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IN HARDY-LERAY INEQUALITY WITH WEIGHT
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ABSTRACT. In this note, we obtain a simpler expression for the constant num-
ber given by Costin-Maz’ya [ll] on sharp Hardy-Leray inequality for a class
of solenoidal (namely divergence-free) vector fields, with respect to any ra-
dial power-weighted measure. The dependence of the constant on the weight
exponent will be clear.

1. MOTIVATION AND MAIN RESULT

Throughout this paper, N is an integer with N > 3 and v denotes any real
number. What we call Costin-Maz’ya’s constant is a real number expressed by the
formula

CN,W(7+];1)2+min{2+m>ig <T+ AN =Dy =1) >, Nl}.

(L.1)
It was found by Costin-Maz’ya [I] in the process of deriving the best constant in
the weighted N-dimensional Hardy-Leray (or shortly “H-L”) inequality
uf?

CN,W/ —|w|27dx§/ \Vu|?|x|? dx (1.2)
RN RN

||

for solenoidal vector fields u = u(x) : RY — R (with a suitable regularity condi-
tion). This inequality serves as a solenoidal improvement of the original sharp H-L
inequality
2
3 -1)? [ e [ Vuleas
ey |z RN
for unconstrained fields u : RN — RY . whose prototype case v = 0 is famous for
the one-dimensional inequality by Hardy [5] and its N-dimensional extension by
Leray [6].

Practically, the derivation of the expression (I0l) by Costin-Maz’ya was carried
out under the axisymmetry assumption on the solenoidal fields uw. Strictly speaking,
however, their method includes incorrect datum for IV > 4 overlooking the singular
behavior of axisymmetric vector fields, and in fact the inequality () together
with the expression () is invalid as long as the axisymmetry of w is assumed.
(For details, see [2, §2.1].) Nevertheless, the validity of the same expression can be
recovered if only we remove the axisymmetry assumption; indeed, in recent papers
[@, B] the author evaluated the constant Cl , in the inequality (I2) without any
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2 N. HAMAMOTO

symmetry assumption on the solenoidal fields u, and found its best value to be the
same as in (), or the lesser of the two real numbers

L N 2 .
Crny = (v+ 5 —1) +2+mn (TJF

CrN~ = (v+——1) + N -1,

which are respectively the best constants in the H-L inequalities

Cp.N A /
C1T,N,’y/

in the sense of the so-called poloidal-toroidal decomposition of solenoidal fields.
In view of the observation above, Costin-Maz’ya’s constant

2
I E 5|z 127dx < / |Vu|?|z|*"dx  for poloidal fields u,
RN
: ||2| |*7dx < / |Vu|?|x|*Ydz  for toroidal fields u
RN

CNy =min{Cp N, O N~}

can be considered as meaningful, and hence would be better if its expression could
be further simplified, although it has been regarded as unwieldy. Now, our goal is
to get a simpler expression of Cy  than ([Z0); the statement of our main result
reads as follows:

Theorem 1.1. Let Cn ~,Cp n and Cr n -, be the real numbers given in (I1) and
(3), and let In = (vy,75) C R be the open interval between the two (extended)
real numbers vy < 'ylf, given by

N Nfl
yfzﬁ_iN_l and ~h = T AT (N =4)
N7 2 JN¥1+2 N 00 (N=3)

Then it holds that
Crny <Cpny fory€ln,
Crny =Cpny  forvy € {vn, 13}
Crny>CpnNy otherwise,
y=N) 4+ N+1

and that Cp N = (74—*—1)( 2

24— whenever In. In particular,
(77%) TN-1 Y g N - p

. 4N -1)(y-1)
C =(y+ X 2—|—mln 2+ , N—1
N,~v ("}/ 2 ) { (’}/ ];[)2 N 1

2
(7+%—1) +N-1 forvy eIy,
- N )2 (=5) N :
v+ 5 1) (w7%)2+N71 otherwise.

It is clear that the expression of C'y 5 in this theorem is simpler than (I0). An
advantage of such a simplification is that it helps us to verify that the equality
sign in the inequality (I2) is never achieved by any non-trivial solenoidal field w.
Indeed, in view of [B], one can observe that the main difficulty of this verification
appears in the case where Cr v, > Cp N, and simultaneously where the minimum
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in (I=3) is not achieved by 7 = 0; the result of Theorem I tells us that such a case
is void.

In the remaining of the present paper, we will prove Theorem [, after preparing
a technical lemma. The proof is elementary.

2. PROOF OF MAIN THEOREM

We start with proving the following fact, which plays a central role:

Lemma 2.1. Let B be the quartic function given by
BA) =M+ (N—-1) (22 —4x— (N -3)) VAeR.
Then it holds that Cr N + 2 < Cp n.y whenever B (fy - %) <0.

Proof. The key idea of the proof is an application of the intermediate value theo-
rem to convex functions. First of all, notice that the convexity of B can be verified
by the positivity of its second-order derivative:

B"(\) = 12X +4(N — 1) > 0.
From this fact together with the datum
B(1-4)=N?/16>0 and B(1)=—(N-2)N <0,
0

it follows that v > 1 must be satisfied whenever B (7 — %) <0.
Now, we set

4N -1 (v—-1
F(r) = 7+ — )(27 ) _N+3 w0 (2.1)
T+(y-%)+N-1
in order that
min F(T) = C’p,]\]’V - CT,N,'Y' (22)

720
To evaluate the left-hand side, notice that a direct calculation yields
2
OF (1) 72+2(('y—%) —|—N—1>T+B(7—%) 23)
= 2 . .
or (¢+(~y—%)2+N—1)

Then it follows from B (7 — %) < 0 that the minimum of F' can be achieved by

the nonnegative root of the equation 0F/d7 = 0 which we denote by

TOI:_(’Y_];/)2—N+1+\/((’7—2})2—}—]\[—1)2_3(7_1;7)

—— (=Y -N+1+2/N -1\ H— 1L

Therefore, the minimum value of F' — 2 is given by the calculation

minF(T)—Q:F(TO)—2:—(7—%)2—2]\74—24—4\/]\7—1\/7—1.

720

Now, all that is left is to show the non-negativity of this value; it suffices to check
the inequality

16(N — 1)(y —1) > ((7— M) 4 oN —2)2.
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To this end, by putting A = v — N/2 we compute

5 2
16V -1)(y =)= ((v=3) +2N-2) +B(y- %)
—16(N-1) A+ —1) = (A +2(N - 1))>+ B())
=(N-1) (20 + 12X+ 3N —9).
Hence, all we have to do is to check that the quadratic function
E()\) = -2\ + 12\ + 3N -9
satisfies
E(X) >0 whenever B(X) <O0.

For this purpose, we set
A =3+ ¥8/N 13

as the two roots of the quadratic equation E(A) = 0. Then, with the aid of the
polynomial division identity

B(A) = —1(2\2 4 12X\ + TN + 59) E(A) + 2(13N + T7)A + (N — 3)(17N + 181),

we directly compute

A <1 <Ay,

B(1) = —(N —2)N <0,

B(\4) = £(1305 + 442N + 17N?) + V6vV/N + 3 (13N + 77) > 0,
1 (N — 3)%(289N? + 538N — 503)

B(\.) =~ >0
4 17N2 + 442N + 1305 + 4v/6+/N + 3 (13N +77)

In view of the concavity of F and the convexity of B, this fact tells us that
E(X) > 0 holds whenever B(\) <0,

as desired. O

Proof of Theorem 1. First of all, in view of (21), notice that the two numbers
’yf, are the roots of the equation in ~:
AN -1D(v—1)

(v-3)+nN-1

F(0) = ~N+3=0.

Hence we see from (E71) that

F0)>0 foryely

F(0)=0 forvye {yy, 4}, (2.4)
F(0) <0 otherwise.

Making use of Lemma E7T together with (E2), we evaluate the sign of the number
Cp Ny — Cr N, in the following cases:
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The case v € In. When B (v — &) <0, we have Cr,n, < Cp,n,y by use of Lemma
1. When B ('y - %) > 0, the function F'(7) is monotone increasing in 7 since its
derivative (2.3) is positive for all 7 > 0; then the min,>q F'(7) is attained at 7 = 0.
Therefore, we see from (22) and (24) that

CP,N,’y — CT,N,’y = F(O) >0,

and hence again that Cp n ., < Cp N y-
The case v € R\ In. We see from (E22) that
Cpny—CrNy = ITn>11(r)1F(T) < F(0)<o.
This fact together with Lemma 71 implies that B (’y — %) must be positive, whence
we see in view of (E33) that F(7) is monotone increasing in 7 > 0. Therefore, we
get min,>o F(7) = F(0) and
(=) +N+1
(-F) +N-1
Cpney =Crn,y fory e {yy, 7%}

Cpn~ <Cr N~ otherwise.
The proof of Theorem I is now complete.

Crny=Crny+F(0)=(y+ 5 1)

Moreover, recalling (2) we obtain
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