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Abstract

This is a detailed exposition of recent work by ABE noriyuki on Soergel bimodules and their action on
the principal blocks of G1T for reductive algebraic groups G in positive characteristic.

This is a sequel to my lecture note [K19], an introduction to [RW18]. In order to describe
the irreducible characters of reductive algebraic groups in positive characteristic p, Lusztig [L]
conjectured that they should be given in terms of the Kazhdan-Lusztig polynomials of the
associated ງ-Heckeؠ algebra. Although the conjecture holds for large p, Williamson [W] has
recently found its failure for not so small p against the expectation for a long time.

In the monumental monograph [RW18] Riche and Williamson defined an action of the Elias-
Williamson category D [EW16] on the pricipal block of the algebraic representations of the gen-
eral linear group GLn(k) over an algebraically closed field k of characteristic p > n, and showed
that the character formulae for the indecomposable tilting modules for GLn(k) are described
by the p-Kazhdan-Lusztig basis of the associated ງ-Heckeؠ algebra. Assuming the existence
of an action of D on the principal blocks for reductive algebraic groups in general, moreover,
[RW18] obtained character formulae of the indecomposable tilting modules likewise,from which
the formulae for irreducibles would follow. Subsequently, using geometry, without invoking the
action of D, Achar, Makisumi, Riche, and Williamson [AMRW] obtained the characters of the
indecmposable tilting modules for reductive groups in terms of the p-Kazhdan-Lusztig polyno-
mials by for p > h the Coxeter number of G, from which the irreducible characters can now
be obtained thanks to Sobaje [Sob] by an elementary algorithm though not entirely in terms
of the p-Kazhdan-Lusztig polynomials.

When I was finishing up an ealier version of [K19], [Ab19a] appeared and, soon after, [Ab19b].
In [K19] I gave an action of D on the pricipal block of the representations of G1T , G1 the
Frobenius kernel of and T a maximal torus of GLn(k). The Elias-Williamson category D is
a diagrammatic categorification of the ງ-Heckeؠ algebra H for any Coxeter system (W ,S),
and is equivalent to the category of Soergel bimodules. In [Ab19a] Abe gives in the classical
language of algebras and combinatorics his version of Soergel bimodules which categorifies H.

Let G be a reductive algebraic group over an algebraically closed field k of characteristic
p > h. For G1T -modules a guiding object is Lusztig’s periodic module [L80] in place of the
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anti-sphereical module [RW18] for G-modules. Let W denote the affine Weyl group of G and
Rep0(G1T ) the category of G1T -modules whose composition factors all have highest weights in
the W-orbit of 0, denoted L̂(x • 0), x ∈ W , x • 0 = pxρp − ρ, ρ = 1

2

∑
α∈∆+ α, ∆+ a positive

system of the roots of G. It contains the principal block of G1T [J, II.9.19]. The knowledge of
the characters of all L̂(x • 0) gives the entire irreducible characters for G by Curtis’ theorem,
Steinberg’s tensor product theorem and the translation principle. Let ∆̂(x • 0), x ∈W , denote
the G1T -Verma module of highest weight x • 0, denoted Ẑ1(x • 0) in [J, II.9.1]. Those G1T -
Verma modules uniformly have dimension p|∆

+| [J, II.9.2], and live in Rep0(G1T ) [J, II.9.15]. As
their characters are known [J, II.9.2] and as the matrix of the multiplicities [∆̂(x • 0) : L̂(y • 0)]
of L̂(y • 0) in a composition series of ∆̂(x • 0) is unipotent, those multiplicities will yield the
characters of L̂(y • 0). Let Rep′

0(G1T ) denote the full subcategory of Rep0(G1T ) consisting of
those that admit a filtration, called a ∆̂-flag, whose subquotients are all of the form ∆̂(x • 0),
x ∈ W . Tilting modules for G1T are injectives; an injective G1T -module is also projective [J,
II.9.4], admits a ∆̂-filtration, and also a filtration whose subquotients are all dual G1T -Verma
modules [J, II.11.4]. Let Q̂(x•0) be the G1T -injective hull of L̂(x•0), which is also its projective
cover [J, II.11.5]. Then the multiplicity (Q̂(x•0) : ∆̂(y•0)) of ∆̂(y•0), y ∈W , in a ∆̂-filtration
of Q̂(x • 0) is equal [J, II.11.4, 9.9] to

[∆̂(y • 0) : L̂(x • 0)] = dimG1TMod(∆̂(y • 0), Q̂(x • 0)).

Thus, we may focus our study on Rep′
0(G1T ). Let [Rep

′
0(G1T )] denote the Grothendieck group

of Rep′
0(G1T ), a completion of which gives the Grothendieck group of the whole of Rep0(G1T ).

Letting Z[W ] denote the group algebra of W , one has an isomorphism of abelian groups

Z[W ]→ [Rep′
0(G1T )] via x $→ [∆̂(x • 0)], x ∈W ,(1)

under which the right multiplication by s+ 1, s ∈ S the set of distinguished generators of W ,
on the LHS is given by the wall-crossing functor Θs on the RHS [J, II.9.22]. Now, consider a
quantization of Z[W ] by ງ-Heckeؠ algebra H over the Laurent polynomial ring Z[v, v−1]. If
we let (Hx|x ∈W) denote the standard basis of H after [S97], ∀s ∈ S,

Hx(Hs + v) =

{
Hxs + vHx if xs > x,

Hxs + v−1Hx else.

Thus, the isomorphism (1) allows H to act on [Rep′
0(G1T )] by specialization v ! 1, and hence

Hs + v specializing to Θs ∀s ∈ S. Let (Hx|x ∈ W) denote the Kazhdan-Lusztig basis of H
and write Hx =

∑
y∈W hy,xHy, hy,x ∈ Z[v, v−1]. The hx,y are the celebrated Kazhdan-Lusztig

polynomials. Let W res = {w ∈W|⟨w • 0,α∨⟩ ∈]0, p[ ∀α ∈ ∆+ simple}. Lusztig’s conjecture for
G1T may be phrased to assert that, ∀w ∈W res, ∀x ∈W ,

(Q̂(w0w • 0) : ∆̂(x • 0)) = hx,w0w(1),

where w0 ∈ W is such that w0∆+ = −∆+. Let now A be the set of alcoves, which are the
connected components of (X ⊗Z R) \ ∪α∈∆+,n∈Z{ν ∈ X ⊗Z R|⟨ν,α∨⟩ = n}. If A+ ∈ A is the
alcove containing ρ

p , there is a bijection W → A via x $→ xA+, x ∈ W , under which import

the left and the right regular actions of W onto A. Then the free Z[v, v−1]-module P of basis
A is isomorphic to H via Hx $→ xA+, x ∈ W , and comes equipped with a structure of right
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H-module transferring the right regular action of W , which is Lusztig’s periodic module for H.
In [Ab19b] he categorifies P to admit an action of Soergel bimodules, inducing an action on
Rep0(G1T ) compatible with the wall-crossing functors.

Given a Coxeter system (W ,S), Soergel’s original bimodules are defined over the symmetric
algebra of a reflection faithful linear representation of W , to categorify the ງ-Heckeؠ algebra
of (W ,S) [S92], [S07]. As the reflection faithfulness is hard to come by in positive characteristic,
Elias and Williamson [EW16] start with a much less restrictive representation of W , and Abe
follows suit. In order to maintain some sort of faithfulness of the representation, Abe’s version
of Soegel bimodules [Ab19a] comes with a condition that they split into “weight spaces” with
respect to W over the fractional field of the symmetric algebra started out with. They may in
fact be defined over the symmetric algebra localized by the roots.

Back to G, Abe’s category K̃′ [Ab19b] of bimodules categorifying Lusztig’s periodic module
P are bimodules over the symmetric algebra S of the coweight lattice of G over k by base
change. The bimodules split into the “weight spaces” with respect to the affine Weyl group
W of G over the localization of the symmetric algebra by the coroots. As the alcoves are in
bijective correspondence with W , the decomposition may be parametrized by A, recording the
linkage principle for G [J, II.6]. The right S-module structure on bimodules in K̃′ is designed
to admit an action of his version SB of Soergel bimodules associated to (W ,S). As the action
of W on the coweight lattice is not linear, however, he annihilates the translations, losing the
faithfulness of the representation byW . The eventual import of theSB-action onto Rep0(G1T )
is performed on the projectives through the Andersen-Jantzen-Soergel combinatorial category
[AJS] in the style of Fiebig [F11] such that the actions of the indecomposables in SB associated
to S are compatible with the corresponding wall-crossing translation functors. For that end,
conditions (S), (LE), (ES) from Fiebig [F08a], [F08b] and Fiebig+Lanini [FL15] are imposed
on K̃′ to define a subcategory K̃P of projectives, (S) standing for “sheafification”, and (ES) for
“exact structure” in Fiebig’s theory of sheaves on moment graphs. The properties (S) and (LE)
allow gluing the SL2-theory. Finally, an ideal quotient KP of K̃P gives a desired equivalence
with the projectives of Rep0(G1T ) deformed over the completion of the symmetric algebra S.
The categories K̃′, K̃P ,KP ,SG are all graded, and the work is fruit of graded reprensentation
theory. There is also a version for singular Soergel bimodules [Ab20].

By now there is a formula available for the irreducibles of Rep0(G1T ) for reductive groups in
general in terms of p-Kazhdan-Lusztig polynomials for p > 2h−1, due to Riche and Williamson
[RW19] without invoking an action by the Soergel bimodules on the principal block. Abe’s
bimodules, however, certainly provide more algebraic insight to the representation theory of
G1T . The indecomposable projective of K̃, corresponding to Q̂(w0 •0), is obtained by applying
the indecomposable Soergel bimodule associated to w0 on the rank 1 standard bimodule of
K̃ corresponding to ∆̂(w0 • 0). All the other projectives of K̃ are obtained by applying SB
further on the seminal projective indecomposable, translations, degree shift, and taking direct
summands. It is now desired that the indecomposable projective G1T -modules Q̂(x • 0) be
described concretely by the action of SB and that the properties of the characters of the
indecomposables of SB, the p-Kazhdan-Lusztig basis of H in the present sense, to be clarified.

I am very much grateful to Abe for patiently explaining his work. Though Abe writes very
well, it will be of my pleasure if this may be of any further help.
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I. Soergel bimodules

Throughout the chapter (W ,S) will denote a Coxeter system with |S| < ∞, and K a
noetherian domain; we will impose additional conditions on K as we move along. Specifically,
we impose a mild condition in (3.4). From §4 on we will assume that K is local, so that a direct
summand of a free R-module remains free, R a polynomial ring defined at the outset in (1.1).
From §6 on we assume that K is a complete noetherian local domain, so that our categories
are Krull-Schmidt. In §6 we impose the GKM condition on V , V introduced in (1.1). §7 is an
exposition of [S92] and we assume that K is an infinite field and the characteristic of K is not
a torsion prime so that Demazure’s result [Dem] holds, and in addition that 2 ̸= 0 in K and
also 3 ̸= 0 if type G2 is involved as a component. In §§8 and 9 we assume that K is a complete
DVR under the characteristic restrictions from §7.

The length function on (W ,S) is denoted by ℓ, and the Chevalley-Bruhat order by ≥. By
a graded module we will always mean a Z-graded module. If M is one, M i, i ∈ Z, will denote
the i-th homogeneous piece of M . In particular, 0 ∈ M i. For n ∈ Z we let M(n) denote M
with the grading shifted by n such that M(n)i = M i+n ∀i ∈ Z.

1. Basic set-up

1.1. After [EW16], let (V, {αs|s ∈ S}, {α∨
s |s ∈ S}) be a triple of a free K-module V of finite

rank with a K-linear action of W , αs ∈ V , α∨
s ∈ V ∨ = ModK(V,K), such that ∀s ∈ S,

(i) ⟨αs,α∨
s ⟩ = 2,

(ii) s(v) = v − ⟨v,α∨
s ⟩αs ∀v ∈ V ,

(iii) α∨
s : V " K and αs ̸= 0; a priori K may be of characteristic 2.

We let W act on V ∨ contragrediently: fw = f(w−1?) ∀f ∈ V ∨, w ∈W .

Let R = SK(V ) the symmetric algebra of V and Q = Frac(R) the field of fractions of R. We
endow R with a structure of graded algebra with deg(V ) = 2. We call t ∈ W a reflection iff
t ∈ ∪w∈WwSw−1, and put T = ∪w∈WwSw−1.

Lemma: (i) If s, r ∈ S with r = xsx−1 for some x ∈W, αr ∈ K×xαs.

(ii) If t = wsw−1 ∈ T , w ∈ W, s ∈ S, wαs is independent of the choices of w and s up to
K×.

(iii) ∀t ∈ T , we choose w and s such that t = wsw−1 and define αt = wαs up to K×. With
α∨
t = wα∨

s = α∨
s (w

−1?), one has ∀v ∈ V ,

tv = v − ⟨v,α∨
t ⟩αt.

Proof: (i) By (iii) take δ ∈ V with ⟨δ,α∨
s ⟩ = 1. Then sδ = δ − ⟨δ,α∨

s ⟩αs = δ − αs, and hence

xδ − ⟨xδ,α∨
r ⟩αr = rxδ = xsx−1xδ = xsδ = x(δ − αs) = xδ − xαs.
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Thus, xαs = ζαr with ζ = ⟨xδ,α∨
r ⟩ ∈ K. In turn, as s = x−1rx, there is some ζ ′ ∈ K such that

x−1αr = ζ ′αs. Then ζ ′ζαr = ζ ′xαs = αr. As V is free over K, we must have ζ ′ζ = 1 by (i).
Thus, αr = ζ−1xαs ∈ K×xαs.

(ii) Assume wsw−1 = yry−1 for some r ∈ S and y ∈ W . Then r = y−1ws(y−1w)−1, and
hence αr ∈ K×y−1wαs by (i). Thus, yαs ∈ K×wαs.

(iii) One has

tv = wsw−1v = w(w−1v − ⟨w−1,α∨
s ⟩αs) = v − ⟨w−1v,α∨

s ⟩wαs

= v − ⟨v, wα∨
s ⟩wαs by definition of the W-action on V ∨

= v − ⟨v,α∨
t ⟩αt.

1.2. Let C ′ be the category of graded R-bimodules M with Q⊗RM admitting a decomposition
Q⊗R M =

∐
w∈W MQ

w as a (Q,R)-bimodule such that

(i) {w ∈W|MQ
w ̸= 0} is finite,

(ii) ∀a ∈ R, ∀m ∈MQ
w , ma = (wa)m.

Thus, if the actions of x and y on V coincide, for distinct x, y ∈ W , MQ
x and MQ

y are sep-
arated. A morphism φ ∈ C ′(M,N) is a homomorphism of graded R-bimodules such that
(Q⊗R φ)(MQ

w ) ≤ NQ
w ∀w ∈W . Put C ′♯(M,N) =

∐
n∈Z C ′(M,N(n)). We will often abbreviate

Q⊗R M and Q⊗R φ as MQ and φQ, resp.

Remarks: (i) The right action by a ∈ R \ 0 on each MQ
w , w ∈ W , is invertible; as wa ̸= 0,

m = 1
wa(ma) ∀m ∈ MQ

w . Thus, ?a is invertible on the whole of Q ⊗R M , and Q ⊗R M comes
equipped with a structure of Q-bimodules; m 1

a = 1
wam if m ∈ MQ

w . Then the decomposition
Q⊗R M =

∐
w∈W MQ

w holds as a Q-bimodules.

(ii) If the action ofW on V is not faithful,MQ
x andMQ

y for distinct x, y ∈W are distinguished
by definition. Assume now that W acts faithfully on V . Then ∀M ∈ C ′, ∀w ∈W ,

MQ
w = {m ∈ Q⊗R M |ma = (wa)m ∀a ∈ R},

and C ′ forms a full subcategory of the category RBimodgr of graded R-bimodules. For by
definition LHS ⊆ RHS. Let m ∈ RHS and write m =

∑
x∈W mx with mx ∈MQ

x . Thus, ∀a ∈ V ,∑
x(xa)mx = ma = (wa)m =

∑
x(wa)mx. If mx ̸= 0, xa = wa as MQ is a Q-linear space with

Q a field. Then x = w by the hypothesis.

Let N ∈ C ′ and let φ ∈ RBimod(M,N). Let m ∈MQ
w and write φQ(m) =

∑
x φ

Q(m)x with
φQ(m)x ∈ NQ

x . Then ∀a ∈ R,
∑

x

(xa)φQ(m)x = φQ(m)a = φQ(ma) = φQ((wa)m) = (wa)
∑

x

φQ(m)x.

If φQ(m)x ̸= 0, xa = wa, and hence x = w. Thus, φQ(m) ∈ NQ
w .

(iii) If we equip C ′(M,N) with a structure of R-bimodule via (aφb)(m) = φ(amb) = aφ(m)b,
a, b ∈ R,φ ∈ C ′(M,N), C ′ forms an R-bilinear additive category [தԬ, Def. 3.1.11, p. 124, Def.

5



3.2.3, p. 130]. Given φ ∈ C ′(M,N), let K be the kernel of φ as graded R-bimodules. By flat
extension one has K∅ = ker(φ∅) =

∐
x∈W ker(φ∅

x):

K M N

∐
x∈W ker(φ∅

x)
∐

x∈W M∅
x

∐
x∈W N∅

x .

φ

∐
x∈W φ∅x

Thus, K ↪→ M gives the kernel of φ in C ′. In particular, C ′(S0) is Karoubian/idempotent
complete [தԬ, Def. 3.3.40, p. 174].

1.3. Let now Ctf denote a full subcategory of C ′ consisting of the torsion-free left R-modules
that are also of finite type as R-bimodules. Thus, ∀M ∈ Ctf ,

(1)
M

R⊗R M Q⊗R M,
≀

and hence

M is torsion-free also as a right R-module.(2)

For if m ∈M \ 0 and a ∈ R with ma = 0, writing m =
∑

x mx in MQ with mx ∈MQ
x ,

0 = ma =
∑

x

(xa)mx.

If mx ̸= 0, xa = 0, and hence 0 = x−1(xa) = a.

One has an isomorphism of R-bimodules

M ⊗R Q→MQ via m⊗ a

b
$→ (1⊗m)

a

b
=

∑

w∈W

wa

wb
mw,(3)

where 1 ⊗m =
∑

w∈W mw with mw ∈ MQ
w . For the map is well-defined by Rmk. 1.2.(i). One

has

∑

finite

mi ⊗
ai
bi

=
∑

miai ⊗
1

bi
=

∑
miai ⊗

b

bi

1

b
with b =

∏
bi

=
∑

mi
aib

bi
⊗ 1

b
,

and hence any element of M ⊗R Q is of the form m⊗ 1
b . If (1⊗m)1b = 0, 1⊗m = 0, and hence
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m = 0 as M ↪→MQ. Thus, the map is injective. To see its surjectivity, one has

1

a
⊗m =

∑

w∈I

1

a
mw for some finite I by definition (1.2.i)

=
∑

w∈I

mw
1

w−1a
=

∑

w∈I

mw
a′

w−1a

1

a′
with a′ =

∏

w∈I

w−1a

=
∑

w∈I

mw
a′c

w−1a

1

ca′
for some c ∈ R such that ∀w ∈ I, mw

a′c

w−1a
∈M ∩MQ

w

=
∑

w∈I

(1⊗mw
a′c

w−1a
)
1

ca′
.

1.4. Let M ∈ Ctf . ∀m ∈ M , let mw denote the w-component of m under M ↪→
∐

x∈W MQ
x .

∀I ⊆ W , let MI = M ∩
∐

w∈I M
Q
w and M I = im(

M
∐

w∈W MQ
w

∐
x∈I M

Q
x

). Thus,

MI ≤M I ≤
∐

w∈I

MQ
w ,(1)

and there is a short exact sequence in Ctf [தԬ, Def. 3.3.29]

0→MW\I →M →M I → 0,(2)

i.e., (MW\I →M) = kerCtf (M →M I) and (M →M I) = cokerCtf (MW\I →M).

Warning: In II a similar notation MI will have different meaning.

∀w ∈ W , put for simplicity Mw = M{w} and Mw = M{w}. Note that on both Mw and Mw

one has ma = (wa)m ∀m ∈ Mw (resp. Mw) ∀a ∈ R, and hence their left R-module structure
are completely determined by the right R-module structure and vice versa. One has

(3)

m M MQ

∑
w∈W mw

∐
w∈W Mw.

Let suppW(M) = {w ∈W|MQ
w ̸= 0}, and ∀m ∈M , suppW(m) = {w ∈W|mw ̸= 0}. Thus,

MI = {m ∈M |suppW(m) ⊆ I}.(4)

Lemma: (i) suppW(M) = {w ∈W|Mw ̸= 0} = {w ∈W|Mw ̸= 0}.

(ii) MI ,M I ∈ Ctf with (MI)Q = (M I)Q =
∐

w∈I M
Q
w .
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(iii) If J ⊆W, MI ∩MJ = MI∩J = (MI)J .

(iv) If J ⊆ I, MI/MJ ∈ Ctf .

(v) If N ∈ Ctf with suppW(N) ⊆ I,

Ctf(M,N) ≃ Ctf(M I , N), Ctf(N,M) ≃ Ctf(N,MI).

Proof: (i) Let w ∈ suppW(M). As MQ
w ̸= 0, there are m ∈ M and q ∈ Q such that

qm ∈MQ
w \ 0. If q = b

a with a, b ∈ R, bm ∈Mw \ 0. The assertion now follows from (1).

(ii) By (1) again it is enough to check that (MI)Q ⊇
∐

w∈I M
Q
w . Let m ∈

∐
w∈I M

Q
w . There

is a ∈ R with amw ∈M \ 0 ∀w ∈ I, and hence amw ∈MI . Then

m =
1

a
(am) =

1

a

∑

w∈I

amw ∈ (MI)
Q.

(iii) One has

MI ∩MJ = (M ∩
∐

x∈I

MQ
x ) ∩ (M ∩

∐

y∈J

MQ
y ) = M ∩

∐

x∈I

MQ
x ∩

∐

y∈J

MQ
y = M ∩

∐

w∈I∩J

MQ
w

= MI∩J .

Likewise, (MI)J = MI∩J .

(iv) One has

MI/MJ = MI/(MI)J by (iii)

≃ (MI)
W\J by (2)

∈ Ctf by (ii).

(v) follows from (2).

1.5. Lemma: Any M ∈ Ctf is of finite type both as a left and right R-module.

Proof: ∀w ∈ W , M " Mw, and hence Mw is of finite type over R ⊗K R by definition (1.3).
Moreover, ∀m ∈Mw, ∀a ∈ R, ma = (wa)m, and hence Mw is of finite type as a left R-module.
As M ↪→

∐
w∈W Mw and as suppW(M) is finite, M must be of finite type as a left R-module.

Likewise as a right R-module.

1.6. A prime example of an object of Ctf is R(w), w ∈ W , which is R as the ordinary graded
left R-module with a structure of R-bimodule such that

ab = (wb)a ∀a ∈ R(w), b ∈ R.(1)

Thus, R(w)Q = R(w)Qw = Q with the (Q,R)-bimodule structure induced by (1). Put Q(w) =
Q⊗R R(w). Note that R(w) ≃ R as graded right R-modules via a $→ w−1a.
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∀M ∈ Ctf , ∀n ∈ Z,

Ctf(R(w),M(n)) ≃Mn
w,(2)

and hence
∐

n∈Z

Ctf(R(w),M(n)) ≃Mw.(3)

Warning: If f ∈ Ctf(M,N) is surjective, it may happen that fw : Mw → Nw is NOT surjective
for some w ∈W , cf. (2.2.15) below. Thus, R(w) need not be “projective” in Ctf .

1.7. In order for it to be closed under taking tensor products over R, define a full subcategory
C of Ctf consisting of all M flat as a left R-module. For I ⊆ W , MI and M I may not remain
flat over R. If φ ∈ C(M,N), kerCtf (φ) may not be flat over R. If φ is an idempotent, however,
kerCtf (φ) from Rmk. 1.2.(iii) gives the kernel of φ in C, and hence

C is Karoubian complete [தԬ, Def. 3.3.40, p. 174] .(1)

∀M,N ∈ C, put as in (1.2)

C♯(M,N) =
∐

n∈Z

C(M,N(n)).

∀M,N ∈ C, M ⊗R N ↪→ (M ⊗R N)Q ≃MQ ⊗Q NQ, and hence M ⊗R N ∈ C with

(M ⊗R N)Qw =
∑

x,y∈W
xy=w

MQ
x ⊗Q NQ

y =
∑

x,y∈W
xy=w

MQ
x ⊗R NQ

y ,

which we will denote by M ∗N . Thus, C comes equipped with a structure of monoidal category
with the unit object R(e) [தԬ, Def. 3.5.2, p. 211]. In particular,

Lemma: ∀M,N ∈ C, suppW(M ∗N) = {xy|x ∈ suppW(M), y ∈ suppW(N)}.

1.8 Graded rank: Let M =
∐

i∈Z M
i be a graded left/right R-module. If a ∈ Rd for some

d ∈ Z, M → M(d) via m $→ am is a homomorphism of graded modules, i.e., of degree 0. In
particular,

(1)

R(−d)i = Ri−d ∋ b R(−d) R

ab ∈ Ri aR.

a?

∼

We say M is a graded free R-module iff M ≃
∐

j R(nj), nj ∈ Z, in which case its graded rank
is defined to be

grk(M) =
∑

j

vnj ∈ Z[v, v−1], v an indeterminate.
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Thus,

grk(M(1)) = vgrk(M).(2)

In particular,

grk(M(n)(1)) = grk(M(n+ 1)) = vn+1grk(M).

If M1 and M2 are both graded free,

(3) grk(M1 ⊕M2) = grk(M1) + grk(M2).

If M has a homogeneous basis {mi}i,

grk(M) = grk(
∐

i

Rmi) =
∑

i

grk(Rmi) =
∑

i

grk(R(− deg(mi))) =
∑

i

v− deg(mi).(4)

Eg. Let M ∈ C and w ∈W . If Mw is a graded free R-module, one has in C

Mw ≃
∐

i

R(w)(ni) ∃ni ∈ Z.

Likewise for Mw.

Lemma: Assume that K is a field. Let M be a graded left R-module of graded rank q ∈
Z[v, v−1] with a filtration of graded R-modules 0 = M0 < M1 < · · · < Mr = M . If Ni ≤
Mi/Mi+1 is a graded free of graded rank qi such that

∑
i qi = q, then Ni = Mi/Mi+1 ∀i.

Proof: ∀k ∈ Z,
∑

i dim(Nk
i ) is equal to the coefficient of vk in

∑
i qi = q, and hence

∑

i

dim(Nk
i ) = dimMk ==

∑

i

dim(Mi/Mi+1)
k.

Thus, Ni = Mi/Mi+1.

2. Soergel bimodules

2.1. ∀s ∈ S, put Rs = {a ∈ R|sa = a}, and set B(s) = R⊗Rs R(1) an ordinary R-bimodule by
the multplications on the 1st and the 2nd component. To verify that B(s) admits a structure of
C, let δ ∈ V with ⟨δ,α∨

s ⟩ = 1, using the standing assumption (1.1.iii). Recall first from [EW16,
claim 3.11]

Lemma: R = Rs ⊕ δRs = Rs ⊕ (sδ)Rs.

Proof: We check first that Rs ∩ δRs = 0. Let 0 = x+ δy with x, y ∈ Rs. Then

0 = s(x+ δy) = x+ (sδ)y = x+ (δ − αs)y,

and hence αsy = 0. Thus, y = 0, and hence x = 0 also.
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Now, ∀m ∈ V , m = (m − ⟨m,α∨
s ⟩δ) + ⟨m,α∨

s ⟩δ with m − ⟨m,α∨
s ⟩δ ∈ V s, and hence

V = V s ⊕ δK. Let Rd be the d-th homogeneous piece of R and assume inductively that
Rd = (Rd)s ⊕ δ(Rd−1)s. Let x ∈ (Rd)s, y ∈ (Rd−1)s,m ∈ V s, ξ ∈ K. Then (x + δy)(m + ξδ) =
xm + δ(ym + ξx) + ξδ2y with δ2y = {−δ(sδ) + δ(δ + sδ)}y = −δ(sδ)y + δ{(δ + sδ)y}. As
δ(sδ) ∈ (R2)s and δ + sδ ∈ V s,

(x+ δy)(m+ ξδ) = xm− ξδ(sδ)y + δ{ym+ ξx+ ξ(δ + sδ)y} ∈ (Rd+1)s ⊕ δ(Rd)s,

and hence R = Rs ⊕ δRs.

Finally, ∀a1, a2 ∈ Rs,

a1 + δa2 = a1 + (δ + sδ − sδ)a2 = {a1 + (δ + sδ)a2}+ sδ(−a2),
a1 + sδa2 = a1 + (sδ + δ − δ)a2 = {a1 + (sδ + δ)a2}+ δ(−a2).

2.2. Keep the notation of 2.1. One has as graded left R-modules

B(s) = R⊗Rs (Rs ⊕ δRs)(1) ≃ R(1)⊕ δR(1)(1)

≃ R(1)⊕R(−2)(1) by (1.8.1)

= R(1)⊕R(−1).

Also, as graded right R-modules

B(s) = (Rs ⊕ δRs)⊗Rs R(1) ≃ R(1)⊕R(−1).(2)

In R⊗Rs R one has

(δ ⊗ 1− 1⊗ sδ)δ = δ ⊗ δ − 1⊗ (sδ)δ = −δ(sδ)⊗ 1 + δ ⊗ (δ + sδ)− δ ⊗ sδ

= {−δ(sδ) + δ(δ + sδ)}⊗ 1− δ ⊗ sδ = δ2 ⊗ 1− δ ⊗ sδ

= δ(δ ⊗ 1− 1⊗ sδ),

(δ ⊗ 1− 1⊗ δ)δ = δ ⊗ δ − 1⊗ δ2 = δ ⊗ δ − 1⊗ {−δ(sδ) + δ(δ + sδ)}
= δ ⊗ δ + 1⊗ δ(sδ)− (δ + sδ)⊗ δ = δ(sδ)⊗ 1− sδ ⊗ δ
= (sδ)(δ ⊗ 1− 1⊗ δ).

As R = Rs ⊕ δRs, one obtains that ∀a ∈ R,

(δ ⊗ 1− 1⊗ sδ)a = a(δ ⊗ 1− 1⊗ sδ) and (δ ⊗ 1− 1⊗ δ)a = (sa)(δ ⊗ 1− 1⊗ δ).(3)

Also,

1⊗ δ − (sδ)⊗ 1 = 1⊗ δ − (sδ)⊗ 1− 1⊗ (δ + sδ) + (δ + sδ)⊗ 1 = δ ⊗ 1− 1⊗ sδ.(4)

By (3) one obtains that δ ⊗ 1 − 1 ⊗ sδ and δ ⊗ 1 − 1 ⊗ δ are Q-linearly independent in
Q ⊗R (R ⊗Rs R), and hence Q ⊗R (R ⊗Rs R) = Q(δ ⊗ 1 − 1 ⊗ sδ) ⊕ Q(δ ⊗ 1 − 1 ⊗ δ) with
isomorphisms of (Q,R)-bimodules

Q(δ ⊗ 1− 1⊗ sδ) ≃ Q(e) = Q⊗R R(e) via q(δ ⊗ 1− 1⊗ sδ) $→ q ⊗ αs,(5)

Q(δ ⊗ 1− 1⊗ δ) ≃ Q(s) = Q⊗R R(s) via q(δ ⊗ 1− 1⊗ δ) $→ q ⊗ αs,
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δ ⊗ 1− 1⊗ sδ αs

δ(δ ⊗ 1− 1⊗ sδ) δαs,

?δ (3) # ?δ

δ ⊗ 1− 1⊗ δ αs

sδ(δ ⊗ 1− 1⊗ δ) (sδ)αs.

?δ (3) # ?δ

Thus, B(s) = R⊗RsR(1) comes equipped with a structure of C such thatB(s)Q = B(s)Qe ⊕B(s)Qs
with

B(s)Qe = Q(δ ⊗ 1− 1⊗ sδ) ≃ Q(e) and B(s)Qs = Q(δ ⊗ 1− 1⊗ δ) ≃ Q(s).(6)

Explicitly, in B(s)Q = Q⊗R (R⊗Rs R), ∀a, b ∈ R,

1⊗ a⊗ b =
ab

αs
⊗ (δ ⊗ 1− 1⊗ sδ) +

a(sb)

αs
⊗ (δ ⊗ 1− 1⊗ δ).(7)

For we may assume a = 1 and b = δ; the case b = 1 follows from (4). Thus, it is enough to
check that αs ⊗ δ = δ(δ ⊗ 1− 1⊗ sδ) + (sδ)(δ ⊗ 1− 1⊗ δ) in R⊗Rs R. But

RHS = (δ ⊗ 1− 1⊗ sδ)δ + (δ ⊗ 1− 1⊗ δ)δ by (3)

= (1⊗ δ − sδ ⊗ 1)δ + δ ⊗ δ − 1⊗ δ2 by (4)

= −sδ ⊗ δ + δ ⊗ δ = αs ⊗ δ.

Thus, together with (5) one has a CD

(8)

ab Q(e)

a⊗ b R⊗Rs R (R⊗Rs R)Q B(s)Qe ⊕ B(s)Qs

a(sb) Q(s).

Note that the elements δ ⊗ 1− 1⊗ sδ and 1⊗ δ − δ ⊗ 1 are independent of the choice of δ;
if δ′ ∈ V with ⟨δ′,α∨

s ⟩ = 1,

δ ⊗ 1− 1⊗ sδ = δ′ ⊗ 1− 1⊗ sδ′ and 1⊗ δ − δ ⊗ 1 = 1⊗ δ′ − δ′ ⊗ 1.(9)

For let V s = {ν ∈ V |sν = ν}. ∀µ ∈ V , µ = (µ − ⟨µ,α∨
s ⟩δ) + ⟨µ,α∨

s ⟩δ with µ − ⟨µ,α∨
s ⟩δ ∈ V s,

and hence V = V s ⊕ Kδ. Write δ′ = ν + ξδ for some ν ∈ V s and ξ ∈ K by (2.1). Then
1 = ⟨δ′,α∨

s ⟩ = ξ, and hence δ′ = ν + δ and the assertion follows.

The structure of B(s) is already quite intricate. For x ∈ W let ≤ x = {w ∈ W|w ≤ x},
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< x = {w ∈W|w < x}. One has from (7)

B(s)e = R(δ ⊗ 1− 1⊗ sδ) = R(1⊗ δ − sδ ⊗ 1) = B(s)≤e/B(s)<e ≃ R(e)(−1)(10)

as δ ⊗ 1− 1⊗ sδ = 1⊗ δ − sδ ⊗ 1 has degree 1 in B(s)

B(s)s = R(δ ⊗ 1− 1⊗ δ)) ≃ R(s)(−1),(11)

B(s)e = R(
1

αs
⊗ (δ ⊗ 1− 1⊗ sδ)) ≃ R(e)(1),(12)

B(s)s = R(
1

αs
⊗ (δ ⊗ 1− 1⊗ δ))(13)

≃ B(s)≤s/B(s)<s = B(s)/B(s)e = R(1⊗ 1) ≃ R(s)(1).

To see the last equality,

sδ(1⊗ 1) + (δ ⊗ 1− 1⊗ sδ) = sδ(1⊗ 1) + (1⊗ δ − sδ ⊗ 1) by (4)

= 1⊗ δ.
Thus,

(14)

B(s)s B(s)

B(s)s

R(αs ⊗ 1) R(1⊗ 1)

∼

as

αs(1⊗ 1) = αs ⊗ 1 = (δ − sδ)⊗ 1 = δ ⊗ 1− sδ ⊗ 1

≡ δ ⊗ 1− sδ ⊗ 1− (1⊗ δ − sδ ⊗ 1) mod B(s)e
= δ ⊗ 1− δ ⊗ 1.

Consider now the exact sequence 0→ B(s)s → B(s)→ B(s)e → 0. It induces

(15)

(B(s)s)e B(s)e (B(s)e)e

0 B(s)e,

(B(s)s)s B(s)s (B(s)e)s

B(s)s 0,

(B(s)s)e B(s)e (B(s)e)e

0 R(e)(−1) R(e)(1).
≀ ≀

Note also that the decomposition of B(s)Q as in (6) holds over R[ 1
αs
]:

R[
1

αs
]⊗R B(s) = R[

1

αs
](δ ⊗ 1− 1⊗ sδ)⊕R[

1

αs
](δ ⊗ 1− 1⊗ δ).(16)
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Consider a homomorphism of grade R-bimodules ms : B(s) → R(s)(1) via a ⊗ b $→ a(sb).
As the action of ⟨s⟩ on V is faithful, ms ∈ C ′ by Rmk. 1.2.(ii), and hence factors through the
quotient B(s)→ B(s)s:

(17)

a⊗ b a(sb)

B(s) R(s)(1).

a(sb)
αs
⊗ (δ ⊗ 1− 1⊗ δ) B(s)s

ms

∼

The structure of R-bimodule on B(s) endows it with a structure of graded left R ⊗Rs R-
module. Thus, if we let (R⊗Rs R)Modgr denote the category of graded left R⊗Rs R-modules,
one has

C ′(B(s), B(s)) ≃ (R⊗Rs R)Modgr(B(s), B(s)) by Rmk. 1.2.(ii) again(18)

as the action of ⟨s⟩ on V is faithful

≃ (R⊗Rs R)Modgr(R⊗Rs R,R⊗Rs R)

≃ (R⊗Rs R)0 as (1, 1) must be sent to an element of degree 0

= K(1⊗ 1) ≃ K.

In particular, B(s) is indecomposable in C ′.

Now let Z ′ = {(ze, zs) ∈ R(e) ⊕ R(s)|zs ≡ ze mod αs} a graded K-subalgebra of R2 =∐
d∈N(R

d)2 equipped with a structure of R-bimodule, which is the structure algebra of a moment
graph [F08a]. Under the imbedding (8) one has B(s) ↪→ Z ′(1) via a ⊗ b $→ (ab, a(sb)). As
1⊗ 1 $→ (1, 1) and as δ ⊗ 1− 1⊗ δ $→ (δ, δ)− (δ, sδ) = (0,αs), one has

B(s) ≃ Z ′(1).(19)

From (10) and (13) one has a short exact sequence in C ′

0 R(e)(−2) Z ′ R(s) 0

a (aαs, 0)

(a, b) b.

Let us compute the ถా-extensions of R(s) by R(e)(−2) in C ′. As sδ ̸= δ, ⟨s⟩ acts on V
faithfully. Then the computation of extensions in C ′ is equivalent to one in (R ⊗Rs R)Modgr

or in Z ′Modgr by Rmk. 1.2.(ii). Thus, given another exact sequence 0 → R(e)(−2) f−→ M
g−→

R(s) → 0 in Z ′Modgr, let m ∈ M0 with g(m) = 1, and let φ ∈ Z ′Modgr(Z ′,M) with
(1, 1) $→ m. Thus, ∀a ∈ R, φ(a, a) = aφ(1, 1) = am. As mδ = φ((1, 1)δ) = φ(δ, sδ) =
φ(δ, δ−αs) = φ(δ−αs +αs, δ−αs) = (δ−αs)m+φ(αs, 0), φ(αs, 0) = mδ+ (αs− δ)m. As the
sequence splits as a right R-module, one has

R(e)(−2) M

Me.

f

∼
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As φ(αs, 0) and f(1) ∈M2
e ≃ R(e)(−2)2 = K, φ(αs, 0) = ξf(1) for some ξ ∈ K. Then ∀a, b ∈ R,

φ(a, a+ bαs) = φ(a+ bαs − bαs, a+ bαs) = (a+ bαs)φ(1, 1)− bφ(αs, 0) = (a+ bαs)m− bξf(1),

and hence results a CD of exact sequences

0 R(e)(−2) Z ′ R(s) 0

0 R(e)(−2) M R(s) 0.

ξ

f g

In particular, if ξ ∈ K×, M ≃ Z ′. If ξ = 0, mδ = (δ − αs)m = (sδ)m, and hence m ∈ Ms and
M ≃ R(e)(−2)⊕R(s) in C ′. In general, from [Rot, Th. 7.30]

Ext1Z′Modgr(R(s), R(e)(−2)) ≃ K.(20)

For if ξ′ ∈ K with f ◦ ξ′ = f ◦ ξ, then ξf(1) = (f ◦ ξ)(1) = (f ◦ ξ′)(1) = ξ′f(1). As M is torsion
free over R, we must have ξ = ξ′.

Likewise, one has a CD of exact sequences in Z ′Modgr

0 B(s)s B(s) B(s)e 0

0 R(s)(−1) Z ′(1) R(e)(1) 0

1 (0,αs)

(a, b) a,

∼ ∼ ∼

and

Ext1Z′Modgr(R(e), R(s)(−2)) ≃ K.(21)

On the other hand, the exact sequence

0→ R[
1

αs
](e)(−2)→ Z ′[

1

αs
]→ R[

1

αs
](s)→ 0

splits in Z ′[ 1
αs
]Modgr, and hence R[ 1

αs
](e)(−2) and R[ 1

αs
](s) are both projective as graded left

Z ′[ 1
αs
]-modules. Thus, ∀n ∈ Z,

Ext1Z′[ 1
αs

]Modgr(R[
1

αs
](e), R[

1

αs
](s)(n)) = 0 = Ext1Z′[ 1

αs
]Modgr(R[

1

αs
](s), R[

1

αs
](e)(n)).(22)

2.3. Let s ∈ S and M ∈ C. Let us examine the structure of B(s) ∗M ∈ C. ∀w ∈W ,

(B(s) ∗M)Qw =
∐

x,y∈W
xy=w

B(s)Qx ⊗Q MQ
y = {B(s)Qe ⊗Q MQ

w }⊕ {B(s)Qs ⊗Q MQ
sw}(1)

≃ Q(e)⊗Q MQ
w ⊕Q(s)⊗Q MQ

sw

≃MQ
w ⊕MQ

sw via (q1 ⊗m1, q2 ⊗m2) $→
(q1m1, (sq2)m2) = (m1w

−1q1,m2(sw)
−1(sq2)) = (m1w

−1q1,m2w
−1q2)
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with

B(s)Qe ⊗Q MQ
w = Q(δ ⊗ 1− 1⊗ sδ)⊗Q MQ

w by (2.2.5)(2)

= {(δ ⊗ 1− 1⊗ sδ)⊗m|m ∈MQ
w }

≃ {δ ⊗m− 1⊗ (sδ)m|m ∈MQ
w } in R⊗Rs MQ

w

= {1⊗ δm− sδ ⊗m|m ∈MQ
w } by (2.2.4),

B(s)Qs ⊗Q MQ
sw = Q(δ ⊗ 1− 1⊗ δ)⊗Q MQ

sw by (2.2.5) again

≃ {δ ⊗m− 1⊗ δm|m ∈MQ
sw} in R⊗Rs MQ

sw.

Likewise, ∀w ∈W ,

(M ∗B(s))Qw =
∐

x,y∈W
xy=w

MQ
x ⊗Q B(s)Qy = {MQ

w ⊗Q B(s)Qe }⊕ {MQ
ws ⊗Q B(s)Qs }(3)

≃MQ
w ⊗Q Q(e)⊕MQ

ws ⊗Q Q(s)

≃MQ
w ⊕MQ

ws via (m1 ⊗ q1,m2 ⊗ q2) $→
(m1q1,m2(sq2)) = ((wq1)m1, (wq2)m2)

with

MQ
w ⊗Q B(s)Qe = MQ

w ⊗Q Q(δ ⊗ 1− 1⊗ sδ) by (2.2.5)(4)

= {m⊗ (δ ⊗ 1− 1⊗ sδ)|m ∈MQ
w }

≃ {mδ ⊗ 1−m⊗ sδ|m ∈MQ
w } in MQ

w ⊗Rs R

= {m⊗ δ −m(sδ)⊗ 1|m ∈MQ
w } by (2.2.4),

MQ
ws ⊗Q B(s)Qs = MQ

ws ⊗Q Q(1⊗ δ − δ ⊗ 1) by (2.2.5) again

≃ {m⊗ δ −mδ ⊗ 1|m ∈MQ
ws} in MQ

ws ⊗Rs R.

Lemma: Let s ∈ S and M ∈ C.

(i) The structure of B(s) ∗M ∈ C is such that each composite B(s) ∗M ↪→ (B(s) ∗M)Q →
(B(s) ∗M)Qw , w ∈W, reads

B(s) ∗M (B(s) ∗M)Qw

R⊗Rs M MQ
w ⊕MQ

sw

a⊗m (amw, (sa)msw),

∼ ∼

and that

(B(s) ∗M)Qw = {(δ ⊗m− 1⊗ (sδ)m|m ∈MQ
w }⊕ {(δ ⊗m− 1⊗ δm|m ∈MQ

sw}

in (R⊗Rs MQ
w )⊕ (R⊗Rs MQ

sw) with δ ⊗m− 1⊗ (sδ)m = 1⊗ δm− (sδ)⊗m, m ∈MQ
w .
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(ii) ∀w ∈W,

(B(s) ∗M)Qw ⊕ (B(s) ∗M)Qsw = {B(s)Qe ⊗Q MQ
w ⊕ B(s)Qs ⊗Q MQ

sw}
⊕ {B(s)Qe ⊗Q MQ

sw ⊕ B(s)Qs ⊗Q MQ
w }

= {B(s)Qe ⊕ B(s)Qs }⊗Q MQ
w ⊕ {B(s)Qs ⊕ B(s)Qe }⊗Q MQ

sw

= {B(s)Q ⊗Q MQ
w }⊕ {B(s)Q ⊗Q MQ

sw}
≃ B(s)⊗R (MQ

w ⊕MQ
sw).

(iii) The structure of M ∗B(s) ∈ C is such that each composite M ∗B(s) ↪→ (M ∗B(s))Q →
(M ∗B(s))Qw , w ∈W, reads

M ∗B(s) (M ∗B(s))Qw

M ⊗Rs R MQ
w ⊕MQ

ws

m⊗ a (mwa,mws(sa)),

∼ ∼

and that

(M ∗B(s))Qw = {m⊗ δ −m(sδ)⊗ 1|m ∈MQ
w }⊕ {m⊗ δ −mδ ⊗ 1|m ∈MQ

ws}
in (MQ

w ⊗Rs R)⊕ (MQ
ws ⊗Rs R) with m⊗ δ −m(sδ)⊗ 1 = mδ ⊗ 1−m⊗ sδ, m ∈MQ

w .

(iv) ∀w ∈W,

(M ∗B(s))Qw ⊕ (M ∗B(s))Qws = {MQ
w ⊗Q B(s)Qe ⊕MQ

ws ⊗Q B(s)Qs }
⊕ {MQ

ws ⊗Q B(s)Qe ⊕MQ
w ⊗Q B(s)Qs }

≃MQ
w ⊗Q {B(s)Qe ⊕ B(s)Qs }⊕MQ

ws ⊗Q {B(s)Qs ⊕ B(s)Qe }
≃ {MQ

w ⊕MQ
ws}⊗R B(s).

Proof: By (2.2.8) one has

B(s) ∗M (B(s) ∗M)Qw = (Q(e)⊗Q MQ
w )⊕ (Q(s)⊗Q MQ

sw) MQ
w ⊕MQ

sw

a⊗Rs m $→ a⊗R 1⊗Rs m (a⊗mw, a⊗msw) (amw, (sa)msw),

M ∗B(s) (M ∗B(s))Qw = (MQ
w ⊗Q Q(e))⊕ (MQ

ws ⊗Q Q(s)) MQ
w ⊕MQ

ws

m⊗Rs a $→ m⊗R 1⊗Rs a (mw ⊗ a,mws ⊗ sa) (mwa,mws(sa)).

∼

∼

2.4. Let BS denote the full subcategory of C consisting of the finite direct sums of B(s1) ∗ · · · ∗
B(sr)(n), s1, . . . , sr ∈ S, n ∈ Z. As R-bimodules

B(s1) ∗ · · · ∗B(sr)(n) = (R⊗Rs1 R)⊗R · · ·⊗R (R⊗Rsr R) ≃ R⊗Rs1 R⊗Rs2 · · ·⊗Rsr R.

Let SBimod denote the full subcategory of C consisting of the direct summands of objects of
BS. Thus, both BS andSBimod are closed under the monoidal product. ∀x = (s1 . . . , sr) ∈ Sr,
set B(x) = B(s1)∗ · · ·∗B(sr); we set B(∅) = R(e) for the empty sequence ∅. We will also write
B(s1 . . . , sr) for B(x). From (1.7) one has
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Lemma: suppW(B(x)) = {se11 . . . serr |e1, . . . , er ∈ {0, 1}}. In particular, if x is a reduced
expression of x, suppW(B(x)) = {y ∈W|y ≤ x}.

2.5. ∀M ∈ C, one has from (2.2)

B(s) ∗M = {R(1)⊕R(−1)}⊗R M ≃M(1)⊕M(−1) as graded right R-modules,

M ∗B(s) = M ⊗R {R(1)⊕R(−1)} ≃M(1)⊕M(−1) as graded left R-modules.

Lemma: ∀x = (s1, . . . , sr) ∈ Sr, B(x) is gradrd free both as a left and right R-module of
graded rank (v + v−1)r.

Proof: By definition

grk(B(si)) = grk(R(1)⊕R(−1)} = v + v−1.

Thus,

grk(B(s1) ∗B(s2)) = grk(B(s2)(1)⊕ B(s2)(−1)} = grk(B(s2)(1)) + grk(B(s2)(−1))
= v(v + v−1) + v−1(v + v−1) = (v + v−1)2.

2.6 Let RBimod denote the category of R-bimodules. For M ∈ C we regard B(s) ∗ M =
(R⊗Rs R(1))⊗R M , as a nongraded R-bimodule, to be R⊗Rs M .

Lemma: Let M,N ∈ C and s ∈ S.

(i) C(B(s) ∗M,N) ≃ C(M,B(s) ∗N).

(ii) C(M ∗B(s), N) ≃ C(M,N ∗B(s)).

Proof: Take δ ∈ V with ⟨δ,α∨
s ⟩ = 1.

(i) Define Ψ : RBimod(B(s) ∗M,N)→ RBimod(M,B(s) ∗N) via

φ $→ ψφ : m $→ 1⊗ φ(1⊗ δm)− (sδ)⊗ φ(1⊗m).

To check it well-defined,

ψφ(δm) = 1⊗ φ(1⊗ δ2m)− (sδ)⊗ φ(1⊗ δm)

= 1⊗ φ(1⊗ (−δ(sδ) + δ(δ + sδ)))m)− (sδ)⊗ φ(1⊗ δm)

= −δ(sδ)⊗ φ(1⊗m) + (δ + sδ)⊗ φ(1⊗ δm)− (sδ)⊗ φ(1⊗ δm)

= δ{1⊗ φ(1⊗ δm)− (sδ)⊗ φ(1⊗m)} = δψφ(m).

Note also that ψφ is homogeneous, i.e., graded of degree 0, if φ is; if m ∈ Md, 1 ⊗ δm ∈
(B(s) ∗M)d+1 while 1⊗m ∈ (B(s) ∗M)d−1, and hence 1⊗ φ(1⊗ δm) ∈ (B(s) ∗N)d+1−1 and
sδ ⊗ φ(1⊗m) ∈ (B(s) ∗N)d−1+1.
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Given ψ ∈ RBimod(M,B(s) ∗N) write, according to the decompostion B(s) ∗N = {R⊗Rs

R(1)}⊗R N ≃ {Rs(1)⊕ δRs(1)}⊗Rs N = {Rs(1)⊕ (−sδ)Rs(1)}⊗Rs N ≃ N(1)⊕ (−sδ)N(1),

ψ(m) = 1⊗ ψ1(m)− sδ ⊗ ψ2(m) ∃!ψ1(m),ψ2(m) ∈ N.

Thus, ψ1,ψ2 ∈ (Rs, R)Bimod(M,N). Define Φ : RBimod(M,B(s) ∗ N) → RBimod(B(s) ∗
M,N) via

ψ $→ φψ : a⊗m $→ aψ2(m), a ∈ R,m ∈M.

If ψ is homogeneous, ψ2 : M → N(−1), and hence φψ will also be homogeneous as B(s) ∗M ≃
R(1)⊗Rs M ; R(1)i ⊗Rs M j ∋ a⊗m $→ aψ2(m) ∈ N (i+1)+(j−1) = N i+j.

Now, φψφ(a ⊗ m) = a(ψφ)2(m) = aφ(1 ⊗ m) = φ(a ⊗ m), and hence φψφ = φ. Also,
ψφψ(m) = 1⊗ φψ(1⊗ δm)− sδ ⊗ φψ(1⊗m) = 1⊗ ψ2(δm)− sδ ⊗ ψ2(m). But

1⊗ ψ1(δm)− sδ ⊗ ψ2(δm) = ψ(δm) = δψ(m) = δ ⊗ ψ1(m)− δ(sδ)⊗ ψ2(m)

= {−sδ + (sδ + δ)}⊗ ψ1(m)− δ(sδ)⊗ ψ2(m)

= −sδ ⊗ ψ1(m) + 1⊗ {(sδ + δ)ψ1(m)− δ(sδ)ψ2(m)},

and hence ψ1(m) = ψ2(δm) and ψ1(δm) = (sδ + δ)ψ1(m)− δ(sδ)ψ2(m). Thus,

ψφψ(m) = 1⊗ ψ1(m)− sδ ⊗ ψ2(m) = ψ(m),

and ψφψ = ψ. It follows that Ψ and Φ are inverse to each other.

We show next that Φ and Ψ induce bijections

C(B(s) ∗M,N) C(M,B(s) ∗N).

For that we have only to verify that ∀φ ∈ RBimod(B(s) ∗M,N), φ ∈ C iff ψφ ∈ C. Put ψ = ψφ
for simplicity. We are to check that ∀w ∈W , ψQ(MQ

w ) ⊆ (B(s)∗N)Qw iff φQ((B(s)∗M)Qw) ⊆ NQ
w .

∀m ∈M , ∀y ∈W ,

{ψQ(1⊗m)}y = {1⊗ φ(1⊗ δm)− sδ ⊗ φ(1⊗m)}y in (B(s) ∗N)Q(1)

with 1⊗m ∈MQ = Q⊗R M

= (φ(1⊗ δm)y − (sδ)φ(1⊗m)y,φ(1⊗ δm)sy − δφ(1⊗m)sy) in NQ
y ⊕NQ

sy by (2.3.i)

= (φ(1⊗ δm− sδ ⊗m)y,φ(1⊗ δm− δ ⊗m)sy)

= (φ(δ ⊗m− 1⊗ (sδ)m)y,φ(1⊗ δm− δ ⊗m)sy) by (2.3.i) again.

Thus, if m ∈MQ
w , (1) reads

ψQ(m)y = (φQ(δ ⊗m− 1⊗ (sδ)m)y,φ
Q(1⊗ δm− δ ⊗m)sy)(2)

with δ ⊗m− 1⊗ (sδ)m ∈ (B(s) ∗M)Qw and 1⊗ δm− δ ⊗m ∈ (B(s) ∗M)Qsw by (2.3.i). Thus,
if φ ∈ C,

φQ(δ ⊗m− 1⊗ (sδ)m) ∈ NQ
w and φQ(1⊗ δm− δ ⊗m) ∈ NQ

sw,

and hence ψQ(m)y = 0 unless y = w. It follows that ψQ(MQ
w ) ⊆ (B(s) ∗N)Qw .

In turn, (B(s)∗M)Qw = {δ⊗m−1⊗ (sδ)m+1⊗δm′−δ⊗m′|m ∈MQ
w ,m

′ ∈MQ
sw} by (2.3.i).

If ψ ∈ C, ∀m ∈MQ
w , φ

Q(δ⊗m−1⊗ (sδ)m) ∈ NQ
w by (2) as ψQ(m) ∈ (B(s)∗N)Qw = NQ

w ⊕NQ
sw,
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while ∀m′ ∈MQ
sw, φ

Q(1⊗δm′−δ⊗m′) ∈ NQ
w by (2) again as ψQ(m′) ∈ (B(s)∗N)Qsw = NQ

sw⊕NQ
w .

Thus, φQ((B(s) ∗M)Qw) ⊆ NQ
w , and φ ∈ C.

(ii) Define Ψ : RBimod(M ∗B(s), N)→ RBimod(M,N ∗B(s)) via

φ $→ ψφ : m $→ φ(mδ ⊗ 1)⊗ 1− φ(m⊗ 1)⊗ sδ.

To check that ψφ is well-defined,

ψφ(mδ) = φ(mδ2 ⊗ 1)⊗ 1− φ(mδ ⊗ 1)⊗ sδ

= φ(m(−δ(sδ) + δ(δ + sδ))⊗ 1)⊗ 1− φ(mδ ⊗ 1)⊗ sδ

= −φ(m⊗ 1)⊗ δ(sδ) + φ(mδ ⊗ 1)⊗ (δ + sδ)− φ(mδ ⊗ 1)⊗ sδ

= {φ(mδ ⊗ 1)⊗ 1− φ(m⊗ 1)⊗ sδ}δ = ψφ(m)δ.

If φ is graded of degree 0, so is ψφ; if m ∈ Md, mδ ⊗ 1 ∈ (M ∗ B(s))d+1 while m ⊗ 1 ∈
(M ∗B(s))d−1, and hence φ(mδ ⊗ 1)⊗ 1 ∈ (N ∗B(s))d+1−1, φ(m⊗ 1)⊗ sδ ∈ (N ∗B(s))d−1+1.

Given ψ ∈ RBimod(M,N ∗B(s)), along the decompostion N ∗B(s) = N⊗R {R⊗Rs R(1)} ≃
N ⊗Rs {Rs(1)⊕ δRs(1)} = N ⊗Rs {Rs(1)⊕ (−sδ)Rs(1)} ≃ N(1)⊕ (−sδ)N(1), write

ψ(m) = ψ1(m)⊗ 1− ψ2(m)⊗ sδ ∃!ψ1(m),ψ2(m) ∈ N.

Thus, ψ1,ψ2 ∈ (R,Rs)Bimod(M,N). Define Φ : RBimod(M,N ∗ B(s)) → RBimod(M ∗
B(s), N) via

ψ $→ φψ : m⊗ a $→ ψ2(m)a, a ∈ R,m ∈M.

If ψ is graded of degree 0, ψ2 : M → N(−1), so therefore is φψ; if m ∈ Md, ψ2(M) ⊗ sδ ∈
(N ∗ B(s))d = {N ⊗Rs R(1)}d, and hence ψ2(m) ∈ Nd−1 = N(−1)d. If a ∈ Rc, m ⊗ a ∈
(M ∗B(s))d+c−1 and ψ2(m)a ∈ Nd−1+c.

Now, φψφ(m ⊗ a) = (ψφ)2(m)a = φ(m ⊗ 1)a = φ(m ⊗ a), and hence φψφ = φ. Also,
ψφψ(m) = φψ(mδ ⊗ 1)⊗ 1− φψ(m⊗ 1)⊗ sδ = ψ2(mδ)⊗ 1− ψ2(m)⊗ sδ. But

ψ1(mδ)⊗ 1− ψ2(mδ)⊗ sδ = ψ(mδ) = ψ(m)δ = ψ1(m)⊗ δ − ψ2(m)⊗ (sδ)δ

= ψ1(m)⊗ {−sδ + (δ + sδ)}− ψ2(m)(sδ)δ ⊗ 1

= {ψ1(m)(δ + sδ)− ψ2(m)(sδ)δ}⊗ 1− ψ1(m)⊗ sδ.

and hence ψ1(m) = ψ2(mδ). Then ψφψ(m) = ψ1(m) ⊗ 1 − ψ2(m) ⊗ sδ = ψ(m), and hence
ψφψ = ψ. It follows that Φ and Ψ are inverse to each other.

We show next that Ψ and Φ induce bijections

C(M ∗B(s), N) C(M,N ∗B(s)).

For that we have only to verify that ∀φ ∈ RBimod(M ∗ B(s), N), φ ∈ C iff ψφ ∈ C; if ψ ∈ C,
ψφψ ∈ C, and hence we will have φψ ∈ C. Put ψ = ψφ for simplicity. We must check that
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∀w ∈W , ψQ(MQ
w ) ⊆ (N ∗B(s))Qw iff φQ((M ∗B(s))Qw) ⊆ NQ

w . ∀m ∈M , ∀y ∈W ,

{ψQ(1⊗m)}y = {φ(mδ ⊗ 1)⊗ 1− φ(m⊗ 1)⊗ sδ}y in (N ∗B(s))Q(3)

with 1⊗m ∈MQ = Q⊗R M

= (φ(mδ ⊗ 1)y − φ(m⊗ 1)y(sδ),φ(mδ ⊗ 1)ys − φ(m⊗ 1)ysδ)

in NQ
y ⊕NQ

ys by (2.3.iii)

= (φ(mδ ⊗ 1−m⊗ sδ)y,φ(mδ ⊗ 1−m⊗ δ)ys)
= (φ(m⊗ δ −m(sδ)⊗ 1)y,φ(mδ ⊗ 1−m⊗ δ)ys) by (2.3.iii) again.

Thus, if m ∈MQ
w , (3) reads

ψQ(m)y = (φQ(m⊗ δ −m(sδ)⊗ 1)y,φ
Q(mδ ⊗ 1−m⊗ δ)ys) in NQ

y ⊕NQ
ys(4)

with m⊗ δ −m(sδ)⊗ 1 ∈ (M ∗B(s))Qw and mδ ⊗ 1−m⊗ δ ∈ (M ∗B(s))Qws by (2.3.iii). Thus,
if φ ∈ C,

φQ(m⊗ δ −m(sδ)⊗ 1) ∈ NQ
w and φQ(mδ ⊗ 1−m⊗ δ) ∈ NQ

ws,

and hence ψQ(m)y = 0 unless y = w. It follows that ψQ(MQ
w ) ⊆ (N ∗B(s))Qw .

In turn, (M ∗ B(s))Qw = {m ⊗ δ − m(sδ) ⊗ 1 + m′ ⊗ δ − m′δ ⊗ 1|m ∈ MQ
w ,m

′ ∈ MQ
ws} by

(2.3.iii). If ψ ∈ C, ∀m ∈MQ
w , ∀m′ ∈MQ

ws,

φQ(m⊗ δ −m(sδ)⊗ 1) ∈ NQ
w and φQ(m′ ⊗ δ −m′δ ⊗ 1) ∈ NQ

w

by (4) as ψQ(m) ∈ (N ∗B(s))Qw = NQ
w ⊕NQ

ws and as ψQ(m′) ∈ (N ∗B(s))Qws = NQ
ws⊕NQ

w . Thus,
φQ((M ∗B(s))Qw) ⊆ NQ

w , and φ ∈ C.

2.7 Duality: Let M ∈ RBimod. Let ModR denote the category of right R-modules, and set
D(M) = ModR(M,R) equipped with a structure of R-bimodule such that

(afb)(m) = f(amb) = f(am)b ∀f ∈ D(M), ∀m ∈M, ∀a, b ∈ R.(1)

Assume now thatM ∈ C. Thus, M is of finite type either as a left or right R-module by (1.5).
We equip D(M) with a grading such that D(M)i = {f ∈ D(M)|f(M j) ⊆ Rj+i ∀j}, i ∈ Z. If
we let ModgrR denote the category of graded right R-modules, D(M)i = ModgrR(M,R(i)).
As M is finite type as a right R-module, one has D(M) =

∐
i∈Z D(M)i [NvO, 2.4.4]. Also, M

is torsion-free as a right R-module (1.3.2). Thus,

ModR(M,R)⊗R Q ≃ ModR(M,Q) by the five lemma

≃ ModQ(M ⊗R Q,Q)

= ModQ(
∐

w∈W

MQ
w , Q) by (1.3.3)

≃
∐

w∈W

ModQ(MQ
w , Q) from definition (1.2.i).

∀f ∈ ModQ(MQ
w , Q), ∀a, b ∈ Q, ∀x ∈MQ

w ,

(afb)(x) = f(axb) = f(x(w−1a)b) = f(x)(w−1a)b = {(wb)f(w−1a)}(x).
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Thus, if we let D′(M)Qw = ModQ(MQ
w , Q), D(M)⊗R Q =

∐
w∈W D′(M)Qw is a decomposition as

(R,Q)-bimodules. Note also that D(M) is torsion free as a right R-module. For if f ∈ D(M)
and b ∈ R \ 0 with fb = 0, ∀m ∈ M , 0 = (fb)(m) = f(mb) = f(m)b, and hence f(m) = 0,
and f = 0. Then D(M) ↪→ D(M)⊗R Q, and we may, as in (1.3.3), identify D(M)⊗R Q with
Q⊗R D(M). As such

D(M) ∈ Ctf with D(M)Qw = D′(M)Qw ∀w ∈W .(2)

Then ∀f ∈ D(M),

fw = prw ◦ fQ = (f ⊗R Q)|MQ
w
= fQ|MQ

w
.(3)

We have obtained a contravariant functor D : C → Ctf .

If N ∈ C, D(M)⊗R N → ModR(M,N) via f ⊗ n $→ f(?)n does NOT make sense!

2.8. ∀w ∈W , ∀n ∈ Z, one has

D(R(w)(n)) ≃ R(w)(−n).(1)

Lemma: ∀I ⊆W, ∀M ∈ C, D(M I) ≃ D(M)I .

Proof: As M "M I , D(M I) ≤ D(M). ∀f ∈ D(M),

f ∈ D(M I) iff f |MW\I = 0 as 0→MW\I →M →M I → 0 is exact by (1.4.2)

iff fQ|∐
w∈W\I M

Q
w
= 0 by (1.4.ii)

iff f ∈ D(M)I by (2.7.3).

2.9 Let M ∈ C and w ∈W . The structure of R-bimodule on Mw may be described entirely by
its left/right R-module structure.

Lemma: Assume that Mw is graded free as a left/right R-module.

(i) D(M)w is also left graded free over R with grk(D(M)w) = grk(Mw)(v−1).

(ii) D(D(Mw)) ≃Mw in C.

Proof: By (1.8) we may assume that Mw = R(w)(n) for some n ∈ Z. Then

D(M)w ≃ D(Mw) by (2.8)

= D(R(w)(n)) ≃ R(w)(−n),

and hence grk(D(M)w) = v−n = grk(R(w)(n))(v−1) = grk(Mw)(v−1). One has also

Mw = R(w)(n) ≃ D(R(w)(−n))
≃ D(D(M)w) by above

≃ D(D(Mw)) by (2.8) again.
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2.10. ∀M ∈ C, recall that D(M) is graded with D(M)n = ModR(M,R)n = {f ∈ ModR(M,R)|
f(M i) ⊆ Ri+n = ModgrR(M,R(n)) ∀i ∈ Z} ∀n ∈ Z.

Consider first the case M = B(s), s ∈ S. Let δ ∈ V with ⟨δ,α∨
s ⟩ = 1, and let

Φs : D(B(s))→ B(s) via f $→ 1⊗Rs f(δ ⊗Rs 1)− (sδ)⊗Rs f(1⊗Rs 1).(1)

We show that Φs is invertible in C. ∀a ∈ R,

Φs(fa) = 1⊗ (fa)(δ ⊗ 1)− (sδ)⊗ (fa)(1⊗ 1) = 1⊗ f(δ ⊗ a)− (sδ)⊗ f(1⊗ a)

= 1⊗ f(δ ⊗ 1)a− (sδ)⊗ f(1⊗ 1)a = Φs(f)a.

Likewise, ∀a ∈ Rs, Φs(af) = aΦs(f). Also,

Φs(δf) = 1⊗ f(δ2 ⊗ 1)− (sδ)⊗ f(δ ⊗ 1)

= 1⊗ f((−δ(sδ) + δ(δ + sδ))⊗ 1)− (sδ)⊗ f(δ ⊗ 1)

= −1⊗ f(1⊗ 1)δ(sδ) + 1⊗ f(δ ⊗ 1)(δ + sδ)− (sδ)⊗ f(δ ⊗ 1)

= −δ(sδ)⊗ f(1⊗ 1) + (δ + sδ)⊗ f(δ ⊗ 1)− (sδ)⊗ f(δ ⊗ 1)

= δ{1⊗ f(δ ⊗ 1)− (sδ)⊗ f(δ ⊗ 1)} = δΦs(f).

Thus, Φs is R-bilinear. As δ ⊗ 1 ∈ B(s)1 and 1 ⊗ 1 ∈ B(s)−1, if f ∈ D(B(s))k, k ∈ Z,
1⊗Rs f(δ ⊗ 1)− (sδ)⊗Rs f(1⊗ 1) ∈ (R⊗Rs R)k+1 = B(s)k, and hence Φs is graded.

Now, D(B(s))Q = D(B(s))Qe ⊕D(B(s))Qs with

D(B(s))Qe = ModQ(B(s)Qe , Q) by (2.7.2)

= ModQ(Q(δ ⊗ 1− 1⊗ sδ), Q) by (2.2.6),

D(B(s))Qs = ModQ(B(s)Qs , Q) = ModQ(Q(δ ⊗ 1− 1⊗ δ), Q) likewise.

If f ∈ D(B(s))Qe , f(δ ⊗ 1) = f(1⊗ δ) = f(1⊗ 1)δ, and hence

1⊗ f(δ ⊗ 1)− sδ ⊗ f(1⊗ 1) = 1⊗ f(1⊗ 1)δ − sδ ⊗ f(1⊗ 1)

= (1⊗ δ − sδ ⊗ 1)f(1⊗ 1) ∈ B(s)Qe .

If f ∈ D(B(s))Qs , f(δ ⊗ 1) = f(1⊗ sδ) = f(1⊗ 1)sδ, and hence

1⊗ f(δ ⊗ 1)− sδ ⊗ f(1⊗ 1) = 1⊗ f(1⊗ 1)sδ − sδ ⊗ f(1⊗ 1) = (1⊗ sδ − sδ ⊗ 1)f(1⊗ 1)

= (δ ⊗ 1− 1⊗ δ)f(1⊗ 1) ∈ B(s)Qs as

1⊗ sδ − sδ ⊗ 1 = 1⊗ ((sδ + δ)− δ)− ((sδ + δ)− δ)⊗ 1

= (sδ + δ)⊗ 1− 1⊗ δ − (sδ + δ)⊗ 1 + δ ⊗ 1 = δ ⊗ 1− 1⊗ δ.

Thus, Φs ∈ C ′(D(B(s)), B(s)). Finally, ∀a, b ∈ R, 1⊗Rs a+ δ ⊗Rs b = 1⊗Rs {a+ (sδ + δ)b}−
sδ ⊗Rs b, and hence

B(s) = {1⊗Rs a− sδ ⊗Rs b|a, b ∈ R}.(2)

Then,

Ψs : B(s)→ D(B(s)) via 1⊗ a− sδ ⊗ b $→ “1⊗ x+ δ ⊗ y $→ bx+ ay” ∀a, b, x, y ∈ R(3)

23



gives an inverse to Ψs:

f $→ 1⊗ f(δ ⊗ 1)− sδ ⊗ f(1⊗ 1) $→

1⊗ x+ δ ⊗ y

f(1⊗ 1)x+ f(δ ⊗ 1)y

f(1⊗ x+ δ ⊗ y).

Note also that

(4)

m B(s) D(B(s))

evm D2(B(s)).

Ψs

∼
ev

∼ D(Φs)

For let f ∈ D(B(s)). ∀a, b ∈ R,

{(D(Φs) ◦Ψs)(1⊗ a− sδ ⊗ b)}(f) = {Ψs(1⊗ a− sδ ⊗ b) ◦ Φs}(f)(5)

= Ψs(1⊗ a− sδ ⊗ b)(Φs(f))

= Ψs(1⊗ a− sδ ⊗ b)(1⊗ f(δ ⊗ 1)− sδ ⊗ f(1⊗ 1))

= Ψs(1⊗ a− sδ ⊗ b){1⊗ {f(δ ⊗ 1)− (sδ + δ)f(1⊗ 1)}+ δ ⊗ f(1⊗ 1)}
= b{f(δ ⊗ 1)− (sδ + δ)f(1⊗ 1)}+ af(1⊗ 1)

= f(δ ⊗ b)− f((sδ + δ)⊗ b) + f(1⊗ a) = f(1⊗ a− sδ ⊗ b)

= ev1⊗a−sδ⊗b(f).

Then, ∀ϕ ∈ C(B(s), B(s)),

(6)

m evm

B(s) D2(B(s))

B(s) D2(B(s)) evϕ(m)

ϕ

∼
ev

D2(ϕ)

∼
ev

as {D2(ϕ)(evm)}(f) = (evm ◦ D(ϕ))(f) = evm(f ◦ ϕ) = (f ◦ ϕ)(m) = f(ϕ(m)) = evϕ(m)(f)
∀f ∈ D(B(s)), and hence

D2 ≃ id on B(s).(7)

More generally,

Lemma: ∀M ∈ C with D(M) ∈ C, ∀s ∈ S, D(B(s) ∗M) ≃ B(s) ∗D(M) in C. In particular,
∀x ∈ Sr, D(B(x)) ≃ B(x) in C, and hence DB ≃ B ∀B ∈ SBimod.

Proof: We regard B(s)∗? as R(1)⊗Rs?. Take δ ∈ V with ⟨δ,α∨
s ⟩ = 1. ∀f ∈ D(B(s) ∗M)k =

ModR(R(1)⊗Rs M,R)k, define f1 ∈ ModR(M,R)k−1 and f2 ∈ ModR(M,R)k+1 via

f1(m) = f(1⊗m) and f2(m) = f(δ ⊗m) ∀m ∈M.
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Let Φ : D(B(s) ∗M)→ B(s) ∗D(M) = R(1)⊗Rs ModR(M,R) via

f $→ 1⊗ f2 − (sδ)⊗ f1.(8)

∀a ∈ R, ∀m ∈M ,

(fa)1(m) = (fa)(1⊗m) = f(1⊗ma) = f(1⊗m)a = f1(m)a,

(fa)2(m) = (fa)(δ ⊗m) = f(δ ⊗ma) = f(δ ⊗m)a = f2(m)a,

and hence (fa)1 = f1a, (fa)2 = f2a. Thus, Φ ∈ ModgrR.

If a ∈ Rs, ∀m ∈M ,

(af)1(m) = (af)(1⊗m) = f(a⊗m) = f(1⊗ am) = f1(am) = (af1)(m),

(af)2(m) = (af)(δ ⊗m) = f(aδ ⊗m) = f(δ ⊗ am) = f2(am) = (af2)(m),

and hence (af)1 = af1, (af)2 = af2. Thus, Φ ∈ RsModgr. One has

(δf)1(m) = (δf)(1⊗m) = f(δ ⊗m) = f2(m),

(δf)2(m) = (δf)(δ ⊗m) = f(δ2 ⊗m) = f((−δ(sδ) + δ(δ + sδ))⊗m)

= −f(1⊗ δ(sδ)m) + f(δ ⊗ (δ + sδ)m) = −f1(δ(sδ)m) + f2(δ + sδ)m)

= −(δ(sδ)f1)(m) + ((δ + sδ)f2)(m),

and hence (δf)1 = f2, (δf)2 = −δ(sδ)f1 + (δ + sδ)f2. Then

Φ(δf) = 1⊗ (δf)2 − sδ ⊗ (δf)1 = 1⊗ {−δ(sδ)f1 + (δ + sδ)f2}− sδ ⊗ f2
= −δ(sδ)⊗ f1 + (δ + sδ)⊗ f2 − sδ ⊗ f2 = −δ(sδ)⊗ f1 + δ ⊗ f2
= δΦ(f),

and hence Φ ∈ RModgr also.

We show next that ∀w ∈W ,

ΦQ(D(B(s) ∗M)Qw) ⊆ (B(s) ∗D(M))Qw .(9)

Let f ∈ D(B(s) ∗ M)Qw = ModQ((B(s) ∗ M)Qw , Q) after (2.7.2). Recall from (2.3.ii) that
{B(s)⊗R MQ

y }⊕ {B(s)⊗R MQ
sy} ≃ (B(s) ∗M)Qy ⊕ (B(s) ∗M)Qsy ∀y ∈W . Then

f1(M
Q
y ) = f(1⊗MQ

y ) ⊆ f((B(s) ∗M)Qy ⊕ (B(s) ∗M)Qsy),

f2(M
Q
y ) = f(δ ⊗MQ

y ) ⊆ f((B(s) ∗M)Qy ⊕ (B(s) ∗M)Qsy),

and hence ∀y ̸∈ {w, sw},
f1(M

Q
y ) = 0 = f2(M

Q
y ).

Thus, suppW(f1), suppW(f2) ⊆ {w, sw}, and suppW(ΦQ(f)) = suppW(1 ⊗ f2 − sδ ⊗ f1) ⊆
{w, sw} by (1.7). As f ∈ D(B(s) ∗M)Qw ,

0 = f((B(s) ∗M)Qsw)

= f({δ ⊗m− 1⊗ (sδ)m+ δ ⊗m′ − 1⊗ δm′|m ∈MQ
sw,m

′ ∈MQ
w }) by (2.3.i).
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In particular, ∀m ∈MQ
sw,

0 = f(δ ⊗m− 1⊗ (sδ)m) = f2(m)− f1((sδ)m) = (f2 − (sδ)f1)(m),

and hence (f2)sw = (sδ)(f1)sw by (2.7.3). If m ∈MQ
w ,

0 = f(δ ⊗m− 1⊗ δm) = f2(m)− f1(δm) = (f2 − δf1)(m),

and hence (f2)w = δ(f1)w also. Then

ΦQ(f)sw = (1⊗ f2 − (sδ)⊗ f1)sw

= ((f2)sw − (sδ)(f1)sw, (f2)w − δ(f1)w) in D(M)Qsw ⊕D(M)Qw by (2.3.i)

= 0.

Thus, suppW(ΦQ(f)) ⊆ {w}, and (9) holds.

Finally, an inverse of Φ is given by

Ψ : g = 1⊗ g1 + δ ⊗ g2 $→ “1⊗m1 + δ ⊗m2 $→ g1(m2) + g2(m1 + (δ + sδ)m2)”

∀g1, g2 ∈ DM , ∀m1,m2 ∈M,

i.e.,

1⊗ g1 − sδ ⊗ g2 = 1⊗ g1 + δ ⊗ g2 − 1⊗ (sδ + δ)g2 = 1⊗ {g1 − (sδ + δ)g2}+ δ ⊗ g2(10)

$→ “1⊗m1 + δ ⊗m2 $→ (g1 − (sδ + δ)g2)(m2) + g2(m1 + (δ + sδ)m2)

= g1(m2) + g2(m1)”.

If a ∈ R,

Ψ(g)((1⊗m1 + δ ⊗m2)a) = g1(m2a) + g2(m1a) = {g1(m2) + g2(m1)}a
= Ψ(g)(1⊗m1 + δ ⊗m2)a,

and hence Ψ(g) is right R-linear. To see that Ψ(g) ∈ D(B(s) ∗M)k = ModR(R(1)⊗Rs M,R)k

if g = 1 ⊗ g1 − sδ ⊗ g2 ∈ (B(s) ∗ DM)k = {R(1) ⊗Rs ModR(M,R)}k, k ∈ Z, one has g1 ∈
(DM)k+1, g2 ∈ (DM)k−1. If 1⊗m1 + δ⊗m2 ∈ (B(s) ∗M)l, m1 ∈M l+1 and m2 ∈M l−1. Thus
g1(m2) + g2(m1) ∈ Rl+k, and hence Ψ(g) ∈ D(B(s) ∗M)k.

2.11. Let B ∈ SBimod, and let ΦB ∈ C(DB,B)×, ΨB′ ∈ C(B,DB)× as in (2.10).

Proposition: ∀ϕ ∈ C(B,B′), one has a commutative diagram

B D2B

DB

DB′

B′ D2B′.

ev

ΨB

∼

ϕ D2ϕ

D(ΦB)

∼

D(ΦB′ )

∼

Dϕ

ev

ΨB′

∼

26



In particular, D2 ≃ id on SBimod with D : C(B,B′)
∼−→ C(B′, B) via ϕ $→ D(ϕ).

Proof: Let M ∈ SBimod and ΦM ∈ C(DM,M)× with an inverse ΨM ∈ C(M,DM)× such
that D(ΦM) ◦ ΨM = ev as in (4), and let Φ ∈ C(D(B(s) ∗M), B(s) ∗M)× with an inverse
Ψ ∈ C(B(s) ∗M,D(B(s) ∗M))× as in (2.11). It suffices to show that

(1)

x B(s) ∗M B(s) ∗DM

D(B(s) ∗M)

evx D2(B(s) ∗M).

B(s)∗ΨM

∼

∼ Ψ

D((B(s)∗ΦM )◦Φ)

Let δ ∈ V with ⟨δ,α∨
s ⟩ = 1. Let a ∈ R and m ∈ M . Regarding a ⊗ m ∈ R(1) ⊗Rs M =

B(s) ∗M , we are to show on D(B(s) ∗M) that

{(Ψ ◦ (B(s) ∗ΨM))(a⊗m)} ◦ {(B(s) ∗ ΦM) ◦ Φ} = eva⊗m.(2)

Write a = a1 − (sδ)a2, a1, a2 ∈ Rs, and let m1,m2 ∈ M . Then, regarding 1 ⊗ m1, δ ⊗ m2 ∈
R(1)⊗Rs R = B(s) ∗M , one has

{(Ψ◦(B(s) ∗ΨM))(a⊗m)}(1⊗m1 + δ ⊗m2) = {Ψ(a⊗ΨM(m))}(1⊗m1 + δ ⊗m2)

= {Ψ(1⊗ a1ΨM(m)− sδ ⊗ a2ΨM(m))}(1⊗m1 + δ ⊗m2)

= (a1ΨM(m))(m2) + (a2ΨM(m))(m1) by (2.10.10)

while ∀f ∈ D(B(s) ∗M),

{(B(s)∗ΦM) ◦ Φ}(f) = (B(s) ∗ ΦM)(1⊗ f(δ⊗?)− sδ ⊗ f(1⊗?)) by (2.10.8) with

f(δ⊗?), f(1⊗?) ∈ DM and 1⊗ f(δ⊗?), sδ ⊗ f(1⊗?) ∈ R(1)⊗Rs DM = B(s) ∗M
= 1⊗ ΦM(f(δ⊗?))− sδ ⊗ ΦM(f(1⊗?)) in R(1)⊗Rs M = B(s) ∗M
= 1⊗ ΦM(f(δ⊗?))− (sδ + δ − δ)⊗ ΦM(f(1⊗?))
= 1⊗ {ΦM(f(δ⊗?))− (sδ + δ)⊗ ΦM(f(1⊗?)}+ δ ⊗ ΦM(f(1⊗?)).

Thus,

[{(Ψ ◦ (B(s) ∗ΨM))(a⊗m)} ◦ {(B(s) ∗ ΦM) ◦ Φ}](f)
= (a1ΨM(m)){ΦM(f(1⊗?))}+ (a2ΨM(m)){ΦM(f(δ⊗?))− (sδ + δ)ΦM(f(1⊗?)}
= (ΨM(a1m))(ΦM(f(1⊗?))) + (ΨM(a2m))(ΦM(f(δ⊗?)))

− (ΨM(a2m))(ΦM((sδ + δ)f(1⊗?)))
= (ΨM(a1m))(ΦM(f(1⊗?))) + (ΨM(a2m))(ΦM(f(δ⊗?)))

− (ΨM(a2m))(ΦM(f((sδ + δ)⊗?))).

Now, ∀m ∈M , ∀g ∈ DM ,

(ΨM(m))(ΦM(g)) = (ΨM(m) ◦ ΦM)(g) = {D(ΦM) ◦ ΦM)(m)}(g) = evm(g) = g(m).(3)
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It follows that

[{(Ψ ◦ (B(s) ∗ΨM))(a⊗m)} ◦ {(B(s) ∗ ΦM) ◦ Φ}](f)
= f(1⊗ a1m) + f(δ ⊗ a2m)− f((sδ + δ)⊗ a2m) = f(1⊗ a1m)− f(sδ ⊗ a2m)

= f(a1 ⊗m)− f((sδ)a2 ⊗m) as a1, a2 ∈ Rs

= ev(a1−a2sδ)⊗m(f) = eva⊗m(f),

as desired.

2.12. LetRMod (resp. RModgr) denote the category of (resp. graded) leftR-modules. ∀M ∈ C,
∀i ∈ Z, let Dl(M)i = RModgr(M,R(i)), and set Dl(M) =

∐
i∈Z D

l(M)i ≃ RMod(M,R) [NvO,
2.4.4]. We equipDl(M) with a structure ofR-bimodule such that (afb)(m) = f(amb) = af(mb)
∀f ∈ Dl(M), ∀a, b ∈ R, ∀m ∈M . Then

Q⊗R Dl(M) ≃ RMod(M,Q) by the 5 lemma

≃ QMod(Q⊗R M,Q) = QMod(
∐

w∈W

MQ
w , Q)

≃
∐

w∈W

QMod(MQ
w , Q) by (1.2.i).

∀f ∈ QMod(MQ
w , Q), ∀q1, q2 ∈ Q, ∀x ∈ MQ

w , (q1fq2)(x) = f(q1xq2) = q1(wq2)f(x), and hence
q1fq2 = q1(wq2)f . Thus, Dl(M) admits a structure of C ′ with

Dl(M)Qw = QMod(MQ
w , Q) ∀w ∈W .(1)

Also, Dl(M) is torsion free as a left R-module: if af = 0, a ∈ R, f ∈ Dl(M), ∀m ∈ M ,
0 = (af)(m) = f(am) = af(m). As R is a domain, if a ̸= 0, f = 0.

In particular, ∀w ∈W , ∀n ∈ Z,

Dl(R(w)(n)) ≃ R(w)(−n).(2)

For let f ∈ Dl(R(w)) and a, b ∈ R. Then

(afb)(1) = f(a1b) = f(a(wb)) = a(wb)f(1) = (a(wb)f)(1),

and hence afb = a(wb)f .

If f ∈ Dl(M), a ∈ R, and m ∈Mw, f(ma) = f((wa)m) = (wa)f(m), which may be distinct
from af(m), and hence Dl(M) need not be isomorphic to D(M).

Lemma: ∀M ∈ C with Dl(M) ∈ C, ∀s ∈ S, Dl(M ∗B(s)) ≃ Dl(M)∗B(s) in C. In particular,
∀x ∈ Sr, Dl(B(x)) ≃ B(x) ≃ D(B(x)).

Proof: We regard ? ∗ B(s) as ? ⊗Rs R(1). Take δ ∈ V with ⟨δ,α∨
s ⟩ = 1. ∀f ∈ Dl(M ∗

B(s))k = RMod(M ⊗Rs R(1), R)k, k ∈ Z, define f1 ∈ Dl(M)k−1 = RMod(M,R)k−1 and
f2 ∈ Dl(M)k+1 = RMod(M,R)k+1 via

f1(m) = f(m⊗ 1) and f2(m) = f(m⊗ δ).
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Let Φ : Dl(M ∗ B(s)) → Dl(M) ∗ B(s) = RMod(M,R) ⊗Rs R(1) via f $→ f2 ⊗ 1 − f1 ⊗ sδ.
∀a ∈ Rs, ∀m ∈M ,

(fa)1(m) = (fa)(m⊗ 1) = f(m⊗ a) = f(ma⊗ 1) = f1(ma) = (f1a)(m),

(fa)2(m) = (fa)(m⊗ δ) = f(m⊗ δa) = f(ma⊗ δ) = f2(ma) = (f2a)(m),

and hence (fa)1 = f1a, (fa)2 = f2a, Φ(fa) = (fa)2 ⊗ 1 − (fa)1 ⊗ sδ = f2a ⊗ 1 − f1a ⊗ sδ =
(f2 ⊗ 1− f1 ⊗ sδ)a = Φ(f)a. Also,

(fδ)1(m) = (fδ)(m⊗ 1) = f(m⊗ δ) = f2(m),

(fδ)2(m) = (fδ)(m⊗ δ) = f(m⊗ δ2) = f(m⊗ δ(sδ + δ − sδ))

= f(m(sδ + δ)⊗ δ)− f(mδsδ ⊗ 1) = (f2(sδ + δ))(m)− (f1δsδ)(m),

and hence (fδ)1 = f2, (fδ)2 = f2(sδ + δ)− f1δsδ. Then

Φ(fδ) = (fδ)2 ⊗ 1− (fδ)1 ⊗ sδ = f2(sδ + δ)⊗ 1− f1δsδ ⊗ 1− f2 ⊗ sδ

= f2 ⊗ (sδ + δ)− f1 ⊗ δsδ − f2 ⊗ sδ = f2 ⊗ δ − f1 ⊗ δsδ = (f2 ⊗ 1− f1 ⊗ sδ)δ

= Φ(f)δ,

and hence Φ is a homomorphism of graded R-bimodules.

We show next that ∀w ∈W ,

ΦQ(Dl(M ∗B(s))Qw) ⊆ {Dl(M) ∗B(s)}Qw .(3)

Let f ∈ Dl(M ∗ B(s))Qw = QMod((M ∗ B(s))Qw , Q). Recall from (2.3.iv) that, ∀y ∈ W , (M ∗
B(s))Qy ⊕ (M ∗B(s))Qys ≃ {MQ

y ⊗R B(s)}⊕ {MQ
ys ⊗R B(s)}. Then

(f1)
Q(MQ

y ) = fQ(MQ
y ⊗ 1) ⊆ fQ((M ∗B(s))Qy ⊕ (M ∗B(s))Qys),

(f2)
Q(MQ

y ) = fQ(MQ
y ⊗ δ) ⊆ fQ((M ∗B(s))Qy ⊕ (M ∗B(s))Qys),

and hence (f1)Q(MQ
y ) = 0 = (f2)Q(MQ

y ) unless y ∈ {w,ws}. Thus, suppW(f1), suppW(f2) ⊆
{w,ws}, and suppW(Φ(f)) = suppW(f2 ⊗ 1− f1 ⊗ sδ) ⊆ {w,ws}. As f ∈ Dl(M ∗B(s))Qw ,

0 = fQ((M ∗B(s))Qws)

= fQ({m⊗ δ −m(sδ)⊗ 1 +m′ ⊗ δ −m′δ ⊗ 1|m ∈MQ
ws,m

′ ∈MQ
w }) by (2.3.iii).

In particular, ∀m ∈MQ
ws,

0 = fQ(m⊗ δ −m(sδ)⊗ 1) = (f2)
Q(m)− (f1)

Q(m(sδ)) = (f2 − f1(sδ))
Q(m),

and hence (f2)ws = (f1)ws(sδ). If m′ ∈MQ
w ,

0 = fQ(m′ ⊗ δ −m′δ ⊗ 1) = (f2)
Q(m′)− (f1)

Q(m′δ) = (f2 − f1δ)
Q(m′),

and hence (f2)w = (f1)wδ. Then

Φ(f)ws = (f2 ⊗ 1− f1 ⊗ sδ)ws

= ((f2)ws − (f1)ws(sδ), (f2)w − (f1)wδ) in Dl(M)Qws ⊕Dl(M)Qw by (2.3.iii)

= 0.
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Thus, suppW(Φ(f)) ⊆ {w}, and (3) holds.

Finally, an inverse of Φ is given by Ψ : Dl(M) ∗B(s)→ Dl(M ∗B(s)) via

g = g1⊗ 1− g2⊗ sδ $→ “m1⊗ 1+m2⊗ δ $→ g1(m2)+ g2(m1)” ∀g1, g2 ∈ Dl(M), ∀m1,m2 ∈M.

∀a ∈ R,

Ψ(g)(a(m1 ⊗ 1 +m2 ⊗ δ)) = Ψ(g)(am1 ⊗ 1 + am2 ⊗ δ) = g1(am2) + g2(am1)

= a{g1(m2) + g2(m1)} = aΨ(g)(m1 ⊗ 1 +m2 ⊗ δ),

and hence Ψ(g) is left R-linear. If g = g1⊗1−g2⊗sδ ∈ (Dl(M)∗B(s))k = {RModR(M,R)⊗Rs

R(1)}k, k ∈ Z, g1 ∈ Dl(M)k+1 and g2 ∈ Dl(M)k−1. Ifm1⊗1+m2⊗δ ∈ (M ∗B(s))r, m1 ∈M r+1

and m2 ∈M r−1. Thus g1(m2) + g2(m1) ∈ Rr+k, and hence Ψ(g) ∈ Dl(M ∗B(s))k, as desired.

3. ງ-Heckeؠ algebras

3.1. Let v be an indeterminate. The ງ-Heckeؠ algebra H of (W ,S) is a Z[v, v−1]-algebra
having a basis {Hw|w ∈W} under the multiplication [S97] such that

(i) (Hs + v)(Hs − v−1) = 0 ∀s ∈ S,

(ii) HxHy = Hxy ∀x, y ∈W with ℓ(xy) = ℓ(x) + ℓ(y).

∀s ∈ S, put Hs = Hs + v. Thus [S97, p. 84], ∀x ∈W ,

HxHs =

{
Hxs + vHx if xs > x,

Hxs + v−1Hx else,
(1)

and likewise

HsHx =

{
Hsx + vHx if sx > x,

Hsx + v−1Hx else.
(2)

∀x = (s1, . . . , sr) ∈ Sr, put Hx = Hs1 . . . Hsr . ∀w ∈ W , define pwx ∈ Z[v, v−1] by Hx =∑
w∈W pwxHw. For s ∈ S we will often abbreviate pw(s) as p

w
s .

Lemma:
∑

w∈W vℓ(w)pwx (v
−1) = (v + v−1)r.

Proof: One has a Z[v, v−1]-algebra homomorphism sgn : H → Z[v, v−1] via Hw $→ v−ℓ(w). If
x = (s1, . . . , sr),

(v + v−1)r = sgn(Hx) = sgn(
∑

w∈W

pwxHw) =
∑

w∈W

pwx v
−ℓ(w),

and hence
(v−1 + v)r =

∑

w∈W

pwx (v
−1)vℓ(w).

30



3.2 Lemma: ∀w ∈W , dimQ B(x)Qw = dimQ{B(x)w}Q = pwx (1).

Proof: The first equality follows from (1.4.ii). For the 2nd equality we argue by induction on
ℓ(w). As

∑
w∈W pws Hw = Hs ∀s ∈ S,

pws =

⎧
⎪⎨

⎪⎩

1 if w = s,

v if w = e,

0 else.

(1)

Thus,

pws (1) =

{
1 if w ∈ {e, s},
0 else.

On the other hand, as B(s)Q = B(s)Qe ⊕ B(s)Qs with B(s)Qe ≃ Q(e) and B(s)Qs ≃ Q(s) by
(2.2.6),

dimB(s)Qw =

{
1 if w ∈ {e, s},
0 else.

Thus, dimB(s)Qw = pws (1) ∀w ∈W .

Under the specialization v ! 1 one has

Z⊗Z[v,v−1] H ≃ Z[W ] via 1⊗Hw $→ w ∀w ∈W .

Then, ∀x = (s1, . . . , sr),

(s1 + 1) . . . (sr + 1)←! 1⊗Hx = 1⊗
∑

w∈W

pwxHw $→
∑

w∈W

pwx (1)w.

Thus, ∀s ∈ S,
∑

w∈W

pw(s,s1,...,sr)(1)w = (s+ 1)(s1 + 1) . . . (sr + 1) = (s+ 1)
∑

w∈W

pw(s1,...,sr)(1)w

=
∑

x∈W

{px(s1,...,sr)(1)sx+ px(s1,...,sr)(1)x}.

Then,

psw(s1,...,sr)(1) + pw(s1,...,sr)(1) = pw(s,s1,...,sr)(1).(2)

∀M ∈ C, dim(B(s) ∗M)Qw = dimMQ
w + dimMQ

sw by (2.3.i). Thus,

dimB(x)Qw = dimB(s2, . . . , sr)
Q
w + dimB(s2, . . . , sr)

Q
s1w

= pw(s2,...,sr)(1) + ps1w(s2,...,sr)
(1) by the induction hypothesis

= pw(s1,...,sr)(1) by (2).

3.3. We will eventually show, under additional conditions on K, Soergel’s categorification
theorem that any Bw, B ∈ SBimod, w ∈ W , is left/right graded free over R, and that there
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is an isomorphism of Z[v, v−1]-algebras [SBimod] → H via [B] $→
∑

w∈W v−ℓ(w)grk(Bw)Hw,
where [SBimod] is the split Grothendieck group of SBimod.

Let x = (s1, . . . , sr) ∈ Sr and e = (e1, . . . , er) ∈ {0, 1}r. Put xe = se11 . . . serr , x0 = e,
x1 = se11 , x2 = se11 se22 , . . . , xr = xe. Assign a label U (resp. D) to i ∈ [1, r] iff xi−1si > xi−1

(resp. else). The defect dx(e) of e is defined by

dx(e) = |{i|the label of i is U and ei = 0}|− |{i|the label of i is D and ei = 0}|.

One has from [EW16, Lem. 2.7]

pwx =
∑

e
xe=w

vdx(e).

Define ux = (1 ⊗ 1) ∗ · · · ∗ (1 ⊗ 1) ∈ B(s1) ∗ · · · ∗ B(sr) = B(x). For our purposes we will
need

Assumption: ∀s, t ∈ S distinct with ord(st) = l < ∞, putting x = (s, t, . . . ) and y =
(t, s, . . . ) ∈ S l, ∃Φ ∈ C(B(x), B(y)) : Φ(ux) = uy; as ord(st) = l,

st . . .︸ ︷︷ ︸
l

= ts . . .︸ ︷︷ ︸
l

.

3.4. Let s, t ∈ S distinct with ord(st) <∞. Let T (s, t) be the set of reflections in ⟨s, t⟩. In the
rest of §3 we will verify

Lemma: If, ∀t1, t2 ∈ T (s, t) distinct, there is v ∈ V such that ⟨v,α∨
t1⟩ = 0 and ⟨v,α∨

t2⟩ = 1,
then Assumption (3.3) holds.

3.5. We will be arguing sometimes over K/m for m ∈ Max(K), see (4.9) for example, in which
case we will assume that (3.4) holds also for V ⊗K (K/m) in place of V .

We will argue after [S07]. We assume throughout the rest of §3 that the condition in (3.4)
holds. Put W ′ = ⟨s, t⟩ and T ′ = T (s, t) with ord(st) = l. Thus,

T ′ = {st . . .︸ ︷︷ ︸
n

, ts . . .︸ ︷︷ ︸
n

|n odd} = {w ∈W ′|ℓ(w) odd}.(1)

Recall also that a reduced expression of w ∈ W ′ is a sequence from {s, t} [HRC, Th. 5.5, p.
113].

Lemma: W ′ acts faithfully on V .

Proof: Let w ∈W ′ be trivial on V .

Just suppose ℓ(w) is odd. By (1) there is u ∈ {s, t} with ℓ(uwu) < ℓ(w); if w = (s, t, . . . , s)
is a reduced expression of w, sws < w. Likewise, if w = (t, s, . . . , t).
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Then uwu is also trivial on V . As ℓ(uwu) = ℓ(w) − 2, by induction on the length either s or
t is trivial on V . Assume for the moment that s is trivial on V . Take v ∈ V with ⟨v,α∨

s ⟩ = 1
by (1.1.iii). Then v = sv = v − αs, and hence αs = 0, contradicting the standing hypothesis
(1.1.iii).

Thus, ℓ(w) must be even. Then w = ux for some u ∈ {s, t} and x ∈ T ′ by (1) again.
Just suppose w ̸= e. Then x ̸= u. Take v ∈ V with ⟨v,α∨

x ⟩ = 0 while ⟨v,α∨
u⟩ = 1. Then

v = wv = v − αu, and hence αu = 0, absurd again.

3.6. ∀M ∈ C with suppW(M) ⊆ W ′, the decomposition MQ =
∐

x∈W ′ MQ
x is determined

by the R-bimodule structure on M , thanks to (3.5) and Rmk. 1.2.(ii). As suppW(B(x))
and suppW(B(y)) in (3.4) are both contained in W ′, we have only to show the existence of
Φ ∈ RBimodgr(B(x), B(y)) with Φ(ux) = uy. Note also that ∀t1, t2 ∈ T ′ distinct,

α∨
t1 and α∨

t1 are linearly independent over K.(1)

For let ξ1α∨
t1 + ξ2α∨

t2 = 0 with ξ1, ξ2 ∈ K. Take v ∈ V with ⟨v,α∨
t1⟩ = 0 and ⟨v,α∨

t2⟩ = 1. Then
0 = ⟨v, ξ1α∨

t1 + ξ2α∨
t2⟩ = ξ2. As α∨

t2 ̸= 0 by the standing hypothesis, ξ1 = 0 also.

Thus, Frac(K)α∨
t1+Frac(K)α∨

t2 is 2-dimensional, which is contained in Frac(K)α∨
s+Frac(K)α∨

t ;
α∨
xsx−1 = xα∨

s ∀x ∈W ′ by (1.1). It follows that

Frac(K)α∨
t1 + Frac(K)α∨

t2 = Frac(K)α∨
s + Frac(K)α∨

t .(2)

Note next that we may assume K is infinite by base change, e.g., to K[v] which is free over
K; if we let C(R[v]) denote C over R[v] = R⊗K K[v],

C(R[v])(B(x)⊗K K[v], B(y)⊗K K[v])

≃ C(R[v])(R(e)⊗K K[v], · · · ∗B(t) ∗B(s) ∗B(y)⊗K K[v]) by (2.6)

≃ C(R(e), · · · ∗B(t) ∗B(s) ∗B(y))⊗K K[v] by (1.6.2); ∀M ∈ C with suppW(M) ⊆W ′,

(M ⊗K K[v])Q(v) ≃ Q(v)⊗R M ≃ Q(v)⊗Q MQ = Q(v)⊗Q

∐

x∈W ′

MQ
x , and hence

(M ⊗K K[v])Q(v)
x ≃ Q(v)⊗Q MQ

x

≃ C(B(x), B(y))⊗K K[v].

Thus, if
∑

i Φi⊗ vi ∈ C(R[v])(B(x)⊗K K[v], B(y)⊗K K[v]) sends ux⊗ 1 to uy ⊗ 1, Φ0(ux) = uy.
We may then regard R⊗KR as the K-algebra of rational functions on V ∨×V ∨ with V ∨ denoting
the K-dual of V .

∀x ∈W ′, let Gr(x) = {(f, x−1f)|f ∈ V ∨}. ∀A ⊆W ′, let

R(A) = (R⊗K R)/I(∪x∈AGr(x)) = (R⊗K R)/ ∩x∈A (xa⊗ 1− 1⊗ a|a ∈ R)

≤
∏

x∈A

{(R⊗K R)/(xa⊗ 1− 1⊗ a|a ∈ R)}

≃
∏

A

R
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using

(R⊗K R)/(xa⊗ 1− 1⊗ a|a ∈ R)
∼−→ R via a⊗ b $→ a(xb).(3)

Thus,

(4)

a⊗ b (a(xb))x∈A

R⊗K R
∏

A R,

R(A)

which induces by base extension

R(A)Q
∼−→

∏

A

Q.(5)

To see that, note first that, as W ′ is faithful on V , ∀x ∈ W ′ \ {e}, ker(x − id) < V . Then
V ⊃ ∪x∈W ′\{e} ker(x − id) as K is now infinite; here we could even argue over Frac(K). Take
c ∈ V \ ∪x∈W ′\{e} ker(x − id) ⊆ R, so xc ̸= c ∀x ∈ W ′ \ {e}. ∀x ∈ A, let cx ∈ R ⊗K R such
that cx(f, g) =

∏
y∈A\{x}{c(f)− c(yg)} ∀f, g ∈ V ∨. Thus, cx = 0 on Gr(y) ∀y ∈ A \ {x} while

cx ̸= 0 on Gr(x). Then, ∀(qx|x ∈ A) ∈
∏

A Q,
∑

x∈A

qx
cx|Gr(x)

⊗ cx = (qx)x

in Q⊗R {
∏

x∈A(R⊗K R)/(xa⊗ 1− 1⊗ a|a ∈ R)} ≃
∏

A Q.

In particular, R(A)Q =
∐

x∈A R(A)Qx =
∐

x∈W ′ R(A)Qx with R(A)Qx = Q⊗R {(R⊗KR)/(xa⊗
1− 1⊗ a|a ∈ R)}, and hence

R(A) ∈ Ctf .(6)

One has R({x}) ≃ R(x). We will abbreviate R({x1, . . . , xr}) as R(x1, . . . , xr).

Let R(A)+ be the image of R⊗K Rs in R(A).

Lemma: If As = A in W ′, R(A)+ ⊗Rs R
∼−→ R(A) via φ⊗ a $→ φ(1⊗ a).

Proof: We have only to show that the map is injective. Take δ ∈ V with ⟨δ,α∨
s ⟩ = 1. As

R = Rs ⊕ δRs by (2.1), one has a CD

R(A)+ ⊗Rs R R(A)

{R(A)+ ⊗Rs Rs}⊕ {R(A)+ ⊗Rs δRs} R(A)+ +R(A)+(1⊗ δ).

Thus, it is enough to show that R(A)+ ∩ R(A)+(1 ⊗ δ) = 0. Let f = g(1 ⊗ δ), f, g ∈ R(A)+,
which reads fx = gx(xδ) ∀x ∈ A in

∏
A R. As A = As and as both f and g belong to the image

34



of R⊗K Rs

fx = fxs by (3)

= gxs(xsδ) = gx(xsδ) likewise.

Then 0 = gx(xδ − xsδ) = gx(xαs), and hence gx = 0 ∀x ∈ A. Thus, g = 0.

3.7 Lemma: Let x ∈W ′ with xs > x and A = {y ∈W ′|y ≤ x}. Then

R(A)⊗R B(s) ≃ {R(A ∪ As)(1)}⊕ {R(A ∩ As)(−1)}.

Proof: Assume first that x = e. Then A = {e}, As = {s}, A ∪ As = {e, s}, and A ∩ As = ∅.
Thus, we are to show that B(s) ≃ R(e, s)(1), and hence we have only to show that

R⊗K R R(e, s).

R⊗Rs R

qt

∼

Take δ ∈ V with ⟨δ,α∨
s ⟩ = 1. As R ⊗Rs R = R ⊗Rs {Rs ⊕ δRs} by (2.1), let a⊗ 1 + b⊗ δ = 0

in R(e, s), a, b ∈ R. Then, calculating in
∏

{e,s} R by (3.6.3), one has

0 = (a⊗ 1 + b⊗ δ)e = a+ bδ,

0 = (a⊗ 1 + b⊗ δ)s = a+ b(sδ) = a+ b(δ − αs),

and hence aαs = 0 in R. Then a = 0, and hence also b = 0. Thus, R ⊗Rs R
∼−→ R(e, s), as

desired.

Thus, we may assume x > e. As xs > x, a reduced expression of x must end with t and

A \ As = {y ∈W ′|y ≤ x, ys ̸≤ x}(1)

=

{
{x, tx} if ℓ(x) is odd,

{x, sx} else

= {x, xr} with r =

{
x−1tx if ℓ(x) is odd,

x−1sx else.

As xs > x again, r ̸= s. Take v0 ∈ V with ⟨v0,α∨
r ⟩ = 0 while ⟨v0,α∨

s ⟩ = 1, and put ξ =
xv0 ⊗ 1− 1⊗ v0 ∈ V ⊗K R ⊆ R⊗K R. We show next that, ∀φ ∈ R(A),

φξ = 0 in R(A) iff φ = 0 in R(A ∩ As)(2)

under the restriction R(A)" R(A ∩ As).

“if” We show φξ = 0 in
∏

A R, i.e., (φξ)y = 0 ∀y ∈ A. As φy = 0 ∀y ∈ A∩As, we have only
to verify that ξy = 0 ∀y ∈ A \ As = {x, xr}. But

ξy = (xv0 ⊗ 1− 1⊗ v0)y = xv0 − yv0 by (3.6.3)

= 0 as rv0 = v0.
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“only if” It is enough to show that ξy = 0 ∀y ∈ A∩As. Just suppose 0 ̸= ξy = xv0− yv0 for
some y ∈ A ∩ As. Then v0 = y−1xv0 = y−1xrv0. By (3.5.1) either y−1x or y−1xr ∈ T ′, which
we denote by z; {z} = {y−1x, y−1xr} ∩ T ′. Thus, zv0 = v0, and ⟨v0,α∨

r ⟩ = 0 = ⟨v0,α∨
z ⟩. But

r ̸= z; if r = z = y−1x, y = xr−1 = xr ∈ A \As, absurd. If r = z = y−1xr, y = x ̸∈ As, absurd
again. Then by (3.6.2)

Frac(K)α∨
r + Frac(K)α∨

z = Frac(K)α∨
s + Frac(K)α∨

t ,

and hence 1 = ⟨v0,α∨
s ⟩ = 0, absurd.

If Ann(ξ) = {φ ∈ R(A)|φξ = 0}, (2) yields in RBimod

(3)

φ|A∩As R(A ∩ As) R(A)/Ann(ξ) R(A)ξ φξ.

R(A)

φ

∼∼

Thus, R(A ∩ As)(−2) ≃ R(A)ξ. Also, (3) induces

R(A ∩ As)+ R(A)+ξ,

R⊗K Rs

∼

and hence

R(A ∩ As)+(−2) ≃ R(A)+ξ.(4)

Consider next res : R(A ∪ As) " R(A). Under the right multiplication of s on A ∪ As
let R(A ∪ As)s = {φ ∈ R(A ∪ As)|φ(f, x−1f) = φ(f, (xs)−1f) ∀f ∈ V ∨, ∀x ∈ A ∪ As}. If
φ ∈ R(A ∪ As)s with φ|A = 0, φ|As = 0 also, and hence

(5)

R(A ∪ As) R(A).

R(A ∪ As)s

res

Also, R(A ∪ As)+ ⊆ R(A ∪ As)s; ∀a ∈ R, ∀b ∈ Rs, ∀f ∈ V ∨, ∀x ∈ A ∪ As,

(a⊗ b)(f, x−1f) = a(f)b(x−1f) = a(f)(sb)(x−1f) = a(f)b(sx−1f) = (a⊗ b)(f, (xs)−1f).(6)

Let M be the image of R(A ∪ As)+ in R(A) under (5). Then we are left to show that

R(A) = M ⊕R(A)+ξ,(7)

in which case

R(A)⊗R B(s) ≃ R(A)⊗Rs R(1)

≃ {R(A ∪ As)+ ⊗Rs R(1)}⊕ {R(A ∩ As)+(−2)⊗Rs R(1)} by (4)

≃ R(A ∪ As)(1)⊕ {R(A ∩ As)(−1) by (3.6).
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Now,

M +R(A)+ξ $ R⊗K Rs + (R⊗K Rs)ξ = R⊗K Rs +R⊗K Rsv0 as ξ = xv0 ⊗ 1 + 1⊗ v0
= R⊗K R as Rs +Rsv0 = Rs ⊕Rsv0 = R by (2.1),

and hence M +R(A)+ξ = R(A).

Let finally φξ = m for some φ ∈ R(A)+ and m ∈ M . Let φ̂ be a lift of φ in R ⊗K Rs.
Consider φ̂ = (φ̂y) and m = (my) in

∏
A∩As R. Thus, ∀y ∈ A ∩ As,

my = φ̂yξy = φ̂y(xv0 − yv0) by (3.6.3),

mys = φ̂ysξys = φ̂ys(xv0 − ysv0) likewise

with mys = my and φ̂ys = φ̂y by (6). Then 0 = φ̂y(yv0 − ysv0) = φ̂y(yαs). Thus, φ̂ = 0 in
R(A ∩ As). Then by (4) one has φξ = 0 in R(A), and (7) holds.

3.8. If x ∈ W ′ with xs > x, (≤ x) ∪ (≤ x)s = (≤ xs), and hence R(≤ xs)(1) is a direct
summand of R(≤ x)⊗RB(s) by (3.7). Thus, for a reduced expression w = (. . . , s, t) of w ∈W ′,
R(≤ w)(1) is a direct summand of R(≤ wt)⊗R B(t), R(≤ wt)(1) is a direct summand of R(≤
wts)⊗RB(s),. . . , and hence R(≤ w)(ℓ(w)) is a direct summand of · · ·⊗RB(s)⊗RB(t) = B(w).
Likewise if (. . . , s, t) is a reduced expression. Thus, in either case

R(≤ w)(ℓ(w)) is a direct summand of B(w).(1)

In particular, R(≤ w)(ℓ(w)) ∈ C.

In our set up (3.3), x and y are both reduced expressions of the longest element z0 of W ′

and l = ℓ(z0). Thus, R(≤ z0)(l) is a direct summand of both B(x) and B(y). Write

B(x) B(y).

R(≤ z0)(l)

Φ

proj

Lemma: One has
B(x) B(y)

B(x)z0 B(y)z0 .

Φ

∼

Proof: If w is a reduced expression of w ∈ W ′, dimB(w)Qw = 1 by (2.3), and hence B(w) =
R(≤ w)(ℓ(w))⊕M for some M by (1) with suppW(M) ⊆ (< w) by (2.4). Thus,

B(x)z0 = {R(≤ z0)(l)}z0 :
B(x) R(≤ z0)(l)

B(x)z0 {R(≤ z0)(l)}z0 .∼
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Likewise, {R(≤ z0)(l)}z0 ≃ B(y)z0 , and hence the assertion.

3.9. We now complete the proof of (3.4). Define a homomorphism of graded R-bimodules
mx : B(x)→ R(z0)(l) via R⊗Rs R⊗Rt R · · · ∋ a0 ⊗ a1 ⊗ · · ·⊗ al $→ a0(sa1)(sta2) . . . (st . . . al).
By (3.5) and Rmk. 1.2.(ii) one has mx ∈ C, which induces by (1.4.v) a surjection mx ∈
C(B(x)z0 , R(z0)(l)). Then mx is invertible by consideration of rank. Likewise, B(y)z0 ≃
R(z0)(l) ≃ B(x)z0 .

Finally, B(x)−l (resp. B(y)−l) is free over K of basis ux (resp. uy). Then by (3.8) we must
have Φ(ux) = cuy for some c ∈ K×, and hence c−1Φ will do.

4. Light leaves

We recall from [EW16] Libedinsky’s light leaves [Lib], to describe a basis of B(x)w among
other things. From now on we will assume K is local, so that a direct summand of a graded
free left R-module remains graded free [Lam, Cor. II.5.4.7, p. 79].

4.1. Let w ∈ W and x, y ∈ Sℓ(w) 2 reduced expressions of w. Thus, there is a sequence of
reduced expressions x0 = x, x1, . . . , xr = y such that each pair of xi and xi+1 differs by a single
braid relation. Under the standing hypothesis (3.3) there is φi ∈ C(B(xi), B(xi+1)) such that
uxi $→ uxi+1 . Their composite B(x)→ B(y) is called a rex [EW16, 16.4.2], so that

rex(ux) = uy.(1)

∀s ∈ S, ∀a ∈ R, set ∂s(a) = a−sa
αs

, which is a twisted derivation: ∀b ∈ R, ∂s(ab) =
(∂sa)b+ (sa)∂sb. Define ms ∈ RBimod(B(s), R)1 via

R⊗Rs R ∋ a⊗ b $→ ab ∈ R,

is0 ∈ RBimod(B(s) ∗B(s), B(s))−1 via

R⊗Rs R⊗Rs R ∋ a⊗ b⊗ c $→ a∂s(b)⊗ c ∈ R⊗Rs R,

and set is1 = ms ◦ is0 ∈ RBimod(B(s) ∗ B(s), R)0 : R ⊗Rs R ⊗Rs R ∋ a ⊗ b ⊗ c $→ a∂s(b)c ∈ R.
As ⟨s⟩ acts faithfully on V , one has from Rmk. 1.2(ii) that

ms ∈ C(B(s), R(1)), is0 ∈ C(B(s) ∗B(s), B(s)(−1)), is1 ∈ C(B(s) ∗B(s), R).

4.2. Let x = (s1, . . . , sr) ∈ Sr, e = (e1, . . . , er) ∈ {0, 1}r, w = xe. Fix a reduced expresson w
of w. We define a light leaf LLx,e ∈ C(B(x), B(w)(d(e))) inductively as follows; the definition
will depend not only on the choice of reduced expression w but also on the choices of rex’s
involved, but that will not be important. Let x≤k = (s1, . . . , sk), e≤k = (e1, . . . , ek), and
wk = x

e≤k

≤k = se11 . . . sekk . Recall from (3.3) labels U, D, and the defect d. Fix a reduced
expresson wk of wk and define LLk ∈ C(B(x≤k), B(wk)(d(ek))) in 4 cases as follows:

Case U0: ek = 0 and wk−1sk > wk−1. Thus, d(e≤k) = d(e≤k−1) + 1, and wk is a reduced
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expression also of wk−1 = se11 . . . s
ek−1

k−1 = se11 . . . sekk = x
e≤k

≤k = wk.

B(x≤k−1) ∗B(sk) B(w≤k−1)(d(e≤k−1)) ∗B(sk)

B(wk)(d(e≤k)) B(w≤k−1)(d(e≤k)),

LLk

LLk−1⊗RB(sk)

B(w≤k−1)⊗Rmsk

rex

Case U1: ek = 1 and wk−1sk > wk−1. Thus, d(e≤k−1) = d(e≤k) and (wk−1, sk) is a reduced
expression of wk.

B(x≤k−1) ∗B(sk) B(w≤k−1)(d(e≤k−1)) ∗B(sk)

B(w≤k)(d(e≤k)),
LLk

LLk−1⊗RB(sk)

rex

Case D0: ek = 0 and wk−1sk < wk−1. Thus, d(e≤k) = d(e≤k−1) − 1, wk is a reduced
expression also of wk−1 = se11 . . . s

ek−1

k−1 = se11 . . . sekk = x
e≤k

≤k = wk, and there is a reduced
expression (t1, . . . , tl, sk) for wk−1.

B(x≤k−1) ∗B(sk) B(w≤k−1)(d(e≤k−1)) ∗B(sk) B(t1, . . . , tl, sk)(d(e≤k−1)) ∗B(sk)

B(t1, . . . , tl)(d(e≤k−1)) ∗B(sk) ∗B(sk)

B(wk)(d(e≤k)) B(t1, . . . , tl, sk)(d(e≤k−1)− 1).

LLk

LLk−1⊗RB(sk) rex⊗RB(sk)

B(t1,...,tl)(d(e≤k−1))⊗Ri
sk
0

rex

Case D1: ek = 1 and wk−1sk < wk−1. Thus, d(e≤k) = d(e≤k−1), there is a reduced expression
(t1, . . . , tl, sk) of wk−1, and hence (t1, . . . , tk−1) is a reduced expression of wk = wk−1sk.

B(x≤k−1) ∗B(sk) B(w≤k−1)(d(e≤k−1)) ∗B(sk) B((t1, . . . , tl, sk))(d(e≤k−1)) ∗B(sk)

B(wk)(d(e≤k)) B((t1, . . . , tl))(d(e≤k−1)).

LLk

LLk−1⊗RB(sk) rex⊗RB(sk)

B((t1,...,tl))(d(e≤k−1))⊗Ri
sk
1

rex

Set now LLx,e = LLr. One could define LLw,(1,...,1) = idB(w) by taking each wk as a subsequence
of w and taking id for rex in each case U1, which, however, is not important.

4.3. Fix x = (s1, . . . , sr) ∈ Sr.

Lemma: Let e, f ∈ {0, 1}r with xe = xf . If the labels U/D of e and f coincide at each place,
e = f .

Proof: We argue by descending induction on r to show that ei = fi ∀i ∈ [1, r].

If the labels of e and f at r are both U, se11 . . . ser−1
r−1 sr > se11 . . . ser−1

r−1 . Assume first er = 0.

Just suppose fr = 1. Then se11 . . . ser−1
r−1 = xe = xf = sf11 . . . sfr−1

r−1 sr, and hence se11 . . . ser−1
r−1 sr <
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se11 . . . ser−1
r−1 , absurd. If er = 1 and fr = 0, sf11 . . . sfr−1

r−1 sr < sf11 . . . sfr−1
r−1 likewise, absurd again.

Thus, er = fr if the labels of e and f at r are both U.

Assume next that the labels of e and f at r are both D. Then se11 . . . ser−1
r−1 sr < se11 . . . ser−1

r−1 .
Assume er = 0 and just suppose fr = 1. Then

se11 . . . ser−1
r−1 = xe = xf = sf11 . . . sfr−1

r−1 sr < sf11 . . . sfr−1
r−1 ,

and hence se11 . . . ser−1
r−1 sr = xesr = xfsr = sf11 . . . sfr−1

r−1 > se11 . . . ser−1
r−1 , absurd. Likewise, if er = 1,

we must have fr = 1 also. Thus, er = fr if the labels of e and f at r are both D also.

Assume now that ej = fj ∀j > i. As se11 . . . serr = xe = xf = sf11 . . . sfrr , s
e1
1 . . . seii = sf11 . . . sfii

by the induction hypothesis. Then ei = fi as in the case i = r.

4.4. Let w ∈W and x ∈ Sr. By (4.3) one can introduce a total order <x,w, abbreviated simply
as <, on {e ∈ Sr|xe = w} in such a way that f < e iff ∃i ∈ [1, r]:

(i) the labels of e and f are the same at j ∀j < i,

(ii) the labels of e at i is D,

(iii) the labels of f at i is U.

In particular, if (i) holds and if the label of e at i is U, regardless of the label of f at i,
f ≥ e. ∀s ∈ S, choose δs ∈ V such that ⟨δs,α∨

s ⟩ = 1. ∀e ∈ {0, 1}r, define bx,e ∈ B(x) by
bx,e = b1 ⊗R · · ·⊗R br ∈ B(s1) ∗ · · · ∗B(sr) = B(x) with

bi =

{
1⊗ 1 if the label of e at i is U,

δsi ⊗ 1 else.

Proposition: Let e, f ∈ {0, 1}r with xe = w = xf . Fix a reduced expression w of w. Under
LLx,e ∈ C(B(x), B(w)(d(e)))

LLx,e(bx,f ) =

{
uw if f = e,

0 if f < e.

In particular, {LLx,e|xe = w} is a left/right R-linearly independent set. Also, deg(bx,e) =
−d(e)− ℓ(w).

Proof: We show by induction on k that

LLk(bx≤k,f≤k
) =

{
uwk

if f≤k = e≤k,

0 if f≤k < e≤k.

To start the induction, let k = 1. By definition the labels of e and f at 1 are U, and hence
bx≤1,f≤1

= 1⊗ 1. If e1 = 0, we are in Case U0 and

LL1(bx≤1,f≤1
) = rex ◦ms1(1⊗ 1) = rex(1) = 1 = uw1

as w1 = ∅ = w0.
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If e1 = 1, we are in Case U1 and

LL1(bx≤1,f≤1
) = rex(1⊗ 1) = 1⊗ 1

= uw1
as w1 = s1 and w1 = (s1).

Assume now that the labels of e≤k and f≤k are the same at all places, and hence e≤k =≤k by
(4.3). Assume first that the label of e at k is U, and hence bx≤k,f≤k

= bx≤k,e≤k
= bx≤k−1,e≤k−1

⊗1⊗1
by definition. If ek = 0, we are in Case U0, and, suppressing the shifts in the following, have

LLk(bx≤k,f≤k
) = rex ◦ (B(wk−1)⊗R msk) ◦ (LLk−1 ⊗R B(sk))(bx≤k−1,f≤k−1

⊗ 1⊗ 1)

= rex ◦ (B(wk−1)⊗R msk)(uwk−1
⊗ 1⊗ 1) by the induction hypothesis

= rex(uwk−1
⊗ 1) = rex(uwk−1

)

= uwk
by definition (4.1.1).

If ek = 1, we are in Case U1, and have

LLk(bx≤k,f≤k
) = rex ◦ (LLk−1 ⊗R B(sk))(bx≤k−1,f≤k−1

⊗ 1⊗ 1)

= rex(uwk−1
⊗ 1⊗ 1) by the induction hypothesis

= rex(uwk
) = uwk

.

Assume next that the label of e at k is D, and hence bx≤k,f≤k
= bx≤k,e≤k

= bx≤k−1,f≤k−1
⊗δsk⊗1.

As wk−1sk < wk−1, let (t1, . . . , tl, sk) be a reduced expression of wk−1. If ek = 0, we are in Case
D0, and have

LLk(bx≤k,f≤k
) = rex ◦ (B(t1, . . . , tl)⊗R isk0 ) ◦ (rex⊗R B(sk))

◦ (LLk−1 ⊗R B(sk))(bx≤k−1,f≤k−1
⊗ δsk ⊗ 1)

= rex ◦ (B(t1, . . . , tl)⊗R isk0 ) ◦ (rex⊗R B(sk))(uw≤k−1
⊗ δsk ⊗ 1)

by the induction hypothesis

= rex ◦ (B(t1, . . . , tl)⊗R isk0 )(u(t1,...,tl,sk) ⊗ δsk ⊗ 1) by (4.1.1)

= rex(u(t1,...,tl) ⊗ isk0 (1⊗ δsk ⊗ 1)) as 1⊗ 1⊗ δsk ⊗ 1 $→ 1⊗ δsk ⊗ 1 under

B(sk) ∗B(sk) = R⊗Rsk R⊗R R⊗Rsk R
∼−→ R⊗Rsk R⊗Rsk R

= rex(u(t1,...,tl) ⊗ 1⊗ 1) = rex(u(t1,...,tl,sk)) = uwk
.

If ek = 1, we are in Case D1, and have

LLk(bx≤k,f≤k
) = rex ◦ (B(t1, . . . , tl)⊗R isk1 ) ◦ (rex⊗R B(sk))

◦ (LLk−1 ⊗R B(sk))(bx≤k−1,f≤k−1
⊗ δsk ⊗ 1)

= rex ◦ (B(t1, . . . , tl)⊗R isk1 ) ◦ (rex⊗R B(sk))(uw≤k−1
⊗ δsk ⊗ 1)

by the induction hypothesis

= rex ◦ (B(t1, . . . , tl)⊗R isk1 )(u(t1,...,tl,sk) ⊗ δsk ⊗ 1) by (4.1.1)

= rex ◦ (B(t1, . . . , tl)⊗R isk1 )(u(t1,...,tl) ⊗ 1⊗ δsk ⊗ 1)

= rex(u(t1,...,tl)) = uwk
.
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Thus, we are done in the case that e≤k = f≤k, and hence LLx,e(bx,e) = uw.

Assume finally that f < e. Take k such that the labels of e and f are the same up to k − 1
and the labels of e (resp. f) at k is D (resp. U). Then bx≤k,f≤k

= bx≤k−1,f≤k−1
⊗ 1 ⊗ 1. As the

label of e at k is D, wk−1sk < wk−1, and hence wk−1 admits a reduced expression (t1, . . . , tl, sk).
If ek = 1, we are in Case D1, and have

LLk(bx≤k,f≤k
) = rex ◦ (B(t1, . . . , tl)⊗R isk1 ) ◦ (rex⊗R B(sk))

◦ (LLk−1 ⊗R B(sk))(bx≤k−1,f≤k−1
⊗ 1⊗ 1)

= rex ◦ (B(t1, . . . , tl)⊗R isk1 ) ◦ (rex⊗R B(sk))(uw≤k−1
⊗ 1⊗ 1)

= rex ◦ (B(t1, . . . , tl)⊗R isk1 )(u(t1,...,tl,sk) ⊗ 1⊗ 1)

= rex ◦ (B(t1, . . . , tl)⊗R isk1 )(u(t1,...,tl) ⊗ 1⊗ 1⊗ 1) = 0.

If ek = 0, we are in Case D0 and

LLk(bx≤k,f≤k
) = rex ◦ (B(t1, . . . , tl)⊗R isk0 ) ◦ (rex⊗R B(sk))

◦ (LLk−1 ⊗R B(sk))(bx≤k−1,f≤k−1
⊗ 1⊗ 1)

= rex ◦ (B(t1, . . . , tl)⊗R isk0 ) ◦ (rex⊗R B(sk))(uw≤k−1
⊗ 1⊗ 1)

= rex ◦ (B(t1, . . . , tl)⊗R isk0 )(u(t1,...,tl,sk) ⊗ 1⊗ 1)

= rex ◦ (B(t1, . . . , tl)⊗R isk0 )(u(t1,...,tl) ⊗ 1⊗ 1⊗ 1) = 0.

4.5 A basis of B(x)w: Let w ∈ W , x ∈ Sr, e ∈ {0, 1}r with xe = w. Let bwx,e be the image of

bx,e ∈ B(x)−d(e)−ℓ(w) in B(x)w under the projection πw
x : B(x)→ B(x)w. Let w = (t1, . . . , tl) ∈

S l, l = ℓ(w), be a reduced expression of w. Recall mti ∈ C(B(ti), R(ti)(1)), i ∈ [1, l], via
a⊗ b $→ a(tib) from (2.2.17), and set mw = mt1 ◦ (B(s1) ∗mt2) ◦ · · · ◦ (B(t1, . . . , tl−2) ∗mtl−1) ◦
(B(t1, . . . , tl−1) ∗ mtl) ∈ C(B(w), R(w)(ℓ(w))). Thus, mw : B(w) = R ⊗Rt1 R · · · ⊗Rtl R ∋
a0 ⊗ a1 ⊗ · · ·⊗ al $→ a0(t1a1) . . . (t1 . . . tlal).

Theorem: (i) B(x)w is left/right graded free over R having a basis {bwx,e|xe = w}, so

grk(B(x)w) =
∑

e∈{0,1}r
xe=w

vd(e)+ℓ(w) = vℓ(w)pwx .

In particular, B(x)x ≃ R(x)(ℓ(x)) of basis bxx,(1,...,1) = πx
x(ux).

(ii) {mw ◦ LLx,e|xe = w} forms a left/right R-linear basis of C♯(B(x), R(w)).

Proof: By (4.4)

mw(LLx,e(bx,f )) =

{
mw(uw) = 1 if f = e,

0 if f < e.
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As mw ◦ LLx,e ∈ C(B(x), R(w)(l + d(e)), one obtains from (1.4.v)

B(x) R(w)(l + d(e))

B(x)w

mw◦LLx,e

ψe

such that

ψe(b
w
x,f ) =

{
1 if f = e,

0 if f < e.

Thus, {bwx,e|xe = w} is a left/right R-linearly independent set. Moreover, by descending in-
duction on e there is ψ′

e ∈ ψe +
∑

e′>e Rψe′ such that ∀f with xf = w, ψ′
e(b

w
x,f ) = δf ,e.

Then
∐

xe=w Rbwx,e ↪→ B(x)w splits via
∑

xe=w ψ
′
e(m)bwx,e ←! m, and hence one can write

B(x)w = N ⊕
∐

xe=w Rbwx,e with some left/right R-module N . Then in B(x)Qw

(B(x)w)Q = NQ ⊕
∐

xe=w

Qbwx,e.

But

dimQ(B(x)w)Q = pwx (1) by (3.2)

= dimQ(
∐

xe=w

Qbwx,e) by (3.3),

and hence NQ = 0. As N ≤ B(x)w is torsion-free over R, we must have N = 0, and hence
B(x)w =

∐
xe=w Rbwx,e. Then

grk(B(x)w) =
∑

xe=w

vd(e)+l = vl
∑

xe=w

vd(e)

= vlpwx by (3.3).

(ii) As (ψ′
e|xe = w) forms a dual basis of (bwx,e|xe = w),

RMod(B(x)w, R) =
∐

xe=w

Rψ′
e,

where the left R-linear structure on the LHS is such that (aφ)(m) = φ(am) = aφ(m), m ∈
B(x)w. As ψ′

e ∈ ψe+
∑

e′>e Rψ
′
e, (ψe|xe = w) also forms a leftR-linear basis ofRMod(B(x)w, R).

As C♯(B(x), R(w)) ≃ C♯(B(x)w, R(w)) ≃ RMod(B(x)w, R) and as ψe(bx,f ) = (mw ◦LLx,e)(bwx,f )
∀f ≤ e, (mw ◦ LLx,e|xe = w) forms a left R-linear basis of C♯(B(x), R(w)). Likewise as a right
R-module.

4.6 ∀B ∈ SBimod, ∀w ∈W , Bw is graded free over R by (4.5), and hence

Bw ≃
∐

i∈Z

{R(w)(i)}⊕mi ∃mi ∈ N.
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Corollary: Bw is left/right graded free over R. In particular, ∀x ∈ Sr,

grk(B(x)w) = v−ℓ(w)pwx (v
−1).

Proof: We may assume B = B(x) for some x ∈ Sr. Then

B(x)w ≃ D(B(x))w by (2.10)

≃ D(B(x)w) by (2.8).

As B(x)w is R-graded free of graded rank vℓ(w)pwx by (4.5), so therefore is B(x)w by (2.9) with

grk(B(x)w) = grk(B(x)w)(v−1) = v−ℓ(w)pwx (v
−1).

4.7 Corollary: Let w be a reduced expression of w ∈ W. ∀B ∈ SBimod, one has, as graded
left/right R-modules,

C♯(B,B(w)) RMod(Bw, B(w)w)

C♯(B,B(w)w).

≀

Proof: Note first that

C♯(B,B(w)w) ≃ C♯(Bw, B(w)w) by (1.4.v)

= RMod(Bw, B(w)w).

We may assume B = B(x) for some x ∈ Sr. By (4.5.i) one has a CD

C♯(B(x), B(w)) C♯(B(x), B(w)w)

C♯(B(x), R(w)(ℓ(w)))
C♯(B(x),mw)

≀

with C♯(B(x),mw)(LLx,e|xe = w) forming a basis of C♯(B(x), R(w)(ℓ(w))) by (4.5).

4.8. We say I ⊆W is W-open iff ∀w ∈ I, ∀w′ ∈W with w′ ≤ w, w′ ∈ I; such a subset is called
“closed” in [Ab19a]. The present terminology appears in better accordance, however, with the
one in [Ab19b]. See (8.1) for more details.

Lemma: Let I be a finite W-open subset of W and w a maximal element of I. There exists
enumeration w1, w2, . . . of elements of W such that ∀i ∈ N+, {w1, w2, . . . , wi} is W-open,
w = w|I|, and I = {w1, . . . , w|I|}.

Proof: Put k = |I|. Let w1, . . . , wk−1 be enumeration of elements of I \ {w} such that
∀i, j ∈ [1, k[, wi ≤ wj ⇒ i ≤ j. Let wk+1, . . . be enumeration of elements of W \ I. Put
w = wk. Then {w1, . . . , wi} is W-open ∀i ≤ k as I is W-open. Let i > k and let wj ≤ wi,
j ∈ N. If j ≤ k, j < i. If j > k, k + 1 ≤ j ≤ i by construction. Thus, {w1, . . . , wi} is W-open
∀i ∈ N+.
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4.9. ∀LLx,e ∈ C(B(x), B(w)(d(e))), let LL∨
x,e = D(LLx,e). Thus, one has from (2.10) a CD

B(w)(−d(e)) B(x)

D(B(w)(d(e))) D(B(x))

ModR(B(w)(d(e)), R) ModR(B(x), R).

≀

LL∨
x,e

≀
D(LLx,e)

ModR(LLx,e,R)

Let πw
x : B(x) → B(x)w be the projection. Let I be a W-open and w ∈ I. Then B(x)I\{w} =

B(x) ∩
∐

y∈I\{w} B(x)Qy = ker(B(x)I → B(x)w), and hence

B(x) B(x)w

B(x)I B(x)I/B(x)I\{w},

πw
x

which we will still denote by πw
x .

Theorem: Assume that w is a maximal element of I. Let w be a reduced expression of w and
x ∈ Sr. Then (πw

x (LL
∨
x,e(uw))|xe = w) forms a left/right R-linear basis of B(x)I/B(x)I\{w}.

Proof: Put I ′ = I \ {w}. By (2.4) one has suppW(B(w)) = {y ∈W|y ≤ w} ⊆ I. By (1.4.v)

(1)

B(w)(−d(e)) B(x) B(x)w

B(x)I B(x)I/B(x)I′ ,

LL∨
x,e πw

x

and hence πw
x (LL

∨
x,e(uw)) ∈ B(x)I/B(x)I′ . One has

B(x)I = B(x) ∩
∐

y∈I

B(x)Qy = B(x) ∩
∐

y∈I∩suppW (B(x))

B(x)Qy = B(x)I∩suppW (B(x)),

and B(x)I′ = B(x)I′∩suppW (B(x)). Thus, there is nothing to show if I ∩ suppW(B(x)) = I ′ ∩
suppW(B(x)), and hence we may assume w ∈ suppW(B(x)). Also, I ∩ suppW(B(x)) = {I ∩
(∪y∈suppW (B(x))(≤ y))} ∩ suppW(B(x)). Then

B(x)I = B(x)I∩suppW (B(x)) = B(x)I∩{∪y∈suppW (B(x))(≤y)}∩suppW (B(x)),

B(x)I′ = B(x)I′∩suppW (B(x)) = B(x)I′∩{∪y∈suppW (B(x))(≤y)}∩suppW (B(x))

= B(x){I∩(∪y∈suppW (B(x))(≤y))∩suppW (B(x))}\{w}.

Thus, replacing I by I ∩ {∪y∈suppW (B(x))(≤ y)}, we may assume that I is finite.

We first show that the πw
x (LL

∨
x,e(uw)), xe = w, are left/right R-linearly independent in

B(x)w. As B(x)w is graded free over R by (4.5), it is enough to show that they are linearly
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independent over Q. From (4.5.i) one has a CD

(2)

B(w)(−d(e)) B(x)

R(w)(ℓ(w)− d(e)) B(w)w(−d(e)) B(x)w

B(w)w(−d(e)) B(x)w.

LL∨
x,e

πw
w(−d(e))

mw(−d(e))
πw
x

∼
(1.4.v)

(1.4.v)

(1.4.1) (1.4.1)

As mw(uw) = 1, πw
w(−d(e))(uw) ̸= 0. On the other hand, from (2.8) and (2.10) one has a CD

(3)

D(B(w)) D(R(w)(ℓ(w)))

B(w) D(B(w)w)

B(w)w B(w)w.

∼

D(muw)

∼

πw
w ≀

(1.4.1)

As (B(w)w)Q ≃ Q ≃ B(w)Qw by (1.4.ii), letting u∗
w ∈ B(w)Qw denote the element corresponding

to (πw
w)

Q(1⊗ uw), one has from (2) and (3)

(πw
x ◦ LL∨

x,e)
Q(1⊗ uw) = (LL∨

x,e ◦D(mw)(−d(e)))Q(u∗
w).

Thus, we have only to show that the (LL∨
x,e ◦ D(mw)(−d(e)))Q(u∗

w), xe = w, are linearly
independent over Q.

Now, by (4.5) the mw ◦ LLx,e, xe = w, are linearly independent over R in C♯(B(x), R(w)).
Recall from (4.5) (resp. (2.7)) that the R-bimodule structure on C♯(X, Y ) (resp. D(X) =
ModR(X,R)) is given by (aφb)(x) = φ(axb) = aφ(x)b (resp. (afb)(x) = f(axb) = f(ax)b)
∀a, b ∈ R, ∀x ∈ X. Then

{(a(Dφ))(f)}(x) = {a(Dφ)(f)}(x) = {a(f ◦ φ)}(x) = (f ◦ φ)(ax) = f(φ(ax)) = f(aφ(x))

= f((aφ)(x)) = (f ◦ (aφ))(x) = {D(aφ)(f)}(x),

and hence a(Dφ) = D(aφ), likewise (Dφ)a = D(φa). As C♯(B(x), R(w)) is graded free over R
by (4.5), LLx,e ◦D(mw) = (D(mw ◦ LLx,e), xe = w), are linearly independent over R in

C♯(D(R(w)), D(B(x))) ≤ RBimod(D(B(w)w), D(B(x))) by (3)

≃ RBimod(B(w)w, B(x)) by (2.8) and (2.10).

Then, the (LLx,e ◦D(mw)(−d(e)))Q are linearly independent over Q in QMod(B(w)Qw , B(x)Q).
As B(w)Qw ≃ Q, we must have the (LLx,e ◦D(mw)(−d(e)))Q(u∗

w), x
e = w, linearly independent

over Q in B(x)Q, as desired.

Let next w1, w2, . . . be an enumeration of elements ofW as in (4.8). Fix a reduced expression
wk of wk for each k ∈ N+. Put I(k) = {w1, . . . , wk} and consider a filtration B(x)w1 =
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B(x)I(1) ≤ B(x)I(2) ≤ . . . of B(x) with
∐

xe=wk

Rπwk
x (LL∨

x,e(uwk
)) ⊆ B(x)I(k)/B(x)I(k−1).(4)

We must show that the containment is an equality. Assume first that K is a field. As deg(uwk
) =

−ℓ(wk) and as LL∨
x,e ∈ C(B(w)(− deg(e)), B(x)), Rπwk

x (LL∨
x,e(uwk

)) ≃ R(wk)(ℓ(wk)− deg(e)).
Then

grk(
∐

xe=wk

Rπwk
x (LL∨

x,e(uwk
))) =

∑

xe=wk

vℓ(wk)−deg(e)(5)

= vℓ(wk)pwk
x (v−1) by (3.3).

On the other hand,
∑

k

vℓ(wk)pwk
x (v−1) =

∑

w∈W

vℓ(w)pwx (v
−1)

= (v + v−1)r by (3.1)

= grk(B(x)) by (2.5).

Thus, if K is a field, one obtains from (1.8) that (4) is an equality.

In general, let m be the maximal ideal of K. By above one has a CD

(6)

{B(x)I(k)/B(x)I(k−1)}⊗K (K/m)

∐
xe=wk

(R/mR)πwk
x (LL∨

x,e(uwk
)) {B(x)⊗K (K/m)}I(k)/{B(x)⊗K (K/m)}I(k−1),

and hence

{B(x)I(k)/B(x)I(k−1)}⊗K (K/m)" {B(x)⊗K (K/m)}I(k)/{B(x)⊗K (K/m)}I(k−1) ∀k.(7)

Then, also, B(x)I(k) ⊗K (K/m)" {B(x)⊗K (K/m)}I(k).

We show by descending induction on k that (7) is invertible, and hence (4) will turn an
isomorphism upon base change to K/m. To begin the induction, take k ≫ 0 so B(x) = B(x)I(k).
Assume now inductively that B(x)I(k′)/B(x)I(k′−1) is graded free for k′ > k, so therefore is
B(x)/B(x)I(k). Then B(x)I(k) is a direct summand of B(x), and hence B(x)I(k) ⊗K (K/m) "
{B(x) ⊗K (K/m)}I(k) is injective as well, and hence invertible. Thus, one has a CD of exact
rows

B(x)I(k−1) ⊗K (K/m) B(x)I(k) ⊗K (K/m) {B(x)I(k)/B(x)I(k−1)}⊗K (K/m) 0

{B(x)⊗K (K/m)}I(k−1) {B(x)⊗K (K/m)}I(k) {B(x)⊗K (K/m)}I(k)/{B(x)⊗K (K/m)}I(k−1) 0.

≀

Then by the 5-lemma [தԬ, Lem. 4.2.23, p. 248] (7) must be injective as well.

Now,
R⊗K (K/m) = SK(V )⊗K (K/m) ≃ SK/m(V ⊗K (K/m)).
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As B(x)I(k)/B(x)I(k−1) is a subquotient of B(x), it is of finite type over R, and hence each
homogeneous piece {B(x)I(k)/B(x)I(k−1)}i, i ∈ Z, is of finite type over K. One thus obtains by
graded NAK [BH, Ex. 1.5.24(b)]

∐

xe=wk

Rπwk
x (LL∨

x,e(uwk
))

∼−→ {B(x)I(k)/B(x)I(k−1)}.

4.10. Remarks: (i) As (4.9.7) is invertible, one obtains also B(x)I(k) ⊗K (K/m) ≃ {B(x) ⊗K
(K/m)}I(k). Any finite W-open I can be realized as I(k). Thus, ∀B ∈ SBimod, ∀ W-open I,
one has

BI ⊗K (K/m) ≃ {B ⊗K (K/m)}I .

(ii) Let R∅ = R[ 1
αt
|t ∈ T ]. We know from (2.2.16) that any B ∈ SBimod splits already over

R∅: R∅⊗RB =
∐

w∈W B∅
w with B∅

w = (R∅⊗RB)∩BQ
w . Then, ∀J ⊆W , one has exact sequences

0→ BJ → B →
∐

w∈W\J

B∅
w

and
0→ {B ⊗K (K/m)}J → B ⊗K (K/m)→

∐

w∈W\J

(B ⊗K (K/m))∅w,

where (B ⊗K (K/m))∅w is the w-piece of (B ⊗K (K/m))∅ = (R ⊗K (K/m))[ 1
αs
|s ∈ S] ⊗R⊗K(K/m)

(B ⊗K (K/m)). As B(x)∅w ⊗ (K/m) ≃ (B(x) ⊗ (K/m))∅w for all x ∈ Sn and w ∈ W , one has
B∅

w ⊗ (K/m) ≃ (B ⊗ (K/m))∅w also. Then

BJ ⊗K (K/m)" {B ⊗K (K/m)}J ,(1)

which induces (4.9.7).

(iii) Assume in (ii) that K is a DVR. We show that (1) is invertible. Write m = ξK. Let
b ∈ BJ vanishing in {B ⊗K (K/m)}J . Then b ∈ mB, and hence b = ξb′ for some b′ ∈ B. If we
write b′ =

∑
w∈W b′w in (B ⊗K (K/m))∅ with b′w ∈ (B ⊗K (K/m))∅w, ξb

′
w = 0 ∀w ∈ W \ J . As

(B ⊗K (K/m))∅w is torsion-free, we must have b′w = 0 ∀w ∈ W \ J . Then b′ ∈ BJ , and hence
b ∈ mBJ . Thus, BJ ⊗K (K/m) ≃ {B ⊗K (K/m)}J .

4.11. Let B ∈ SBimod.

Corollary: (i) ∀w ∈W, Bw is left graded free over R.

(ii) ∀I W-open, ∀w ∈W maximal in I, B≤w/B<w
∼−→ BI/BI\{w}.
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(iii) If w is a reduced expression of w ∈W,

f C♯(B(w), B) C♯(B(w), B≤w)

f(uw) B≤w C♯(B(w), B≤w/B<w)

B≤w/B<w C♯(B(w), (B≤w)w)

(B≤w)w C♯(B(w)w, (B≤w)w).

∼

≀

≀ ≀

∼

Proof: We may assume B = B(x) for some x ∈ Sr. (i) follows from (4.5.i). One has

B(x)≤w B(x)I

B(x)≤w/B(x)<w B(x)I/B(x)I\{w}.

As the πw
x (LL

∨
x,e(uw)), xe = w, give a basis of both B(x)≤w/B(x)<w and B(x)I/B(x)I\{w} by

(4.9), (ii) follows.

(iii) As suppW(B(w)) = (≤ w) = {y ∈W|y ≤ w} by (2.4), one has

C♯(B(w), B(x)) C♯(B(w), B(x)≤w)

C♯(B(w), (B(x)≤w)w)

C♯(B(w), B(x)≤w/B(x)<w)

C♯(B(w)w, B(x)≤w/B(x)<w)

B(x)≤w/B(x)<w C♯(R(w)(ℓ(w)), B≤w/B<w),

∼
(1.4.v)

≀

≀ (1.4.v)

≀ (4.5)

∼
(1.6)

under which LL∨
x,e $→ πw

x (LL
∨
x,e(uw)) by (4.9.1). As the πw

x (LL
∨
x,e(uw)), xe = w, form a basis

of B(x)≤w/B(x)<w by (4.9), the assertion follows.

4.12. Recall the set T = ∪w∈WwSw−1 of reflections. Let w ∈W and put f =
∏
t∈T
tw<w

αt ∈ R, which

is well-defined up to K× (1.1). As ℓ(w) = |{t ∈ T |tw < w}| [BB, Cor. 1.4.5], deg(f) = 2ℓ(w).

Proposition: ∀B ∈ SBimod and w ∈ W, there is an isomorphism of left/right graded free
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R-modules Bw ≃ f(B≤w/B<w) ≃ (B≤w/B<w)(−2ℓ(w)) such that

Bw B≤w

f(B≤w/B<w) B≤w/B<w.

≀

Proof: We may assume that B = B(x) for some x ∈ Sr. From (4.6) one has B(x)w is left/right
graded free over R of graded rank v−ℓ(w)pwx (v

−1) while (πw
x (LL

∨
x,e(uw))|xe = w) gives a left R-

linear basis of B(x)≤w/B(x)<w by (4.9). Thus, B(x)≤w/B(x)<w is graded free over R of graded
rank vℓ(w)pwx (v

−1) by (4.9.4), and

grk(f(B(x)≤w/B(x)<w)) = v−ℓ(w)pwx (v
−1) = grk(B(x)w),(1)

and hence B(x)w and f(B(x)≤w/B(x)<w) are isomorphic as graded R-modules.

We know from (4.10.i) that

(B(x)≤w/B(x)<w)⊗K (K/m) ≃ {B(x)⊗K (K/m)}≤w/{B(x)⊗K (K/m)}<w.(2)

We show also that

B(x)w ⊗K (K/m) ≃ {B(x)⊗K (K/m)}w.(3)

B(x) " B(x)w ↪→ B(x)∅w From (4.10.ii) one has a sequence B(x) " B(x)w ↪→ B(x)∅w, which
induces a CD

B(x)⊗K (K/m) B(x)w ⊗K (K/m) B(x)∅w ⊗K (K/m)

{B(x)⊗K (K/m)}w {B(x)⊗K (K/m)}∅w.

≀

As B(x)w is graded free by (4.5), B(x)w⊗K (K/m) ≃ {B(x)⊗K (K/m)}w by rank. Then, letting
DK/m = Mod(R/mR)(?, R/mR), one has

B(x)w ⊗K (K/m) ≃ D(B(x)w)⊗K (K/m) by (2.8) and (2.10)

≃ DK/m(B(x)w ⊗K (K/m)) as B(x)w is graded free of finite rank over R again

≃ DK/m((B(x)⊗K (K/m))w)

≃ {B(x)⊗K (K/m)}w by (2.8) and (2.10) again.

Assume next that x is a reduced expression of w. Let us thus write w for x. One has
B(w)≤w/B(w)<w ≃ B(w)w. We show that

B(w)w B(w)w

fB(w)w.

(1.4.1)
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It will then follow from (1)-(3) and by graded NAK that B(w)w
∼−→ fB(w)w. We argue by

induction on ℓ(w). The assertion holds if ℓ(w) = 0 with f = 1. If ℓ(w) = 1, see (2.2.14).
Write w = (s1, . . . , sr). Put s = s1 and sw = (s2, . . . , sr) a reduced expression of sw < w. Let
δ ∈ V with ⟨δ,α∨

s ⟩ = 1. As R = Rs ⊕ δRs by (2.1), any element of B(w) = B(s) ∗ B(sw) =
R⊗RsB(sw)(1) is of the form 1⊗m+δ⊗m′ for somem,m′ ∈ B(sw). Let 1⊗m+δ⊗m′ ∈ B(w)w.
Then suppW(m), suppW(m′) ⊆ {w, sw} by (2.3.i). As B(sw)w = 0 by (2.3),

m′
w = 0 = mw.(4)

Then m′ ∈ B(sw)sw, and hence by the induction hypothesis

m′ ∈ (
∏

t∈T
tsw<sw

αt)B(sw)sw.

As 1⊗m+ δ ⊗m′ ∈ B(w)w, (1⊗m+ δ ⊗m′)sw = 0. Then

0 = (msw + δm′
sw,mw + (sδ)m′

w) in B(w)Qsw ⊕ B(w)Qw by (2.3.i)

= (msw + δm′
sw, 0) by (2),

and hence msw = −δm′
sw. Thus,

msw + (sδ)m′
sw = −αsm

′
sw = −αsm

′ ∈ αs(
∏

t∈T
tsw<sw

αt)B(sw)sw.

One has

|{t ∈ T |tw < w}| = ℓ(w) = 1 + ℓ(sw) = |{s} > {sts−1|t ∈ T, tsw < sw}|.

If tsw < sw, stsw < w as sw < w, and hence {t ∈ T |tw < w} = {s}>{sts−1|t ∈ T, tsw < sw}.
Then, up to K×,

f = αss(
∏

t∈T
tsw<sw

αt) = s(−αs

∏

t∈T
tsw<sw

αt),

and hence msw + (sδ)m′
sw ∈ (sf)B(sw)sw. Take n ∈ B(sw) with msw + (sδ)m′

sw = (sf)nsw.
Then

1⊗m+ δ ⊗m′ = (1⊗m+ δ ⊗m′)w

= (mw + δm′
w,msw + (sδ)m′

sw) in B(w)Qw ⊕ B(w)Qsw by (2.3.i)

= (0,msw + (sδ)m′
sw) by (4) again

= (0, (sf)nsw)

= f(0, nsw) by (2.3.i)

= f(nw, nsw) as nw = 0 by (4)

= f(1⊗ n)w by (2.3.i)

∈ f(B(w))w with B(w) = R⊗Rs B(sw),

as desired.
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Consider finally x ∈ Sr in general. By (1)-(3) and by graded NAK again we have only to
verify that f(B(x)≤w/B(x)<w) ≤ B(x)w in B(x)≤w/B(x)<w. Let m ∈ B(x)≤w. By (4.9) we
may assume

m = πw
x (LL

∨
x,e(uw)) ∃e with xe = w

= LL∨
x,e(π

w
x (uw)) as

B(w) B(x)(d(e))

B(w)w B(x)w(d(e)).

πw
w

LL∨
x,e

πw
x

Then

fm = LL∨
x,e(fπ

w
w(uw)) with fπw

w(uw) ∈ B(w)w by the case above

∈ LL∨
x,e(B(w)w) ⊆ B(x)w.

5. Categorification

In this section we assume that K is a complete noetherian local domain. Thus, C is Krull-
Schmidt [CR, pf of (6.10), p. 126]; [AJS, E.6] does not apply.

5.1 Indecomposable Soergel bimodules: Recall from (2.2.18) that each B(s), s ∈ S, is
indecomposable in C ′.

Theorem: (i) ∀w ∈W, ∃! up to isomorphism indecomposable B(w) ∈ SBimod: suppW(B(w)) ⊆
{x ∈W|x ≤ w} and B(w)w ≃ R(w)(ℓ(w)) in C.

(ii) ∀ indecomposable B ∈ SBimod, ∃!(w, n) ∈W × Z: B ≃ B(w)(n) in C.

(iii) D(B(w)) ≃ B(w).

(iv) ∀ reduced expression w of w, ∃mn,y ∈ N: B(w) ≃ B(w)⊕
∐

y<w,n∈Z{B(y)(n)}⊕mn,y .

Proof: Fix a reduced expression w of w. Recall from (4.5.i) that B(w)w ≃ R(w)(ℓ(w)). As
suppW(B(w)) = {y ∈ W|y ≤ w} by (2.4), there is a unique indecomposable direct summand
B(w) of B(w) such that B(w)w ≃ R(w)(ℓ(w)). Then

D(B(w))w ≃ D(B(w)w) by (2.8)

≃ D(R(w)(ℓ(w))) ≃ R(w)(−ℓ(w)).

If M is an indecomposable direct summand of B(w) not isomorphic to B(w), Mw ≤Mw = 0.
As D(B(w)) ≃ B(w) by (2.10), D(B(w)) is a direct summand of B(w), and hence we must
have D(B(w)) ≃ B(w). By (4.5.i) again there remains only to show that an indecomposable of
SBimod is of the form B(w)(n) for some w ∈W and n ∈ Z. Let B ∈ SBimod indecomposable.
Let w ∈ W with ℓ(w) maximal such that Bw ̸= 0. Put I = {y ∈ W|ℓ(y) ≤ ℓ(w)}. Thus, I
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is W-open and BI = B. Then BI/BI\{w} ≃ Bw. By (4.5) and graded Quillen-Suslin Bw is
left graded free over R. As B(w)w ≃ R(w)(ℓ(w)), {B(w)(n)}w is a direct summand of Bw for

some n ∈ Z. Let {B(w)(n)}w Bw
i

π
be the associated imbedding and the projection. By

(4.7) let π̂ ∈ C(B,B(w)(n)) be a lift of π and by (4.11) let î ∈ C(B(w)(n), B) be a lift of i;
Bw ≃ BI/BI\{w} ≃ B≤w/B<w. Write

B(w)(n) B(w)(n)

B
ĩ

î
and

B B(w)(n)

B(w)(n).

π̂

π̃

Then

B(w)(n) B(w)(n)

B(w)(n)w B(w)(n)w,

1−π̃◦̃i

0

and hence 1− π̃ ◦ ĩ ̸∈ C(B(w)(n), B(w)(n))×. Then π̃ ◦ ĩ ∈ C(B(w)(n), B(w)(n))× [AF, 15.15].
Thus, B(w)(n) is a direct summand of B, and hence B(w)(n) ≃ B.

5.2. Let [SBimod] denote the split Grothendieck group of SBimod. Thus, [SBimod] admits a
structure of Z[v, v−1]-algebra such that v[B] = [B(1)] and [B][B′] = [B ∗B′] ∀B,B′ ∈ SBimod.
By (5.1.i) (resp. (5.1.iv)) ([B(w)]|w ∈ W) (resp. ([B(w)]|w ∈ W) with w a chosen reduced
expression of each w) forms a Z[v, v−1]-linear basis of [SBimod]. Thus,

[SBimod] =
∑

r∈N
x∈Sr

Z[v, v−1][B(x)] =
∐

w
reduced

Z[v, v−1][B(w)] =
∐

w∈W

Z[v, v−1][B(w)].

By (4.5) and by graded Quillen-Suslin each Bw, B ∈ SBimod, w ∈W , is left graded free over
R. Define ch : [SBimod]→ H via

[B] $→
∑

w∈W

v−ℓ(w)grk(Bw)Hw.

We will abbreviate ch([B]) as ch(B). In particular, ∀s ∈ S, ch(B(s)) = Hs by (2.2.12, 13).

Proposition: ∀x ∈ Sr, ch(B(x)) = Hx.

Proof: One has

LHS =
∑

w∈W

v−ℓ(w)grk(B(x)w)Hw

=
∑

w∈W

v−ℓ(w)vℓ(w)pwxHw by (4.5.i)

=
∑

w∈W

pwxHw

= Hx by definition (3.1).
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5.3. ∀x ∈ Sr, ∀y ∈ Sk, one has from (5.2)

ch(B(x))ch(B(y)) = HxHy = Hxy = ch(B(xy)).

As [SBimod] =
∑

x Z[v, v−1][B(x)], ch : [SBimod]→ H is a Z[v, v−1]-algebra homomorphism.
If w is a reduced expression of w ∈ W , Hw ∈ Hw +

∑
y<w Z[v, v−1]Hy from definition. Thus,

(Hw|w ∈ W) with w a chosen reduced expression of w is a Z[v, v−1]-linear basis of H, and we
have obtained a categorification of H:

Theorem: ch : [SBimod]→ H is an isomorphism of Z[v, v−1]-algebras.

5.4. Recall from [S97, p. 84] a ring involution ?̄ on H such that
∑

w∈W

awHw $→
∑

w∈W

aw(v
−1)H−1

w−1 , aw ∈ Z[v, v−1],

define a ring anti-involution ω such that
∑

w∈W

awHw $→
∑

w∈W

aw(v
−1)H−1

w ,

and a Z[v, v−1]-linear map ε such that
∑

w∈W

awHw $→ ae.

Let also ε̄ = ?̄ ◦ ε ◦ ?̄. Recall from (3.1.i) that

H2
s = v−1Hs − vHs + 1 ∀s ∈ S.(1)

Lemma: ε is a trace, i.e., ε(hh′) = ε(h′h) ∀h, h′ ∈ H, and so is ε̄.

Proof: It is enough to check that ε(HxHs) = ε(HsHx) ∀x ∈W , ∀s ∈ S; if y ∈W with sy > y,

ε(Hx(HsHy)) = ε((HxHs)Hy)

= ε(Hy(HxHs)) by induction on ℓ(y)

= ε((HyHx)Hs) = ε(Hs(HyHx)) = ε((HsHy)Hx).

Assume first xs > x. Then HxHs = Hxs, and hence ε(HxHs) = 0. If sx > x, ε(HsHx) = 0
likewise. If sx < x, write x = sy with y < x. As xs > x, y > e. Then

ε(HsHx) = ε(HsHsHy) = ε((v−1Hs − vHs + 1)Hy) = 0.

Assume next xs < s, and write x = zs with z < x. If z = e, x = s and the assertion holds.
Thus, we may assume z > e. Then

ε(HxHs) = ε(HzH
2
s ) = ε(Hz(v

−1Hs − vHs + 1)) = 0.
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If sx > x, ε(HsHx) = 0 as well. If sx < x, write x = sy with y < x. As y ̸= e, ε(HsHx) =
ε(H2

sHy) = 0.

5.5. One has from (5.4.1)

H−1
s = Hs + v − v−1 ∀s ∈ S.(1)

Lemma: Let s1, . . . , sr ∈ S.

(i) ω(H(s1,...,sr)) = H(sr,...,s1), H(s1,...,sr)) = H(s1,...,sr).

(ii) ∀w ∈W, pw(s1,...,sr) = pw
−1

(sr,...,s1)
.

Proof: (i) We know Hs = Hs ∀s ∈ S. Also,

ω(Hs) = ω(Hs + v) = H−1
s + v−1 = Hs + v − v−1 + v−1 = Hs + v = Hs.

(ii) One has

∑

w∈W

pw
−1

(s1,...,sr)Hw =
∑

w∈W

pw(s1,...,sr)Hw−1 = ω(
∑

w∈W

pw(s1,...,sr)Hw)

= ω(H(s1,...,sr)) by definition

= H(sr,...,s1) by (i)

=
∑

w∈W

pw(sr,...,s1)Hw by definition again.

5.6. ∀B ∈ SBimod, ∀s1, . . . , sr ∈ S, one has

C♯(B(s1, . . . , sr), B) ≃ C♯(R(e), B ∗B(sr, . . . , s1)) by (2.6)(1)

≃ {B ∗B(sr, . . . , s1)}e by (1.6.3),

which is left/right graded free over R by (4.6).

Theorem: ∀B,B′ ∈ SBimod, C♯(B,B′) is left/right graded free over R with

grk(C♯(B,B′)) = ε̄{ω(ch(B))ch(B′)}.

Proof: ∀s ∈ S,

ε̄(ω(ch(B ∗B(s)))chB′) = ε̄(ω(ch(B)Hs)chB
′) by (5.3)

= ε̄(Hsω(chB)chB′) by (5.5.i)

= ε̄(ω(chB)ch(B′)Hs) as ε is also an anti-involution

= ε̄(ω(chB)ch(B′ ∗B(s))) by (5.3) again.
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We may assume B = B(s1, . . . , sr) and B′ = B(t1, . . . , tl) for some s1, . . . , sr, t1, . . . , tl ∈ S.
It is now enough by (1) to show that

grk(B(t1, . . . , tl, sr . . . , s1)e) = ε̄(ω(chR(e))ch(B(t1, . . . , tl, sr . . . , s1))).

One has

RHS = ε̄(ch(B(t1, . . . , tl, sr . . . , s1)))

= ε̄(H(t1,...,tl,sr...,s1)
) by (5.2)

= ε(H(t1,...,tl,sr...,s1)
) by (5.5.i)

= ε(
∑

w∈W

pw(t1,...,tl,sr...,s1)Hw) = pe(t1,...,tl,sr...,s1) = pe(t1,...,tl,sr...,s1)(v
−1)

= LHS by (4.6),

as desired.

5.7 Formula for the morphism space: Recall from [Lib, 4.3] that

ε(HxHy) = δxy,e ∀x, y ∈W .(1)

Corollary: ∀x ∈ Sr, ∀y ∈ S l,

grk(C♯(B(x), B(y))) =
∑

w∈W

(pwx p
w
y )(v

−1).

Proof: Write x = (s1, . . . , sr) and x′ = (sr, . . . , s1). Then

grk(C♯(B(x), B(y))) = ε̄(ω(chB(x))chB(y)) by (5.6)

= ε̄(ω(Hx)Hy) by (5.2)

= ε̄(Hx′Hy) by (5.5.i)

= ε(Hx′Hy)

= ε(Hx′Hy) by (5.5.i) again

= ε(
∑

w∈W

pwx′Hw

∑

z∈W

pzyHz) =
∑

w,z∈W

pwx′pzyε(HwHz)

=
∑

w∈W

pw
−1

x′ pwy by (1)

=
∑

w∈W

pwx p
w
y by (5.5.ii)

=
∑

w∈W

pwx (v
−1)pwy (v

−1).

5.8 Double leaves: Let x ∈ Sr, y ∈ S l, e ∈ {0, 1}r, f ∈ {0, 1}l with xe = yf . Fix a reduced
expression w of w = xe = yf . Thus, one has LLx,e ∈ C(B(x), B(w)(d(e))) and LL∨

y,f ∈
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C(B(w), B(y)(d(f))). Put LLe,f = LL∨
y,f (d(e)) ◦ LLx,e ∈ C(B(x), B(y)(d(e) + d(f))), which we

call a double leaf from B(x) to B(y):

B(x) B(y)(d(e) + d(f)).

B(w)(d(e))

LLe,f

LLx,e LL∨
y,f (d(e))

Theorem: (LLe,f |xe = yf , e ∈ Sr, f ∈ S l) forms a left/right graded R-linear basis of C♯(B(x), B(y)).

Proof: One has

grk(
∐

e∈Sr,f∈Sl

xe=yf

R(LLe,f )) =
∑

e,f
xe=yf

v−d(e)−d(f) =
∑

w∈W

∑

e
xe=w

v−d(e)
∑

f
yf=w

v−d(f)

=
∑

w∈W

pwx (v
−1)pwy (v

−1)

= C♯(B(x), B(y)) by (5.7).

Then, arguing as in (4.9) using (1.8) and graded NAK [BH, Ex. 1.5.24(b)], one has only to
show that the LLe,f are linearly independent over R.

Let
∑

xe=yf ce,fLLe,f = 0, ce,f ∈ R, e ∈ Sr, f ∈ S l. Put I = {xe = yf ∈ W|ce,f ̸= 0, e ∈
Sr, f ∈ S l} and just suppose I ̸= ∅. Let Î = ∪z∈I(≤ z). Thus, Î is W-open. If w is a reduced
expression of w ∈ I, suppW(B(w)) = (≤ w) ⊆ Î by (2.4). Then by (1.4.v)

B(x) B(y)(d(e) + d(f))

{B(y)(d(e) + d(f))}Î .

ce,fLLe,f

Let w be a maximal element of I. Then w remains maximal in Î. Put J = Î \{w}. Consider
the projection πw

y : B(y)→ (B(y))w. As πw
y ◦ LLe,f = 0 unless w = xe = yf by the maximality

of w, one has
0 = πw

y ◦
∑

xe=yf

ce,fLLe,f =
∑

e,f
xe=yf=w

ce,fπ
w
y ◦ LLe,f .

Put E = {e ∈ Sr|ce,f ̸= 0, xe = w}. Recall from (4.4) the total order on E. Let e′ be the
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minimum element of E. ∀e ∈ E, LLx,e(bx,e′) = 0 unless e′ = e by (4.4), and hence

0 =
∑

e,f
xe=yf=w

ce,fπ
w
y ◦ LLe,f (bx,e′) =

∑

f
yf=w

ce′,fπ
w
y ◦ LLe′,f (bx,e′)

=
∑

yf=w

ce′,fπ
w
y (LL

∨
y,f (uw) by (4.4) again.

Then ce′,f = 0 ∀f with yf = w by (4.9), absurd.

5.9. ∀B ∈ SBimod, ∀w ∈W , put Bou
w = B≤w/B<w, which is graded free over R by (4.12). Let

(Bou
w : R(w)(i)), i ∈ Z, denote the multiplicity of R(w)(i) appearing in Bou

w .

Let x ∈W . One has

B(x)w ≃ D(B(x)w) by (2.9) and (5.1)

≃ D(B(x)ouw (−2ℓ(w))) by (4.12)

≃ D(
∐

i∈Z

R(w)(i− 2ℓ(w))⊕(B(x)ouw :R(w)(i))) ≃
∐

i∈Z

R(w)(2ℓ(w)− i)⊕(B(x)ouw :R(w)(i)) .

Then

ch(B(x)) =
∑

w∈W

v−ℓ(w)grk(B(x)w)Hw =
∑

w∈W

v−ℓ(w)
∑

i∈Z

(B(x)ouw : R(w)(i))v2ℓ(w)−iHw

=
∑

w∈W

∑

j∈Z

v−j(B(x)ouw : R(w)(ℓ(w) + j))Hw.

As the [B(x)], x ∈W , form a basis of [SBimod], we have obtained an analogue of [S07, Prop.
5.9]

Proposition: ∀B ∈ SBimod,

ch(B) =
∑

w∈W

∑

j∈Z

v−j(Bou
w : R(w)(ℓ(w) + j))Hw.

5.10. Back to complete noetherian local domain K, put HK
x = ch(B(x)) ∀x ∈ W . Recall from

(5.1) that suppW(B(x)) ⊆ (≤ x) and that B(x)x ≃ R(x)(ℓ(x)). Thus,

HK
x = ch(B(x)) =

∑

y∈W

v−ℓ(y)grk(B(x)y)Hy = Hx +
∑

y<x

v−ℓ(y)grk(B(x)y)Hy.(1)

Put hK
y,x = v−ℓ(y)grk(B(x)y) ∈ N[v, v−1]. In particular, HK

s = Hs ∀s ∈ S. By (5.3) the HK
x ,

x ∈ W , form a Z[v, v−1]-linear basis of H. In case K is a field of characteristic p, we call
(HK

x |x ∈W) (resp. hK
y,x) the p-KL basis (resp. a p-KL polynomial) of H.

Lemma: (i) ∀B ∈ SBimod, ch(B) = ch(DB).

(ii) ∀x ∈ W, ∀s ∈ S with sx < x, HsH
K
x = (v + v−1)HK

x , and hence B(s) ∗ B(x) ≃
B(x)(1)⊕ B(x)(−1).
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Proof: (i) It is enough to show that HK
x = HK

x ∀x ∈ W . Induction on ℓ(x). We may assume
ℓ(x) > 1. Take s ∈ S with sx < x. Recall from [BB, Prop. 2.2.7] that ∀y < sx, sy < x. Then

∑

w∈W

v−ℓ(w)grk((B(s) ∗B(sx))w)Hw = ch(B(s) ∗B(sx))(2)

= HsH
K
sx by (5.3)

= Hs(Hsx +
∑

y<sx

hK
y,sxHy)

= Hx +
∑

y<x

myHy ∃my ∈ N[v, v−1] by (3.1.2) .

In particular, v−ℓ(x)grk((B(s) ∗ B(sx))x) = 1, and hence (B(s) ∗ B(sx))x ≃ R(x)(ℓ(x)). As
suppW(B(s) ∗B(sx)) ⊆ (≤ x) by (1.7), one can write

B(s) ∗B(sx) ≃ B(x)⊕
∐

y<x
n∈Z

B(y)(n)⊕my,n ∃my,n ∈ N.

Put m′
y =

∑
n∈Z my,nvn ∈ N[v, v−1]. As D(B(s) ∗ B(sx)) ≃ B(s) ∗ B(sx) by (2.10), one has

my,n = my,−n ∀y ∈W , ∀n ∈ Z, and hence

m′
y =

∑

n∈Z

my,nvn =
∑

n∈Z

my,nv
−n =

∑

n∈Z

my,−nv
−n = m′

y.

Then

HK
x +

∑

y<x

m′
yH

K
y = HK

x +
∑

y<x

m′
yH

K
y = HsH

K
sx

= HsH
K
sx by the induction hypothesis

= HK
x +

∑

y<x

m′
yH

K
y

= HK
x +

∑

y<x

m′
yH

K
y by the induction hypothesis again,

and hence HK
x = HK

x .

(ii) As in (2) one has

HsH
K
x = (v + v−1)Hx +

∑

y<x

ayHy ∃ay ∈ N[v, v−1],

and hence one can write

B(s) ∗B(x) ≃ B(x)(1)⊕ B(x)(−1)⊕
∐

y<x
n∈Z

B(y)(n)⊕by,n ∃by,n ∈ N.

As the graded left R-rank coincides with the graded right R-rank on SBimod, grk(B(s) ∗
B(x)) = (v + v−1)grk(B(x)) by (2.5). We must then have B(s) ∗B(x) ≃ B(x)(1)⊕B(x)(−1).
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5.11. Recall from (2.2.16) that B(s), s ∈ S, splits over R∅ = R[ 1
αt
|t ∈ S] in the sense that

R∅ ⊗R B(s) = B(s)∅e ⊕ B(s)∅s with B(s)∅e ≃ R∅(e) and B(s)∅s ≃ R∅(s). Let CK be C and CK/m

denote C over RK/m = SK/m(V ⊗K K/m) and denote an object in CK (resp. CK/m) with subscript
K (resp. K/m). Thus, BK(s)⊗K K/m ≃ BK/m(s) in CK/m graded free over RK/m of rank 1 + v.
Then by (2.3) inductively

BK(w)⊗K K/m ≃ BK/m(w) ∀w ∈ Sr,(1)

and by (4.5) and (4.6)

BK(w)e ⊗K K/m ≃ BK/m(w)e.(2)

It follows for any x = (x1, . . . , xr) ∈ Sr and y = (y1, . . . , yk) ∈ Sk that

C♯K(BK(x), BK(y))⊗K K/m ≃ BK(y1, . . . , yk, xr, . . . , x1)e ⊗K K/m by as in (5.6.1)(3)

≃ BK/m(y1, . . . , yk, xr, . . . , x1)e

≃ C♯K/m(BK/m(x), BK/m(y))

≃ C♯K/m(BK(x)⊗K K/m, BK(y)⊗K K/m).

If x is a reduced expression of x ∈W , taking direct summands yields

CK(BK(x), BK(x))⊗K K/m ≃ CK/m(BK(x)⊗K K/m, BK(x)⊗K K/m).(4)

As CK(BK(x), BK(x)) is local, so is CK/m(BK(x)⊗K K/m, BK(x)⊗K K/m). As BK(x)⊗K K/m is
a direct summand of BK/m(x) with (BK(x)⊗K K/m)x ≃ RK/m(ℓ(x)) by (4.5), we must have by
(5.1)

BK(x)⊗K K/m ≃ BK/m(x).(5)

Likewise,

CK(BK(x), BK(x))⊗K Frac(K) ≃ CFrac(K)(BK(x)⊗K Frac(K), BK(x)⊗K Frac(K)).(6)

Does LHS remain local for p≫ 0 if K = Zp?

∀x ∈ W , put HK/m
x = ch(BK/m(x)) and HFrac(K)

x = ch(BFrac(K)(x)). As ch(BK/m(x)) =
ch(BK(x)⊗K K/m) = ch(BK(x)) = ch(BK(x)⊗K Frac(K)) by (5), one has

BK(x)⊗K Frac(K) = BFrac(K)(x)⊕
∐

y<x
n∈Z

BFrac(K)(y)(n)
⊕my,n ∃my,n ∈ N.

If we put my,x =
∑

n∈Z my,nvn ∈ N[v, v−1],

HK/m
x = HFrac(K)

x +
∑

y<x

∑

n∈Z

my,nv
nHFracK

y(7)

= HFrac(K)
x +

∑

y<x

my,xH
Frac(K)
y with my,x = my,x by (5.10.i).
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5.12. We now compare HK
x = chB(x), x ∈W , over various K, arguing after [JW17].

If x is a reduced expression of x ∈W , recall from (5.1) and (5.2) that

B(x) = B(x)⊕
∐

y<x
n∈Z

B(y)(n)⊕m(y,n) ∃m(y, n) ∈ N,

and hence
Hx = chB(x) = HK

x +
∑

y<x
n∈Z

m(y, n)vnHK
y .

Accordingly, to determine HK
x , we may compute the multiplicities (B(w) : B(y)(n)) of B(y)(n),

y ∈W , n ∈ Z, in a decomposition of B(w) into indecomposables for a reduced expression w of
each w ≤ x.

Fix a reduced expression w ∈ Sr and a reduced expression x of x. Let C ̸<x denote the ideal
quotient [தԬ, Def. 3.2.43] of SBimod by the set of morphisms factoring through B(y)(n) for
all reduced expressions y of y < x and n ∈ Z. Then

C ̸<x(B(w), B(x)) = C ̸<x(B(w), B(x)⊕
∐

y<x
n∈Z

B(y)(n)⊕m(y,n))(1)

≃ C ̸<x(B(w), B(x))⊕
∐

y<x
n∈Z

C ̸<x(B(w), B(y)(n))⊕m(y,n) = C ̸<x(B(w), B(x))

as C ̸<x(B(w), B(y)(n)) ≤ C ̸<x(B(w), B(y)(n)) = 0 ∀y < x, ∀n ∈ Z. In particular,

C ̸<x(B(x), B(x)) ≃ C ̸<x(B(x), B(x))⊕
∏

y<x
n∈Z

C ̸<x(B(y)(n), B(x))⊕m(y,n)(2)

= C ̸<x(B(x), B(x))

as C ̸<x(B(y)(n), B(x)) ≤ C ̸<x(B(y)(n), B(x)) = 0 ∀y < x, ∀n ∈ Z. Also, one has from (2.11)

C ̸<x(B(x)(n), B(w)) ≃ C ̸<x(B(w), B(x)(−n)) via f $→ Df.(3)

Assume from now on that K is a field, unless otherwise specified. Recall from (5.8) that
(LLe,f = LL∨

x,f (d(e))◦LLw,e|we = xf , e ∈ Sr, f ∈ Sℓ(x)) forms anR-linear basis of C♯(B(w), B(x)).
Thus,

C ̸<x,♯(B(w), B(x)) =
∐

n∈Z

C ̸<x(B(w), B(x)(n)) =
∑

e∈Sr

we=x

RLLw,e

with LLw,e ∈ C ̸<x(B(w), B(x)(d(e))). In particular,

C ̸<x,♯(B(x), B(x)) ≃ C ̸<x,♯(B(x), B(x)) = RLLx,(1,...,1)

with LLx,(1,...,1) ∈ C ̸<x(B(x), B(x)) as d(1, . . . , 1) = 0 by definition (3.3).

61



Lemma: (i) C ̸<x,♯(B(w), B(x)) remains graded free over R with basis LLw,e, we = x. In
particular, C ̸<x,♯(B(x), B(x)) is graded R-free of basis LLx,(1,...,1).

(ii) ∀n ̸= 0, B(x)(n) ̸≃ B(x) in C ̸<x.

Proof: As suppW(B(y)(n)) ̸∋ x for any reduced expression y of y < x and n ∈ Z, under
mx : B(x)→ R(x)(ℓ(x)) from (4.5) one has

C♯(B(w), B(x)) C♯(B(w), R(x)(ℓ(x))).

C ̸<x,♯(B(w), B(x))

As the images of LLw,e, we = x, remain R-linearly independent, (LLw,e|we = x) forms a basis
of C ̸<x,♯(B(w), B(x)) ≃ C ̸<x,♯(B(w), B(x)). In particular, C ̸<x,♯(B(x), B(x)) = RLLx,(1,...,1) ≃ R,
and hence

C ̸<x(B(x), B(x)(n)) = RnLLx,(1,...,1) ∀n ∈ Z.

5.13. Keep the notation of (5.12). We have seen above that each C ̸<x(B(w), B(x)(n)), n ∈ Z, is
finite dimensional over K. Being a quotient of C(B(x), B(x)), C ̸<x(B(x), B(x)) remains local,
and hence B(x)(n) remains indecomposable in C ̸<x ∀n ∈ Z.

Consider the local intersection form, cf. [JW17],

C ̸<x(B(w), B(x)(n))× C ̸<x(B(x)(n), B(w)) K

(f, g) C ̸<x(B(x), B(x))

f ◦ g C ̸<x(B(x)(n), B(x)(n)).

Iw,x,n

∼

∼

Let f1, . . . , fa (resp. g1, . . . , gb) be a K-linear basis of C ̸<x(B(w), B(x)(n)) =
∑

we=x

Rn−d(e)LLw,x,e

(resp. C ̸<x(B(w), B(x)(−n)) =
∑

we=x

R−n−d(e)LLw,x,e, and put rk (Iw,x,n) = rk [(fi◦Dgj)]i∈[1,a],ȷ∈[1,b].

Lemma: rk (Iw,x,n) = (B(w) : B(x)(n)) the multiplicity of B(x)(n) in B(w) in C.

Proof: Put I = Iw,x,n, and write B(w) = B(x)(n)⊕m ⊕ B for some m ∈ N with (B(w) :
B(x)(n)) = m in C. By (5.12) the same holds in C ̸<x. Then

C ̸<x(B(w), B(x)(n)) ≃ C ̸<x(B(x)(n)⊕m , B(x)(n))⊕ C ̸<x(B,B(x)(n)),

C ̸<x(B(x)(n), B(w)) ≃ C ̸<x(B(x)(n), B(x)(n)⊕m)⊕ C ̸<x(B(x)(n), B)

with I(C ̸<x(B(x)(n)⊕m , B(x)(n)), C ̸<x(B(x)(n), B)) = 0 = I(C ̸<x(B,B(x)(n)), C ̸<x(B(x)(n),
B(x)(n)⊕m)). If there are f ∈ C ̸<x(B,B(x)(n)) and g ∈ C ̸<x(B(x)(n), B) with 0 ̸= I(f, g) =
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f ◦ g, we may assume f ◦ g = idB(x)(n) as f ◦ g ∈ K×, and hence B(x)(n) would be a direct
summand of B, absurd. Thus, I induces a perfect pairing Ī:

C ̸<x(B(w), B(x)(n))× C ̸<x(B(x)(n), B(w)) K

C ̸<x(B(x)(n)⊕m , B(x)(n))× C ̸<x(B(x)(n), B(x)(n)⊕m)

I

Ī

with rk (I) = rk (Ī) = m.

5.14. Keep the notation from (5.12). Recall that the LLw,x,e, we = x, are all defined over a
complete noetherian local domain, a fortiori, over the prime fields Fp or Q. Thus, rk (Iw,x,n)
depends only on ch(K). Also, if p ≫ 0, rk (Iw,x,n) over Fp coincides with the one over Q
by (5.11). Let us BK(x) denote the indecomposable B(x) over R = SK(V ) to emphasize the
reference to K. We have obtained

Proposition: Let x ∈W.

(i) If K is a field, ch(BK(x)) depends only on ch(K).

(ii) If p≫ 0 depending on x, ch(BFp(x)) = ch(BQ(x)).

6. Sheaves on moment graphs

Assume that K is a complete noetherian local domain, “local” to ensure the Quillen-Souslin.

6.1 Recall from [F08a], [F08b] an R-algebra, called the structure algebra of the moment graph
associated to (W ,S),

Z = {(zw) ∈
∐

d∈N

∏

W

Rd|ztw ≡ zw mod αt ∀w ∈W ∀t ∈ T}

with a(zw) = (azw) ∀a ∈ R ∀(zw) ∈ Z. Thus, Z is a graded R-algebra with Zd ⊆
∏

W Rd

[NvO, 1.2.3].

Fiebig [F08a] proved that the category of Soergel bimodules as in [S07] is equivalent to
a certain full subcategory of Z-modules if V is reflection faithful. We will give a version
corresponding to our SBimod.

Let M be a graded left Z-module. Then M is equipped with a structure of left R by module
via R ↪→ Z via a $→ a1Z = (a, . . . , a). One has also (wa)w ∈ Z. We define a right action of R
by letting a act by (wa)w ∈ Z, which makes M into an R-bimodule:

ma = (wa)wm ∀m ∈M.(1)

To equip M with a structure of C ′, we need further some finiteness condition on M . ∀I ⊆W ,
put

ZI = {(zw) ∈ RI |ztw ≡ zw mod αt ∀w ∈ I ∀t ∈ T with tw ∈ I}.
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If I is finite, one has from [F08b, 3.2]/[JGr, 2.7.1, 2.10]

(ZI)Q = Q⊗R ZI ≃ QI =
∏

I

Q.(2)

For let E = {(x, t) ∈ I × T |tx ∈ I, x < tx}. ∀E = (x, t) ∈ E , put αE = αt and let πx,E, πtx,E :
R→ R/(αE) be the quotients. Then

ZI ≃ ker{(
∏

x∈I

R)× (
∏

E∈E

R/(αE))→
∏

x∈I,E∈E

R/(αE)} via ((ax), (bE)) $→ (πx,E(ax)− bE),

and hence

(ZI)Q ≃ ker{Q⊗R {(
∏

x∈I

R)× (
∏

E∈E

R/(αE))}→ Q⊗R (
∏

x∈I,E∈E

R/(αE))}

as Q is flat over R

≃ ker{
∏

x∈I

(Q⊗R R)×
∏

E∈E

(Q⊗R (R/(αE))}→
∏

x∈I,E∈E

(Q⊗R (R/(αE))}

as I is finite

≃ ker(QI → 0) = QI .

Let now ZModf denote the full subcategory of graded left Z-modules such that the action
of Z factors through the projection Z → ZI for some I finite ⊆ W . In [F08a] the image of
Z in ZI is denoted ZI , and the natural map Z → ZI may not be surjective. The present
definition of ZModf itself, however, remains the same as his. Let M ∈ ZModf with the action
of Z factoring through ZI , I finite. Then MQ is a (ZI)Q-module. As (ZI)Q ≃ QI by (2),
MQ =

∐
x∈I exM

Q with ex = (0, . . . , 0, 1, 0, . . . , 0), 1 at the x-th place. Put MQ
x = exMQ.

Then

MQ
x = {m ∈MQ|m = exm}(3)

= {m ∈MQ|zm = zxm ∀z ∈ ZI} with zxm = (zx, . . . , zx)m by definition

= {m ∈MQ|zm = zxm ∀z ∈ Z}.

For let m ∈MQ with zm = zxm ∀z ∈ ZI . Write ex =
∑

i qi ⊗ zi, zi ∈ ZI , qi ∈ Q. Then

exm = (
∑

i

qi ⊗ zi)m =
∑

i

qi(zi)xm = m.

Thus, ∀m ∈ MQ
x , ∀a ∈ R, ma = (ya)y∈Wm = (xa)m, and hence M comes equipped with

a structure of C ′, which is independent of the choice of finite I by the 3rd equality of (3). If
f ∈ ZModf(M,N), there is finite I the actions of Z on M and N both factor through ZI .
∀m ∈ MQ

x , x ∈ I, one has exfQ(m) = fQ(exm) = fQ(m), and hence fQ(m) ∈ NQ
x . One thus

obtains a faithful functor F : ZModf → C ′.

Proposition: ∀M,N ∈ ZModf with N torsion-free as a left R-module,

ZModf(M,N) ≃ C ′(F (M), F (N)).
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Proof: Let φ ∈ C ′(F (M), F (N)). Thus, ∀w ∈W ,

MQ NQ

MQ
w NQ

w .

φQ

φw

∀m ∈M , ∀z = (zw) ∈ Z, one has in NQ
w

φ(zm)w = φw((zm)w) = φw((zew)m) = φw(zwewm) = zwφw(ewm) = zwφw(mw) = zwφ(m)w
= zφ(m)w by (3)

= zewφ(m) = ewzφ(m) = (zφ(m))w.

As N ↪→ NQ =
∐

w∈W NQ
w by the hypothesis, one obtains that φ(zm) = zφ(m), and hence φ is

Z-linear.

6.2. ∀s ∈ S, let Zs = {(zw) ∈ Z|zws = zw ∀w ∈ W}, which forms a subalgebra of Z. We say
that the GKM condition holds on V iff ∀t, t′ ∈ T distinct, αt and αt′ are linearly independent
over K.

Lemma: Assume the GKM condition on V . Let s ∈ S and choose δ ∈ V with ⟨δ,α∨
s ⟩ = 1.

Then Z = Zs ⊕ (wδ)w∈WZs.

Proof: Let z = (zw) ∈ Z. ∀w ∈W , define yw ∈ R such that zw−zws = zw−zwsw−1w = (wαs)yw.
Let t ∈ T \ {wsw−1}. Then

ztw − ztws = (twαs)ytw by definition

≡ (wαs)ytw mod αt by (1.1.iii),

and hence modulo αt

(wαs)(yw − ytw) ≡ (zw − zws)− (ztw − ztws) = (zw − ztw)− (ztws − zws) ≡ 0.

As t ̸= wsw−1, wαs and αt are linearly independent by (1.1.ii) and the GKM condition, and
hence yw = ytw. On the other hand, if t = wsw−1, tw = ws, and hence

(wsαs)yw = −(wαs)yw = zws − zw = ztw − ztws = (twαs)ytw = (wsαs)ytw,

and hence yws = ytw = yw again. Thus, (yw)w ∈ Zs.

Now put y = (yw)w and x = z − (wδ)w∈Wy ∈ Z. Then, ∀s ∈ S,

xws = zws − (wsδ)yws = zws − (wsδ)yw as y ∈ Zs

= zw − (wαs)yw − w(δ − αs)yw = xw,

and hence x ∈ Zs and z = x+(wδ)w∈Wy. Finally, assume x+(wδ)wy = 0 for x, y ∈ Zs. Then,
∀w ∈W , ∀s ∈ S,

xw + (wδ)yw = 0 = xws + (wsδ)yws

= xw + w(δ − αs)yw as x, y ∈ Zs,
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and hence (wαs)yw = 0. Then yw = 0, and y = 0, hence also x = 0.

6.3. ∀M ∈ ZModf , ∀s ∈ S, Z ⊗Zs M remains in ZModf . For let I ⊆ W be a finite set
and π : Z → ZI be the natural map factoring through which Z acts on M . If z ∈ Z, write
z = z1 + (wδ)w∈Wz2 with z1, z2 ∈ Zs by (6.2). Then z acts on Z ⊗Zs M via

π(z1) + (wδ)w∈Wπ(z2) = π(z1) + (wδ)w∈Iπ(z2) = π(z1 + (wδ)w∈Wz2) = π(z),

and hence Z acts on Z ⊗Zs M through π.

Proposition: Assume that the GKM condition holds on V . ∀M ∈ ZModf , ∀s ∈ S,

F (Z ⊗Zs M) ≃ F (M) ∗B(s)(−1).

Proof: Take δ ∈ V with ⟨δ,α∨
s ⟩ = 1. Define a map φ : F (M) ∗ B(s)(−1) → Z ⊗Zs M via

F (M) ⊗R B(s)(−1) = M ⊗Rs R ∋ m ⊗ a $→ (wa)w∈W ⊗ m; if b ∈ Rs, wb = wsb ∀w ∈ W ,
and hence (wb)w∈W ∈ Zs. Then (w(ab))w ⊗m = (wa)w ⊗ (wb)wm = (wa)w ⊗mb by definition
(6.1.1), and hence φ is well-defined. Also, ∀b ∈ R,

(w(ab))w∈W ⊗m = (wb)w∈W(wa)w∈W ⊗m = (wb)w∈W{(wa)w∈W ⊗m}
= {(wa)w∈W ⊗m}b by definition (6.1.1) again.

Thus, φ is a homomorphism of graded R-bimodules. Moreover, F (M)∗B(s)(−1) = {F (M)⊗Rs

Rs}⊕ {F (M)⊗Rs δRs} while

Z ⊗Zs M = {Zs ⊕ (wδ)wZs}⊗Zs M by (6.2)

≃ {Zs ⊗Zs M}⊕ {(wδ)wZs ⊗Zs M}.

and hence φ is bijective.

Finally, we show that φQ((F (M) ∗ B(s)(−1))Qw) ⊆ (Z ⊗Zs M)Qw ∀w ∈ I. By (2.3.iii) any
element of (F (M)∗B(s)(−1))Qw is of the form m⊗δ−m(sδ)⊗1+m′⊗δ−m′δ⊗1, m ∈MQ

w ,m
′ ∈

MQ
ws. Thus, we are to check that (wδ)w⊗m−1⊗m(sδ)+ (wδ)w⊗m′−1⊗m′δ ∈ (Z⊗Zs M)Qw .

For that by (6.1.3) it is enough to show that, ∀z ∈ Z,

z{(wδ)w⊗m−1⊗m(sδ)+(wδ)w⊗m′−1⊗mδ} = zw{(wδ)w⊗m−1⊗m(sδ)+(wδ)w⊗m′−1⊗m′δ}.

If z ∈ Zs,

LHS = (wδ)w ⊗ zm− 1⊗ zm(sδ) + (wδ)w ⊗ zm′ − 1⊗ zm′δ

= (wδ)w ⊗ zwm− 1⊗ zwm(sδ) + (wδ)w ⊗ zwsm
′ − 1⊗ zwsm

′δ by (6.1.3) on M

= (wδ)w ⊗ zwm− 1⊗ zwm(sδ) + (wδ)w ⊗ zwm
′ − 1⊗ zwm

′δ as z ∈ Zs

= zw{(wδ)w ⊗m− 1⊗m(sδ) + (wδ)w ⊗m′ − 1⊗m′δ} as zw reads (zw, . . . , zw) ∈ Zs.
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Also,

(xδ)x{(wδ)w ⊗m− 1⊗m(sδ) + (wδ)w ⊗m′ − 1⊗mδ}
= {(wδ)w ⊗m− 1⊗m(sδ) + (wδ)w ⊗m′ − 1⊗mδ}δ by definition (6.1.3)

= φ(m⊗ δ −m(sδ)⊗ 1 +m′ ⊗ δ −m′δ ⊗ 1)δ

= φ((m⊗ δ −m(sδ)⊗ 1 +m′ ⊗ δ −m′δ ⊗ 1)δ) as φ is right R-linear

= φ(m⊗ δ2 −m(sδ)⊗ δ +m′ ⊗ δ2 −m′δ ⊗ δ)
= φ(m⊗ (δ(δ + sδ)− δsδ)−m(sδ)⊗ δ +m′ ⊗ (δ(δ + sδ)− δsδ)−m′δ ⊗ δ)
= φ(m(δ + sδ)⊗ δ −mδsδ ⊗ 1−m(sδ)⊗ δ +m′(δ + sδ)⊗ δ −m′δsδ ⊗ 1−m′δ ⊗ δ)
= φ(mδ ⊗ δ − w(δsδ)m⊗ 1 +m′sδ ⊗ δ − (ws)(δsδ)m′ ⊗ 1)

= φ((wδ)m⊗ δ − (wδ)(wsδ)m⊗ 1 + (ws)(sδ)m′ ⊗ δ − (ws)(δ)(wδ)m′ ⊗ 1)

= φ((wδ)(m⊗ δ − (wsδ)m⊗ 1 +m′ ⊗ δ − (wsδ)m′ ⊗ 1))

= (wδ)φ(m⊗ δ − (wsδ)m⊗ 1 +m′ ⊗ δ − (wsδ)m′ ⊗ 1) as φ is left R-linear

= (wδ)φ(m⊗ δ −msδ ⊗ 1 +m′ ⊗ δ −m′δ ⊗ 1)

= (wδ){(wδ)w ⊗m− 1⊗m(sδ) + (wδ)w ⊗m′ − 1⊗m′δ},

as desired.

6.4. Define a structure of graded Z-module on R via za = zea ∀a ∈ R ∀z ∈ Z with ze denoting
the e-th component of z, which we will denote by RZ . Thus, RZ ∈ ZModf with F (RZ) ≃ R(e).
∀s ∈ S, (6.3) yields

F (Z ⊗Zs RZ) ≃ F (RZ) ∗B(s)(−1) ≃ R(e) ∗B(s)(−1) ≃ B(s)(−1),

and hence

F (Z ⊗Zs RZ(1)) ≃ B(s).(1)

Let ZModS denote the full subcategory of ZModf consisting of the direct summands of
direct sums of Z⊗Zs1 · · ·⊗Zsr−1 Z⊗Zsr RZ(n), n ∈ Z, s1, . . . , sr ∈ S. As an element of ZModS

is torsion free over R by (6.2), from (1) one obtains

Theorem: If the GKM condition holds on V , F induces an equivalence ZModS → SBimod.

7. Deformation of Schubert calculus [S92]

Soergel bimodules were originally thought of as the algebras of regular functions of some
subvarieties of V ∗ × V ∗ over C with V ∗ denoting the complexification of the geometric repre-
sentation of W [S92]. Thus, V is the C-linear dual of the V ∗; in [S92] the present V is denoted
V ∗. In this section we will verify that Soergel’s results carry over to our set-up in case W is the
Weyl group of a root system ∆ and V denoting a weight lattice of ∆ under the base change
to K. We will assume, unless otherwise specified, that K is an infinite field and that, in order
for Demazure’s result [Dem] holds, the characteristic of K is not a torsion prime of ∆ and the
weight lattice, cf. [JMW, 2.6]. In the simply-connected simple cases the torsion primes are
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An, Cn Bn (n ≥ 3), Dn, G2 E6, E7, F4 E8

none 2 2, 3 2,3,5

In addition, we assume that 2 ̸= 0 in K and also that 3 ̸= 0 if G2 is involved as a component.
Thus, the GKM condition holds on V ∗.

7.1. Under the standing assumptions on K two distinct coroots remain distinct in V ∗, and
hence

Lemma: The representation V ∗ of W is faithful.

Proof: Let w ∈W be trivial on V ∗. Then w fixes every coroot in ∆∨, and hence w = e [HLA,
10.3].

7.2. Throughout the rest of §7 we will consider the W-action on V ∗ × V ∗, acting only on the
2nd component. We will regard R⊗KR as the set of rational functions on V ∗×V ∗ with induced
W-action: ∀f ∈ R⊗K R, ∀w ∈W , ∀(ν, µ) ∈ V ∗ × V ∗, (wf)(ν, µ) = f(ν, w−1µ).

∀s ∈ S, define a twisted derivation ∂s : R→ R via f $→ f−sf
2αs

, f ∈ R, which is unfortunately

distinct from ∂s introduced in (4.1) by a factor of 1
2 . Thus, ∀g ∈ R,

∂s(fg) = (∂sf)g + (sf)∂sg.(1)

For X ⊆ V ∗×V ∗ let I(X) = Ann(X) = {f ∈ R⊗KR|f |X = 0} and putR(X) = (R⊗KR)/I(X).
If X is a closed s-stable subset of V ∗ × V ∗, ∀f ∈ I(X),∀x ∈ X, (sf)(x) = f(sx) = 0, and hence
s acts on R(X). If, moreover, no irreducible component of X lies in (V ∗ × V ∗)s = {(ν, µ) ∈
V ∗× V ∗|sµ = µ}, ∂s acts on R(X). For let f ∈ I(X). It is enough to show that ∂sf ∈ I(X′) for
each irreducible component X′ of X. One has

(∂sf)|X′(2αs)|X′ = (f − sf)|X′ = −(sf)|X′ = 0.

Just suppose (2αs)|X′ = 0. Thus, ∀(ν, µ) ∈ X′, 0 = (2αs)(ν, µ) = (2αs)(µ). As X′ ̸⊆ (V ∗×V ∗)s,
however, there is (ν, µ) ∈ X′ with µ ̸= sµ = µ− αs(µ)α∨

s , and hence αs(µ) ̸= 0, absurd. Then
2αs ̸= 0 in R(X′), and hence (∂sf)|X′ ̸= 0 as R(X′) is a domain.

Note also that ∂s on R(X) is left R-linear as

∂s(a⊗ b) = a⊗ ∂sb ∀a, b ∈ R.(2)

∀w ∈W , put Xw = {(ν, w−1ν) ∈ V ∗ × V ∗|ν ∈ V ∗}. Thus, ∀y ∈W , y−1Xw = Xwy. One has

R(Xw) = (R⊗K R)/(a⊗ 1− 1⊗ w−1a|a ∈ R) ≃ R via a⊗ b $→ a(wb)(3)

with inverse a⊗ 1←! a,

under which R(Xw) comes equipped with a structure of C such that

R(Xw) ≃ R(w).(4)
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This is the reason why we defined Xw in the present form rather than the one in [S92].

If A ⊆ W is right s-stable, i.e., As = A, XA = ∪w∈AXw is closed and s-stable in V ∗ × V ∗.
As W is faithful on V ∗, Xw ̸⊆ (V ∗ × V ∗)s ∀w ∈ W . Thus, for any right s-stable A ⊆ W one
may consider the action of s and ∂s on R(XA).

7.3. Let RW be the set of W-invariants of R. ∀a ∈ RW , ∀f ∈ R(XW), w ∈W , ∀ν ∈ V ∗,

(fa)(ν, w−1ν) = a(w−1ν)f(ν, w−1ν) = a(ν)f(ν, w−1ν) = (af)(ν, w−1ν),

and hence the right and the left actions of RW on R(XW) coincide. Thus,

R⊗RW R R⊗K R

R(XW) = (R⊗K R)/ ∩w∈W (a⊗ 1− 1⊗ w−1a|a ∈ R).

Lemma: (i) There is an isomorphism of graded K-algebras R⊗RW R→ R(XW).

(ii) R(XW) ∈ C with R(XW)Q =
∏

W Q such that R(XW) ∋ f $→ (fw)w∈W ∈
∏

W Q with
fw = f |Xw ∈ R(Xw) ≃ R(w).

Proof: Let K = ker(R⊗RW R→ R(XW)). There is an exact sequence

0→ Q⊗R K → Q⊗R R⊗RW R→ Q⊗R R(XW)→ 0

with

Q⊗R R⊗RW R ≃ Q⊗R R⊗RW (RW)⊕|W| by [Dem]

≃ Q|W|

while

Q⊗R R(XW) ≤ Q⊗R

∏

w∈W

(R⊗K R)/(a⊗ 1− 1⊗ w−1a|a ∈ R) ≃
∏

W

Q.

AsW is faithful on V , ker(w−idV ) < V ∀w ∈W\{e}, and hence ∪w∈W\{e} ker(w−idV ) ⊂ V .
Take γ ∈ V \ ∪w∈W\{e} ker(w − idV ), and hence wγ ̸= γ ∀w ̸= e. ∀x ∈W , define fx ∈ R⊗K R
via fx(ν, µ) =

∏
y∈W\{x}{γ(ν) − γ(yµ)} ∀(ν, µ) ∈ V ∗ × V ∗. Then fx = 0 on Xy ∀y ∈ W \ {x}

while fx|Xx ̸= 0, and hence fx ̸= 0 in R(Xx) ≃ R. Then ∀(qx)x ∈ Q|W|,
∑

w∈W

qw
fw|Xw

⊗ fw = (qx)x∈W in Q⊗R

∏

x∈W

R(Xx) ≃
∏

W

Q,

and hence Q ⊗R R(XW) ≃
∏

W Q. It follows that Q ⊗R K = 0. As R ⊗RW R ≃ R⊕|W| is
torsion-free over R, so is K, and hence K = 0.

7.4. ∀w ∈W , let (s1, . . . , sr) ∈ Sr be a reduced expression of w, and set ∂w = ∂s1 . . . ∂sr : R→
R, which is independent of the choice of the reduced expression [Dem, Th. 1, p. 291]. Put
∂e = idR. By (7.2) the ∂w’s act on R(XW), which are left R-linear as they act only on the 2nd
component. Let w0 be the longest element of W .
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Lemma: ∀f ∈ R(XW), ∀y ∈W, ∂w0f = (∂w0f)y⊗1 in R(XW) regarding (∂w0f)y ∈ R(y) such
that (∂w0f)y(ν) = (∂w0f)(ν, y

−1ν) ∀ν ∈ V ∗.

Proof: Let f ∈ R⊗K R. Writing f =
∑

i ai ⊗ bi, ∀s ∈ S,

s∂sf =
∑

i

fi ⊗ s∂sbi

=
∑

i

fi ⊗ ∂sbi as s∂sbi =
sbi − bi
−2αs

= ∂sbi

= ∂sf,

and hence, by the independence of the choice of the reduced expression of w0, ∂w0f ∈ (R⊗KR)W .
Then, writing ∂w0f =

∑
i a

′
i ⊗ b′i with the a′i K-linearly independent, we see that b′i ∈ RW ∀i.

Thus, ∂w0f =
∑

i a
′
ib

′
i ⊗ 1 in R(XW) under

R⊗K R R(XW).

R⊗RW R

∀ν ∈ V ∗, ∀y, w ∈W ,

(∂w0f)(ν, w
−1ν) =

∑

i

(a′ib
′
i)(ν) = (∂w0f)(ν, y

−1ν) = (∂w0f)y(ν) = ((∂w0f)y ⊗ 1)(ν, w−1ν).

7.5 Lemma: ∀I %R(XW), ∀s ∈ S, I + ∂sI %R(XW).

Proof: As ∂s is left R-linear (7.2.2), it is enough to check that ∀a ∈ R, ∀f ∈ I, (∂sf)a =
(∂sf)(1⊗ a) ∈ I + ∂sI. One has

∂sI ∋ ∂s(fa) = ∂s(f(1⊗ a)) = (∂sf)(1⊗ a) + f∂s(1⊗ a) by (7.2.1).

As f∂s(1⊗ a) ∈ I, (∂sf)(1⊗ a) ∈ I + ∂sI.

7.6. Choose f̂ ∈ R(XW)d \0 for some d ∈ N with f̂ |Xw = 0 ∀w ∈W\{w0}; Xw0 ̸⊆ ∪w∈W\{w0}Xw

by the irreducibility of Xw0 ≃ V ∗, and hence such f̂ is available. Then f̂ ∈ R(XW)dw0
\ 0 by

(7.3.ii).

Lemma: (i) ∀y ∈W, (∂yf̂)|Xw0y
−1 ̸= 0. In particular, d ≥ 2ℓ(w0).

(ii) ∀w ∈W with (∂yf̂)|Xw0w
−1 ̸= 0, w ≤ y.

Proof: Put for simplicity X′
w = Xw−1 . One first check that, ∀g ∈ R(XW),

if g|X′
w
= 0 and g|X′

sw
= 0, (∂sg)|X′

w
= 0 and (∂sg)|X′

sw
= 0,(1)

if g|X′
w
= 0 but g|X′

sw
̸= 0, (∂sg)|X′

w
̸= 0 and (∂sg)|X′

sw
̸= 0.(2)
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To see (1), just suppose that (∂sg)|X′
w
̸= 0. There is ν ∈ V ∗ with (∂sg)(ν, wν) ̸= 0 but

2αs(wν) = 0. Then

(∂sg)(ν, wν) =
g(ν, wν)− (sg)(ν, wν)

2αs(wν)
=

0− g(ν, swν)

2αs(wν)
= 0,

absurd. Likewise, (∂sg)|X′
sw

= 0. For (2), if g(ν, swν) ̸= 0,

(2αs)(wν)(∂sg)(ν, wν) = g(ν, wν)− (sg)(ν, wν) = −g(ν, swν) ̸= 0,

(2αs)(swν)(∂sg)(ν, swν) = g(ν, swν)− (sg)(ν, swν) = g(ν, swν) ̸= 0.

We now argue by induction on y ∈W . If y = e, the assertions hold as f̂ |X′
w0
̸= 0 by the choice

of f̂ . If y > e, write y = sx > x for some s ∈ S. By the induction hypothesis (∂xf̂)|X′
xw0
̸= 0

while (∂xf̂)|X′
sxw0

= 0. Then (∂yf̂)|X′
yw0

= ∂s(∂xf̂)|X′
sxw0
̸= 0 by (2), and hence (i). Assume

next that (∂yf̂)|X′
ww0
̸= 0. Then ∂s(∂xf̂)|X′

ww0
̸= 0, and hence by (1) either (∂xf̂)|X′

ww0
̸= 0 or

(∂xf̂)|X′
sww0
̸= 0. If the former, w ≤ x < y by the induction hypothesis. If the latter, sw ≤ x

by the induction hypothesis, and hence w ≤ y, as desired.

7.7. Keep the notation of (7.6). As f̂ ∈ R(XW)w0 , one has

Rf̂ = f̂R▹R(XW).(1)

Then, ∀s ∈ S, Rf̂ +R∂sf̂ = Rf̂ +∂s(Rf̂)%R(XW) by (7.5). Assume now that
∑

x<w ∂x(Rf̂)%
R(XW) and write w = sy > y. ∀a ∈ R,

(∂wf̂)a = (∂s∂yf̂)a

∈
∑

x≤y

∂x(Rf̂) + ∂s
∑

x≤y

∂x(Rf̂) by the hypothesis and by (7.5) again

=
∑

x≤y

∂x(Rf̂) +
∑

x≤y

∂s∂x(Rf̂) =
∑

x≤w

∂x(Rf̂),

and hence by (7.2.2) and by induction one obtains that
∑

w∈W

R(∂wf̂) =
∑

w∈W

∂w(Rf̂)%R(XW).(2)

By (7.6.i) one has (∂w0 f̂)e ̸= 0. As ∂w0 f̂ = (∂w0 f̂)e⊗1 by (7.4) and as
∑

w∈W R∂wf̂%R(XW)
by (2),

(∂w0 f̂)eR(XW) = (∂w0 f̂)e(1⊗ 1)R(XW) = ((∂w0 f̂)e ⊗ 1)R(XW) = (∂w0 f̂)R(XW) ⊆
∑

w∈W

R∂wf̂ .

Lemma:
∑

w∈W R∂wf̂ = (∂w0 f̂)eR(XW) with the ∂wf̂ , w ∈W, left R-linearly independent.

Proof: Let first
∑

w∈W aw∂wf̂ = 0, aw ∈ R. Then on X′
e = X′

w0w0

0 =
∑

w∈W

(aw∂wf̂)|X′
e
= (aw0∂w0 f̂)|X′

w0w0
with (∂w0 f̂)|X′

w0w0
̸= 0 by (7.6),
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and hence aw0 ̸= 0 as R(X′
e) ≃ R is a domain. If s ∈ S,

0 =
∑

w<w0

(aw∂wf̂)|X′
s
= (asw0∂w0 f̂)|X′

sw0w0
with (∂sw0 f̂)|X′

sw0w0
̸= 0,

and hence asw0 = 0. Likewise, by descending induction on w, get all aw = 0. Thus, the ∂wf̂
are left R-linearly independent, and hence (∂w0 f̂)eR(XW) ⊆

∐
w∈W R∂wf̂ .

Recall from [Dem] that, letting RW denote the W-invariants of R, R has an RW-linear basis
(uw|w ∈ W) with deg(uw) = 2ℓ(w) ∀w ∈ W . Thus, the 1 ⊗ uw, w ∈ W , form a left R-linear
basis of R(XW) ≃ R ⊗RW R by (7.2). Then by counting the dimension of both sides in each
degree one obtains that (∂w0 f̂)eR(XW) =

∐
w∈W R∂wf̂ .

7.8. Let f̂ ∈ R(XW)dw0
as before. By (7.7) there is φ ∈ R(XW) such that f̂ = (∂w0 f̂)eφ. Then

deg(φ) = 2ℓ(w0) and φ ∈ R(XW)w0 . Thus,

Proposition: (i) φ ∈ R(XW)2ℓ(w0)
w0 \ 0.

(ii) (∂wφ|w ∈W) forms a left R-linear basis of R(XW).

Proof: (ii) As ∂w0φ ̸= 0 by (7.6) of degree 0, ∂w0φ ∈ K×. Then by (7.7)

(∂w0 f̂)eR(XW) =
∑

w∈W

R∂w((∂w0 f̂)eφ) = (∂w0 f̂)e
∑

w∈W

R∂wφ.

As R(XW) is left R-free by [Dem], we must have

R(XW) =
∑

w∈W

R∂wφ =
∐

w∈W

R∂wφ.

7.9. K the notation of (7.8).

Corollary: (i) ∀w ∈ W, ∂w−1w0φ ∈ R(XW)2ℓ(w)
≥w with (∂w−1w0φ)w ̸= 0, i.e., ∂w−1w0φ ∈

R(XW)2ℓ(w), (∂w−1w0φ)|Xw ̸= 0, and ∀y ∈W with (∂w−1w0φ)|Xy ̸= 0, y ≥ w.

(ii) ∀w ∈W,

R(XW)≥w =
∐

y∈W
y≥w

R∂y−1w0φ and R(XW) ̸<w =
∐

y∈W
y ̸<w

R∂y−1w0φ.

In particular, R(XW)≥w/R(XW)>w ≃ R(w)(−2ℓ(w)) ≃ R(XW) ̸<w/R(XW) ̸≤w and R(XW)w0 =
Rφ ≃ R(w0)(−2ℓ(w0)).

Proof: ∀x, y ∈ W , if (∂xφ)|Xy ̸= 0, (∂xf̂)|Xy ̸= 0 as {ν ∈ V ∗|(∂xφ)(ν, y−1ν) ̸= 0} ̸⊆ {ν ∈
V ∗|(∂w0 f̂)e(ν) = (∂w0 f̂)(ν, ν) = 0}. Thus, (7.6) holds with f̂ replaced by φ.
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(i) One has (∂w−1w0φ)w = (∂w−1w0φ)|Xw0(w
−1w0)

−1 ̸= 0 by (7.6.i). If 0 ̸= (∂w−1w0φ)y =

(∂w−1w0φ)|Xw0(y
−1w0)

−1 , y
−1w0 ≤ w−1w0 by (7.6.ii), and hence y ≥ w. Also, deg(∂w−1w0φ) =

2ℓ(w0)− 2ℓ(w−1w0) = 2ℓ(w).

(ii) Let
∑

y∈W ay∂y−1w0φ ∈ R(XW)≥w, ay ∈ R. If ay ̸= 0, ay(∂y−1w0φ)y ̸= 0 as (∂y−1w0φ)y ̸= 0
by (i) and as {ν ∈ V ∗|(∂y−1w0φ)(ν, y

−1ν) ̸= 0} ̸⊆ {ν ∈ V ∗|ay(ν) = 0}, and hence the assertions.

7.10. Let now ψ = w0φ with φ as in (7.8). Then ψ ∈ R(XW)2ℓ(w0)
e \ 0. In particular, ψ|Xe ̸= 0

while ψ|Xw = 0 ∀w > e. Then, using (7.6.1,2), one checks that

∀y ∈W , (∂yψ)|Xy−1 ̸= 0,(1)

∀w ∈W with (∂yψ)|Xw−1 ̸= 0, w ≤ y.(2)

Arguing as in (7.7.2), one also obtains that
∑

w∈W

R∂wψ %R(XW).(3)

with the ∂wψ, w ∈W , left R-linearly independent as in (7.7). As (∂w0ψ)w0 ∈ K× by (1) and as
∂w0ψ = (∂w0ψ)w0 ⊗ 1 by (7.4), R(XW) = (∂w0ψ)w0R(XW) ⊆

∑
w∈W R∂wψ, and hence by [Dem]

again

R(XW) =
∑

w∈W

R∂wψ =
∐

w∈W

R∂wψ.(4)

Corollary: (i) ∀w ∈W, ∂w−1ψ ∈ R(XW)2ℓ(w0w)
≤w with (∂w−1ψ)w ̸= 0, i.e., ∂w−1ψ ∈ R(XW)2ℓ(w0w),

(∂w−1ψ)|Xw ̸= 0 and ∀y ∈W with (∂w−1ψ)|Xy ̸= 0, y ≤ w.

(ii) ∀w ∈W,

R(XW)≤w =
∐

y∈W
y≤w

R∂y−1ψ and R(XW) ̸>w =
∐

y∈W
y ̸>w

R∂y−1ψ.

In particular, R(XW)≤w/R(XW)<w ≃ R(w)(−2ℓ(w0w)) ≃ R(XW) ̸>w/R(XW) ̸≥w and R(XW)e =
Rψ ≃ R(e)(−2ℓ(w0)).

Proof: (i) One has (∂w−1ψ)w = (∂w−1ψ)|Xw ̸= 0 by (1). If 0 ̸= (∂w−1ψ)y = (∂w−1ψ)|Xy ,
y−1 ≤ w−1 by (2), and hence y ≤ w. Also, deg(∂w−1ψ) = 2ℓ(w0)− 2ℓ(w−1) = 2ℓ(w0w).

(ii) Argue as in (7.9.ii).

8. Properties (S) and (LE)

Assume in this section that W is a finite Weyl group and V the K-linear space by base
change of a weight lattice of the root system associated to W . We will preview the properties
(S) and (LE) of [Ab19b], which in turn are modelled after the ones in [FL15], applied to C to
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extend the character homomorphism ch : [SBimod] → H to the Grothendieck groups of the
objects of C admitting a ∆-flag (resp. ∇-flag) and express it in terms of the multiplicities of the
∆- (resp. ∇-) subquoteints as in (5.9). These are analogues of Soergel’s formulae [S07] in case
V is reflection faithful. Precisely, all the above hold if K is a field satisfying the characteristic
condition of §7. Over a complete DVR K, however, we will have also to work over the residue
field of K as in (4.9), for which the objects in C have to split already over R∅ = R[ 1

αt
|t ∈ T ]

rather than over Q. Thus, let C∅ denote the full subcategory of Ctf consisting of those M
splitting over R∅: R∅ ⊗R M =

∐
w∈W M∅

w with M∅
w = (R∅ ⊗R M) ∩MQ

w . Note that SBimod is
a subcategory of C∅.

We assume throughout the section that K is a complete DVR, unless otherwise specified,
with the hypotheses in §7 on the characteristic of K and of K/m for the maximal ideal m of K.

8.1. ∀x ∈ W , put (≤ x) = {w ∈ W|w ≤ x} and (≥ x) = {w ∈ W|w ≥ x}. Define (> w)
and (< w) likewise. We say that I ⊆ W is W-open iff I = ∪x∈I(≤ x). The W-opens define a
topology on the set W . Thus, J ⊆W is closed iff J = ∪x∈J(≥ x), in which case we will say J
is W-closed. ∀t ∈ T , let Rαt = R[ 1

αu
|u ∈ T \ {t}]. Under the standing hypothesis one has

∩t∈T Rαt = R.(1)

∀M ∈ C∅ put Mαt = Rαt ⊗R M . ∀J ⊆W , one has

(MJ)
αt = Rαt ⊗R (M ∩

∐

w∈J

MQ
w )(2)

= (Rαt ⊗R M) ∩ (Rαt ⊗R

∐

w∈J

MQ
w ) as Rαt is flat over R [BCA, Lem. I.2.6.7]

= Mαt ∩
∐

w∈J

MQ
w = (Mαt)J .

We say that M belongs to Cou iff the following two properties (Sou) and (LE) hold on M :

(Sou) ∀W-open I1 and I2, MI1∪I2 = MI1 +MI2 ,

(LE) ∀t ∈ T , Mαt =
∐

Ω∈⟨t⟩\W

(Mαt ∩
∐

x∈Ω

MQ
x ) =

∐

Ω∈⟨t⟩\W

(Mαt ∩
∐

x∈Ω

M∅
x).

∀M ∈ C∅, ∀J ⊆W , arguing as in (4.10.iii) yields that

MJ/m(MJ) ≃MJ ⊗K (K/m) ≃ {M ⊗K (K/m)}J ≃ (M/mM)J .(3)

Then, ∀M ∈ Cou,

properties (Sou) and (LE) carry over to M ⊗K (K/m).(4)
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For

(M/mM)I1∪I2 ≃ (MI1∪I2)/m(MI1∪I2) by (3)

= (MI1 +MI2)/m(MI1 +MI2) ≃ (MI1 +MI2)⊗K (K/m)

≃MI1 ⊗K (K/m) +MI2 ⊗K (K/m) as (MI1 +MI2)⊗K (K/m),

MI1 ⊗K (K/m) and MI2 ⊗K (K/m) all lie in M ⊗K (K/m)

≃ (MmM)I1 + (MmM)I2 by (3) again.

Likewise,

(M/mM)αt ≃ {M ⊗K (K/m)}αt ≃ (R/mR)αt ⊗R M ≃Mαt/m(Mαt) ≃Mαt ⊗k (K/m)

=
∐

Ω∈⟨t⟩\W

(Mαt ∩
∐

x∈Ω

M∅
x)}⊗K (K/m) =

∐

Ω∈⟨t⟩\W

{(Mαt)Ω ⊗K (K/m)}

=
∐

Ω∈⟨t⟩\W

(Mαt/mMαt)Ω as in (3)

=
∐

Ω∈⟨t⟩\W

{(M/mM)αt ∩
∐

x∈Ω

(M/mM)∅x}.

8.2. Let M ∈ C∅, t ∈ T , w ∈W , and n ∈ Z.

Lemma: (i) If suppW(M) ⊆ {w, tw}, (Sou) holds on M .

(ii) If (LE) holds on M , so does (Sou) on Mαt.

(iii) R(w)(n) ∈ Cou.

Proof: Let I1 and I2 be 2 W-opens. Recall that either w < tw or tw < w [HRC, 5.9]

(i) We may assume that I1∩{w, tw} ⊇ I2∩{w, tw}. Let I ′j be the smallestW-open containing
Ij ∩ {w, tw}, j ∈ [1, 2]. Then I ′1 ⊇ I ′2, I

′
1 ∩ {w, tw} = I1 ∩ {w, tw}, I ′2 ∩ {w, tw} = I2 ∩ {w, tw},

and hence

MI′1
= M ∩ (

∐

x∈I′1

MQ
x ) by definition

= M ∩ (
∐

x∈I′1∩{w,tw}

MQ
x ) = M ∩ (

∐

x∈I1∩{w,tw}

MQ
x ) = M ∩ (

∐

x∈I1

MQ
x )

as suppW(M) ⊆ {w, tw}
= MI1 .

Likewise, MI′2
= MI2 , MI′1∪I′2 = MI1∪I2 . Then MI1∪I2 = MI′1∪I′2 = MI′1

= MI1 = MI1 +MI2 as
MI2 = MI′2

⊆MI′1
= MI1 .

(ii) Put β = αt. Assume now that (LE) holds on M . ∀Ω ∈ ⟨t⟩\W , put Mβ
Ω = Mβ ∩
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(
∐

x∈Ω MQ
x ). Thus, M

β =
∐

Ω Mβ
Ω by (LE). If I is W-open, one has

(Mβ)I = Mβ ∩ {
∐

x∈I

(Mβ)Qx } = (
∐

Ω

Mβ
Ω) ∩ {

∐

x∈I

(
∐

Ω

Mβ
Ω)

Q
x } =

∐

Ω

{Mβ
Ω ∩ (

∐

x∈I

(Mβ
Ω)

Q
x )}

=
∐

Ω

(Mβ
Ω)I by definition,

and hence

(Mβ)I1∪I2 =
∐

Ω

(Mβ
Ω)I1∪I2

=
∐

Ω

{(Mβ
Ω)I1 + (Mβ

Ω)I2} as (Sou) holds on Mβ
Ω by (i)

= {
∐

Ω

(Mβ
Ω)I1}+ {

∐

Ω

(Mβ
Ω)I2} = (Mβ)I1 + (Mβ)I2 .

8.3. Let K be a W-locally closed subset and write K = I ∩ J with I W-open and J W-closed.
∀M ∈ Cou, set Mou

K = MI/MI\J . If K = I ′ ∩ J ′ with I ′ W-open and J ′ W-closed,

(I ∪ I ′) ∩ (J ∩ J ′) = (I ∩ J ∩ J ′) ∪ (I ′ ∩ J ∩ J ′) = (K ∩ J ′) ∪ (K ∩ J) = K ∪K = K.

Also,

I ∪ I ′ = I ∪ {(I ∪ I ′) \ (J ∩ J ′)},(1)

I ∩ {(I ∪ I ′) \ (J ∩ J ′)} = I \ J.(2)

For let x ∈ I ′ \ I. As (I ′ \ I) ∩ (J ∩ J ′) ⊆ (I ′ ∩ J ′) \ I = (I ∩ J) \ I = ∅, x ̸∈ J ∩ J ′.
Then x ∈ (I∪I ′)\(J∩J ′), and (1) holds. Let next y ∈ I∩{(I∪I ′)\(J∩J ′)} = I\(J∩J ′) ⊇ I\J .
Just suppose y ∈ J . Then y ∈ I ∩ J = I ′ ∩ J ′ ⊆ J ′, and hence y ∈ J ∩ J ′, absurd, and hence
also (2). Then

MI∪I′/M(I∪I′)\(J∩J ′) = MI∪{(I∪I′)\(J∩J ′)}/M(I∪I′)\(J∩J ′) by (1)(3)

= {MI +M(I∪I′)\(J∩J ′)}/M(I∪I′)\(J∩J ′) by (Sou)

≃MI/{MI ∩M(I∪I′)\(J∩J ′)}
= MI/MI∩{(I∪I′)\(J∩J ′)} by (1.4.iii)

= MI/MI\J by (2).

Lemma: (i) Mou
K ∈ Cou with Mou

K ≤M∅ and is, in M∅, independent of the choice of I and J
to express K .

(ii) suppW(Mou
K ) = suppW(M) ∩K.

(iii) If suppW(M) ⊆ K, Mou
K = M .

(iv) MK ⊗ (K/m) ≃ {M ⊗K (K/m)}K.

76



Proof: (iii) One has

Mou
K = MI/MI\J

= MI/0 as (I \ J) ∩ suppW(M) ⊆ (I \ J) ∩ (I ∩ J) = ∅
= M as suppW(M) ⊆ I.

(i), (ii) By (1.4.2) one has Mou
K = MI/(MI)I\J ≃ (MI)I∩J torsion-free over R. In particular,

Mou
K ≤ (Mou

K )Q = (MI/MI\J)
Q ≃ (MI)

Q/(MI\J)
Q

= (
∐

x∈I

MQ
x )/(

∐

x∈I\J

MQ
x ) by (1.4.ii)

≃
∐

x∈I∩J

MQ
x =

∐

x∈K

MQ
x ,

and hence Mou
K ∈ C∅ with

suppW(Mou
K ) = {x ∈W|(Mou

K )Qx ̸= 0} = {x ∈W|(
∐

y∈K

MQ
y )x ̸= 0} = {x ∈ K|MQ

x ̸= 0}

= suppW(M) ∩K.

To see that (Sou) and (LE) hold on Mou
K , we first show that ∀I ′ W-open,

(Mou
K )I′ = Mou

K∩I′ .(4)

If K is W-open, the assertion follows from (1.4.iii). If K is W-closed, put I1 = W \K. Then

(Mou
K )I′ = Mou

K ∩
∐

x∈I′
(Mou

K )Qx

= (M/MI1) ∩
∐

x∈I′∩K

MQ
x by (ii)

while

Mou
K∩I′ = MI′/MI′\K = MI′/MI′∩I1

= MI′/(MI′ ∩MI1) by (1.4.iii) again

≃ (MI′ +MI1)/MI1 .

As Mou
K∩I′ ≤ (Mou

K∩I′)
Q =

∐
x∈I′∩K MQ

x , Mou
K∩I′ ≤ (Mou

K )I′ . Let m ∈ M with m + MI1 ∈∐
x∈I′∩K MQ

x . Then mx = 0 unless x ∈ I ′ ∪ I1, and hence

m ∈MI′∪I1

= MI′ +MI1 as (Sou) holds on M.

Thus, Mou
K∩I′ ≃ (Mou

K )I′ . In general, write K = I ∩ J with I W-open and J W-closed. One has
Mou

K = Mou
J∩I ≃ (Mou

J )I by what we have just verified, and hence

(Mou
K )I′ ≃ ((Mou

J )I)I′ = (Mou
J )I∩I′ by (1.4.iii)

≃Mou
J∩I∩I′ by above

= Mou
K∩I′ , as desired.
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We now show that (Sou) holds on Mou
K . Given W-open I1 and I2, one has

(Mou
K )I1∪I2 = Mou

K∩(I1∪I2) by (3)

= Mou
(K∩I1)∪(K∩I2) = Mou

(I∩I1∩J)∪(I∩I2∩J) = Mou
{(I∩I1)∪(I∩I2)}∩J

= MI∩(I1∪I2)/M{I∩(I1∪I2)}\J = M(I∩I1)∪(I∩I2)/M{I∩(I1∪I2)}\J

= {MI∩I1 +MI∩I2}/M{I∩(I1∪I2)}\J as (Sou) holds on M

≃MI∩I1/M(I∩I1)\J +MI∩I2/M(I∩I2)\J = Mou
K∩I1 +Mou

K∩I2
= (Mou

K )I1 + (Mou
K )I2 by (3) again,

and hence (Mou
K )I1∪I2 = (Mou

K )I1 + (Mou
K )I2 .

We show finally that (LE) holds on Mou
K . Let t ∈ T and put β = αt. As (Mou

K )β =
(MI/MI\J)β ≃ (MI)β/(MI\J)β, we have only to verify (LE) holding on MI . Let m ∈ (MI)β ≤
Mβ. As (LE) holds on M , one can write m =

∑
Ω∈⟨t⟩\W mΩ with mΩ ∈Mβ∩

∐
x∈Ω MQ

x . As m ∈
(MI)β ≤ (MI)Q =

∐
y∈I M

Q
y , however, mx = 0 unless x ∈ I. Thus, mΩ ∈ (MI)β ∩

∐
x∈Ω(MI)Qx ,

as desired.

(iv) follows from (8.1.3).

8.4. Let M ∈ Cou and K1 W-locally closed. By (8.3.i) one has Mou
K1
∈ Cou.

Lemma: If K2 is another W-locally closed, (Mou
K1
)ouK2
≃Mou

K1∩K2
.

Proof: Write Ki = Ii ∩ Ji with Ii W-open and Ji W-closed, i ∈ {1, 2}. Then

(Mou
K1
)K2 = (Mou

K1
)I2/(M

ou
K1
)I2\J2

= Mou
K1∩I2/M

ou
K1∩(I2\J2) by (8.3.4)

with

Mou
K1∩I2 = Mou

I1∩I2∩J1 = MI1∩I2/M(I1∩I2)\J1 ,

Mou
K1∩(I2\J2) = Mou

I1∩(I2\J2)∩J1 = MI1∩(I2\J2)/M{I1∩(I2\J2)}\J1 = M(I1∩I2)\J2/M(I1∩I2)\(J1∪J2),

and hence

(Mou
K1
)ouK2

= MI1∩I2/{M(I1∩I2)\J1 +M(I1∩I2)\J2}
= MI1∩I2/M(I1∩I2)\J1}∪{(I1∩I2)\J2} as (Sou) holds on M

= MI1∩I2/M(I1∩I2)\(J1∩J2) = Mou
I1∩I2∩J1∩J2 = Mou

K1∩K2
.

8.5. Let M ∈ Cou. ∀w ∈ W , {w} = (≤ w) ∩ (> w) is W-locally closed. Put Mou
w = Mou

{w} =
Mou

≤w/M
ou
(≤w)\(>w) for simplicity.

The filtration Mou
≤i , i ∈ N, of Mou by length with (≤ i) = {w ∈ W|ℓ(w) ≤ i} admits a

refinement by W-opens such that each subquotient is of the form Mou
w , w ∈ W . We say that

M admits a ∇-flag iff each Mou
w , w ∈W , is graded free over R, i.e., Mou

w ≃
∐

i∈Z R(w)(i)⊕ni for
some ni ∈ N. Let C∇ denote the full subcategory of C∅ consisting of the objects with ∇-flags.
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Lemma: ∀M ∈ C∇, ∀K W-locally closed, Mou
K ∈ C∇ and is left/right graded free over R. In

particular, Mou
K ∈ C.

Proof: By (8.3.i) we know that Mou
K ∈ Cou. ∀w ∈W , one has

(Mou
K )ouw = Mou

K∩{w} by (8.4)(1)

=

{
Mou

w if w ∈ K,

0 else.

Let I0 = ∅ ⊂ I1 ⊂ · · · ⊂ I|W| = W be a filtration of W by W-opens. Then Mou
K = (Mou

K )I|W|

with all (Mou
K )Ij/(M

ou
K )Ij−1 ≃ (Mou

K )ouIj\Ij−1
, j ∈ [1, |W|], graded free by (1), and so therefore is

Mou
K .

8.6. Let M ∈ C, s ∈ S, t ∈ T and put α = αs, β = αt. ∀Ω ∈ ⟨t⟩\W , put MΩ = Mβ ∩
(
∐

w∈Ω MQ
w ) = Mβ ∩ (MQ

w ⊕MQ
tw). Let δ ∈ V with ⟨δ,α∨⟩ = 1.

Lemma: (i) If Ω = Ωs, (M ∗B(s))Ω ≃MΩ ⊗R B(s).

(ii) If Ω ̸= Ωs, the right actions of α on both MΩ and (M ∗B(s))Ω are invertible and

(M ∗B(s))Ω ≃ {MΩ ⊗R R(δ ⊗ 1− 1⊗ sδ)}⊕ {MΩs ⊗R R(δ ⊗ 1− 1⊗ δ)}.

(iii) If (LE) holds on M , so does it on M ∗B ∀B ∈ SBimod.

Proof: (i) One has

(M ∗B(s))Ω = (M ∗B(s))β ∩
∐

w∈Ω

(M ∗B(s))Qw

= (M ∗B(s))β ∩
∐

w∈Ω

{(MQ
w ⊗R B(s)Qe )⊕ (MQ

ws ⊗R B(s)Qs )} by (2.3.3)

= (M ∗B(s))β ∩
∐

w∈Ω

{(MQ
w ⊗R B(s)Qe )⊕ (MQ

w ⊗R B(s)Qs )}} as Ωs = Ω

= (M ⊗R B(s))β ∩
∐

w∈Ω

(MQ
w ⊗R B(s)Q)

≃ (Mβ ⊗R B(s)) ∩
∐

w∈Ω

(MQ
w ⊗R B(s)) ≃ (Mβ ⊗R B(s)) ∩ {(

∐

w∈Ω

MQ
w )⊗R B(s)}

= (Mβ ∩
∐

w∈Ω

MQ
w )⊗R B(s) as B(s) is free over R

= MΩ ⊗R B(s).

(ii) Let w ∈ Ω and put γ = wα. Thus, Ω = {w, tw} and Ωs = {ws, tws}. As Ωs ̸= Ω,
Ωs∩Ω = ∅, and hence γ ̸= ±β, tγ ̸= ±β. Then γ, tγ ∈ (Rβ)×. Letm ∈MΩ = Mβ∩(MQ

w⊕M
Q
tw)

and write m = m1 + m2 with m1 ∈ MQ
w and m2 ∈ MQ

tw. Take δβ ∈ V with ⟨δβ, β∨⟩ = 1.
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∀a ∈ R, m1a = (wa)m1 = γm1 and m2a = (twa)m2 = (tγ)m2. Thus, mα = γm1 + (tγ)m2,
mw−1δβ = δβm1 + (tδβ)m2 = δβm1 + (δβ − β)m2. Then in Mβ

{1
γ
m+

⟨γ, β∨⟩
γ(tγ)

(δβm−mw−1δβ)}α

= (
1

γ
+
⟨γ, β∨⟩δβ
γ(tγ)

)(γm1 + (tγ)m2)−
⟨γ, β∨⟩
γ(tγ)

{δβγm1 + (δβ − β)(tγ)m2}

= (1 +
⟨γ, β∨⟩δβ

tγ
− ⟨γ, β

∨⟩δβ
tγ

)m1 + (
tγ

γ
+
⟨γ, β∨⟩δβ

γ
− ⟨γ, β

∨⟩(δβ − β)
γ

)m2

= m1 +m2 = m.

Thus, MΩα = MΩ. As M is right torsion-free over R by (1.3.2), the right multiplication by α
on MΩ is invertible, and on (M ∗B(s))Ω as M ∗B(s) ∈ C by (2.3). Thus,

(M ∗B(s))Ω = (M ∗B(s))Ω ⊗R R[
1

α
].

Put B(s)[ 1α ] = B(s)⊗RR[ 1α ]. As (δ⊗ 1− 1⊗ sδ)α = α(δ⊗ 1− 1⊗ sδ) and as (δ⊗ 1− 1⊗ δ)α =
(sα)(δ ⊗ 1− 1⊗ δ) = −α(δ ⊗ 1− 1⊗ δ), one has from (2.2.16)

B(s)[
1

α
] = R[

1

α
](δ ⊗ 1− 1⊗ sδ)⊕R[

1

α
](δ ⊗ 1− 1⊗ δ)(1)

with R[ 1α ](δ ⊗ 1− 1⊗ sδ) ⊆ B(s)Qe and R[ 1α ](δ ⊗ 1− 1⊗ δ) ⊆ B(s)Qs . Thus,

(M ∗B(s))Ω ⊗R R[
1

α
] = (M ∗B(s)[

1

α
])β ∩

∐

w∈Ω

(M ∗B(s))Qw [BCA, Lem. I.2.6.7]

= (Mβ ⊗R B(s)[
1

α
]) ∩ {(M ∗B(s))Qw ⊕ (M ∗B(s))Qtw}

= (Mβ ⊗R B(s)[
1

α
])∩

{(MQ
w ⊗R B(s)Qe )⊕ (MQ

ws ⊗R B(s)Qs )⊕ (MQ
tw ⊗R B(s)Qe )⊕ (MQ

tws ⊗R B(s)Qs )}

= Mβ ⊗R {R[
1

α
](δ ⊗ 1− 1⊗ sδ)⊕R[

1

α
](δ ⊗ 1− 1⊗ δ)}

∩ {MQ
w ⊗R R(δ ⊗ 1− 1⊗ sδ)⊕MQ

tw ⊗R R(δ ⊗ 1− 1⊗ sδ)

⊕MQ
ws ⊗R R(δ ⊗ 1− 1⊗ δ)⊕MQ

tws ⊗R R(δ ⊗ 1− 1⊗ δ)}
= Mβ ⊗R {R(δ ⊗ 1− 1⊗ sδ)⊕R(δ ⊗ 1− 1⊗ δ)}

∩ {(MQ
w ⊕MQ

tw)⊗R R(δ ⊗ 1− 1⊗ sδ)⊕ (MQ
ws ⊕MQ

tws)⊗R R(δ ⊗ 1− 1⊗ δ))}
as α ∈ (Rβ)×

= {Mβ ∩ (MQ
w ⊕MQ

tw)}⊗R R(δ ⊗ 1− 1⊗ sδ)

⊕ {Mβ ∩ (MQ
ws ⊕MQ

tws)}⊗R R(δ ⊗ 1− 1⊗ δ)
= {MΩ ⊗R R(δ ⊗ 1− 1⊗ sδ)}⊕ {MΩs ⊗R R(δ ⊗ 1− 1⊗ δ)}.

(iii) We may assume that B = B(s). We are to show that (M ∗ B(s))β =
∐

Ω∈⟨t⟩\W(M ∗
B(s))Ω. Write {Ω ∈ ⟨t⟩\W|Ωs ̸= Ω}/⟨s⟩ = {Ω1, . . . ,Ωr}. Thus, {Ω ∈ ⟨t⟩\W|Ωs ̸= Ω} =
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{Ωi,Ωis|i ∈ [1, r]}. Then
∐

Ω∈⟨t⟩\W

(M ∗B(s))Ω = {
∐

Ωs=Ω

(M ∗B(s))Ω}⊕
r∐

i=1

{(M ∗B(s))Ωi ⊕ (M ∗B(s))Ωis}

= {
∐

Ωs=Ω

(MΩ ⊗R B(s))}⊕
r∐

i=1

{MΩi ⊗R R(δ ⊗ 1− 1⊗ sδ)

⊕MΩis ⊗R R(δ ⊗ 1− 1⊗ δ)⊕MΩis ⊗R R(δ ⊗ 1− 1⊗ sδ)

⊕MΩi ⊗R R(δ ⊗ 1− 1⊗ δ)} by (i) and (ii)

= {
∐

Ωs=Ω

(MΩ ⊗R B(s))}

⊕
r∐

i=1

{MΩi ⊗R {R[
1

α
](δ ⊗ 1− 1⊗ sδ)⊕R[

1

α
](δ ⊗ 1− 1⊗ δ)}}

⊕ {MΩis ⊗R {R[
1

α
](δ ⊗ 1− 1⊗ δ)⊕R[

1

α
](δ ⊗ 1− 1⊗ sδ)}}

as the right multiplications by α on MΩi and on MΩis are both invertible

= {
∐

Ωs=Ω

(MΩ ⊗R B(s))}⊕
r∐

i=1

{(MΩi ⊗R B(s)[
1

α
])}⊕ (MΩis ⊗R B(s)[

1

α
])}

by (1)

= {
∐

Ωs=Ω

(MΩ ⊗R B(s))}⊕
r∐

i=1

{(MΩi ⊗R B(s))⊕ (MΩis ⊗R B(s))}

as the right multiplications by α on MΩi and on MΩis are invertible again

=
∐

Ω∈⟨t⟩\W

(MΩ ⊗R B(s)) = (
∐

Ω∈⟨t⟩\W

MΩ)⊗R B(s)

= Mβ ⊗R B(s) as (LE) holds on M

= (M ∗B(s))β.

8.7. Let s ∈ S and I ⊆W with Is = I.

Lemma: ∀M ∈ C, (M ∗B(s))I ≃MI ⊗R B(s).

Proof: One has

{(M ∗B(s))I}Q =
∐

w∈I

(M ∗B(s))Qw by (1.4.ii)

=
∐

w∈I

{(MQ
w ⊗R B(s)Qe )⊕ (MQ

ws ⊗R B(s)Qs )} by (2.3)

=
∐

w∈I

{((MI)
Q
w ⊗R B(s)Qe )⊕ ((MI)

Q
ws ⊗R B(s)Qs )} as Is = I

= (MI ⊗R B(s))Q,
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and hence

(M ∗B(s))I = (M ∗B(s)) ∩ (MI ⊗R B(s))Q = (M ⊗Rs R(1)) ∩ {(MI)
Q ⊗Rs R(1)}

≃ (M ∩ (MI)
Q)⊗Rs R(1) as R is free over Rs

= MI ⊗Rs R(1) ≃MI ⊗R B(s).

8.8. Let M ∈ Cou, s ∈ S, w ∈W with w < ws. Let I (resp. J) be a W-open (resp. W-closed)
with I ∩ J = {w,ws}. Thus, I \ {w,ws} = I \ J and I \ {ws} = (I \ J) ∪ (≤ w) are both
W-open. As B(s) is free over R, M ⊗R B(s) ∈ C∅, which may, however, not belong to Cou.

Lemma: If I = Is, there are isomorphisms of left graded R-modules

(M ⊗R B(s))I\{ws}/(M ⊗R B(s))I\{w,ws} ≃Mou
{w,ws}(−1),

(M ⊗R B(s))I/(M ⊗R B(s))I\{ws} ≃Mou
{w,ws}(1).

Proof: Put N = M ⊗R B(s). By (1.4) one has all NI , NI\{ws}, NI\{w,ws} ∈ C∅ . Put L1 =
NI\{ws}/NI\{w,ws}, L = NI/NI\{w,ws}, L2 = NI/NI\{ws}, and consider an exact sequence

0→ L1 → L→ L2 → 0.(1)

Thus, one has a CD of exact sequences

0 LQ
1 LQ LQ

2 0

0 NQ
w NQ

w ⊕NQ
ws NQ

ws 0.

≀ ≀ ≀

By (1.4) again all L1, L, L2 ∈ C∅. In particular,

L1 = L1 ∩ (L1)
Q ≃ L1 ∩NQ

w = L1 ∩ LQ
w ≃ L ∩ LQ

w .(2)

To see the last isomorphism, if x ∈ L ∩ LQ
w , x = 0 in L2 ≤ LQ

2 , and hence x ∈ L1 by (1).

Now,

L = (MI ⊗R B(s))/(MI\{w,ws} ⊗R B(s)) by (8.7)

≃ (MI/MI\{w,ws})⊗Rs R(1)

≃Mou
{w,ws} ⊗Rs R(1) by (8.3) as M ∈ Cou

= Mou
{w,ws} ⊗R B(s).

Then L1 ≃ L ∩ LQ
w ≃ (Mou

{w,ws} ⊗R B(s)) ∩ LQ
w .
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By (2.3.iii) one has

L(−1) ≃ (Mou
{w,ws} ⊗R B(s))(−1) LQ

w ≃ (Mou
{w,ws} ⊗R B(s))Qw ≃ (Mou

{w,ws})
Q
w ⊕ (Mou

{w,ws})
Q
ws

Mou
{w,ws} ⊗Rs Rs ⊕Mou

{w,ws} ⊗Rs Rsδ (m1 ⊗ 1,m2 ⊗ δ) (m1,w +m2,wδ,m1,ws +m2,wssδ)

LQ
ws ≃ (Mou

{w,ws} ⊗R B(s))Qws

(Mou
{w,ws})

Q
ws ⊕ (Mou

{w,ws})
Q
w (m1,ws +m2,wsδ,m1,w +m2,wsδ).

≀

≀

As suppW(L) = {w,ws}, one has that

(m1 ⊗ 1,m2 ⊗ δ) ∈ LQ
w iff (m1,ws +m2,wsδ,m1,w +m2,wsδ) = 0(3)

iff

{
m1,w = −m2,wsδ = −(wsδ)m2,w,

m1,ws = −m2,wsδ = −(wsδ)m2,ws,

iff m1 = −(wsδ)m2 as suppW(m1), suppW(m2) ⊆ {w,ws}.

Thus,

L1 ≃ L ∩ LQ
w ≃ {(−(wsδ)m⊗ 1,m⊗ δ)|m ∈Mou

{w,ws}}(1)
≃Mou

{w,ws}(−1) as deg(δ) = 2 = deg(wsδ).

Consider next an epi of graded left R-modules

φ : L ≃Mou
{w,ws} ⊗Rs R(1)→Mou

{w,ws}(1) via m⊗ a $→ (wsa)m,

under which (m1 ⊗ 1,m2 ⊗ δ) $→ m1 + (wsδ)m2. Then kerφ = L ∩ LQ
w by (3), and hence

Mou
{w,ws}(1) ≃ L/(L ∩ LQ

w) = L/L1 by (2)

≃ L2.

8.9. Let s ∈ S, w ∈W with w < ws. Recall from [BB, Prop. 2.2.7] that

∀x ∈W with x < ws and x < xs, x ≤ w and xs ≤ ws.(1)

Likewise,

if x > w and x > xs, then xs ≥ w.(2)

For x has a reduced expression (s1, . . . , sr) with sr = s. As ws > w, a subexpression of
(s1, . . . , sr−1) gives w, and hence xs = s1 . . . sr−1 ≥ w.

Note also that

∀I W-open, I ∪ Is remains W-open.(3)

For if x ∈ Is and y < x, xs ∈ I, and hence we may assume x > xs. If y < ys, y ≤ xs by (1),
and hence y ∈ I. If y > ys, ys ≤ xs by (1) again. Then ys ∈ I, and hence y ∈ Is.
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Lemma: Let M ∈ C∇ and I W-open, J W-closed. There are isomorphisms of graded left
R-modules

(M ∗B(s))I/(M ∗B(s))I\J ≃
{
Mou

{w,ws}(1) if I ∩ J = {ws},
Mou

{w,ws}(−1) if I ∩ J = {w}.

Proof: Put N = M ∗B(s) ∈ C; M ∈ C by (8.5).

Assume first that I ∩ J = {ws}. Put I1 = (≤ ws), which is right s-invariat by (1). As I is
W-open with ws ∈ I, I1 ⊆ I. Thus

NI1/NI1\{ws} ↪→ NI/NI\{ws} = NI/NI\J .

As I1∩(≥ w) = {w,ws}, NI1/NI1\{ws} ≃Mou
{w,ws}(1) by (8.8), and hence Mou

{w,ws}(1) ≤ NI/NI\J .

Let t ∈ T and put β = αt. As Rβ = R[ 1
αu
|u ∈ T \ {t}] is flat over R, Mβ = Rβ ⊗R M ∈

Cou(Rβ) the category Cou over Rβ [BCA, Lem. I.2.6.7]. Then (LE) holds on Nβ ≃ Mβ ∗ B(s)
by (8.6.iii), and hence (Sou) holds on Nβ = (Nβ)β by (8.2). Thus, Nβ ∈ Cou(Rβ). In particular,
(Nβ)ouI∩J does not depend on the choice of I and J by (8.3), and hence

(Nβ)I/(N
β)I\J ≃ (Nβ)ou{ws} ≃ (Nβ)I1/(N

β)I1\{ws}

≃ (Mβ)ou{w,ws}(1) by (8.8) again.

As M admits a ∇-flag, Mou
{w,ws} is graded free over R by (8.5). Then

Mou
{w,ws}(1) = ∩t∈T {Mou

{w,ws}(1)}αt by (8.1.1)

= ∩t∈T (Mαt)ou{w,ws}(1) = ∩t∈T {(Nαt)I/(N
αt)I\J}

≥ NI/NI\J as NI/NI\J ∈ C∅ by (1.4).

Thus, NI/NI\J ≃Mou
{w,ws}(1).

Assume next that I ∩ J = {w}. Let us first observe that

NI/NI\J ↪→Mou
{w,ws}(−1).(4)

As I \ J = I \ (≥ w), we may assume J = (≥ w). Then J = Js by (2). Put I ′2 = I ∪ Is, which
is W-open by (3). Then I ′2 ∩ J = (I ∩ J)∪ (Is∩ J) = (I ∩ J)∪ (Is∩ Js) = (I ∩ J)∪ (I ∩ J)s =
{w,ws}, and hence I ′2 \ {w,ws} = I ′2 \ J and I ′2 \ {ws} = I ′2 \ (≥ ws) are both W-open. Also,
I ′2 \ {ws} ⊇ I; if I ∋ ws, I ⊇ {w,ws} implying I ∩ J ⊇ {w,ws}, absurd. As I ̸∋ ws again,
I \ {w,ws} = I \ {w} = I \ J , and hence NI/NI\J ↪→ NI′2\{ws}/NI′2\{w,ws} ≃ Mou

{w,ws}(−1) by
(8.8) again, and (4) holds.

Take now a sequence of W-opens ∅ = I0 ⊂ · · · ⊂ I|W| = W with |Ii+1| = |Ii|+1 ∀i such that
Ik = I and Ik−1 = I \ {w} for some k ∈ [1, |W|]. Put l = |W| and write Ii = Ii−1 > {wi}.

Assume for the moment that K is a field. Then dimK Nd =
∑l

j=1 dimK(NIj/NIj−1)
d. By the

case I ∩ J = {ws} and by (4) one has

dimK(NIj/NIj−1)
d ≤ dimK(M

ou
{wj ,wjs})

d+ε(wj) with ε(wj) =

{
−1 if wj < wjs,

1 else.
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Then

l∑

j=1

dimK(M
ou
{wj ,wjs})

d+ε(wj) =
l∑

j=1

{dimK(M
ou
wj
)d+ε(wj) + dimK(M

ou
wjs)

d+ε(wj)}

=
∑

wjs>wj

dimK(M
ou
{wj})

d−1 +
∑

wjs>wj

dimK(M
ou
{wjs})

d−1

+
∑

wjs<wj

dimK(M
ou
{wj})

d+1 +
∑

wjs<wj

dimK(M
ou
{wjs})

d+1

=
∑

wjs>wj

dimK(M
ou
{wj})

d−1 +
∑

wjs<wj

dimK(M
ou
{wj})

d+1

+
∑

wjs<wj

dimK(M
ou
{wj})

d+1 +
∑

wjs<wj

dimK(M
ou
{wj})

d−1

=
∑

j

dimK(M
ou
{wj})

d−1 +
∑

j

dimK(M
ou
{wj})

d+1 = dimK Md−1 + dimK Md+1.

On the other hand, taking δ ∈ V with ⟨δ,α∨
s ⟩ = 1, one has N = M ⊗Rs R(1) = M(1)⊗Rs Rs⊕

M(1)⊗Rs Rsδ, and hence

dimK Nd = dimK M(1)d + dimK M(1)d−2 as deg δ = 2

= dimK Md+1 + dimK Md−1 =
∑

j

dimK(M
ou
{wj ,wjs})

d+ε(wj)

≥
∑

j

dimK(NIj/NIj−1)
d = dimK Nd.

We must then have in (4) an isomorphism

NI/NI\J
∼−→Mou

{w,ws}(−1).(5)

Back to general complete DVR K with maximal ideal m, write m = (a). By (8.1.3) one has
NIj ⊗K (K/m) ≃ {N ⊗K (K/m)}Ij , and hence we may regard (NIj ⊗K K/m)j giving a filtration
of N ⊗K (K/m) with (NI/NI\J) ⊗K (K/m) ≃ Mou

{w,ws}(−1) ⊗K (K/m) by (5). It then follows

from (4) and by graded NAK that NI/NI\J
∼−→Mou

{w,ws}(−1).

8.10. Let M ∈ C∇ and s ∈ S.

Lemma: ∀I1, I2 W-open with I1 ⊇ I2, (M ∗B(s))I1/(M ∗B(s))I2 is left graded free over R.

Proof: Put N = M ∗ B(s). Take a sequence I2 = I ′0 ⊂ I ′1 ⊂ · · · ⊂ I ′r = I1 of W-opens with
|I ′j| = |I ′j−1| + 1 ∀i ∈ [1, r], and write I ′j = I ′j−1 > {wj}. As {wj} = Ij \ Ij−1 = Ij ∩ (W \ Ij−1),
one has from (8.9)

NI′j
/NI′j−1

≃Mou
{wj ,wjs}(ε(wj)) ∃ε(wj) ∈ {±1},

which is graded free over R by (8.5). Thus, NI1/NI2 = NI′r/NI′0
is graded free over R.

8.11. Though we do not know if Cou ∗SBimod = Cou,
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Proposition: C∇ ∗SBimod = C∇. In particular, SBimod ≤ C∇.

Proof: Let M ∈ C∇. We have by (8.10) only to show that M ∗ B(s) ∈ Cou, s ∈ S. Put
N = M ∗B(s).

We know from (8.6) that (LE) holds on N . To see that (Sou) holds on N , let I1 and I2 be 2
W-opens. Consider NI1/NI1∩I2 ↪→ NI1∪I2/NI2 , both terms of which are graded free over R by
(8.10). Let t ∈ T and put β = αt. Then (Sou) holds on Nαt by (8.2), and hence the imbedding
turns invertible upon base extension to Rβ by (8.3). Thus,

NI1∪I2/NI2 = ∩t∈T (NI1∪I2/NI2)
αt by (8.1.1)

≃ ∩t∈T (N
αt
I1∪I2/N

αt
I2
) by [BCA, Lem. I.2.6.7]

≃ ∩t∈T (N
αt
I1
/Nαt

I1∩I2) = NI1/NI1∩I2 ,

and hence NI1∪I2 = NI1 +NI2 .

8.12. Let [C∇] denote the split Grothendieck group of C∇ and define ch∇ : [C∇]→ H by

[M ] $→
∑

w∈W

vℓ(w)grk(Mou
w )Hw =

∑

w∈W

∑

j∈Z

v−j(Mou
w : R(w)(ℓ(w) + j))Hw ∀M ∈ C∇,

extending (5.9) to [C∇]. We will abbreviate ch∇([M ]) as ch∇(M). In particular, ∀s ∈ C,

ch∇(B(s)) = grk(B(s)oue ) + vgrk(B(s)ous )

= grk(B(s)e) + vgrk(B(s)/B(s)e)Hs = grk(B(s)e) + vgrk(B(s)s)Hs

= v + vgrk(R(e)(1))Hs by (2.2.10, 13)

= v +Hs = Hs

= ch(B(s)) from (5.2).

Then, one has as in [S07, Prop. 5.9],

Corollary: ch∇ is H-linear in the sense that ∀M ∈ C∇, ∀B ∈ SBimod,

ch∇(M ∗B) = ch∇(M)ch(B).

Proof: We may assume B = B(s) for some s ∈ S. One has from (8.9)

grk((M ∗B(s))ouw ) =

{
vgrk(Mou

{w,ws}) if ws < w

v−1grk(Mou
{w,ws}) else

=

{
v{grk(Mou

w ) + grk(Mou
{ws})} if ws < w

v−1{grk(Mou
w ) + grk(Mou

{ws})} else.

Then

ch∇(M ∗B(s)) =
∑

w∈W

vℓ(w)grk((M ∗B(s))ouw )Hw

=
∑

w∈W
ws<w

vℓ(w)−1grk(Mou
w ) + grk(Mou

ws)Hw +
∑

w∈W
ws>w

vℓ(w)+1grk(Mou
w ) + grk(Mou

ws)Hw
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while

ch∇(M)Hs = {
∑

w∈W

vℓ(w)grk(Mou
w )Hw}(Hs + v)

=
∑

w∈W

vℓ(w)grk(Mou
w )

{
Hws + vHw if ws > w

Hws + v−1Hw else

=
∑

w∈W
ws>w

vℓ(w)grk(Mou
w )(Hws + vHw) +

∑

w∈W
ws<w

vℓ(w)grk(Mou
w )(Hws + v−1Hw),

and hence ch∇(M ∗B(s)) = ch∇(M)Hs = ch∇(M)ch(B(s)), as desired.

8.13. As the category C∇ is additive, but not necessarily abelian, we define an exact structure
after [F08a, 2.5], [F08b, 4.1].

Definition: We say that condition (ES) holds on a complex M1 → M2 → M3 in C∇ iff
the sequence 0 → (M1)ouw → (M2)ouw → (M3)ouw → 0 is exact ∀w ∈ W as graded R-modules.
We define a category Cou

P to be the full category of C∇ consisting of M such that ∀ complex
M1 → M2 → M3 in C∇ with (ES), the induced sequence 0 → C(M,M1(n)) → C(M,M2(n)) →
C(M,M3(n))→ 0 is exact ∀n ∈ Z.

Thus, Cou
P consists of the “projectives” in C∇. As R(e) ∈ C∇ and as Me = Mou

e ∀M ∈ C∇,
one has by (1.4.3)

R(e) ∈ Cou
P .(1)

We will show that SBimod = Cou
P .

8.14. Let M1 → M2 → M3 be a complex in C∇ with (ES) holding. Consider a refinement In
by W-opens of the length filtration (Mi)≤l, l ∈ N, of each Mi, i ∈ [1, 3], such that I0 = ∅,
In = In−1 > {xn} for some xn ∈W , n ∈ [1, |W|]. Thus, I|W| = W . Consider a CD

0 0 0

0 (M1)I1 (M2)I1 (M3)I1 0

0 (M1)I2 (M2)I2 (M3)I2 0

0 (M1)oux2
(M2)oux2

(M3)oux2
0

0 0 0.

As I1 = {x1} and as (ES) ensures an exact sequence 0 → (M1)ouxn
→ (M2)ouxn

→ (M3)ouxn
→ 0

∀n, the top and the bottom rows are both exact. As the columns are all split exact at least
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as left R-modules, the middle row must be exact. Repeating the argument, one obtains that
0→M1 →M2 →M3 → 0 must be exact. Moreover,

Lemma: ∀K W-locally closed, 0→ (M1)ouK → (M2)ouK → (M3)ouK → 0 is exact.

Proof: By (8.4) on the complex (M1)ouK → (M2)ouK → (M3)ouK the property (ES) holds, and
hence the assertion by above.

8.15. We now show

Theorem: Cou
P ∗SBimod = Cou

P = SBimod.

Proof: For the first equality we have only to show that M ∗B(s) ∈ Cou
P ∀M ∈ Cou

P ∀s ∈ S. We
know from (8.11) that M ∗B(s) ∈ C∇. Assume that (ES) holds on a complex M1 →M2 →M3

in C∇. By adjunction (2.6) one has a CD

0 C(M ∗B(s),M1) C(M ∗B(s),M2) C(M ∗B(s),M3) 0

0 C(M,M1 ∗B(s)) C(M,M2 ∗B(s)) C(M,M3 ∗B(s)) 0.

≀ ≀ ≀

Thus, the exactness of the top row will follow if (ES) holds on the complex M1 ∗ B(s) →
M2 ∗ B(s)→ M3 ∗ B(s); we know that the complex lies in C∇ by (8.11). ∀w ∈W , one has by
(8.9) a CD

0 (M1 ∗B(s))ouw (M2 ∗B(s))ouw (M3 ∗B(s))ouw 0

0 (M1)ou{w,ws}(±1) (M2)ou{w,ws}(±1) (M3)ou{w,ws}(±1) 0

≀ ≀ ≀

with ±1 varying simultaneously, the bottom row of which is exact by (8.14). The first equality
holds.

As R(e)(n) ∈ Cou
P by (8.13.1), one obtains by above that SBimod ⊆ Cou

P . Assume now
that M ∈ Cou

P is indecomposable. Refining the length filtration of M , take W-opens I and I ′

with I ′ = I > {w} for some w such that suppW(M) \ I = {w}. Thus, suppW(M) ⊆ I ′ and
suppW(M/MI) = {w}. Then

(M/MI)
ou
w = M/MI by (8.3.iii)

= MI′/MI as I ′ ⊇ suppW(M)

≃Mou
w ,

and hence (ES) holds on the complex MI → M
q−→ M/MI in C∇. Let R(w)(n) M/MI

i

π

such that π◦i = idR(w)(n) for some n ∈ Z. As B(w)w ≃ R(w)(ℓ(w)) by (5.1) and as B(w) ∈ Cou
P ,

one obtains from (1.4.v)

C(B(w)(n− ℓ(w)),M) C(B(w)(n− ℓ(w)),M/MI)

C(R(w)(n),M/MI).
≀
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Let î ∈ C(B(w)(n − ℓ(w)),M) be a lift of i. Likewise, let π̂ ◦ q ∈ C(M,B(w)(n − ℓ(w))) be a
lift of π ◦ q along

C(M,B(w)(n− ℓ(w))) C(M,R(w)(n))

C(M/MI , R(w)(n)).
≀

Then id−π̂ ◦ q◦ î ̸∈ C(B(w)(n−ℓ(w)), B(w)(n−ℓ(w)))×. As B(w)(n−ℓ(w)) is indecomposable,
we must have π̂ ◦ q ◦ î ̸∈ C(B(w)(n − ℓ(w)), B(w)(n − ℓ(w)))×. Thus, î splits, and hence is
invertible.

8.16. Turning to W-closed, we say that M ∈ C∅ belongs to Cfe iff the following two properties
(Sfe) and (LE) hold on M :

∀W-closed I1 and I2,MI1∪I2 = MI1 +MI2 ,(Sfe)

∀t ∈ T ,Mαt =
∐

Ω∈⟨t⟩\W

(Mαt ∩
∐

x∈Ω

MQ
x ).(LE)

Writing K = I ∩ J with I W-closed and J W-open for a W-locally closed subset K of W ,
∀M ∈ Cfe, put M fe

K = MI/MI\J . Then the analogues of (8.3) and (8.4) hold for M fe
K .

8.17. Let M ∈ Cfe. ∀w ∈ W , let M fe
w = M fe

{w}, and say that M admits a ∆-flag iff each M fe
w ,

w ∈W , is graded free over R. Let C∆ denote the full subcategory of C∅ consisting of those with
∆-flags.

Let M ∈ C∆ and I W-closed, J W-open, s ∈ S, w ∈ W with ws < w; note that the order
is reveresed here. As in (8.9) there are isomorphisms of left graded R-modules

(M ∗B(s))I/(M ∗B(s))I\J ≃
{
Mou

{w,ws}(1) if I ∩ J = {ws},
Mou

{w,ws}(−1) if I ∩ J = {w}.
(1)

Then, as in (8.11), one obtains that

C∆ ∗SBimod = C∆.(2)

As R(e)(n) ∈ C∆ ∀n ∈ Z, together with (8.11) one has

SBimod ≤ C∆ ∩ C∇.(3)

Let now [C∆] denote the split Grothendieck group of C∆, and define ch∆ : [C∆]→ H via

[M ] $→
∑

w∈W

vℓ(w)grk(M fe
w )Hw =

∑

w∈W

∑

i∈Z

vi(M fe
w : R(w)(−ℓ(w) + i))Hw ∀M ∈ C∆.

In particular, ∀s ∈ S,

ch∆(B(s)) = gr(B(s)fee ) + vgr(B(s)fes )Hs = gr(B(s)e) + vgr(B(s)s)Hs by (1.4.2)(4)

= v + vv−1Hs by (2.2.12, 11)

= Hs.
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One shows as in (8.12) that ch∆ is H-linear: ∀M ∈ C∆, ∀B ∈ SBimod,

ch∆(M ∗B) = ch∆(M)ch(B),(5)

obtaining an analogue of [S07, Prop. 5.7]. Thus, together with (8.12),

ch∆ = ch = ch∇ on [SBimod].(6)

Then, ∀B ∈ SBimod, ∀w ∈W , vℓ(w)grk(Bfe
w ) = v−ℓ(w)grk(Bw) = vℓ(w)grk(Bou

w ), and hence

Bfe
w (2ℓ(w)) ≃ Bw ≃ D(Bou

w )(2ℓ(w)).(7)

8.18. If I is W-open (resp. W-closed), one has from (1.4.2)

M I ≃M/MW\I ≃M fe
I (resp. Mou

I ).

It follows from (8.5) (resp. (8.16)) and (8.17.3), in accordance with [F08b, Def. 2.8],

Proposition: ∀M ∈ C∇ (resp. C∆), ∀I W-closed (resp. W-open), M I is graded free over R.
In particular, ∀B ∈ SBimod, ∀I W-closed/W-open, M I is graded free over R.

8.19. Recall from [L85, 1.4]/[S07, pf of Th. 5.15] an Z[v, v−1]-bilinear form ⟨ , ⟩ : H ×H →
Z[v, v−1] such that ⟨Hx, Hy⟩ = δx,y ∀x, y ∈W . ∀s ∈ S,

⟨HxHs, Hy⟩ =
{
⟨Hxs + vHx, Hy⟩ if xs > x,

⟨Hxs + v−1Hx, Hy⟩ else

=

{
δxs,y + vδx,y if xs > x,

δxs,y + v−1δx,y else

while

⟨Hx, HyHs⟩ =
{
⟨Hx, Hys + vHy⟩ if ys > y,

⟨Hx, Hys + v−1Hy⟩ else

=

{
δx,ys + vδx,y if ys > y,

δx,ys + v−1δx,y else

If xs > x,

δxs,y + vδx,y = δx,ys + vδx,y =

⎧
⎪⎨

⎪⎩

v if x = y only if ys > y,

1 if x = ys only if y > ys,

0 else

= ⟨Hx, HyHs⟩.
If xs < x,

δxs,y + v−1δx,y =

⎧
⎪⎨

⎪⎩

1 if xs = y only if y < ys,

v−1 if x = y only if ys < y,

0 else

= ⟨Hx, HyHs⟩.
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Thus, in either case ⟨HxHs, Hy⟩ = ⟨Hx, HyHs⟩, and hence ∀H,H ′, H ′′ ∈ H,

⟨HH ′′, H ′⟩ = ⟨H,H ′H ′′⟩.(1)

We now obtain an analogue of [S07, Th. 5.15]

Theorem: ∀B ∈ SBimod, ∀M ∈ C∇,

grk(C♯(B,M)) =
∑

w∈W

∑

i,j∈Z

(Bfe
w : R(w)(−ℓ(w) + i))(Mou

w : R(w)(ℓ(w) + j))vj−i.

Proof: We have only to show by (8.12) and (8.18) that

grk(C♯(B,M)) = ⟨ch∆(B), ch∇(M)⟩.

By (1), (8.12) and (8.17.5) we are further reduced to showing that

grk(C♯(R(e),M)) = ⟨ch∆(R(e)), ch∇(M)⟩.

One has

LHS = grk(Me) by (1.6.3)

= grk(Mou
e )

while

RHS = ⟨1,
∑

w∈W

vℓ(w)grk(Mou
w )Hw⟩ = grk(Mou

e ),

as desired.

8.20. As in (8.13) we define an “exact structure” on C∆ as follows.

Definition: We say that condition (ES) holds on a complex M1 → M2 → M3 in C∆ iff the
sequence 0 → (M1)few → (M2)few → (M3)few → 0 is exact ∀w ∈ W as graded R-modules. We
define a category Cfe

P to be the full category of C∆ consisting of M such that ∀ complex M1 →
M2 →M3 in C∆ with (ES) holding, the induced sequence 0→ C(M,M1(n))→ C(M,M2(n))→
C(M,M3(n))→ 0 is exact ∀n ∈ Z.

Thus, Cfe
P consists of the “projectives” in C∆. Note that R(e) ∈ C∇ ∩ C∆. As observed in

(2.2.15), however,

R(e) ∈ Cou
P \ Cfe

P ,(1)

and hence SBimod ̸⊆ Cfe
P .

8.21. Nonetheless, as in (8.15) one has

Proposition: Cfe
P ∗SBimod = Cfe

P .
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9. Z for finite Weyl groups

Assume that K is a complete DVR under the characteristic restrictions from §8. Recall Z
over the present K from (6.1). As Z is torsion-free over R, F (Z) ∈ Ctf . The argument of (6.1.2)
actually shows that F (Z) ∈ C∅: F (Z)∅ =

∐
w∈W R∅(w), andalso that suppW(F (Z)) = W . We

will give an isomorphism R⊗RWR→ F (Z) of graded K-algebras compatible with the structures
of R-bimodules, and show that F (Z)(ℓ(w0)) ≃ B(w0) in C. We will suppress F .

9.1. We start with

Lemma: Z ∈ Cou ∩ Cfe.

Proof: We check first that (LE) holds on Z. Let t ∈ T and put β = αt. Then Rβ = R[ 1
αu
|u ∈

T \ {t}] and hence

Zβ = Rβ ⊗R Z = {(zw) ∈ (Rβ)W |zw ≡ ztw mod β ∀w ∈W}

=
∐

w∈W
w<tw

{(0, . . . , 0, a, 0, . . . , 0, a+ bβ, 0. . . . , 0)|a, b ∈ Rβ}

with a at the w-th and a+ bβ at the tw-th

=
∐

Ω∈⟨t⟩\W

(Zβ ∩
∐

w∈Ω

ZQ
w ).

The same argument shows also that (LE) holds on each Zβ.

To check (Sou) on Z, let I1 and I2 be W-open. Then ZI1 + ZI2 ⊆ ZI1∪I2 . Also,

(ZI1 + ZI2)
β = (ZI1)

β + (ZI2)
β

= (Zβ)I1 + (Zβ)I2 by (8.1.2)

= (Zβ)I1∪I2 by (8.2.ii) as (LE) holds on Zβ

= (ZI1∪I2)
β by (8.1.2) again.

Thus,

ZI1 + ZI2 = ∩t∈T (ZI1 + ZI2)
αt as ∩t∈T Rαt = R in each component

= ∩t∈T (ZI1∪I2)
αt = ZI1∪I2 ,

and hence Z ∈ Cou. Likewise Z ∈ Cfe.

9.2. We show next that Z ∈ C∇ ∩ C∆. More precisely,

Lemma: ∀w ∈W, Zou
w ≃ R(w)(−2ℓ(w0w)) and Z fe

w ≃ R(w)(−2ℓ(w)).

Proof: By definition Z≤w = {(zx) ∈ Z|zx = 0 ∀x ̸≤ w} and Z<w = {(zx) ∈ Z|zx = 0 ∀x ̸< w}.
Put f =

∏
t∈T
tw>w

αt. Then ∀(ax) ∈ Z≤w, f |aw, and hence the projectioin πw : Z≤w → R onto the
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w-th component induces an imbedding Zou
w = Z≤w/Z<w ↪→ fR:

Z≤w R

Zou
w fR.

πw

To see the first assertion, we have only to show that πw induces a surjection π′
w : Z≤w " fR.

As Z≤w⊗KK[v] ≃ (Z⊗KK[v])≤w and as R⊗KK[v] ≃ SK[v](V ⊗KK[v]), we may assume that
K is infinite; the assumption that K is a complete noetherian local domain is irrelevant for the
surjectivity of π′

w. Now, the surjectivity of π′
w follows from that of π′

w⊗KKm ∀m ∈ Max(K) [AM,
Prop. 3.9], which in turn will follow from the surjectivity of π′

w ⊗Km Km/mKm ≃ π′
w ⊗K K/m

by graded NAK. Thus, we may further assume that K is a field, and hence an infinite field by
base extension.

One has a homomorphism of graded K-algebras η : R⊗RWR→ Z via a⊗b $→ (a(wb))w∈W
compatible with the structures of R-bimodules. For g ∈ R ⊗RW R write g =

∑
i ai ⊗ bi. Then

∀y ∈W , ∀ν ∈ V , one has a CD

g
∑

i ai(wbi)

R⊗RW R R

K
∑

i ai(ν)(ybi)(ν) =
∑

i ai(ν)bi(y
−1ν).

πy◦η

ev(ν,y−1ν)

evν

Thus, η(∂w−1ψ) ∈ Z2ℓ(w0w)
≤w \ 0 by (7.10). As f |η(∂w−1ψ)w, one can take ψ such that f =

η(∂w−1ψ)w, and the first assertion follows.

Likewise the second, using (7.9) instead of (7.10).

9.3. By going up to K[v] and then using graded NAK one obtains that (7.3) carries over to the
setup over present K. In particular, by [Dem] one has

grk(R(XW)) = grk(R⊗RW R) =
∑

w∈W

vℓ(w) = grk(Z).(1)

As in the proof of (9.2), ∀w ∈W , by graded NAK one obtains by induction on ℓ(w)

R⊗RW R Z

(R⊗RW R)≤w Z≤w.

η

As Z ∈ C∇, Z admits a filtration whose refinement has all its subquotients of the form Zou
w ,

and hence η is surjective. Then η must be bijective by (1). Thus,

Theorem: η is an isomorphism of graded K-algebras compatible with the structures of R-
bimodules.
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9.4. Let Zmodgrtf denote the category of graded left Z-modules of finite type that are torsion-
free over R. As any object M of C admits a structure of left R ⊗RW R-module, M ∈ Zmodgr
via (9.3), and hence by (6.1) one obtains

Corollary: the functor F : Zmodgrtf → C is an equivalence.

9.5. The quotient Z → Z/Z<w0 ≃ Zw0 induces a complex Z<w0 → Z → Zw0 in C∇ on which
(ES) holds; ∀x ∈W ,

(Zw0)oux ≃ δx,w0Zou
w0
,

(Z<w0)
ou
x ≃

{
Zou

x if x < w0,

0 else.

As B(w0) ∈ Cou
P , one obtains from (1.5.v)

C♯(B(w0),Z)" C♯(B(w0),Zw0) ≃ C♯(B(w0)
w0 ,Zw0).

One has

B(w0)
w0 ≃ R(w0)(ℓ(w0)) by (5.1)

≃ Zw0(ℓ(w0)) by the presence of (1, . . . , 1) in Z.

Let ϕ ∈ C(B(w0),Z(ℓ(w0))) be a lift of the isomorpshim B(w0)w0 ≃ Zw0(ℓ(w0)). Let f ∈ B(w0)
such that its image in B(w0)w0 gives a K-linear basis of (B(w0)w0)−ℓ(w0). By (1) there is
ψ ∈ C(Z(ℓ(w0)), B(w0)) such that 1 $→ f . Then ϕ ◦ ψ − idZ(ℓ(w0)) = 0 mod Z<w0(ℓ(w0)), and
hence ϕ ◦ ψ − idZ(ℓ(w0)) ̸∈ C(Z(ℓ(w0)),Z(ℓ(w0)))×. As C(Z,Z) ≃ Zmodgr(Z,Z) ≃ Z0 = K,
C(Z(ℓ(w0)),Z(ℓ(w0))) is local. Thus, ϕ ◦ ψ ∈ C(Z(ℓ(w0)),Z(ℓ(w0)))×. Then Z(ℓ(w0)) is a
direct summand of B(w0), and hence Z(ℓ(w0)) ≃ B(w0). Thus,

Theorem: There is an isomorphism B(w0)→ F (Z)(ℓ(w0)) in C.

9.6. Recall from (8.20) that a complex M1 → M2 → M3 in C∆ on which (ES) holds forms in
fact an exact sequence. Then Z ∈ Cfe

P by (9.4.1). Thus, despite the fact that SBimod ̸⊆ Cfe
P ,

one has from (9.5) and (8.21)

Corollary: (i) B(w0) ≃ Z(ℓ(w0)) ∈ Cou
P ∩ Cfe

P .

(ii) ∀B ∈ SBimod, B(w0) ∗B ∈ Cfe
P .
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II. Abe’s bimodules

Given a root datum (X,∆, X∨,∆∨) and a complete DVR K, Abe’s bimodules are graded
bimodules over the symmetric algebra S = SK(X∨

K), X
∨
K = X∨⊗Z K. They are torsion free over

S and are equipped with a “weight space” decomposition over S∅ = S[ 1α |α ∈ ∆] parametrized
by the alcoves inX⊗ZR. They are designed ingeneously to admit a right action by the monoidal
category SB of Soergel bimodules over S associated to the Coxeter system (W ,S) from I with
W = Wf # Z∆, Wf denoting the Weyl group of the root system ∆. The linear representation
of W on X∨

K is given by annihilating Z, in particular, not faithful. To define the action, he
prepares another graded K-algebra R isomorphic to S and regards SB over R. Thus, Abe’s
bimodules are graded (S,R)-bimodules M such that S∅⊗S M =

∐
A∈A M∅

A, A denoting the set
of alcoves. On each M∅

A the isomorphism between R and S is defined separately depending on
A. It is assumed on K that 2 ∈ K× and that the GKM condition holds, so that the Weyl group
Wf acts faithfully on X∨

K. Then the (S,R)-bimodule structure on M gives a decomposition
S∅ ⊗S M =

∐
Ω∈Z∆\A M∅

Ω with M∅
Ω =

∐
A∈Ω M∅

A. Thus, a morphism of Abe’s bimodules from

M to N is defined to be a (S,R)-bilinear map ϕ such that (S∅⊗S ϕ)(M∅
A) ⊆

∐
B∈A+Z∆,B≥A M∅

B

for each A ∈ A, where B ≥ A is the strong linkage/generic Chevalley-Bruhat order on A.

Later on an ideal quotient K of the category is introduced such that any morphism ϕ : M →
N with (S∅ ⊗S ϕ)(M∅

A) ⊆
∐

B>A M∅
B ∀A ∈ A be annihilated. Then a full subcategory K∆

of K consisting of those admitting a ∆-flag categorifies Lusztig’s periodic module for the ؠ
ງ-Hecke algebra H of (W ,S), and its subcategory KP of “projectives” is equivalent to a certain
subcategory KAJS,P of the combinatorial category of AJS [AJS]. If K is an algebraically closed
field of characteristic p > h the Coxeter number of ∆, KAJS,P is equivalent to the category of
projectives of the principal block of G1T deformed over the completion Ŝ of S with respect to
the augmentation ideal, where G1 (resp. T ) is the Frobenius kernel (resp. maximal torus) of
the reductive algebraic group over K associated to the root datum. A ∆-flag on M is a filtration
of M such that each subquotient associated to an alcove be free over S. To define a filtration
and to verify that the SB-action on K preserve K∆, the properties (S) and (LE), extracted
from [F08a], [F08b], [FL15], play important roles. Likewise, to define a “projective”, property
(ES) from [F08a], [F08b] is used, and the construction of a projective is done appealing to
the structure algebra of the moment graph associated to Wf . Finally, the action of SB on
the projectives is extended to the whole of the principal block of G1T corrsponding to the
wall-crossing functors. For p ≫ 0 Lusztig’s conjecture on the irreducible G1T -characters is
proved.

1. Preliminaries

1.1. Let (X,∆, X∨,∆∨) be a root datum [Sp, 7.4.1]. Let A denote the set of alcoves in
XR = X ⊗Z R, i.e., the set of connected components of XR \ ∪

α∈∆
n∈Z

{ν ∈ XR|⟨ν,α∨⟩ = n}. Let

Wf be the Weyl group of ∆ and W = Wf #Z∆ with Z∆ acting on XR by translations. Thus,
W acts simply transitively on A [J, II.6.2.4]. Fix a positive system ∆+ and let A+ be the set
of dominant alcoves in A, i.e., those A ∈ A such that, ∀ν ∈ A, ∀α ∈ ∆+, ⟨ν,α∨⟩ > 0. Let
A+ denote the bottom dominant alcove, and let S be the set of reflections in the walls of A+.
Thus, (W ,S) forms a Coxeter system with the length function denoted ℓ. Putting Sf = S∩Wf ,
(Wf ,Sf ) forms a Coxeter subsystem. Through the bijectionW → A via x $→ xA+, we transport
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the right action of W onto A [S97, p. 92]: ∀y ∈W ,

(xA+)y = xyA+.(1)

Let A = wA+ = A+w, w ∈ W . If s ∈ S is the reflection with respect to a wall H of A+,
As = wsA+ is the alcove adjacent to A over the wall wH of A. ∀α ∈ ∆, ∀n ∈ Z, let sα,n ∈W
be the reflection with respect to the hyperplane Hα,n = {λ ∈ XR|⟨λ,α∨⟩ = n}: ∀µ ∈ XR,

sα,nµ = µ− ⟨µ,α∨⟩α + nα.

If Hα,n is a wall of A defining s, wHα,n = Hwα,n and As = wsA+ = wsw−1wA+ = wsw−1A =
wsα,nw−1A = swα,nA. As the left and right multiplications on W are compatible, so they are
on A: ∀x, y ∈W , A ∈ A,

(xA)y = (x(wA+))y = ((xw)A+)y = (xw)yA+ = x(wy)A+ = x((wy)A+) = x(Ay).(2)

In particular, letting tγ, γ ∈ Z∆, denote the translation by γ,

(A+ γ)y = (tγA)y = tγ(Ay) = Ay + γ.(3)

More generally, let X̂ = {λ ∈ XR|⟨λ,α∨⟩ ∈ Z ∀α ∈ ∆}; X may not contain all the special
points in XR [L80]. Then X̂ acts on A by translation. Note, however, that (3) does not carry
over; it may happen that (A+ λ)y ̸= Ay + λ if λ ∈ X̂ \ Z∆.

1.2 Some technicalities: Abe’s bimodules admit an action of Soergel bimodules, which
require a linear acton of W . For that let Λ = {f : A → X|f(xA) = x̄f(A) ∀A ∈ A ∀x ∈ W},
where x̄ is the image of x under the projection W →Wf . ∀A ∈ A, there is a bijection Λ→ X
written f $→ fA := f(A) with inverse λ $→ λA such that λA(xA) = x̄λ ∀x ∈ W . Through the
bijection we import a structure of abelian group on Λ from X:

(f + g)A = fA + gA ∀f, g ∈ Λ,

which is independent of the choice of A; we are to check that (fA+ gA)A = (fB + gB)B, B ∈ A.
If B = wA, w ∈W ,

fB + gB = f(B) + g(B) = f(wA) + g(wA) = w̄f(A) + w̄g(A) = w̄{f(A) + g(A)}
= w̄(fA + gA) = w̄{{(fA + gA)

A}A} = w̄{(fA + gA)
A(A)} = (fA + gA)

A(wA)

= (fA + gA)
A(B) = {(fA + gA)

A}B,

and hence (fB + gB)B = (fA + gA)A, as desired.

If we transport the structure of W-module on X likewise such that (xf)A = x(fA), however,
the structure on Λ depends on the choice of A:

(xf)B = x(fB) = x{f(B)} = x{f(wA)} = x{w̄(f(A))},

which is not equal in general to x{f(A)} = x(fA). Instead, we define a W-action on Λ such
that ∀x ∈W , ∀f ∈ Λ, ∀A ∈ A,

(xf)(A) = f(Ax).(1)
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So-defined xf is indeed an element of Λ thanks to (1.1.2). Also, ∀y ∈W ,

((xy)f)(A) = f(A(xy)) = f((Ax)y) = (yf)(Ax) = (x(yf))(A),

and hence (xy)f = x(yf). Thus, the bijection ?A : Λ→ X is not W-equivariant.

Likewise, we introduce

Λ′ = {f : A→ X∨|f(xA) = x̄f(A) ∀x ∈W}.

Each A ∈ A defines a bijection Λ′ → X∨ via

f $→ fA := f(A)(2)

with inverse written ν $→ νA, under which we transport the structure of abelian group onto Λ′:
(f + g)A = fA + gA ∀f, g ∈ Λ′. The structure is independent of the choice of A as for Λ above,
and we define a Z-linear W-action on Λ′ via

(xf)(A) = f(Ax) ∀A ∈ A.(3)

Now, ∀f ∈ Λ′, ∀g ∈ Λ, ∀x ∈W ,

⟨g(xA), f(xA)⟩ = ⟨x̄g(A), x̄f(A)⟩ = ⟨g(A), f(A)⟩ = ⟨gA, fA⟩.(4)

∀f ∈ Λ′, let now f̃ ∈ Λ∨ = ModZ(Λ,Z) such that f̃(g) = ⟨gA, fA⟩, which is independent of the
choice of A by (4). Then

Λ′ ≃ Λ∨ via f $→ f̃ .(5)

For define Λ∨ → Λ′ via φ $→ (φ′)A with φ′ ∈ X∨ such that φ′(λ) = φ(λA) ∀λ ∈ X. ∀g ∈ Λ,

(̃φ′)A(g) = ⟨gA, ((φ′)A)A⟩ = ⟨gA,φ′⟩ = φ((gA)
A) = φ(g),

and hence (̃φ′)A = φ. Also,

⟨gA, ((f̃ ′)A)A⟩ = ⟨gA, f̃ ′⟩ = f̃((gA)
A) = f̃(g) = ⟨gA, fA⟩,

and hence (f̃ ′)A = f .

Thus, we will identify Λ∨ with Λ′, and obtain a Z-linear action of W on Λ∨, and hence a
K-linear action on Λ∨

K = Λ∨ ⊗Z K, on which Abe’s theory of Soergel bimodules in I is applied.
∀g ∈ Λ, ∀f ∈ Λ′, ∀x ∈W ,

f̃(xg) = ⟨(xg)A, fA⟩ = ⟨(xg)(A), f(A)⟩ = ⟨g(Ax), f(A)⟩
= ⟨g(yA+x), f(yA+)⟩ writing A = yA+, y ∈W
= ⟨g(yxA+), f(yA+)⟩ = ⟨yxg(A+), ȳf(A+)⟩ = ⟨g(A+), x−1f(A+)⟩
= ⟨g(A+), f(x−1A+)⟩ = ⟨g(A+), f(A+x−1)⟩ = ⟨g(A+), (x−1f)(A+)⟩

= ⟨gA+ , (x−1f)A+⟩ = x̃−1f(g),
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and hence

⟨xg, f⟩ = ⟨g, x−1f⟩.(6)

Note that the bijection (2) is not Wf -equivariant:

(xf)A = f(Ax) = fAx = f(Ax)(7)

= f(wA+x) if A = wA+

= f(wxA+) by definition

= f(wxw−1wA+) = f(wxw−1A) = wxw−1{f(A)}
̸= x{f(A)} = x(fA).

If we take A = A+, however, ∀x ∈ Wf , ∀f ∈ Λ′, (xf)A+ = xfA+ . Thus, the isomorphism
between X∨ and Λ∨ using A+ gives a Wf -equivariant isomorphism of K-modules

X∨ ⊗Z K
∼−→ Λ∨ ⊗Z K.(8)

Lemma: Let f ∈ Λ,λ ∈ X, γ ∈ X∨, g ∈ Λ∨, x ∈W , A ∈ A.

(i) (xf)A = fAx.

(ii) x̄fA = fxA.

(iii) xλAx = λA.

(iv) (x̄λ)xA = λA.

(v) (x̄γ)xA = γA.

(vi) xgAx = gA.

Proof: (i) (xf)A = (xf)(A) = f(Ax) = fAx.

(ii) x̄fA = x̄(f(A)) = f(xA) = fxA.

(iii) One has

(xλAx)A = (xλAx)(A) = λAx(Ax) by definition (1)

= (λAx)Ax = λ = (λA)A.

As ?A is bijective, the assertion follows.

(iv) {(x̄λ)xA}xA = x̄λ = x̄{(λA)A} = x̄{(λA)(A)} = (λA)(xA) = (λA)xA.

(v) {(x̄γ)xA}xA = x̄γ = x̄{(γA)A} = x̄γA(A) = γA(xA) = (γA)xA.

(vi) Under the identification of Λ∨ with Λ′ one has

(xgAx)A = (xgAx)(A) = gAx(Ax) by definition (3)

= g = (gA)A,

98



and hence xgAx = gA.

1.3. Recall the strong linkage on A from [J, II.6], which we will denote by ≥ after [L80]. Thus,
∀A ∈ A, w ∈W with A ≤ wA, and ν ∈ Ā,

wν − ν ∈ R≥0∆
+.(1)

The strong linkage is distinct from the PO on A induced by the Chevalley-Bruhat order on W ;
if s ∈ Sf , sA+ = A+s ̸> A+. For the precise relationship between the two, cf. [S97, claim 4.14,
p. 96].

Lemma: Let ∀A,A′ ∈ A with A′ = A+ γ for some γ ∈ Z∆, A ≤ A′ iff γ ∈ N∆+.

Proof: “if” We may assume γ ∈ ∆+. Take n ∈ Z with n − 1 < ⟨ν, γ∨⟩ < n ∀ν ∈ A.
Then A ≤ sγ,nA by definition. Also, ⟨sγ,nν, γ∨⟩ = ⟨ν − ⟨ν, γ∨⟩γ + nγ, γ∨⟩ = −⟨ν, γ∨⟩ + 2n <
1− n+ 2n = n+ 1, and hence A ≤ sγ,nA ≤ sγ,n+1sγ,nA = A+ γ.

“only if” Take ν ∈ A. Then (ν+γ)−ν ∈ R≥0∆+ by (1), and hence γ ∈ R≥0∆+∩Z∆ = N∆+

[HLA, 10.1].

1.4. We say J ⊆ A is open iff ∀A ∈ J , ∀A′ ∈ A with A′ ≤ A, A′ ∈ J . This defines a topology
on A; A and ∅ are both open. If Jν ’s are open, so is ∪νJν . If J and J ′ are open, so is J ∩ J ′.
Thus, I ⊆ A is closed iff ∀A ∈ I, ∀A′ ∈ A with A′ ≥ A, A′ ∈ I. For if I is closed, let A ∈ I
and A′ ∈ A with A′ > A. If A′ ̸∈ I, A′ ∈ A \ I open, and hence A ∈ A \ I, absurd. Assume
conversely the condition that ∀A ∈ I,∀A′ ∈ A with A′ ≥ A, A′ ∈ I. Let A ∈ A\ I and A′ ≤ A.
Then A′ ̸∈ I by the assumption.

∀A,A′ ∈ A, let (≥ A) = {B ∈ A|B ≥ A}, and define (> A), (≤ A), (< A) likewise. Put also
[A,A′] = (≥ A) ∩ (≤ A′), etc. For α ∈ ∆+ take n ∈ Z with n − 1 < ⟨ν,α∨⟩ < n ∀ν ∈ A, and
set α ↑ A = sα,nA > A. Let also α ↓ A = sα,n−1A. Thus, α ↑ (α ↓ A) = A = α ↓ (α ↑ A).

Lemma: Let Ω ∈ Z∆\A be a Z∆-orbit in A. If I is closed in Ω, so is Ix = {Ax|A ∈ I} in
Ωx ∀x ∈W.

Proof: Note first that I is closed in Ω iff I = {∪B∈I(≥ B)}∩Ω = ∪B∈I{(≥ B)∩Ω} iff ∀B ∈ I,
∀B′ ∈ Ω with B′ ≥ B, B′ ∈ I.

Let B ∈ I and B′ ∈ Ω with B′x ≥ Bx. Write Ω = A+Z∆ for some A ∈ A. Then B = A+γ
and B′ = A+ γ′ for some γ, γ′ ∈ Z∆, and hence

Ax+ γ′ = (A+ γ′)x by (1.1.3)

= B′x ≥ Bx = Ax+ γ.

Then γ′ − γ ∈ N∆+ by (1.3), and, in turn, B′ ≥ B. Then B′ ∈ I, and B′x ∈ Ix.

1.5. Fix a complete DVR K with maximal ideal m throughout the rest of II, so that our
categories be Krull-Scmidt. Put Λ∨

K = Λ∨ ⊗Z K, X∨
K = X∨ ⊗Z K, and R = SK(Λ∨

K). We endow
R with a grading such that deg(Λ∨

K) = 2, and consider Soergel bimodules in I over R.
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Throughout II we impose on K the conditions

(A1) 2 ∈ K×,

(A2) The GKM condition, cf. [F11, Lem. 9.2]: ∀α, β ∈ ∆+ distinct, ∀m ∈ Max(K), α∨ and β∨

remain linearly independent in X∨
K and in X∨ ⊗Z (K/m),

in addition to the characteristic restrictions on K from I such that chK is either 0 or above the
torsion primes.

Under those assumptions one has

Lemma: The representation X∨
K of Wf is faithful.

Proof: Let w ∈ Wf be trivial on X∨
K. As 2 distinct coroots remain distinct in X∨

K by the
standing assumption, w fixes every coroot over Z already, and hence w = e [HLA, 10.3].

2. Abe’s bimodules

2.1. Set S = SK(X∨
K) endowed with a grading such that deg(X∨

K) = 2, and let S∅ = S[ 1
α∨ |α ∈ ∆].

Let S0 be a commutative flat graded S-algebra. For an S-module M put M∅ = S∅ ⊗S M .
In particular, S∅

0 ≃ S0[
1
α∨ |α ∈ ∆]. Define a category K̃′(S0) to consist of the graded (S0, R)-

bimodules M such that

(i) M is torsion-free of finite type over S,

(ii) M∅ admits a decomposition M∅ =
∐

A∈A M∅
A such that ∀A ∈ A, M∅

A is an (S∅
0 , R)-

bimodule with mf = fAm ∀m ∈ M∅
A ∀f ∈ R; precisely, if f =

∑
i fi ⊗ ai, fi ∈ Λ∨ and ai ∈ K,

fA =
∑

i(fi)Aai ∈ S, and extend the operation to the whole of R.

A morphism ϕ ∈ K̃′(S0)(M,N) is a homomorphism of graded (S0, R)-modules, i.e., of degree
0, such that ϕ(M∅

A) ⊆
∐

A′≥A N∅
A′ ∀A ∈ A. We equip K̃′(S0)(M,N) with a structure of (S0, R)-

bimodule such that ∀a ∈ S0, ∀f ∈ R, ∀m ∈M

(aϕf)(m) = ϕ(amf) = aϕ(m)f.(1)

Thus, K̃′(S0) forms an (S0, R)-bilinear category [தԬ, Def. 3.1.11, p. 124, Def. 3.2.3, p.
130]. Put K̃′(S0)♯(M,N) =

∐
i∈Z K̃′(S0)(M,N(i)), which comes equipped with a structure of

graded (S0, R)-bimodule. Assume that ϕ ∈ K̃′(S0)(M,N) is invertible with inverse ψ. ∀A ∈ A,
idA = ψ∅

A ◦ ϕ∅
A. As each ψ

∅
B, B ∈ A, is injective, we must have

M∅ N∅

M∅
A N∅

A.

ϕ∅

∼

ϕ∅
A

∼

Let ϕ ∈ K̃′(S0)(M,N) in general. If K is the kernel of ϕ as graded (S0, R)-bimodules, by
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flat base change K∅ = ker(ϕ∅) =
∐

A∈A ker(ϕ∅
A). Thus,

K ↪→M gives the kernel of ϕ in K̃′(S0).(2)

Assume now that ϕ ∈ K̃′(S0)(M,M) is an idempotent. Then M = kerϕ ⊕ ker(1 − ϕ) as
(S0, R)-bimodules with (kerϕ)∅ = ker(ϕ∅) =

∐
A∈A ker(ϕ∅

A) and (ker(1− ϕ))∅ = ker(1− ϕ∅) =∐
A∈A ker((1− ϕ)∅A) =

∐
A∈A ker(1− ϕ∅

A). As M
∅
A ≥ (kerϕ)∅A ⊕ (ker(1− ϕ))∅A ∀A ∈ A,

∐

A∈A

M∅
A = M∅ ≥ {

∐

A∈A

(kerϕ)∅A}⊕ {
∐

A∈A

(ker(1− ϕ))∅A} = (kerϕ)∅ ⊕ (ker(1− ϕ))∅ = M∅,

and hence M∅
A = (kerϕ)∅A ⊕ (ker(1 − ϕ))∅A ∀A ∈ A. Thus, the decomposition M = kerϕ ⊕

ker(1− ϕ) occurs in K̃′(S0), and

K̃′(S0) is Karoubian/idempotent complete [தԬ, Def. 3.3.40, p. 174].(3)

As ker(1−ϕ) = ϕ(M), ϕ is the identity on ker(1−ϕ) and ϕ vanishes on kerϕ. Thus, ∀A ∈ A,

M∅ M∅

M∅
A M∅

A.

ϕ∅

As M ∈ K̃′(S0) is torsion-free over S, M ↪→ M∅ =
∐

A∈A M∅
A. We will denote the M∅

A-
component of the image of m ∈ M by mA. We define the support of M to be suppA(M) =
{A ∈ A|M∅

A ̸= 0}. ∀m ∈M , put suppA(m) = {A ∈ A|mA ̸= 0}.

Note that

M ∈ K̃′(S0) is also torsion-free over R.(4)

For ifma = 0, m ∈ K̃′(S0), a ∈ R, writem =
∑

A∈A mA inM∅ = S∅⊗SM . Then 0 =
∑

A aAmA

∀A. If mA ̸= 0, there is b ∈ S× with bmA ∈M . Then baA = 0, and hence aA = 0.

Let γ ∈ Z∆. ∀M ∈ K̃′(S0), let Tγ(M) = M and Tγ(M)∅A = M∅
A+γ ∀A ∈ A. ∀m ∈ Tγ(M)∅A,

∀f ∈ R,

mf = fA+γm = f(A+ γ)m = f(A)m by definition

= fAm,

and hence Tγ(M) comes equipped with a structure of K̃′(S0), and Tγ defines an automorphism
of K̃′(S0) with adjoint T−γ. If λ ∈ X̂, A $→ A+ λ defines a permutation on A. Unless λ ∈ Z∆,
however, there is f ∈ R with fA+λ ̸= fA.

For a graded S0-module M we let M i, i ∈ Z, denote its homogeneous piece of degree i. If
n ∈ Z, we let M(n) denote a graded S0-module with M(n)i = Mn+i, i ∈ Z. We say that M
is graded free over S0 iff M ≃

∐
n∈Z S0(n)⊕m(M,n) for some m(M,n) ∈ N, in which case we
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call
∑

n∈Z m(M,n)vn ∈ Z[v, v−1], the Laurent polynomial ring in v, the graded rank of M and
denote it by grk(M).

2.2 Remarks: Let M ∈ K̃′(S0).

(i) Let Ω ∈ Z∆\A be a Z∆-orbit in A. ∀m ∈
∐

A∈Ω M∅
A, ∀f ∈ R,

∃fΩ ∈ S : mf = fΩm.(1)

For if Ω = A+ Z∆ and A′ = A+ γ, γ ∈ Z∆, ∀f ∈ Λ∨,

fA′ = f(A′) = f(A+ γ) = f(A) = fA,

and hence ∀g ∈ R, gA′ = gA.

As the left action of Wf is simply transitive on Z∆\A,

M∅ =
∐

w∈Wf

(
∐

B∈wΩ

M∅
B) with mf = (wfΩ)m ∀f ∈ R ∀m ∈

∐

B∈wΩ

M∅
B.(2)

For if A ∈ Ω,

fwΩ = fwA by (1)

= w̄fA by (1.2.ii)

= wfA
= wfΩ by (1) again.

Now, Wf separates Z∆\A by the simply transitive action, acts faithfully on X∨
K by (1.5),

and M is torsion-free over S. It follows that the decomposition of M∅ into the
∐

B∈wΩ M∅
B,

w ∈ Wf , is determined by the (S0, R)-bimodule structure on M . Then, ∀N ∈ K̃′(S0), ∀ϕ ∈
(S0, R)Bimod(M,N), ∀w ∈Wf ,

ϕ∅(
∐

B∈wΩ

M∅
B) ⊆

∐

B∈wΩ

N∅
B.

For let m ∈
∐

B∈wΩ M∅
B and A′ ∈ A with ϕ(m)A′ ̸= 0. Let x ∈ Wf such that A′ ∈ xΩ. Then,

∀f ∈ Λ∨
K,

(fwΩ − fxΩ)ϕ(m)A′ = ϕ(fwΩm)A′ − fxΩϕ(m)A′ = ϕ(mf)A′ − fxΩϕ(m)A′ by (1)

= (ϕ(m)f)A′ − fxΩϕ(m)A′ = 0 by (1) again.

As M is torsion-free over S, fwΩ − fxΩ = 0, and hence wx−1fA′ = fwx−1A′ = fwΩ = fxΩ = fA′

by (1.2). Then wx−1 is trivial on the whole of Λ∨
K, and w = x by (1.5). Thus, ∀Ω′ ∈ Z∆\A,

ϕ∅(
∐

A∈Ω′

M∅
A) ⊆

∐

A∈Ω′

N∅
A.(3)

For an example of φ ∈ K̃′(M,N) such that φ∅(M∅
A) ̸⊆ N∅

A for some A, see i+0 in (7.3).
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(ii) For X ⊆ A set M[X] = M ∩
∐

A∈X M∅
A. As M ≤M∅, (M[X])∅ ≤

∐
A∈X M∅

A. If m ∈M∅
A,

A ∈ X, take b ∈ S× such that bm ∈ M . Then bm ∈ M[X], and hence m ∈ (M[X])∅. Thus,
(M[X])∅ =

∐
A∈X M∅

A. Then, by setting

(M[X])
∅
B =

{
M∅

B if B ∈ X,

0 else,

one obtains that M[X] ∈ K̃′(S0). Thus, M $→ M[X] defines an endofunctor of K̃′(S0). In
particular, as M is of finite type over S, we must have suppA(M) finite.

(iii) Let R∅ = R[ 1
(α∨)A |α

∨ ∈ ∆∨], which is independent of the choice of A ∈ A; write

A = xA+, x ∈ W . Then (α∨)xA
+
= (x̄−1α∨)A

+
by (1.2.v) with x̄−1α∨ = (x̄−1α)∨ ∈ ∆∨. Note

also that

((α∨)A
+
)A = (α∨)A

+
(A) = (α∨)A

+
(xA+) = x̄{(α∨)A

+
(A+)} = x̄α∨ ∈ ∆∨.

As M ∈ K̃′(S0) has finite support, there is an isomorphism of graded (S0, R)-bimodules

M ⊗R R∅ →M∅ via m⊗ f

g
$→

∑

A∈A

fA
gA

mA with m =
∑

A

mA in M∅ = S∅ ⊗S M.

For denote the map by η. Any element of M ⊗R R∅ is of the form m⊗ 1
f for some f ∈ (R∅)×.

If 0 = η(m ⊗ 1
f ) =

∑
A

1
fA
mA, then 0 = (

∑
A

1
fA
mA)f =

∑
A mA = 1 ⊗m, and hence m = 0.

To see the surjectivity, ∀a ∈ (S∅)×,

1

a
⊗m =

∑

A

1

a
mA = η(

∑

A

mA
g

aA
⊗ 1

g
)

with g ∈ (R∅)× such that mA
g
aA = gA

a mA ∈M ∩M∅
A ∀A, which exists as M has finite support.

2.3. A primary example of an object of K̃′(S0) is afforded by S0 itself. As S is a domain and
as S0 is flat over S, it is torsion-free over S. Let A ∈ A and let R act on S0 from the right such
that gf = fAg ∀g ∈ S0, ∀f ∈ R, which defines a structure of graded (S0, R)-bimodule denoted
S0(A). Then S0(A)∅ = S0(A)∅A, and S0(A) ∈ K̃′(S0), which we will call the standard module
associated to A. Thus, grk(S0(A)) = 1.

∀M ∈ K̃′(S0), one has by (2.2.3)

K̃′(S0)
•(S0(A),M) ≃ {m ∈M |suppA(m) ⊆ A+ N∆}.

In particular, as K is a complete DVR, S0(A) is indecomposable if (S0)0 = K.

2.4. Let I be a closed subset of A. ∀M ∈ K̃′(S0), let MI = M[I] = M ∩
∐

A∈I M
∅
A as in Rmk.

2.2.ii. One has M ∈ K̃′(S0) with

(MI)
∅
A =

{
M∅

A if A ∈ I.

0 else,
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In particular,

MI =

{
M if I ⊇ suppA(M),

0 if I ∩ suppA(M) = ∅.
(1)

Also,

Lemma: (i) If I ′ is another closed subset of A, MI ∩MI′ = MI∩I′ = (MI)I′.

(ii) ∀A ∈ A, S0(A)I =

{
S0(A) if A ∈ I,

0 else.

2.5. Properties (S) and (LE): We will argue as in (I.8), but with Wα = ⟨sα⟩#Zα ≤W and
Sα = S[ 1

β∨ |β ∈ ∆+ \ {α}] ∀α ∈ ∆+. As S is a UFD, under the standing assumptions (1.5), one
has

∩α∈∆+Sα = S.(1)

For each S-module M put Mα = Sα ⊗S M ∈ K̃′((S0)α). ∀M ∈ K̃′(S0), we say M ∈ K̃(S0)
iff the following 2 conditions hold on M :

(S) ∀ closed I1 and I2 ⊆ A, MI1∪I2 = MI1 +MI2 ,

(LE) ∀α ∈ ∆+, Mα =
∐

Ω∈Wα\A(M
α ∩

∐
A∈Ω M∅

A).

Arguing as in (I.4.9.iii) shows, ∀M ∈ K̃′(S0), ∀I closed in W , as M is torsion free over S,
that

MI ⊗K (K/m) ≃ {M ⊗K (K/m)}I .(2)

Then, one obtains as in (I.8.1.4) that

if M ∈ K̃(S0), properties (S) and (LE) carry over onto M ⊗K (K/m).(3)

Let ϕ ∈ K̃(S0)(M,M) be an idempotent, let K be the kernel of ϕ in K̃′(S0), and let N be a
direct complement of K in K̃′(S0). Then M∅

A = K∅
A ⊕N∅

A ∀A ∈ A by (2.1.3). If I is closed in
A, one has in K̃′(S0)

MI = (K ⊕N) ∩
∐

A∈I

(K ⊕N)∅A = (K ⊕N) ∩ {(
∐

A∈I

K∅
A)⊕ (

∐

A∈I

N∅
A)}

= (K ∩
∐

A∈I

K∅
A)⊕ (N ∩

∐

A∈I

N∅
A) = KI ⊕NI .

Then KI1∪I2 ⊕ NI1∪I2 = MI1∪I2 = MI1 + MI2 = (KI1 ⊕ NI1) + (KI2 ⊕ NI2) = (KI1 + KI2) ⊕
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(NI1 +NI2), and hence KI1∪I2 = KI1 +KI2 . Also,

Kα ⊕Nα = Mα =
∐

Ω∈Wα\A

{Mα ∩ (
∐

A∈Ω

M∅
A)} =

∐

Ω∈Wα\A

{(K ⊕N)α ∩ (
∐

A∈Ω

(K ⊕N)∅A)}

=
∐

Ω∈Wα\A

{(Kα ⊕Nα) ∩ (
∐

A∈Ω

(K∅
A ⊕N∅

A))}

=
∐

Ω∈Wα\A

{(Kα ⊕Nα) ∩ ((
∐

A∈Ω

K∅
A)⊕ (

∐

A∈Ω

N∅
A))}

=
∐

Ω∈Wα\A

{(Kα ∩
∐

A∈Ω

K∅
A)⊕ (Nα ∩

∐

A∈Ω

N∅
A)}

= {
∐

Ω∈Wα\A

(Kα ∩
∐

A∈Ω

K∅
A)}⊕ {

∐

Ω∈Wα\A

(Nα ∩
∐

A∈Ω

N∅
A)},

and hence Kα =
∐

Ω∈Wα\A(K
α ∩

∐
A∈Ω K∅

A). Thus, K ∈ K̃(S0), and

K̃(S0) remains Karoubian/idempotent complete [தԬ, Def. 3.3.40, p. 174].(4)

Let γ ∈ Z∆ and M ∈ K̃(S0). For closed I1 and I2

Tγ(M)I1∪I2 = M ∩
∐

A∈I1∪I2

M∅
A+γ(5)

= M(I1∪I2)+γ as (I1 ∪ I2) + γ := {A+ γ|A ∈ I1 ∪ I2} is closed

= M(I1+γ)∪(I2+γ) with Ij + γ = {A+ γ|A ∈ Ij}, j = 1, 2

= MI1+γ +MI2+γ as both I1 + γ and I2 + γ remain closed

= Tγ(M)I1 + Tγ(M)I2 .

If α ∈ ∆+,

Tγ(M)α = Mα =
∐

Ω∈Wα\A

(Mα ∩
∐

A∈Ω

M∅
A)(6)

=
∐

Ω∈Wα\A

(Mα ∩
∐

A∈Ω

M∅
A+γ) as Ω+ γ ∈Wα\W

=
∐

Ω∈Wα\A

(Mα ∩
∐

A∈Ω

Tγ(M)∅A).

Thus, Tγ induces an automorphism of K̃(S0).

Lemma: Let M ∈ K̃′(S0), α ∈ ∆+, and A ∈ A.

(i) If suppA(M) ⊆WαA, (S) holds on M .

(ii) If (LE) holds on M , so does (S) on Mα.

(iii) S0(A) ∈ K̃(S0).
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Proof: Let I1, I2 be two closed subsets of A.

(i) Put Ω = WαA = {. . . ,α ↓ (α ↓ A) = A− α,α ↓ A,A,α ↑ A,α ↑ (α ↑ A) = A + α, . . . },
which is totally ordered under ≥. Thus, either I1 ∩ Ω ⊆ I2 ∩ Ω or I2 ∩ Ω ⊆ I1 ∩ Ω; assume
B ∈ (I1 ∩ Ω) \ (I2 ∩ Ω) and let B′ ∈ I2 ∩ Ω. If B′ ≤ B, B ∈ I2 ∩ Ω as I2 is closed, absurd, and
hence B ≤ B′ as Ω is totally ordered. Then B′ ∈ I1 ∩ Ω as I1 is closed.

Thus, we may assume that I1 ∩Ω ⊇ I2 ∩Ω. Let I ′1 = I1 ∩ Ω and I ′2 = I2 ∩ Ω. Then I ′1 ⊇ I ′2,
I ′1 ∩ Ω = I1 ∩ Ω, I ′2 ∩ Ω = I2 ∩ Ω, and hence

MI′1
= M ∩ (

∐

B∈I′1

M∅
B) by definition

= M ∩ (
∐

B∈I′1∩Ω

M∅
B) = M ∩ (

∐

B∈I1∩Ω

M∅
B) = M ∩ (

∐

B∈I1

M∅
B) as suppA(M) ⊆ Ω

= MI1 .

Likewise, MI′2
= MI2 , MI′1∪I′2 = MI1∪I2 . Then

MI1∪I2 = MI′1∪I′2 = MI′1
= MI1

= MI1 +MI2 as MI2 = MI′2
⊆MI′1

= MI1 .

(ii) ∀Ω ∈Wα\A, put Mα
Ω = (Mα)[Ω] = Mα ∩ (

∐
A∈Ω M∅

A) ∈ K̃′(S0). Thus, Mα =
∐

Ω Mα
Ω by

(LE). ∀I closed in A, one has

(Mα)I = Mα ∩ {
∐

A∈I

(Mα)∅A} = (
∐

Ω

Mα
Ω) ∩ {

∐

A∈I

(
∐

Ω

Mα
Ω)

∅
A} =

∐

Ω

{Mα
Ω ∩ (

∐

A∈I

(Mα
Ω)

∅
A)}

=
∐

Ω

(Mα
Ω)I ,

and hence

(Mα)I1∪I2 =
∐

Ω

(Mα
Ω)I1∪I2

=
∐

Ω

{(Mα
Ω)I1 + (Mα

Ω)I2} as (S) holds on Mα
Ω by (i)

= {
∐

Ω

(Mα
Ω)I1}+ {

∐

Ω

(Mα
Ω)I2} = (Mα)I1 + (Mα)I2 .

2.6. Let K be a locally closed subset of A, i.e., K = I ∩ J ∃I closed and J open in A.
∀M ∈ K̃(S0), put MK = MI/MI\J , which might be denoted M fe

K in the notation of (I.8). Then
MK is torsion-free over over S; if m ∈ MI and a ∈ S \ 0 with am ∈ MI\J , m ∈

∐
A∈I M

∅
A

and am ∈
∐

A∈I\J M
∅
A. Then m ∈

∐
A∈I\J M

∅
A already as M∅ is torsion-free over S, and hence
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m ∈MI\J . In particular,

MK ≤ (MK)
∅ = (MI/MI\J)

∅ ≃ (MI)
∅/(MI\J)

∅(1)

= (
∐

A∈I

M∅
A)/(

∐

A∈I\J

M∅
A) by (2.4)

≃
∐

A∈I∩J

M∅
A =

∐

A∈K

M∅
A,

and hence MK ∈ K̃′(S0) with

(MK)
∅
A =

{
M∅

A if A ∈ K,

0 else.

In particular,

suppA(MK) = suppA(M) ∩K.

Also,

MK is in M∅ independent of the choice of I and J expressing K.(2)

For if K = I ′ ∩ J ′ with I ′ closed and J ′ open,

(I ∪ I ′) ∩ (J ∩ J ′) = (I ∩ J ∩ J ′) ∪ (I ′ ∩ J ∩ J ′) = (K ∩ J ′) ∪ (K ∩ J) = K ∪K = K.

Thus it is enough to check that MI/MI\J = MI∪I′/M(I∪I′)\(J∩J ′). Now,

I ∪ I ′ = I ∪ {(I ∪ I ′) \ (J ∩ J ′)},(3)

I ∩ {(I ∪ I ′) \ (J ∩ J ′)} = I \ J.(4)

For let A ∈ I ′ \ I. As (I ′ \ I) ∩ (J ∩ J ′) ⊆ (I ′ ∩ J ′) \ I = (I ∩ J) \ I = ∅, A ̸∈ J ∩ J ′.
Then A ∈ (I∪I ′)\(J∩J ′), and (3) holds. Let next A ∈ I∩{(I∪I ′)\(J∩J ′)} = I\(J∩J ′) ⊇ I\J .
Just suppose A ∈ J . Then A ∈ I ∩ J = I ′ ∩ J ′ ⊆ J ′, and hence A ∈ J ∩ J ′, absurd, and hence
also (4). Thus

MI∪I′/M(I∪I′)\(J∩J ′) = MI∪{(I∪I′)\(J∩J ′)}/M(I∪I′)\(J∩J ′) by (3)

= {MI +M(I∪I′)\(J∩J ′)}/M(I∪I′)\(J∩J ′) by (S)

≃MI/{MI ∩M(I∪I′)\(J∩J ′)}
= MI/MI∩{(I∪I′)\(J∩J ′)} by (2.4.i)

= MI/MI\J by (4).

If suppA(M) ⊆ K, one has

MK = MI/MI\J(5)

= M/0 as (I \ J) ∩ suppA(M) ⊆ (I \ J) ∩ (I ∩ J) = ∅
= M.
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∀A ∈ A, {A} = (≥ A) ∩ (≤ A) is locally closed. One has from (2.4.ii)

S0(A)K ≃
{
S0(A) ≃ S0(A){A} if A ∈ K,

0 else.
(6)

Warning: Although MK ≤M∅, that MK = M ∩ (
∐

A∈K M∅
A) need not hold, cf. (I.2.2.13).

2.7. Let K be a locally closed set in A and write K = I ∩ J with I closed and J open.

Lemma: ∀M ∈ K̃(S0), MK ∈ K̃(S0).

Proof: We first show that ∀I ′ closed in A,

(MK)I′ = MK∩I′ .(1)

If K is closed, the assertion follows from (2.4.i). If K is open, put I1 = A \K. Then

(MK)I′ = MK ∩
∐

A∈I′
(MK)

∅
A = MA∩K ∩

∐

A∈I′
(MK)

∅
A

= (M/MI1) ∩
∐

A∈I′∩K

M∅
A by (2.6.1, 2)

while

MK∩I′ = MI′/MI′\K = MI′/MI′∩I1

= MI′/(MI′ ∩MI1) by (2.4.i) again

≃ (MI′ +MI1)/MI1 .

As MK∩I′ ≤ (MK∩I′)∅ =
∐

A∈I′∩K M∅
A, MK∩I′ ≤ (MK)I′ . Let m ∈ M with m + MI1 ∈∐

A∈I′∩K M∅
A. Then mA = 0 unless A ∈ I ′ ∪ I1, and hence

m ∈MI′∪I1

= MI′ +MI1 as (S) holds on M.

Thus, MK∩I′ ≃ (MK)I′ . In general, one has MK = MJ∩I ≃ (MJ)I by above, and hence

(MK)I′ ≃ ((MJ)I)I′ = (MJ)I∩I′ by (2.4.i)

≃MJ∩I∩I′ by above

= MK∩I′ , as desired.

We show now that (S) holds on MK . Let I2, I3 closed in A. One has

(MK)I2∪I3 = MK∩(I2∪I3) by (1)

= M(K∩I2)∪(K∩I3) = M(I∩I2∩J)∪(I∩I3∩J) = M{(I∩I2)∪(I∩I3)}∩J

= MI∩(I2∪I3)/M{I∩(I2∪I3)}\J = M(I∩I2)∪(I∩I3)/M{I∩(I2∪I3)}\J

= {MI∩I2 +MI∩I3}/M{I∩(I2∪I3)}\J as (S) holds on M

≃MI∩I1/M(I∩I1)\J +MI∩I2/M(I∩I2)\J = MK∩I2 +MK∩I3

= (MK)I2 + (MK)I3 by (1) again.

108



We show finally that (LE) holds on MK . Let α ∈ ∆+. As (MK)α = (MI/MI\J)α =
(MI)α/(MI\J)α, it is enough to verify that (LE) holds on MI . Let m ∈ (MI)α ≤Mα. As (LE)
holds on M , one can write m =

∑
Ω mΩ with mΩ ∈Mα∩

∐
A∈Ω M∅

A. As m ∈ (MI)α ≤ (MI)∅ =∐
B∈I M

∅
B, however, mA = 0 unless A ∈ I. Thus, mΩ ∈ (MI)α ∩

∐
A∈Ω(MI)∅A, as desired.

2.8. If K = I ∩ J is locally closed in A with I (resp. J) closed (resp. open) in A, ∀ϕ ∈
K̃(S0)(M,N),

(1)

M N

MI NI

MI/MI\J NI/NI\J

MK NK ,

ϕ

and hence one obtains an endofunctor ?K on K̃(S0).

Lemma: ∀M ∈ K̃(S0), ∀K1, K2 locally closed in A, (MK1)K2 = MK1∩K2.

Proof: Write Ki = Ii ∩ Ji with Ii closed and Ji open in A, i ∈ {1, 2}. Then

(MK1)K2 = (MK1)I2/(MK1)I2\J2
= MK1∩I2/MK1∩(I2\J2) by (2.7.1)

with

MK1∩I2 = MI1∩I2∩J1 = MI1∩I2/M(I1∩I2)\J1 ,

MK1∩(I2\J2) = MI1∩(I2\J2)∩J1 = MI1∩(I2\J2)/M{I1∩(I2\J2)}\J1 = M(I1∩I2)\J2/M(I1∩I2)\J1∪J2),

and hence

(MK1)K2 = MI1∩I2/{M(I1∩I2)\J1 +M(I1∩I2)\J2}
= MI1∩I2/M(I1∩I2)\J1}∪{(I1∩I2)\J2} as (S) holds on M

= MI1∩I2/M(I1∩I2)\(J1∩J2) = MI1∩I2∩J1∩J2 = MK1∩K2 .

2.9. LetM ∈ K̃(S0). If I0 ⊂ I1 ⊂ · · · ⊂ Ir is a chain of closed subsets ofA with suppA(M)∩I0 =
∅ and suppA(M) ⊆ Ir, one has a filtration of M

0 = MI0 ≤MI1 ≤ · · · ≤MIr = M

such that MIj/MIj−1 ≃MIj\Ij−1 ; Ij \ Ij−1 = Ij ∩ (A\ Ij−1) and Ij \ (A\ Ij−1) = Ij−1. One thus
obtains exact sequences [தԬ, Def. 3.3.29, p. 168]

0→MIj−1 →MIj →MIj\Ij−1 → 0.(1)
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Lemma: Let M1, . . . ,Ml ∈ K̃(S0). ∀I closed in A, ∀A ∈ I with I \{A} closed, there is a chain
of closed subsets I0 ⊂ I1 ⊂ · · · ⊂ Ir in A and k ∈ [1, r] such that |Ij| = |Ij−1| + 1 ∀j ∈ [1, r],
Ik ∩ {∪isuppA(Mi)} = I ∩ {∪isuppA(Mi)}, Ik−1 = Ik \ {A}, and ∀i ∈ [1, l], (Mi)I0 = 0 while
(Mi)Ir = Mi. In particular, (Mi)I = (Mi)Ik ∀i ∈ [1, l].

Proof: From [L80, Prop. 3.7] one has A0, An ∈ A with ∪li=1suppA(Mi) ⊆ [A0, An]. Put I0 =
I \ (< An). Enumerate (I \ {A})∩ [A0, An] = {A1, . . . , Ak−1} and [A0, An] \ I = {Ak+1, . . . , Ar}
such that Ai > Aj implies i < j ∀i, j. Putting Ak = A and Ij = I0 > {A1, . . . , Aj} will do.

2.10 ∆-flags: We say that M ∈ K̃(S0) admits a ∆-flag iff each M{A}, A ∈ A, is a graded free
S0-module, i.e., ∀A ∈ A, ∃ni ∈ N, i ∈ Z: M{A} ≃

∐
i∈Z S0(A)(i)⊕ni .

As suppA(M) is finite, there exist A0, A∞ ∈ A with suppA(M) ⊆ [A0, A∞]. One can
construct a chain of closed subsets as in (2.9) whose associated filtration is such that its sub-
quotients are all of the form M{A}. Dually, put I = (≥ A0), I0 = I \ (≤ A∞), choose A1 ∈ A
minimal in I0, and put I1 = I0 \ {A1}. If B1 ∈ I1 and B2 > B1, B2 ∈ I1 as I0 is closed by
the minimality of A1. Take A2 minimal in I1 and put I2 = I1 ∪ {A2}. Then I2 = I1 > {A2}
is closed likewise. Repeat to get an enumeration A1, A2, . . . , An = A∞ of [A0, A∞] such that
Ij+1 = Ij \ {Aj+1} is closed ∀j ∈ [0, n[. Thus, I0 ⊃ I ⊃ . . . form a chain of closed subsets of
A such that M = MI0 ≥ MI1 ≥ · · · ≥ MIn = 0 with MIj/MIj\Ij+1 ≃ M{Aj+1} ∀j. In particular,

M itself is graded free over S0. A ∆-flag is called a standard filtration in [Ab19b]. Let K̃∆(S0)
denote the full subcategory of K̃(S0) consisting of the objects M with a ∆-flag.

Let M ∈ K̃∆(S0). If γ ∈ Z∆, ∀A ∈ A,

Tγ(M){A} = Tγ(M)(≥A)∩(≤A) ≃ Tγ(M)≥A/Tγ(M)(≥A)\{A}(1)

= M≥A+λ/M(≥A+γ)\{A+γ} ≃M{A+γ},

and hence Tγ restricts to an automorphism of K̃∆(S0).

∀K locally closed in A,

(MK){A} = MK∩{A} by (2.8)(2)

=

{
M{A} if A ∈ K,

0 else.

Thus,

Lemma: ∀M ∈ K̃∆(S0), ∀K locally closed in A, MK ∈ K̃∆(S0) and is graded free over S0.

Proof: One has MK ∈ K̃∆(S0) by (2). We may then assume that K = A, and MK = M is
graded free over S0 as observed above.

2.11. Note that the category K̃(S0) is not necessarily abelian; a quotient may not be torsion-free.

Definition: We say that property (ES), short for “exact structure”, holds on a complex M1 →
M2 →M3 in K̃∆(S0) iff the sequence 0→ (M1){A} → (M2){A} → (M3){A} → 0 is exact ∀A ∈ A,
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which is just an exact sequence of graded left S0-modules, cf. [F08b, 4.1], [F08a, 2.5]. We
define a category K̃P (S0) to be the full category of K̃∆(S0) consisting of M such that ∀ complex
M1 → M2 → M3 in K̃∆(S0) with (ES), the induced sequence 0 → K̃(M,M1) → K̃(M,M2) →
K̃(M,M3)→ 0 is exact, in which case 0→ K̃(M,M1(n))→ K̃(M,M2(n))→ K̃(M,M3(n))→ 0
is exact ∀n ∈ Z.

One has both K̃∆(S0) and K̃P (S0) Karoubian/idempotent complete by (2.5.4). As antici-
pated in (I.1.6/9.20), S0(A) ̸∈ K̃P (S0). A first example in K̃P (S0) will be constructed using a
Soergel bimodule in Cfe

P .

Let M ∈ K̃(S0) and let M1 → M2 → M3 be a complex with (ES). Let γ ∈ Z∆. One has a
CD
(1)

0 K̃(S0)(Tγ(M),M1(n)) K̃(S0)(Tγ(M),M2(n)) K̃(S0)(Tγ(M),M3(n)) 0

0 K̃(S0)(M,T−λ(M1(n))) K̃(S0)(M,T−λ(M2(n))) K̃(S0)(M,T−λ(M3(n))) 0.

∼ ∼ ∼

As T−λ(Mi(n)){A} ≃ T−λ(Mi){A}(n) ≃ (Mi){A−λ}(n) by (2.10.1), T−λ(M1) → T−λ(M2) →
T−λ(M3) forms a complex with (ES), and hence the bottom sequence of (1) is exact. Thus, Tγ

restricts again to an automorphism of K̃P (S0).

Take now a chain I0 ⊃ I1 ⊃ . . . Ir of closed subsets ofA with I0 ⊇ ∪3
i=1suppA(Mi), (Mi)Ir = 0

∀i, and Ij = Ij+1>{Aj+1} for some Aj+1 ∈ A, j ∈ [0, r[. Thus, ∀i, (Mi)Ij/(Mi)Ij+1 ≃ (Mi){Aj+1}.
One has a CD

0 0 0

0 (M1)Ir−1 (M2)Ir−1 (M3)Ir−1 0

0 (M1)Ir−2 (M2)Ir−2 (M3)Ir−2 0

0 (M1){Ar−1} (M2){Ar−1} (M3){Ar−1} 0

0 0 0

with the top and the bottom rows exact by (ES) on the complex and inductively. As the
columns are all split exact, the middle row must be exact, and hence exactness of 0 → M1 →
M2 →M3 → 0 follows. More generally,

Lemma: ∀K locally closed in A, the sequence 0→ (M1)K → (M2)K → (M3)K → 0 is exact.

Proof: As the (M1)K → (M2)K → (M3)K forms a complex in K̃∆(S0) with (ES) by (2.10.2),
the assertion follows from the above.
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2.12. Lemma: ∀M ∈ K̃∆(S0), ∀I1, I2 both closed with I2 ⊆ I1, (ES) holds on complex MI2 →
MI1 →MI1/MI2.

Proof: As MI1/MI2 = MI1\I2 by (2.6), ∀A ∈ A, sequence

0→ (MI2){A} → (MI1){A} → (MI1/MI2){A} → 0

reads by (2.8)
0→MI2∩{A} →MI1∩{A} →M(I1\I2)∩{A} → 0,

which is exact.

2.13 Base change: Let S1 be a commutative flat graded S0-algebra. ∀M ∈ K̃′(S0), S1⊗S0M is
a graded (S1, R)-bimodule. Setting (S1⊗S0M)∅ = S1⊗S0M

∅
A ∀A ∈ A yields S1⊗S0M ∈ K̃′(S1):

as S1 ⊗S0 M is torsion-free over S,

S1 ⊗S0 M ↪→ S∅ ⊗S (S1 ⊗S0 M) ≃ S∅
1 ⊗S0 M ≃ S1 ⊗S0 S

∅
0 ⊗S0 M ≃ S1 ⊗S0 M

∅(1)

= S1 ⊗S0

∐

A∈A

M∅
A ≃

∐

A∈A

(S1 ⊗S0 M
∅
A)

=
∐

A∈A

(S1 ⊗S0 M)∅A.

If I is closed in A,

(S1 ⊗S0 M)I = (S1 ⊗S0 M) ∩
∐

A∈I

(S1 ⊗S0 M)∅A(2)

= (S1 ⊗S0 M) ∩
∐

A∈I

(S1 ⊗S0 M
∅
A) by definition

≃ (S1 ⊗S0 M) ∩ (S1 ⊗S0

∐

A∈I

M∅
A)

≃ S1 ⊗S0 (M ∩
∐

A∈I

M∅
A) in S1 ⊗S0 M

∅ as S1 is flat over S0 [BCA, Lem. I.2.6.7]

= S1 ⊗S0 MI .

If K = I ∩ J with J open in A,

(S1 ⊗S0 M)K = (S1 ⊗S0 M)I/(S1 ⊗S0 M)I\J(3)

≃ S1 ⊗S0 (MI/MI\J) by (2)

= S1 ⊗S0 MK .

If α ∈ ∆+, (S1 ⊗S0 M)α = Sα ⊗S (S1 ⊗S0 M) ≃ S1 ⊗S0 (S
α ⊗S M) = S1 ⊗S0 M

α, and hence
S1 ⊗S0 K̃(S0) ⊆ K̃(S1) as S1 is flat over S0 again. ∀A ∈ A, (S1 ⊗S0 M){A} = S1 ⊗S0 M{A} by
(3) as {A} = (≥ A) ∩ (≤ A) is locally closed. Then S1 ⊗S0 K̃∆(S0) ⊆ K̃∆(S1).

Set K̃′ = K̃′(S), K̃ = K̃(S), K̃∆ = K̃∆(S), K̃P = K̃P (S). ∀∗ ∈ ∆+ > {∅}, put K̃′∗ = K̃′(S∗),
K̃∗ = K̃(S∗), K̃∗

∆ = K̃∆(S∗), K̃∗
P = K̃P (S∗).
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∀A ∈ A, one has S1 ⊗S S0(A) ≃ S1(A).

2.14 The category over S∅: Let M ∈ K̃∅
∆ = K̃∆(S∅). Then

M ≃ S∅ ⊗S M = M∅ =
∐

A∈A

M∅
A

with

M∅
A = (M{A})

∅ ≃M{A} by (2.6.1)

≃
∐

i

S∅(A)(ni) ∃ni ∈ Z.

Proposition: ∀M ∈ K̃∅
∆,

M ≃M{A1} ⊕M{A2} ⊕ · · ·⊕M{Ar} ∃A1, . . . Ar ∈ A

≃ {
∐

i1

S∅(A1)(ni1)}⊕ · · ·⊕ {
∐

ir

S∅(Ar)(nir)}.

2.15. Let M ∈ K̃′(S0). Consider D(M) = SMod(M,R) equipped with a structure of (S0, R)-
bimodule such that (aϕf)(m) = ϕ(amf), ∀ϕ ∈ D(M), a ∈ S, f ∈ R, with gradation such
that D(M)i = {ϕ ∈ D(M)|ϕ(M j) ⊆ Ri+j ∀j} ∀i ∈ Z. As M is of finite type over S, one has
D(M) =

∐
i D(M)i. Also,

S∅ ⊗S D(M) ≃ SMod(M,S∅) ≃ S∅Mod(M∅, S∅) ≃ S∅Mod(
∐

A∈A

M∅
A, S

∅)

≃
∐

A∈A

S∅Mod(M∅
A, S

∅) as suppA(M) is finite.

If ϕ ∈ S∅Mod(M∅
A, S

∅), ∀f ∈ R, ∀m ∈M∅
A,

(ϕf)(m) = ϕ(mf) = ϕ(fAm) = fAϕ(m),

and hence ϕf = fAϕ. If a ∈ S \ 0 and aϕ = 0, then ∀m ∈M ,

0 = (aϕ)(m) = ϕ(am) = aϕ(m),

ϕ(m) = 0 as S is a domain. Then ϕ = 0, and hence D(M) is torsion-free of finite type over
S, and admits a structure of K̃′(S0) with D(M)∅A = S∅Mod(M∅

A, S
∅) ∀A ∈ A. If M ∈ K̃(S0),

however, the conditions (S) and (LE) may be hard to verify on D(M).

3. Action of the Soergel bimodules

3.1. To define Soergel bimodules of the Coxeter system (W ,S) over R = SK(Λ∨
K) as in (I.2),

we need αs ∈ ΛK and α∨
s ∈ Λ∨

K ∀s ∈ S. Fix A ∈ A. There is α ∈ ∆+ and n ∈ Z such that
sα,nA = As. Put αs = αA ∈ Λ and α∨

s = (α∨)A ∈ Λ∨. If t = wsw−1, w ∈W , write Aw = w′A.
Then

At = Awsw−1 = w′Asw−1 = w′sα,nAw
−1 = w′sα,n(w

′)−1A = sw′α,n′A ∃n′ ∈ Z,

and we put αt = (w′α)A,α∨
t = (w′α∨)A.
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Lemma: (i) The pair (αs,α∨
s ) is independent of the choice of A up to sign.

(ii) αt = wαs, α∨
t = wα∨

s , the pair of which is independent of the choice of A up to sign.

Proof: (i) Let A′ ∈ A and β ∈ ∆+, m ∈ Z with A′s = sβ,mA′. Take x ∈ W with A′ = xA.
Writing x = txx̄ with tx ∈ Z∆, ∀ν ∈ X,

(xsα,nx
−1)ν = txx̄sα,n(txx̄)

−1ν = txx̄sα,nx̄
−1(−tx)ν

= txx̄{x̄−1(ν − tx)− ⟨x̄−1(ν − tx),α
∨⟩α + nα}

= tx(ν − tx − ⟨ν − tx, x̄α
∨⟩x̄α + nx̄α) = ν − ⟨ν, x̄α∨⟩x̄α + nx̄α + ⟨tx, x̄α∨⟩x̄α

= sx̄α,n+⟨tx,x̄α∨⟩ν.

and hence

xsα,nx
−1 = sx̄α,n+⟨tx,x̄α∨⟩.(1)

Then A′s = xsα,nA = xsα,nx−1xA = sx̄α,n+⟨tx,x̄α∨⟩xA = sx̄α,n+⟨tx,x̄α∨⟩A′. Thus, β = εx̄α, ε ∈
{±1},

βA′
= (εx̄α)xA = ε(x̄α)xA = εαA = εαs by (1.2.iv),

(β∨)A
′
= (εx̄α∨)xA = ε(x̄α∨)xA = ε(α∨)A = εα∨

s by (1.2.v).

(ii) One has

(wαs)A = (w(αA))A = (w(αA))(A) = αA(Aw) = αA(w′A) = w′(αA(A)) = w′α = ((w′α)A)A,

and hence wαs = (w′α)A = αt. Likewise,

(wα∨
s )A = (w(α∨)A)A = (w(α∨)A)(A) = (α∨)A(Aw)

= (α∨)A(w′A) = w′(α∨)A(A) = w′α∨ = ((w′α∨)A)A,

and hence wα∨
s = (w′α∨)A = α∨

t .

3.2. One has, ∀s ∈ S, ∀λ ∈ Λ, ∀ν ∈ Λ∨,

sλ = λ− ⟨λ,α∨
s ⟩αs, and sν = ν − ⟨αs, ν⟩α∨

s .(1)

For if A ∈ A,

(sλ)A = (sλ)(A) = λ(As) = λ(sα,nA) = sαλ(A) = sαλA = λA − ⟨λA,α∨⟩α
= λA − ⟨λA, ((α∨)A)A⟩(αA)A = (λ− ⟨λA, (α∨

s )A⟩αs)A
= (λ− ⟨λ,α∨

s ⟩αs)A by (1.2.5),

and likewise the second.

Also,

⟨αs,α
∨
s ⟩ = ⟨(αs)A, (α

∨
s )A⟩ from (1.2.5)(2)

= ⟨(αA)A, ((α
∨)A)A⟩ in the notation of (3.1)

= ⟨α,α∨⟩ = 2.

114



As 2 ∈ K× by (1.5.A1), α∨
s ̸= 0 in Λ∨

K and ⟨αs, ?⟩ : Λ∨
K → K is surjective. Thus, the assumptions

in (I.1.1) are fulfilled with V = Λ∨
K.

We add another

Assumption: The assumption (I.3.3) holds.

For a sufficient condition under which the assumption holds see (I.3.4); if the fundamental
weights exist in ΛK, the sufficient condition may fail. In type G2 let α1,α2 be the simple
roots with α1 short. In characteristic 3 there is no λ ∈ ΛK such that ⟨λ,α∨

1 ⟩ = 0 while that
⟨λ, 2α∨

1 + 3α∨
2 ⟩ = 1. On the other hand, let ∆s = {α1, . . . ,αl} be the set of simple roots

and assume that ∀i ∈ [1, l], ∃ϖi ∈ XK : ∀j ∈ [1, l], ⟨ϖ,α∨
j ⟩ = δi,j. Given two reflections

t1, t2 we may assume αt1 = α∨
i for some i ∈ [1, l]. Thus we are after

∑
j ̸=i cjϖj ∈ XK with

⟨
∑

j ̸=i cjϖj,α∨
t2⟩ = 1. If chK > 3, writing α∨

t2 =
∑l

k=1 bkα
∨
k , gcd(bk|1 ≤ k ≤ l) ∈ K×, and hence

such
∑

cjϖj exists. If det[(⟨αi,α∨
j )] ∈ K×, those ϖi’s exist in

∑l
k=1 Kαj: if M [(⟨αi,α∨

j )] = id,
⟨
∑

k Mikαk,α∨
j ⟩ = δi,j.

3.3. Let now SB denote the monoidal category of graded R-bimodules defined in (I.2), de-
noted SBimod there, for the present Coxeter system (W ,S) and the representation Λ∨

K with
{αs,α∨

s |s ∈ S} from (3.1). Recall R∅ = R[ 1
(α∨)A |α ∈ ∆] for A ∈ A from Rmk. 2.2.(iii) and

Q = Frac(R).

∀B ∈ SB, put B∅ = R∅ ⊗R B. ∀s ∈ S, recall from (I.2.2) an object B(s) = R ⊗Rs R(1)
with Rs = {a ∈ R|sa = a}. From (I.2.2.16) one has B(s)∅ =

∐
w∈W B(s)∅w with

B(s)∅w =

⎧
⎪⎨

⎪⎩

R∅(δs ⊗ 1− 1⊗ sδs) if w = e,

R∅(δs ⊗ 1− 1⊗ δs) if w = s,

0 else

,(1)

where δs ∈ Λ∨
K with ⟨αs, δs⟩ = 1. Also, from (I.2.2.8)

B(s) ↪→ Q⊗R B(s) = Q(e)⊕Q(s) via a⊗ b $→ (ab, a(sb)).

Lemma: ∀B ∈ SB, B∅ ≃
∐

x∈W B∅
x as R∅-bimodules with amb = a(xb)m ∀a, b ∈ R∅, ∀m ∈

B∅
x such that Q⊗R B∅

x ≃ Q⊗R∅ B∅
x ≃ BQ

x as Q-bimodules.

Proof: Let M ∈ RBimod with M∅ =
∐

x∈W M∅
x as R∅-bimodules such that

amb = a(xb)m ∀a, b ∈ R∅, ∀m ∈M∅
x .(2)

Then

(B(s)⊗R M)∅ = R∅ ⊗R B(s)⊗R M ≃ (R∅ ⊗R B(s))⊗R∅ (R∅ ⊗R M) = B(s)∅ ⊗R∅ M∅

= (R∅
e ⊕R∅

s)⊗R∅

∐

x∈W

M∅
x =

∐

x

{(R∅
e ⊗R∅ M∅

x)⊕ (R∅
s ⊗R∅ M∅

x)},

and hence (B(s)⊗R M)∅ =
∐

x∈W(B(s)⊗R M)∅x with (2) holding on (B(s)⊗R M)∅x = (R∅
e ⊗R∅

M∅
x)⊕ (R∅

s ⊗R∅ M∅
sx). The assertion follows inductively.
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3.4 The action: ∀M ∈ K̃′(S0), ∀B ∈ SB, we defineM ∗B ∈ K̃′(S0) to be the (S0, R)-bimodule
M ⊗R B with

(M ∗B)∅A =
∐

x∈W

M∅
Ax−1 ⊗R∅ B∅

x ≃
∐

x∈W

M∅
Ax−1 ⊗R B∅

x.(1)

As B is a free left R-module, M ⊗R B remains torsion-free over S. ∀m ∈ M∅
Ax−1 , ∀b ∈ B∅

x,
∀a ∈ R∅, (m⊗ b)a = m⊗ (xa)b = m(xa)⊗ b = (xa)Ax−1m⊗ b with

(xa)Ax−1 = aAx−1x by (1.2.i)

= aA,

and hence (1) is well-defined. Let ϕ ∈ K̃′(S0)(M,N). By (2.2.3)

ϕ(M∅
Ax−1) ⊆

∐

A′∈Ax−1+Z∆
A′≥Ax−1

N∅
A′ .

If A′ = Ax−1 + γ with γ ∈ Z∆, A′ ≥ Ax−1 iff γ ∈ N∆+ by (1.3). Then A′x = A + γ as the
right W-action commute with the left W-action, and hence A′x ≥ A by (1.3) again. Then

∐

A′∈Ax−1+Z∆
A′≥Ax−1

N∅
A′ =

∐

A′x−1∈Ax−1+Z∆
A′x−1≥Ax−1

N∅
A′x−1 =

∐

A′∈A+Z∆
A′≥A

N∅
A′x−1 ,

and hence

(ϕ⊗R B∅
x)(M

∅
Ax−1 ⊗R∅ B∅

x) ⊆
∐

A′∈A+Z∆
A′≥A

N∅
A′x−1 ⊗R B∅

x ⊆
∐

A′≥A

(N ∗B)∅A′ .

Thus, (ϕ⊗RB)∅((M∗B)∅A) ⊆
∐

A′≥A(N∗B)∅A′ , and ϕ⊗RB ∈ K̃′(S0). Likewise, ∀ψ ∈ SB(B,B′),

M ⊗ ψ ∈ K̃′(S0)(M ∗ B,M ∗ B′). Thus, ∗ is bi-functorial, and defines a right action of the
monoidal category SB of Soergel bimodules on K̃′(S0). We will denote ϕ⊗RB (resp. M⊗Rψ)
by ϕ ∗B (resp. M ∗ ψ).

Let γ ∈ Z∆. ∀A ∈ A,

Tγ(M ∗B)∅A = (M ∗B)∅A+γ =
∐

x∈W

M∅
(A+γ)x−1 ⊗R B∅

x

=
∐

x∈W

M∅
Ax−1+γ ⊗R B∅

x by (1.1.3), which may fail for γ ∈ X̂ in general

=
∐

x∈W

Tγ(M)∅Ax−1 ⊗R B∅
x = {Tγ(M) ∗B}∅A,

and hence

Tγ(M ∗B) = Tγ(M) ∗B.(2)

3.5 Lemma: ∀M ∈ K̃′(S0), suppA(M ∗B) = {Ax|A ∈ suppA(M), x ∈ suppW(B)}.
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Proof: One has

suppA(M ∗B) = {A|Ax−1 ∈ suppA(M) ∃x ∈ suppW(B)}
= {Ax|A ∈ suppA(M), x ∈ suppW(B)}.

3.6. For M ∈ K̃′(S0) let us regard M ∗B(s) as M ⊗Rs R = (M ⊗Rs Rs)⊕ (M ⊗Rs Rsδs), using
that R = Rs ⊕ δsRs with ⟨αs, δs⟩ = 1 from (I.2.1). Accordingly, (M ∗B(s))∅ = (M∅ ⊗Rs Rs)⊕
(M∅ ⊗Rs Rsδs). Then

(M ∗B(s))∅A =
∐

x∈W

M∅
Ax−1 ⊗R∅ B(s)∅x by definition (3.4.1)(1)

= M∅
A ⊗R∅ B(s)∅e ⊕M∅

As ⊗R∅ B(s)∅s

= M∅
A ⊗R∅ R∅(δs ⊗ 1− 1⊗ sδs)⊕M∅

As ⊗R∅ R∅(δs ⊗ 1− 1⊗ δs) by (3.3.1)

= {mδs ⊗ 1−m⊗ sδs|m ∈M∅
A}⊕ {m′δs ⊗ 1−m′ ⊗ δs|m′ ∈M∅

As}
≃M∅

A ⊕M∅
As

under (m⊗ f,m′ ⊗ g) $→ (mf +m′g,m(sf) +m′(sg)) as left S∅
0 -modules;

(mδs ⊗ 1−m⊗ sδs,m
′δs ⊗ 1−m′ ⊗ δs) $→

(mδs −m(sδs) +m′δs −m′δs,mδs −mδs +m′δs −m′sδs)

= (m(δs − sδs),m
′(δs − sδs)) = (mα∨

s ,m
′α∨

s ) = ((α∨
s )Am, (α∨

s )Asm
′)

= (α∨m,−α∨m′)

as (α∨
s )As = (α∨

s )(As) = (α∨
s )(sα,nA) = sα(α∨

s (A)) = sα((α∨)A(A)) = sα((α∨)A)A = sαα∨ =
−α∨, with α∨ ∈ (S∅)×. The isomorphism is, however, only left S∅

0 -linear. For recall from (3.3.1)
the right R-module structure on B(s), which reads, ∀a ∈ R, (δs⊗1−1⊗ sδs)a = a(δs⊗1−1⊗
sδs) = aδs⊗ 1− a⊗ sδs while (δs⊗ 1− 1⊗ δs)a = (sa)(δs⊗ 1− 1⊗ δs) = (sa)δs⊗ 1− (sa)⊗ sδs,
and hence

(mδs ⊗ 1−m⊗ sδs,m
′δs ⊗ 1−m′ ⊗ δs)f = (mfδs ⊗ 1−mf ⊗ sδs,m

′(sf)δs ⊗ 1−m′(sf)⊗ δs)
$→ (mfδs −mf(sδs),m

′(sf)δs −m′(sf)sδs) = (mfα∨
s ,m

′(sf)α∨
s )

= (mα∨
s f,m

′α∨
s (sf)).

Thus, the right action on M∅
As must be twisted by s. The projection

M ∗B(s) (M ∗B(s))∅A

M∅
A ⊕M∅

As

≀

now reads

M ⊗Rs R ∋ m⊗ f $→ (mAf,mAssf).(2)

Proposition: ∀M,N ∈ K̃′(S0), ∀n ∈ Z,

K̃′(S0)(M ∗B(s), N(n)) ≃ K̃′(S0)(M, (N ∗B(s))(n)).
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Proof: As (S0, R)-bimodules we regard M ∗ B(s) = M ⊗Rs R and N ∗ B(s) = N ⊗Rs R. Put
δ = δs ∈ Λ∨

K above. Recall from [Lib, Lem. 3.3]/(I.2.6.ii) a bijection (S0, R)Bimodgr(M ⊗Rs

R,N)→ (S0, R)Bimodgr(M,N⊗RsR) via ϕ $→ ψ such that ψ(m) = ϕ(mδ⊗1)⊗1−ϕ(m⊗1)⊗sδ.
Thus, it is enough to verify that ϕ ∈ K̃′(S0) iff ψ ∈ K̃′(S0).

∀m ∈M with 1⊗m ∈M∅ = S∅ ⊗S M , ∀A′ ∈ A, one has in N∅
A′ ⊕N∅

A′s

ψQ(1⊗m)A′ = {ϕ(mδ ⊗ 1)⊗ 1− ϕ(m⊗ 1)⊗ sδ}A′(3)

= (ϕ(mδ ⊗ 1)A′ ,ϕ(mδ ⊗ 1)A′s)− (ϕ(m⊗ 1)A′sδ,ϕ(m⊗ 1)A′sδ) by (2)

= (ϕ(mδ ⊗ 1−m⊗ sδ))A′ ,ϕ(mδ ⊗ 1−m⊗ δ)A′s).

Thus, if m ∈M∅
A,

ψQ(m)A′ = (ϕQ(mδ ⊗ 1−m⊗ sδ))A′ ,ϕQ(mδ ⊗ 1−m⊗ δ)A′s).(4)

As mδ⊗ 1−m⊗ sδ ∈ (M ∗B(s))∅A and as mδ⊗ 1−m⊗ δ ∈ (M ∗B(s))∅As, one has from (2.2.3)

ϕQ(mδ ⊗ 1−m⊗ sδ) ∈
∐

A′∈A+Z∆
A′≥A

N∅
A′ ,

ϕQ(mδ ⊗ 1−m⊗ δ) ∈
∐

A′∈As+Z∆
A′≥As

N∅
A′ ,

and hence ψQ(m)A′ = 0 unless either A′ ∈ A+Z∆ and A′ ≥ A or A′s ∈ As+Z∆ and A′s ≥ As.
In the 2nd case write A′s = As + γ, γ ∈ Z∆. Then γ ∈ N∆ by (1.3). As A′ = A + γ, A′ ≥ A
by (1.3) again. Thus, ψQ(m) ∈

∐
A′≥A(N ∗B(s))A′ , as desired.

Conversely, assume ψ ∈ K̃′(S0). One has from (1)

(M ∗B(s))∅A = {(mδ ⊗ 1−m⊗ sδ,m′δ ⊗ 1−m′ ⊗ δ|m ∈M∅
A,m

′ ∈M∅
As}.

If m ∈M∅
A,

∐

A′

(ϕQ(mδ ⊗ 1−m⊗ sδ)A′ ,ϕQ(mδ ⊗ 1−m⊗ δ)A′s) = ψQ(m) by (4)

∈
∐

A′∈A+Z
A′≥A

(N ∗B(s))∅A′ =
∐

A′∈A+Z∆
A′≥A

(N∅
A′ ⊕N∅

A′s),

and hence ϕQ(mδ ⊗ 1−m⊗ sδ) ∈
∐

A′≥A N∅
A′ . If m′ ∈M∅

As,

ψQ(m′) ∈
∐

A′∈As+Z
A′≥As

(N ∗B(s))∅A′ =
∐

A′∈As+Z
A′≥As

(N∅
A′ ⊕N∅

A′s),

and hence ϕQ(m′δ⊗ 1−m′⊗ δ) ∈
∐

A′∈As+Z
A′≥As

N∅
A′s by (4) again, in which case writing A′ = As+ γ,

γ ∈ Z∆, γ ∈ N∆ by (1.3) again and A′s = A + γ. Then A′s ≥ A by (1.3) again, and
ϕQ(m′δ ⊗ 1 −m′ ⊗ δ) ∈

∐
A′s≥A N∅

A′s =
∐

A′≥A N∅
A′ . Thus, ϕQ((M ∗ B(s))∅A) ⊆

∐
A′≥A N∅

A′ , as
desired.
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3.7. We will show that K̃∆(S0)∗SB = K̃∆(S0) and that K̃P (S0)∗SB = K̃P (S0). To start with,
recall Wα = {e, sα}#Zα, α ∈ ∆+, from (2.5). Let M ∈ K̃′(S0) and put MΩ = Mα∩

∐
A∈Ω M∅

A

∀Ω ∈Wα\A.

Lemma: Let s ∈ S and δs ∈ Λ∨
K with ⟨αs, δs⟩ = 1, e.g., 1

2α
∨
s .

(i) If Ωs = Ω, (M ∗B(s))Ω ≃MΩ ∗B(s).

(ii) If Ωs ̸= Ω, the right action by α∨
s on MΩ is invertible and

(M ∗B(s))Ω ≃MΩ ⊗R R(δs ⊗ 1− 1⊗ sδs)⊕MΩs ⊗R R(δs ⊗ 1− 1⊗ δs).

(iii) If (LE) holds on M , so does it on M ∗B ∀B ∈ SB.

Proof: (i) One has

(M ∗B(s))Ω = (M ∗B(s))α ∩
∐

A∈Ω

(M ∗B(s))∅A

= (M ∗B(s))α ∩
∐

A∈Ω

{M∅
A ⊗R B(s)∅e ⊕M∅

As ⊗R B(s)∅s}

= (M ∗B(s))α ∩ {(
∐

A∈Ω

M∅
A ⊗R B(s)∅e)⊕ (

∐

A∈Ω

M∅
A ⊗R B(s)∅s)} as Ωs = Ω

≃ (Mα ⊗R B(s)) ∩
∐

A∈Ω

(M∅
A ⊗R B(s)∅)

≃ (Mα ∩
∐

A∈Ω

M∅
A)⊗R B(s) as B(s) is left R-free

= MΩ ∗B(s).

(ii) Let A ∈ Ω and put β∨ = (α∨
s )A; As = sβ,rA ∃r ∈ Z. As Ω = WαA = (A+Zα)∪ (sαA+

Zα) and Ωs = WαAs = (As + Zα) ∪ (sαAs + Zα), As ̸= sα,nA ∀n ∈ Z, and hence β ̸= ±α
and sαβ ̸= ±α. Thus, β∨, sαβ∨ ∈ (Sα)×. Take δ ∈ X∨

K with ⟨α, δ⟩ = 1. ∀m ∈ MΩ, there are
m1 ∈

∐
A′∈A+ZαM

∅
A′ and m2 ∈

∐
A′∈sαA+ZαM

∅
A′ such that m = m1+m2. ∀f ∈ R, one has from

(2.2.1) that m1f = fAm1 and m2f = sα(fA)m2, and hence

m1α
∨
s = (α∨

s )Am1 = β∨m1, m2α
∨
s = sα((α

∨
s )A)m2 = sαβ

∨m2,

m1δ
A = (δA)Am1 = δm1, m2δ

A = sα((δ
A)A)m2 = (sαδ)m2 = (δ − α∨)m2.

Then mα∨
s = β∨m1 + sαβ∨m2, mδA = δm1 + (δ − α∨)m2, and hence

{ 1

β∨m+
⟨α, β∨⟩
β∨sα(β∨)

(δm−mδA)}α∨
s

= (
1

β∨ +
⟨α, β∨⟩δ
β∨sα(β∨)

){β∨m1 + sα(β
∨)m2}−

⟨α, β∨⟩
β∨sα(β∨)

{δβ∨m1 + (δ − α∨)sα(β
∨)m2}

= m1 +m2 = m.
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Thus, MΩα∨
s = MΩ. Also, if m ∈ MΩ with mα∨

s = 0, 0 == β∨m1 + sα(β∨)m2. As
β∨, sα(β∨) ∈ (S∅)×, we must have m1 = m2 = 0, and hence m = 0. It now follows that
the right multiplication by α∨

s on MΩ is invertible, and also on (M ∗B(s))Ω. Then

(M ∗B(s))Ω ≃ (M ∗B(s))Ω ⊗R R[
1

α∨
s

].

Put B(s)[ 1
α∨
s
] = B(s)⊗RR[ 1

α∨
s
]. As (δ⊗1−1⊗sδ)α∨

s = α∨
s (δ⊗1−1⊗sδ) and as (δ⊗1−1⊗δ)α∨

s =

s(α∨
s )(δ ⊗ 1− 1⊗ δ) = −α∨

s (δ ⊗ 1− 1⊗ δ) by (3.2.2), one has from (3.3.1)

B(s)[
1

α∨
s

] = R[
1

α∨
s

](δ ⊗ 1− 1⊗ sδ)⊕R[
1

α∨
s

](δ ⊗ 1− 1⊗ δ)

with R[ 1
α∨
s
](δ ⊗ 1− 1⊗ sδ) ⊆ B(s)∅e while R[ 1

α∨
s
](δ ⊗ 1− 1⊗ δ) ⊆ B(s)∅s. Thus,

(M ∗B(s))Ω ⊗R R[
1

α∨
s

] ≃ (M ∗B(s)[
1

α∨
s

])α ∩
∐

A∈Ω

(M ∗B(s))∅A

= (Mα ⊗R B(s)[
1

α∨
s

]) ∩
∐

A∈Ω

{(M∅
A ⊗R B(s)∅e)⊕ (M∅

As ⊗R B(s)∅s)}

= {(Mα ⊗R R[
1

α∨
s

](δ ⊗ 1− 1⊗ sδ))⊕ (Mα ⊗R R[
1

α∨
s

](δ ⊗ 1− 1⊗ δ))}

∩ {
∐

A∈Ω

M∅
A ⊗R R[

1

α∨
s

](δ ⊗ 1− 1⊗ sδ)⊕
∐

A∈Ωs

M∅
A ⊗R R[

1

α∨
s

](δ ⊗ 1− 1⊗ δ)}

= (Mα ∩
∐

A∈Ω

M∅
A)⊗R R[

1

α∨
s

](δ ⊗ 1− 1⊗ sδ)⊕ (Mα ∩
∐

A∈Ωs

M∅
A)⊗R R[

1

α∨
s

](δ ⊗ 1− 1⊗ δ)

as α∨
s is invertible on MΩ and on MΩs

= MΩ ⊗R R(δ ⊗ 1− 1⊗ sδ)⊕MΩs ⊗R R(δ ⊗ 1− 1⊗ δ).

(iii) It is enough to show that (M ∗B(s))α =
∐

Ω∈Wα\A(M ∗B(s))Ω. Let {Ω1, . . . ,Ωr} be a
complete set of representatives of {Ω ∈Wα\A|Ωs ̸= Ω}/{e, s}. Then {Ω ∈Wα\A|Ωs ̸= Ω} =
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{Ωi,Ωis|i ∈ [1, r]}, and hence

∐

Ω∈Wα\A

(M ∗B(s))Ω = {
∐

Ωs=Ω

(M ∗B(s))Ω}⊕
r∐

i=1

{(M ∗B(s))Ωi ⊕ (M ∗B(s))Ωis}

= {
∐

Ωs=Ω

(MΩ ∗B(s))}⊕
r∐

i=1

{(M ∗B(s))Ωi ⊕ (M ∗B(s))Ωis} by (i)

= {
∐

Ωs=Ω

(MΩ ∗B(s))}⊕
r∐

i=1

{MΩi ⊗R R(δ ⊗ 1− 1⊗ sδ)⊕MΩis ⊗R R(δ ⊗ 1− 1⊗ δ)

⊕MΩis ⊗R R(δ ⊗ 1− 1⊗ sδ)⊕MΩi ⊗R R(δ ⊗ 1− 1⊗ δ)} by (ii)

= {
∐

Ωs=Ω

(MΩ ∗B(s))}⊕
r∐

i=1

{(MΩi ⊗R[ 1
α∨s

] B(s)[
1

α∨
s

])⊕ (MΩis ⊗R[ 1
α∨s

] B(s)[
1

α∨
s

])}

by (ii) again

= {
∐

Ωs=Ω

(MΩ ∗B(s))}⊕
r∐

i=1

{(MΩi ∗B(s))⊕ (MΩis ∗B(s))}

= (
∐

Ω∈Wα\A

MΩ) ∗B(s)

= Mα ∗B(s) as (LE) holds on M

= (M ∗B(s))α.

3.8. Let M ∈ K̃(S0) and s ∈ S. As (LE) holds on M ∗B(s) by (3.7), so does (S) on (M ∗B(s))α

∀α ∈ ∆+ by (2.5).

Lemma: If I is closed in A with Is = I, (M ∗B(s))I = MI ∗B(s).

Proof: One has

((M ∗B(s))I)
∅ =

∐

A∈I

(M ∗B(s))∅A =
∐

A∈I

{M∅
A ⊗R B(s)∅e ⊕M∅

As ⊗R B(s)∅s}

=
∐

A∈A

{(MI)
∅
A ⊗R B(s)∅e ⊕ (MI)

∅
A ⊗R B(s)∅s} by (2.4) as Is = I

=
∐

A∈A

{(MI)
∅
A ⊗R B(s)} = (MI ∗B(s))∅,

and hence

(M ∗B(s))I = (M ∗B(s)) ∩ (MI ∗B(s))∅ = (M ⊗Rs R(1)) ∩ (MI)
∅ ⊗Rs R(1)

≃ (M ∩ (MI)
∅)⊗Rs R(1) as R is free over Rs

= MI ⊗Rs R(1) = MI ∗B(s).

3.9. Let M ∈ K̃(S0), s ∈ S, and put N = M ∗ B(s). Let A ∈ A with As < A. We know that
{A,As} = (≥ As) ∩ (≤ A) [L80, 1.4.1] is locally closed.
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Lemma: Let I = Is (resp. J) closed (resp. open) in A with I ∩ J = {A,As}. One has
isomorphisms of graded left S0-modules

NI\{As}/NI\{A,As} ≃M{A,As}(−1), NI/NI\{As} ≃M{A,As}(1).

Proof: Note first that I \ {A,As} = I \ J and I \ {As} = (I \ J)∪ (≥ A) are both closed, and
hence that NI , NI\{As}, NI\{A,As} ∈ K̃′(S0).

Consider a short exact sequence

0→ NI\{As}/NI\{A,As} → NI/NI\{A,As} → NI/NI\{As} → 0.(1)

Put L1 = NI\{As}/NI\{A,As}, L = NI/NI\{A,As}, L̄ = NI/NI\{As}. By flat base change (1) yields
a CD of exact sequences

(2)

0 L∅
1 L∅ L̄∅ 0

0 N∅
A N∅

A ⊕N∅
As N∅

As 0.

∼ ∼ ∼

By (2.6) all L1, L, L̄ ∈ K̃′(S0), and hence L1 = L1 ∩ (L1)∅ = L1 ∩ L∅
A = L ∩ L∅

A; if x ∈ L ∩ L∅
A,

x = 0 in L̄ ≤ L̄∅, and hence x ∈ L1 from (1). We are then to show that L∩L∅
A ≃M{A,As}(−1)

and L̄ ≃M{A,As}(1) as graded left S0-modules. One has

L = (MI ∗B(s))/(MI\{A,As} ∗B(s)) by (3.8)(3)

≃ {MI ⊗Rs R(1)}/{MI\{A,As} ⊗Rs R(1)}
≃ (MI/MI\{A,As})⊗Rs R(1) as R is flat over Rs

= M{A,As} ⊗Rs R(1) as M ∈ K̃(S0)

= M{A,As} ∗B(s).

By (3.6.2) one has

L(−1) L∅
A ≃ (M{A,As})

∅
A ⊕ (M{A,As})

∅
As

M{A,As} ⊗Rs Rs ⊕M{A,As} ⊗Rs Rsδ (m1 ⊗ 1,m2 ⊗ δ) (m1,A +m2,Aδ,m1,As +m2,Assδ)

L∅
As

(M{A,As})
∅
As ⊕ (M{A,As})

∅
A (m1,As +m2,Asδ,m1,A +m2,Asδ).

∼

Then

(m1 ⊗ 1,m2 ⊗ δ) ∈ L∅
A iff m1,As +m2,Asδ = 0 = m1,A +m2,Asδ(4)

iff

{
m1,A = −m2,Asδ = −(sδ)Am2,A

m1,As = −δAsm2,As = −(sδ)Am2,As by (1.2.i)

iff m1 = −(sδ)Am2 as suppA(m1) and suppA(m2) ⊆ {A,As}.
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Thus,

L ∩ L∅
A = {(−(sδ)Am⊗ 1,m⊗ δ)|m ∈M{A,As}}(1)
≃M{A,As}(−1) as deg(δ) = 2 = deg((sδ)A).

Consider next an epi of graded left S0-modules

L ≃M{A,As} ⊗Rs R(1)→M{A,As}(1) via m⊗ f $→ (sf)Am.

As (m1 ⊗ 1,m2 ⊗ δ) $→ m1 + (sδ)Am2, its kernel is L ∩ L∅
A by (4), and hence M{A,As}(1) ≃

L/(L ∩ L∅
A) ≃ L/L1 ≃ L̄.

3.10. Let A ∈ A with As < A. Recall from [L80, Prop. 3.2] that

∀B ∈ A with B ≤ A,Bs ≤ A.(1)

Then

≤ A = (≤ A)s.(2)

For if B ≤ A, Bs ≤ A, and hence (≤ A)s ⊆ (≤ A). In turn, hitting s from the right yields
(≤ A) ⊆ (≤ A)s.

Let I (resp. J) be closed (resp. open) in A. Then

I ∪ Is is closed.(3)

For let B ∈ Is and B′ > B. Then Bs ∈ I. Assume first B′ < B′s. Then Bs ≤ B′s by (1), and
hence B′s ∈ I, and B′ ∈ Is. If B′s < B′, Bs ≤ B′ by (1) again, and hence B′ ∈ I, as desired.

As we do not know yet if M ∗B(s) ∈ K̃(S0), it is not appropriate to express (M ∗B(s))I/(M ∗
B(s))I\J as (M ∗B(s))I∪J .

Lemma: Let M ∈ K̃∆(S0).

(i) If I ∩ J = {As}, (M ∗B(s))I/(M ∗B(s))I\J ≃M{A,As}(1) as graded left S0-modules.

(ii) If I ∩ J = {A}, (M ∗B(s))I/(M ∗B(s))I\J ≃M{A,As}(−1) as graded left S0-modules.

Proof: Put N = M ∗B(s) ∈ K̃′(S0).

(i) Put I1 = (≥ As). Then I1 = I1s by [L80, Prop. 3.2]. As I is closed with As ∈ I, I1 ⊆ I.
Thus

NI1/NI1\{As} ↪→ NI/NI\{As} = NI/NI\J .

As I1 ∩ (≤ A) = {A,As} by [L80, 1.4.1], NI1/NI1\{As} ≃ M{A,As}(1) by (3.9), and hence
M{A,As}(1) ≤ NI/NI\J .

∀α ∈ ∆+, Mα ∈ K̃(Sα0 ) by (2.13). Then (LE) holds on Nα ≃Mα ∗B(s) by (3.7), and hence
(S) holds on Nα = (Nα)α by (2.5). Thus, Nα ∈ K̃(Sα0 ). Then (Nα)I\J does not depend on the

123



choice of I and J by (2.6.2), and hence

(Nα)I/(N
α)I\J ≃ (Nα)I1/(N

α)I1\{As}

≃Mα
{A,As}(1) by (3.9) again.

As M admits a ∆-flag, M{A,As} is graded free over S0 by (2.10). Then

M{A,As}(1) = ∩α∈∆(Mα
{A,As}(1)) = ∩α∈∆{(Nα)I/(N

α)I\J}
≥ NI/NI\J as NI/NI\J ∈ K̃′(S0) is torsion-free over S.

Thus, NI/NI\J ≃Mα
{A,As}(1).

(ii) We first show that

NI/NI\J ↪→M{A,As}(−1).(4)

As I \J = I \(≤ A), we may assume J = (≤ A). Then J = Js by (2). Put I ′2 = I∪Is, which is
right s-invariant closed in A by (3). As I ′2∩J = (I∩J)∪(Is∩J) = (I∩J)∪(I∩J)s = {A,As},
I ′2 \{A,As} = I ′2 \J and I ′2 \{As} = I ′2 \ (≤ As) are both closed. Also, I ′2 \{As} ⊇ I; if I ∋ As,
I ⊇ {A,As} implying I ∩J ⊇ {A,As}, absurd. As I ̸∋ As again, I \{A,As} = I \{A} = I \J ,
and hence NI/NI\J ↪→ NI′2\{As}/NI′2\{A,As} ≃M{A,As}(−1) by (3.9).

Take now a sequence of closed subsets I0 ⊂ · · · ⊂ Ir with |Ii+1| = |Ii| + 1 ∀i such that
I0 = I0s and Ir = Irs, NI0 = 0, NIr = N , Ik = I and Ik−1 = I \ {A} for some k ∈ [1, r]. Write
Ii = Ii−1 > {Ai}.

Assume for the moment that K is a field. Thus, letting ?d denote the d-th homogeneous
piece, dimK Nd =

∑
j dimK(NIj/NIj−1)

d. By (i) and (4) one has

dimK(NIj/NIj−1)
d ≤ dimK M

d+ε(Aj)
{Aj ,Ajs} with ε(Aj) =

{
−1 if Ajs < Aj,

1 else.

Then
r∑

j=1

dimK M
d+ε(Aj)
{Aj ,Ajs} =

r∑

j=1

{dimK M
d+ε(Aj)
{Aj} + dimK M

d+ε(Aj)
{Ajs} }

=
∑

Ajs>Aj

dimK Md+1
{Aj} +

∑

Ajs>Aj

dimK Md+1
{Ajs} +

∑

Ajs<Aj

dimK Md−1
{Aj} +

∑

Ajs<Aj

dimK Md−1
{Ajs}

=
∑

Ajs>Aj

dimK Md+1
{Aj} +

∑

Ajs<Aj

dimK Md+1
{Aj} +

∑

Ajs<Aj

dimK Md−1
{Aj} +

∑

Ajs<Aj

dimK Md−1
{Aj}

=
∑

j

dimK Md+1
{Aj} +

∑

j

dimK Md−1
{Aj} = dimK Md+1 + dimK Md−1.

On the other hand, if ⟨αs, δ⟩ = 1, N = M ⊗Rs R(1) = M(1)⊗Rs Rs⊕M(1)⊗Rs Rsδ, and hence

dimK Nd = dimK M(1)d + dimK M(1)d−2 as deg δ = 2

= dimK Md+1 + dimK Md−1.
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Then
dimK Nd =

∑

j

dimK(NIj/NIj−1)
d ≤

∑

j

dimK M
d+ε(Aj)
{Aj ,Ajs} = dimK Nd.

It follows that we must have in (4) an isomorphism NI/NI\J
∼−→M{A,As}(1).

Back to the general complete DVR K, we have from (2.5.2) that

NIj ⊗K (K/m) ≃ {N ⊗K (K/m)}Ij ,

and hence (NIj ⊗K (K/m))j gives a filtration of N ⊗K (K/m). Then NI/NI\J ⊗K (K/m)
∼−→

M{A,As}(−1) ⊗K K/m as left SK/m-modules by the case considered above. Then by (1) and
graded NAK

(NI/NI\J)⊗K Km
∼−→M{A,As}(−1)⊗K Km,

and hence NI/NI\J
∼−→M{A,As}(−1).

3.11. Let M ∈ K∆(S0), s ∈ S, and N = M ∗B(s).

Lemma: ∀I1 and I2 closed with I1 ⊇ I2, NI1/NI2 is graded free over S0.

Proof: Take a sequence I2 = I ′0 ⊂ I ′1 ⊂ · · · ⊂ I ′r = I1 of closed subsets in A with |I ′i| = |I ′i−1|+1
∀i ∈ [1, r], and write I ′i = I ′i−1 > {Ai}. As {Ai} = Ii \ Ii−1 = Ii ∩ (A\ Ii−1), one has from (3.10)

NI′i
/NI′i−1

≃M{Ai,Ais}(ε(Ai)) ∃ε(Ai) ∈ {±1},

which is graded free over S0 by (2.10); if Ais < Ai, {Ai, Ais} = (≥ Ais) ∩ (≤ Ai) by [L80,
1.4.1]. Then NI1/NI2 = NI′r/NI′0

is graded free over S0.

3.12. We are now ready to show

Proposition: K̃∆(S0) ∗SB = K̃∆(S0).

Proof: Put N = M ∗ B(s), M ∈ K̃∆(S0), s ∈ S. We know from (3.7) that (LE) holds
on N . We show next that (S) holds on N , so N ∈ K̃. Given I1 and I2 both closed in A,
consider NI1/NI1∩I2 ↪→ NI1∪I2/NI2 . Both terms of the imbedding are graded free over S0 by
(3.11). ∀α ∈ ∆+, (S) holds on Nα by (2.5), and hence the imbedding turns invertible upon
base extension to Sα0 by Sα⊗S?. Then

NI1∪I2/NI2 = ∩α(Nα
I1∪I2/N

α
I2) ≃ ∩α(N

α
I1/N

α
I1∩I2) = NI1/NI1∩I2 ,

and hence NI1∪I2 = NI1 +NI2 .

Finally, ∀A ∈ A, N{A} ≃ M{A,As}(±1) by (3.10), which is graded free over S by (2.10), and
hence N ∈ K̃∆(S0).

3.13. Corollary: ∀M ∈ K̃∆(S0), ∀A ∈ A, ∀s ∈ S,

grk((M ∗B(s)){A}) =

{
v−1{grk(M{A}) + grk(M{As})} if As < A,

v{grk(M{A}) + grk(M{As})} else.
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Proof: One has M ∗B(s) ∈ K̃∆ by (3.12), and by (3.10)

(M ∗B(s)){A} ≃
{
M{A,As}(−1) if As < A,

M{A,As}(1) else.

Thus, if As < A,

grk((M ∗B(s)){A}) = v−1grk(M{A,As}) by convention (I.7.2)

= v−1{grk(M{A}) + grk(M{As})},

and likewise if As > A.

3.14 Proposition: K̃P (S0) ∗SB ⊆ K̃P (S0).

Proof: We have only to show thatM∗B(s) ∈ K̃P (S0) ∀M ∈ K̃P (S0) ∀s ∈ S. AsM∗B(s) ∈ K̃∆

by (3.12), we are left to show that ∀ complex M1 →M2 →M3 in K̃∆(S0) with (ES),

0→ K̃∆(S0)(M ∗B(s),M1)→ K∆(S0)(M ∗B(s),M2)→ K∆(S0)(M ∗B(s),M3)→ 0(1)

is exact.

By (3.6) the sequence (1) reads

0→ K̃∆(S0)(M,M1 ∗B(s))→ K∆(S0)(M,M2 ∗B(s))→ K∆(S0)(M,M3 ∗B(s))→ 0.

As M ∈ K̃P (S0), it is enough to show that (ES) holds on the complex M1∗B(s)→M2∗B(s)→
M3 ∗B(s), i.e., ∀A ∈ A,

0→ (M1 ∗B(s)){A} → (M2 ∗B(s)){A} → (M3 ∗B(s)){A} → 0

is exact. By (3.13) the sequence reads

0→ (M1){A,As}(±1)→ (M2){A,As}(±1)→ (M3){A,As}(±1)→ 0

with ±1 varying simultaneously, which is exact by (2.11).

3.15. Recall from (1.2.5), fixing A ∈ A, an isomororphism of graded K-algebras S = SK(X∨
K) ≃

SK(Λ∨
K) = R via a $→ aA ∀a ∈ S. Under the identification one has, ∀B ∈ SB, ∀x ∈ W , an

isomorphism of R∅-bimodules S(A) ∗B = S(A)⊗R B → B via a⊗m $→ aAm such that

(1)

S(A) ∗B B

(S(A) ∗B)∅ B∅

(S(A)∗B)∅Ax S(A)∅A ⊗R∅ B∅
x S∅ ⊗R∅ B∅

x B∅
x.

∼

One has, ∀m ∈ B∅
x, ∀a ∈ S,

(1⊗m)aAx = a(1⊗m) = a⊗m = 1⊗ aAm $→ aAm = mx−1(aA)

with x−1(aA) = x−1(aAxx−1
) = aAx by (1.2.vi). The following justifies (I.8.17)
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Proposition: S(A)∗? imbeds SB into K̃∆.

Proof: As S(A) ∈ K̃∆, the assertion follows from (3.12).

4. Projectives

∀M,N ∈ K̃′, SModgr♯(M,N) = SMod(M,N) [AJS, E.1] is of finite type over S as both M
and N are. Then (K̃′)♯(M,N) is of finite type over S, and hence K̃′(M,N) is finite dimensional
over K. It follows that K̃′ is Krull-Schmidt [CR, pf of 16.10, p. 126], and so is K̃P . In this
section we will study K̃P .

4.1. Recall from (I.9.5) that B(w0) ∈ Cfe
P . Let A− = A+w0 = w0A+ and set Q(A−) =

S(A−) ∗ B(w0)(−ℓ(w0)). As S(A−) ∈ K̃∆, one has Q(A−) ∈ K̃∆ by (3.12). Specifically, recall
from (I.9.4) an isomorphism B(w0)(−ℓ(w0)) ≃ F (Z) in C. We will denote Z by Zf in present
Chap. II and suppress F . In particular, suppW(B(w0)) = Wf , and hence suppA(Q(A−)) =
A−Wf = WfA−. Recall from (I.9.2) that, ∀w ∈Wf ,

B(w0)(−ℓ(w0))
fe
{w} ≃ (Zf )

fe
{w} ≃ R(w)(−2ℓ(w)).

Let d : A×A→ Z be a function from [L80, 1.4]. It follows that

Q(A−){A−w} ≃ S(A−w)(−2ℓ(w)) = S(A−w)(2d(A−w,A−))(1)

= S(w0ww0A
−)(2d(w0ww0A

−, A−)).

Recall also from (I.9.3) an isomorphism R ⊗RWf R → Zf of graded K-algebras compatible
with their structure of R-bimodules.

Lemma: ∀M ∈ K̃′(S0), K̃′(S0)♯(S0 ⊗S Q(A−),M) ≃M≥A−.

Proof: Define a structure of right R-module on S using an isomorphism S ≃ R via fA− ←! f .
One then obtains an isomorphism of (S,R)-bimodules

Q(A−) ≃ S(A−) ∗ (R⊗RWf R) ≃ S ⊗R (R⊗RWf R) ≃ S ⊗RWf R,

and hence S0 ⊗S Q(A−) ≃ S0 ⊗RWf R.

∀A ∈ A, ∀m ∈M∅
A, ∀f ∈ RWf , one has mf = fAm = f(A)m with

f(A) = f(xA−) if A = xA−, x ∈W
= x̄f(A−) = f(x̄A−) by definition (1.2)

= f(x̄w0A
+) = f(A+x̄w0) = f(A−w0x̄w0) = (w0x̄w0f)(A

−) by definition (1.2.3)

= f(A−) as f ∈ RWf

= fA− ,

and hence M admits a structure of S0 ⊗RWf R-module. Then

K̃′(S0)
♯(S0 ⊗S Q(A−),M) ≤ (S0 ⊗RWf R)Mod(S0 ⊗RWf R,M) ≃M.
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Moreover, ∀ϕ ∈ K̃′(S0)♯(S0 ⊗S Q(A−),M), ϕ(S0 ⊗S Q(A−)) = ϕ((S0 ⊗S Q(A−))≥A−) ≤M≥A− ,
and hence K̃′(S0)♯(S0 ⊗S Q(A−),M) ≤M≥A− .

Now, given m ∈M≥A− , let ψ ∈ (S0 ⊗RWf R)Mod(S0 ⊗RWf R,M) such that 1S0⊗
R
Wf

R $→ m.

To see that ψ ∈ K̃′(S0)♯(S0 ⊗S Q(A−),M), one has to check that ∀A ∈ WfA−, ψ∅((S0 ⊗S

Q(A−))∅A) ⊆ M∅
≥A. By Rmk. 2.2.(i) one has ψ∅((S0 ⊗S Q(A−))∅A) ⊆

∐
B∈A+Z∆ M∅

B. Then the
assertion will follow from the following lemma.

4.2. ∀λ ∈ X̂. Let A−
λ = A− + λ, and Wλ = CW(λ) = {x ∈W|xλ = λ} = tλWf t−λ.

Lemma: ∀A ∈WλA
−
λ , (A+ Z∆) ∩ (≥ A−

λ ) = {A′ ∈ A+ Z∆|A′ ≥ A}.

Proof: We may assume that λ = 0. It is enough to show that LHS ⊆ RHS. Let A′ ∈ LHS.
Write A = wA−, w ∈ Wf , and A′ = A + γ, γ ∈ Z∆. By (1.3) one has only to check that
γ ∈ N∆+. Write A′ = xA, x ∈ W . By definition, ∀ν ∈ A, xν − ν ∈ N∆+. The assertion
follows.

4.3. Given a complex M → M ′ → M ′′ in K̃∆(S0) with (ES), one has an exact sequence
0→M≥A− →M ′

≥A− →M ′′
≥A− → 0 by (2.11), and hence a sequence

0→ K̃(S0)
♯(Q(A−),M)→ K̃(S0)

♯(Q(A−),M ′)→ K̃(S0)
♯(Q(A−),M ′′)→ 0.

is exact by (4.1). Thus, S0 ⊗S Q(A−) ∈ K̃P (S0). Also, from (4.1) one has, as K-modules,

K̃′(Q(A−), Q(A−)) ≃ {Q(A−)≥A−}0 ≃ Q(A−)0 ≃ Z0
f ≃ K,

and hence, together with (4.1.1),

Proposition: S0 ⊗S Q(A−) is an object of K̃P (S0) with suppA(S0 ⊗S Q(A−)) = A−Wf such
that {S0 ⊗S Q(A−)}{A} ≃ S0(A)(2d(A,A−)) ∀A ∈ A−Wf . In K̃′, Q(A−) is indecomposable.

4.4. Put A− = w0A+. Let A ∈ A− and write A = A−x, x ∈ W . Then, ∀y ∈ W with y < x,
∀w ∈Wf ,

wA−y > A.(1)

For d(A,A−) = ℓ(x) by [L80, Lem. 3.6], and hence A−y > A by [L80, Cor. 3.4]. If wA−y ̸∈ A−,
take w′ ∈ Wf such that w′wA−y ∈ A−. Then w′wA−y ∈ A− < wA−y by [J, II.6.4.5], and
hence we may assume wA−y ∈ A−. Write y = zy′ with z ∈ Wf and y′ ∈ W with A−y′ ∈ A−

such that ℓ(y) = ℓ(z) + ℓ(y′) [L80, Lem. 3.6]. Then

wA−y = wA−zy′ = ww0A
+zy′ = ww0zA

+y′ = ww0zw0A
−y′ ≥ A−y′

> A−x by [L80, Cor. 3.4] again as y′ ≤ y < x.

Lemma: Let A ∈ A− and write A = A−x, x ∈W. Let x = (s1, . . . , sr) be a reduced expression
of x.
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(i) (Q(A−) ∗B(x)){A} ≃ S(A)(r).

(ii) suppA(Q(A−) ∗B(x)) ⊆ (≥ A).

Proof: (ii) ∀M ∈ K̃′, ∀s ∈ S, one has suppA(M ∗ B(s)) = suppA(M) ∪ suppA(M)s by (3.5).
As suppW(B(x)) = (≤ x) by (I.2.4),

suppA(Q(A−) ∗B(x)) = ∪
y∈W
y≤x

suppA(Q(A−))y = {wA−y|w ∈Wf , y ≤ x}

⊆ (≥ A) by (1).

(i) Induction on r. If r = 0, Q(A−){A−} ≃ S(A−) by (4.1.1). PutQ = Q(A−)∗B(s1, . . . , sr−1)

and s = sr. Then As > A. As Q ∈ K̃∆ by (3.12), one has by (3.10) an isomorphism of graded
S-modules (Q ∗B(s)){A} ≃ Q{A,As}(1) with

Q{A,As} = (Q{A,As})≥As as suppA(Q{A,As}) ⊆ suppA(Q) ⊆ (≥ As) by (ii)

= Q{A,As}∩(≥As) by (2.8)

= Q{As}

≃ S(r − 1) by the induction hypothesis.

Thus, (Q(A−) ∗B(x)){A} = (Q ∗B(s)){A} ≃ S(A)(r − 1)(1) = S(A)(r).

4.5. Let A ∈ A−, write A = A−x, and let x be a reduced expression of x ∈W . By (4.4) there
is an indecomposable direct summand Q(A)(ℓ(x)) of Q(A−) ∗ B(x) such that suppA(Q(A)) ⊆
(≥ A) and that Q(A){A} ≃ S(A). For A ∈ A in general, take γ ∈ Z∆ such that A ∈
A− + γ = {B + γ|B ∈ A−}, and set Q(A) = Tγ(Q(A − γ)), which belongs to K̃P by (2.11)
with K̃′(Q(A), Q(A)) ≃ K.

We show next that any object of K̃P is a direct sum of Q(A)(n)’s, A ∈ A, n ∈ Z. Thus, let
M ∈ K̃P . Let A ∈ A be minimal in suppA(M). Then M{A} = M≥A/M>A ̸= 0, which is graded
free over S, and hence there is n ∈ Z such that Q(A)(n){A} is a direct summand of M{A}. Let

Q(A)(n){A} M{A}
i

π

be the corresponding imbedding and the projection, resp., of degree 0. Let I be a closed subset
of A with I ⊇ suppA(M) and I \ {A} is closed. Then I ⊇ (≥ A) ⊇ suppA(Q(A)). By (2.12)
the property (ES) holds on both complexes MI\{A} → MI = M → MI/MI\{A} = M{A} and
Q(A)(n)I\{A} → Q(A)(n)I = Q(A)(n)→ Q(A)(n){A}. As Q(A)(n) and M ∈ K̃P , one has

M M{A} M

Q(A)(n) Q(A)(n){A} Q(A)(n)

π π̂î i

such that π̂ ◦ î ∈ K̃(Q(A)(n), Q(A)(n)) ≃ K inducing the identity on Q(A)(n){A}. Then,
id− π̂ ◦ î ̸∈ K̃(Q(A)(n), Q(A)(n))×. As K is local, we must have π̂ ◦ î ∈ K̃(Q(A)(n), Q(A)(n))×,
and hence Q(A)(n) is a direct summand of M in K̃P . We have now obtained
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Theorem: (i) ∀A ∈ A, there is a unique, up to isomorphism, Q(A) ∈ K̃P indecomposable in
K̃′ such that suppA(Q(A)) ⊆ (≥ A) and Q(A){A} ≃ S(A).

(ii) Any object of K̃P is a direct sum of Q(A)(n), A ∈ A, n ∈ Z.

4.6. ∀γ ∈ Z∆, put A−
γ = A− + γ. Then Q(A−

γ ) ≃ T−γ(Q(A−)) by the unicity (4.5). In
particular,

suppA(Q(A−
γ )) = A−

γWf ,(1)

and

(2) any object of K̃P is a direct summand of a direct sum of some

Q(A−
γ ) ∗B(x)(n), γ ∈ Z∆, x ∈ Sr, r ∈ N, n ∈ Z.

Also, ∀M ∈ K̃′(S0),

K̃′(S0)
♯(S0 ⊗S Q(A−

γ ),M) ≃ K̃′(S0)
♯(T−γ(S0 ⊗S Q(A−)),M)(3)

≃ K̃′(S0)
♯(S0 ⊗S Q(A−),Tγ(M))

≃ {Tγ(M)}≥A− by (4.1)

= M≥A−+γ = M≥A−
γ
.

Corollary: Let M,N ∈ K̃P .

(i) K̃♯(M,N) is graded free of finite rank over S.

(ii) S0 ⊗S K̃♯(M,N) ≃ K̃(S0)♯(S0 ⊗S M,S0 ⊗S N).

Proof: (i) By (2) we may assume M = Q(A−
γ ) ∗ B(s1, . . . , sr)(n) for some γ ∈ Z∆, n ∈ Z,

s1, . . . , sr ∈ S. Then

K̃♯(M,N) ≃ K̃♯
P (Q(A−

γ ), N ∗B(sr) ∗ · · · ∗B(s1)(−n)) by (3.6)

≃ (N ∗B(sr, . . . , s1)(−n))≥A−
γ

by (3),

which is graded free of finite rank over S by (3.12) and (2.10).

(ii) By (3.6) again we may assume that M = Q(A−
γ ) for some γ ∈ Z∆. Then

S0 ⊗S K̃♯(M,N) ≃ S0 ⊗S N≥A−
γ

by (4.6.3)

≃ (S0 ⊗S N)≥A−
γ

≃ K̃(S0)
♯(S0 ⊗S M,S0 ⊗S N) by (4.6.3) again.

4.7. ∀λ ∈ X̂, let A−
λ = A− + λ. Recall Wλ = CW(λ) = tλWf t−λ. ∀w ∈ Wf , tλwt−λ = tλ−wλw

with λ − wλ ∈ Z∆. In particular, ∀α ∈ ∆+, tλsαt−λ = sα,⟨λ,α∨⟩ = t⟨λ,α∨⟩αsα. Thus, WλA
−
λ =

{tλwt−λA−
λ = wA− + λ|w ∈Wf}.
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Proposition: One has suppA(Q(A−
λ )) = WλA

−
λ with

Q(A−
λ ){wA−+λ} ≃ S(wA− + λ)(−2ℓ(w)) = S(wA− + λ)(2d(wA− + λ, A−

λ )).

∀M ∈ K̃′(S0), K̃′(S0)♯(S0 ⊗S Q(A−
λ ),M) ≃M≥A−

λ
.

Proof: Let Q = {a ∈
∏

WλA
−
λ
S|aA ≡ atλsαt−λA mod α∨ ∀A ∈ WλA

−
λ ∀α ∈ ∆+} with aB,

B ∈ A, denoting the B-th component of a, not to be confused with Frac(R) in I. We equip
Q with a structure of (S,R)-bimodule such that, ∀a ∈ Q, ∀b ∈ S, ∀g ∈ R, ∀A ∈ WλA

−
λ ,

(ba)A = baA while (ag)A = gAaA. As tλsαt−λ = sα,⟨λ,α∨⟩ = t⟨λ,α∨⟩αsα, gtλsαt−λA = sαgA by
(1.2.ii), and Q is well-defined. As in (I.6.1.2), Q∅ ≃

∏
WλA

−
λ
S∅ with, ∀B ∈ A,

Q∅
B ≃

{
S(B)∅ if B ∈WλA

−
λ ,

0 else,

and hence Q ∈ K̃′ with support WλA
−
λ . ∀α ∈ ∆+,

Qα = {a ∈
∏

WλA
−
λ

Sα|aA ≡ asα,⟨λ,α∨⟩A mod α∨ ∀A ∈WλA
−
λ }

=
∐

A∈WλA
−
λ

A<sα,⟨λ,α∨⟩A

{(0, . . . , 0, a, 0, . . . , 0, a′, 0 . . . , 0)|a, a′ ∈ Sα with a ≡ a′ mod α∨}

with a (resp. a′) placed at the A-th (resp. sα,⟨λ,α∨⟩A-th)

=
∐

Ω∈Wα\A

(Qα ∩
∐

A∈Ω

Q∅
A),

and hence (LE) holds on Q. To check (S) on Q, let I1 and I2 be 2 closed subsets of A. As
QIj = {(aA) ∈ Q|aA = 0 ∀A ̸∈ Ij}, j ∈ [1, 2], QI1 + QI2 ⊆ QI1∪I2 . By (2.5) and (LE) on Qα,
α ∈ ∆+, the inclusion turns to an equality upon base extension to Sα. Then

QI1 +QI2 = ∩α∈∆+(QI1 +QI2)
α as ∩α∈∆+Sα = S in each coomponent

= ∩α∈∆+(Qα
I1 +Qα

I2) = ∩α∈∆+Qα
I1∪I2 = QI1∪I2 ,

and hence Q ∈ K̃.

Let now Z ′ = {z ∈
∏

Wf
S|zsαw ≡ zw mod α∨ ∀w ∈ Wf ∀α ∈ ∆+} equipped with a

structure of (S,R)-bimodule such that, ∀z ∈ Z ′, ∀a ∈ S, ∀g ∈ R, ∀w ∈Wf , (az)w = azw while
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(zg)w = gwA−zw. Under the identification S ≃ R via a $→ aA
−
,

S(A−) ∗ Zf = S(A−)⊗R {z ∈
∏

Wf

R|ztw ≡ zw mod (α∨
t )

A+ ∀w ∈Wf ∀t ∈ T }

with A+t = sαtA
+ after (3.1)

≃ {z ∈
∏

Wf

S|(ztw)A
− ≡ (zw)

A−
mod (α∨

t )
A+ ∀w ∈Wf ∀t ∈ T }

= {z ∈
∏

Wf

S|ztw ≡ zw mod ((α∨
t )

A+
)A− ∀w ∈Wf ∀t ∈ T } with

((α∨
t )

A+
)A− = ((α∨

t )
A+

)(A−) = ((α∨
t )

A+
)(w0A

+) = w0((α
∨
t )

A+
(A+)) = w0α

∨
t

= {z ∈
∏

Wf

S|ztw ≡ zw mod w0α
∨
t ∀w ∈Wf ∀t ∈ T },

and hence

Q(A−) = S(A−) ∗ Zf ≃ {a ∈
∏

A−Wf

S|aA−tw ≡ aA−w mod w0α
∨
t ∀w ∈Wf ∀t ∈ T } with

A−w = w0ww0A
− and A−tw = w0tw0w0ww0A

−

= {a ∈
∏

WfA−

S|atwA− ≡ awA− mod α∨
t ∀w ∈Wf ∀t ∈ T }

≃ Z ′ by setting zw = awA− , w ∈Wf ,

which equippes Z ′ with a structure of K̃P . Then η : Z ′ → Q via z $→ a with awA−+λ = zw
∀w ∈Wf is an isomorphism of graded left S-modules, though not compatible with the structure
of right R-modules unless λ ∈ Z∆. Nonetheless, under η one obtains an isomorphism of graded
left S-modules

Q{wA−+λ} ≃ Z ′
{w} ≃ Q(A−){wA−}

≃ S(−2ℓ(w)) = S(2d(wA− + λ, wA−)) by (4.1.1).

Thus, Q ∈ K̃∆.

Recall that, ∀M ∈ K̃′, ∀m ∈M , ∀g ∈ RWf ,

mg = gA−m.(1)

For we may assume that m ∈ M∅
A for some A ∈ A. If A = wA− + γ, w ∈ Wf , γ ∈ Z∆,

mg = gAm with

gA = g(A) = g(wA− + γ) = w(gA−)

= g(wA−) = g(ww0A
+) = g(A+ww0) = g(A−w0ww0) = (w0ww0g)(A

−)

= g(A−) as g ∈ RWf

= gA− .

Thus, the action by S ⊗K R on M factors through S ⊗RWf R.
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Consider finally a graded homomorphism of (S,R)-modules ξ : S ⊗RWf R→ Q via a⊗ g $→
(agwA−+λ|w ∈ Wf ), which is well-defined by (1) as (agwA−+λ|w ∈ Wf ) = a(1|w ∈ Wf )g.
Writing A−

λ = A− + λ = xA− + γ for some x ∈Wf and γ ∈ Z∆, one has, ∀g ∈ R, w ∈Wf ,

gwA−+λ = g(wA− + λ) = g(w(xA− + γ − λ) + λ) = g(wxA− + wγ − wλ+ λ)

= g(wxA−) as wγ − wλ+ λ ∈ Z∆
= g(wxw0A

+) = g(wA+xw0) = g(wA−w0xw0) = (w0xw0g)(wA
−) = (w0xw0g)wA− ,

and hence obtains a CD

S ⊗RWf R Q

S ⊗RWf R Z ′

a⊗ g (agwA− |w ∈Wf ).

ξ

S⊗
R
Wf

w0xw0? ∼ η

As S ⊗Wf
w0xw0? and η are both bijective as well as the bottom map by (4.1), so is ξ. Then

∀M ∈ K̃′(S0),

K̃′(S0)
♯(S0 ⊗S Q,M) ≤ (S0 ⊗RWf R)Mod(S0 ⊗RWf R,M) ≃M.

As suppA(Q) = WfA
−
λ , K̃′(S0)♯(S0⊗S Q,M) ≤M≥A−

λ
, which is an equality by (4.2) as in (4.1).

Thus, Q ∈ K̃P , and by unicity Q ≃ Q(A−
λ ).

4.8. Keep the notation of (4.7). Under the isomorphism S ≃ R via a $→ aA
+
, one has

S(A+) ∗ Zf ≃ {z ∈
∏

Wf

S|ztw ≡ zw mod ((α∨
t )

A+
)A+ = α∨

t ∀w ∈Wf ∀t ∈ T }

= Z ′ ≃ Q(A−) = S(A−) ∗B(w0)(−ℓ(w0)),

and hence
S(A+) ∗B(w0)(−ℓ(w0)) ≃ S(A−) ∗B(w0)(−ℓ(w0)).

Let λ ∈ X̂ and Wλ = CW(λ) = tλWf t−λ as in (4.7). Let W ′
λ = {w ∈ W|A+

λw ∈ WλA
+
λ }.

If A+
λ x

′ = xA+
λ and A+

λ y
′ = yA+

λ , x
′, y′ ∈ W ′

λ, A
+
λ (x

′y′) = (xA+
λ )y

′ = x(A+
λ y

′) = x(yA+
λ ) =

(xy)A+
λ , and hence one has isomorphisms of groups

W ′
λ Wλ Wf

x′ x x

tλsαt−λ = sα,⟨λ,α∨⟩ sα.

∼ ∼

Thus, for each α ∈ ∆+, let ŝ′α ∈ W ′
λ and ŝα ∈ Wλ denote the elements corresponding to sα

under the isomorphisms. Let w′
λ ∈W ′

λ with A+
λw

′
λ = A−

λ = wλA
+
λ . Then by (I.9.4)

B(w′
λ)(−ℓ(w′

λ)) ≃ Zλ := {z ∈
∏

W ′
λ

R|zŝ′αx′ ≡ zx′ mod α∨
ŝ′α
∀x′ ∈W ′

λ ∀α ∈ ∆+},
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and hence, under the isomorphism R ≃ S via g $→ gA+
λ
,

S(A+
λ ) ∗B(w′

λ)(−ℓ(w′
λ)) ≃ {a ∈

∏

W ′
λ

S|aA+
λ ŝ

′
αx

′ ≡ aA+
λ x

′ mod (α∨
ŝ′α
)A+

λ
∀x′ ∈W ′

λ ∀α ∈ ∆+}

= {a ∈
∏

Wλ

S|aŝαxA+
λ
≡ axA+

λ
mod (α∨

ŝ′α
)A+

λ
∀x ∈Wλ ∀α ∈ ∆+}.

If A+
λ = A+x, x ∈ W , ŝαA

+
λ = ŝαA+x = A+ŝαx = A+xx−1ŝαx = A+

λ sx̄−1α,n for some n ∈ Z
as ŝα = tλsαt−λ = tλ−sαλsα = sα,⟨λ,α⟩. Then A+ŝ′α = A+sx̄−1α,n = sx̄−1α,nA+, and hence
α∨
ŝ′α

= ((x̄−1α)∨)A
+
= (x̄−1α∨)A

+
by definition (3.1). Thus,

(α∨
ŝ′α
)A+

λ
= ((x̄−1α∨)A

+
)A+

λ
= (x̄−1α∨)A

+
(A+x) = (x̄−1α∨)A

+
(xA+) = x̄{(x̄−1α∨)A

+
(A+)}

= x̄(x̄−1α∨) = α∨.

It follows that

S(A+
λ ) ∗B(w′

λ)(−ℓ(w′
λ)) = {a ∈

∏

WλA
+
λ

S|aŝαA ≡ aA mod α∨ ∀A ∈WλA
+
λ ∀α ∈ ∆+}

= Q as WλA
+
λ = {wA+ + λ|w ∈Wf} = {wA− + λ|w ∈Wf} = WλA

−
λ

≃ S(A−
λ ) ∗B(w′

λ)(−ℓ(w′
λ)) likewise.

We have obtained

Corollary: S(A+
λ ) ∗B(w′

λ)(−ℓ(w0)) ≃ Q(A−
λ ) ≃ S(A−

λ ) ∗B(w′
λ)(−ℓ(w0)).

5. Categorification

5.1. Recall from (I.3.1) the ງ-Heckeؠ algebra H over Z[v, v−1] associated to (W ,S). The
periodic module P =

∐
A∈A Z[v, v−1]A is a right H-module [S97, Lem. 4.1] such that

AHs =

{
As if As > A,

As+ (v−1 − v)A else,
(1)

i.e.,

AHs = A(Hs + v) =

{
As+ vA if As > A,

As+ v−1A else.

For an additive category C let [C] denote its split Grothendieck group. Recall from (I.5.3) a
Z[v, v−1]-algebra isomorphism

[SB]
∼−→ H via [B(s)] $→ Hs = Hs + v ∀s ∈ S.(2)

By (3.12) the abelian group [K̃∆] admits a structure of right [SB]-module such that [M ][B] =
[M ∗ B] ∀M ∈ K̃∆ ∀B ∈ SB. Fix a length function ℓ : A → Z in the sense of [L80, 1.11]:
∀A,B ∈ A, d(A,B) = ℓ(B)− ℓ(A). Define ch : [K̃∆]→ P via

ch[M ] =
∑

A∈A

vℓ(A)grk(M{A})A,
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which is [SB] ≃ H-linear: ∀M ∈ K̃∆, ∀s ∈ S,

ch[M ∗B(s)] =
∑

A∈A

vℓ(A)grk((M ∗B(s)){A})A

=
∑

A∈A

vℓ(A)

{
{v−1grk(M{A}) + v−1grk(M{As})}A if As < A,

{vgrk(M{A}) + vgrk(M{As})}A else

by (3.13)

=
∑

A>As

{vℓ(A)−1grk(M{A}) + vℓ(A)−1grk(M{As})}A

+
∑

A<As

{vℓ(A)+1grk(M{A}) + vℓ(A)+1grk(M{As})}A,

in which the coefficient of A is{
vℓ(A)−1grk(M{A}) + vℓ(As)grk(M{As}) if As < A,

vℓ(A)+1grk(M{A}) + vℓ(As)grk(M{As}) else

as ℓ(A)− ℓ(As) = d(As,A) =

{
1 if As < A,

−1 else.
On the other hand,

(ch[M ])(Hs + v) =
∑

A∈A

vℓ(A)grk(M{A})

{
As+ vA if As > A,

As+ v−1A else

=
∑

A>As

{vℓ(A)grk(M{A})As+ vℓ(A)−1grk(M{A})A}

+
∑

A<As

{vℓ(A)grk(M{A})As+ vℓ(A)+1grk(M{A})A}.

Thus, ch[M ∗B(s)] = (ch[M ])(Hs + v) = (ch[M ])[B(s)] under the identification [SB] ≃ H.

As the [S(A)], A ∈ A, form a Z[v, v−1]-linear basis of [K̃∆] and as ch[S(A)] = vℓ(A)A, we
have obtained a categorification of the periodic modules:

Theorem: ch: [K̃∆]→ P is an H-linear isomorphism.

5.2. By (3.14) the H-linear isomorphism ch : [K̃∆] → P restricts to an H-linear map on [K̃P ].
∀λ ∈ X̂, put eλ =

∑
w∈Wλ

v−ℓ(wA−
λ )wA−

λ , which is distinct from one in [L80, 1.7, p. 125] but
agrees with Eλ in [S97, p. 93] up to a power of v;

eλ =
∑

A∈WfA+

v−ℓ(A+λ)(A+ λ) =
∑

w∈Wf

v−ℓ(wA++λ)(wA+ + λ)(1)

=
∑

w∈Wf

vℓ(w)−ℓ(A++λ)(wA+ + λ) =
∑

w∈Wf

vℓ(w)−ℓ(A+
λ )(wA+ + λ)

as ℓ(A+
λ )− ℓ(wA

+ + λ) = d(wA+ + λ, A+ + λ) = d(wA+, A+) = ℓ(w)

= v−ℓ(A
+
λ )Eλ.
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Set P0 =
∑

λ∈X̂ eλH ⊆ P =
∐

A∈A Z[v, v−1]A.

Lemma: ∀λ ∈ X̂, ch[Q(A−
λ )] = v2ℓ(A

−
λ )eλ = vℓ(A

−
λ )−ℓ(w0)Eλ.

Proof: By (4.7)

ch[Q(A−
λ )] =

∑

A∈A

vℓ(A)grk(Q(A−
λ ){A})A =

∑

w∈Wλ

vℓ(wA−
λ )grk(Q(A−

λ ){wA−
λ })wA

−
λ

=
∑

w∈Wλ

vℓ(wA−
λ )grk(S(2d(wA−

λ , A
−
λ )))wA

−
λ =

∑

w∈Wλ

vℓ(wA−
λ )+2d(wA−

λ ,A−
λ )wA−

λ

=
∑

w∈Wλ

v−ℓ(wA−
λ )+2ℓ(A−

λ )wA−
λ = v2ℓ(A

−
λ )eλ.

5.3. Identify [SB] with H by (5.1.2). ∀λ ∈ X̂, eλ = v−2ℓ(A−
λ )ch[Q(A−

λ )] by (5.2). As ch :
[K̃P ]→ P0 is H-equivariant, the map is surjective. On the other hand, by (4.5),

[K̃P ] =
∐

A∈A

Z[v, v−1][Q(A)] with ch[Q(A)] ∈ vℓ(A)A+
∑

A′>A

Z[v, v−1]A′,

and hence the ch[Q(A)], A ∈ A, remain Z[v, v−1]-linearly independent. Thus,

Corollary: ch : [K̃P ]→ P0 is an isomorphism of right H-modules.

5.4. Let λ ∈ X̂. From (4.8) recall Wλ = CW(λ), W ′
λ = {x ∈W|A+

λ x ∈WλA
+
λ }, w′

λ ∈W ′
λ such

that A+
λw

′
λ = A−

λ , and B(w′
λ) ≃ Zλ(ℓ(w0)). ∀x ∈W ,

D(B(w′
λ)

x) ≃ B(w′
λ)x by (I.2.8 and 4.5)

≃ Zλ(ℓ(w0))x

≃
{
(
∏

α∈∆+ α∨
ŝ′α
)R(x)(ℓ(w0)) ≃ R(x)(−ℓ(w0)) if x ∈W ′

λ,

0 else,

and hence by (I.2.9)

B(w′
λ)

x ≃
{
R(x)(ℓ(w0)) if x ∈W ′

λ,

0 else.
(1)

In particular,

ch[B(w′
λ)] =

∑

x∈W ′
λ

v−ℓ(x)grk(B(w′
λ)

x)Hx = vℓ(w0)
∑

x∈W ′
λ

v−ℓ(x)Hx.(2)

5.5. Keep the notation of (5.4). Let Sλ = tλSf t−λ and S ′
λ = {x ∈ W ′

λ|A+
λ x ∈ Sλ}. Thus, one

has isomorphisms of Coxeter systems (Wf ,Sf ) ≃ (Wλ,Sλ) ≃ (W ′
λ,S ′

λ). Let Π−
λ be the set of

alcoves in the box {ν ∈ XR|⟨λ,α∨⟩ − 1 < ⟨ν,α∨⟩ < ⟨λ,α∨⟩ ∀α ∈ ∆s} and put Πλ = Π−
λw

′
λ.

Thus, A−
λ (resp. A+

λ ) is the top (resp. bottom) alcove of Π−
λ (resp. Π−

λ ).
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Lemma: ∀w ∈ W with A+
λw ⊆ Πλ (resp. A−

λw ⊆ Π−
λ ), B(w′

λw) is a direct summand of
B(w′

λ) ∗B(w′
λw)(ℓ(w0)). In particular,

S(A−
λ ) ∗B(w′

λw) (resp. S(A+
λ ) ∗B(w′

λw)) ∈ K̃P .

Proof: ∀x ∈W , one has ch[B(x)] = Hx by (I.5.2). As sw′
λw < w′

λw ∀s ∈ S ′
λ, Hsch[B(w′

λw)] =
(v+v−1)ch[B(w′

λw)] by (I.5.10.ii), and hence Hsch[B(w′
λw)] = v−1ch[B(w′

λw)]. Thus, ∀x ∈W ′
λ,

Hxch[B(w′
λw)] = v−ℓ(x)ch[B(w′

λw)].(1)

Put l = ℓ(w′
λ) = ℓ(w0). Then

ch([B(w′
λ) ∗B(w′

λw)]) = ch[B(w′
λ)]ch[B(w′

λw)]

=
∑

y∈W ′
λ

v−ℓ(y)+lHych[B(w′
λw)] by (5.4.2)

=
∑

y∈W ′
λ

v−2ℓ(y)+lch[B(w′
λw)] by (1).

It follows from the isomorphism [SB] ≃ H that B(w′
λ) ∗B(w′

λw) ≃
∐

y∈W ′
λ
B(w′

λw)(l− 2ℓ(y)).

Thus, S(A−
λ )∗B(w′

λw) is a direct summand of S(A−
λ )∗B(w′

λ)∗B(w′
λw)(−l) ≃ Q(A−

λ )∗B(w′
λw)

by (4.8). Then S(A−
λ ) ∗ B(w′

λw) ∈ K̃P by (3.14). Likewise S(A+
λ ) ∗ B(w′

λw) ∈ K̃P for w with
A−
λw ∈ Π−

λ .

5.6. Keep the notation of (5.5). Recall PA ∈ P0 from [S97, Th. 4.3] and let (Hx|x ∈ W) be
the KL-basis of H.

Lemma: ∀w ∈W with A+
λw ∈ Πλ, A

−
λHw′

λw
= PA+

λw
.

Proof: We make use of results from [L80]. The action of H on A in loc. cit. (resp. in the
present setup after [S97]) is from the left (resp. right) with respect to the Coxeter system
(W ,S) with S associated to the faces of an arbitrary alcove, i.e., the orbits of an alcove, and
hence S remains the same as the one in [L80]. Thus, our ATy is vℓ(A)Ty−1AL for , A ∈ A, y ∈W
and AL denoting the element of M in [L80, 1.6], corresponding to A [S97, Rmk. 4.2]; As1 . . . sr

137



in [S97] is vℓ(A)sr . . . s1AL in [L80]. One has

A−
λHw′

λw
= A−

λ

∑

y∈W

hy,w′
λw
Hy after [S97, Def. 2.5]

= A−
λ

∑

y∈W

vℓ(w
′
λw)−ℓ(y)Py,w′

λw
vℓ(y)Ty by [S97, Rmk. 2.5 and a remark on p. 84]

=
∑

y∈W

vℓ(w
′
λw)Py,w′

λw
Ty−1vℓ(A

−
λ )(A−

λ )L

= vℓ(w
′
λw)+ℓ(A−

λ )
∑

y∈W

Py−1,w−1w′
λ
−1Ty−1(A−

λ )L [K88, 1.6.6]

= vℓ(w
′
λw)+ℓ(A−

λ )
∑

y∈W

Py,w−1w′
λ
Ty(A

−
λ )L = vℓ(w

′
λw)+ℓ(A−

λ )C∗
w−1w′

λ
(A−

λ )L

with C∗
w−1w′

λ
a Kazhdan-Lusztig basis element of H [L80, 5.1]

= vℓ(w
′
λw)+ℓ(A−

λ )Dw−1(A+
λ )L

by [L80, proof of Th. 5.2, p. 136]

= vℓ(w
′
λw)+ℓ(A−

λ )
∑

B∈A

QB,w−1A+
λ
BL by definition [L80, Th. 5.2]

= vℓ(w
′
λw)+ℓ(A−

λ )
∑

B∈A

vd(A
+
λ ,B)pB,A+

λw
BL by [S97, Rmk. 4.4]; there is an error in sign

loc. cit.

= vℓ(w
′
λw)+ℓ(A−

λ )
∑

B∈A

vd(A
+
λw,B)pB,A+

λw
v−ℓ(B)B by [S97, Rmk. 4.2] again

= vℓ(w
′
λw)+ℓ(A−

λ )−ℓ(A+
λw)

∑

B∈A

pB,A+
λw

B

=
∑

B∈A

pB,A+
λw

B

= PA+
λw

by definition [S97, Rmk. 4.4]

= PA−
λ w′

λw
.

6. Quotient categories

In order to relate our categories to the combinatorial category of [AJS], we have to introduce
ideal quotients of the categories.

6.1. ∀M,N ∈ K̃′(S0), put

I(M,N) = {ϕ ∈ K̃′(S0)(M,N)|ϕ∅(M∅
A) ⊆

∐

A′>A

N∅
A′}.

As ϕ∅(M∅
A) ⊆

∐
A′≥A N∅

A′ , I forms an ideal of the set of morphisms of K̃′(S0) [தԬ, Def. 3.2.41,

p. 146]. Define K′(S0) to be the ideal quotient K̃′(S0)/I [தԬ, Def. 3.2.43, p. 147], and
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likewise K(S0) and K∆(S0). ∀A ∈ A, recall from (2.8.1) the endofunctor ?{A} on K̃(S0);

M{A} N{A}

M≥A/M>A N≥A/N>A.

ϕ{A}

∀ϕ ∈ K̃(S0)(M,N), ∀A ∈ A,

ϕ∅(M∅
A) ⊆

∐

A′>A

N∅
A′ iff ϕ{A} = 0,(1)

and hence ?{A} induces a functor K(S0)→ S0Modgr via M $→M{A}. Thus, one can define that
(ES) holds on a complex M1 → M2 → M3 in K(S0) iff 0→ M1,{A} → M2,{A} → M3,{A} → 0 is
exact as left S0-modules ∀A ∈ A. Note, however, that a sequence M1 → M2 → M3 in K̃(S0)
may form a complex only in K(S0) but not in K̃(S0). For the time being we define KP (S0) to be
the full subcategory of K∆(S0) consisting of M ∈ K∆(S0) such that ∀ complex M1 →M2 →M3

in K∆(S0) with (ES) holding, sequence

0→ K∆(S0)(M,M1)→ K∆(S0)(M,M2)→ K∆(S0)(M,M3)→ 0

is exact. We will see below that KP (S0) is, in fact, the ideal quotient of K̃P (S0).

Lemma: Let M,N ∈ K̃′(S0), ϕ ∈ K̃′(S0)(M,N), and B ∈ SB. If ϕ(M∅
A) ⊆

∐
A′>A N∅

A′

∀A ∈ A,
(ϕ ∗B)∅((M ∗B)∅A) ⊆

∐

A′>A

(N ∗B)∅A′ .

Proof: By definition (M ∗B)∅A =
∐

x∈W M∅
Ax−1 ⊗R B∅

x. By Rmk. 2.2.(i) under the hypothesis

ϕ∅(M∅
Ax−1)⊗R B∅

x ⊆
∐

A′>A
A′∈Ax−1+Z∆

N∅
A′ ⊗R B∅

x =
∐

A′x−1>Ax−1

A′x−1∈Ax−1+Z∆

N∅
A′x−1 ⊗R B∅

x.

Write A′x−1 = Ax−1 + γ ∃γ ∈ Z∆. By (1.3) one has that A′x−1 ≥ Ax−1 iff γ ∈ N∆+, in which
case A′ = (Ax−1 + γ)x = (tγAx−1)x = tγA = A+ γ, and hence A′ ≥ A. Thus,

(ϕ ∗B)∅((M ∗B)∅A) ⊆
∐

A′>A

N∅
A′x−1 ⊗R B∅

x =
∐

A′>A

(N ∗B)∅A′ .

6.2. From the lemma above one has obtained a bifunctor K′(S0)×SB→ K′(S0) via (M,B) $→
M ∗B, and by (3.12) a bifunctor K∆(S0)×SB→ K∆(S0).

Proposition: ∀M,N ∈ K′(S0), ∀s ∈ S,

K′(S0)(M ∗B(s), N) ≃ K′(S0)(M,N ∗B(s)).
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Proof: Take δ ∈ Λ∨
K with ⟨αs, δ⟩ = 1. Recall from the proof of Prop. 3.6 a bijection

(S0, R)Bimod(M ⊗Rs R,N)
∼−→ (S0, R)Bimod(M,N ⊗Rs R) via ϕ $→ ψ

with ψ(m) = ϕ(mδ⊗1)⊗1−ϕ(m⊗1)⊗sδ, and that ϕ ∈ K̃′(S0) iff ψ ∈ K̃′(S0). The argument
also shows that ∀A ∈ A, ϕ∅((M ∗ B(s))∅A) ⊆

∐
A′>A N∅

A′ iff ψ∅(M∅
A) ⊆

∐
A′>A(N ∗ B(s))∅A′ .

Thus, ϕ ∈ K′(S0) iff ψ ∈ K′(S0).

6.3. Any quotient of a local ring remains local [AF, 15.15, p. 170], and hence

any indecomposable in K̃′(S0) remains so in K′(S0).(1)

Lemma: Let K be a locally closed subset of A such that ∀A ∈ K, (A+ Z∆) ∩K = {A}.

(i) ∀ϕ ∈ K̃(S0)(M,N) vanishing in K(S0), ϕK : MK → NK vanishes in K̃(S0).

(ii) Let M1 →M2 →M3 be a sequence in K̃∆(S0). If (ES) holds on the sequence in K(S0),
(ES) holds on the sequence (M1)K → (M2)K → (M3)K in K̃(S0). In particular, 0→ (M1)K →
(M2)K → (M3)K → 0 is exact in (S0, R)Bimodgr by (2.11).

Proof: (i) ∀A ∈ A,

ϕ∅(M∅
A) ⊆

∐

A′>A
A′∈A+Z∆

N∅
A′ by Rmk. 2.2.(i)

= 0 in (NK)
∅ =

∐

A′∈K

N∅
A′ as (A+ Z∆) ∩K = {A},

and hence ϕK = 0 in K̃(S0).

(ii) The composite M1 → M3 vanishes in K(S0) by the hypothesis. Then so does (M1)K →
(M3)K in K̃(S0) by (i), and hence (ES) holds on (M1)K → (M2)K → (M3)K in K(S0).

6.4 Lemma: If (ES) holds on a complex M1 →M2 →M3 in K∆(S0), so does it on M1 ∗B →
M2 ∗B →M3 ∗B in K∆(S0) ∀B ∈ SB. Thus, KP (S0) ∗SB ⊆ KP (S0).

Proof: We may assume B = B(s) for some s ∈ S. From (3.12) we know that each Mi ∗B(s) ∈
K̃∆(S0), and from (3.10) that, ∀A ∈ A, (Mi ∗ B(s)){A} ≃ (Mi){A,As}(ε(A)) with ε(A) = ±1
depending on whether or not As > A. By (6.3.ii) one has an exact sequence

0→ (M1){A,As} → (M2){A,As} → (M3){A,As} → 0

in (S0, R)Bimodgr. Thus,

0→ (M1 ∗B(s)){A} → (M2 ∗B(s)){A} → (M3 ∗B(s)){A} → 0

is exact in (S0, R)Bimodgr.

If M ∈ KP (S0), one has a CD by (6.2)

0 K(S0)(M ∗B(s),M1) K(S0)(M ∗B(s),M2) K(S0)(M ∗B(s),M3) 0

0 K(S0)(M,M1 ∗B(s)) K(S0)(M,M2 ∗B(s)) K(S0)(M,M3 ∗B(s)) 0

∼ ∼ ∼
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with the bottom row exact by above. Thus, M ∗B(s) ∈ KP (S0).

6.5. Let λ ∈ X̂ and put I = (≥ A−
λ ). Then

WλA
−
λ is open in I, and hence locally closed in A.(1)

For let A1 ∈ WλA
−
λ and A2 ∈ I with A2 ≤ A1. We are to check that A2 ∈ WλA

−
λ . As

W = Wλ#Z∆ is transitive on A, there is A3 ∈WλA
−
λ such that A2 ∈ A3+Z∆. Then A2 ≥ A3

by (4.2). Write A1 = xA3, x ∈ Wλ, and A2 = A3 + γ for some γ ∈ Z∆. Thus, γ ∈ N∆+ by
(1.3). As xA3 = A1 ≥ A2 = A3 + γ, λ+ γ ↑↑ xλ. Then N∆+ ∋ xλ− (λ+ γ) = −γ, and hence
γ = 0. Thus, A2 = A3 ∈WλA

−
λ .

Also,

∀A ∈WλA
−
λ , (A+ Z∆) ∩WλA

−
λ = {A}.(2)

For LHS ⊆ (A + Z∆) ∩ I = (A + Z∆) ∩ (≥ A) by (4.2). Thus, if A′ ∈ LHS, A′ = A + γ for
some γ ∈ N∆+ by (1.3). As λ ∈ A′ ∩ Ā, we must have γ = 0, and hence A′ = A.

Lemma: ∀M ∈ K(S0), K(S0)♯(S0 ⊗S Q(A−
λ ),M) ≃MWλA

−
λ
as graded (S0, R)-bimodules.

Proof: Recall from (4.7) that K̃(S0)♯(S0 ⊗S Q(A−
λ ),M) ≃ MI via ϕ $→ ϕ(q). Let ϕ ∈

K̃(S0)♯(S0 ⊗S Q(A−
λ ),M) with ϕ∅((S0 ⊗ Q(A−

λ ))
∅
A) ⊆

∐
A′>A M∅

A′ ∀A ∈ A. As suppA(S0 ⊗S

Q(A−
λ )) = WλA

−
λ , (imϕ)A = 0 ∀A ∈ WλA

−
λ by (2) and Rmk. 2.2.(i). As WλA

−
λ is open in

I, imϕ ⊆ MI\WλA
−
λ
, and hence ϕ(q) ∈ MI\WλA

−
λ
. On the other hand, S0 ⊗S Q(A−

λ ) = S0qR.

It follows that {ϕ|ϕ∅((S0 ⊗S Q(A−
λ ))

∅
A) ⊆

∐
A′>A M∅

A′ ∀A ∈ A} is sent under the isomorphism
onto {m ∈MI |mA = 0 ∀A ∈WλA

−
λ }. Thus,

K(S0)(S0 ⊗S Q(A−
λ ),M)

∼−→MI/MI\WλA
−
λ
= MI/MI\(A\(I\WλA

−
λ )) = MI∩(A\(I\WλA

−
λ )) = MWλA

−
λ
.

6.6. Recall that KP is defined as the full subcategory of K∆ consisting of those M ∈ Ob(K∆) =
Ob(K̃∆) such that ∀ complex M1 → M2 → M3 in K∆ with (ES) holding, i.e., 0→ (M1){A} →
(M2){A} → (M3){A} → 0 is exact as left S-modules/(S,R)-bimodules ∀A ∈ A,

0→ K∆(M,M1)→ K∆(M,M2)→ K∆(M,M3)→ 0

is exact.

Proposition: Ob(KP ) = Ob(K̃P ), and hence KP is the ideal quotient of K̃P . ∀γ ∈ Z∆, the
automorphism Tγ on K̃P induces an automorphism of KP denoted by the same letter.

Proof: We show first that Ob(K̃P ) ⊆ Ob(KP ). Let M ∈ Ob(K̃P ). By (4.6.2) we may assume
M = Q(A−

λ ) ∗ B(s1, . . . , sr) for some λ ∈ X̂, s1, . . . , sr ∈ S. By (6.4) we may further assume
M = Q(A−

λ ).

Put K = WλA
−
λ . Let M1 →M2 →M3 be a complex in K∆ with (ES) holding. By (6.5) one

has K locally closed and K♯
∆(M,Mi) ≃ (Mi)K ∀i. As K ∩ (A+Z∆) = {A} ∀A ∈ K by (6.5.2),

0→ (M1)K → (M2)K → (M3)K → 0
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is exact as (S,R)-bimodules by (6.3.ii). Thus, M ∈ KP .

Let now M ′ ∈ Ob(KP ). As Q(A) ∈ K̃P remains indecomposable in K∆ ∀A ∈ A, the proof of
(4.5) carries over to KP to yield thatM ′ is a direct sum ofQ(A)(n)’s, A ∈ A, n ∈ Z, in K̃∆; there
exist i′ ∈ K(Q(A)(n),M ′) and p′ ∈ K(M ′, Q(A)(n)) such that p′ ◦ i′ ∈ K(Q(A)(n), Q(A)(n))×.
If î′ (resp. p̂′) is a lift in K̃ of i′ (resp. p′), we may assume p̂′ ◦ î′ + ϕ = id for some ϕ ∈
K̃(Q(A)(n), Q(A)(n)) with ϕ∅(Q(A)(n)∅A′) ⊆

∐
A′′>A′ Q(A)(n)∅A′′ ∀A′ ∈ A. As ϕ is nilpotent,

p̂′ ◦ î′ ∈ K̃(Q(A)(n), Q(A)(n))×. Thus, M ′ ∈ K̃P .

6.7. Recall that S0 denotes a flat commutative graded S-algebra.

Corollary: Let M ∈ KP , N ∈ K∆.

(i) S0 ⊗S K(M,N)
∼−→ K(S0)(S0 ⊗S M,S0 ⊗S N) via a⊗ ϕ $→ a(S0 ⊗S ϕ).

(ii) S0 ⊗S M ∈ KP (S0).

Proof: By (4.6.2) we may assume M = Q(A−
λ ) ∗ B(x)(n) for some λ ∈ X̂, n ∈ Z, x =

(s1, . . . , sr) ∈ Sr.

(i) By (6.2) we may further assume that M = Q(A−
λ ). By (6.5) one has a CD

S0 ⊗S K♯(Q(A−
λ ), N) K(S0)♯(S0 ⊗S Q(A−

λ ), S0 ⊗S N)

S0 ⊗S NWλA
−
λ

(S0 ⊗S N)WλA
−
λ

∼ ∼

with the bottom row invertible by (2.13.3).

(ii) Let M1 →M2 →M3 be a complex in K∆(S0) with (ES) holding. By (6.2) and (6.5) one
has a CD

0 0 0

K(S0)♯(S0 ⊗S M,M1) K(S0)♯(S0 ⊗S Q(A−
λ ),M1 ∗B(x)(−n)) {M1 ∗B(x)(−n)}WλA

−
λ

K(S0)♯(S0 ⊗S M,M2) K(S0)♯(S0 ⊗S Q(A−
λ ),M2 ∗B(x)(−n)) {M2 ∗B(x)(−n)}WλA

−
λ

K(S0)♯(S0 ⊗S M,M3) K(S0)♯(S0 ⊗S Q(A−
λ ),M3 ∗B(x)(−n)) {M3 ∗B(x)(−n)}WλA

−
λ

0 0 0

∼ ∼

∼ ∼

∼ ∼

with the right column exact by (6.4), (6.5.2) and (6.3.ii).
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6.8. By (6.6) one may define ch : [KP ]→ P0 by the same formula as on [K̃P ]. Thus, under the
identification [SB] ≃ H, one obtains from (5.3)

Theorem: ch : [KP ]→ P0 is an isomorphism of right H-modules.

6.9. Recall from (I.5.4)/[S97, p. 84] a ring endomorphism ?̄ of H such that v̄ = v−1 and
H̄x = (Hx−1)−1 ∀x ∈ W . Recall also from [S97, Th. 4.1] an H-skew linear involution ?̄ on P0

such that ∀m ∈ P0, ∀h ∈ H, mh = m̄h̄.

∀λ ∈ X̂, one has

ch(Q(A−
λ )(ℓ(w0)− ℓ(A−

λ )) = vℓ(w0)−ℓ(A−
λ )ch(Q(A−

λ ))(1)

= vℓ(w0)−ℓ(A−
λ )+ℓ(A−

λ )−ℓ(w0)Eλ by (5.2)

= Eλ by [S97, Th. 4.3]

= vℓ(w0)−ℓ(A−
λ )ch(Q(A−

λ )) by (5.2) again

= ch(Q(A−
λ )(ℓ(w0)− ℓ(A−

λ ))).

∀m′ ∈ P , writing m̄ =
∑

A∈A cAA and m′ =
∑

A∈A dAA, cA, dA ∈ Z[v, v−1], set (m,m′)P =∑
A∈A cAdA. Recall from (I.5.4) an anti-involution ω : H→ H via

∑
x∈W axHx $→

∑
x∈W axH−1

x =∑
x∈W ax(v−1)H−1

x . In particular, ω(Hs) = Hs ∀s ∈ S by (I.5.5).

Lemma: ∀m ∈ P0, ∀m′ ∈ P, ∀h ∈ H,

(mh,m′)P = (m,m′ω(h))P .

Proof: If the assertion holds for h, h′ ∈ H,

(mhh′,m′)P = (mh,m′ω(h′))P = (m,m′ω(h′)ω(h))P = (m,m′ω(hh′))P .

Also, as mv = m̄v̄ = m̄v−1,

(mv,m′)P = v−1(m,m′)P = (m,m′v−1)P = (m,m′ω(v))P .

Thus, we may assume that h = Hs, s ∈ S, m = Eλ, λ ∈ X̂, m′ = A′, A′ ∈ A.

One has

EλHs = EλHs = vℓ(A
+
λ )eλHs = vℓ(A

+
λ )

∑

A∈WfA+

v−ℓ(A+λ)(A+ λ)Hs by (5.2.1)

=
∑

A∈WfA+

vd(A,A+)(AHs + λ) by (5.1.1),

and hence both sides vanish unless A′ − λ ∈ (WfA+) ∪ (WfA+s). Thus, we may assume that
A′ ∈ {A+ λ, As+ λ|A ∈WfA+}.
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Assume first that A′ = A+ λ, A ∈WfA+, and As > A. Then

EλHs = EλHs =
∑

B∈WfA+

Bs>B

vd(B,A+){(Bs+ vB) + λ}+
∑

B∈WfA+

Bs<B

vd(B,A+){(Bs+ v−1B) + λ},

and hence

(EλHs, A
′)P =

{
vd(A,A+)+1 + vd(As,A+) if As ∈WfA+,

vd(A,A+)+1 else

while

(Eλ, A
′ω(Hs))P = (Eλ, A

′Hs)P = (Eλ, (A+ λ)Hs)P
= (Eλ, AHs + λ)P by (5.1.1) again

= (Eλ, (As+ vA) + λ)P =

{
vd(A,A+)+1 + vd(As,A+) if As ∈WfA+,

vd(A,A+)+1 else.

Assume next that A′ = A+ λ, A ∈WfA+, and As < A. Then

(EλHs, A
′)P =

{
vd(A,A+)−1 + vd(As,A+) if As ∈WfA+,

vd(A,A+)−1 else

while

(Eλ, A
′ω(Hs))P = (Eλ, A

′Hs)P = (Eλ, (As+ v−1A) + λ)P

=

{
vd(As,A+) + vd(A,A+)−1 if As ∈WfA+,

vd(A,A+)−1 else.

6.10 Formula for the mophism space: As Ob(K∆) = Ob(K̃∆), one has from (5.1) an
H-linear map ch : [K∆]→ P .

Theorem: ∀P ∈ KP , ∀M ∈ K∆, K♯(P,M) is left graded free over S with

grk(K♯(P,M)) = v−2ℓ(w0)(ch(P ), ch(M))P .

Proof: As [KP ] P0ch
∼ with ch(Q(A−

λ )∗B(s1)∗ · · ·∗B(sr)) = v2ℓ(A
−
λ )eλHs1 . . . Hsr , λ ∈ X̂,

s1, . . . , sr ∈ S, by (5.2) and (5.3), and as

P0 =
∑

λ∈X̂
s1,...,sr∈S,r∈N

Z[v, v−1]eλHs1 . . . Hsr

by definition (5.2), one has

[KP ] =
∑

λ∈X̂
s1,...,sr∈S,r∈N

Z[v, v−1][Q(A−
λ ) ∗B(s1) ∗ · · · ∗B(sr)].
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Then, as ω is an anti-involution, one may assume by (6.2) and (6.9) that P = Q(A−
λ ). Let

(?, ?)′ be a Z[v, v−1]-bilinear pairing on P such that (A,A′) = δA,A′ ∀A,A′ ∈ A. Recall from
(6.9.1) that

ch(Q(A−
λ )) = v−ℓ(A

−
λ )+ℓ(w0)Eλ = v−ℓ(A

−
λ )+ℓ(w0)+ℓ(A

+
λ )eλ = v2ℓ(w0)eλ.

Then

(ch(Q(A−
λ )), ch(M))P = v2ℓ(w0)(eλ, ch(M))′ = v2ℓ(w0)(

∑

A∈WλA
−
λ

v−ℓ(A)A,
∑

A∈A

vℓ(A)grk(M{A})A)
′

= v2ℓ(w0)
∑

A∈WλA
−
λ

grk(M{A}) = v2ℓ(w0)grk(MWλA
−
λ
)

= v2ℓ(w0)grk(K♯(Q(A−
λ ),M)) by (6.5).

6.11 The category Kα
P = KP (Sα): Fix α ∈ ∆+. ∀A ∈ A, let Qα(A) = {(a, b) ∈ S2|a ≡ b

mod α∨} = {(a, a + bα∨)|a, b ∈ S} with the left daiagonal S-action and a right action of R
given by (a, b)f = (fAa, (sαfA)b ∀f ∈ R. Thus, Qα(A)∅ = S∅ ⊕ S∅. Recall from (1.4) that
α ↑ A = sα,nA > A with n ∈ Z such that ∀ν ∈ A, n− 1 < ⟨ν,α∨⟩ < n. By (1.2)

sα(fA) = sα(f(A)) = f(sαA) = f(sα,nA) = fα↑A.(1)

Define ∀A′ ∈ A,

Qα(A)
∅
A′ =

⎧
⎪⎨

⎪⎩

S∅ ⊕ 0 if A′ = A,

0⊕ S∅ if A′ = α ↑ A,
0 else.

Thus, Qα(A) ∈ K̃′. As suppA(Qα(A)) ⊆WαA = {. . . , A−α, (α ↑ A)−α, A,α ↑ A,A+α, . . . },
(S) holds on α ↑ A by (2.5.i). Also,

Qα(A)
α = Qα(A)

α ∩ (S∅ ⊕ S∅) = Qα(A)
α ∩ {Qα(A)

∅
A ⊕Qα(A)

∅
α↑A}.

If β ∈ ∆+ \ {±α},

Qα(A)
β = Sβ ⊕ Sβ = {Qα(A)

β ∩Qα(A)
∅
A}⊕ {Qα(A)

β ∩Qα(A)
∅
α↑A}.

Thus, (LE) holds on Qα(A), and hence Qα(A) ∈ K̃. One has

Qα(A){A} = Qα(A)≥A/Qα(A)>A = Qα(A)/Qα(A)>A

= {(a, b) ∈ S2|a ≡ b mod α∨}/{(0, b)|α∨|b} ∼−→ S via (a, b) $→ a

as Qα(A) = Qα(A)>A + {(a, a)|a ∈ S},
Qα(A){α↑A} = Qα(A)>A ≃ S(−2),

and hence Qα(A) ∈ K̃∆.

Consider a graded (S,R)-bimodule homomorphism ξ : S ⊗K R → Qα(A) via a ⊗ f $→
(afA, afα↑A). Let Ssα = {a ∈ S|sαa = a}. ∀a ∈ Ssα ,

(aA)α↑A = sα((a
A)A) by (1)

= sαa = a,
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and hence

S ⊗K R Qα(A).

S ⊗Ssα R

ξ

ξ̄

If δ ∈ X∨
K with ⟨α, δ⟩ = 1, one has as in (I.2.1).

S = Ssα ⊕ δSsα .(2)

By (1) again

ξ(1⊗ 1) = (1, sα(1A)) = (1, 1),

ξ(1⊗ δA) = ((δA)A, (δ
A)α↑A) = (δ, sαδ) = (δ, δ − α∨),

and hence ξ is surjective. ∀a, b ∈ S with 0 = ξ(1 ⊗ aA + δ ⊗ bA) = ((aA)A, sα((aA)A)) +
(δ(bA)A, δsα((aA)A)) = (a+δb, sαa+δsαb)), 0 = −sα(δb)+δsαb = −(δ−α∨)sαb+δsαb = α∨sαb,
and hence b = 0. Then a = 0, and ξ̄ is bijective. Thus,

S ⊗Ssα R ≃ Qα(A).(3)

Then

K̃′(Qα(A), Qα(A)) ≤ (S ⊗Ssα R)Modgr(S ⊗Ssα R,Qα(A)) ≃M

≃ Qα(A)
0 as deg(1⊗ 1) = 0

= K(1⊗ 1),

and hence

Qα(A) is indecomposable in K̃′.(4)

Likewise,

Qα(A)
α is indecomposable in (K̃′)α.(5)

Let now that M ∈ K̃′ with suppA(M) ⊆WαA. ∀a ∈ Ssα , ∀r ∈ Z,

(aA)sα,rA = aA(sα,rA) = sα(a
A(A)) = sαa = a,

and hence M admits a structure of left graded S ⊗Ssα R-module. Then K̃′(Qα(A),M) ≤
(S ⊗Ssα R)Mod(S ⊗Ssα R,M) ≃ M . As suppA(Qα(A)) = {A,α ↑ A} with A < (α ↑ A),
K̃′(Qα(A),M) ⊆M≥A. Given m ∈M≥A, take ϕ ∈ (S ⊗Ssα R)Mod(QA,α,M) with ϕ(1, 1) = m.
As M∅

≥A is an (S,R)-bisubmodule of M∅, im(ϕ∅) ⊆M∅
≥A. In particular,

ϕ∅(Qα(A)
∅
α↑A) ⊆

∐

A′∈{(α↑A)+Z∆}∩WαA∩(≥A)

M∅
A′ by Rmk. 2.2.i,

⊆
∐

A′≥α↑A

M∅
A′ as A ̸∈ {(α ↑ A) + Z∆} ∩WαA,
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and hence ϕ ∈ K̃′(Qα(A),M), and

K̃′♯(Qα(A),M) ≃M≥A.(6)

Under the isomorphism {ϕ ∈ K̃′♯(Qα(A),M)|ϕ∅(Qα(A)∅A′) ⊆
∐

A′′>A′ M∅
A′′ ∀A′ ∈ {A,α ↑ A}}

is mapped onto {m ∈ M≥A|mA′ = 0 ∀A′ ∈ {A,α ↑ A}} as α ↑ A ̸∈ (> A) ∩ (A+ Z∆) ∩WαA.
Also, {A,α ↑ A} is open in (≥ A); if A′ ∈ {A,α ↑ A} and A ≤ A′′ < A′, A′ = α ↑ A. As
d(A,α ↑ A) = 1 by [L80, Lem. 2.5], we must have A′′ = A. Thus,

K′♯(Qα(A), ,M) ≃M≥A/M(≥A)\{A,α↑A} = M{A,α↑A}.(7)

Likewise, ∀M ∈ Kα with suppA(M) ⊆WαA,

(Kα)♯(Qα(A)
α,M) ≃M{A,α↑A}.(8)

Lemma: Qα(A)α ∈ Kα
P .

Proof: Let M ∈ Kα
∆. As (LE) holds on M , M = Mα =

∐
i Mi with suppA(Mi) ⊆ WαAi for

some Ai ∈ A. As {A,α ↑ A} ⊆WαA, one has by (8)

(Kα)♯(Qα(A)
α,M) ≃

∐

i

(Mi){A,α↑A} = M{A,α↑A}.(9)

Given a complex M ′ →M →M ′′ in Kα
∆ with (ES) holding, one has from (9) a CD

0 (Kα)♯(Qα
A,α,M

′) (Kα)♯(Qα
A,α,M) (Kα)♯(Qα

A,α,M
′′) 0

0 M ′
{A,α↑A} M{A,α↑A} M ′′

{A,α↑A} 0
≀ ≀ ≀

with the bottom row exactby (6.3.ii); (A+Z∆)∩{A,α ↑ A} = {A}, (α ↑ A+Z∆)∩{A,α ↑ A} =
{α ↑ A}.

6.12. One can now argue as in (6.6) to obtain

Proposition: Any object of Kα
P is a direct sum of some Qα(A)α(n), A ∈ A, n ∈ Z.

7. The combinatorial category of AJS

We recall the combinatorial category of AJS after a version by Fiebig [F11], which we denote
by KAJS. We construct a functor F : K∆ → KAJS, and show that F is fully faithful on KP . Let
S0 be a flat commutative graded S-algebra.

7.1. The category KAJS(S0) is defined as follows [F11, Defs. 5.2, 5.3]. An object of KAJS(S0)
is M = ((M(A)|A ∈ A), (M(A,α)|A ∈ A,α ∈ ∆+)), where M(A) is a graded (S0)∅-
module while M(A,α) is a graded (S0)α-submodule of M(A) ⊕M(α ↑ A). A morphism
f ∈ KAJS(S0)(M,N ) is a collection of f(A) ∈ (S0)∅Modgr(M(A),N (A)), A ∈ A, sending each
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M(A,α) into N (A,α), α ∈ ∆+. Put KAJS = KAJS(S) and K∗
AJS = KAJS(S∗) for ∗ ∈ {∅} >∆+.

∀s ∈ S, the wall-crossing translation endofunctor Θs on KAJS is defined as

(ΘsM)(A) = M(A)⊕M(As),(1)

(ΘsM)(A,α) =

⎧
⎪⎨

⎪⎩

M(A,α)⊕M(As,α) if As ̸∈WαA,

{(x, y) ∈M(A,α)2|x− y ∈ α∨M(A,α)} if As = α ↑ A,
α∨M(As,α)⊕M(α ↑ A,α) if As = α ↓ A.

Define a functor F(S0) : K∆(S0)→ KAJS(S0) by setting

{F(S0)(M)}(A) = M∅
A and {F(S0)(M)}(A,α) = im(Mα

[A,α↑A] →M∅
A ⊕M∅

α↑A).

Recall from (2.13.3) that (M[A,α↑A])α ≃ (Mα)[A,α↑A]. Put F = F(S) and F∗ = F(S∗) for
∗ ∈ {∅} > ∆. As M ∈ K∆(S0), one has Mα =

∐
Ω∈Wα\A MΩ with suppA(M

Ω) ⊆ Ω by (LE).
Then

{F(S0)(M)}(A,α) = im((MWαA)[A,α↑A] →M∅
A ⊕M∅

α↑A) as {A,α ↑ A} ⊆WαA(2)

≃ (MWαA)[A,α↑A]

as (MWαA)[A,α↑A] ⊆
∐

A′∈[A,α↑A]∩Ω M∅
A′ = M∅

A ⊕M∅
α↑A.

7.2. Let M ∈ K∆ and s ∈ S. Take δ ∈ Λ∨
K with ⟨αs, δ⟩ = 1. Recall from (3.3) that B(s)∅ =

B(s)∅e ⊕ B(s)∅s with B(s)∅e (resp. B(s)∅s) free over R∅ of basis be = 1
α∨
s
(δ ⊗ 1 − 1 ⊗ sδ) (resp.

bs =
1
α∨
s
(δ ⊗ 1− 1⊗ δ)). ∀A ∈ A,

{F(M ∗B(s))}(A) = (M ∗B(s))∅A(1)

≃ (M∅
A ⊗R Rbe)⊕ (M∅

As ⊗R Rbs) ≃M∅
A ⊕M∅

As by (3.6.1)

= (FM)(A)⊕ (FM)(As) = {Θs(FM)}(A).

Proposition: ∀M ∈ K∆, ∀s ∈ S, F(M ∗B(s)) ≃ Θs(F(M)).

Proof: Let α ∈ ∆+. We verify under (1) that

F(M ∗B(s))(A,α) ≃ {Θs(FM)}(A,α).(2)

Put Ω = WαA. By (7.1.2) one has LHS ≃ {(M ∗B(s))Ω}[A,α↑A].

Assume first that As ̸∈ Ω. As As ∈ Ωs \ Ω,

(M ∗B(s))Ω ≃ (MΩ ⊗R Rbe)⊕ (MΩs ⊗R Rbs) by (3.7.ii)

with, ∀A′ ∈ A,

(MΩ ⊗R Rbe)
∅
A′ = (MΩ)∅A′ ⊗R Rbe as be ∈ B(s)∅e,

(MΩs ⊗R Rbs)
∅
A′ = (M (Ωs))∅A′s ⊗R Rbs as bs ∈ B(s)∅s.
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Then

(MΩ ⊗R Rbe)[A,α↑A] = (MΩ ⊗R Rbe)≥A/(M
Ω ⊗R Rbe)(≥A)\(≤α↑A)

≃ (MΩ)[A,α↑A] ⊗R Rbe,

(MΩs ⊗R Rbs)[A,α↑A] = (MΩs)[As,α↑As] ⊗R Rbs
as Ωs ∩ [A,α ↑ (A)]s = Ωs ∩ [As,α ↑ (As)],

and hence

{(M ∗B(s))Ω}[A,α↑A] ≃ (MΩ)[A,α↑A] ⊗R Rbe ⊕ (M (Ωs))[As,α↑As] ⊗R Rbs

≃ (MΩ)[A,α↑A] ⊕ (M (Ωs))[As,α↑As] as graded left Sα-modules

= (FM)(A,α)⊕ (FM)(As,α) by (7.1.2) again

= {Θs(FM)}(A,α).

Assume next that As = α ↑ A. Then Ωs = Ω, [A,α ↑ A] = [A,As] = {A,As} = (≥ A) ∩ (≤
As) with (≥ A) = (≥ A)s [L80, Prop. 3.2], and by (3.1)

(α∨
s )A = ±α∨.(3)

Then

{(M ∗B(s))Ω}[A,α↑A] = (MΩ ∗B(s))[A,α↑A] by (3.7.i)

= (MΩ)[A,α↑A] ∗B(s) by (3.9.3).

On the other hand,

{Θs(FM)}(A,α) = {(x, y) ∈ (FM)(A,α)2|x− y ∈ α∨(FM)(A,α)}
= {(x, y) ∈ {(MΩ){A,As}}2|x− y ∈ α∨(MΩ){A,As}} by (7.1.2).

PutN = MΩ for simplicity. We are to show thatN{A,As}⊗RB(s) and {(x, y) ∈ N2|x−y ∈ α∨N}
coincide in

(M{A,As} ∗B(s))∅ = (M{A,As} ∗B(s))∅A ⊕ (M{A,As} ∗B(s))∅As ≃ (M∅
A ⊕M∅

As)⊕ (M∅
As ⊕M∅

A).

We letmB, m ∈M , B ∈ A, denote the B-component ofm inM∅. Regarding N{A,As}⊗RB(s) as
N{A,As}⊗RsR = (N{A,As}⊗RR)⊕(N{A,As}⊗RRδ), the image ofm1⊗1+m2⊗δ, m1,m2 ∈ N{A,As},
in (M∅

A ⊕M∅
As)⊕ (M∅

As ⊕M∅
A) is

(m1,A, m1,As,m1,As,m1,A) + (m2,Aδ,m2,Assδ,m2,Asδ,m2,Asδ) by (3.6.1)

= (m1,A + δAm2,A,m1,As + (sδ)Asm2,As,m1,As + δAsm2,As,m1,A + (sδ)Am2,A)

= (m1,A + δAm2,A,m1,As + δAm2,As,m1,As + (sδ)Am2,As,m1,A + (sδ)Am2,A) by (1.2.i)

with

(m1,A+δAm2,A,m1,As + δAm2,As)− (m1,A + (sδ)Am2,A,m1,As + (sδ)Am2,As)

= (δA − (sδ)A)(m2,A, ,m2,As) = (δ − sδ)A(m2,A, ,m2,As) = (α∨
s )A(m2,A, ,m2,As)

= ±α∨(m2,A, ,m2,As) by (3),
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and hence N{A,As}⊗RB(s) ⊆ (Θs(FM))(A,α). Given (x, x−(α∨
s )Ay) ∈ RHS for x, y ∈ N{A,As},

take m1 = x− δAy,m2 = y ∈ N{A,As}. Then m1 ⊗ 1 +m2 ⊗ δ realizes (x, x− (α∨
s )Ay).

Assume finally that As = α ↓ A. Then Ωs = Ω and As < A < α ↑ A < (α ↑ A)s = A + α
and (α∨

s )A = ±α∨ again. One has

{(M ∗B(s))Ω}[A,α↑A] = (N ∗B(s))[A,α↑A] by (3.7.i)

= (N ∗B(s))≥A/(N ∗B(s))(≥A)\(≤α↑A)

= (N ∗B(s))>As/(N ∗B(s))(>As)\(≤α↑A) as suppA(N ∗B(s)) ⊆ Ω

= (N ∗B(s))]As,α↑A]

with

(4)

(N ∗B(s))>As

∐
A′≥A(N ∗B(s))∅A′

(N ∗B(s))]As,α↑A] (N ∗B(s))∅A ⊕ (N ∗B(s))∅α↑A

(N∅
A ⊕N∅

As)⊕ (N∅
α↑A ⊕N∅

A+α).

As (≥ As) = (≥ As)s by [L80, Prop. 3.2], (N ∗ B(s))>As ≤ (N ∗ B(s))≥As = N≥As ∗ B(s) by
(3.8). Consider

N≥As ∗B(s)
∐

A′≥As(N ∗B(s))∅A′

N≥As ⊗Rs R

m⊗ f (N ∗B(s))∅As ⊕ (N ∗B(s))∅A ⊕ (N ∗B(s))∅α↑A

(mAsf,mAsf,mAf,mAssf,mα↑Af,mA+αsf) (N∅
As ⊕N∅

A)⊕ (N∅
A ⊕N∅

As)⊕ (N∅
α↑A ⊕N∅

A+α)

proj

∼

from (3.6.1). Any element of N≥As⊗RsR = N≥As⊗Rs (Rs⊕Rsδ) is of the formm1⊗1+m2⊗δ for
some m1,m2 ∈ N≥As, and m1⊗ 1+m2⊗ δ ∈ (N ∗B(s))>As iff its As-component in (N ∗B(s))∅

vanishes. Writing (N ∗B(s))∅As ≃ N∅
As ⊕N∅

A,

(m1 ⊗ 1 +m2 ⊗ δ)As = (m1,As +m2,Asδ,m1,A +m2,Asδ) by (3.6.1)

= (m1,As + (sδ)Am2,As,m1,A + (sδ)Am2,A) by (1.2.i).

Thus, it suffices to show that

{m1 ⊗ 1 +m2 ⊗ δ ∈ N≥As ⊗Rs R|m1,A + (sδ)Am2,A = 0 = m1,As + (sδ)Am2,As}(5)

under (4) coincides in (N ∗B(s))∅A ⊕ (N ∗B(s))∅α↑A = (N∅
A ⊕N∅

As)⊕ (N∅
α↑A ⊕N∅

A+α) with

α∨(FM)(As,α)⊕ (FM)(α ↑ A,α) = α∨N[As,α↑(As)] ⊕N[α↑A,A+α] = α∨N[As,A] ⊕N[α↑A,A+α]

from (7.1.2). The image of m1 ⊗ 1 +m2 ⊗ δ in (5) under (4) is

(m1,A +m2,Aδ,m1,As +m2,Assδ,m1,α↑A +m2,α↑Aδ,m1,A+α +m2,A+αsδ)

= (m1,A + δAm2,A,m1,As + (sδ)Asm2,As,m1,α↑A + δα↑Am2,α↑A,m1,A+α + (sδ)A+αm2,A+α)

= (m1,A + δAm2,A,m1,As + δAm2,As,m1,α↑A + (sδ)Am2,α↑A,m1,A+α + (sδ)Am2,A+α)

by (1.2.i)
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with m1,A+δAm2,A = −(sδ)Am2,A+δAm2,A = (α∨
s )Am2,A and m1,As+δAm2,As = −(sδ)Am2,As+

δAm2,As = (α∨
s )Am2,As. Thus, by (3) again, the images of the elements of (5) are contained in

α∨N[As,A] ⊕N[α↑A,A+α].

Let finally m′
1 ∈ N[As,A] = N≥As/N(≥As)\(≤A) and m′

2 ∈ N[α↑A,A+α] = N≥α↑A/N(α↑A)\(≤A+α).
Take a lift m1 ∈ N≥As and m2 ∈ N≥α↑A, resp. Put m = m2 ⊗ 1 + m1 ⊗ δ − (sδ)Am1 ⊗ 1 =
{m2 − (sδ)Am1}⊗ 1 +m1 ⊗ δ ∈ N≥As ⊗Rs R. As m2 ∈ N≥α↑A, m2,A = 0 = m2,As. Then

m2,A − (sδ)Am1,A + (sδ)Am1,A = 0 = m2,As − (sδ)Am1,As + (sδ)Am1,As,

and hence m belongs to (5). As the image of m in (N∅
A ⊕N∅

As)⊕ (N∅
α↑A ⊕N∅

A+α) is

((α∨
s )Am1,A, (α

∨
s )Am1,As, {m2−(sδ)Am1}α↑A+δα↑Am1,α↑A, {m2−(sδ)Am1}A+α+(sδ)A+αm1,A+α)

= ((α∨
s )Am1,A, (α

∨
s )Am1,As,m2,α↑A,m2,A+α)

as δα↑A = δAs+α = δAs = (sδ)A and (sδ)A+α = (sδ)A, realizing ((α∨
s )Am

′
1,m

′
2). The assertion

follows.

7.3. We now start a task of showing that F is fully faithful on KP . Recall from (6.12) that
the objects of Kα

P are easy to describe. Let A ∈ A and α ∈ ∆+. Recall from (6.11) that
Qα(A) = {(a, b) ∈ S2|a ≡ b mod α∨} ∈ K̃∆ with the right R-action (a, b)f = (fAa, (sαfA)b)
and ∀A′ ∈ A,

Qα(A)
∅
A′ =

⎧
⎪⎨

⎪⎩

S∅ ⊕ 0 if A′ = A,

0⊕ S∅ if A′ = α ↑ A,
0 else,

Qα(α ↑ A)∅A′ =

⎧
⎪⎨

⎪⎩

S∅ ⊕ 0 if A′ = α ↑ A,
0⊕ S∅ if A′ = α ↑ (α ↑ A) = A+ α,

0 else,

Qα(α ↓ A)∅A′ =

⎧
⎪⎨

⎪⎩

S∅ ⊕ 0 if A′ = α ↓ A,
0⊕ S∅ if A′ = A,

0 else.

Define

i0 ∈ K̃(Qα(A), Qα(A)(2)) via (a, b) $→ (0,α∨b),

i+0 ∈ K̃(Qα(A), Qα(α ↑ A)) via (a, b) $→ (b, a),

i−0 ∈ K̃(Qα(A), Qα(α ↓ A)(2)) via (a, b) $→ (0,α∨a);

We will denote their images in K by the same letters.

7.4. Let S0 be a flat commutative graded S-algebra.

Lemma: Let A,A′ ∈ A.

(i) K(S0)♯(S0 ⊗S Qα(A), S0 ⊗S Qα(A)) = K̃(S0)♯(S0 ⊗S Qα(A), S0 ⊗S Qα(A)) = S0id⊕ S0i0.
In particular, K(S0)(S0 ⊗S Qα(A), S0 ⊗S Qα(A)) = K̃(S0)(S0 ⊗S Qα(A), S0 ⊗S Qα(A)) = Kid,
and S0 ⊗S Qα(A) remains indecomposable in both K(S0) and K̃(S0).
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(ii) K(S0)♯(S0 ⊗S Qα(A), S0 ⊗S Qα(α ↑ A)) = S0i
+
0 .

(iii) K(S0)♯(S0 ⊗S Qα(A), S0 ⊗S Qα(α ↓ A)) = S0i
−
0 .

(iv) If A ̸∈ {α ↓ A′, A′,α ↑ A′}, K(S0)♯(S0 ⊗S Qα(A), S0 ⊗S Qα(A′)) = 0.

Proof: Put M = S0 ⊗S Qα(A). Thus, suppA(M) = {A,α ↑ A}.

(i) Let ϕ ∈ K̃(S0)♯(M,M). Then

ϕ∅(M∅
A) ⊆

∐

A′≥A
A′∈A+Z∆

M∅
A′ by Rmk. 2.2.(i),

= M∅
A,

ϕ∅(M∅
α↑A) ⊆M∅

α↑A likewise,

and hence

ϕ∅(M∅
A′) ⊆M∅

A′ ∀A ∈ A.(1)

Thus, K̃(S0)♯(M,M) = K(S0)♯(M,M).

We show next that φ ∈ S0id ⊕ S0i0. By (1) we must have ϕ∅ = (ϕ1,ϕ2) for some ϕ1,ϕ2 ∈
S∅
0Mod(S∅

0 , S
∅
0). Then ϕ1 = aidS∅

0
for some a ∈ S∅

0 . Put ψ = ϕ − aid. As (ψ∅)1 = 0,
imψ ⊆ 0⊕ α∨S0, and hence ψ = bi0 for some b ∈ S0.

(ii) Put N = S0 ⊗S Qα(α ↑ A), and ϕ ∈ K̃(S0)♯(M,N). ∀A′ ∈ A,

N∅
A′ =

{
S∅ if A′ ∈ {α ↑ A,A+ α},
0 else,

and hence by Rmk. 2.2.(i)

ϕ∅(M∅
A) ⊆

∐

A′≥A
A′∈A+Z∆

N∅
A′ = N∅

A+α, ϕ∅(M∅
α↑A) ⊆

∐

A′≥α↑A
A′∈α↑A+Z∆

N∅
A′ = N∅

α↑A.

Thus, there are ϕ1,ϕ2 ∈ S0Mod(S0, S0) such that ∀a, b ∈ S0, ϕ(a, b) = (ϕ1(b),ϕ2(a)). Write
ϕ1 = cid for some c ∈ S0. Then (ϕ− ci+0 )

∅(M∅
α↑A) = 0, and hence ϕ− ci+0 = 0 in K(S0).

(iii) Put N = S0 ⊗S Qα(α ↓ A), and ϕ ∈ K̃(S0)♯(M,N). ∀A′ ∈ A,

N∅
A′ =

{
S∅ if A′ ∈ {α ↓ A,A},
0 else,

and hence

ϕ∅(M∅
A) ⊆

∐

A′≥A

N∅
A′ = N∅

A, ϕ∅(M∅
α↑A) ⊆

∐

A′≥α↑A

N∅
A′ = 0.
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Thus, there is ϕ1 ∈ S0Mod(S0, S0) such that ∀a, b ∈ S0, ϕ(a, b) = (0,ϕ1(a)). As ϕ1 = cid for
some c ∈ S0, ϕ(1, 1) = (0, c), and hence α∨|c. Thus, ϕ ∈ S0i

−
0 .

(iv) Let ϕ ∈ K̃(S0)♯(S0 ⊗S Qα(A), S0 ⊗S Qα(α ↓ A′)). As suppA(Qα(A)) = {A,α ↑ A} is
disjoint from suppA(Qα(A′)) = {A′,α ↑ A′}, ϕ = 0 in K(S0).

7.5. We calculate next in KAJS. Let A ∈ A, α ∈ ∆+, and put QA,α = F(Qα(A)). Thus,
∀A′ ∈ A, ∀β ∈ ∆+,

QA,α(A
′) = F(Qα(A))(A

′) = Qα(A)
∅
A′ =

{
S∅ if A′ ∈ {A,α ↑ A},
0 else,

QA,α(A
′, β) ≃ (Qα(A)

WβA′
)[A′,β↑A′] ⊆ Qα(A)

∅
A′ ⊕Qα(A)

∅
β↑A′ by (7.1.2).

Lemma: In Qα(A)∅A′ ⊕Qα(A)∅β↑A′ one has

Qα,A(A
′, β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sβ ⊕ 0 if A′ ∈ {A,α ↑ A} and β ̸= α,

0⊕ Sβ if A′ ∈ {β ↓ A, β ↓ (α ↑ A)} and β ̸= α,

α∨Sα ⊕ 0 if A′ = α ↑ A and β = α,

{Qα(A)}α if A′ = A and β = α,

0⊕ Sα if A′ = α ↓ A and β = α,

0 else.

Proof: Assume first that β ̸= α. One has {Qα(A)}β = Sβ ⊗S Qα(A) = Sβ(A)⊕ Sβ(α ↑ A) as
α ∈ (Sβ)×, and hence in Qα(A)∅A′ ⊕Qα(A)∅β↑A′

{(Qα(A))
β}[A′,β↑A′] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sβ(A′)⊕ 0 if A′ = A,

Sβ(A′)⊕ 0 if A′ = α ↑ A,
0⊕ Sβ(β ↑ A′) if A′ = β ↓ A,
0⊕ Sβ(β ↑ A′) if A′ = β ↓ α ↑ A,
0 else.

Assume next that β = α. As Qα(A)α = {(a, b) ∈ Sα(A)⊕ Sα(α ↑ A)|a ≡ b mod α∨},
{(Qα(A))

β}[A′,α↑A′] = {(Qα(A))
α}≥A′/{(Qα(A))

α}(≥A′)\(≤α↑A′)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α∨Sα(A′)⊕ 0 if A′ = α ↑ A,
Qα(A)α if A′ = A,

0⊕ α∨Sα(α ↑ A′) if A′ = α ↓ A,
0 else.

7.6 . Put ι0 = F(i0), ι
+
0 = F(i+0 ), ι

−
0 = F(i−0 ). Thus,

QA,α(A) QA,α(A)(2)

S∅ S∅(2),

ι0(A)

0

QA,α(α ↑ A) QA,α(α ↑ A)(2)

S∅ S∅(2),

ι0(α↑A)

α∨id
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QA,α(A) Qα↑A,α(A)

S∅ 0,

ι+0 (A)

0

QA,α(α ↑ A) Qα↑A,α(α ↑ A)

S∅ S∅,

ι+0 (α↑A)

id

QA,α(A) Qα↓A,α(A)

S∅ S∅(2),

ι−0 (A)

α∨id

QA,α(α ↑ A) Qα↓A,α(α ↑ A)

S∅ 0.

ι−0 (α↑A)

Lemma: (i) KAJS(S0)♯(S0 ⊗S QA,α, S0 ⊗S QA,α) = S0id⊕ S0ι0.

(ii) KAJS(S0)♯(S0 ⊗S QA,α, S0 ⊗S Qα↑A,α) = S0ι
+
0 .

(iii) KAJS(S0)♯(S0 ⊗S QA,α, S0 ⊗S Qα↓A,α) = S0ι
−
0 .

(iv) If A ̸∈ {α ↓ A′, A′,α ↑ A′}, KAJS(S0)♯(S0 ⊗S QA,α, S0 ⊗S QA′,α) = 0.

Proof: Put M = S0 ⊗S QA,α.

(i) Let ϕ ∈ KAJS(S0)♯(M,M). As M(A′) = 0 unless A′ ∈ {A,α ↑ A}, ϕ(A′) = 0 unless
A′ ∈ {A,α ↑ A}. By (7.5) one has, ∀β ∈ ∆+, a CD

M(β ↓ A)⊕M(A) M(β ↓ A)⊕M(A)

M(β ↓ A, β) M(β ↓ A, β)

0⊕ Sβ0 0⊕ Sβ0 .

ϕ(β↓A)⊕ϕ(A)

ϕ(β↓A,β)

Then ϕ(A)(Sβ0 ) ⊆ Sβ0 , and hence ϕ(A)(S0) = ϕ(A)(∩βSβ0 ) ⊆ ∩βS
β
0 = S0. As ϕ(A) is S0-linear,

ϕ(A) = cid for some c ∈ S0. If β ̸= α, one has a CD

M(α ↑ A)⊕M(β ↑ α ↑ A) M(α ↑ A)⊕M(β ↑ α ↑ A)

M(α ↑ A, β) M(α ↑ A, β)

Sβ0 ⊕ 0 Sβ0 ⊕ 0,

ϕ(α↑A)⊕ϕ(β↑α↑A)

ϕ(α↑A,β)

and hence ϕ(α ↑ A)(Sβ0 ) ⊆ Sβ0 . If β = α, one has a CD

M(α ↑ A)⊕M(A+ α) M(α ↑ A)⊕M(A+ α)

M(α ↑ A,α) M(α ↑ A,α)

α∨Sα0 ⊕ 0 α∨Sα0 ⊕ 0,

ϕ(α↑A)⊕ϕ(A+α)

ϕ(α↑A,α)
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and hence α∨ϕ(α ↑ A)(Sα0 ) = ϕ(α ↑ A)(α∨Sα0 ) ⊆ α∨Sα0 . As S0 is flat over S,

S0 ⊗S S S0 ⊗S S

S0 S0,

S0⊗Sα∨

∼ ∼

and hence ϕ(α ↑ A)(Sα0 ) ⊆ Sα0 . Then ϕ(α ↑ A)(S0) = ϕ(α ↑ A)(∩β∈∆+S0) ⊆ ∩β∈∆+S0 = S0,
and ϕ(α ↑ A) = didS∅

0
for some d ∈ S0. Put ψ = ϕ − cid. Then ψ(A) = 0, and hence

M(A,α) ∋ (ψ(A)(1S∅
0
),ψ(α ↑ A)(1S∅

0
)) = (0, d− c). Thus, α∨|d− c and ψ = d−c

α∨ ι0.

(ii) Put N = S0 ⊗S Qα↑A,α, and let ϕ ∈ KAJS(M,N ). As {A,α ↑ A} ∩ {α ↑ A,A + α} =
{α ↑ A}, ϕ(A′) = 0 unless A′ = α ↑ A by (7.5). ∀β ∈ ∆+ \ {α}, one has by (7.5) a CD

M(α ↑ A)⊕M(β ↑ α ↑ A) N (α ↑ A)⊕N (β ↑ α ↑ A)

M(α ↑ A, β) N (α ↑ A, β)

Sβ0 ⊕ 0 Sβ0 ⊕ 0,

ϕ(α↑A)⊕ϕ(β↑α↑A)

ϕ(α↑A,β)

and hence ϕ(α ↑ A)(Sβ0 ) ⊆ Sβ0 . Also, there is a CD

M(A)⊕M(α ↑ A) N (A)⊕N (α ↑ A)

M(A,α) N (A,α)

{(a, b) ∈ (Sα0 )
2|a ≡ b mod α∨} 0⊕ Sα0 .

ϕ(A)⊕ϕ(α↑A)

ϕ(A,α)

As (a, a) ∈M(A,α) ∀a ∈ Sα0 , ϕ(α ↑ A)(Sα0 ) ⊆ Sα0 . Then ϕ(α ↑ A)(S0) = ϕ(α ↑ A)(∩β∈∆+Sβ0 ) ⊆
∩β∈∆+ϕ(α ↑ A)(Sβ0 ) ⊆ ∩β∈∆+Sβ0 = S0, and hence ϕ(α ↑ A) ∈ S0id. Thus, ϕ ∈ S0ι

+
0 .

(iii) Put N = S0 ⊗S Qα↓A,α, and let ϕ ∈ KAJS(S0)♯(M,N ). As {A,α ↑ A} ∩ {α ↓ A,A} =
{A}, ϕ(A′) = 0 unless A′ = A by (7.5). ∀β ∈ ∆+ \ {α}, one has by (7.5) a CD

M(A)⊕M(β ↑ A) N (A)⊕N (β ↑ A)

M(A, β) N (A, β)

Sβ0 ⊕ 0 Sβ0 ⊕ 0,

ϕ(A)⊕ϕ(β↑A)

ϕ(A,β)
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and hence ϕ(A)(Sβ0 ) ⊆ Sβ0 . Also, there is a CD

M(A)⊕M(α ↑ A) N (A)⊕N (α ↑ A)

M(A,α) N (A,α)

{(a, b) ∈ (Sα0 )
2|a ≡ b mod α∨} α∨Sα0 ⊕ 0,

ϕ(A)⊕ϕ(α↑A)

ϕ(A,α)

and hence ϕ(A)(Sα0 ) ⊆ α∨Sα0 . As Sβ0 = α∨Sβ0 ∀β ̸= α, ϕ(A)(S0) = ϕ(A)(∩β∈∆+Sβ0 ) ⊆
∩β∈∆+α∨Sβ0 = α∨S0. Thus, ϕ(A) ∈ α∨S0id, and ϕ ∈ S0ι

−
0 .

(iv) Let ϕ ∈ KAJS(S0)♯(S0⊗SQA,α, S0⊗SQA′,α). As {A,α ↑ A}∩{A′,α ↑ A′} = ∅, ϕ(A′′) = 0
∀A′′ ∈ A, and hence ϕ = 0. '

7.7. Putting together (7.4) and (7.6) yields

Lemma: ∀A,A′ ∈ A, ∀α ∈ ∆+,

K(S0)
♯(S0 ⊗S Qα(A), S0 ⊗S Qα(A

′))
F(S0)−−−→

∼
KAJS(S0)

♯(S0 ⊗S F(Qα(A)), S0 ⊗S F(Qα(A
′)))

= KAJS(S0)
♯(S0 ⊗S QA,α, S0 ⊗S QA′,α).

7.8. Let α ∈ ∆+. ∀A,A′ ∈ A,

Kα
P (Qα(A)

α, Qα(A
′)α) = KP (S

α)(Sα ⊗S Qα(A), S
α ⊗S Qα(A))(1)

≃ KAJS(S
α)(Sα ⊗S QA,α, S

α ⊗S QA′,α) by (7.7)

= Kα
AJS(Fα(Qα(A)

α),Fα(Qα(A
′)α)).

Then by (6.12) one has Kα
P (M,N) ≃ Kα

AJS(Fα(M),Fα(N)) ∀M,N ∈ Kα
P . Thus,

Lemma: ∀α ∈ ∆+, the functor Fα : Kα
P → Kα

AJS is fully faithful.

7.9. ∀M,N ∈ KP , one has K♯
P (M,N) graded free over S by (6.10). Then

K♯
P (M,N) = ∩α∈∆+Sα ⊗S K♯

P (M,N)(1)

= ∩α∈∆+(Kα
P )

♯(Sα ⊗S M,Sα ⊗S N) by (6.7)

= ∩α∈∆+(Kα
AJS)

♯(Fα(Sα ⊗S M),Fα(Sα ⊗S N)) by (7.8)

= ∩α∈∆+(Kα
AJS)

♯(Sα ⊗S F(M), Sα ⊗S F(N))

≥ K♯
AJS(F(M),F(N)) as it is torsion-free over S.

Proposition: The functor F : KP → KAJS is fully faithful.
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Proof: We are to show that ∀M,N ∈ KP , KP (M,N) ≃ KAJS(F(M),F(N)). For that it is
enough to show that ∀M,N ∈ KP , K♯

P (M,N) ≃ K♯
AJS(F(M),F(N)). By the CD

K♯
P (M,N) K♯

AJS(F(M),F(N))

∏
A∈A S∅Mod(M∅

A, N
∅
A)

F(M,N)♯

F(M,N)♯ is injective, and hence bijective by (1).

7.10. Put Qλ = F(Q(A−
λ )) ∀λ ∈ X̂. Let KAJS,P be the full subcategory of KAJS consisting

of the direct summands of direct sums of objects of the form (Θs1 ◦ · · · ◦ Θsr)(Qλ)(n), λ ∈
X̂, s1, . . . , sr ∈ S, n ∈ Z. From (7.2) and (7.9) one obtains

Theorem: KP ≃ KAJS,P . In particular, KAJS,P admits a right action of SB.

8. G1T -representations

Assume from now on throughout the rest of the paper that K is an algebraically closed field
of characteristic p > h the Coxeter number of ∆ [J, II.6.2.9]; for the characteristic requirement
see also [RW18, 4.2]. Let G be a simply connected semisimple algebraic group over K with the
root datum (X, δ, X∨,∆∨), T a maximal torus of G, g = Lie(G), h = Lie(T ). In particular,
X̂ = X. Let Ŝ be the completion of S = SK(X∨

K) at the maximal ideal (X∨
K). For S

′ ∈ {Ŝ,K}
let CS′ denote the category of [AJS, 2.3]; Ŝ is flat over S [AM, 10.14]. Thus CK is equivalent
to the category of finite dimensional G1T -modules, G1 the Frobenius kernel of G. ∀λ ∈ X̂ let
S ′(λ) ∈ CS′ denote the Verma module of highest weight λ and PS′(λ) ∈ CS′ an indecomposable
projective such that K⊗S′ PS′(λ) is the projective cover of the irreducible of highest weight λ;
such exsists over Ŝ by [AJS, 4.19]. Let ρ = 1

2

∑
α∈∆+ α. ∀w ∈ W , set w •p 0 = pw(1pρ − ρ).

Let CS′,0 denote the full subcategory of CS′ consisting of the quotients of
∐

w∈W PS′(w •p 0)⊕nw ,
nw ∈ N. Thus, CS′,0 is a direct summand of CS′ [AJS, 6.13]. If b denotes the principal block of
CS′ over S ′ [AJS, 6.9], the category DS′(b) from [AJS, 6.9, 6.10] is a full subcategory of CS′,0. Set
Proj(CS′,0) = {P ∈ CS′,0|P projective}. The category CS′,0 is equipped with the wall-crossing
functors Θs, s ∈ S, [AJS, 16.3].

8.1. Let KAJS(Ŝ) denote the category KAJS over Ŝ in place of S, denoted Kk(0) in [F11, Def.
5.2, p. 156], consisting of objects M = ((M(A)|A ∈ A), (M(A,α)|A ∈ A,α ∈ ∆+)) with
M(A) an Ŝ∅-module and M(A,α) an Ŝα-submodule of M(A) ⊕M(α ↑ A), equipped with
wall-crossing functors Θs, s ∈ S; in particular, the morphisms in KAJS(Ŝ) is ungraded. Let
KAJS,P (Ŝ) denote the full subcategory of KAJS(Ŝ) consisting of the direct summands of direct
sums of some (Θs1 ◦ · · · ◦Θsr)(Ŝ ⊗S Qλ)(n), λ ∈ X, s1, . . . , sr ∈ S, n ∈ Z.

A main theorem of [AJS] may be phrased as

Theorem: There is an equivalence of categories V : Proj(CŜ,0) → KAJS,P (Ŝ) compatible with
Θs and Θs ∀s ∈ S.
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Proof: By [AJS, 9.4, 14.14.6] there is a fully faithful functor Vb : DŜ(b)→ KAJS(Ŝ) compatible
with all Θs and Θs, s ∈ S.

Let A ∈ Π−
λ , λ ∈ X, and let x, y ∈ W such that A = xA+

λ and A+
λ = yA+. If (s1, . . . , sr)

is a reduced expression of x, PŜ(x •p 0) is a direct summand of Θs1 ◦ · · · ◦ ΘsrZŜ(y •p 0) with
ZŜ(0) denoting the deformed G1T -Verma module over Ŝ of highest weight y •p 0 [F11, Prop.
8.3]. Then expanding [F11, Th. 8.5] and restricting to Proj(CŜ,0) yields the assertion.

8.2. Define a category K⊗Ŝ Proj(CŜ,0) whose objects are the same as those of Proj(CŜ,0) with

{K⊗Ŝ Proj(CŜ,0)}(M,N) = K⊗Ŝ Proj(CŜ,0)(M,N) ∀M,N ∈ Ob(Proj(CŜ,0)).

Lemma: K⊗Ŝ Proj(CŜ,0) ≃ Proj(CK,0).

Proof: Define a functor K⊗Ŝ Proj(CŜ,0)→ Proj(CK,0) via P $→ K⊗Ŝ P , which is well-defined
and dense by [AJS, 4.19]. Also,

{K⊗Ŝ Proj(CŜ,0)}(M,N) = K⊗Ŝ Proj(CŜ,0)(M,N) by definition

≃ Proj(CK,0)(K⊗Ŝ M,K⊗Ŝ N) by [AJS, 3.3].

8.3. Let Kdegr
AJS,P denote the degraded category of KAJS,P . Define Ŝ ⊗S Kdegr

AJS,P as in (8.2);

the objects are the same as those of Kdegr
AJS,P with {Ŝ ⊗S Kdegr

AJS,P}(M,N) = Ŝ ⊗S Kdegr
AJS,P (M,N)

∀M,N ∈ Ob(Kdegr
AJS,P ). There is a fully faithful functor F : Ŝ⊗SKdegr

AJS,P → KAJS,P (Ŝ) [AJS, 14.8].

In particular, the indecomposables are preserved under F . The indecomposables of Kdegr
AJS,P are

those of KAJS,P by [GG, Th. 3.1], and hence correspond to Q(A)’s, A ∈ A, under (7.10). On
the other hand, the indecomposables of KAJS,P (Ŝ) ≃ Proj(CS0,0) are also parametrized by A by
(8.1). Thus, F is dense, and we have obtained an equivalence

KAJS,P (Ŝ) ≃ Ŝ ⊗S Kdegr
AJS,P .(1)

Define now categories K⊗Ŝ KAJS,P (Ŝ) and K⊗S Kdegr
AJS,P as in (8.2) likewise. The objects of

those may now be identified by (1). Then, ∀M,N ∈ Ob(KAJS,P (Ŝ)),

{K⊗Ŝ KAJS,P (Ŝ)}(M,N) = K⊗Ŝ KAJS,P (Ŝ)(M,N) by definition

≃ K⊗Ŝ (Ŝ ⊗S Kdegr
AJS,P )(M,N) by (1)

≃ K⊗S Kdegr
AJS,P (M,N).

Thus, we have obtained another equivalence

Lemma: K⊗Ŝ KAJS,P (Ŝ) ≃ K⊗S Kdegr
AJS,P .
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8.4. Let Kdegr
P denote the degradation of KP . One has obtained

Proj(CK,0) ≃ K⊗Ŝ Proj(CŜ,0) by (8.2)(1)

≃ K⊗Ŝ KAJS,P (Ŝ) by (8.1)

≃ K⊗S Kdegr
AJS,P by (8.3)

≃ K⊗S Kdegr
P by (7.10).

As the action of SB on KP is S-linear, it induces an action on K ⊗S Kdegr
P , and hence on

Proj(CK,0), which we write as (M,B) $→M ∗B. Under this action each B(s), s ∈ S, acts as the
wall-crossing translation functor Θs on Proj(CK,0) by (7.2) and (8.1). We now start showing
that the action extends onto the whole of CK,0.

Recall first auto-equivalence Tγ on KP from (6.6), and define an auto-equivalence TAJS,γ on
KAJS,P via TAJS,γ(M)(A) = M(A+γ) and TAJS,γ(M)(A,α) = M(A+γ,α) ∀A ∈ A ∀α ∈ ∆+.
As Tγ (resp. TAJS,γ) is S-linear, K ⊗S Tγ (resp. K ⊗S TAJS,γ) defines an auto-equivalence on
K ⊗S KP (resp. K ⊗S KAJS,P ) equipping it with a structure of Z∆-category [AJS, E.1]. Then
the equivalences K⊗S Kdegr

P ≃ K⊗S Kdegr
AJS,P ≃ Proj(CK,0) from (1) are those of Z∆-categories.

Recall also that CK,0 is equipped with a structure of Z∆-category such thatM $→M⊗pγ, γ ∈
Z∆, and so is Proj(CK,0). Fix a projective Z∆-generator P of CK,0 and set E = C♯K,0(P, P ) =∐

γ∈Z∆ CK,0(P, P ⊗K pγ), which is a Z∆-graded algebra. Let modZ∆E denote the category of
Z∆-graded right E-modules of finite type. By [AJS, E.4] there is an equivalences of categories

CK,0 → modZ∆E via M $→ C♯K,0(P,M) =
∐

γZ∆

CK,0(P,M ⊗K pγ),(2)

where the structure of graded right E-module on C♯K,0(P,M) is given by setting fϕ = f ◦ ϕ,
f ∈ C♯K,0(P,M),ϕ ∈ E. Let ProjZ∆(E) denote the full subcategory of modZ∆E consisting of
its projectives.

Lemma: ∀Q ∈ Proj(CK,0), ∀B ∈ SB, ∀γ ∈ Z∆, (Q ∗B)⊗K pγ ≃ (Q⊗K pγ) ∗B.

Proof: By the equivalences of Z∆-categories K⊗SKdegr
P ≃ K⊗SKdegr

AJS,P ≃ Proj(CK,0) it suffices
to check that Tγ(M ∗B) ≃ Tγ(M) ∗B ∀M ∈ KP , ∀B ∈ SB, which holds by (3.4.2).

8.5. Now that the action of SB on Proj(CK,0) is compatible with its structure of Z∆-category,
there is induced an action of SB on ProjZ∆(E) under (8.4.2), which we denote by (M,B) $→
M ∗B. In particular, ∀B ∈ SB, let E(B) = C♯K,0(P, P ∗B). Recall that B is a left graded free
R-module by (I.2.2.1) and by graded Quillen-Suslin [Lam, Cor. II.5.4.7, p. 79]. Then

C♯K,0(P, P ∗B) ≃ E ∗B ∈ ProjZ∆(E) via ϕ(?)⊗R b←! ϕ ∗ b.(1)

Lemma: ∀Q ∈ ProjZ∆(E), ∀B ∈ SB, Q⊗E E(B) ≃ Q ∗B.

Proof: ∀ν ∈ Z∆, let Qν denote the ν-th homogeneous part of Q. ∀x ∈ Qν , let ϕx ∈
modZ∆E(E,Q(ν)) via 1 $→ x. Under the Z∆-graded equivalence ProjZ∆(E) ≃ K ⊗S Kdegr

P
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(8.4.1) one obtains

ϕx ∗B ∈ ProjZ∆(E)(E ∗B,Q(ν) ∗B)

≃ ProjZ∆(E)(E ∗B, (Q ∗B)(ν)) by (8.4),

which in turn induces a morphism of ProjZ∆(E)

Q⊗E E(B) Q ∗B (ϕx ∗B)(m).

Q⊗E (E ∗B) x⊗m
≀

If x⊗m ∈ Qν ⊗E(B)µ, (ϕx ∗B)(m) ∈ {(Q ∗B)(ν)}µ = (Q ∗B)ν+µ. This is an isomorphism if
Q = E, and hence in general by the 5-lemma.

8.6. ∀M ∈ modZ∆E, ∀B ∈ SB, set M ∗B = M ⊗E E(B). ∀B′ ∈ SB,

E(B)⊗E E(B′) ≃ E(B) ∗B′ ≃ (E ∗B) ∗B′ by (8.5)

= E ∗ (B ∗B′) as ProjZ∆(E) admits a right SB-action

≃ E(B ∗B′),

and hence

(M ∗B) ∗B′ = {M ⊗E E(B)}⊗E E(B′) ≃M ⊗E (E(B)⊗E E(B′))

≃M ⊗E E(B ∗B′) = M ∗ (B ∗B′).

Thus, modZ∆E comes equipped with a right action by SB, and so therefore does CK,0 under
(8.4.2). One has obtained

Theorem: There is a right action of SB on the whole of CK,0 such that each B(s), s ∈ S,
acts by the wall-crossing translation functor Θs.

Proof: To see the last assertion, let M ∈ CK,0 and let P ′ → P → M → 0 be a projective
resolution. As both ∗B(s) and Θs are exact, one has a CD of exact sequences

Θs(P ′) Θs(P ) Θs(M) 0

P ′ ∗B(s) P ∗B(s) M ∗B(s) 0,

∼ ∼

and hence Θs(M) ≃M ∗B(s).

8.7 Characters: Each P ∈ Proj(CS,0) admits a Verma flag [AJS, 2.16]. Let (P : ZS(w •p 0)),
w ∈W , denote the multiplicity of ZS(w•p0) in the flag, and likewise (Ŝ⊗SP : Ŝ⊗SZS(w•p0)).

Lemma: ∀P ∈ Proj(CS,0), ∀M ∈ KP with VS(P ) ≃ F(M) in KAJS,

(P : ZS(w •p 0)) = rk S(M{wA+}).
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Proof: Let VŜ(Ŝ ⊗S P ) = ((M(A)|A ∈ A), (M(A,α)|A ∈ A,α ∈ ∆+)). Then

(P : ZS(w •p 0)) = (Ŝ ⊗S P : Ŝ ⊗S ZS(w •p 0))
= rk Ŝ∅M(wA+) by [AJS, 14.10]

= rk Ŝ∅((Ŝ ⊗S M)∅wA+) = rk S∅(M∅
wA+)

= rk S(M{wA+}).

8.8. Now, indecomposable PS(w •p 0), w ∈W , is characterized in Proj(CS,0) by the properties
that (PS(w •p 0) : ZS(w •p 0)) = 1 and that (PS(w •p 0) : ZS(x •p 0)) = 0 unless xA+ ≥ wA+,
and hence

Proposition: ∀w ∈W, VS(PS(w •p 0)) ≃ F(Q(wA+)).

8.9. From (8.7) and (8.8) follows

Corollary: ∀x, y ∈W, (PK(x •p 0) : ZK(y •p 0)) = rk S(Q(xA+){yA+}).

8.10. Let λ ∈ X, wλ, w′
λ, w ∈ W such that A−

λw
′
λ = A+

λ = wλA
−
λ and A+

λw ⊆ Πλ. Soergel’s
conjecture on B(w′

λw) states that ch[B(w′
λw)] = Hw′

λw
. This holds for large p by [EW14],

transferring to the Elias-Williamson diagrammatic category fromSB by an equivalence [Ab19a,
Th. 5.9], but fails in general [W]; ch[B(x)], x ∈ W , can be computed in terms of the ranks of
the local intersection forms [JW17] as in (5.13). The computations may be done in principle,
using only the diagrammatic relations of [EW16], independent of the ambient spaces of the
realizations of (W ,S).

Theorem: If Soergel’s conjecture holds on B(w′
λw),

S(A−
λ ) ∗B(w′

λw) ≃ Q(A−
λw)(ℓ(w0)− ℓ(w)).

Proof: We know from (5.5) that S(A−
λ ) ∗ B(w′

λw) ∈ K̃P , and hence belong to KP by (6.6).
One has

ch[S(A−
λ ) ∗B(w′

λw)] = ch[S(A−
λ )]Hwλw

by (5.1) under the hypothesis(1)

= v−ℓ(A
−
λ )A−

λHw′
λw

= v−ℓ(A
−
λ )PA+

λw
by (5.6),

and hence

ch[S(A−
λ )(ℓ(A

−
λ )) ∗B(w′

λw)] = PA+
λw

= ch[S(A−
λ )(ℓ(A

−
λ )) ∗B(w′

λw)] by [S97, Th. 4.3].
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On the other hand, as wλA
+
λw = A−

λw is the minimal alcove appearing in PA+
λw

, one has from

[S97, Lem. 4.21]

PA+
λw
∈ vℓ(w0)(A−

λw +
∑

B∈A
B>A−

λ w

v−1Z[v−1]B).(2)

Then by (6.10)

grk(K♯(S(A−
λ )(ℓ(A

−
λ )) ∗B(w′

λw), S(A
−
λ )(ℓ(A

−
λ )) ∗B(w′

λw)) ∈ v−2ℓ(w0)v2ℓ(w0)(1 + v−2Z[v−1]),

and hence K(S(A−
λ )(ℓ(A

−
λ )) ∗ B(w′

λw), S(A
−
λ )(ℓ(A

−
λ )) ∗ B(w′

λw)) = K and S(A−
λ )(ℓ(A

−
λ )) ∗

B(w′
λw) is indecomposable.

Meanwhile, ch[Q(A−
λw)] ∈ v−ℓ(A

−
λ w)A−

λw +
∑

B>A−
λ w Z[v, v−1]B by (4.5). It follows from (2)

and (5.3) that S(A−
λ )(ℓ(A

−
λ )) ∗B(w′

λw)(−ℓ(w0)) ≃ Q(A−
λw)(ℓ(A

−
λw)), and hence

S(A−
λ ) ∗B(w′

λw) ≃ Q(A−
λw)(ℓ(w0) + ℓ(A−

λw)− ℓ(A
−
λ )) = Q(A−

λw)(ℓ(w0)− ℓ(w)).

8.11. Let w ∈ W with A+w ⊆ Π. Let pA,B denote the periodic KL-polynomials from [S97,
Rmk. 4.4].

Corollary: If Soergel’s conjecture holds on B(w0w), rk S(Q(A−w){A}) = pA,A+w(1) ∀A ∈ A,
and hence ∀x ∈W,

(PK(w0w •p 0) : ZK(x •p 0)) = pA+x,A+w(1).

Proof: Put l = ℓ(w0). One has

vl−ℓ(w)
∑

B∈A

vℓ(B)grk(Q(A−w){B})B = ch[Q(A−w)(l − ℓ(w))]

= ch[S(A−) ∗B(w0w)] by (8.10)

= v−ℓ(A
−)PA+w by (8.10.1)

= v−ℓ(A
−)

∑

B

pB,A+wB by definition [S97, Rmk. 4.4].

Thus, rk S(Q(A−w){B}) = pB,A+w(1). Then

(PK(w0w •p 0) : ZK(x •p 0)) = rk S(Q(w0wA
+){xA+}) by (8.9)

= rk S(Q(A−w){A+x}) = pA+x,A+w(1).

8.12. One has

pA+x,A+w(1) = QA+x,A+w(1) with Q as in [L80] by [S97, Rmk. 4.4]

= (PK(w0w •p 0) : ZK(x •p 0)) cf. [K88, 5.1.1],
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which is consistent with (8.11). Also,

[ZK(x •p 0) : LK(w0w •p 0)] = pw0xA+,wA+(1) after [F10, 3.4]

= Qw0xA+,wA+(1)

= QxA+,wA+(1) by [L80, Cor. 8.4]

= pxA+,wA+(1) = pA+x,A+w(1) = (PK(w0w •p 0) : ZK(x •p 0)),

which is again consistent with (8.11).
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