AUTOMORPHISM GROUPS OF PSEUDO H-TYPE ALGEBRAS
KENRO FURUTANI, IRINA MARKINA

ABSTRACT. In the present paper we determine the group of automorphisms of
pseudo H-type Lie algebras, that are two step nilpotent Lie algebras closely related
to the Clifford algebras CI(R™?).

1. INTRODUCTION

The pseudo H-type Lie algebras are two step nilpotent Lie algebras n, ,(U) =
(U @ R™,[.,.]) endowed with a non-degenerate scalar product (.,.);+(.,.)grs,
where U is the orthogonal complement to the center R™® and the commutation
relations are defined by

(Jou,v)y = (2, [w,v] )grs, u,v €U, z€R™.

Here J, € End(U), J? = — (2,2 )p.. Idy is the defining map for the representation
(J,U) of the Clifford algebra CI(R"*). These Lie algebras are the natural generalisa-
tion of the H (eisenberg)-type algebras n,.o(U), introduced in [30, 31], and they are
related to the Clifford algebras CI(R™®) generated by a vector space endowed with
the quadratic form of an arbitrary signature (7, s). The pseudo H-type Lie algebras
were introduced in [10, 27] and studied in [11, 12, 23, 24, 25]. These type of algebras
arise in study of parabolic subgroups with square integrable nilradicals [46], as max-
imal transitive prolongation of super Poincaré algebras [1, 2] and the nilpotent part
of 2-gradings for semisimple Lie algebras [26, 28]. These algebras are some special
examples of metric Lie algebras, studied in [4, 15, 19, 20, 22]. The pseudo H-type
Lie groups is a fruitful source for study of geometry with non-holonomic constrains
or nilmanifolds [18, 21, 34], symmetric spaces and harmonic spaces [7, 8, 14, 39],
differential operators on Lie groups [6, 9, 38, 40].

The main goal of the present paper is to describe the automorphism groups
Aut(n, s(U)) of pseudo H-type algebras n, (U) depending on the integer param-
eters (1, s) and the structure of the representation U of the Clifford algebra CI(R™*).
The automorphism groups preserving metric on n,(U) were studied in [41, 42]
and the general automorphism groups of n,o(U) were first described in [44], see
also [5, 32, 45]. Some attempt for study of Aut(ng;(U)) was done in [17]. An
automorphism group Aut(n,  (U)) is decomposed into an abelian subgroup of di-
latations, the group Hom(U,R"™*), the group generated by Pin(r,s), and a group
Aut’(n, o(U)) that acts trivially on the center R™, see Section 3.2. We determine
the group Aut’(n,,(U)) in terms of classical groups over R, C, and H. The structure
of the paper is the following. In Sections 2 and 3 we recall the necessary material
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about Clifford algebras, pseudo H-type Lie algebras, and classical groups. Section
4 is dedicated to the determination of Aut’(n,,(U)). The main result is contained
in Table 3. In Appendix one can find a recapture over the relation between the
isomorphic pseudo H-type Lie algebras and their groups of automorphisms.

2. CLIFFORD ALGEBRAS

2.1. Definition of Clifford algebras. We denote by R"™* the space R™, r+s = m,
with the non-degenerate quadratic form Q. (2) = Y27 27 — > % 22, 2 € R™
of the signature (r,s). The non-degenerate bi-linear form obtained from @, by
polarization is denoted by (-, - ), and we call it a scalar product. A vector z € R
is called positiveif (z,2), > 0, negativeif ( z,z), , <0, and nullif (2,z),, = 0. We
use the orthonormal basis {z1,..., 2, Zr41, ..., 215} for R™ where ( z;, 2; )7,75 =1
fori=1,...,r,(25,2),,=—1forj=r+1,...,r+sand (2,2) =0 fori#j.

Let Cl, s be the real Clifford algebra generated by R™*, that is the quotient of the
tensor algebra

TR™) =Ro (R™) o (é RHS) ® (é RHS) e

divided by the two-sided ideal I, s which is generated by the elements of the form
2®z+(2,2),,, € R™*. The explicit determination of the Clifford algebras is given
in [3] and they are isomorphic to the matrix algebras M (n,F) or M (n,F)® M (n,F),
for F = R, C or H, where the size n is determined by 7 and s, see for instance [36].

Given an algebra homomorphism J: Cl.s — End(U), we call the space U a
Clifford module and the operator J, a Clifford action or a representation map of an
element ¢ € Cl, ;. If there is a map

J: R»™ — End(U)
z J.,

satisfying J? = — (2,2),,1dy for an arbitrary 2 € R, then J can be uniquely

extended to the algebra homomorphism J by the universal property, see, for in-
stance [29, 35, 36]. We recommend to read [33] for a wonderful introduction to
the Clifford algebras Cl, ;. Even though the representation matrices of the Clifford
algebras Cl, ;, and the Clifford modules U are given over the fields R, C or H, we
refer to Cl, s as a real algebra and U as a real vector space.

If r —s # 3 (mod 4), then Cl,; is a simple algebra. In this case, there is only
one irreducible module U = V>7. If r — s = 3 (mod 4), then the algebra Cl, is
not simple, and there are two non-equivalent irreducible modules. They can be
distinguished by the action of the ordered volume form Q"* = H}::i zx. In fact,
the elements ¢ = %(1 F QT’S) act as an identity operator on the Clifford module,

so Jors = £1dy. Thus we denote by V;;»", two non-equivalent irreducible Clifford

modules on which the action of the volume form is given by Jors = [[12] /., = £1d.

Proposition 2.1.1. [36, Proposition 4.5] Clifford modules are completely reducible;
any Clifford module U can be decomposed into irreducible modules:

é‘/;:’f, if r—s% 3 (mod 4),
(2'1) U= P g P— g .
(o Vii )@ (@ Vi), if r—s=3(mod4).

The numbers p, py,p_ are uniquely determined by the dimension of U.
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The first type of module U in (2.1) is called isotypic and the second one in called
non-isotypic. The Clifford algebras possess the periodicity properties [3]:

(22) Clr,s X Cl0,8 = Clr,s—‘rS) Clr,s ® Cl8,0 = Clr—‘r&sy Clr,s X Cl4,4 = C1r+4,5+4 .

The Clifford algebras Cl,,, for (p,v) € {(8,0),(0,8),(4,4)} are isomorphic to the
matrix algebra M (16, R).

2.2. Admissible modules.

Definition 2.2.1. [10] A module U of the Clifford algebra Cl, s is called admissible
if there is a scalar product (-, ), on U such that

(2.3) (La,y)y+(z, Ly)y, =0, foral z,ycU and z € R™.

We write (U, (-,-),;) for an admissible module to emphasise the scalar product
(-, )y and call it an admissible scalar product. We collect properties of admissible
modules in several propositions.

Proposition 2.2.2. Let Cl, s be the Clifford algebra generated by the space R™.

(1) If (-, )y is an admissible scalar product on a Clifford module U for Cl,,
then K (-,- ) is also admissible for any constant K # 0. We can assume
that K = +1 by normalisation of the scalar products.

(2) Let (U,{-,)y) be an admissible module for Cl, s and let (Uy, (-, ), ) be such

that Uy is a submodule of U and <','>U1 is a non-degenerate restriction of
(-,")y to Uy. Then the orthogonal complement Uy" = {x € U | (z,y), =
0, for ally € Uy} with the scalar product obtained by the restriction of (-, )y
to Uyt is also an admissible module.

(3) Condition (2.3) and the property J? = —(z,2), Idy imply

(2.4) <<]z«75a Jzy>U = <Z7Z>T,s <x7y>U'

(4) If s > 0, then any admissible module (U, (-,-),) of Cl, s is neutral, i.e.,
dimU = 2l, | € N, and U is isometric to RY, see [10, Proposition 2.2].

(5) If s = 0, then any Clifford module of Cl,q is admissible and it is isometric
either to RY or to R% | see [29, Theorem 2.4].

Proposition 2.2.3 describes the relation between irreducible and admissible mod-
ules. An admissible module of the minimal possible dimension is called a minimal
admissible module.

Proposition 2.2.3. [10, Theorem 3.1][24, Proposition 1] Let Cl. be the Clifford
algebra generated by the space R™.

(1) If s = 0, then any irreducible Clifford module is minimal admissible with
respect to a positive definite or a negative definite scalar product.
(2) Ifr—s=0,1,2 mod 4, s > 0, then a unique irreducible module V, 7 is not
necessary admissible. The following situations are possible:
(2-1) The irreducible module V> is minimal admissible or,

(2-2) The irreducible module V% is not admissible, but the direct sum V. > &
V."® is minimal admissible.

(3) If r—s =3 mod 4, s >0, then for two non-equivalent irreducible modules
Vs the following can occur:

(3—1)7 Ifr=3 mod 4, s=0 mod 4, or
r=1 mod8, s=6 mod 8, or
r=>5 mod 8, s=2 mod 8

then each irreducible module V)

. is minimal admissible.
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(3-2) Otherwise none of the irreducible modules V;;7" . is admissible.
(3-2-1) Ifr=1 mod 8, s =2 mod 8§, or
r=>5 mod8, s=6 mod 8
then Vi @Vl Vil @V, are minimal admissible modules,
and the module V;" . @ V,"_ is not admissible.

irr;—

(3-2-2) If s is odd, then the module V" @V, is minimal admissible

T Ty —

- T8 7,8 7,8 7,8 . . .
and neither V.o, @ V' nor V7. @ V.. is admissible.

2.3. System of involutions P, ; and common 1l-eigenspace E, .

2.3.1. Mutually commuting isometric involutions. Recall that a linear map A defined
on a vector space U with a scalar product (-, ), is called symmetric with respect
to the scalar product (-, )., if (Az,y), = (z,Ay),. We say that A is positive if
it maps positive vectors to positive vectors and negative vectors to negative vectors
and A is negative if it reverses the positivity and negativity of the vectors. Let .J,,
be representation maps for an orthonormal basis {21, ..., 245} of R»*. The simplest
positive involutions, written as a product of the maps J,,, have one of the following
forms:

(type (1)1 Py =J,, J.,, ., J=,, all 2, are positive,

type (2): P = Joi, iy iy I, s all 2 ave negative,

type (3) 1 P =J,, Jo, Jo, oy, WO 2 are positive and two are negative,
type (4) 1 Py =J., Jo, )y s all three z;, are positive,

Ltype B) : Py=J., J,, J.., one z;, is positive and two are negative.

For a given minimal admissible module V> we denote by PI, s a set consisting of
possible maximal number of mutually commuting symmetric positive involutions of
types (1)-(5) such that none of them is a product of other involutions in P, ;. The
set PI, s is not unique, while the number of involutions p, ; = #{P1.s} in PI,  is
unique for the given signature (r,s). The set PI,., can be ordered, if necessary, in
such a way that at most one involution of the type (4) or (5) is included in PI,
and it is the last one. We denote by P the reduced system of involution, that
contains only involutions of type (1)-(3). In the case when there are no involutions
of type (4) or (5), we have PI,, = PI’ and we write P, if no confusion arises.

We define the subspace E, ; of a minimal admissible module V> by

Er,s:{vevé’fn | PZ‘U:U, igpr,sa
r—s#3 mod4, orr—s=3 mod 4 with odd s},

E.s={veV> | Pv=v, i<p,s—1, r—s=3 mod 4 with even s}.

min
We call £, s the “common 1-eigenspace” for the system of involutions PI,s. The
space E, s is the minimal subspace of V"> that is invariant under the action of all
the involutions from PI,,. The system of involutions PI, s does not depend on

the scalar product on the admissible modules V, > = (V"> (-,-) s ) and V> =
min’

(Voo — (.- )yrs ). Nevertheless, the restrictions of the admissible scalar products
on the respective £, ; will have opposite signs. Namely,

(1) the restriction of the admissible scalar product to E,, is sign definite for
r=0,1,2 mod 4 and s =0 mod 4 or for r =3 mod 4 and arbitrary s;

(2) otherwise the restriction of the admissible scalar product to the common
1-eigenspaces F, s is neutral,
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see Table 1 and [25, Section 2.6] for details of the proof.

The dimensions of minimal admissible modules need to be determined only for
basic cases

(r,s) for 0 <r<7and0<s<3,
(2.5) (r,s)fr0§r§3and4<s<7 and
(r,s) €{(8,0),(0,8),(4,4)}.
We use periodicity property (2.2) to find the dimension of a minimal admissible

module dim (V5" = dim(V% ) - dim(V"") = 16 dim(V?) provided that V"

min min mwn

is minimal admissible and (p,v) € {(8,0),(0,8),(4,4)}. Moreover dim(V,” ) =

mwn
2r+s=prrs - We describe the number and the dimension of minimal admissible modules

V"% in Table 1.

mwn

TABLE 1. Dimensions of minimal admissible modules.

| 8 [ 16F [ 32F [ 64 [[ 645, [| 128% [ 128F | 128% [ 1287, [ 256 |
7 116N | 32V [64N [ 64T [[ 1287 [ 128" [ 128"V || 128T [ 256N
N N N + N N N + N
X X

6 [ 16V [16Y, | 32 32 64 64, [ 128 128 256
5 || 16N [ 16~ | 16V || 16 || 32V | 64N | 128 || 128" || 2567
[ 4 ] 8 [ 8% [ 8 [ 85, [ 167 | 32F | 64T [ 645, || 128% |
3 [ 8V [ 8V [ 8V [ 8F [[ 16V | 32V | 64N || 64F [ 128"
2 | 4N |4, [ 8V | 8F | 16V | 167, | 32N || 32% || 64"
1] 2V 47V 8V | 8F || 16"V 167V 16N || 16* || 32V
Lo [ 1F [ 28 | 4F | 4§2\\ g [ 8% | & [ 8, [ 167 |
s/l o [ v ]2 3 4 [ 5 | 6 [ 7 [ 8]

We make the following comments to Table 1:

(1) We use the bold characters when dim(V,>*) = 2dim(V;’), see Proposi-
tion 2.2.3, statements (2-2) and (3-2).

(2) Writing the subscript ” x2” we mean that the Clifford algebra has two mini-
mal admissible modules corresponding to the non-equivalent irreducible mod-
ules, see Proposition 2.2.3. statements (3-1) and (3-2-1).

(3) The upper index ” N” means that the scalar product restricted to the com-
mon l-eigenspace F, ; is neutral.

(4) The upper index ”£” indicates that the scalar product restricted to the
common l-eigenspace E, ; of the system PI, s is sign definite.

From now on we use + or N as the upper index and write V5 (V757) or V05V if
the restriction of the admissible scalar product on E, 4 is positive (negative) definite
or neutral. We also use the lower index + to distinguish the minimal admissible
modules, corresponding to a choice of non-equivalent irreducible modules that were
mentioned in Proposition 2.2.3, statements (3-1) and (3-2-1).

According to these agreements, any admissible module can be decomposed into the
orthogonal sum of minimal admissible modules, see Proposition 2.2.2, statement (2).
We distinguish the following possibilities.

Ifr—s#3 mod 4 and s is arbitrary or r —s =3 mod 4 and s is odd, then

(2.6) U= (% vxﬁ)@( 5 V).

If r—s=3 mod 4 and s is even, then

. )
@1 U= (V@S VL) D o Vi) @ (5 Vi)
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Since the involutions in PI, ; are symmetric, the eigenspaces of involutions are
mutually orthogonal. The involutions commute, therefore, they decompose the
eigenspaces of other involutions into smaller (eigen)-subspaces. We give an example,
that is crucial for the paper.

Example 1. The set PI,, for (1,v) € {(8,0),(0,8),(4,4)} is given by

Ty = JoJode ey To = JoJoJesde, Ts = JoJoy I degs Ta = Joy I e Jer
The module V" is decomposed into 16 one dimensional common eigenspaces of
the four involutions T;. Letv € E,, and |(v,v)yur | = 1. Then other common
eigenspaces are spanned by Je,v, 1 =1,...,8, and Jo, Jo;v, j = 2,...,8. Hence we
have

8 8
(2.8) Viin = By @ Je,(Byw) @ JoJe;,(Bp)-
i=1 j=2

The value (v,v)yuv can be £1 according to the admissible scalar product, however

we may assume (v,v )yur =1, see [25, Example 1, Lemma 3.2.5].

3. PSEuDO H-TYPE LIE ALGEBRAS

3.1. Definitions of pseudo H-type Lie algebras and their Lie groups. Let
(U, (-,-)y) be an admissible module of a Clifford algebra Cl,,. We define a vector
valued skew-symmetric bi-linear form

)] UxU — R"
(z,y) — [z,y]
by the relation

(3.1) (Lw,y)y = (2 [x,9]), -
Definition 3.1.1. [10] The space U & R™* endowed with the Lie bracket

[(ZL‘, Z)’ (y,w)] = (Oa [‘T’ y])
is called a pseudo H-type Lie algebra and it is denoted by n, ((U).

A pseudo H-type Lie algebra n, ((U) is 2-step nilpotent, the space R™ is the
center, and the direct sum U @ R"™* is orthogonal with respect to (-, ), +(-,-), .

The Baker-Campbell-Hausdorff formula allows us to define the Lie group structure
on the space U & R™® by

(x,2) * (y,w) :(:c—l—y,z—i—w—l— %[w,y])

The Lie group is denoted by N, ,(U) and is called pseudo H-type Lie group. Note
that the scalar product (-, - ), is implicitly included in the definitions of the H-type
Lie algebra and the corresponding Lie group. In general, the Lie algebra structure
might change if we replace the admissible scalar product on U, see [4, 19, 20].

3.2. General structure of the group Aut(n, (U)). In the present section, all
the matrix groups are considered over the field R. Let n = (U & 3,][.,.]) be a real
2-step nilpotent graded Lie algebra with the center 3 and Aut(n) be a group of
automorphisms of this Lie algebra. We use the identification U = R"™ and 3 = R™.
An automorphism has to preserve the center and therefore an element ® € Aut(n)
has to be of the form

o — (g g) . AeCL(n,R), CeGL(mR), Be Hom(R",R™),



AUTOMORPHISM GROUPS 7

and C([u,v]) = [Au, Av]. The subgroup

t1d, 0 S
B(n):{(B t?ldm)’ B € Hom(R", R™), t#O}

is a normal subgroup of Aut(n). The factor group

Aut(n)/B(n) = { (g‘ g) , AeSL(n,R), C € GL(m,R), C([u,v]) = [Au,Av]}

is a subgroup of Aut(n) and it will be denoted by C(n) := Aut(n)/B(n). Thus
the group Aut(n) is a semi-direct product of B(n) and C(n), and it is enough to
determine the group C(n).

Let us assume now, that n is a pseudo H-type Lie algebra n, ((U) = U & 3 with
3=R" r+s=m. If we write A® C for an element of C(n), then (3.1) implies

(LAz, Ay)y = (2, [Az, Ay]),, = (2, Clz,y]),, = (Jor)7, )y -

Thus the condition C([u,v]) = [Au, Av] is equivalent to A7J.A = Jor(s), where
the transpositions A™ and C7 are taken with respect to the corresponding scalar
products on U and on R"™®. The group

(32)  Aut’(n,(U)) = {A ®1d,, A€SL(n,R), A™J.A=J, for any z € R”’s}
is a normal subgroup in C(n).

Lemma 3.2.1. [24, Theorem 2| The subgroup of the maps C' € GL(m,R) such that
A®C eC(ng(U)) is contained in O(r,s), r + s =m.

Due to Lemma 3.2.1, we conclude that
C(n,,(U)) = {A ®C, AeSL(n,R), C €O0(r,s), ATJA=Jors z€ Rm}.
In the next step we show that the map
Cn,s(U)) = 0O(r,s): AeC—C

is surjective. To achieve the goal we recall the definition of the group Pin(r, s). For
the beginning we introduce two useful involutions. The tensor algebra 7 (R™*) has
an involution given on simple elements by the reversal of order:

(M ®..0u) =uo...0u.

Since the map preserves the ideal I, ; it descends to a map (-)”: Cl, 4 — Cl,.,. The
map

R >z~ —2zeR" C(Cl,,

is extended to the Clifford algebra automorphism a: Cl, ; — Cl, ; by the universal
property of the Clifford algebras. The norm mapping N: Cl, ; — Cl, , is defined by
N(¢) = ¢ - a¢”). It is easy to sce that N(z) = (z,2),, for any z € R"*. More
about the properties of the maps * — *7 and N can be found in [36, Page 15].

We denote by CI, the group of invertible elements in Cl,, and in particular

R™* = {z € R™| (2,2),, # 0}. The representation Ad: R™% — End(R"?), is
defined as

— w,z),
Ad,(w) = —zwz™! = (w — 2%2) e R™ for weR™, zeR"™~.
Z, 2

7,8
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The map K(/iz: R™ — R™* is the reflection of the vector w € R™® with respect to
the hyperplane orthogonal to the vector z € R™. Then it extends to the twisted
adjoint representation Ad: Cl}, — GL(Cl,,) by setting

(33) Cl:f,s > ¥ — A\a@? A\a@(qs) - a(¢)¢90_17 ¢ € Clr,s .

The map A\az for z € R™**| leaving the space R™* C Cl, invariant, is also an

isometry: (;‘:(/iz(w), :Ariz(w» = (w,w), ,. Moreover, the properties of preserving

8

the space R™® and the bilinear symmetric form (., . >7"7s are fulfilled by the group
(3.4) P(R™*) = {vy---vp € CL, | (w3, i), # 0}
The map Ad: P(R™*) — O(r,s) Ai/sTa surjective homomorphism [36, Theorem 2.7].
It particularly implies Ad,-+ = Ad,,. The subgroups of P(R"*) C CI, defined by
Pin(r,s) = {v1---op € CL | (wvi, i), = 1},
Spin(r, ) = {vy - v, € CII | K is even, (v;,v;), = £1},
are called pin and spin groups, respectively.
Proposition 3.2.2. [3, 36] The map Ad: Pin(r,s) — O(r, s) is the double covering
map.

Proposition 3.2.3. Let J: Cl,; — End(U) be a Clifford algebra representation and
¢ € Pin(r,s). Then the map P: Pin(r,s) — C(n,s(U)) defined by

J 0
= Ple)=("7 ~ ) :
e 0= (5 Lo,
1S a group homomorphism.
Proof. First we show that P(¢) € C(n, s(U)); that is
Jod.J, = J(

—1)"N(p)Ad,,"

Let ¢ € Pin(r,s). Then AH; € O(r, s). Moreover, &i;(z) = Xasfl(z) = a(p™)zp.
Thus for any ¢ = [[_, @ € Pin(r, s) we obtain

pl = (21 xp)" = (@n-...-21) and N(p)=¢-alph) = H<$k7$k>r,s-
k=1
Then since z; ' = <x:’(;:>)m, k=1,...,n and J = —J, we have a(p™') = ]f(i)
and J,r = (—=1)"J7. Thus
T = I Ty dedy = E g
Adj(2) = YAda(z) T JaleT)Yzde T N(p) ¥ zJep-
This proves the proposition. 0

Proposition 3.2.4. Let J: Cl,; — End(U) be a Clifford algebra representation and
¢ € Pin(r, s). Both lines in the following diagram

(Id} —— Auwt"(n,,(U)) —— C(n,,(U)) —2= O(r,s) —— {Id}

(3.5) | P [

(I} —— Zs — Pin(r,s) 4% O(r,s) —— {Id}
are short exact sequences. The kernel Aut’(n, ,(U)) is defined in (3.2).
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Proof. 1t is a well known fact that the second line is a short exact sequence, see,
for instance [36]. Let C' € O(r,s) and ¢ be any element of Pin(r,s) such that
Ad, = C. Then for any C' € O(r, s) there is 1 (C) = P(p) € C(n,5(U)), given by
Proposition 3.2.3. It shows that the map 1 is surjective. Note that diagram (3.5) is
not necessarily commutative. 0

Lemma 3.2.5. Let

(3.6) {d} — N 5% G -5 H — {1

be a short exact sequence of groups. We assume that K is a subgroup in G such
that 1|k is surjective. Then there is a group homomorphism p: N x4, K — G with
kerp={(n,n"t)| ne KNN}.

Proof. Since N is a normal subgroup of G, the subgroup K acts on N by conjugation
¢: K — Aut(N), ¢p(n) =knk™*, for ne€N, k<€ K.
We have the surjective group homomorphism
p:N Xy K> (nk)—nkeG.
In fact, p((n, k) - (n', k') = nkn'k=kk' = p((n,k))p((n’, k')). The kernel of p is
kerp={(n,k)| nk=e, ne€N, ke K} ={(n,n"")| ne KNN},
where e is the unit element in G. Consequently, (N %, K)/kerp = G. O

Weset G = C(n,4(U)), K = P(Pin(r,s)) and N = Aut’(n,,(U)) in Lemma 3.2.5.
Then kerp = Aut’(n,4(U)) N P(Pin(r,s)). Now we determine the order of the
intersection Aut’(n,;(U)) NP (Pin(r, s)).

Theorem 3.2.6. In the notations above, we have
(1) Aut’(n,(U)) NP (Pin(r,s)) = {£Id&1d} in the following cases

la) r is even, s is arbitrary;
b) =1 mod 4, s =1,2 mod 4;
lc) r=3 mod 4, s =0,3 mod 4 and the admissible module is isotypic;

(
(1
(
(2) Aut’(n,,(U))NP(Pin(r,s)) = {£1d®1d; +Jor: B1d} in the following cases
(2
(2
(2

)

a) r=1 mod 4, s=0,3 mod 4;

b) r=3 mod 4, s =1,2 mod 4;

c) r=3 mod 4, s=0,3 mod 4 and the admissible module is non-isotypic.

Proof. To prove the theorem we need to find ¢ € Pin(r, s) such that
W(g) = (—1)"N(¢)Ad, = Id.

Then +J, @ Id will belong to Aut’(n,,(U)) NP (Pin(r,s)). Note that ¥(£1) = Id.
We also note that

N(Q) = a(Q)(Q*)T = (=1)* and 20" = (=1)""*71Q"z for any z € R™*.
Thus
(_1)T+SN(QT,S)A\&QT7SZ — (_1)2r+4s(_1)7“—1297‘,3(97",5)—1 — (_1)7”—12‘

Hence ¥(2"*) = Id for odd values of r and arbitrary values of s. Thus, if r is
even, then for arbitrary s elements in Aut’(n, (U)) N P(Pin(r,s)) are £1d®1d.
Moreover, in this case all the modules are isotypic. This shows (1a).
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Before we proceed, we remind some properties of the volume form:

—1)° if r+s=3,4 mod4
3.7 gz = 7L ’ ’
(3.7) () {(—1)5“, if r+s=1,2 mod 4.

We need to check the values r = 1,3 mod 4.

Let r =1 mod 4. In this case all admissible modules are isotypic. Moreover (3.7)
implies
()2 = 1, ?f s=1,2 mod 4,
—1, if s=0,3 mod 4.
Thus, if r =1 mod 4 and s = 1,2 mod 4, then we have Jgrs = +1d and it proves
(1b). In the case r =1 mod 4 and s = 0,3 mod 4 we obtain (2a).

Let » =3 mod 4. In this case we need to distinguish isotypic and non-isotypic
admissible modules. The property (3.7) implies

()2 = 1, ?f s=0,3 mod 4,

-1, if s=1,2 mod 4.
Thus if r =3 mod 4 and s = 1,2 mod 4 we obtain (2b). If r =3 mod 4, s = 0,3
mod 4 and module is isotypic then Jors = £1d, that shows (1c). In the case r = 3

mod 4, s = 0,3 mod 4 with a non-isotypic module we obtain (2c).
At the end we notice that the cases (1a), (1c), and (2c) contain a result of [44]. [

We conclude that any element of C(n, 4(U)) has the form AJ, @ (—1)”N(cp)§i¢,.
The only thing that we left to find is a subgroup of SL(n,R) containing maps A
such that

(3.8) ATJ,A=J, forall zeR"™.

3.3. Relation between the structure of involutions PI, ; and Aut® (nm(U)).
In this section we show that Aut" (nm(U )) is closely related to the structure of the
set of involutions PI;, of types (1)-(3) acting on U. The proof of the following

lemma is obtained from (3.8) by induction and can be found in [24, Lemma 3] for
the product of any number of J,, .

Lemma 3.3.1. Let {2;}/=7 be an orthonormal basis for R™* and let ® = A®1d €
Aut’(n,,(U)). Then the following relations hold:

(3.9) AJJy = T J A, A Je = Jo s e A,
(3.10) AT T Ty A= T T T,

Lemma 3.3.2. Let {2}/27 be an orthonormal basis for R™* and U an admissible
module. If a linear map A: U — U satisfies the conditions

AT, A=,  foroneinder ko€ {l,...r+s}, and

Adyy o = o Iy A for all indices 1=1,...r+s,

then ® = A@1d € Aut’(n,4(U)).

Proof. We only need to show (3.8) for all z = z for { = 1,...r +s. If (3.11) is
fulfilled, then

AT L A=A, Ty Jy A= 2AT T, AT, Ty =20 T =T

(3.11)
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Corollary 3.3.3. ® = A® Id € Aut’(n,(U)) if and only if (3.11) holds.
Let (V»° | J) be a minimal admissible module of Cl, ;. Let P: V»* — V'* be

an involun‘g;gn from the set P}, that is the product of four generatcﬁzsj We gg?lote
by E%, k € {1,—1} the eigenspace of the involution P with the eigenvalue k = =4-1.
In order to denote the intersection of eigenspaces of several involutions P, € PI,
I =1,...,N = #(PI,), we use the multi-index I = (ki,...,ky), ki = &1 and
write BT =N, Eg. Assume that ® = A @ Id € Aut’(n, (V7). Then

1. A= @Ay, where A;: B! — E! for any choice of I = (ky, ..., ky);

2. if J.,, J. J.., J.Jo s, t BT — ET for some I, then

AIJZj = JZ]'(A;>717 AIJZszszm = JZjJZkJZm(A‘II-)il

Ard, J., = J. 0 A
and
AT, = J,(A)™Y AT e, = Ty Ja (AT
A7, ., = T, 0. AT

Proof. The first statement follows from the fact that AP, = PAforalll=1,..., N.
The second statement is the direct consequence of (3.8) and Lemma 3.3.1. U

Thus the construction of the map A: V> — V° can be reduced to the con-
struction of the maps A;: Ef — E! and setting A = ®A;. Theorem 3.3.4 states
that, under some conditions, the construction of all maps A; can be obtained from
the map A;: E' — E', where we denote E' = (', E},. Note that E' is exactly
the subspace E;, C V7 that is the common 1-eigenspace of involutions from PI}
that are of types (1)-(3).

Theorem 3.3.4. Under the previous notation we assume that

(a) there exist maps Gr: E' — E' for all multi-indices I of the form either G; = J,
or J,J,, forsomei,k=1,...,7+s, and

(b) there exists a linear map Ay: E* — E' such that if oo oy s oy Loy o E' —
E', then the map A, satisfies

3.12 Ao = J (AN AL o o = Jo Jo J. (AT)7)
J 1 j k 5 k 1

i
and the same for any other product of odd number of generators J,,, leaving the
space E' invariant; also

(3.13) Ao ey = Jo o Ay

and the same for any other product of even number of generators J,,, leaving the
space E' invariant.
Then the map A: V"> = V" A= @A; with A;: BT — ET such that

G AT G, if Gr=J., forsome i=1,...,1+s,

(314) A[ - 1 . .
GrAGL, if Gr=J,,J,, forsome i,k=1,...,r+s,

uniquely defines the automorphism ® = A @ 1d € Aut’(n, (V7).

Proof. The spaces E! are mutually orthogonal because all the involutions in PI;,
are symmetric. Thus V0 = @F!, where the direct sum is orthogonal. For the
convenience we also write the maps defining A7:

GiA'GY,  if Gr= U,
(3.15) VR S S

G[AIG[ N if G[ = JziJzk-

=



12 KENRO FURUTANI, IRINA MARKINA

Then we set A = @A;. We only need to check the condition AszO AT = szo for an
arbitrary zj;, in the orthonormal basis for R"™*.

We choose y € V* = ®F!. Then we write y = @y with y; € E7. Thus we
distinguish the cases when the map G; is the product of an odd or an even number
of maps J,,. Moreover, we find a multi-index K for the multi-index 7, such that
Gl}l szo G leaves the space E' invariant. Since G can also be the product of an

even or an odd number of J,, we distinguish the following cases: AJ,, ATy, =

AKJ%A}ZUI
GK(Al_l)TGl_(ljszG[Al_lGI_ly[ if G] = JZZ., GK = le,
. GKAlGI_(IJZjOG[Al_lGl_ly] if G] = JZi’ GK = Jszzla
a GK(AII)TGE(IszOGIA{GI_Iy[ if G[ = JZiJZm7 GK = le,
GKAle}lJZjOG]AIGfly[ if G[ = JZiJZm, GK = Jzkal,

by definitions (3.14) and (3.15) of Ax and Aj. We only check the first condition,
since the others can be verified similarly. The condition that Gl}l JZ],O G leaves the

space E' invariant, reads as (Al’l)TGI’(IJZjO GrAT = Gl}ljzjo G7. Indeed from (3.12)
we have

(A;l)TG;QJ%GIAl-l = (Al_l)TJz_lljzjo J, AT = Jz_llszO J, = G;J%GI.
We calculate

Gr(ATY) G, GrAT Gy = GG L, GGt =

ZJ'O'
Thus, AJZjOATyI = J., Y1
Now we show the uniqueness. Let us assume that G, G;: E' — ET and both

G, G are products of even numbers of J,,. Then A,G; = G;A;, and A1G; = GjA;.
It implies

Aro Alfl = G[AlGl_lGiAl_lGlfl = GIGflGjAlAl_lGITl —1d,

because G} 'Gj is the product of an even number of J,, that allows to apply (3.13).
Let now Gy,G;: E' — E! and both of them are products of odd numbers of
generators. Then by making use of (3.14) and (3.13) we obtain

AI o Aljl — GI(AI)*lGI*lGiAIGIjl — GI(Ai‘)flAIG;lGiG;l —1Id

since G;'G7 is the product of an even number of generators.
Finally, if G;: B — E! is the product of an odd number of generators and
Gj: E' — E' is the product of an even number of generators, then we obtain

Apo AT = GHA])'GIIGIAT G = GGG ALATIGL = Td

by (3.14). Here we used the fact that Gl_lGi is the product of an odd number of
generators and then applied (3.12). O

3.4. Classification of pseudo H-type Lie algebras n, (U). We start from the
necessary condition for isomorphisms between two H-type Lie algebras.

Theorem 3.4.1. [24, Theorem 2|. Let (V™5 (-, -)y.) and (V™5 (-, ) V™) be
admissible modules of the Clifford algebras Cl,.s and Cl; 5, respectively. Assume
that r + s = 7 + 5, dim(V"*) = dim(V"™*), and that the Lie algebras n, ;(V"*) and
n::(V™%) are isomorphic. Then, either (r,s) = (7,3) or (r,s) = (5,7).
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TABLE 2. Classification result for n, (V")

min

8 =~

7T d|d|d]|2&

6 ||d|=|=|h

5 ||d|=Z|=|h

4 |Z£|h|h|h

3 |d|#|2& d{d|d|%

2 [[=h ¥d[=[Z|h

1 || = d|2|d|[=|[=|h

0 2| 2| h|Z|h|h|h|&
[s/r[O0]1[2[3[4][5]6]7][8]

The classification of pseudo H-type algebras n,¢(V,> ), constructed from the min-
imal admissible modules was done in [24]. We summarise the results of the classifi-
cation in Table 2.

Here “d” stands for “double”, meaning that dimV,>* = 2dim V>’ and “h” (half)
means that dimV,> = 1dimV,’  The corresponding pairs are trivially non-
isomorphic due to the different dimension of minimal admissible modules. The sym-
bol = denotes the Lie algebra n, 4(V," ) having isomorphic counterpart n,,. (V" ),
the symbol 2 shows that the Lie algebra n, 4(V,” ) is not isomorphic to ng, (V2! ).

The result of the classification for the cases when the Lie algebras has the same
signature (7, s) of the scalar product on the center and arbitrary admissible modules

is contained in [25, Theorems 4.1.1-4.1.3]. We summarise the result here.
Theorem 3.4.2. Let U = (U,(-,-),) and U = (U,(-,-)) be admissible modules
of a Clifford algebra Cl, ;.
1. Ifr=0,1,2 mod 4, thenn, (U) = nm(U), if and only if dim(U) = dim(U).
2. Letr =3 mod 4 and s =0 mod 4 and let the admissible modules be decom-
posed into the direct sums of the type (2.7). Then the Lie algebras n, (U)
and n, s(U) are isomorphic, if and only if,
p=pi+p-=pi+p-=p and q=p +pl=p,+pl=q,  or
p=pl+p-=p, 5L =G and q¢=p; +pl =5l +p-=p.
3. Letr =3 mod 4 and s =1,2,3 mod 4 and let U and U be decomposed into
the direct sums (2.6) Then n,s(U) = n,((U), if and only if
p=p =p"=p and ¢=p =p
p=p"=p =q and ¢=p =D

=q, or

According to Theorem 3.4.2 in the cases r =3 mod 4 and s =0 mod 4, we can
+

P : Py . P .
substitute @ V57 by @ VS~ if pt = py. Analogously, we replace @ V">~ by

min;— min;+ min;—

+
p .
& Vnzlsntr if p~ = pT. Hence we reduce the decompositions of an admissible module
to the sums containing only V,ani Moreover, we omit the subscript “+” below and
simply write Vnzlsni Thus, if » =3 mod 4, then the type of the Lie algebra n, ,(U)

depends only on the decomposition

p . q .
(3.16) U=(oVm) D (V)
where the numbers p, ¢ are defined in items 2 and 3 of Theorems 3.4.2. We call

admissible modules with decompositions (3.16) isotypic if one of the numbers p or
g vanishes. Otherwise the admissible module is called non-isotypic of type (p, q).
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Now we state the classification when the Lie algebras has opposite signatures (r, )
and (s,r) of the scalar products on the centers and arbitrary admissible modules,
see [25, Theorems 4.6.2]. We formulate here the revised version of the result obtained
in [25, Theorem 4.6.2].

Theorem 3.4.3. Let r = 0,1,2 mod 4 and s = 0,1,2 mod 4. Then n, (U™*) =
ng,(U*") if dim(U™*) = dim(U*").
Letr =3 mod 8, s =0,4,5,6 mod 8 orr =7 mod 8§, s 0,1,2 mod 8. Then

Mo (U7) 2 n (U7 if dim(U™*) = dim(US7) and U™ = (& VIS5 @ (& Vi),

Let r = 3 (mod 8) and s = 1,2,7 (mod 8). Then n, (U"®) is never isomorphic to
n, . (U*").

3.5. Periodicity of Aut(n,,(U)) in parameters (r,s). To obtain Aut’(n,(U))
for all the range of the parameters (7, s), we need only to describe basic cases (2.5),
since the rest follows from the theorems on periodicity.

Proposition 3.5.1. [25, Propositions 4.2.1 and 4.2.2] Let (U,.;,, (-, )y ) be a

minimal admissible module of Cl,s and J,,, © = 1,...,r + s the Clifford actions
of an orthonormal basis {z;}. Let also (Vi (-, )ur) be a minimal admissible

module of Cl,, for (u,v) € {(8,0),(0,8),(4,4)} andmjzi, i =1,...,8 the Clifford
actions of an orthonormal basis {(;}. Then

8 8
(3-17) Ui ©Vinin = Ui @ By @ Unpin @ Je.(E @ (Unin ® Je I, (Bpu)

is a minimal admissible module U "™ of the Clifford algebra Cl,y, o1y
Conversely, if UM is a minimal admissible module of the algebra Cly,, o1,
then the common 1-eigenspace Ey of the involutions T;, 1 = 1,2,3,4 from Example 1
can be considered as a minimal admissible module U)" ~ of the algebra Cl, 5. The ac-
tion of the Clifford algebra Cl,. s on Ey is the restricted action of Cl,,, ¢y, obtained

by the natural inclusion Cl, s C Clyq, o0

According to the correspondence between minimal admissible modules stated in
Proposition 3.5.1, there is a natural injective map

(3-18) B: C(“T S(Urs )) - c(nr+u,s+V(Ur+u S+V))

mwn mwn

Conversely, automorphisms of the form A ® C € C(y st (ULTE)) with the
property that C((;) = ¢;, 7 =1,...,8, defines an automorphism Ajg, ® Crrs of the
algebra n, (Ey), where the space Ey is the common 1-eigenspace of the involutions

T;, 7 =1,2,3,4, viewed as a minimal admissible module of Cl, ;.

Corollary 3.5.2. Let U™ and U5t = U™ Q V" be admissible modules. Then
AL (1 (U H547)) = B( At (U7)).

that is the group Aut®(n,(U™*)) is invariant under the map B defined in (3.18).

Proof. The proof follows from Proposition (3.2.4). O

Finally, we state the result of the periodicity of isomorphisms for the Lie algebras.

Theorem 3.5.3. [25, Theorem 4.6.1] The Lie algebras n, s(U™*) and n,,(U>") are
isomorphic if and only if the Lie algebras i, o1, (U™5) and ngyy i, (UST7TH)
are isomorphic for (u,v) € {(8,0),(0,8), (4,4)}.
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3.6. Definition of classical groups. We aim to determine a subgroup A of the
group SL(n,R) such that if A € A, then A @ Id € Aut’(n,,(U). In what follows
we will identify A and Aut’(n,(U)). The maps A: U — U are linear maps over
the field of real numbers. From the other side the admissible modules U can carry
complex or quaternion structures such that the map A commutes with them. Thus,
the map A has to be linear with respect to these additional algebras. We recall some
useful embeddings of the algebras C, H into the space of real matrices.

The use of the notation *” for the transpose matrix and the reverse ordered
element in the Clifford algebras will not cause any confusion.

We write A = a+bi, i = —1, for A\ € C and h = a+ bi+cj+ dk for h € H. Recall
that

(3.19) i’ =j*=k*=ijk = —1.

We describe here the embeddings of the algebras F = C, H and square matrices
M (n,TF) into the set of real square matrices M (n,R) and complex square matrices
M (n, C), respectively. We define an embedding

pc: C — M(2,R)
(3.20) N=a+bi — (Z'%>.

a

Then one has
a1 —bnn arz —bio
A A b b
A= p(C(A(C) = pC( ()\i )\Z) ) = H _a[i; . e

a21 azy  —by
by a1 bay  ax

for Ay = ag; + bii. The map pc is the algebra homomorphism:
pc(AcBc) = pe(Ac)pc(Be) = AB,
pe(V) = (pc(V)", AeC,
pe(Ac) = (pe(Ac)" = AT, Ac € M(n,C),

where superscript A7 denotes the transposition of A. Note also that if we denote
by diag, L a block-diagonal real matrix with the blocks L on the diagonal, then

(3.21) diag,, (é _01> pc(Ac) diag,, ((1) _01) = pc(Ac).

A quaternion number can be expressed by using complex numbers by
h=a+bi+cj+dk=A+ju, A=a+bl, p=c+di,
with the conjugation h = a — bi — ¢j — dk = XA — jji. Thus we define
PH H — M(2,C)

. A —T
h=X+ju — <M X)'
Consider the space H" as a right quaternion space. Thus, Ag(vh) = (Agv)h for
h € H, for the quaternion column vector v € H", and for the quaternion matrix
Ag. A column vector h = (hy,..., h,)T € H" with hy = A, + ju; will be represented
by the column vector (A1, ..., An, fi1, .-, i)’ € C?™. Then the quaternion matrix
Qu € M(n,H) written as Qg = Ac+jVc with Ac, V¢ € M(n, C) will be represented
as
(A —Tc
pH(QH) = (\P(C A_(C ) S M(Qn,C).
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This representation is convenient by the following reason: if H > h = A\ + ju is
given as a column vector (2), then multiplication from the left by a complex

matrix representation of a quaternion produces a new column vector representing
the correct quaternion. The map py is also the algebra homomorphism:

pu(AuBu) = pu(An)pu(Br),

pu(h) = (pu(h)) , heH,

7 ——T
We recall the following definitions of the classical groups that will be used in the
sequel. The general linear group GL(n,F) of degree n over the fields F = R, C is

GL(n,F) :={M € M(n,F) | M is invertible}.

The general orthogonal group O(n,F) over the fields F = R, C is
O(n,F) := {M € GL(n,F) | M"M =1d,},

where Id,, is the (n x n) identity matrix. In the case F = R we also use the pseudo-
orthogonal group O(p, q)

Id 0
O(p,q) :={M € GL(p + ¢, R) | M"1d,, M =1d,,5},  1dy, = ( 0 —qu) '
All the groups over R preserving a symmetric bilinear form of index (p,q) are iso-
morphic to O(p, ¢). The groups over C preserving a symmetric bilinear form of index
(p, q) are isomorphic to O(n,C) with n = p + ¢, see [43, Chapter 3.1].
The symplectic group Sp(2n,F) of degree 2n over the fields F = R, C is

Sp(2n,F) := {M € GL(2n,F) | MTQ,M = Q,}, Q, = <1<(1) _(I)d”) :
All the groups preserving a skew-symmetric bilinear form are isomorphic to Sp(2n, ).
The general unitary group U(p, q) of degree n is

U(p,q) == {M € GL(n,C) | M 1d,, M =1d,,}.

The subgroup U(p,0) C U(p,q) is denoted by U(p). Note that from a qualitative
point of view, consideration of skew-Hermitian forms (up to isomorphism) provides
no new groups, since the multiplication by i renders a skew-Hermitian form Hermit-
ian, and vice versa. Thus only the Hermitian case needs to be considered.

Now we turn to define the groups over the algebra H. Under the identification
described above

GL(n,H) = {M € GL(2n,C) | Q,M = MQ,,, det M # 0}
SL(n,H) = {M € GL(n,H) | det M =1},

Sp(p,q) = {M € GL(n,H) | M Id, g M =1d,4, p+q=n}

B —7 Id,, © . Id,y 0
— {Me GL(2n,C) | M dlag( 0 Idp,q) M—dlag( 0 Id,, }

The group Sp(p, q) is called quaternionic unitary group. If p =0 or ¢ = 0, then
Sp(0,p) = Sp(p,0) is denoted by U(p,H) and called hyperunitary group. The
reason for the notation Sp(p, ¢) is that this group can be represented, as a subgroup
of Sp(2n, C) preserving an Hermitian form of signature (2p, 2q) for p + g = n.
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The last group is the quaternionic orthogonal group denoted by O*(2n) =
O(n,H) and it is defined by
0*(2n) = O(n,H) = {M € GL(n,H)| M7” diag,jM = diag, j}
= {M € GL(2n,C) | MTQ,M =Q,}.

Here j is the quaternionic unit represented by pg(j) € ((1) _01) € M(2,C). The
definition of O*(2n) = O(n,H) can be given equivalently as
0*(2n) = O(n,H) = {M € GL(n,H)| M* diag,iM = diag, i}
= {M € GL(n,H) | M"diag,kM = diag, k}.

This is true due to the fact that by conjugation with some h, h € Sp(1) = U(1, H)
we can get hih™' = j and analogously hkh~' = j. The group O*(2n) = O(n, H)
can be viewed as a subgroup of O(2n, C) that preserves an Hermitian form of index
(n,n). Particularly, if n = 1, then one needs to check the condition

S 1 () L O R ()

with A = a 4+ ib, u = ¢ + id. It leads to the solution of the system

—_ d=2>b
Im(Ap) =0 ab+ ; 0 a4+t =1
= ab+ cd = =
N+pr=1 b=d=0.

-+t -d?=1

Thus

</\ _’u):<a _C):a:a—i-ic and a2+02=|04|2:17
wooA c a

and we conclude that O*(2) = U(1).

4. DETERMINATION OF Aut’(n,,(U))
4.1. Integral basis.

Definition 4.1.1. We fix the standard orthonormal basis {zx} for R™*. Then we
call a basis {x;} of the minimal admissible module V,,in, an integral basis with respect
to the orthonormal basis {z}, if it satisfies the conditions that

e the basis {x;} is orthonormal with respect to the admissible scalar product,
o for any z, and x;, there exists a unique x; such that either J, (x;) = z; or
Iy (x;) = —x;.
One way to construct such a basis is given by taking a suitable vector v € E,

s

and choosing an orthonormal basis for V,»* from the vectors
{v,:I:Jzkv,...,j:Jzlisz...Jzklv,...,ileJzQ...J v, 1<k <...<k <r+s}

Zr+4s

The choice of the integral basis is not unique. Nevertheless, once we fix an integral
basis, we denote by 7 the matrix of the admissible scalar product. Thus either
Id, O

0 -—Id,
negative vectors of a fixed integral basis. The construction of an integral basis can
be found in [23].

Recall that J7. is the transposition with respect to an admissible scalar product

and JZ the transposition with respect to the standard Euclidean scalar product.
The relation between two transpositions is given by J = nJ;-C 7.

n = Idy, or n = according to the ordering from positive vectors to
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Lemma 4.1.2. If J] = —J,, in =+Id,:=1,2,3, J.,J.,, = —J.;J.;, 1, = 1,2,3,
i # 7, and nT =n, n? =1d is non-degenerate bi-linear form, then

(L)
(2)

(3.)

(njzi)T = _ngi;
(nJ.,)? = —1d;

— L if J2=1d

Jz-: ;
PET N i 2=-1d

Proof. (1.) We obtain (n.J.,)" = JL " = —n.J., from n.J., = —JIn.

(2.) We consider four cases: Z

(a) Let J2 = —Id and z; an element of the integral basis such that (z;,z;) > 0.
Then nJ.,z; = J.,x; and (n.J.,)*(x;) = nJ2a; = —x;.

(b) Let J2 = —1Id and (zj,x;) <0. Then nJ,,x; = —J.,z; and

(n..)*(x)) = —nJx; = na; = —a;.

(c) Let J2 =1d and (zj,x;) > 0. Then nJ. z; = —J.,z; and

(WJZZ)Q(%) = —nJixj = —nr; = —;.

(d) Let J2 =1Id and (zj,x;) < 0. Then nJ.,z; = J.,z; and

<77J2i>2(xj) = 77']z2ixj =Nr; = —Ij.

(3.) The property n.J.,nJ., = —1Id implies J.,nJ2 = —nJ.,. O

4.2. Description of the procedure of determination of Aut’(n, ,(U)). In this
section, we describe step by step the procedure of determination of Aut®(n, ,(U)).

Step 1. We determine the groups Aut’(n,,(V™*)) for the basic cases (2.5). Ac-
cording to Corollary 3.5.2 it provides the groups for all range of (r,s). Thus, the
next steps are explained only for basic cases.

Step 2. We determine the groups Aut®(n,. ,(V,>* )) for minimal admissible modules.

2.1

2.2

mwn
We find the sets PI, ; of involutions of all types (1)-(5) and their subsets
P}, C Pl,, that are involutions of types (1)-(3). We write P for the opera-
tors from PI,.,. We denote by E;  the common 1-eigenspace of involutions
from P}  and E,, the common 1-eigenspace of involutions from PI, . We
find operators that commute with all involutions from P .. These operators
will leave the space E , invariant. Among these operators we denote by I the
almost complex structure, and by I,J, K the almost quaternion structure,
i.e. the operators satisfying (3.19) and being the product of an even number
of J.,. We use the notation Q for a negative operator Q = J.,J;, such that
Q? = Id. Apart from mentioned operators it could be at most one more, de-
noted by II that is the product of an even number of J, commuting with all

involutions from P} . All these operators will be indicated for each case in ta-
bles. We denote by A an operator on P, such that A®Id € Aut®(n, (V"))
and satisfying (3.8).

We choose an integral basis generated from a vector v € E,.,, (v,v), = 1.
Here we emphasise that E, ; C E’ is the common 1-eigenspace of all types

T8

of involutions from P, ;. The details of the construction of the integral basis
can be found in [24]. The basis of £, will be indicated for each case. We
use the black colour to denote the basis vectors xy such that (zy, 25 )p. =1

and use the red colour for the basis vectors x; such that (x;,z;), = —1.

*
T8
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2.3 In this step we distinguish 6 possible collections of operators I,J, K, Q,I1

(4.1)

on E;  that leave it invariant.

2.3.1 The set E7  has neither complex, quaternion structure, no op-
erator Q. In this case the operator A: E, — E  is real. In the
presence of an operator IT we check the condition (3.8), that we write
in the form:

ATpIT A = n1I.
These are the cases

(r;s) € {(1,0),(0,1),(7,0),(0,7),(8,0), (0,8), (3,4), (4,3), (4,4) }-

2.3.2 The set £, has a complex structure, but neither quaternion
structure, no operator Q. Since A commutes with I we conclude
that A € GL(k,C), where k = dimc(E},). If there is no operator IT
on E7,, then Aut’(n, (V,>)) = GL(k,C). Otherwise we check the
condition (4.1). There are two options: if the map 7 II is complex liner
(nII commutes with I), then

Aut’(n,(V;5)) = Sp(k,C) or - Aut’(n,,o(V7)) 2= U(k).
If the 1 IT is not complex linear, then Aut®(n, (V")) = O(k,C). These
are the cases

(r,s) €{(2,0),(0,2),(6,0),(0,6),(2,4),(4,2),(3,5), (5,3), (7, 1), (1, 7)}.

2.3.3 The set E], has a quaternion structure, and has no operator
Q. Since A commutes with I, J, K we conclude A € GL(k,H), where
k = dimg(E,). All the operators nIT will be quaternion linear and by
checking (4.1), we make the conclusions in the cases

(r7 S) E {(370)7 <O73>7 (47 0)7 (074)7 (5’ 0)7 (07 5)7 (4’ 1)7 (174)7 (57 2)’ (2’ 5)7

(6,1),(1,6),(6,2),(2,6),(6,3),(3,6),(7,2),(2,7)}.

2.3.4 The set E;, has an operator Q and neither has complex no
quaternion structure. In the presence of the operator Q we de-
compose E  into eigenspaces of the involution Q that we denote by
Ni. Thus By, = Ny & N_. Since A commutes with Q, we get
A=A, ®A_, where Ar: Ny — Ni. We check (4.1) and make the
conclusion. Since in this case there are no other conditions on Ay the
group Aut’(n, (V2 )) will be given by the direct product of subgroups

of GL(k,R) with k£ = dim(Ny). These are the cases
(r,s) € {(1,1),(3,3)}.

2.3.5 The set E;, has a complex structure and an operator Q but
does not have a quaternion structure. We start from the decom-
positions B = N, @ N_ and A = A, ® A_. In all these cases we

have QI = —I Q and therefore we define A_ = —IA 1. If it needs, we
check (4.1) on N, and make the conclusions. These are the cases

(rs) €4(2,2),(3,2),(2,3),(2,1),(1,2)}.
2.3.6 The set E; has a quaternion structure and an operator Q. We
start from the decompositions £ = N, @ N_ and A = A, & A_.
The result depends on the situation whether N, carries the complex or
quaternion structure. These are the cases

(r,s) € {(3,1),(1,3),(5,1),(1,5),(7,3),(3,7)}.
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2.4 Having in hands the operator A: E} — EJ ., we can extend it to the operator

A: V2 — V™ The operator A is completely and uniquely determined by

the operator A according to Theorem 3.3.4. To match the notation of the
present description and Theorem 3.3.4 we note that Ef = E' and A = A

in Theorem 3.3.4. The operators G; used for the construction of A are
indicated for all the cases in tables. We emphasise that we present only
some of the operators G, since the extension of A from A does not depend
on the choice of a specific operator G, but only on its existence. The map
A will satisfy (3.8) by Theorem 3.3.4. Thus the group Aut®(n, (V")) is
already defined in steps 2.3.1-2.3.6.

Step 3. We determine the groups Aut”(n, o(V"*)) for arbitrary admissible modules
Vs =@V Tt follows from the following procedure. We decompose the module

V™% into the orthogonal direct sum (3.16) of minimal admissible modules following
the classification of Theorem 3.4.2. We write V"* D E = 7' | ®(E?,),, where

TS
(£ )i € (V)i In each (E7 ), will be chosen a vector vy, with (v, ) ), = £1,
generating an orthonormal basis on (V> );. We draw the attention of the reader to

the fact that (v, v1) ), = 1if (En) € (VD™ (v, ) (g,,), = —Lif (Brs) €

(Vimin 1 and always (v, v ), = 1 for (B, )i € (V5N We write v = @1 =Py, for
the generating vector on E C V"™*. The result for £ C V"* is the direct sum of the
results for (E;,); € (V)i L =1,...,p, that will allow us to make the conclusion
in each case.

We list the final result and then we proceed to consider case by case.

TABLE 3. Groups Aut®(n,(U)

8 GL(p. R)

7 Olp.p) U(p,p) Sp(p.p) | Sp(p,q) x Sp. q)

6] O2p.C) O*(2p) GL(p, H) Sp(p. 9)

5] O*(4p) O*(2p) x O*(2p) O*(2p) Ulp, q)

4| GL(p, H) O*(2p) O(p,C) O, q) GL(p,R)

3 Sp(p,p) U(p,p) O(p.p) | O(p.q) xOp,q9) | OW,p) U(p,p) Sp(p,p) | Sp(p,q) x Sp(p,q)

2| Sp(2,©) Sp(2p,R) GL(2p,R) O(2p. 29) O(2p,C) 0" (2p) GL(p,H) Sp(®. q)

1] Sp(2p,R) | Sp(2p, R) x Sp(2p,R) | Sp(4p,R) U(2p, 29) O"(4p) |07(2p) x O*(2p) | O*(2p) Up.q)

0 Sp(2p,R) Sp(2p, C) Sp(p. ) GL(p, H) O*(2p) O(p,©) O(p.q) GL(p,R)
[T 0o 1] 1 [ 2 ] 3 [ 4 ] 5 [ 6 ] 7 [ 8

In the following sections, we will write the calculation in the order that was
described in steps 2.3.1-2.3.6. We write Jj, for J,, for shortness.

4.3. Modules over R.

4.3.1. dlmR(E:vs) =1: cases ﬂ770(U), ﬂ374(U), ﬂgVO(U), 11474(U), 11078((]).

Ve dim = 8
Ep, + - dim =4
EZ + - + - dim = 2
Ef B - -] - - dim =1

Py = J1J2Juds
Py = J,JsJsJ7

BasisforE{o v P3:J1J3J4J6
Py = J1J2J3
II=J1J2J3

G S| Jr | Je | J5 | Ja| S|y

There are four types of minimal admissible modules:

7707 7707_ 7,07 7,0,—
| AR V4 | ARSI V4

min;+ min;+ min;—’ min;—"
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According to the classification Theorem 3.4.2, we can reduce the consideration to
the non-isotypic (p, ¢)-module

(4.2) U=(&Ve) e (&Vie).

man;+

We consider non-isotypic (p, ¢)-module (4.2) and a vector space E = ( ® (Ez0)7) @
( & (E%o)7), with (Ezo)t C Vit and (Ezy)~ C Vi Note that IT acts as Id

min;+*

on I and n = Id,,. The unique condition that needs to be checked is
A MA=nll < A"1d,,A=1d,,.
We conclude Aut®(n70(U)) = O(p, q).

Structure of the minimal admissible modules and the involutions for nz 4(U) are

similar to n7o(U) and we conclude that Aut’(ns4(U)) = O(p, q) for a non-isotypic
(p, ¢)-module U.

vy dim = 16
E,fl + - dim =8
E; + - + - dim =4
E; + - + - + - + - dim = 2
EY, + B - |+ -]+]-] + -+ -]+ - + -+ - dim =1
Py = J1JyJ3J
Basis for £, v Iij:jijjjijz
Py = J1J3J5J7
G] .]1.]2 ']8 (]7 ]G .]5 .]ng (]1.]4 .]4 .]3 'IIJS Jl.]ﬁ .]1]7 ']1']8 .]2 Jl

The tables for (r,s) € {(0,8),(4,4)} are the same. There are no operator IT
leaving the space F =& B, (r,s) € {(8,0),(0,8),(4,4)}, invariant. This means
that there are no restrictions on the group of automorphisms acting on an admissible

module. We conclude that Aut’(U) = GL(p,R) for U =& VrS* and for (r,s) €
{(8,0),(0,8), (4,4)}.

4.3.2. dlmR(E;S) = 2: cases 11170(U), 1’1071(U),' 1’1077(U), 1’1473(U>.

N0 dim=2 No,1 dim=2
Basis | z;=wv Basis | z;=v
xo = J1v T = J1v

Let U =& VESF In this case A € Aut’(nyo(U)) has to fulfill the relation

AT J A = Jy for J; = diag, ((1] _O ) We conclude Aut’(n; o(U)) = Sp(2p, R)

Let U =@ VOUN - Then ATnJy A = nJy, where n.J; = diag, ( 0 1

q 0). It follows

that Aut®(ng,(U)) = Sp(2p, R) as in the previous case.

Vg; dim = 16
Eﬁl ¥ - dim =8
E;, T _ + - dim =4
Ei T E, ST -+ -T=+7- dim = 2
o — Py = JyJaJ3Jy
Basis for Ej ; Ty = Py = J1JyJ5Jg
- . Py = J1J3JsJ;
vy =JiaJrv || II=J1JoJ;
G, Jr | Je | Js | Ju| s | S| Ny
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We need to check the condition

. 01 . 0 1
(4.3) ATpIMMA =911 — AT diag, (1 0) A = diag, (1 0) )

In the basis y; = x1 + x5 and Yy, = 1 — x5 for Eg, C VOIN condition (4.3) becomes

min

T 5 1 0 L 1 0
A® diag, (O _1>A—dlagp (O _1>.

We conclude that Aut’(ng7(U)) = O(p, p) for U & OTN

min

For the case ny 3(U) the system of involutions and operators are similar to ng 7(U).

We conclude that Aut®(ng3(U)) = O(p, p).

4.4. Modules over C. In this section we first consider the cases when the oper-
ators n Il are complex linear, or in other words they commute with the almost
complex structure I. In this case the group of automorphisms is related to unitary
transformations. The last part of the cases is related to the situations when the
operators 7 Il are not complex linear.

4.4.1. dlm(c(E:;S) =1: cases ﬁ771(U), ﬁ375(U),' n670(U), n274(U).

v dim = 16
Eﬁl + - dim = 8
EL, + - + - dim =4
E% + B -+ -+ - - dim =2
~ « _ Py = Ji1JyJsT5
Basis for £7, | 7y =v Py = JiJyds s
Py = N JsJs5Jz
v — Ty Py = J1JyJ3
zo=Tv ... ... .. = Jy sl
I = JiJ5Js
Gi Js |\ Js | S | Ja| Js | 2| S

We have Bz, = Efi' ® E', with Eff' = span{v} and Ey' = span{Iv}. We let
U= (é Vot @ (é V557, Since n T is complex linear, we need to check
(4.4) ATpIIA=nIl << A{ld,,Ac=1d,,.
Here we used the embedding (3.20) and denoted by Ac the matrix with complex en-
tries such that pc(Ac) = A. It shows that A € U(p, q) and Aut®(n;;(U)) = U(p, q).

The table and calculations for nz 5(U) are analogous to ny;(U) and we conclude
that Auto(n375(U)) = U(p,q) for U = (é V3,5;+) @(é V3,5;7)_

min min

We consider now cases when the operators n Il are not complex linear.

Voo dim =8
E%l + - dim =4
EL +Ey | - |+ - dim =2
P = J1JyJ3Jy
Basis for E§o| mi=v |...].. ] ... Py = J1JoJ5Js
Py = J1J3Js
x9 = In 1=JiJ;
II = J1J3J;
Gr Js | J3 | S
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We have Ej, = Ef; @ Ey with Efj = span{v}, Ef = span{Iv} and A € GL(1,C).

We also have that IIT = —I1I with II = ((1] _01) We obtain
(4.5) ATIIA=T1 <= Tpc(AL) M pe(Ac) =1d.

By making use of (3.21), we conclude that ALA¢ = Id. For an admissible module
U = (& V&™) we obtain Aut(ng,(U)) = O(p, C).

Calculations and the table for ny4(U) are similar to the case ngo(U). Thus
Aut’(n2,4(U)) = O(p, C).

4.4.2. dlm(c(E;‘:S) = 2: cases ﬂ177(U), 11573(U),' 1'1270(U), 1’1072(U),' 1’1076(U), 1’1472(U>.

Vinin dim = 32
E}El ¥ - dim = 16
Ef + - + - dim = 8
EF + Ei R e dim =4
Basis for B}, | 1 =v A I I I IV I P = JyJ3JyJ5
S Py = JyJyJiJ;
x SN IR AR AP P P P R Py = Jodides
1‘3:J1U I:J]J6J7J8
11:I]ll H:J]
Gr Js | Je | Je | s | Ju| Sz | o

First we consider a minimal admissible module. We have A € GL(2,C) and
nII1 = InIl. Thus the complex linear map nII = ((1) _01> is skew-Hermitian.
As it was noticed, from a qualitative point of view, consideration of skew-Hermitian
forms (up to isomorphism) provides no new classical groups, since the multipli-
cation by i renders a skew-Hermitian form Hermitian, and vice versa. The form
inTI is Hermitian of the signature (1,1) and the condition AZinII Ac = inIl
leads to Aut®(ny7(V20N)) = U(1,1). It shows that Aut®(ny-(U)) = U(p,p) for

U= (& VI,

min

The calculations and the table for ns 3(U) are similar to ny 7(U) and we conclude
that Aut’(ns3(U)) = U(p, p).

v dim=4 Vo2 dim = 4
Basis | xy =wv Basis | 1 =0
T = Il’l I= <]1e]2 T = Iv [I= 1]1(]2
I3:J1U H:J1 ,7,'3:,]]7,' H:J1
x4 = Iag ry=1Iv

We make calculations for U = V22", We have A € GL(2,C), IIT = —I1II, and

min

0 1| _go (1 0) (0 —1d
0o of ~2\o -1) \1a, o )
0 O

The condition AT IT A = I is equivalent to

. 1 0 - . 1 0 0 —-1Id 0 —1Id
diag, (0 _1> pc(AL) diag, <0 _1) (Idg 0 2) pc(Ac) = <1d2 0 2) :

O = OO



24 KENRO FURUTANI, IRINA MARKINA

Observation (3.21) implies that
. <$ _01) e G _01) = Aut(ngo(Vo™)) = Sp(2,0).

We obtain that Aut’(ngo(U)) = Sp(2p, C) for U & 20

Let now U :é VTSL;?;N. For the neutral metric  we obtain
0 0 —-10
0 0 0 1
ME==17 9 0 o
0 -1 0 0

Thus by calculations for ATnTI A = nTI as above we get Aut®(ng2(U)) = Sp(2p, C).

VoS dim = 16
Eﬁl + - dim =8
E;Z + Ej6 -+ - dim =4
Basis for Eg =0 i | | Pr= 1 a3y
ZL'QZI'U P2:J1J2,]5J(,'
r3=JiJsJsv | o] I=JJ
Ty :I,’l'3 II = J]J3J5
G Js | Sz |

We start from U = V"5 Note that A € GL(2;C), nIII = —InII and

min*

0 0 -1 0

o 0 o0 (10 [0 Id

=110 0 o0 dlag?(o —1) (1@12 o>'
01 0 0

Therefore,

T o T 0 1 o 01
AnITA=nll <«— A(c(l O)AC_(l 0).

min

. 01
The matrix (1 0

0(1,1,C) = O(2,C). We obtain Aut(ngs(I)) = O(2p,C) for U =& VN

) is symmetric of signature (1,1). Thus Aut®(nge(Vo2N)) =

The calculations and the table for nyo(U) are similar to nge(U) and we conclude
that Aut®(nyo(U)) = O(2p, C).

4.5. Modules over H.

4.5.1. lelH(E;is) = 1. cases ﬂ4’0(U), n074(U), n672(U), n2,6(U), nﬁ,l(U), nl,G(U>;
n5’2(U), n2’5(U), n5’0(U), 111,4(U)7 ﬂ3,0(U), ﬂs,G(U)7 n?,Q(U)'

v dim = 8
EF, +Ej, | - dim = 4
Basis for o | z1=v |...| L= JiJaJsJy
.’L‘Q:IU I:J1J2
rz3=Jv | ... J=JyJ3
$4:KU K:Jgjl
G[ Jl

The table for n0,4(V0’;2) is analogous, with I = J;J5, J = JoJ5, K = J; J3.

m
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oz dim = 32
E%l + - dim = 16
EL, + - + - dim = 8
B, +E, [ -]+ - [+ -1 +7- dim = 4
P = J1JyJdsdy
BasisforEa2 T1=0 | || oo Py= J1JyJs5Jg
Py = J1Jy 7 Js
IZIIU I:J1J2
.I,';;:.]I,' J:J1J3J5J7
Il:K'U K:JQJ;;J5J7
Gr Jr | I | I | s | hds | Sidr | D

The table for ny g is similar. In all 4 cases there are no conditions except of require-
ment to commute with the quaternion structure. We conclude that Aut®(n,o(U)) =

AUtO(HOA(U)) = Auto(n&g(U)) = Auto(ngﬁ(U)) = GL(p7 H)

VoS dim = 16
Ef, + - dim = 8
Egz + By -+ ] - dim =4
Py = JyJsJads
Basis for Efg | 1 =v Py = JyJ3JsJ7
Py = J1J2J3
2o =1Tv I=J1JoJ4Js
x5 =Jv J=JyJs
o s K = JiJ3J4Js
zy=Kv|...|...]... m=J
G[ Jg J4 JQ
— * 3 * 1,6;N
Observe that P; = —Id on E} ¢ according to the agreement that Efg C me; L
. . . . 1.6:N . DL 16N
with the volume form Q!¢ acting as identity on Viin.s- We consider U =& V, 7.

Since n Il = diag,, j and
ATpIIA=nIl <= Afdiag,jAx = diag, ],

we conclude that Aut®(n;6(U)) = O*(2p).

Vo2 dim = 16
Eﬁl + - dim = 8
B, +E5, | - |+ | - dim = 4
P = J1JyJ3Jy
Basis for £, | 1 =v P = J1JyJg 7
' Py = J1J2J5
To = Iv I= J2J3J5J6
r3 = Jv J=JJy
za=Kv|...|...|... E ; j;JdJSJ(’
G Jr | S|

Observe that Py = — Id according to EZ, C Vo | with Q*2 =Id on V2. The

calculations, similar to the case of ny 6(U), shows that Aut®(ns»(U)) = O*(2p).

Vol dim = 16
E, + - dim =8
E%Q + B¢, -+ - dim =4

Py = J1JyJ3dy

Basis for Ef, | 1 =v Py = J1JyJ5Js

Py = JiJsJs
.EZZIU I:J1J2
:I,‘;;*Jl,‘ J:J1J3J5J7
R K = JyJsJsJ;
=Ko |...|...|... M= J

Gi Js | Js | S
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Observe that Ef, = Ef, @ Ep, , with Ef, = span{v, Kv} and E, = span{Iv, Jv}.
We obtain nII = diag, j for U = @V, ™. Thus, Aut’(ne1(U)) = O*(2p).

man

The calculations and the table for ny5(U) are similar to ng;(U) and we conclude
Aut®(ny5(U)) = O*(2p).

vy dim = 8
Ep, + E5y | - dim =4
. . Py = JyJ3JyJs
Basis for 3, | 1 =v P; _ JTJZJ:i
To = Iv e I= J3J4
IgZJ’U J:J3J2
e, K=JJ,
Ty = Kv | ... o= Jl
G[ JE)

Note that Ef, = Ef, ® Ep, with E}, = span{v,Jv} and E, = span{lv, Kv}.
Thus IT = diag, j and we conclude that Aut’(nso(U)) = O*(2p) for U = @pPy 2Ot

min

For the case ny 4(U) we use the quaternion structure I = J3Jy, J = J3Jo, K = JoJy.
The rest of calculations are similar to ns o(U) and we obtain Aut”(n; 4(U)) = O*(2p).

v dim=4
Basis Ty =0 Pl = J1J2J3
ze = Iv I=7.J
z3 = Jv J=JyJ3
K= J3J;
n=Kol g5,

Observe that IT = Q3% = Id. We obtain that ATII A = II is equivalent to
Al1d, , Aw = 1d,,. Thus Aut’(n3o(U)) = Sp(p,q) for U = ( ® Vat) e ( &

min;+
3,0;—
Vmin;+) :
Vi,;ﬁ?z dim = 32
Eﬁl T - dim = 16
E; T - i - dim =8
1253 t B | - Ao - - dim = 1
: — - Py = JiJyJdgJy
Basis for Ejq | o1 =v Py = JyJsJsJy
. P3 = JgJ7J3Jy
To = Iv P4 = JngJg
o I=JgJy
rs=Ju | ..o J = T JuJrJs
- ' K= —J1J4J7J9
24 = Kt R IT = J3JgJg
G, VARARARARRARZARS

We have Ej¢ = Ef, ® Ep, with Ef, = span{v,Iv}, Ep = span{Jv, Kv}. Since
n1I = 1d, ,, we obtain

AT MMA =9Il < Agld,,Ag=1d,,.
So Aut®(n36(U)) = Sp(p, ) for U = ( & VAST) g ( & Va6

min min

The calculation and the table for n;5(U) are similar to the case n36(U) and we
conclude that Aut’(n;5(U)) = Sp(p, q).

4.5.2. dlmH(E;k,S) = 2: cases ﬂoyg(U), ﬂ673<U), 11277(U), ﬂ(]’g,(U), ﬂ471(U).
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Vs dim = 8
Basis T =0
Ty = Iv I= Jgg]l
T3 = Ju J= J3J2
zy = Kv K=/J;3
x5 = J1JoJ3v
re = Las
rr = Jus II=J1J5J3
rg = Kuj

01
10

(4.6) y1 =21+ x5, yo=1Iy,, y3=Jy, ya= Ky,
' ys = 11— 5, Yo = Lys, yr=Jys, ys = Kys,
the operator nII takes the form Id; ;. Thus

0,3

We make calculations on V,  and note that nII = ( ) In the basis

ATnIIA =TI <= ALIdy; Ay =1d;; = A€ Sp(1,1).
We conclude that Aut®(ngs(U)) = Sp(p, p) for U & BN

min

Vﬁ,&

i dim = 64
15 ¥ - dim = 32
EE + - + - dim = 16
EF + Eg§ 5 -+ - + - + | - dim = 8
Basis for Ef 5 T =0 i || P = Jida sy
;1,’2:1’?,' P2:J1J2J5J6
.”L'3:J7) P3:J1J2J7J8
J’,l:K'U I:J1J3J(,'Jg
375:J2J]v]5)l' J:J2J1
TL‘GZIJQJ1J9U K:J2J3J6Jg
we=JLJiJov | ... o] coe || IIT'= Jadhdy
IgZKJgjljgv
Gy Jr | Js | Nds | Js | Jids | Jidr |y

We have that n IT = Id, ; in the basis (4.6). It leads to Aut®(ng3(U)) = Sp(p, p).

The calculations for ny7(U) are similar to ng3(U) and Aut’(ng7(U)) = Sp(p, p).

Vo dim = 16
B + Ejs - dim = 8
Basis for Ef 5 T =0 o | Pr=J1Jydsdy
’ Ty = Iv ce
r3=Jv | ... I=J1J
$4:KU J = 1]1(]3
T5 = J_r)I,' K= J3J2
rve =1Jsv | ...
zr=JJsv | ... II=J;
rs =KJsv | ...
Gy J1

We have nII = (_01 (1)) on Vo2 and nTI = (‘(]) 2) in the basis

(4.7) i =o1+a3— x5 +x7, Yo =1y, y3=Jy1, ya =Ky,
' Ys = To + T4 + 76 — T3, Yo = Lys, yr=Jys, ys = Kys.

It leads to A7y II A = nII that is equivalent to Af; diag, (g) 2) Ay = diag, <-(]) O> _
Thus we showed that Aut’(ng5(U)) = O*(4p).
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In the case ny1(U) we use the quaternion structure I = J1.Jy, J = JyJo, K = Jy Jy.
The rest of calculations are similar to ng5(U). Thus Aut®(ny;(U)) = O*(4p).

4.6. Modules over R caring a negative involution.

4.6.1. Cases ny1(U), n33(U). In these cases there are no complex or quaternion
structures, but only a negative involution Q leaving the space E; invariant. The
involution Q commutes with involutions of type (1)-(3) and therefore decomposes
the space EJ  into its eigenspaces: E; = N, & N_. The admissible scalar product
is degenerate on both N., but the decomposition still orthogonal with respect to
the admissible product. In these cases the determination of Aut’(n, ,(U)) reduces
to the calculations on N..

{7408 dim = 4
Basis T =0
o=Quv |Q=JJy
T3 = J1U
v, =QJv| II=J;

We have VEIN — N @ N_ with the bases

Ty + To T3+ X4 Ty — T2 T3 — Tq
N+=Span{y1= 5 2= },N_ZSPan{ysz 5 Y= }

Since AQ = Q A we can decompose A = A, & A_ such that A.: N — N.. We
have nIIQ = QnII and nII = diag, ((1] _01) in the basis {yx}i_,;. Thus the

condition ATnII A = nII is equivalent to two independent conditions

(0 -1 (0 -1
e )ae-000)
We conclude that Aut®(ny (V.25 Y)) 22 Sp(2, R)xSp(2, R). We obtain Aut®(n; ;(U)) =

min

Sp(2p, R) x Sp(2p, R) for a general admissible module U :é Y LLN,

min

Vs dim = 8
Eﬁl + - dim =4
EL + By | - |+ | - dim = 2
P = J1JyJ5Js
Basis for B3, | mi=v |...|...]... Py = JiJ3JyJs
Py = J,JyJ3
=JiJ
To=Qu|...|...|... IQI:PI';G
Gy Js | S| Js

We have Fj 3 = Eff ® Eyy, with Ejp = span{v}, E = span{Qu}. Thus

) 1+ T
373:N+@N_7 N+zspan{y1: 12 2}7 N_:Span{?JQ: 12 2},

We write AL: Ny — Ni. We have nIIQ = QnlII and nII = Id, in the basis
{yx}, k = 1,2. The condition ATnITI A = nII is equivalent to two independent
conditions ATA. = Id. We conclude Aut®(ngs(V>5%)) =2 O(1) x O(1). We obtain
P . q _

Aut’(ng3(U)) = O(p,q) x O(p, q) for U = (& V") @ (S V™).

4.7. Modules over C, caring a negative involution. In this cases we continue
to consider eigenspaces of the negative involution Q. The complex structure can
preserve eigenspaces of Q or reverse them. It leads to the different results.
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4.7.1. Cases n272(U), 11372(U>, 11273(U), 11172(U).

V22 dim = 8
Eﬁl + B3, - dim = 4
Basis for Ej, Ty =0 .
T2 :IU P] :J1J2J3J4
T3 = .]2-];;'{‘ e I= J]JQ
xy=LLJv | ... Q= JyJs
G[ J3

We have the decomposition £, = N, & N_ with the bases:

(4-8) N, = Spaﬂ{ylle—;x?’, yszQ;m},
xr1 — T3 Lo+ T4
N_ = Span{ygz 5 Y= }

We write A = A, & A_, where A, € GL(2,R), A.: N, — N,. The map
A_: N_ — N_ can be found from the relation A_ = J; oA, J5J;. We conclude that
for minimal admissible module A € GL(2; R). In general Aut®(nyo(U)) = GL(2p, R)

for U =@ V22N,

min

vz dim = 4
Basis T =0
To = Iv I= Jng
T3 = J] le,' Q = J1J2
Ty — I]] ,]2’1,' II = J1J2J3

In this case there are two minimal admissible modules but they are metrically
isotypic and we set IIv = v. We start from a minimal admissible module and
write V22N = N, @ N_. We also write A = A, @ A_, where A, € GL(2;R) and

A_ = JyJ3A J3Jo. We obtain nIlI = (Ig I(ég) in the basis (4.8). The condition
2

T B T {0 Idg (0 Idy
AnITA=nll <<= A+@A_(Id2 0 Ay @A = d, 0

is equivalent to

ATA =1dy = AlhLLA L =1d < A} ((1] _01) Av = G _01)

Thus we conclude that Aut®(ny(V.2%")) = Sp(2,R). For a general admissible

module U =& V2%V we obtain Aut®(ny»(U)) = Sp(2p, R).

man

Vinin dim =8
BT + Ej, - dim =4
asi x _ Py = JyJyJyJs
Basis for B3, | 1 =0 Py = Jous
ro=Iv |... I=J,Js
3=Qu |... Q=J1J4
Ty = IQ vl... H = J3J4J5
Gy J1

We have Ej, = Eff ® Epy, with Ejfj = span{v,Iv} and Ef = span{Qu, QIv},
and nIT = Id in the basis (4.8). As before we decompose A = A, ® A_ on E3, with
A, € GL(2p +2¢q;R) and A = —IA,I. The condition

P . q _
AI Id2p72q A+ = Ide’Qq on U= ( D V3’27+> D ( D V3’2’ )

min min
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leads to the conclusion that Aut”(nso(U)) = O(2p, 2q).

Vf”; dim = 8
E}fl + E54 dim =4
e . o P = J1JyJyJs

Basis for B35 | x1=v Py = J, s

To = Iv I= J4J5

JZT;;ZQI,’ Q:J1J4
zy=1IQu]| ... II = J1J3J5

G[ Jl

Arguing as in the case V> and by making use the basis (4.8), we come to con-

dition
T 1 0 . 1 0 2,3;:N
Al (0 _1) Ay = <O _1> , for Voo

For a general module U —& V3N we conclude that Aut®(ny3(U)) = O(p, p).

min

v dim = 8
Basis T =0
zo = Iv
r3=Qu
,I?]ZIQL‘ I:J1J2
x5 = JiJoJ3v Q =JoJs
re = L1 JoJsv | II = JyJoJ3
T7 = Q J] JQJ3’U
73 =1Q JipJzv

We use the basis

__ Ti+z3 _ X2—T4 _ Tsta7 _ Te—x8
Nh==5 Y2="%55 B=">%5 5 WU="75",
T1—T3 T5—T7 Te+Ts

(4.9)
Ys = =5 Y= "% » Yr=—"5 5 Ys= 9

for Vo™ = Ny @ N_ with Ny = span{y;, y2, y3, ya}, N— = span{ys, ys, y7, ys}. We
write A = A, & A_ with A, € GL(4;R) and A_ = J;J2A, JoJ; in the basis (4.9).

Then
(0 S : _ 0 Idy
nH-(S 0) with S__<Id2 O)'

Thus we need to check the condition

00 0 1
ATSA =8 = ATSTJA. = SJJ, with Shh=| 2 O —1 0
+ — +12+ 1J2 1J2 0100

10 0 0

Finally, we conclude that Aut®(ny;(U)) = Sp(4p, R).
4.8. Modules over H caring a negative involution.

4.8.1. C(LSGS ﬂ173(U), 11371(U), 11175(U), 11571(U), 11773(U)7 11377(U),

anl’i dim =8
Basis T =0
To = Tv P = J1JZJ3
r3 = Jv
x4 = Kv I=1JyJ5
I5 = ,]4’1,‘ J = J3J4
e =1Jyw | K= JyJy
Ty = J,]q'l' Q = J1J2
rg = KJyv II=
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We choose Pjv = v and the basis for V;L’;;N =N, ® N_:

T+ Ty Ty — Ty T4 + Tg To — Tg
N+:Span{y1: 5 =T B = }7

(4'10) Tr1 — Tr [ Ty — Tg X9 + Xg
N-=Span{y5= g oYW= = = }

Since AQ = QA and QI = —1Q we write A = A, ® A_, where A, € GL(4;R)
and A_ = JoJ3A, J3 5. Since QJ = J Q we deduce that Ay € GL(2;C). Moreover

(4.11) Ny =span{y;, v =Jy, ys=ys, ya=Jys}.
We also have nIIQ = QnII, nIIJ = JnII with the matrix nII |y, = (? (l)>
It leads to
— (0 1 0 1
Alyta, —nm = TR (] ) ane= (1 ).

The matrix (0 1) is Hermitian of index (1, 1). We conclude that Aut®(ny 5(V,/3V))

1 0
U(1,1) and Aut®(ny5(U)) = U(p, p) for U =B VL3N,

31 dim = 8

Basis T =v
29 =Iv Py = Ji1JyJs
r3=Jv
z, = Ko I=/J;3
r5 = Jyv J=JJs
Te — IJ47' K= J1J3

T = JJ,1(,‘ Q = J5J4

rs = KJyv II=J,

We have Vo = Ef & Ep, with

E;Fl = span{v,Iv,Jv, Kv}, FEp = span{Jyv, LUy, JJy0, KJyv}.

The negative involution Q decomposes Vit = N, @ N_ with the basis given
by (4.10). Since AQ = QA and QI = —IQ we write A = A, & A_, where
A, € GL(4;R) and A_ = —IA, 1. The condition QJ = J Q implies A, € GL(2;C).

We also have nITQ = QnII and nIT1J = JnII with nII|y, = diag, ((1) _01> in
the basis (4.11). It leads to
AITA, =T <= (AE(AL)e =1d;.
The conclusion is that Aut®(ns;(V>5%)) =2 U(2) and Aut®(ns, (U)) = U(2p, 2q) for
_ (B 3Lt 1135
U=(@Vy " )Ye (@ V).

min
Vol dim = 16
E;, TE, |- dim =8
Basis for £, =0 | Pr=J1dadsdy
To = Iv N P2 = .]1172(]5
rs=Jv | ...
zy=Kv |... I=J1J3
T5=JgU |... J=JJ
re=1Jgv | ... K= JsJ,
rr=JdJgv | ... Q=Js5Js
w=KJgv|... II=Js
G[ (]1
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We have E | = Ef, @ Ep, , with
E}% = span{v, Ju, LJsv, KJsv}, FEp = span{Jsv,Iv,JJsv,Kv, }.

The negative involution Q decomposes E5; into two eigenspaces E5; = N & N_
with the bases

4 s I T2 + Xg T3 — Ty Ty — Tg
NJr:Span{yl: 9 y Yo = 2 y Yz = 9 y Ya = 9 }7

(4'12) Tr1 — Tr Ty — Tg T3 — Ts Ty + Tg
N—=Span{y5= 5 Y= =5 = }

Since AQ = QA and QI = 1Q, QJ = JQ we write A = A, & A_, where
A, € GL(1;H). Moreover

(4.13) Ny =span{y;, vo=1Iyi, ys=1us, va=1lys}.

We also have nI1Q = QnII, nIII =1Inll, nI1J = JnII. Thus nII is quaternion
linear and n Il |y, = j, written in the basis (4.13). It leads to

ATnT AL =9y, < (A)Lji(AD)m =]

The conclusion is that Aut®(ns;(V25N)) = 0*(2) x 0*(2) and Aut’(ns,(U)) =

min
p .
0*(2p) x O*(2p) for U =@ V21N,
Ve dim = 16
Eﬁl + Ei 5 - dim = 8
Basis for £} 5 T =0 v | P = Jod3JyJs
' ,’L'QZIZ} PQ:J1J2J3
T3y = Ju ..
Ty = Kv N I= J3J4
T5 = J(;I' J= J2J3
rg=1Jgv | ... K=J,Jo
T = J‘]()"l,‘ N Q = J1J6
s =KJgv|... II=Js
G Js

With the chosen operators I,J, Q, IT the calculations are identical to the case of
ns1 and we conclude that Aut®(n; 5(U)) = O*(2p) x O*(2p) for U =& VLN,

min

v dim = 64
1553 ¥ - dim = 32
B} + - + - dim = 16
E% + E7 -+ -+ - + | - dim = 8
Basis for E% T =0 e | | Pr=J1 oy s
.’L‘QZIU P2:J1J2J0J7
xg = Ju i | | P = J1dadgdy
;L’4ZKU P4:J1J2J3
fI,’:,:Jml,' I:J1JQ
Te = I-]l()l,' RSN N N RN L d= J1J4J()'Jg
I7:JJ1()’U K:JZJ4J6J8
178:KJ]0’U - . ?I:j;?l’;[]o
G[ Jg J(j =]1J4 =]4 (]lc]ﬁ J]Jg Jl

Observe that E 5 = Ef, & Ep, , with

E;.a = span{v, Iv, J Jiov, KJyv}, Ep, = span{Jiov, IJipv, Jv, Kv}.
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We start from the minimal admissible module. The negative involution Q decom-
poses E7 5 into two eigenspaces E7 4 = N, @ N_ with the bases

T1 + Te X9 — Tp Ty + X7 Ty — T3
N+:Span{y1= 9 y Yo = 2 , Ys = 9 y Yo = 2 }7

(4.14) T1 — T Ty + x5 T — T4 T8 + a3
N_:Span{y5: 5 Y= = = }

Since AQ = QA and QI = 1Q, QJ = JQ we write A = A, & A_, where
Ay € GL(1;H). Moreover
(4.15) Ny =span{y;, =y, ys=ys ya=1Iys}
We also have nI1 Q = QnII, nIII = InIl, nIIJ = —JnII with (771'1 ’Ni)(C =ild,,
written in the basis (4.15). It leads to

Ai?’]HAi = 7’]H |N+ < (Ai)% IdQ(A:t)(C = Idg .
Vet s

mwn

Thus we conclude Aut’(n;, 3( )) = Sp(1) x Sp(1) for a minimal admissible

module. If U = (EB VISt o (GB Vo%57) then Aut®(n;3(U)) = Sp(p, ¢) x Sp(p, q).

mn man

The calculations and the table for n3 7(U) are identical to n; 3(U ) and we conclude
that Aut®(ny,7(U)) 2 Sp(p, q) x Sp(p, q) for U = (& VEIT) @ (& V),

m'm mzn
5. APPENDIX

5.1. Comparison of Aut’(n,,(U)) for isomorphic algebras. Cases n;o(U),
n9,1(V); n20(U), no2(V); n51(U), nys(V).

Mo(B VAST) 22 g (B VIEY), oo VADT) & nga(d VOEY)
51 (6 VEEN) 2 ny (& V2N
Auto(nm(U)) = Aut()(n()’l(V)) = Sp(2p7 R), Auto(l’lgvo(U)) = AU.)CO(UO’Q(V)) = Sp(2p, (C),
Auto(nl,g,(U)) = Auto(n571(V)) = O*(Qp) X O*(2p)

Cases 1140(‘/), No4 (U); “2,6(U), ﬂ6,2(v); ns,o(U), ﬂo,s(v), n4,4(W); n1,6<U)a
n6.1(U); na5(U), n52(V).

nao(® Vi) 2 moa(@ V™), mae(@ V2SY) 2 nea(d Vo)

ny (B VESN) 2 g (& VOEN), N5 (B V2EN) 2 ng o (& VIEN)
ngo(@v D) o (@ YOSty oy, (ea VA

Aut®(ngo(V)) = Auto(:(:Z(U)) Auto(:;;(U)):Auto(:;(V):GL(p,H);
Aut®(n, 6(U)) = Aut®(ne1 (V) = Aut0<n25(U)):Aut()(nm(v»:o*(zp).

Aut” (ngo(U)) = Aut’ (ngs(V)) = Aut’ (ngs(W)) = GL(p, R).

2

Cases t15,0((]), 11075(‘/); n174(U), n471(V); nﬁ,O(U)a ﬂo,G(U); n2,4(U), n472(U);
ny2(U), na1(U) Here we have that

N5.0( VEOH) 2 g (B VOINY (@ VA o, (& pAL)

min min mwn mwn

2
Noo( VOOH) & ng (& VOSNY -y (@ VR o (B pABNy

mn mn man mwn
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2p . P .
nl,Q(@ Vl,?,N) ~ n271(@ ‘/2,'171\/')7

mwn mwn

We also showed

Aut? (ns o & Voo ) = 0%(2p) and Auto(n05(@ VOSNY) & 0% (4p),

Aut’ (ny, 4( O VEh )) = 0*(2p) and Aut’(ny 1( @ VELNY) =~ 0*(4 )
Aut? (ng (& V0T = O( p,C) and  Aut® (ngg(b VOEN)) 2 O(2p, C
Aut” (n 4( SV2EN)) 20(p,C) and  Aut’ (n42(@ VA2NY) >~ O(2p, C
Aut®(ny »(& Vi) = SP(QP, (C) and  Aut (ny1 (& V2EV)) = Sp(dp, ).

CASES nzo(V), no3(U); n70(U), no7(V); n34(U), nys(V).
noa (Vo) Zmgo (S VIRL) @ (S VL)),
oz (B V) 2 e (B VIS @ (& VI0).
(@ V) =g (S Vi) @ (S vEiD)),
Aut’(ngs( @ VngzzizN) Sp(p,p), Aut (“30<( S5 megli)@(@ Viﬁ@)) = Sp(p, q),
Aut(ng- (& VOIN) = Aut®(nys (6 VEEY) = O(p, p),

mut(nno (B VIS (B V05)) 2 Awtimga( B V25 ( £ 13285)) 2 O.0)

m7(® V™) 2 e, (B V) @ (6 Vi)

(D V™) 2 a5 (B VIR @ (B VD))

(B VA a8 VIR @ (B Vi),

(& VEEY) 2 ngo (5 VI @ (B VD)),
p

Aut® (ns5( VEEY)) 2 Aut® (ny1(B ViEY)) = Up,p)
Aut®(ng, (& VIED) @ (@ Vi) 2 Aut®(na5( & VAT @ (6 VEE)) 2 Ulp. ).
Aut® (n27(& VAEY)) 2 Aut® (ng (@ VEEY)) = Sp(p, p),
Aut®(nro (& VIED) @ (6 V7)) 2 Aut®(nge (& VST @ (6 V57)) 2 Sp(p, ).

min min

Cases n;3(U), n31(V); na3(U), n32(V); n37(U), nz3(V). In all these cases the
pairs of the Lie algebras are not isomorphic for any choice of admissible modules.

We have
Aut’(ny3(U)) = U(p,p),  Aut’(ng;(V)) = U(2p, 2¢);
Aut’(ny3(U)) = O(p,p),  Aut’(nga(V)) = O(2p, 29);
Aut’(n37(U)) =2 Aut®(n7 3(V)) = Sp(p, q) x Sp(p, q).
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5.2. Some isomorphisms. In the work [24, Theorem 11] it was shown the existence
of an isomorphism 1, 7(USFY) 22 ng 1 (V5 @V 0E5). The proof was not constructive
and did not show how the metric changes under the isomorphism. Therefore we
propose here the constructive proof of ny 7(UNTN) = ny ((VIET @ V7). We will

construct the isomorphism only for minimal dimensional module. Thus we choose
the basis (z1, ..., 23)

(226 )1, =1, k=1,...,7, (2s,28),,=1 for RY7.
vi=u, yp=ly, ys=JoJu Loy, ya=lys = Joy for EVT CUY
with (u,u )z = 1 and the complex structure I = J,, J,, J.. J.,. We also choose the
basis (wy,...,ws)

_ _ _ 7.1
(wr,w )y =1, k=1,...,7, (ws,wg);; =—1 for R".
r1 =01, o =Ir; =Ty, 3= JuyJuJuw, V2, x4=1r3=—JyuV2
5 T 7717 7’11_ 1
for E7’1’+ D E7’1’ C me+ D me with <Ul, () >E7,1;+1 = — <U2, (%) >E7,1;+1 =
le sz Jw7 le JwQJw7

ot

1 and the complex structure I= Jwy Sy Jwr Juws-  According to [24, Corollary
Theorem 3] we define C: RY — R”! by C(z;,) = wy, and C™(wy) = —2, k
1,...,8. The complex structure I will correspond the complex structure I.

We define A: EVTN — ETOLT @ BT~ by setting

4

4
A?ﬂ = Z Ay Lo, Ay3 - Z bmxm
m=1

m=1

Using the properties AI = IA we deduce that

(N i 77 _ (0 —i iy _(—t 0
A(C - ()\2 M2> y N st —\=i 0 ) n st - 0 il

We need to check the condition
(=1 0 0 1
ATt Jp A= -t J,, = AL ( 0 1) Ac = (1 0)
It leads to finding the solution of the system

—[Aif 4+ A2 =0 .
2 2 _)\1 = )‘2 =
—lpm P+ pof* = 0 7 V=1
=i + Aofie = 1.
As we see the Lie algebras ny 7(V.55Y) and ny; (V25T @ VU™ are isomorphic.
The isomorphism is extended to any modules and the algebras n177(é VWlL;ZZN) and
ny ((é Vit @ (é V.5:57)). Analogously we can show
p : p ‘ p _
N2 (B Vi) 27 (8 Vi D) @ (8 Vi 7)),
PO L3Ny A P30+ P30 _
nl’?’(@ Vm”"b ) o '[1371((@ Vmin ) D (EB Vmin ))7 [ = 57 67
p : p , P o
noa( Vi) 2o (S Vi) @ (S Vi), 1=3.7.

nas( Vi) 2 g (B VIR @ (S V).
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