN , and let ϕ be its
scalar potential (8). We define a new vector field v and two scalar fields f , φ on
RN \ {0} by the formulae

(9)



v(x) = |x|1−λu(x),

f(x) = |x|1−λω−1
N−1

∫
SN−1

σ · u(|x|σ)dσ,

φ(x) = |x|−λ

(
ϕ(x)− ω−1

N−1

∫
SN−1

ϕ(|x|σ)dσ
)
.

The transformation of the field u 7→ v by the multiplication of |x|1−λ stems from
an idea of Brezis-Vázquez [1] and Maz’ya [11]. Now let us denote by

ϕ̄(r) = ω−1
N−1

∫
SN−1

ϕ(rσ)dσ, r = |x|

the spherical mean of the scalar potential ϕ in (8), together with its radial derivative

∂ϕ̄

∂r
= ω−1

N−1

∫
SN−1

∂ϕ

∂r
(rσ)dσ = ω−1

N−1

∫
SN−1

(σ · ∇ϕ)(rσ)dσ.
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Then we see that (9) can be rewritten simply in terms of ϕ as

(10)


v(x) = r1−λ∇ϕ(x),

f(r) = r1−λ ∂ϕ̄

∂r
,

φ(x) = r−λ
(
ϕ(x)− ϕ̄(r)

)
,

and that f is a spherical mean part of r1−λuR, while φ has zero-spherical mean.
Furthermore, the scalar representation of u(x) in (8) is transformed into that of
v(x) by the following computation using (10):

v = r1−λ∇ϕ

= r1−λ
(
∇(ϕ− ϕ̄) +∇ϕ̄

)
= r1−λ

(
∇(rλφ) +

∂ϕ̄

∂r
σ

)
= r1−λ∇(rλφ) + f(r)σ

= r1−λ
(
λrλ−1φσ + rλ∇φ

)
+ f(r)σ

= (λφ+ f)σ + r∇φ

= (λφ+ f + ∂tφ)σ +∇σφ.

Here and hereafter we employ the notation t = log r which obeys the differential
identities

(11)


∂t = r∂r, dt = dr

r ,

r∇ = σ∂t +∇σ,

r2△ = ∂2
t + (N − 2)∂t +△σ.

In view of the above computation result, we can say that f and φ are radial and
spherical scalar potentials of v, respectively.

In summary, we obtain the following proposition:

Proposition 4. Let λ ∈ R. Then a vector field u ∈ C∞(RN )N is curl-free if and
only if there exist two scalar fields f, φ ∈ C∞(RN \ {0}) satisfying

(12)

{
f is radially symmetric and

∫
SN−1 φ(rσ)dσ = 0 ∀ r > 0,

v = σ
(
f + (λ+ ∂t)φ

)
+∇σφ on RN \ {0},

where v ∈ C∞
c (RN \{0})N is the vector field given by the same equation v = r1−λu

as in (9). Moreover, such f and φ are uniquely determined and explicitly given by
the equations in (9); in particular, if u has a compact support on RN \ {0}, then
so do f and φ.

For later use, we give an expression of the vector field △σv in terms of the scalar
potentials:

Lemma 5. Let v be as in (12). Then

△σv = σ
(
∂t + λ− 2

)
△σφ(13)

+∇σ

(
2∂t +△σ + 2λ+ 2N − 4

)
φ− (N − 1)v.
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Proof. By using Lemma 3 and Proposition 4, we compute

△σv = △σ

(
σ
(
f + (∂t + λ)φ

))
+△σ

(
∇σφ

)
=
(
σ△σ + 2∇σ − (N − 1)σ

)(
f + (∂t + λ)φ

)
+
(
∇σ△σ + (N − 3)∇σ − 2σ△σ

)
φ

= σ
(
(∂t + λ− 2)△σφ

)
− (N − 1)σ

(
f + (∂t + λ)φ︸ ︷︷ ︸

v−∇σφ

)
+∇σ

(
2∂t +△σ + 2λ+N − 3

)
φ

= σ
(
∂t + λ− 2

)
△σφ

+∇σ

(
2∂t +△σ + 2λ+ 2N − 4

)
φ− (N − 1)v.

□

3. Proof of Theorem 1

We assume that the left-hand side of (2) is finite, since otherwise there is nothing
to prove. Then the integrability of |∇u|2|x|2γ together with the smoothness of u
implies the existence of an integer m > −N

2 − γ such that

∇u(x) = O(|x|m) as |x| → 0.

Moreover, in view of the assumption that u(0) = 0 if γ ≤ 1 − N
2 , we see that u

satisfies

|x|γ+N
2 −1u(x) = O(|x|ε) as |x| → 0

for ε > 0 given by

ε =

{
m+ N

2 + γ for γ ≤ 1− N
2 ,

γ + N
2 − 1 for γ > 1− N

2 .

Hence also the scalar potential ϕ(x) =
∫ |x|
0

uR(rx/|x|)dr in (8) satisfies

|x|γ+N
2 −1ϕ(x) = O

(
|x|1+ε

)
as |x| → 0.

Consequently, we have further obtained the integrability conditions

(14)

∫
RN

|u|2|x|2γ−2dx < ∞ and

∫
RN

ϕ2|x|2γ−4dx < ∞

The proof of the theorem is carried out in the following steps:

3.1. Reduction to the case of compact support distinct from the origin.
We can further assume that the curl-free field u = ∇ϕ is compactly supported on
RN \ {0}: Indeed, let {un} ⊂ C∞

c (RN \ {0})N denote the sequence of curl-free
fields defined by

un(x) = ∇
(
ζ
(
|x| 1

n

)
ϕ(x)

)
for every n ∈ N,

where we fix ζ ∈ C∞
c (R+) such that ζ(r) =

{
0 for 0 < r < 1/2

1 for 1 ≤ r
. Then we see

that
∪∞

n=1 suppun is bounded, and that the asymptotic formulae

un(x) = ζ(|x| 1
n )u(x) + σ n−1|x| 1

n−1ζ ′(|x| 1
n )ϕ(x)

= u(x) + o(1)u(x) +O(1/n)|x|−1ϕ(x),

∇un(x) = ∇u(x) + o(1)∇u(x) +O(1/n)σ|x|−1u(x) +O(1/n)σσ|x|−2ϕ(x)
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hold as n → ∞. Therefore, taking the L2 integration on both sides gives

∫
RN

|un|2|x|2γ−2dx =

∫
RN

|u|2|x|2γ−2dx+ o(1),∫
RN

|∇un|2|x|2γdx =

∫
RN

|∇u|2|x|2γdx+ o(1),

thanks to the integrability conditions (14). This result shows that the integrals in
the inequality (2) can be approximated by curl-free fields with compact support on
RN \ {0}.

3.2. Calculation of the integrals in the Hardy-Leray inequality. In the rest
of the present section, we choose

(15) λ = 2− N

2
− γ

in view of § 2.2. Then, with respect to the measure

(16) |x|2γdx = r2γ+N−1drdσ = r4−2λ dr

r
dσ = r4−2λdtdσ,

the L2 integration of u(x)/|x| = rλ−2v can be expressed in terms of f and φ (in
Proposition 4) as

∫
RN

|u|2

|x|2
|x|2γdx =

∫∫
R×SN−1

|v|2dtdσ(17)

=

∫∫
R×SN−1

(
(f + ∂tφ+ λφ)2 + |∇σφ|2

)
dtdσ

=

∫∫
R×SN−1

(
f2 + (∂tφ)

2 + λ2φ2 + |∇σφ|2
)
dtdσ,

where the last equality follows from the integration by parts together with the
support compactness and

∫
SN−1 φ dσ = 0. On the other hand, the integration of

|∇u|2 = |∂ru|2 + r−2|∇σu|2 with respect to the measure (16) yields

∫
RN

|∇u|2|x|2γdx =

∫
RN

(
|∂ru|2 + r−2|∇σu|2

)
|x|2γdx(18)

=

∫∫
R×SN−1

(∣∣∂r(rλ−1v)
∣∣2 + r−2|∇σ(r

λ−1v)|2
)
r4−2λdtdσ

=

∫∫
R×SN−1

(∣∣(λ− 1)v + ∂tv
∣∣2 + |∇σv|2

)
dtdσ

=

∫∫
R×SN−1

(
(λ− 1)2|v|2 + |∂tv|2

)
dtdσ +

∫∫
R×SN−1

|∇σv|2dtdσ.
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To evaluate the last integral, let us take the L2-inner product of △σv in (13) and
v = σ

(
f + (∂t + λ)φ

)
+∇σφ; then integration by parts gives

∫∫
R×SN−1

|∇σv|2dtdσ = −
∫∫

R×SN−1

v · (△σv)dtdσ

(19)

= −
∫∫

R×SN−1

(
f + (∂t + λ)φ

)(
∂t + λ− 2

)
△σφdtdσ

+

∫∫
R×SN−1

(
−∇σφ · ∇σ

(
2∂t +△σ + 2λ+ 2N − 4

)
φ+ (N − 1)|v|2

)
dtdσ

=

∫∫
R×SN−1

(
(△σφ)

2 + (λ2 − 4λ− 2N + 4)|∇σφ|2
)
dtdσ

+

∫∫
R×SN−1

(
|∂t∇σφ|2 + (N − 1)|v|2

)
dtdσ.

Here we note that the spectrum of −△σ is given by the set{
αν = ν(N + ν − 2) ; ν ∈ N ∪ {0}

}
,

and hence the estimate

1∫
SN−1 φ2dσ

∫
SN−1

(
(△σφ)

2 +
(
λ2 − 4λ− 2N + 4

)
|∇σφ|2

)
dσ

≥ min
ν∈N

{
α2
ν + (λ2 − 4λ− 2N + 4)αν ; ν ∈ N

}
= α2

1 + (λ2 − 4λ− 2N + 4)α1

= (N − 1)
(
(λ− 2)2 −N − 1

)
holds for all φ ∈ C∞(SN−1) \ {0} such that

∫
SN−1 φ dσ = 0. Also by using∫

SN−1 ∂tφdσ = 0, we have the estimate∫
SN−1

|∇σ(∂tφ)|2dσ ≥ (N − 1)

∫
SN−1

|∂tφ|2dσ

as an L2(SN−1) version of the Poincaré inequality. Combine the above two estimates
with the right-hand side of (19), and we obtain∫∫
R×SN−1

|∇σv|2dtdσ ≥ (N − 1)

∫∫
R×SN−1

(
|v|2 +

(
(λ− 2)2 −N − 1

)
φ2 + (∂tφ)

2
)
dtdσ

to evaluate the last integral in (18); hence we get∫
RN

|∇u|2|x|2γdx(20)

≥
(
(λ− 1)2 +N − 1

) ∫∫
R×SN−1

|v|2dtdσ +

∫∫
R×SN−1

|∂tv|2dtdσ

+ (N − 1)

∫∫
R×SN−1

((
(λ− 2)2 −N − 1

)
φ2 + (∂tφ)

2
)
dtdσ.

Here the equality holds if and only if −△σφ = α1φ; note that this equation also
produces for ∂tφ the same equation −△σ(∂tφ) = α1(∂tφ) since ∂t and △σ com-
mutes.

To further proceed, we have the following two cases according to the sign of
(λ− 2)2 −N − 1:
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3.3. The case |λ − 2| ≥
√
N + 1. Discarding the last two integrals in (20) and

recalling the first equation of (17), we get the Hardy–Leray inequality∫
RN

|∇u|2|x|2γdx ≥ HN,γ

∫
RN

|u|2

|x|2
|x|2γdx

for curl-free fields u, with the constant

HN,γ = (λ− 1)2 +N − 1 =

(
γ +

N

2
− 1

)2

+N − 1.

To show that this number is the best possible, let us choose the sequence of curl-free
fields {un = rλ−1vn}n∈N ⊂ C∞

c (RN \ {0})N by the formula

vn = σh
( t

n

) (
or equivalently un(x) = x|x|λ−2h

(
log |x| 1

n

))
for all (t,σ) ∈ R× SN−1, where h ∈ C∞

c (R) such that h ̸≡ 0. Then, noticing that
the triplet (u,v, φ) = (un,vn, 0) attains the equality of the inequality (20), we get∫

RN |∇un|2|x|2γdx∫
RN |un|2|x|2γ−2dx

= HN,γ +

∫∫
R×SN−1 |∂tvn|2dtdσ∫∫
R×SN−1 |vn|2dtdσ

= HN,γ +
1

n2

∫
R(h

′(t))2dt∫
R(h(t))

2dt

−→ HN,γ as n → ∞,

which proves the best possibility of HN,γ .

3.4. The case |λ− 2| <
√
N + 1. By using the L2(SN−1)-Poincaré inequality and

equation (17), we have∫∫
R×SN−1

φ2dtdσ ≤ 1

λ2 + α1

∫∫
R×SN−1

(
λ2φ2 + |∇σφ|2

)
dtdσ

=
1

λ2 +N − 1

∫∫
R×SN−1

(
|v|2 −

(
f2 + (∂tφ)

2
) )

dtdσ,

where the first equality holds if and only if −△σφ = α1φ. Combining this estimate
with (20) and noting that (λ− 2)2 −N − 1 < 0, we get

∫
RN

|∇u|2|x|2γdx

(21)

≥
∫∫

R×SN−1

( (
(λ− 1)2 +N − 1

)
|v|2 + |∂tv|2 + (N − 1)(∂tφ)

2
)
dtdσ

−
(N − 1)

(
N + 1− (λ− 2)2

)
λ2 +N − 1

∫∫
R×SN−1

(
|v|2 −

(
f2 + (∂tφ)

2
) )

dtdσ

=
(λ− 1)2(λ2 + 3(N − 1))

λ2 +N − 1

∫∫
R×SN−1

|v|2dtdσ +

∫∫
R×SN−1

|∂tv|2dtdσ

+ (N − 1)

∫∫
R×SN−1

(
N + 1− (λ− 2)2

λ2 +N − 1
f2 +

4
(
λ+ N

2 − 1
)

λ2 +N − 1
(∂tφ)

2

)
dtdσ,

where the first equality holds if and only if −△σφ = α1φ. In the same way as
before, discard the last two integrals in (21) and recall the first equation of (17);
then the Hardy-Leray inequality for curl-free fields∫

RN

|∇u|2|x|2γdx ≥ HN,γ

∫
RN

|u|2

|x|2
|x|2γdx
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holds with the constant HN,γ given by

HN,γ =
(λ− 1)2(λ2 + 3(N − 1))

λ2 +N − 1
=

(
γ +

N

2
− 1

)2 (γ + N
2 − 2

)2
+ 3(N − 1)(

γ + N
2 − 2

)2
+N − 1

.

To show that this HN,γ is sharp, let us choose the sequence of curl-free fields
{un = rλ−1vn}n∈N ⊂ C∞

c (RN \ {0})N by the formulaevn = σ(∂t + λ)φn +∇σφn

(
or equivalently un(x) = ∇

(
|x|λφn(x)

) )
φn = h

(
t
n

)
Y1(σ),

for all (t,σ) ∈ R × SN−1, where h ∈ C∞
c (R) \ {0} and where Y1 ∈ C∞(SN−1)

denotes the eigenfunction of −△σ associated with the eigenvalue α1 = N − 1.
Then a straightforward calculation yields∫

R×SN−1(∂tφn)
2dtdσ∫

R×SN−1 |vn|2dtdσ
=

∫∫
R×SN−1(∂tφn)

2dtdσ∫
R×SN−1

(
(λ2 + α1)φ2

n + (∂tφn)2
)
dtdσ

=

∫
R n−2(h′(t))2dt∫

R
(
(λ2 + α1)(h(t))2 + n−2(h′(t))2

)
dt

−→
(n→∞)

0,∫
R×SN−1 |∂tvn|2dtdσ∫
R×SN−1 |vn|2dtdσ

=

∫
R×SN−1

(
(λ2 + α1)(∂tφn)

2 + (∂2
t φn)

2
)
dtdσ∫

R×SN−1

(
(λ2 + α1)φ2

n + (∂tφn)2
)
dtdσ

=

∫
R
(
n−2(λ2 + α1)(h

′(t))2 + n−4(h′′(t))2
)
dt∫

R
(
(λ2 + α1)(h(t))2 + n−2(h′(t))2

)
dt

−→
(n→∞)

0.

Since the quadruple (u,v, φ, f) = (un,vn, φn, 0) attains the equality in (21), the
above calculation directly gives∫

RN |∇un|2|x|2γdx∫
RN |un|2|x|2γ−2dx

= HN,γ +

∫∫
R×SN−1

(
|∂tvn|2dtdσ +

4(N−1)(λ+N
2 −1)

λ2+N−1 (∂tφn)
2
)
dtdσ∫∫

R×SN−1 |vn|2dtdσ
−→ HN,γ as n → ∞,

which proves the sharpness of HN,γ .

3.5. Conclusion of the proof of Theorem 1. In view of the inequalities (20)
and (21), we have already proved in §3.3 and §3.4 that every curl-free field u ∈
C∞

c (RN \ {0})N satisfies the inequality∫
RN

|∇u|2|x|2γdx ≥ HN,γ

∫
RN

|u|2|x|2γ−2dx

+

∫∫
R×SN−1

|∂tv|2dtdσ + (N − 1)

∫∫
R×SN−1

EN,γ [u]dtdσ

with the constant HN,γ in Theorem B and the remainder function EN,γ [u] given by

EN,γ [u](x) =


(
(λ− 2)2 −N − 1

)
φ2 + (∂tφ)

2 for |λ− 2| ≥
√
N + 1,

N + 1− (λ− 2)2

λ2 +N − 1
f2 +

4(λ+ N
2 − 1)

λ2 +N − 1
(∂tφ)

2 for |λ− 2| <
√
N + 1.

Moreover, the equality in the above integral inequality holds if and only if −△σφ =
α1φ. Finally, restoring the notations

λ = 2− N

2
− γ, ∂t = x · ∇, dtdσ = |x|−Ndx, v = |x|γ+N

2 −1u,
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we complete the proof. □

4. A proof of the sharp Rellich-Leray inequality for curl-free
fields

The same approach to prove Theorem 1 can also be applied to treat other in-
equalities involving higher-order derivatives. The following sharp Rellich-Leray
inequality for curl-free fields was first proven in [7].

Theorem C. ([7]) Let u ∈ C∞
c (RN \ {0})N be a curl-free vector field. Then the

inequality

(22) RN,γ

∫
RN

|u|2

|x|4
|x|2γdx ≤

∫
RN

|△u|2|x|2γdx

holds with the best constant RN,γ given by

(23) RN,γ = min

{(
αγ−N

2
−N + 1

)2
, min

ν∈N

(
γ + N

2 − 1
)2

+ αν(
γ + N

2 − 3
)2

+ αν

(
αγ−N

2 −1 − αν

)2}
in terms of the same notation αs = s(s+N − 2) as in (5).

In this section, we prove the following improvement of Theorem C.

Theorem 6. Let RN,γ be the same as in (23). Then the inequality (22) can be
further improved to be∫
RN

|△u|2|x|2γdx ≥ RN,γ

∫
RN

|u|2

|x|4
|x|2γdx+ cN,γ

∫
RN

∣∣x · ∇
(
|x|γ+N

2 −2u
)∣∣2|x|−Ndx

for some positive constant cN,γ > 0.

As a direct consequence of this fact, the equality sign of inequality (22) is never
attained by any non-zero curl-free field u.

Proof. Let u ∈ C∞
c (RN \ {0})N be a curl-free field. Applying the replacement

(24) γ 7−→ γ − 1

to equation (15), we choose
λ = 3−N/2− γ.

By this choice, let us calculate the integrals in inequality (22): Apply the replace-
ment (24) to the equations in (17), and we have∫

RN

|u|2

|x|4
|x|2γdx =

∫∫
R×SN−1

|v|2dtdσ

=

∫∫
R×SN−1

(
f2 + (∂tφ)

2 + λ2φ2 + |∇σφ|2
)
dtdσ

=

∫∫
R×SN−1

(
f2 + φ

(
λ2 − ∂2

t −△σ

)
φ
)
dtdσ,

where the last equality follows from integration by parts together with the support
compactness. Also we notice that the condition (12) in Proposition 4 is invariant
under the following replacement of the triplet:

(25) (v, f, φ) 7−→ (∂k
t v, ∂

k
t f, ∂

k
t φ)

for k = 1, 2. Hence we have

(26)

∫∫
R×SN−1

|∂k
t v|2dtdσ =

∫∫
R×SN−1

(
(∂k

t f)
2 + φ

(
λ2 − ∂2

t −△σ

)
(−∂2

t )
kφ
)
dtdσ.
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On the other hand, with the aid of (11), we have

△u = △(rλ−1v) = (△rλ−1)v + 2
(
(∇rλ−1) · ∇

)
v + rλ−1△v

= αλ−1r
λ−3v + 2(λ− 1)rλ−3∂tv + rλ−3

(
∂2
t + (N − 2)∂t +△σ

)
v

= rλ−3
(
αλ−1v + (2λ+N − 4)∂tv + ∂2

t v +△σv
)
,

where in the second line we have used the same formula △rλ−1 = αλ−1r
λ−3 as in

(5)s=λ−1. Then the L2 integration (by parts) of this result yields

∫
RN

|△u|2|x|2γdx =

∫∫
R×SN−1

∣∣αλ−1v + (2λ+N − 4)∂tv + ∂2
t v +△σv

∣∣2dtdσ
(27)

=

∫∫
R×SN−1

|∂2
t v|2dtdσ +

(
(N − 2)2 + 2αλ−1

) ∫∫
R×SN−1

|∂tv|2dtdσ

+ 2

∫∫
R×SN−1

|∇σ∂tv|2dtdσ +

∫∫
R×SN−1

∣∣△σv + αλ−1v
∣∣2dtdσ,

where the second equality follows from the identity (2λ + N − 4)2 − 2αλ−1 =
(N − 2)2 + 2αλ−1. To calculate the second last integral in (27), we apply the
replacement (25) to the equation in (19):

∫∫
R×SN−1

|∂t∇σv|2dtdσ(28)

=

∫∫
R×SN−1

(
(△σ∂tφ)

2 + |∇σ∂
2
t φ|2 +

(
(λ− 2)2 − 2N

)
|∇σ∂tφ|2

+(N − 1)|∂tv|2

)
dtdσ

=

∫∫
R×SN−1

 φ
(
−△2

σ∂
2
t −△σ∂

4
t +

(
(λ− 2)2 − 2N

)
△σ∂

2
t

)
φ

+(N − 1)
(
(∂tf)

2 + φ
(
λ2 − ∂2

t −△σ

)
(−∂2

t φ)
)
 dtdσ.

Also to calculate the last integral in (27), let us compute from (13) and (12) that

△σv + αλ−1v

= σ
(
∂t + λ− 2

)
△σφ+∇σ

(
2∂t +△σ + 2(λ+N − 2)

)
φ

+
(
αλ−1 − (N − 1)

) (
σ
(
f + (∂t + λ)φ

)
+∇σφ

)
= σ

(
(△σ + αλ−1 −N + 1)∂tφ+ (λ− 2)△σφ+ (αλ−1 −N + 1)(f + λφ)

)
+∇σ (2∂t +△σ + αλ)φ,



14 N. HAMAMOTO AND F. TAKAHASHI

here we have used αλ−1 − (N − 1) + 2(λ + N − 2) = αλ in the second equality.
Hence the L2 integration by parts of this result yields∫∫

R×SN−1

∣∣△σv + αλ−1v
∣∣2dtdσ(29)

=

∫∫
R×SN−1

∣∣∣∣∣ (△σ + αλ−1 −N + 1)∂tφ

+(λ− 2)△σφ+ (αλ−1 −N + 1)(f + λφ)

∣∣∣∣∣
2

dtdσ

+

∫∫
R×SN−1

∣∣∇σ (2∂t +△σ + αλ)φ
∣∣2dtdσ

=

∫∫
R×SN−1


(
(△σ + αλ−1 −N + 1)∂tφ

)2
+ 4 |∂t∇σφ|2

+
∣∣(λ− 2)△σφ+ (αλ−1 −N + 1)λφ

∣∣2
+
∣∣∇σ△σφ+ αλ∇σφ

∣∣2 + (αλ−1 −N + 1)2f2

 dtdσ

=

∫∫
R×SN−1


φ
(
(△σ + αλ−1 −N + 1)2 − 4△σ

)
(−∂2

t φ)

+φ
(
(λ− 2)2 −△σ

)
(△σ + αλ)

2φ

+(αλ−1 −N + 1)2f2

 dtdσ.

Substitute (26), (28) and (29) into (27), and after some lengthy algebraic calcula-
tions, we obtain∫

RN

|△u|2|x|2γdx = (26)k=2 +
(
(N − 2)2 + 2αλ−1

)
(26)k=1 + 2× (28) + (29)(30)

=

∫∫
R×SN−1

(
φQ1(−∂2

t ,−△σ)φ+ fQ0(−∂2
t )f
)
dtdσ,

where Q1(·, ·) and Q0(·) are the polynomials given by

Q1(τ, α) =
(
λ2 + τ + α

)
τ2 + ((N − 2)2 + 2αλ−1)

(
λ2 + τ + α

)
τ(31)

+ 2
(
α2τ + ατ2 +

(
(λ− 2)2 − 2N

)
ατ + (N − 1)(λ2 + τ + α)τ

)
+
(
(−α+ αλ−1 −N + 1)2 + 4α

)
τ +

(
(λ− 2)2 + α

)
(−α+ αλ)

2

=
(
τ + α+ (λ− 2)2

)( (τ + α+ λ2)
(
τ + α+ (λ+N − 2)2

)
− (2λ+N − 2)2α

)
,

Q0(τ) = τ2 +
(
(N − 2)2 + 2αλ−1

)
τ + 2(N − 1)τ + (αλ−1 −N + 1)2(32)

=
(
τ + (λ− 2)2

) (
τ + (λ+N − 2)2

)
.

Therefore, we get

(33)

∫
RN |△u|2|x|2γdx∫
RN |u|2|x|2γ−4dx

=

∫∫
R×SN−1

(
φQ1(−∂2

t ,−△σ)φ+ fQ0(−∂2
t )f
)
dtdσ∫∫

R×SN−1

(
φ(λ2 − ∂2

t −△σ)φ+ f2
)
dtdσ

as far as u ̸≡ 0.
From now on, we evaluate the right-hand side of (33). We apply to φ and f the

1-D Fourier transformation with respect to t: we set

φ̂(τ,σ) =
1√
2π

∫
R
eiτtφ(etσ)dt, f̂(τ) =

1√
2π

∫
R
eiτtf(etσ)dt
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for (τ,σ) ∈ R× SN−1. Furthermore, we apply to φ̂ the spherical harmonics expan-
sion:

φ̂(τ,σ) =
∑
ν∈N

φ̂ν(τ)Yν(σ),

{
−△σYν = ανYν ,

αν = ν(ν +N − 2) ∀ν ∈ N,

with the normalization
∫
SN−1 |Yν(σ)|2dσ = 1. Substituting these formulae into (33)

and noticing the L2(R) isometry of the Fourier transformation, we have

∫
RN |△u|2|x|2γdx∫
RN |u|2|x|2γ−4dx

=

∑
ν∈N

∫
R

Q1(τ
2, αν)|φ̂ν(τ)|2dτ + ωN−1

∫
R

Q0(τ
2)|f̂(τ)|2dτ

∑
ν∈N

∫
R

(λ2 + τ2 + αν)|φ̂ν(τ)|2dτ + ωN−1

∫
R

|f̂(τ)|2dτ

(34)

≥ min

{
inf
ν∈N

inf
τ∈R

Q1(τ
2, αν)

λ2 + τ2 + αν
, inf

τ∈R
Q0(τ

2)

}
= min

{
min
ν∈N

Q1(0, αν)

λ2 + αν
, Q0(0)

}
.

Here the last equality follows from that in view of (31) and (32) the functions

Q1(τ, αν)

λ2 + τ + αν
=
(
τ + αν + (λ− 2)2

)(
τ + αν

(
1− (2λ+N − 2)2

λ2 + τ + αν

)
+ (λ+N − 2)2

)
and Q0(τ) are monotonically increasing in τ ∈ [0,∞) for each ν ∈ N. Therefore,
we have proved the Rellich-Leray inequality for curl-free fields (22):∫

RN

|△u|2|x|2γdx ≥ RN,γ

∫
RN

|u|2|x|2γ−4dx

holds with the constant RN,γ given by

RN,γ = min

{
min
ν∈N

Q1(0, αν)

λ2 + αν
, Q0(0)

}
= min

{
min
ν∈N

(λ− 2)2 + αν

λ2 + αν
(αλ − αν)

2, (αλ−1 −N + 1)
2

}
= min

{
min
ν∈N

(
γ + N

2 − 1
)2

+ αν(
γ + N

2 − 3
)2

+ αν

(
αγ−N

2 −1 − αν

)2
,
(
αγ−N

2
−N + 1

)2}
.

Now, we prove the sharpness of RN,γ . For this purpose, we choose ν0 ∈ N ∪ {0}
to be such that

ν0 = 0, if min

{
min
ν∈N

Q1(0, αν)

λ2 + αν
, Q0(0)

}
= Q0(0),

min
ν∈N

Q1(0, αν)

λ2 + αν
=

Q1(0, αν0)

λ2 + αν0

, otherwise,

and define the sequence of vector fields {un = rλ−1vn}n∈N ⊂ C∞
c (RN \ {0})N by

the formulae

vn =

{
σfn if ν0 = 0,

σ(∂t + λ)φn +∇σφn otherwise.

Here 
fn(x) = h

(
log |x|

n

)
if ν0 = 0,

φn(x) = h
(

log |x|
n

)
Yν0(x/|x|) otherwise,
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with h ∈ C∞
c (R) \ {0}, and Yν0 ∈ C∞(SN−1) denotes the eigenfunction of −△σ

associated with the eigenvalue αν0 = ν0(ν0 + N − 2). Notice from Proposition 4
that un is curl-free. Then applying the formula (33) to (u, f, φ) = (un, fn, 0) or
(u, f, φ) = (un, 0, φn) gives

∫
RN |△un|2|x|2γdx∫
RN |un|2|x|2γ−4dx

=



∫
R h( t

n )Q0(−∂2
t )h(

t
n )dt∫

R
(
h( t

n )
)2
dt

if ν0 = 0,∫
R h( t

n )Q1(−∂2
t , αν0)h(

t
n )dt∫

R h( t
n )(λ

2 − ∂2
t + αν0)h(

t
n )dt

otherwise.

Passing to n → ∞, we get∫
RN |△un|2|x|2γdx∫
RN |un|2|x|2γ−4dx

= O(1/n2) +


Q0(0) if ν0 = 0

Q1(0, αν0)

λ2 + αν0

otherwise

−→ RN,γ ,

which shows the desired sharpness of RN,γ .
In order to obtain further improvement, we recall that the two integrals in (22)

can be expressed in terms of φ and f (in Proposition 4) as∫
RN

|△u|2|x|2γdx =
∑
ν∈N

∫
R
Q1(τ

2, αν)|φ̂ν(τ)|2dτ + ωN−1

∫
R
Q0(τ

2)|f̂(τ)|2dτ,∫
RN

|u|2|x|2γ−4dx =
∑
ν∈N

∫
R
(λ2 + τ2 + αν)|φ̂ν(τ)|2dτ + ωN−1

∫
R
|f̂(τ)|2dτ

for λ = 3−N/2− γ, together with the polynomials Q1 and Q0 given by (31) and

(32). Also recall the expression RN,γ = min
{
minν∈N

Q1(0,αν)
λ2+αν

, Q0(0)
}

of the best

constant of the inequality (22) and let ν1 ∈ N be such that

Q1(0, αν1)

λ2 + αν1

= min
ν∈N

Q1(0, αν)

λ2 + αν
.

Then the difference between the both sides of (22) has the following estimate:∫
RN

|△u|2|x|2γdx−min

{
Q1(0, αν1)

λ2 + αν1

, Q0(0)

}∫
RN

|u|2|x|2γdx

≥
∫
RN

|△u|2|x|2γdx

− Q1(0, αν1)

λ2 + αν1

∑
ν∈N

∫
R
(τ2 + λ2 + αν)|φ̂ν(τ)|2dτ −Q0(0)ωN−1

∫
R
|f̂(τ)|2dτ

=
∑
ν∈N

∫
R

(
Q1(τ

2, αν)−
Q1(0, αν1)

λ2 + αν1

(τ2 + λ2 + αν)

)
|φ̂ν(τ)|2

+ ωN−1

∫
R

(
Q0(τ

2)−Q0(0)
)
|f̂(τ)|2dτ

≥ c1,N,γ

∑
ν∈N

∫
R
(λ2 + τ2 + αν)τ

2|φ̂ν(τ)|2dτ + c0,N,γ ωN−1

∫
R
τ2|f̂(τ)|2dτ

≥ min {c1,N,γ , c0,N,γ}
∫
R

(∑
ν∈N

(λ2 + τ2 + αν)τ
2|φ̂ν(τ)|2 + ωN−1τ

2|f̂(τ)|2
)
dτ

= min {c1,N,γ , c0,N,γ}
∫
RN

|∂tv|2r−Ndx,
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where we have defined the two constants c0,N,γ and c1,N,γ by

c0,N,γ = inf
τ∈R\{0}

Q0(τ
2)−Q0(0)

τ2
= Q′

0(0) = (λ− 2)2 + (λ+N − 2)2

= N2/2 + 2(1− γ)2 > 0,

c1,N,γ = inf
ν∈N

inf
τ∈R\{0}

1

τ2

(
Q1(τ

2, αν)

τ2 + λ2 + αν
− Q1(0, αν1)

λ2 + αν1

)
.

Hence it suffices to show c1,N,γ > 0. To this end, notice that

c1,N,γ ≥ inf
ν∈N

inf
τ∈R\{0}

1

τ2

(
Q1(τ

2, αν)

τ2 + λ2 + αν
− Q1(0, αν)

λ2 + αν

)
= inf

ν∈N
inf
τ≥0

Q2(τ, αν)

for the rational polynomial Q2(·, ·) defined by the following algebraic calculation:

Q2(τ, a) =
1

τ

(
Q1(τ, a)

τ + λ2 + a
− Q1(0, a)

λ2 + a

)
=

4(1− λ)(2λ+N − 2)2a

(λ2 + a)(τ + λ2 + a)
+ 2

(
λ+

N

2
− 2

)2

+
N2

2
+ 2a+ τ

=
16(1− λ)(2− γ)2a

(λ2 + a)(τ + λ2 + a)
+ c0,N,γ + 2a+ τ.

In order to further estimate Q2(τ, αν) for τ ≥ 0 and ν ∈ N, let us consider the
following two cases: for λ ≤ 1, it is clear that Q2(τ, αν) ≥ c0,N,γ + 2αν . For λ > 1,
since it is clear that Q2(τ, αν) is monotone increasing in τ , we have

Q2(τ, αν) ≥ Q2(0, αν) = −16(λ− 1)(2− γ)2αν

(λ2 + αν)2
+ c0,N,γ + 2αν

≥ −16(λ− 1)(2− γ)2αν

4λ2αν
+ c0,N,γ + 2αν

≥ −(2− γ)2 + c0,N,γ + 2αν

= γ2 +N2/2 + 2(αν − 1) ≥ N2/2 + 2(α1 − 1),

where the inequalities in the second and third lines follow from

(λ2 + αν)
2 ≥ 4λ2αν and − (λ− 1)/λ2 ≥ −1/4.

Hence it turns out that inf
ν∈N

inf
τ≥0

Q2(τ, αν) > 0, and hence that c1,N,γ > 0. Therefore,

we have obtained the inequality∫
RN

|△u|2|x|2γdx−RN,γ

∫
RN

|u|2|x|2γdx ≥ cN,γ

∫
RN

∣∣x · ∇
(
|x|γ+N

2 −1u)
∣∣2|x|−Ndx

for cN,γ = min {c0,N,γ , c1,N,γ} > 0. The proof of Theorem 6 is now complete,
although the constant cN,γ is not ensured to be optimal. □
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