A SIMPLER EXPRESSION FOR COSTIN-MAZ'YA'S CONSTANT IN HARDY-LERAY INEQUALITY WITH WEIGHT

NAOKI HAMAMOTO

Abstract

In this note, we obtain a simpler expression for the constant number given by Costin-Maz'ya [T] on sharp Hardy-Leray inequality for a class of solenoidal (namely divergence-free) vector fields, with respect to any radial power-weighted measure. The dependence of the constant on the weight exponent will be clear.

1. Motivation and main result

Throughout this paper, N is an integer with $N \geq 3$ and γ denotes any real number. What we call Costin-Maz'ya's constant is a real number expressed by the formula

$$
\begin{equation*}
C_{N, \gamma}=\left(\gamma+\frac{N}{2}-1\right)^{2}+\min \left\{2+\min _{\tau \geq 0}\left(\tau+\frac{4(N-1)(\gamma-1)}{\tau+\left(\gamma-\frac{N}{2}\right)^{2}+N-1}\right), N-1\right\} \tag{1.1}
\end{equation*}
$$

It was found by Costin-Maz'ya [T] in the process of deriving the best constant in the weighted N-dimensional Hardy-Leray (or shortly "H-L") inequality

$$
\begin{equation*}
C_{N, \gamma} \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}}|\boldsymbol{x}|^{2 \gamma} d x \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \tag{1.2}
\end{equation*}
$$

for solenoidal vector fields $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x}): \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ (with a suitable regularity condition). This inequality serves as a solenoidal improvement of the original sharp H-L inequality

$$
\left(\gamma+\frac{N}{2}-1\right)^{2} \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}}|\boldsymbol{x}|^{2 \gamma} d x \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x
$$

for unconstrained fields $\boldsymbol{u}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, whose prototype case $\gamma=0$ is famous for the one-dimensional inequality by Hardy [5] and its N-dimensional extension by Leray [6].

Practically, the derivation of the expression (■.\|) by Costin-Maz'ya was carried out under the axisymmetry assumption on the solenoidal fields \boldsymbol{u}. Strictly speaking, however, their method includes incorrect datum for $N \geq 4$ overlooking the singular behavior of axisymmetric vector fields, and in fact the inequality ($\mathbb{L} \boldsymbol{2}$) together with the expression (\|.\|) is invalid as long as the axisymmetry of \boldsymbol{u} is assumed. (For details, see [$Z, \S 2.1]$.) Nevertheless, the validity of the same expression can be recovered if only we remove the axisymmetry assumption; indeed, in recent papers [4, 3] the author evaluated the constant $C_{N, \gamma}$ in the inequality ($\left.\mathbb{L} .2\right)$ without any

[^0]symmetry assumption on the solenoidal fields \boldsymbol{u}, and found its best value to be the same as in ([.]), or the lesser of the two real numbers
\[

\left\{$$
\begin{array}{l}
C_{P, N, \gamma}:=\left(\gamma+\frac{N}{2}-1\right)^{2}+2+\min _{\tau \geq 0}\left(\tau+\frac{4(N-1)(\gamma-1)}{\tau+\left(\gamma-\frac{N}{2}\right)^{2}+N-1}\right) \tag{1.3}\\
C_{T, N, \gamma}:=\left(\gamma+\frac{N}{2}-1\right)^{2}+N-1
\end{array}
$$\right.
\]

which are respectively the best constants in the $\mathrm{H}-\mathrm{L}$ inequalities

$$
\begin{cases}C_{P, N, \gamma} \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}}|\boldsymbol{x}|^{2 \gamma} d x \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \quad \text { for poloidal fields } \boldsymbol{u} \\ C_{T, N, \gamma} \int_{\mathbb{R}^{N}} \frac{|\boldsymbol{u}|^{2}}{|\boldsymbol{x}|^{2}}|\boldsymbol{x}|^{2 \gamma} d x \leq \int_{\mathbb{R}^{N}}|\nabla \boldsymbol{u}|^{2}|\boldsymbol{x}|^{2 \gamma} d x \quad \text { for toroidal fields } \boldsymbol{u}\end{cases}
$$

in the sense of the so-called poloidal-toroidal decomposition of solenoidal fields.
In view of the observation above, Costin-Maz'ya's constant

$$
C_{N, \gamma}=\min \left\{C_{P, N, \gamma}, C_{T, N, \gamma}\right\}
$$

can be considered as meaningful, and hence would be better if its expression could be further simplified, although it has been regarded as unwieldy. Now, our goal is to get a simpler expression of $C_{N, \gamma}$ than (■.\|); the statement of our main result reads as follows:

Theorem 1.1. Let $C_{N, \gamma}, C_{P, N, \gamma}$ and $C_{T, N, \gamma}$ be the real numbers given in (ㄸ.ᅦ) and ([.3), and let $I_{N}=\left(\gamma_{N}^{-}, \gamma_{N}^{+}\right) \subset \mathbb{R}$ be the open interval between the two (extended) real numbers $\gamma_{N}^{-}<\gamma_{N}^{+}$given by

$$
\gamma_{N}^{-}=\frac{N}{2}-\frac{N-1}{\sqrt{N+1}+2} \quad \text { and } \quad \gamma_{N}^{+}= \begin{cases}\frac{N}{2}+\frac{N-1}{\sqrt{N+1}-2} & (N \geq 4) \\ \infty & (N=3)\end{cases}
$$

Then it holds that

$$
\begin{cases}C_{T, N, \gamma}<C_{P, N, \gamma} & \text { for } \gamma \in I_{N} \\ C_{T, N, \gamma}=C_{P, N, \gamma} & \text { for } \gamma \in\left\{\gamma_{N}^{-}, \gamma_{N}^{+}\right\} \\ C_{T, N, \gamma}>C_{P, N, \gamma} & \text { otherwise }\end{cases}
$$

and that $C_{P, N, \gamma}=\left(\gamma+\frac{N}{2}-1\right)^{2} \frac{\left(\gamma-\frac{N}{2}\right)^{2}+N+1}{\left(\gamma-\frac{N}{2}\right)^{2}+N-1}$ whenever $\gamma \notin I_{N}$. In particular,

$$
\begin{aligned}
C_{N, \gamma} & =\left(\gamma+\frac{N}{2}-1\right)^{2}+\min \left\{2+\frac{4(N-1)(\gamma-1)}{\left(\gamma-\frac{N}{2}\right)^{2}+N-1}, N-1\right\} \\
& = \begin{cases}\left(\gamma+\frac{N}{2}-1\right)^{2}+N-1 & \text { for } \gamma \in I_{N} \\
\left(\gamma+\frac{N}{2}-1\right)^{2} \frac{\left(\gamma-\frac{N}{2}\right)^{2}+N+1}{\left(\gamma-\frac{N}{2}\right)^{2}+N-1} & \text { otherwise. }\end{cases}
\end{aligned}
$$

It is clear that the expression of $C_{N, \gamma}$ in this theorem is simpler than (■.]). An advantage of such a simplification is that it helps us to verify that the equality sign in the inequality ($\mathbb{L T}$) is never achieved by any non-trivial solenoidal field \boldsymbol{u}. Indeed, in view of [3], one can observe that the main difficulty of this verification appears in the case where $C_{T, N, \gamma}>C_{P, N, \gamma}$ and simultaneously where the minimum
in (■.3) is not achieved by $\tau=0$; the result of Theorem $\mathbb{\square}$ tells us that such a case is void.

In the remaining of the present paper, we will prove Theorem $\mathbb{L} . \|$, after preparing a technical lemma. The proof is elementary.

2. Proof of main theorem

We start with proving the following fact, which plays a central role:
Lemma 2.1. Let B be the quartic function given by

$$
B(\lambda)=\lambda^{4}+(N-1)\left(2 \lambda^{2}-4 \lambda-(N-3)\right) \quad \forall \lambda \in \mathbb{R}
$$

Then it holds that $C_{T, N, \gamma}+2 \leq C_{P, N, \gamma}$ whenever $B\left(\gamma-\frac{N}{2}\right) \leq 0$.
Proof. The key idea of the proof is an application of the intermediate value theorem to convex functions. First of all, notice that the convexity of B can be verified by the positivity of its second-order derivative:

$$
B^{\prime \prime}(\lambda)=12 \lambda^{2}+4(N-1)>0
$$

From this fact together with the datum

$$
B\left(1-\frac{N}{2}\right)=N^{2} / 16>0 \quad \text { and } \quad B(1)=-(N-2) N<0
$$

it follows that $\gamma>1$ must be satisfied whenever $B\left(\gamma-\frac{N}{2}\right) \leq 0$.
Now, we set

$$
\begin{equation*}
F(\tau):=\tau+\frac{4(N-1)(\gamma-1)}{\tau+\left(\gamma-\frac{N}{2}\right)^{2}+N-1}-N+3 \quad \forall \tau \geq 0 \tag{2.1}
\end{equation*}
$$

in order that

$$
\begin{equation*}
\min _{\tau \geq 0} F(\tau)=C_{P, N, \gamma}-C_{T, N, \gamma} \tag{2.2}
\end{equation*}
$$

To evaluate the left-hand side, notice that a direct calculation yields

$$
\begin{equation*}
\frac{\partial F(\tau)}{\partial \tau}=\frac{\tau^{2}+2\left(\left(\gamma-\frac{N}{2}\right)^{2}+N-1\right) \tau+B\left(\gamma-\frac{N}{2}\right)}{\left(\tau+\left(\gamma-\frac{N}{2}\right)^{2}+N-1\right)^{2}} \tag{2.3}
\end{equation*}
$$

Then it follows from $B\left(\gamma-\frac{N}{2}\right) \leq 0$ that the minimum of F can be achieved by the nonnegative root of the equation $\partial F / \partial \tau=0$ which we denote by

$$
\begin{aligned}
\tau_{0} & :=-\left(\gamma-\frac{N}{2}\right)^{2}-N+1+\sqrt{\left(\left(\gamma-\frac{N}{2}\right)^{2}+N-1\right)^{2}-B\left(\gamma-\frac{N}{2}\right)} \\
& =-\left(\gamma-\frac{N}{2}\right)^{2}-N+1+2 \sqrt{N-1} \sqrt{\gamma-1}
\end{aligned}
$$

Therefore, the minimum value of $F-2$ is given by the calculation

$$
\min _{\gamma \geq 0} F(\tau)-2=F\left(\tau_{0}\right)-2=-\left(\gamma-\frac{N}{2}\right)^{2}-2 N+2+4 \sqrt{N-1} \sqrt{\gamma-1}
$$

Now, all that is left is to show the non-negativity of this value; it suffices to check the inequality

$$
16(N-1)(\gamma-1) \geq\left(\left(\gamma-\frac{N}{2}\right)^{2}+2 N-2\right)^{2}
$$

To this end, by putting $\lambda=\gamma-N / 2$ we compute

$$
\begin{aligned}
& 16(N-1)(\gamma-1)-\left(\left(\gamma-\frac{N}{2}\right)^{2}+2 N-2\right)^{2}+B\left(\gamma-\frac{N}{2}\right) \\
& \quad=16(N-1)\left(\lambda+\frac{N}{2}-1\right)-\left(\lambda^{2}+2(N-1)\right)^{2}+B(\lambda) \\
& \quad=(N-1)\left(-2 \lambda^{2}+12 \lambda+3 N-9\right) .
\end{aligned}
$$

Hence, all we have to do is to check that the quadratic function

$$
E(\lambda):=-2 \lambda^{2}+12 \lambda+3 N-9
$$

satisfies

$$
E(\lambda) \geq 0 \quad \text { whenever } \quad B(\lambda) \leq 0
$$

For this purpose, we set

$$
\lambda_{ \pm}:=3 \pm \frac{\sqrt{6}}{2} \sqrt{N+3}
$$

as the two roots of the quadratic equation $E(\lambda)=0$. Then, with the aid of the polynomial division identity

$$
B(\lambda)=-\frac{1}{4}\left(2 \lambda^{2}+12 \lambda+7 N+59\right) E(\lambda)+2(13 N+77) \lambda+\frac{1}{4}(N-3)(17 N+181)
$$

we directly compute

$$
\left\{\begin{array}{l}
\lambda_{-}<1<\lambda_{+} \\
B(1)=-(N-2) N<0 \\
B\left(\lambda_{+}\right)=\frac{1}{4}\left(1305+442 N+17 N^{2}\right)+\sqrt{6} \sqrt{N+3}(13 N+77)>0 \\
B\left(\lambda_{-}\right)=\frac{1}{4} \frac{(N-3)^{2}\left(289 N^{2}+538 N-503\right)}{17 N^{2}+442 N+1305+4 \sqrt{6} \sqrt{N+3}(13 N+77)} \geq 0
\end{array}\right.
$$

In view of the concavity of E and the convexity of B, this fact tells us that

$$
E(\lambda) \geq 0 \text { holds whenever } B(\lambda) \leq 0
$$

as desired.

Proof of Theorem L.T. First of all, in view of (2.1), notice that the two numbers $\gamma_{N}^{ \pm}$are the roots of the equation in γ :

$$
F(0)=\frac{4(N-1)(\gamma-1)}{\left(\gamma-\frac{N}{2}\right)^{2}+N-1}-N+3=0
$$

Hence we see from (2.1) that

$$
\begin{cases}F(0)>0 & \text { for } \gamma \in I_{N} \tag{2.4}\\ F(0)=0 & \text { for } \gamma \in\left\{\gamma_{N}^{-}, \gamma_{N}^{+}\right\} \\ F(0)<0 & \text { otherwise }\end{cases}
$$

Making use of Lemma [2.] together with ([2.2), we evaluate the sign of the number $C_{P, N, \gamma}-C_{T, N, \gamma}$ in the following cases:

The case $\gamma \in I_{N}$. When $B\left(\gamma-\frac{N}{2}\right) \leq 0$, we have $C_{T, N, \gamma}<C_{P, N, \gamma}$ by use of Lemma 2.I. When $B\left(\gamma-\frac{N}{2}\right)>0$, the function $F(\tau)$ is monotone increasing in τ since its derivative (2.3) is positive for all $\tau \geq 0$; then the $\min _{\tau \geq 0} F(\tau)$ is attained at $\tau=0$. Therefore, we see from ($\overline{2.2}$) and ($\overline{2.4}$) that

$$
C_{P, N, \gamma}-C_{T, N, \gamma}=F(0)>0,
$$

and hence again that $C_{T, N, \gamma}<C_{P, N, \gamma}$.
The case $\gamma \in \mathbb{R} \backslash I_{N}$. We see from ($\mathbb{Z} \cdot \boldsymbol{Z}$) that

$$
C_{P, N, \gamma}-C_{T, N, \gamma}=\min _{\tau \geq 0} F(\tau) \leq F(0) \leq 0 .
$$

This fact together with Lemma $Z .1$ implies that $B\left(\gamma-\frac{N}{2}\right)$ must be positive, whence we see in view of (2.3l) that $F(\tau)$ is monotone increasing in $\tau \geq 0$. Therefore, we get $\min _{\gamma \geq 0} F(\tau)=F(0)$ and

$$
C_{P, N, \gamma}=C_{T, N, \gamma}+F(0)=\left(\gamma+\frac{N}{2}-1\right)^{2} \frac{\left(\gamma-\frac{N}{2}\right)^{2}+N+1}{\left(\gamma-\frac{N}{2}\right)^{2}+N-1}
$$

Moreover, recalling (L.4) we obtain $\begin{cases}C_{P, N, \gamma}=C_{T, N, \gamma} & \text { for } \gamma \in\left\{\gamma_{N}^{-}, \gamma_{N}^{+}\right\}, \\ C_{P, N, \gamma}<C_{T, N, \gamma} & \text { otherwise. }\end{cases}$
The proof of Theorem $\mathbb{\|}$. is now complete.

Acknowledgments

This research was partly supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) 19H01800(F. Takahashi), and was also partly supported by Osaka City University Advanced Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

References

[1] O. Costin and V. G. Maz'ya, Sharp Hardy-Leray inequality for axisymmetric divergence-free fields, Calculus of Variations and Partial Differential Equations 32 (2008), no. 4, 523-532.
[2] N. Hamamoto, Sharp Rellich-Leray inequality for axisymmetric divergence-free vector fields, Calculus of Variations and Partial Differential Equations 58 (2019), no. 4, Paper No. 149, 23 pp.
[3] , Sharp Hardy-Leray inequality for solenoidal fields, OCAMI Preprint Series (2020).
[4] _ Three-dimensional sharp Hardy-Leray inequality for solenoidal fields, Nonlinear Analysis 191 (2020), 111634, 14 pp.
[5] G. H. Hardy, Note on a theorem of Hilbert, Mathematische Zeitschrift 6 (1920), no. 3-4, 314-317.
[6] J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, Journal de Mathématiques Pures et Appliquées 12 (1933), 1-82 (French).

Osaka City University Advanced Mathematical Institute
3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
E-mail address: yhjyoe@yahoo.co.jp (N. Hamamoto)

[^0]: 2010 Mathematics Subject Classification. Primary 35A23; Secondary 26D10.
 Key words and phrases. Hardy-Leray inequality, solenoidal fields, best constant, convex function, intermediate value theorem.

