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1. Introduction
This paper is a paper created by adding proofs to the research announcement

paper [12] without proof. So, the proofs are original in this paper. Unless otherwise
stated, manifolds, embeddings and isotopies are considered in the smooth category.
An n-punctured manifold of an m-manifold X is the m-manifold Xn(0) obtained from
X by removing the interiors of n mutually disjoint m-balls in the interior of X, where
choices of the m-balls are independent of the diffeomorphism type of Xn(0). The
m-manifold X1(0) is denoted by X(0). By this convention, a homotopy 4-sphere is a
4-manifold M homotopy equivalent to the 4-sphere S4, and a homotopy 4-ball is a 1-
punctured manifold M (0) of a homotopy 4-sphere M . Ever since the positive solution
of Topological 4D Poincaré Conjecture (meaning that every topological homotopy 4-
sphere is homeomorphic to S4) and existence of exotic 4-spaces, [3, 4, 16], it has been
questioned whether Smooth 4D Poincaré Conjecture (meaning that every homotopy
4-sphere is diffeomorphic to S4) holds. This paper answers this question affirmatively
(see Corollary 1.3). For a positive integer n, the stable 4-sphere of genus n is the
4-manifold

Σ = Σ(n) = S4#n(S2 × S2) = S4#n
i=1S

2 × S2
i ,
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which is the union of the n-punctured manifold (S4)n(0) of the 4-sphere S4 and the 1-
punctured manifolds (S2×S2

i )
(0) (i = 1, 2, . . . , n) of the 2-sphere products S2×S2

i (i =
1, 2, . . . , n) pasting the boundary 3-spheres of (S4)n(0) to the boundary 3-spheres of
(S2×S2

i )
(0) (i = 1, 2, . . . , n). An orthogonal 2-sphere pair or simply an O2-sphere pair

of the stable 4-sphere Σ is a pair (S, S ′) of 2-spheres S and S ′ embedded in Σ which
meet transversely at just one point with the intersection numbers I(S, S) = I(S ′, S ′) =
0 and I(S, S ′) = 1. A pseudo-O2-sphere basis of the stable 4-sphere Σ of genus n is
the system (S∗, S

′
∗) of n disjoint O2-sphere pairs (Si, S

′
i) (i = 1, 2, . . . , n) in Σ. Let

N(Si, S
′
i) be a regular neighborhood of the union Si∪S ′

i of the O2-sphere pair (Si, S
′
i)

in Σ such that N(Si, S
′
i) (i = 1, 2, . . . , n) are mutually disjoint and diffeomorphic to

the 1-punctured manifold (S2×S2)(0) of the sphere product S2×S2. The region of a
pseudo-O2-sphere basis (S∗, S

′
∗) in Σ of genus n is a connected 4-manifold Ω(S∗, S

′
∗)

in Σ obtained from the 4-manifolds N(Si, S
′
i) (i = 1, 2, . . . , n) by connecting along

disjoint 1-handles h1
j (j = 1, 2, . . . , n − 1) in Σ. Since Σ is a simply connected 4-

manifold, the region Ω(S∗, S
′
∗) in Σ does not depend on any choices of the 1-handles

and is uniquely determined by the pseudo-O2-sphere basis (S∗, S
′
∗) up to isotopies

of Σ (see [9]). The residual region of Ω(S∗, S
′
∗) in Σ is the 4-manifold Ωc(S∗, S

′
∗) =

cl(Σ \ Ω(S∗, S
′
∗)) which is a homotopy 4-ball shown by van Kampen theorem and

a homological argument. An O2-sphere basis of the stable 4-sphere Σ of genus n
is a pseudo-O2-sphere basis (S∗, S

′
∗) of Σ such that the residual region Ωc(S∗, S

′
∗) is

diffeomorphic to the 4-ball. For example, the pseudo-O2-sphere basis

(S2 × 1∗, 1× S2
∗) = {(S2 × 1i, 1× S2

i )| i = 1, 2, ..., n}

of Σ is an O2-sphere basis of Σ and called the standard O2-sphere basis of Σ. The
following result is basically the main result of this paper.

Theorem 1.1. For any two pseudo-O2-sphere bases (R∗, R
′
∗) and (S∗, S

′
∗) of the sta-

ble 4-sphere Σ of any genus n ≥ 1, there is an orientation-preserving diffeomorphism
h : Σ → Σ sending (Ri, R

′
i) to (Si, S

′
i) for all i (i = 1, 2, . . . , n).

Since the image of an O2-sphere basis (R∗, R
′
∗) of Σ by an orientation-preserving

diffeomorphism f : Σ → Σ is an O2-sphere basis of Σ, the following corollary is
obtained from existence of the standard O2-sphere basis and Theorem 1.1.

Corollary 1.2. Every pseudo-O2-sphere basis of the stable 4-sphere Σ of any genus
n ≥ 1 is an O2-sphere basis of Σ.

The following result (4D Smooth Poincaré Conjecture) is a direct consequence of
Corollary 1.2.
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Corollary 1.3. Every homotopy 4-sphere M is diffeomorphic to the 4-sphere S4.

Proof of Corollary 1.3. It is known that there is an orientation-preserving diffeo-
morphism

κ : M#Σ → Σ

from the connected sum M#Σ onto Σ for a positive integer n by Wall [19]. The
connected sum M#Σ is taken the union M (0) ∪ Σ(0). By Corollary 1.2, the image
κ(Σ(0)) is the region Ω(S∗, S

′
∗) of an O2-sphere basis (S∗, S

′
∗) of Σ. and the residual

region Ωc(S∗, S
′
∗) = κ(M (0)) is a 4-ball and hence M (0) is diffeomorphic to the 4-

ball D4. The diffeomorphism M (0) → D4 extends to a diffeomorphism M → S4 by
Γ4 = 0 in Cerf [2] or π0(Diff

+(S3)) = 0 by Hatcher [6]. This completes the proof of
Corollary 1.3. □

As it is seen from the proof of Corollary 1.3, Theorem 1.1 is actually equivalent
to the Smooth 4D Poincaré Conjecture by Γ4 = 0 or π0(Diff

+(S3)) = 0. It remains
unknown whether the diffeomorphism M → S4 in Corollary 1.3 made orientation-
preservingly is isotopically unique, although it is concordantly unique since Γ5 = 0
by Kervaire [15], and piecewise-linear-isotopically unique by Hudson [10], Rourke-
Sanderson [17]. The Piecewise-Linear 4D Poincaré Conjecture is equivalent the
Smooth 4D Poincaré Conjecture by using a compatible smoothability of a piecewise-
linear 4-manifold and a basic fact that every piecewise-linear auto-homeomorphism of
the 4-disk keeping the boundary identically is piecewise-linearly ∂-relatively isotopic
to the identity by [10, 17]. The result of Wall [19] used for the proof of Corol-
lary 1.3 says further that for every closed simply connected signature-zero spin 4-
manifold M with the second Betti number β2(M ;Z) = 2m, there is a diffeomorphism
κ : M#Σ(n) → Σ(m+ n) for some n. Then there is also a homeomorphism from M

to Σ(m) by [3, 4]. It should be noted that the present technique used for the proof
of Theorem 1.1 cannot be directly generalized to the case of m > 0. In fact, it is
known by Akhmedov-Park [1] that there is a closed simply connected signature-zero
spin 4-manifold M with a large second Betti number β2(M ;Z) = 2m such that M

is not diffeomorphic to Σ(m) . The following corollary is what can be said in this
paper.

Corollary 1.4. Let M and M ′ be any closed (not necessarily simply connected)
4-manifolds with the same second Betti number β2(M ;Z) = β2(M

′;Z). Then an em-
bedding u : M (0) → M ′ induces the fundamental group isomorphism u# : π1(M

(0), x) →
π1(M

′, u(x)) if and only if the embedding u : M (0) → M ′ extends to a diffeomorphism
u+ : M → M ′.
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Proof of Corollary 1.4. Since the proof of the “if”part is obvious, it suffices to prove
the “only if”part. For this proof, confirm by van Kampen theorem and a homological
argument that the closed complement cl(M ′ \ u(M (0))) is a homotopy 4-ball, which
is diffeomorphic to the 4-ball D4 and the embedding u : M (0) → M ′ extends to a
diffeomorphism u+ : M → M ′ by the proof of Corollary 1.3. This completes the proof
of Corollary 1.4. □

The following corollary is obtained by combining Corollary 1.3 with the triviality
condition of an S2-link in S4, [14].

Corollary 1.5. Every closed 4-manifoldM such that the fundamental group π1(M,x)
is a free group of rank n and H2(M ;Z) = 0 is diffeomorphic to theclosed 4D handle-
body Y S = S4#n

i=1S
1 × S3

i .

Proof of Corollary 1.5. Let ki (i = 1, 2, . . . , n) be a system of mutually disjoint
simple loops in M which is homotopic to a system of loops with leggs to the base
point x generating the free group π1(M,x), and N(ki) = S1 ×D3

i (i = 1, 2, . . . , n) a
system of mutually disjoint regular neighborhoods of ki (i = 1, 2, . . . , n) in M . The
4-manifold X obtained from M by replacing S1 × D3

i with D2 × S2
i for every i is

a homotopy 4-sphere by van Kampen theorem and H2(M ;Z) = 0, and hence X is
diffeomorphic to S4 by Corollary 1.3. The S2-link L = ∪n

i=1Ki in X = S4 with
component Ki = S2

i the core 2-sphere of D2 × S2
i has the free fundamental group

π1(S
4 \L, x) of rank n with a meridian basis since it is canonically isomorphic to the

free fundamental group π1(M,x) by a general position argument. The S2-link L is
a trivial S2-link in S4 and hence bounds mutually disjoint 3-balls in S4 by [14]. By
returning D2×S2

i to S1×D3
i for every i, the 4-manifold M is seen to be diffeomorphic

to the closed 4D handlebody Y S. This completes the proof of Corollary 1.5. □

The following corollary (4D Smooth Schoenflies Conjecture) is also obtained.

Corollary 1.6. Any (smoothly) embedded 3-sphere S3 in the 4-sphere S4 splits S4

into two components of 4-manifolds which are both diffeomorphic to the 4-ball.

Proof of Corollary 1.6. The splitting components are homotopy 4-balls by van
Kampen theorem and a homological argument, which are diffeomorphic to the 4-ball
by the proof of Corollary 1.3. This completes the proof of Corollary 1.6.

□
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The paper is organized as follows: In Section 2, a trivial surface-knot in the 4-
sphere S4 is discussed to observe that the stable 4-sphere Σ of genus n is the double
branched covering space S4(F )2 of S4 branched along a trivial surface-knot F of
genus n. An O2-handle basis of a trivial surface-knot F in S4 is also introduced
there to show that the lift (S(D∗), S(D

′
∗)) of the core system (D∗, D

′
∗) of any O2-

handle basis (D∗ × I,D′
∗ × I) of F to S4(F )2 = Σ is an O2-sphere basis of Σ (See

Corollary 2.2). In Section 3, the proof of Theorem 1.1 is done. In Section 4, any two
homotopic diffeomorphisms of the stable 4-sphere Σ are shown to be isotopic if one
diffeomorphism allows a deformation by an element of Diff+(D4, rel∂) (see Theorem
4.1 and Corollaries 4.2, 4.3 for the details).

2. Double branched covering of trivial surface-knot for stable 4-sphere
A surface-knot of genus n in the 4-sphere S4 is a closed surface F of genus n

embedded in S4. Two surface-knots F and F ′ in S4 are equivalent if there is an
orientation-preserving diffeomorphism f : S4 → S4 sending F to F ′ orientation-
preservingly. The map f is called an equivalence. A trivial surface-knot of genus n in
S4 is a surface-knot F of genus n which is the boundary of a handlebody of genus n
embedded in S4, where a handlebody of genus n means a 3-manifold which is a 3-ball
for n = 0, a solid torus for n = 1 or a boundary-disk sum of n solid tori for n ≥ 2. A
surface-link in S4 is a union of disjoint surface-knots in S4, and a trivial surface-link
is a surface-link bounding disjoint handlebodies in S4. A trivial surface-link in S4 is
determined regardless of the embeddings and unique up to isotopies, [9].

A symplectic basis of a closed surface F of genus n is a system (x∗, x
′
∗) of element

pairs (xj, x
′
j) (j = 1, 2, . . . , n) of H1(F ;Z) with the intersection numbers

I(xj, xj′) = I(x′
j, x

′
j′) = I(xj, x

′
j′) = 0

for all j, j ′ except that I(xj, x
′
j) = +1 for all j. Every pair (x1, x

′
1) with I(x1, x

′
1) = +1

is extended to a symplectic basis (x∗, x
′
∗) of F by an argument on the intersection

form
I : H1(F ;Z)×H1(F ;Z) → Z.

Further, every symplectic basis (x∗, x
′
∗) = {(xj, x

′
j)| j = 1, 2, . . . , n} is realized by a

system of oriented simple loop pairs (e∗, e
′
∗) = {(ej, e′j)| j = 1, 2, . . . , n} of F with

ej ∩ ej′ = e′j ∩ e′j′ = ej ∩ e′j′ = ∅ for all distinct j, j ′ and with tranverse intersection
ej∩e′j at just one point for all j, which is called a loop basis of F . For a surface-knot F
in S4, an element x ∈ H1(F ;Z) is said to be spin if the Z2-reduction [x]2 ∈ H1(F ;Z2)
of x has η([x]2) = 0 for the Z2-quadratic function

η : H1(F ;Z2) → Z2
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associated with a surface-knot F in S4, which is defined as follows: For a simple loop
e in F bounding a surface De in S4 with De ∩F = e, the Z2-self-intersection number
I(De, De) (mod 2) with respect to the F -framing is defined to be the value η([e]2).
For every surface-knot F in S4, there is a spin basis of F (see [7]). Every spin pair
(x1, x

′
1) in F with I(x1, x

′
1) = +1 is extended to a spin symplectic basis (x∗, x

′
∗) of

F by vanishing of Arf invarinat of the Z2-quadratic function η : H1(F ;Z2) → Z2 for
every surface-knot F in S4. In particular, any spin pair (x1, x

′
1) is realized by a spin

loop pair (e1, e
′
1) of F extendable to a spin loop basis (e∗, e

′
∗) of F .

A 2-handle on a surface-knot F in S4 is a 2-handle D × I on F embedded in S4

such that

(D × I) ∩ F = (∂D)× I,

where I denotes a closed interval with 0 as the center and D× 0 is called the core of
the 2-handle D× I and identified with D. For a 2-handle D× I on F in S4, the loop
∂D of the core disk D is a spin loop in F since η([∂D]2) = 0. To save notation, if an
embedding h : D × I ∪ F → X is given from a 2-handle D × I on a surface F to a
4-manifold X, then the 2-handle image h(D × I) and the core image h(D) on h(F )
are denoted by hD × I and hD, respectively. An orthogonal 2-handle pair or simply
an O2-handle pair on a surface-knot F in S4 is a pair (D × I,D′ × I) of 2-handles
D × I and D′ × I on F which meet orthogonally on F , in other words, which meet
F onlywith the attaching annuli (∂D) × I and (∂D′) × I so that the loops ∂D and
∂D′ meet transversely at just one point q and the intersection (∂D)× I ∩ (∂D′)× I
is diffeomorphic to the square Q = {q} × I × I [11]. For a trivial surface-knot F of
genus n in S4, an O2-handle basis of F of genus n in S4 is a system (D∗ × I,D′

∗ × I)
of mutually disjoint O2-handle pairs (Di× I,D′

i× I) (i = 1, 2, . . . , n) on F in S4 such
that the loop system (∂D∗, ∂D

′
∗) given by {(∂Di, ∂D

′
i)| i = 1, 2, . . . , n} forms a spin

loop basis of F . Every trivial surface-knot F in S4 is moved into the boundary of a
standard handlebody in the equatorial 3-sphere S3 of S4, where a standard O2-handle
basis and a standard loop basis of F are taken. For any given spin loop basis of a
trivial surface-knot F of genus n in S4, there is an O2-handle basis (D∗×I,D′

∗×I) of
F in S4 with the given spin loop basis as the loop basis (∂D∗, ∂D

′
∗). This is because

there is an equivalence f : (S4, F ) → (S4, F ) sending the standard spin loop basis to
the given spin loop basis of F and hence there is an O2-handle basis of F in S4 with
the given spin loop basis which is the image of the standard O2-handle basis of F
by [8], [11, (2.5.1), (2.5.2)]. Further any O2-handle basis of F in S4 with attaching
part fixed is unique up to orientation-preserving diffeomorphisms of S4 keeping F
point-wise fixed, [13].

For the double branched covering projection p : S4(F )2 → S4 branched along F ,
the non-trivial covering involution of S4(F )2 is denoted by α. The preimage p−1(F )
in Σ of F which is the fixed point set of α and diffeomorphic to F is also written by
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the same notation as F . The following result is a standard result.

Lemma 2.1. Let (D∗× I,D′
∗× I) be a standard O2-handle basis of a trivial surface-

knot F of genus n in S4. Then there is an orientation-preserving diffeomorphism
f : S4(F )2 → Σ sending the 2-sphere pair system (S(D∗), S(D

′
∗)) with S(Di) =

Di ∪ αDi and S(D′
i) = D′

i ∪ αD′
i (i = 1, 2, . . . , n) to the standard O2-sphere basis

(S2 × 1∗, 1× S2
∗) of the stable 4-sphere Σ of genus n. In particular, the 2-sphere pair

system (S(D∗), S(D
′
∗)) is an O2-sphere basis of Σ.

Proof of Lemma 2.1. Let Ai (i = 1, 2, . . . , n) be mutually disjoint 4-balls which are
regular neighborhoods of the 3-balls

Di × I ∪D′
i × I (i = 1, 2, . . . , n)

in S4. The closed complement (S4)n(0) = cl(S4 \∪n
i=1Ai) is the n-punctured manifold

of S4. Let P = F ∩ (S4)n(0) be a proper n-punctured 2-sphere in (S4)n(0). Since the
pair ((S4)n(0), P ) is an n-punctured pair of a trivial 2-knot space (S4, S2) and the
double branched covering space S4(S2)2 is diffeomorphic to S4, the double branched
covering space (S4)n(0)(P )2 of (S4)n(0) branched along P is diffeomorphic to (S4)n(0).
On the other hand, for the proper surface Pi = F ∩ Ai in the 4-ball Ai, the pair
(Ai, Pi) is considered as a 1-punctured pair of a trivial torus-knot space (S4, T ), so
that the double branched covering space Ai(Pi)2 is diffeomorphic to the 1-punctured
manifold of the double branched covering space S4(T )2. The trivial torus-knot space
(S4, T ) is the double of the product pair (B, o)× I = (B × I, o× I) for a trivial loop
o in the interior of a 3-ball B and an interval I, so that (S4, T ) is diffeomorphic to
the boundary pair

∂((B, o)× I2) = (∂(B × I2), ∂(o× I2)),

where Im denotes the m-fold product of I for any m ≥ 2. Thus, the double branched
covering space S4(T )2 is diffeomorphic to the boundary ∂(B(o)2× I2), where B(o)2 is
the double branched covering space of B branched along o which is diffeomorphic to
the product S2×I. This means that the 5-manifold B(o)2×I2 is the product S2×I3,
and S4(T )2 is diffeomorphic to S2 × S2, which shows that Ai(Pi)2 is diffeomorphic
to (S2 × S2)(0). This construction also shows that there is an orientation-preserving
diffeomorphism

fi : Ai(Pi)2 → (S2 × S2)
(0)
i

sending the O2-sphere pair (S(Di), S(D
′
i)) to the standard O2-sphere pair (S2×1i, 1×

S2
i ) of the connected summand (S2 × S2)

(0)
i of Σ for all i. A desired orientation-

preserving diffeomorphism f : S4(F )2 → Σ is constructed from a diffeomorphism f ′′ :
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(S4)n(0)(P )2 → (S4)n(0) and the diffeomorphisms fi (i = 1, 2, . . . , n). This completes
the proof of Lemma 2.1.

□

The identification of S4(F )2 = Σ is fixed by an orientation-preserving diffeomor-
phism f : S4(F )2 → Σ given in Lemma 2.1. The following corollary is obtained from
Lemma 2.1 and [11, 13].

Corollary 2.2. For any two O2-handle bases (D∗ × I,D′
∗ × I) and (E∗ × I, E ′

∗ × I)
of a trivial surface-knot F of genus n in S4, there is an orientation-preserving α-
equivariant diffeomorphism f” of Σ sending the 2-sphere pair system (S(D∗), S(D

′
∗))

to the 2-sphere pair system (S(E∗), S(E
′
∗)). In particular, the 2-sphere pair system

(S(D∗), S(D
′
∗)) for every O2-handle basis (D∗× I,D′

∗× I) is an O2-sphere basis of Σ.

Proof of Corollary 2.2. There is an equivalence f : (S4, F ) → (S4, F ) keeping F
set-wise fixed sending the O2-handle basis (D∗×I,D′

∗×I) to the O2-handle basis (E∗×
I, E ′

∗×I) of F by uniqueness of an O2-handle pair, [11, 13]. By construction, the lifting
diffeomorphism f ′′ : S4(F )2 → S4(F )2 of f sends (S(D∗), S(D

′
∗)) to (S(E∗), S(E

′
∗)).

From Lemma 2.1, the 2-sphere pair system (S(D∗), S(D
′
∗)) for every O2-handle basis

(D∗ × I,D′
∗ × I) is shown to be an O2-sphere basis of Σ by taking . (E∗ × I, E ′

∗ × I)
a standard O2-handle basis of F . This completes the proof of Corollary 2.2. □

An n-rooted disk family is the triplet (d, d∗, b∗) where d is a disk, d∗ is a system
of mutually disjoint disks di (i = 1, 2, . . . , n) in the interior of d and b∗ is a system
of mutually disjoint bands bi (i = 1, 2, . . . , n) in the n-punctured disk cl(d \ d∗) such
that bi spans an arc in the loop ∂di and an arc in the loop ∂d. Let γ(b∗) denote the
centerline system of the band system b∗. In the following lemma shows that there
is a canonical n-rooted disk family (d, d∗, b∗) associated with an O2-handle basis
(D∗ × I,D′

∗ × I) of a trivial surface-knot F of genus n in S4.

Lemma 2.3. Let (D∗ × I,D′
∗ × I) be an O2-handle basis of a trivial surface-knot F

of genus n in S4, and (d, d∗, b∗) an n-rooted disk family. Then there is an embedding

φ : (d, d∗, b∗)× I → (S4, D∗ × I,D′
∗ × I)

such that

(1) The surface F is the boundary of the handlebody V of genus n given by

V = φ(cl(d \ d∗)× I),
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(2) There is an identification

φ(d∗ × I, d∗) = (φ(d∗)× I, φ(d∗)) = (D∗ × I,D∗)

as 2-handle systems on F , and

(3) There is an identification

φ(b∗ × I, γ(b∗)× I) = (D′
∗ × I,D′

∗)

as 2-handle systems on F .

Lemma 2.3 says that the 2-handle system sD∗ × I and D′
∗ × I are attached to the

handlebody V bounded by F along a longitude system and a meridian system of V ,
respectively.

Proof of Lemma 2.3. If (E∗ × I, E ′
∗ × I) is a standard O2-handle basis of F , then

it is easy to construct such an embedding

φ′ : (d, d∗, b∗)× I → (S4, E∗ × I, E ′
∗ × I)

with (1)-(3) taking φ′ and (E∗ × I, E ′
∗ × I) as φ and (D∗ × I,D′

∗ × I), respectively.
In general, there is an equivalence f : (S4, F ) → (S4, F ) keeping F set-wise fixed and
sending the standard O2-handle basis (E∗ × I, E ′

∗ × I) of F into the O2-handle basis
(D∗ × I,D′

∗ × I) of F by uniqueness of an O2-handle pair in [11, 13]. The composite
embedding

φ = fφ′ : (d, d∗, b∗)× I → (S4, D∗ × I,D′
∗ × I)

is a desired embedding. This completes the proof of Lemma 2.3. □

In Lemma 2.3, the embedding φ, the 3-ball B = φ(D × I), the handlebody V
and the pair (B, V ) are respectively called a bump embedding, a bump 3-ball, a bump
handlebody and a bump pair of F in S4. For a bump embedding

φ : (d, d∗, b∗)× I → (S4, D∗ × I,D′
∗ × I),

there is an embedding φ′′ : d× I → S4(F )2 with pφ′′ = φ. Since p(φ′′(d∗× I), φ′′(b∗×
I)) = (D∗ × I,D′

∗ × I) by the conditions (1)-(3) of Lemma 2.3, the images φ′′(d∗ × I)
and φ′′(b∗ × I) are respectively considered as 2-handle systems on F in S4(F )2 with
pφ′′(d∗ × I) = D̃∗ × I and pφ′′(b∗ × I) = D̃′

∗ × I so that (φ′′(d∗ × I), φ′′(b∗ × I)) is an
O2-handle basis of F in S4(F )2, which is also denoted by (D∗ × I,D′

∗ × I) to define
an embedding

φ′′ : (d, d∗, b∗)× I → (S4(F )2, D∗ × I,D′
∗ × II)
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with pφ′′ = φ. This embedding is called a lifting bump embedding of the bump
embedding. In this case, the bump 3-ball φ′′(d×I) and the bump handlebody φ′′(cl(d\
d∗) × I) of F in S4(F )2 are also denoted by B and V by counting pφ′′(d × I) = B

and pφ′′(cl(d \ d∗)× I) = V , respectively. For the non-trivial covering involution α of
S4(F )2, the composite embedding

αφ′′ : (d, d∗, b∗)× I → (S4(F )2, αD∗ × I, αD′
∗ × I)

is another lifting bump embedding of the bump embedding φ. For the bump 3-ball
αφ′′(d×I) = αB and the bump handlebody αφ′′(cl(d\d∗)×I) = αV of F in S4(F )2,
we have

V ∩ αV = B ∩ αB = F

in S4(F )2. For a lifting bump embedding, the following lemma is obtained.

Lemma 2.4. Let φ′′ : (d, d∗, b∗)×I → (Σ, D∗×I,D′
∗×I) be a lifting bump embedding.

For an embedding
u : Σ(0) → Σ,

assume that the image φ′′(d × I) is in the interior of Σ(0) to define the composite
embedding uφ′′ : (d, d∗, b∗)×I → (Σ, uD∗×I, uD′

∗×I). Then there is a diffeomorphism
g : Σ → Σ which is isotopic to the identity such that the composite embedding

guφ′′ : (d, d∗, b∗)× I → (Σ, guD∗ × I, guD′
∗ × I)

is identical to the lifting bump embedding

φ′′ : (d, d∗, b∗)× I → (Σ, D∗ × I,D′
∗ × I).

Proof of Lemma 2.4. The 0-section (d, d∗, b∗)×0 of the line bundle (d, d∗, b∗)×I of
the n-rooted disk family (d, d∗, b∗) is identified with (d, d∗, b∗). Move the disk uφ′′(d)
into the disk φ′′(d) in Σ and then move the disk system uφ′′(d∗) and the band system
uφ′′(b∗) into the disk system φ′′(d∗) and the band system φ′′(b∗) in the disk φ′′(d),
respectively. These deformations are attained by a diffeomorphism g′ of Σ which is
isotopic to the identity, so that

g′uφ′′(d, d∗, b∗) = φ′′(d, d∗, b∗).

Further, there is a diffeomorphism g′′ of Σ which is isotopic to the identity such that
the composite embedding g′′g′u : Σ(0) → Σ preserves the normal line bundles of the
disk φ′′(d) in Σ(0) and Σ, so that

guφ′′(d, d∗, b∗)× I = φ′′(d, d∗, b∗)× I

10



for the diffeomorphism g = g′′g′ of Σ isotopic to the identity. This completes the
proof of Lemma 2.4. □

In Lemma 2.4, also assume that the image αφ′′(d × I) is in the interior of Σ(0).
Then note that any disk interior of the disk systems guαD∗ and guαD′

∗ does not meet
the bump 3-ball B = φ′′(d× I) in Σ. In fact, gu defines an embedding from

gu : B ∪ αB → Σ

with gu(B,F ) = (B,F ). The complement guαB \ F of F in the 3-ball guαB does
not meet the bump 3-ball B since B ∩ αB = F . This means that any disk interior
of the disk systems guαD∗ and guαD′

∗ does not meet the bump 3-ball B. Note that
this property comes from the fact that Σ(0) and Σ have the same genus n.

3. Proof of Theorem 1.1
For the proof of Theorem 1.1, the following result known by Wall [18] is used.

Lemma 3.1. For any pseudo-O2-sphere bases (R∗, R
′
∗) and (S∗, S

′
∗) of the stable

4-sphere Σ of genus n, there is an orientation-preserving diffeomorphism f : Σ → Σ
which induces an isomorphism f∗ : H2(Σ;Z) → H2(Σ;Z) such that [fRi] = [Si] and
[fR′

i] = [S ′
i] for all i.

Assum that (R∗, R
′
∗) is an O2-sphere basis of Σ with (R∗, R

′
∗) = (S(D∗), S(D

′
∗))

for an O2-handle basis (D∗ × I,D′
∗ × I) of a trivial surface-knot F of genus n in

S4. Let u : Σ(0) → Σ be an embedding such that (uS(D∗), uS(D
′
∗)) = (S∗, S

′
∗). By

Lemma 3.1, assume that the homology classes [uS(Di)] = [Si] and [uS(D′
i)] = [S ′

i]
are respectively identical to the homology classes [Ri] = [S(Di)] and [R′i] = [S(D′i)]
for all i. Let (B, V ) be a bump pair of the O2-handle basis (D∗ × I,D′

∗ × I) of F
in S4 defined soon after Lemma 2.3. Recall that the two lifts of (B, V ) to Σ under
the double branched covering projection p : S4(F )2 → S4 are denoted by (B, V ) and
(αB, αV ). To complete the proof of Theorem 1.1, three lemmas are provided from
here. The first lemma is stated as follows.

Lemma 3.2. There is a diffeomorphism g of Σ which is isotopic to the identity such
that the composite embedding

gu : Σ(0) → Σ

preserves the bump pair (B, V ) in Σ identically and has the property that every disk
interior of the disk systems guαD∗ and guαD′

∗ meets every disk of the disk systems
αD∗ and αD′

∗ transversely only with the intersection number 0.

11



Proof of Lemma 3.2. By Lemma 2.4, there is a diffeomorphism g : Σ → Σ which is
isotopic to the identity such that the composite embedding gu : Σ(0) → Σ preserves
the bump pair (B, V ) in Σ(0) identically and has the property that any disk interior of
the disk systems guαD∗ and guαD′

∗ does not meet the O2-handle basis (D∗×I,D′
∗×I)

in Σ and meets transversely any disk interior of the disk systems αD∗ and αD′
∗ with

a finite number of points. Since

S(Di) = Di ∪ αDi, S(D
′
i) = D′

i ∪ αD′
i, guDi = Di , guD

′
i = D′

i

and any disk interior pair of the disk systems αD∗ and αD′
∗ is a disjoint pair, every disk

interior of the disk systems guαD∗ and guαD′
∗ meets every disk interior of the disk

systems αD∗ and αD′
∗ only with intersection number 0 by the homological identities

[guS(Di)] = [S(Di)], [guS(Di)] = [S(Di)]

for all i and the invariance of their intersection numbers. This completes the proof of
Lemma 3.2. □

By Lemma 3.2, assume that the orientation-preserving embedding u : Σ(0) → Σ
sends the bump pair (B, V ) to itself identically and has the property that every
disk interior of the disk systems uαD∗ and uαD′

∗ meets every disk interior of the
disk systems αD∗ and αD′

∗ only with the intersection number 0. Then the following
lemma is obtained:

Lemma 3.3. There is a diffeomorphism g of Σ which is isotopic to the identity such
that the composite embedding gu : Σ(0) → Σ sends the disk systems D∗ and D′

∗
identically and the disk interiors of the disk systems guαD∗, guαD

′
∗ to be disjoint

from the disk systems αD∗ and αD′
∗ in Σ.

Proof of Lemma 3.3. Between the open disks uInt(αDi), uInt(αD
′
i′) for all i, i

′ and
the open disks Int(αDj), Int(αD

′
j′) for all j, j

′, suppose an open disk, say uInt(αDi)
meets an open disk, say Int(αDj) with a pair of points with opposite signs. A pro-
cedure to eliminate this pair of points is explained from now. Let a be a simple arc
in the open disk Int(αDj) joining the pair of points whose interior does not meet the
intersection points Int(αDj)∩uInt(αD∗) and Int(αDj)∩uInt(αD′

∗). Let T (a) be the
torus obtained from the 2-sphere uS(Di) = Di∪u(αD′

i) by a surgery along a 1-handle
h1(a) on uS(Di) with core the arc a and with h1(a) ∩ Int(αDj) = a. Slide the arc a
along the open disk Int(αDj) without moving the endpoints so that

(*) the 1-handle h1(a) passes once time through a thickening S ′
j × I of a 2-sphere S ′

j

parallel to the 2-sphere S(D′
j) = D′

j ∪ αD′
j (not meeting S(D′

j)), and
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(**) the intersection h1(a) ∩ (S ′
j × I) is a 2-handle dj × I on the torus T (a) which is

a strong deformation retract of the 2-handle h1(a) on T (a).

After these deformations (*), (**), let u′S(Di) be the 2-sphere obtained from T (a)
by the surgery along the 2-handle dj × I. The resulting 2-sphere u′S(Di) is obtained
from the 2-sphere uS(Di) as u′S(Di) = g′uS(Di) for a diffeomorphism g′ : Σ → Σ
which is isotopic to the identity. This isotopy of g′ keeps the outside of a regular
neighborhood of h1(a) in the image of g′ fixed. Next, regard the 2-handle dj × I on
T (a) as a 1-handle of the 2-sphere u′S(Di). Let u′′S(Di) be the 2-sphere obtained
from T (a) by the surgery along the 2-handle cl(S ′

j\dj)×I and regard this 2-handle as a
1-handle on the 2-sphere u′′S(Di). The 2-sphere u

′S(Di) is isotopically deformed into
the 2-sphere u′′S(Di) by a homotopy deformation of a 1-handle (see [9, Lemma 1.4]).
Thus, there is a diffeomorphism g′′ : Σ → Σ which is isotopic to the identity such
that

u′′S(Di) = g′′′u′S(Di) = g′′g′uS(Di).

This isotopy of g′′ keeps the outside of a regular neighborhood of S ′
j × I fixed.

By this procedure, the total geometric intersection number between the open disks
u′′Int(αDi), u

′′Int(αD′
i′) for all i, i

′ and the open disks Int(αDj), Int(αD
′
j′) for all j, j

′

is reduced by 2. By continuing this process, we have a diffeomorphism g : Σ → Σ
which is isotopic to the identity such that the composite embedding gu : Σ(0) → Σ
sends the disk systems D∗ and D′

∗ identically and the open disks guInt(αDi) and
guInt(αD′

i′) are disjoint from the open disks Int(αDj) and Int(αD′
j′) for all i, i

′, j, j ′.
The procedure is similarly done for the other cases that uInt(αDi) meets Int(αD′

j′)
with a pair of points with opposite signs, that uInt(αD′

i′) meets Int(αDj) with a
pair of points with opposite signs and that uInt(αD′

i′) meets Int(αD′
j′) with a pair of

points with opposite signs. This completes the proof of Lemma 3.3. □

For the O2-sphere basis (S(D∗), S(D
′
∗)) of Σ, let

q∗ = {qi = S(Di) ∩ S(D′
i)| i = 1, 2, . . . , n}

be the transverse intersection point system between S(D∗) and S(D′
∗). The diffeo-

morphism g of Σ sending the disk systems D∗ and D′
∗ identically in Lemma 3.3 is

further deformed so that, while leaving the transverse intersection point qi, the disks
guDi and Di are separated and then the disks guD′

i and D′
i are separated. Thus,

guDi ∩Di = guD′
i ∩D′

i = qi

for all i. By this deformation, the pseudo-O2-sphere basis (guS(D∗), guS(D
′
∗)) of Σ

is assumed to meet the O2-sphere basis (S(D∗), S(D
′
∗)) of Σ at just the transverse
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intersection point system q∗. Next, the diffeomorphism g of Σ is deformed so that a
disk neighborhood system of q∗ in guS(D∗) and a disk neighborhood system of q∗ in
S(D∗) are matched, and then a disk neighborhood system of q∗ in guS(D′

∗) and a disk
neighborhood system of q∗ in S(D′

∗) are matched. Thus, there is a diffeomorphism g
of Σ which is isotopic to the identity such that the meeting part of the pseudo-O2-
sphere basis (guS(D∗), guS(D

′
∗)) and the O2-sphere basis (S(D∗), S(D

′
∗)) is just a

disk neighborhood pair system (d∗, d
′
∗) of the transverse intersection point system q∗.

Now, assume that for an embedding u : Σ(0) → Σ, the meeting part of the pseudo-
O2-sphere basis (uS(D∗), uS(D

′
∗)) and the O2-sphere basis (S(D∗), S(D

′
∗)) is just a

disk neighborhood pair system (d∗, d
′
∗) of q∗. Then the following lemma is obtained:

Lemma 3.4. There is an orientation-preserving diffeomorphism h of Σ such that the
composite embedding hu : Σ(0) → Σ preserves the O2-sphere basis (S(D∗), S(D

′
∗))

identically.

The proof of Lemma 3.4 is obtained by using Lemma 3.5 ( Framed Light-bulb
Diffeomorphism Lemma) which is proved easily in comparison with an isotopy ver-
sion (Lemma 3.7) of this lemma using Gabai’s 4D light-bulb theorem [5]. To state
Lemmas 3.5,3.7, call a 4-manifold Y in S4 which is diffeomorphic to S1 × D3 a 4D
solid torus. A boundary fiber circle of the 4D solid torus Y is a fiber circle of the
S1-bundle ∂Y diffeomorphic to S1 × S2. Let Y c = cl(S4 \ Y ) be the exterior of Y in
S4. Let Y∗ be a system of mutually disjoint 4D solid tori Yi, (i = 1, 2, . . . , n) in S4,
and Y c

∗ the system of the exteriors Y c
i of Yi in S4 (i = 1, 2, . . . , n). Let

∩Y c
∗ = ∩n

i=1Y
c
i .

Lemma 3.5 (Framed Light-bulb Diffeomorphism Lemma). Let Y∗ be a system
of mutually disjoint 4D solid tori Yi (i = 1, 2, . . . , n) in S4. Let D∗ × I and E∗ × I be
systems of mutually disjoint framed disks Di × I, Ei × I (i = 1, 2, . . . , n) in ∩Y c

∗ such
that

(D∗ × I) ∩ ∂Y c
i = (∂Di)× I = (∂Ei)× I = (E∗ × I) ∩ ∂Y c

i

and ∂Di = ∂Ei is a boundary fiber circle of Yi for all i. Then there is an orientation-
preserving diffeomorphism h : S4 → S4 sending Y∗ identically such that h(D∗ ×
I,D∗) = (E∗ × I, E∗).

Proof of Lemma 3.5. Let k∗ be the system of the loops ki = ∂Di = ∂Ei (i =
1, 2, . . . , n). Let c : k∗ × [0, 1] → D∗ be a boundary collar function of D∗ with
c(x, 0) = x for all x ∈ k∗, and c′ : k∗ × [0, 1] → E∗ a boundary collar function of E∗
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with c′(x, 0) = x for all x ∈ k∗. Assume that

c(x, t)× I = c′(x, t)× I

for all x ∈ k∗ and t ∈ [0, 1]. Let

ν(∂D∗) = c(k∗ × [0, 1]) and D−
∗ = cl(D∗ \ ν(∂D∗)).

Similarly, let

ν(∂E∗) = c(k∗ × [0, 1]) and E−
∗ = cl(E∗ \ ν(∂E∗)).

Consider D∗×I and E∗×I in S4. Let β∗ be the system of arcs βi (i = 1, 2, . . . , n) such
that βi is an arc in ki, and βc

∗ the system of the arcs βc
i = cl(ki\βi) (i = 1, 2, . . . , n). By

3-cell moves within a regular neighborhood of c(β∗×[0, 1])×I∪D−
∗ ×I in S4, there is an

orientation-preserving diffeomorphism h′ of S4 such that h′(D∗×I) = c(βc
∗×[0, 1])×I.

Since ν(∂D∗) is identical to ν(∂E∗), c(β
c
∗×[0, 1]) is identical to c′(βc

∗×[0, 1]). By 3-cell
moves within a regular neighborhood of c(β∗ × [0, 1])× I ∪E−

∗ × I in S4, there is an
orientation-preserving diffeomorphism h′′ of S4 such that h′′(c′(βc

∗×[0, 1])×I) = E∗×I.
The diffeomorphism h′′h′ is an orientation-preserving diffeomorphism of S4 sending
D∗ × I to E∗ × I. Let N(k∗) be a regular neighborhood system of the loop system
k∗ in S4 meeting c(k∗ × [0, 1]) regularly, which is a system of n mutually disjoint 4D
solid tori. Then the diffeomorphism h′′h′ is deformed into an orientation-preserving
diffeomorphism h of S4 which sends N(k∗) identically such that h(D∗ × I,D∗) =
(E∗ × I, E∗). Here, the 4D solid torus system N(k∗) can be replaced with any given
Y∗ because N(k∗) is isotopic to Y∗ in S4. This completes the proof of Lemma 3.5. □

The proof of Lemma 3.4 is obtained from Lemma 3.5 as follows.

Proof of Lemma 3.4. Consider the 4-manifold X diffeomorphic to the 4-sphere S4

which is obtained from Σ by replacing a regular neighborhood system N(S(D′
∗)) =

S2×D2
∗ of the 2-sphere system S(D′

∗) in Σ with the 4D solid torus system Y∗ = D3×S1
∗ .

Let Eu
∗×I and E∗×I be the 2-handle systems inX = S4 attached to the 4D solid torus

system Y∗ which are obtained from the thickening 2-sphere systems uS(D∗)× I and
S(D∗)× I in Σ, respectively. Lemma 3.5 can be used for the 2-handle systems Eu

∗ × I
and E∗ × I attached to Y∗. Then, there is an orientation-preserving diffeomorphism
ρ : S4 → S4 sending Y∗ identically such that

ρ(Eu
∗ × I, Eu

∗ ) = (E∗ × I, E∗).

By returning the 4D solid torus system Y∗ in X to the regular neighborhood sys-
tem N(S(D′

∗)) of the 2-sphere system S(D′
∗) in Σ, there is an orientation-preserving
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diffeomorphism ρ′ : Σ → Σ sending N(S(D′
∗)) identically such that ρ′uS(D∗) =

S(D∗). For the pseudo-O2-sphere basis (S(D∗), ρ
′uS(D′

∗)) and the O2-sphere basis
(S(D∗), S(D

′
∗)) in Σ, consider the 4-manifold X ′ obtained from Σ by replacing a reg-

ular neighborhood system N(S(D∗)) = S2 × D2
∗ of the 2-sphere system S(D∗) in Σ

with the 4D solid torus system Y ′
∗ = D3 × S1

∗ . Then the 4-manifold X ′ is diffeomor-
phic to the 4-sphere S4. Let E ′u

∗ × I and E ′
∗ × I be the 2-handle systems in X ′ = S4

attached to the 4D solid torus system Y ′
∗ which are obtained from the thickening

2-sphere systems ρ′uS(D′
∗)× I and S(D′

∗)× I in Σ, respectively. Lemma 3.5 can be
used for the 2-handle systems E ′u

∗ × I and E ′
∗ × I attached to Y ′

∗ . Then, there is an
orientation-preserving diffeomorphism ρ′′ : S4 → S4 sending Y ′

∗ identically such that

ρ′′(E ′u
∗ × I, E ′u

∗) = (E ′
∗ × I, E ′

∗).

By returning the 4D solid torus system Y ′
∗ in X ′ to the regular neighborhood system

N(S(D∗)) of the 2-sphere system S(D∗) in Σ, there is an orientation-preserving dif-
feomorphism ρ′′′ : Σ → Σ sending N(S(D∗)) identically with ρ′′′ρ′uS(D′

∗) = S(D′
∗).

For the orientation-preserving diffeomorphism h = ρ′′′ρ′ : Σ → Σ, the composite
embedding hu : Σ(0) → Σ preserves the O2-sphere basis (S(D∗), S(D

′
∗)) identically.

This completes the proof of Lemma 3.4. □

Completion of Proof of Theorem 1.1. Since

(S(D∗), S(D
′
∗)) = (R∗, R

′
∗), (uS(D∗), uS(D

′
∗)) = (S∗, S

′
∗),

the orientation-preserving diffeomorphism h of Σ in Lemma 3.4 sends (S∗, S
′
∗) to

(R∗, R
′
∗). This completes the proof of Theorem 1.1. □

Note 3.6. The diffeomorphism h in Lemma 3.4 is taken to be isotopic to the identity
by using the following lemma (Framed light-bulb isotopy lemma) based on Gabai’s 4D
light-bulb theorem, [5] instead of Lemma 3.5.

Lemma 3.7 (Framed Light-bulb Isotopy Lemma). Let Y∗ be a system of mutu-
ally disjoint 4D solid tori Yi (i = 1, 2, . . . , n) in S4. Let D∗ × I and E∗ × I be systems
of mutually disjoint framed disks Di × I, Ei × I (i = 1, 2, . . . , n) in ∩Y c

∗ such that

(D∗ × I) ∩ ∂Y c
i = (∂Di)× I = (∂Ei)× I = (E∗ × I) ∩ ∂Y c

i

and ∂Di = ∂Ei is a boundary fiber circle of Yi for all i. If the unions Di ∪ Ei (i =
1, 2, . . . , n) are mutually disjoint, then there is a diffeomorphism h : S4 → S4 which
is Y∗-relatively isotopic to the identity such that h(D∗ × I,D∗) = (E∗ × I, E∗).
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Proof of Lemma 3.7. As in the proof of Lemma 3.5, assume that a boundary collar
system of D∗ coincides with a boundary collar system of E∗. First, show the assertion
of the special case n = 1. Let Y = S1 × D3. Let D and E be proper disks in Y c

admitting trivial line bundles D × I, E × I such that

(∂D)× I = (∂E)× I ⊂ ∂Y c.

If the singular 2-sphere D ∪ (−E) is not null-homologous in Y c, the disk D is ∂-
relatively homologous to the 2-cycle E + mS in (Y c, ∂Y c) for a 2-sphere generator
[S] of H2(Y

c;Z) (which is isomorphic to Z) and some non-zero integer m. The
self-intersection numbers I([D], [D]) and I([E], [E]) in Y c with the given framing of
∂D = ∂E in ∂Y c and I([S], [S]) are all 0. Thus,

I([D], [D]) = I([E], [E]) + 2mI([S], [E]) = 0± 2m = 0

and m = 0. This shows that the singular 2-sphere D ∪ (−E) is null-homologous in
Y c. By Gabai’s 4D light-bulb theorem [5, Theorem 10.4], there is a diffeomorphism
λ : Y c → Y c such that λ is ∂-relatively isotopic to the identity and λD = E, which
extends to a diffeomorphism h = λ+ : S4 → S4 such that h is Y -relatively isotopic
to the identity and hD = E. Note that a diffeomorphism of S4 preserves trivial line
bundles on disks if the line bundles on the boundary circles are preserved. This is
because a sole obstruction that a disk admits a trivial line bundle extending a given
line bundle on the boundary circle in S4 is that the self-intersection number of the disk
with the boundary framing given by the line bundle is 0. Thus, the diffeomorphism
h of S4 has h(D × I,D) = (E × I, E) and the assertion of the special case n = 1
is shown. For the proof in general case, let K = K(k∗) be a connected graph in S4

constructed from the loop system k∗ of the loops ki = ∂Di = ∂Ei, (i = 1, 2, . . . , n)
by adding mutually disjoint n− 1 simple arcs aj (j = 1, 2, . . . , n− 1) not meeting any
interior disk of the disk systems D∗ and E∗. For every s with 1 ≤ s ≤ n, let Ys be a
regular neighborhood of the disk-arc union

ks ∪1≤i≤n,i ̸=s Ei ∪n−1
j=1 aj

in S4, which is a 4D solid torus in S4. By the proof of the special case n = 1, there
is a diffeomorphism h1 of S4 such that h1 is Y1-relatively isotopic to the identity and
h1D1 = E1. Next, for the disk systems h1(D∗) and E∗, there is a diffeomorphism
h2 of S4 such that h2 is Y2-relatively isotopic to the identity and h2h1D1 = E1 and
h2h1D2 = E2. Continuing this process, there is a diffeomorphism h = hn . . . h2h1 of
S4 such that h is N(K)-relatively isotopic to the identity for a regular neighborhood
N(K) of K and hDi = Ei (i = 1, 2, . . . , n). Thus, for a regular neighborhood N(k∗) of
the loop system k∗ in N(K), this diffeomorphism h of S4 is N(k∗)-relatively isotopic
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to the identity and hDi = Ei (i = 1, 2, . . . , n). This diffeomorphism h of S4 is N(k∗)-
relatively isotopic to the identity for a regular neighborhood N(k∗) of the loop system
k∗ in N(K) and has hDi = Ei (i = 1, 2, . . . , n), where N(k∗) can be regarded as the
4D solid torus system Y∗ as in the proof of Lemma 3.5. This completes the proof of
Lemma 3.7. □

4. Diffeomorphisms of stable 4-sphere

Let Diff+(D4, rel∂) be the orientation-preserving diffeomorphism group of the 4-
ball D4 keeping the boundary ∂D4 point-wise fixed. An identity-shift of a 4-manifold
Σ is a diffeomorphism ι : Σ → Σ obtained from the identity 1 : Σ → Σ by replacing
the identity on a 4-ball in Σ disjoint from F with an element of Diff+(D4, rel ∂). The
following result is a main result of this section.

Theorem 4.1. Any two homotopic diffeomorphisms of the stable 4-sphere Σ are
isotopic up to a composition of one diffeomorphism and an identity-shift ι.

Because at present it appears unknown whether π0(Diff
+(D4, rel∂)) is trivial or

not, the identity-shift ι is needed in Theorem 4.1. However, it is known that any
identity-shift ι is concordant to the identity since Γ5 = 0 by Kervaire [15]). Thus, the
following result is a consequence of Theorem 4.1(, whose proof is omitted).

Corollary 4.2. Any two homotopic diffeomorphisms of the stable 4-sphere Σ are
concordant.

In Piecewise-Linear Category, every piecewise-linear auto-homeomorphism of the
4-disk keeping the boundary identically is piecewise-linearly ∂-relatively isotopic to
the identity, [10], [17]. Thus, the following result is a consequence of Theorem 4.1(,
whose proof is omitted).

Corollary 4.3. Any two homotopic piecewise-linear auto-homeomorphisms of the
stable 4-sphere Σ are piecewise-linearly isotopic.

The proof of Theorem 4.1 is done as follows.

Proof of Theorem 4.1. Let fi (i = 0, 1) are homotopic diffeomorphisms of Σ =
S4(F )2 for a trivial surface-knot F of genus n in S4. Then the composite diffeomor-
phism g = f−1

1 f0 of Σ is homotopic to the identity. By Lemmas 3.2, 3.3, 3.4 and Note
3.6, there is a diffeomorphism h of Σ isotopic to the identity such that the composite
diffeomorphism hg of Σ sends the O2-sphere basis (S(D∗), S(D

′
∗)) identically. By the
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proof of Lemma 2.1, there is a proper 1-punctured trivial surface P ′ of F in a 4-ball
A such that a region Ω(S(D∗), S(D

′
∗)) in Σ is the double branched covering space

A(P ′)2 of the 4-ball A branched along P ′ and the residual region Ωc(S(D∗), S(D
′
∗))

is the double branched covering space Ac(d)2 of the 4-ball Ac = cl(S4 \ A) branched
along the proper trivial disk-knot d = cl(F \ P ′) in Ac. In this situation, there is a
diffeomorphism h′ of Σ which is isotopic to the identity such that the composite dif-
feomorphism h′hg of Σ preserve the region Ω(S(D∗), S(D

′
∗)) identically, which defines

a ∂-identical diffeomorphism δ : Ac(d)2 → Ac(d)2. Since Ac(d)2 is a 4-ball and the
lifting d′ of the disk d to Ac(d)2 is a trivial disk-knot in Ac(d)2 which is ∂-parallel,
there is a ∂-identical diffeomorphism δ′ of Ac(d)2 which is ∂-relatively isotopic to the
identity such that the composite diffeomorphism δ′δ is the identity except for a 4-ball
U in Ac(d)2 disjoint from d′. Let h′′ be the diffeomorphism of Σ defined by δ′ and
the identity of cl(Σ \ Ac(d)2). The composite diffeomorphism h′′h′hg of Σ preserves
cl(Σ \ U) identically, which is considered as an identity-shift ι of Σ. Since h′′h′h is
isotopic to the identity, the diffeomorphism g = f−1

1 f0 of Σ is isotopic to ι, and thus
the diffeomorphism f0 of Σ is isotopic to the composite diffeomorphism f1ι of Σ. This
completes the proof of Theorem 4.1.

5. Conclusion

In an earlier version of this paper (see the research announcement [12]), the author
tried to show Lemma 3.1 with an α-equivariant orientation-preserving diffeomorphism
as f (see [12, Lemma 3.2]) by a homological argument on an O2-handle basis of a
trivial surface-knot F of genus n in S4. However, such a trial is not yet succeeded. The
cause of this failure arose from a calculation error on the intersection numbers of O2-
handle bases. In fact, the claim [12, Lemma 3.1] is false, which can be seen by checking
the intersection numbers of the sphere-bases (S(D1), S(D

′
1)) and (S(E1), S(E

′
1)) in

Σ(1), although the Z2-version of [12, Lemma 3.1] is true. The claim [12, Lemma 3.2]
and the related claims in [12] except for [12, Lemma 3.1] are affirmatively solved by
using Theorem 1.1, Corollary 2.2 and Theorem 4.1 if every sphere-basis (S∗, S ′∗) of
Σ is homotopic to the sphere-basis (S(E∗), S(E

′
∗)) of an O2-handle basis (E∗, E

′
∗) of

F in S4. It is hoped that attempts to understand every sphere basis of Σ by using
the O2-handle bases of a trivial surface-knot F in S4 will help simplify the proof of
Theorem 1.1.
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