Notes on Abe’s Bimodules

KANEDA Masaharu
Osaka City University
Department of Mathematics
kaneda@sci.osaka-cu.ac.jp

November 2, 2020

Abstract

This is a detailed exposition of recent work by ABE noriyuki on Soergel bimodules and their action on
the principal blocks of G1T for reductive algebraic groups G in positive characteristic.

This is a sequel to my lecture note [K19], an introduction to [RW18]. In order to describe
the irreducible characters of reductive algebraic groups in positive characteristic p, Lusztig [L]
conjectured that they should be given in terms of the Kazhdan-Lusztig polynomials of the
associated #iJi-Hecke algebra. Although the conjecture holds for large p, Williamson [W] has
recently found its failure for not so small p against the expectation for a long time.

In the monumental monograph [RW18] Riche and Williamson defined an action of the Elias-
Williamson category D [EW16] on the pricipal block of the algebraic representations of the gen-
eral linear group GL, (k) over an algebraically closed field k of characteristic p > n, and showed
that the character formulae for the indecomposable tilting modules for GL,, (k) are described
by the p-Kazhdan-Lusztig basis of the associated 7= J#-Hecke algebra. Assuming the existence
of an action of D on the principal blocks for reductive algebraic groups in general, moreover,
[RW18] obtained character formulae of the indecomposable tilting modules likewise,from which
the formulae for irreducibles would follow. Subsequently, using geometry, without invoking the
action of D, Achar, Makisumi, Riche, and Williamson [AMRW] obtained the characters of the
indecmposable tilting modules for reductive groups in terms of the p-Kazhdan-Lusztig polyno-
mials by for p > h the Coxeter number of G, from which the irreducible characters can now
be obtained thanks to Sobaje [Sob] by an elementary algorithm though not entirely in terms
of the p-Kazhdan-Lusztig polynomials.

When I was finishing up an ealier version of [K19], [Ab19a] appeared and, soon after, [Ab19b].
In [K19] I gave an action of D on the pricipal block of the representations of G;T', G; the
Frobenius kernel of and 7' a maximal torus of GL, (k). The Elias-Williamson category D is
a diagrammatic categorification of the #F¥i-Hecke algebra H for any Coxeter system (W, S),
and is equivalent to the category of Soergel bimodules. In [Ab19a] Abe gives in the classical
language of algebras and combinatorics his version of Soergel bimodules which categorifies H.

Let G be a reductive algebraic group over an algebraically closed field k of characteristic
p > h. For GiT-modules a guiding object is Lusztig’s periodic module [L80] in place of the
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anti-sphereical module [RW18] for G-modules. Let W denote the affine Weyl group of G and
Repy(G1T') the category of G1T-modules whose composition factors all have highest weights in
the W-orbit of 0, denoted f/(x 00),z €W, 00 = p:vg —p, p= %ZaeA+ a, AT a positive
system of the roots of G. It contains the principal block of G1T" [J, 11.9.19]. The knowledge of
the characters of all f/(x e 0) gives the entire irreducible characters for G by Curtis’ theorem,
Steinberg’s tensor product theorem and the translation principle. Let A(w e0), z € W, denote
the G4T-Verma module of highest weight z e 0, denoted Z;(z  0) in [J, I1.9.1]. Those G,T-
Verma modules uniformly have dimension pl™! [J, 11.9.2], and live in Rep,(G1T) [J, 11.9.15]. As
their characters are known [J, 11.9.2] and as the matrix of the multiplicities [A(z 0 0) : L(y o 0)]
of L(y & 0) in a composition series of A(x e 0) is unipotent, those multiplicities will yield the
characters of L(y e 0). Let Rep,(G1T) denote the full subcategory of Rep,(G1T) consisting of
those that admit a filtration, called a A-ﬂag, whose subquotients are all of the form A(m 00),
x € W. Tilting modules for G;T are injectives; an injective G;7T-module is also projective [J,
11.9.4], admits a A—ﬁltration, and also a filtration whose subquotients are all dual G;7T-Verma
modules [J, I1.11.4]. Let Q(z0) be the Gy T-injective hull of L(ze0), which is also its projective
cover [J, I1.11.5]. Then the multiplicity (Q(z0) : A(ye0)) of A(ye0), y € W, in a A-filtration

of Q(z e 0) is equal [J, I1.11.4, 9.9] to

~ A ~ ~

[A(ye0): L(ze0)] =dimG;TMod(A(y 0),Q(z e0)).
Thus, we may focus our study on Repj(G1T). Let [Repy(G1T)] denote the Grothendieck group

of Repy(G1T), a completion of which gives the Grothendieck group of the whole of Rep,(G1T).
Letting Z[W)] denote the group algebra of W, one has an isomorphism of abelian groups

~

(1) ZIW] — [Repy(G1T)] via =+ [A(ze0)], z€W,

under which the right multiplication by s + 1, s € S the set of distinguished generators of W,
on the LHS is given by the wall-crossing functor ©4 on the RHS [J, 11.9.22]. Now, consider a
quantization of Z|W)] by % J-Hecke algebra H over the Laurent polynomial ring Z[v,v=1]. If
we let (H,|x € W) denote the standard basis of H after [S97], Vs € S,

H,,+v H, else.
Thus, the isomorphism (1) allows H to act on [Repy(G1T)] by specialization v ~» 1, and hence
H + v specializing to O5 Vs € §. Let (H, |z € W) denote the Kazhdan-Lusztig basis of H
and write H, = ZyEW hy.Hy,, hy. € Z[v,v"']. The h,, are the celebrated Kazhdan-Lusztig
polynomials. Let W™ = {w € W[(w 0,a") €]0,p] Va € A" simple}. Lusztig’s conjecture for
G1T may be phrased to assert that, Yw € W™ Ve € W,

~ ~

(Q(wow @ 0) : A(x 00)) = hyww(l),

where wy € W is such that woA™ = —A™T. Let now A be the set of alcoves, which are the
connected components of (X @z R) \ Upea+nez{v € X @z R|(v,a") = n}. If AT € Ais the
alcove containing g, there is a bijection W — A via x — A", x € W, under which import

the left and the right regular actions of W onto A. Then the free Z[v,v~!]-module P of basis
A is isomorphic to H via H, — xAT, x € W, and comes equipped with a structure of right
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H-module transferring the right regular action of W, which is Lusztig’s periodic module for H.
In [Ab19b] he categorifies P to admit an action of Soergel bimodules, inducing an action on
Repy(G1T') compatible with the wall-crossing functors.

Given a Coxeter system (W, S), Soergel’s original bimodules are defined over the symmetric
algebra of a reflection faithful linear representation of W, to categorify the %5 ¥fi-Hecke algebra
of W, S) [S92], [S07]. As the reflection faithfulness is hard to come by in positive characteristic,
Elias and Williamson [EW16] start with a much less restrictive representation of W, and Abe
follows suit. In order to maintain some sort of faithfulness of the representation, Abe’s version
of Soegel bimodules [Ab19a] comes with a condition that they split into “weight spaces” with
respect to W over the fractional field of the symmetric algebra started out with. They may in
fact be defined over the symmetric algebra localized by the roots.

Back to G, Abe’s category K’ [Ab19b] of bimodules categorifying Lusztig’s periodic module
P are bimodules over the symmetric algebra S of the coweight lattice of G over k by base
change. The bimodules split into the “weight spaces” with respect to the affine Weyl group
W of G over the localization of the symmetric algebra by the coroots. As the alcoves are in
bijective correspondence with W, the decomposition may be parametrized by A, recording the
linkage principle for G [J, 11.6]. The right S-module structure on bimodules in K’ is designed
to admit an action of his version &8 of Soergel bimodules associated to (W, S). As the action
of W on the coweight lattice is not linear, however, he annihilates the translations, losing the
faithfulness of the representation by W. The eventual import of the &B-action onto Rep,(G1T)
is performed on the projectives through the Andersen-Jantzen-Soergel combinatorial category
[AJS] in the style of Fiebig [F11] such that the actions of the indecomposables in &8 associated
to S are compatible with the corresponding wall-crossing translation functors. For that end,
conditions (S), (LE), (ES) from Fiebig [F08a], [FO8b] and Fiebig+Lanini [FL15] are imposed
on K’ to define a subcategory KCp of projectives, (S) standing for “sheafification”, and (ES) for
“exact structure” in Fiebig’s theory of sheaves on moment graphs. The properties (S) and (LE)
allow gluing the SLy-theory. Finally, an ideal quotient Kp of Kp gives a desired equivalence
with the projectives of Repy(G11") deformed over the completion of the symmetric algebra 5.
The categories K', Kp, Kp, && are all graded, and the work is fruit of graded reprensentation
theory. There is also a version for singular Soergel bimodules [Ab20].

By now there is a formula available for the irreducibles of Rep,(G17") for reductive groups in
general in terms of p-Kazhdan-Lusztig polynomials for p > 2h—1, due to Riche and Williamson
[RW19] without invoking an action by the Soergel bimodules on the principal block. Abe’s
bimodules, however, certainly provide more algebraic insight to the representation theory of
G1T. The indecomposable projective of K, corresponding to Q(wo (), is obtained by applying
the indecomposable Soergel bimodule assoaated to wp on the rank 1 standard bimodule of
K corresponding to A(wo e 0). All the other projectives of K are obtained by applying &8
further on the seminal projective indecomposable, translations, degree shift, and taking direct
summands. It is now desired that the indecomposable projective G;T-modules Q(z e 0) be
described concretely by the action of &5 and that the properties of the characters of the
indecomposables of &8, the p-Kazhdan-Lusztig basis of H in the present sense, to be clarified.

I am very much grateful to Abe for patiently explaining his work. Though Abe writes very
well, it will be of my pleasure if this may be of any further help.



I. Soergel bimodules

Throughout the chapter (W,S) will denote a Coxeter system with |S| < oo, and K a
noetherian domain; we will impose additional conditions on K as we move along. Specifically,
we impose a mild condition in (3.4). From §4 on we will assume that K is local, so that a direct
summand of a free R-module remains free, R a polynomial ring defined at the outset in (1.1).
From §6 on we assume that K is a complete noetherian local domain, so that our categories
are Krull-Schmidt. In §6 we impose the GKM condition on V', V' introduced in (1.1). §7 is an
exposition of [S92] and we assume that K is an infinite field and the characteristic of K is not
a torsion prime so that Demazure’s result [Dem]| holds, and in addition that 2 # 0 in K and
also 3 # 0 if type Gg is involved as a component. In §§8 and 9 we assume that K is a complete
DVR under the characteristic restrictions from §7.

The length function on (W, S) is denoted by ¢, and the Chevalley-Bruhat order by >. By
a graded module we will always mean a Z-graded module. If M is one, M?, i € Z, will denote
the i-th homogeneous piece of M. In particular, 0 € M*. For n € Z we let M(n) denote M
with the grading shifted by n such that M(n)" = M*™ Vi € Z.

1. Basic set-up

1.1. After [EW16], let (V,{as|s € S},{a)|s € S}) be a triple of a free K-module V' of finite
rank with a K-linear action of W, a, € V| o) € VV = Modg(V,K), such that Vs € S,

(i) {as, ) = 2,

(i) s(v) =v—(v,a))as Vv eV,

(iii) @) : V — K and «a; # 0; a priori K may be of characteristic 2.
We let W act on V'V contragrediently: fw = f(w™'?)Vf e VY, weW.

Let R = Skg(V') the symmetric algebra of V' and @) = Frac(R) the field of fractions of R. We
endow R with a structure of graded algebra with deg(V) = 2. We call t € W a reflection iff
t € UpewwSw™!, and put 7 = UpyepwwSw 1.

Lemma: (i) If s,r € S withr = xsx™" for some x € W, a, € K*za.

(ii) Ift =wsw™ € T, weW, s €S, wa, is independent of the choices of w and s up to
K*.

(iii) Vt € T, we choose w and s such that t = wsw™" and define oy = wa, up to K*. With
af =wa) =al(w'?), one has Vv € V,

tv=v— (v, ).

Proof: (i) By (iii) take § € V with (d,«)) = 1. Then sd =0 — (0, aY)as = § — a5, and hence

20 — (20,0, = 126 = w5x'wd = w56 = 2(0 — a) = 20 — 2O,



Thus, za, = (o, with ¢ = (zd,a)) € K. In turn, as s = " 'rx, there is some ¢’ € K such that
7 'a, = ('a,. Then (Ca, = ('ra, = a,. As V is free over K, we must have ¢'¢ = 1 by (i).
Thus, o, = (" lza, € KXza,.

1 1

(i) Assume wsw™ = yry~! for some r € S and y € W. Then r = y tws(y'w)~!, and

hence a, € K*y lwa, by (i). Thus, ya, € K*was.

(iii) One has

1 1

tv=wsw v =ww v —(wa)a,) =v— (w!

v, ) Ywa
=v — (v,wa))wa, by definition of the W-action on V"

=v— (v, Y.

1.2. Let C’ be the category of graded R-bimodules M with Q ® g M admitting a decomposition
Q®@r M =110 M2 as a (Q, R)-bimodule such that

(i) {w € W|MQ # 0} is finite,
(ii) Va € R, Vm € M2, ma = (wa)m.

Thus, if the actions of x and y on V coincide, for distinct z,y € W, M2 and MyQ are sep-
arated. A morphism ¢ € C'(M,N) is a homomorphism of graded R-bimodules such that
(Q®p ) (M) < N2 Vw e W. Put C*(M,N) =1]],.,C'(M,N(n)). We will often abbreviate
Q®r M and Q ®p ¢ as M? and ¢, resp.

nel

Remarks: (i) The right action by a € R\ 0 on each M¥, w € W, is invertible; as wa # 0,
m = ﬁ(ma) Vm € M. Thus, ?a is invertible on the whole of Q ®r M, and Q ®r M comes

equipped with a structure of ()-bimodules; m% = ﬁm if m € M%. Then the decomposition
Q®@r M =T1],cy ME holds as a Q-bimodules.

(ii) If the action of W on V is not faithful, M¥ and M for distinct z, y € W are distinguished
by definition. Assume now that W acts faithfully on V. Then VM € C’, Vw € W,

ME = {m € Q @z M|ma = (wa)m Ya € R},

and C’' forms a full subcategory of the category RBimodgr of graded R-bimodules. For by
definition LHS C RHS. Let m € RHS and write m = Y __,,, m, with m, € M&. Thus, Va € V,
> (xa)m, = ma = (wa)m =Y (wa)m,. If m, # 0, za = wa as M9 is a Q-linear space with
Q@ a field. Then x = w by the hypothesis.

Let N € ¢’ and let ¢ € RBimod(M, N). Let m € M& and write ¢“(m) = > ¢ (m), with
#%?(m), € NQ. Then Va € R,

Y (za)¢?(m), = ¢%(m)a = ¢%(ma) = ¢((waym) = (wa) Y _ % (m),.

xT

If $9(m), # 0, za = wa, and hence z = w. Thus, ¢%¢(m) € N¥.

(iii) If we equip C'(M, N') with a structure of R-bimodule via (a¢b)(m) = ¢(amb) = ap(m)b,
a,b€ R,¢ € C'(M,N), C' forms an R-bilinear additive category [{1, Def. 3.1.11, p. 124, Def.
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3.2.3, p. 130]. Given ¢ € C'(M, N), let K be the kernel of ¢ as graded R-bimodules. By flat
extension one has K? = ker(¢?) = [, ker(¢?):

K « s M s N

| ! l

[Loewker(6) —— Tlew M oo Heew N

Thus, K < M gives the kernel of ¢ in C’. In particular, C'(Sy) is Karoubian/idempotent
complete [Hfif], Def. 3.3.40, p. 174].

1.3. Let now C* denote a full subcategory of C’ consisting of the torsion-free left R-modules
that are also of finite type as R-bimodules. Thus, VM € C*,

R®RM — Q@RM

and hence
(2) M is torsion-free also as a right R-module.

For if m € M \ 0 and a € R with ma = 0, writing m = >__m, in M? with m, € M@,

0=ma= Z(xa)mgc.

T

If m, # 0, za = 0, and hence 0 = 27 *(za) = a.

One has an isomorphism of R-bimodules
(3) M@rQ—M? via me=m(1ams=Y" —m,,

b b wb
wew

where 1@ m = Y,y My with m,, € ME. For the map is well-defined by Rmk. 1.2.(i). One
has

Zmz®— Zmal ':Zmiai®£% withb:Hbi

finite
CLZ' 1
=2 miy @y

2

and hence any element of M ®p () is of the form m ® % If (1 ®m)% =0, 1®m = 0, and hence



m = 0as M — M®. Thus, the map is injective. To see its surjectivity, one has

1 1
- = —Mmy, i finite I by definition (1.2.i
, ®m WZEI M for some finite I by definition (1.2.)
= me — Z —, with @’ = H wta
wel wel

a'c
—Zm I forsomecERsuChthatiEI,mw—lEMﬂMg
wla ca’ wla

14. Let M € C*. Vm € M, let m,, denote the w-component of m under M — [], ., M&.

M (—> HwEW
VICW,let Mi=MN]],er M@ and M = im( l ) Thus,
.
Hze[ Ma(c;)
(1) My <M< T ME,
wel

and there is a short exact sequence in C* [H1f#], Def. 3.3.29

(2) 0— Myn; — M — M" =0,

ie., (Mw\; — M) = kereu(M — M') and (M — M) = cokercu (M — M).
Warning: In II a similar notation M; will have different meaning.

Vw € W, put for simplicity M, = My, and M" = M1} Note that on both M, and M™
one has ma = (wa)m Ym € M, (resp. M") Va € R, and hence their left R-module structure
are completely determined by the right R-module structure and vice versa. One has

m M y M@

J

ZwEW My HwEW M.

Let suppy, (M) = {w € W|ME # 0}, and Vm € M, supp,y,(m) = {w € W|m,, # 0}. Thus,
(4) M; = {m € M|suppyy(m) C I}.

Lemma: (i) suppy,(M) = {w € W|M,, # 0} = {w € W|M"™ # 0}.
(ii) My, M € C with (M;)? = (M")? =1]

wEI



(iii) If J CW, My My = My = (My),.
(iv) If J C I, M;y/M,; € C*.
(v) If N € C with suppy,(N) C I,
CH(M,N) ~c"(M',N), CY(N,M)~C"(N,M;).
Proof: (i) Let w € suppy,(M). As M2 # 0, there are m € M and ¢ € Q such that
gm € M@\ 0. If ¢ = g with a,b € R, bm € M, \ 0. The assertion now follows from (1).

(ii) By (1) again it is enough to check that (M;)? D [[,c; MQ. Let m € [],; ME. There

wel w
is a € R with am,, € M \ 0 Yw € I, and hence am,, € M;. Then
(am) = £ 3 am,, € (M))°
m = —(am) = — amy, :
a awe[ '

(iii) One has

MinMy=Ma][MHnMA][M2)=Mn][MEn][M2=Mmn J] M
zel yeJ zel yeJ welnJ

= Miny.
Likewise, (M])J = M]mj.
(iv) One has

Mr/My = M;/(My); by (iii)
~ (M) by (2)
e C™ by (ii).

(v) follows from (2).
1.5. Lemma: Any M € CY is of finite type both as a left and right R-module.

Proof: Yw € W, M — M", and hence M" is of finite type over R ®x R by definition (1.3).
Moreover, Ym € M"™, VYa € R, ma = (wa)m, and hence M" is of finite type as a left R-module.
As M = [],ep M"™ and as suppyy, (M) is finite, M must be of finite type as a left R-module.
Likewise as a right R-module.

1.6. A prime example of an object of C is R(w), w € W, which is R as the ordinary graded
left R-module with a structure of R-bimodule such that

(1) ab = (wb)a Va € R(w),b € R.

Thus, R(w)? = R(w)? = Q with the (Q, R)-bimodule structure induced by (1). Put Q(w) =
Q ®r R(w). Note that R(w) ~ R as graded right R-modules via a — w™'a.



VM e CH", Vn € Z,

(2) CY(R(w), M(n)) =~ M,
and hence
(3) [ (R(w), M(n)) ~ M,

Warning: If f € CY(M, N) is surjective, it may happen that f, : M,, — N, is NOT surjective
for some w € W, cf. (2.2.15) below. Thus, R(w) need not be “projective” in C*.

1.7. In order for it to be closed under taking tensor products over R, define a full subcategory
C of C* consisting of all M flat as a left R-module. For I € W, M; and M’ may not remain
flat over R. If ¢ € C(M, N), kerci(¢) may not be flat over R. If ¢ is an idempotent, however,
kerei (¢) from Rmk. 1.2.(iii) gives the kernel of ¢ in C, and hence

(1) C is Karoubian complete [FH[f], Def. 3.3.40, p. 174] .

VM,N € C, put as in (1.2)

C*(M,N) =[] c(M,N(n)).

nez

VM,N €C, M @g N — (M ®r N)? ~ M? ®o N, and hence M ®g N € C with

(Mo N)g= > MI@qN]= ) M?®rNy,

z,yeW T,yeWw
TY=w TY=w

which we will denote by M x N. Thus, C comes equipped with a structure of monoidal category
with the unit object R(e) [H1fil, Def. 3.5.2, p. 211]. In particular,

Lemma: VM, N € C, suppy, (M x N) = {zy|x € suppy,(M),y € suppy,(N)}.

1.8 Graded rank: Let M = [],_, M’ be a graded left/right R-module. If a € R? for some
deZ, M — M(d) via m — am is a homomorphism of graded modules, i.e., of degree 0. In
particular,

R(—d)=R~%> b, R(—d) at » R

ab € R e aR.

We say M is a graded free R-module iff M ~ [[; R(n;), n; € Z, in which case its graded rank
is defined to be
grk(M) = Zv"j € Z[v,v™ '], v an indeterminate.

J



Thus,
(2) grk(M (1)) = verk(M).
In particular,
grk(M(n)(1)) = grk(M (n + 1)) = v" " grk(M).
If M; and M, are both graded free,
(3) grk(M; © Ma) = grk(My) + grk(Ma).

If M has a homogeneous basis {m;};,

(4)  erk(M) = grk(H Rm;) = Z grk(Rm;) = Z grk(R(— deg(my))) = Z oy~ deg(mi)

7 3

Eg. Let M € C and w € W. If M" is a graded free R-module, one has in C

MY ~ H R(w)(n;) 3n,; € Z.
Likewise for M,,.

Lemma: Assume that K is a field. Let M be a graded left R-module of graded rank q €
Zlv, v~ Y] with a filtration of graded R-modules 0 = My < My < - < M, = M. If N; <
M; /M1 is a graded free of graded rank q; such that ), q; = q, then N; = M;/M; 1, Vi.

Proof: Vk € Z, >, dim(NF) is equal to the coefficient of v* in 3. ¢; = ¢, and hence
> dim(Nf) = dim M* ==Y " dim(M;/M;yq)".

rI‘hllS7 Nz = M/L/MZJFl
2. Soergel bimodules

2.1. Vs € §, put R®* = {a € R|sa = a}, and set B(s) = R ®pgs R(1) an ordinary R-bimodule by
the multplications on the 1st and the 2nd component. To verify that B(s) admits a structure of
C, let § € V with (4, ) = 1, using the standing assumption (1.1.iii). Recall first from [EW16,
claim 3.11]

Lemma: R=R°®0R° = R° @ (sd)R".

Proof: We check first that R*NJR* = 0. Let 0 = z + dy with z,y € R*. Then
O=s(x+dy)=x+ (sd)y =z + (§ — ay)y,

and hence agzy = 0. Thus, y = 0, and hence z = 0 also.
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Now, Ym € V, m = (m — (m,a))d) + (m,a))d with m — (m,a))d € V* and hence
V = V@ dK. Let R? be the d-th homogeneous piece of R and assume inductively that
R = (RY)* @ (R, Let x € (RY)*,y € (R1)*,m € V5,£ € K. Then (x + dy)(m + &) =
xm + §(ym + &x) + £6%y with 6%y = {—d(s0) + 6(6 + s0)}y = —d(s0)y + 6{(0 + sd)y}. As
§(s0) € (R?)* and § + s6 € V¥,

(x4 dy)(m+ &) = xm — £0(s6)y + o{ym + Ex + (6 + sd)y} € (RdH)S &) 5(Rd)5,
and hence R = R* @ dR5.
Finally, Vay,as € R?,

a; + day = a; + (0 + 8§ — s6)ay = {a; + (0 + sd)as} + s6(—as),
aj + sdag = ay + (s6 + 0 — 0)ag = {a; + (sd + §)az} + d(—as).

2.2. Keep the notation of 2.1. One has as graded left R-modules

(1) B(s) = R®ps (R* @ 6R°)(1) ~ R(1) & 6R(1)
~ R(1)® R(—2)(1) by (1.8.1)
— R(1) & R(—1).

Also, as graded right R-modules
(2) B(s) = (R°®0R°) ®ps R(1) ~ R(1) ® R(—1).

In R ®ps R one has

R1-1®50)5=0R05—1® (s6)6 = —6(s8) @1+ 3@ (5 + 55) — 6 ® 56
={-6(50)+6(6+350)}®1—-6R0s0=0"®1—-0®s6
=0(0®1—-1®sd),

(R1-1®600=000 -1 =005 —1® {—5(s8) + (5 + s0)}
=0R0+1®3(s6) —(0+s)®I=6(s0) @1 —sI®0
= (s6)(6®1—1®9).

As R = R* ® dR?, one obtains that Va € R,

B) (®l1-1®sd)a=a(0®1—-1®s0) and ((®1—-1®da=(sa)(0®@1—-1®)J).

Also,

4) 1®I—(50)®1=100—(s0)®1 -1 (0 +s0)+(+s0)R1=0®1—-1R sd.

By (3) one obtains that d ® 1 — 1 ® sd and 0 ® 1 — 1 ® § are Q-linearly independent in

Q ®r (R ®ps R), and hence Q @ (R®ps R) = Q0®1-1®35)) dQO®1—1® ) with

isomorphisms of (@, R)-bimodules

(5) Qi®1-18s0)~Q(e)=Q®gR(e) via ¢0R1—-1®sd) — q& as,
QUR1-180)~Q(s) =Q®rR(s) via ¢d®1—-1R0)— q¢® as,
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0R1—-1® 80 —— IR1I -1 — g

?61(3) O l?a ?51(3) O l?a

(0®1—-1®80) — dag, SH(O0R1—1®0) —— (sd)as.

Thus, B(s) = R®pgs R(1) comes equipped with a structure of C such that B(s)? = B(s)Y®B(s)%
with

(6) Bs)¥=Q0®1-1®s0)~Q(e) and B(s)?=Q(0F0®1—-1®6)~Q(s).
Explicitly, in B(s)? = Q ®g (R ®ps R), Va,b € R,

(7) 1®a®b:a—b®(5®1—1®85)+ b)

Qs as

®0®1-1®23).

For we may assume a = 1 and b = §; the case b = 1 follows from (4). Thus, it is enough to
check that o, ® 0 =6(0® 1 —1® sd) + (s0)(0®1—1®6) in R®ps R. But

RHS=(®1-1®s0)6+(0®1—-1®0)§ by (3)
=(1®5—s0®1)§+5®J—1®5 by (4)
= —50R0+IRI=a;R0.

Thus, together with (5) one has a CD

©) //

®R5R—> R®RSR

\

Note that the elements ) ® 1 —1® sé and 1 ® 6 — d ® 1 are independent of the choice of ¢;
if ¢ € V with (0, a)) =1,

Q

—~
D

~

<—@—>
UJ

Q

—~

S

(9) IR1-1®s0=0®1-1®s0 and 1®I-01=104§—-0c1.

Forlet Ve ={veV]sv =v}. VueV, p=(u— (o)) + (u,a))o with u — (u, ))d € V¥,

and hence V' = V* @ Kd. Write &' = v + £J for some v € V* and £ € K by (2.1). Then
= (¢, a)) =&, and hence ¢’ = v + § and the assertion follows.

The structure of B(s) is already quite intricate. For x € W let < z = {w € W|w < z},
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<x={w e W|w < z}. One has from (7)

(10) B(s)e=R(0®1-1®s))=R(1®06—50®1) = B(s)<./B(8)<c =~ R(e)(—1)
asd®1l—1®sd=1®0J— sé®1 has degree 1 in B(s)

(11)  B(s)s=R(O®1—-1®90)) ~ R(s)(—1),

(12)  B(s) = R0 (6 ®1—1®s8)) ~ R(e)(1),

S

(13)  Bls)" = R(ai 2 (@1—180))

=~ B(S)sgs/B(Sks = B(s)/B(s)e = R(1® 1) ~ R(s)(1).
To see the last equality,
SOl +(0®1-1®s))=s0(1®1)+(1®d—sé®1) by (4)

=1®04.
Thus,
B(:s)s — B(s)
. |

as
0 (1®1)=a,1=(0—-8)R1=001—-s50®1
=0®1-s5001—-(1®6—sd®1) mod B(s).

=®1-0®1.

Consider now the exact sequence 0 — B(s)s — B(s) — B(s)® — 0. It induces

(B(s)s)* ——— B(s)® —— (B(s)°)"
I I

(15) I I

Note also that the decomposition of B(s)% as in (6) holds over R[-]:
1 1 1
(16) R[—]®rB(s) = R[—](6®1—-1®s0) ® R[—]|(6®1—-1®)9).

A O A
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Consider a homomorphism of grade R-bimodules m® : B(s) — R(s)(1) via a ® b — a(sb).
As the action of (s) on V' is faithful, m* € C’ by Rmk. 1.2.(ii), and hence factors through the
quotient B(s) — B(s)":

a®b > a(sb)
- Bls) —> R

The structure of R-bimodule on B(s) endows it with a structure of graded left R ®p, R-
module. Thus, if we let (R ®gs R)Modgr denote the category of graded left R ®gs R-modules,
one has
(18) C'(B(s), B(s)) ~ (R ®gs R)Modgr(B(s), B(s)) by Rmk. 1.2.(ii) again

as the action of (s) on V is faithful
~ (R ®Rs R)MOdgr(R ®Rs R, R ®Rs R)
~ (R®ps R)° as (1,1) must be sent to an element of degree 0
=K(1®1) ~K.

In particular, B(s) is indecomposable in C'.
Now let Z' = {(z.,25) € R(e) ® R(s)|zs = 2. mod a,} a graded K-subalgebra of R? =
1T deN(Rd)2 equipped with a structure of R-bimodule, which is the structure algebra of a moment

graph [F08a]. Under the imbedding (8) one has B(s) — Z’(1) via a ® b — (ab,a(sb)). As
1®l—(l,1)andas 6 ® 1 —1® 0+ (5,0) — (0, 56) = (0, as), one has

(19) B(s) ~ 2'(1).
From (10) and (13) one has a short exact sequence in C’
0 —— R(e)(—2) > Z/ > R(s) —— 0

a — (aay, 0)

(a,b) ——— b.

Let us compute the #H-extensions of R(s) by R(e)(—2) in C’. As sd # 4, (s) acts on V
faithfully. Then the computation of extensions in C’ is equivalent to one in (R ®g, R)Modgr
or in Z'Modgr by Rmk. 1.2.(ii). Thus, given another exact sequence 0 — R(e)(—2) ERSVEER
R(s) — 0 in Z'Modgr, let m € M° with g(m) = 1, and let ¢ € Z'Modgr(Z’, M) with
(1,1) = m. Thus, Ya € R, ¢(a,a) = ap(l,1) = am. As md = ¢((1,1)0) = ¢(0,sd) =
$(0,0 —as) = ¢(0 —as+ a5, 0 —ay) = (6 — as)m~+ @, 0), ¢, 0) = md + (s — §)m. As the
sequence splits as a right R-module, one has

R(e)(-2) —L— M

)

M..
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As ¢(a,,0) and f(1) € M? ~ R(e)(—2)* =K, ¢(as,0) = £f(1) for some £ € K. Then Va,b € R,
o(a,a + bag) = ¢(a + bas — bag, a + bas) = (a + bag)p(1,1) — bp(as, 0) = (a + bag)m — bE f(1),

and hence results a CD of exact sequences

0 — R(e)(—2) > Z' > R(s) > 0

| I

0 —— R(e)(—2) — M —— R(s) > 0.

In particular, if £ € KX, M ~ Z'. If £ =0, md = (6 — as)m = (sd)m, and hence m € M, and
M ~ R(e)(—2) @ R(s) in C'. In general, from [Rot, Th. 7.30]

(20) Extzntoag (R(s), R(e)(—2)) = K.

For if €' € K with o = f o€, then £f(1) = (f0&)(1) = (f o&)(1) = &'f(1). As M is torsion
free over R, we must have £ = ¢£’.

Likewise, one has a CD of exact sequences in Z'Modgr

and

(21) Exthiyoqe (R(0), R(s)(~2) ~ K.

On the other hand, the exact sequence

L)e)(=2) = 211 R[=)(s) > 0

Qs P A

0— R

splits in Z/[ais]Modgr, and hence R[i](e)(—?) and R[ai](s) are both projective as graded left
Z’[i]—modules. Thus, Vn € Z,

. 1 1 ) 1 1
22)  Exthys e (AL BL)() = 0 = Bxth, g (R 1(6). R () (0).

o a5 as P

2.3. Let s € S and M € C. Let us examine the structure of B(s) « M € C. Yw € W,
(1) (Bls)xM)2 =[] B(s)? @ My = {B(s)? ©q MZ} & {B(5)? ©q M}

z,yeW
TY=w

~ Q(e) ®g M2 ® Q(s) ®g MZ,
~ MZ®ME via (¢ ®@mi, g ®ms) —

(i, (sq2)ma) = (m1w_IQ17m2(Sw)_1(SCI2)) = (mlw_l%, mzw_l%)
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with

(2) B(s)? @ M2 =Q(6®1—-1®s0) @9 MY by (2.2.5)
={(0®1—-1®s6) @m|me MY}
~{§@m—1® (sd)m|m € M2} in R®@gs MY
={1®dm —sd @mlm € MZ} by (2.2.4),

B(s)?®o M2 =Q(6®1-1®0)®g M2 by (2.2.5) again
~{f@m—-1®dmlmec M2} in R@p MY.

Likewise, Yw € W,

(8)  (MxB(s))?= [ M?®qB(s)] = {Mg ©q B(s)2} & {M2 ©q B(s)¢}

g
~ M ®q Qe) & M, ®q Q(s)
~ MZ®MZ, via (m) ®q,my ® g) =
(m1q1, ma(sq2)) = ((wq1)my, (wg2)msz)
with
(4) ME 2o B(s)? = MY 20 Q(6®1—1®s8) by (2.2.5)
={me(0el—-1®s6)|me MY}
~{mé®1-m®sdme M2} in MO @ps R
= {m®§—m(sd) ®1m e M3} by (2.2.4),
ME ®q B(s)? = M2 20 Q(1®6 —5®1) by (2.2.5) again
~{m®di-mé®1lme M2} in MY @z R.

Lemma: Letse S and M €C.

(i) The structure of B(s) x M € C is such that each composite B(s)* M — (B(s)* M)? —
(B(s)* M)Q, w € W, reads

B(s)* M —— (B(s) * M)%
R®LM ------------- > MgeLMgu
a®@m —— (amy, (sa)Mmgy),
and that
(B(s)* M)g ={(6 @m —1® (sé)ym|m € M} ® {(d@m —1® dm|m € M}
in (R®prs MP) @ (R®ps M%) with§ @m —1® (sd)m =1® ém — (sd) @ m, m € MY,

16



(11) Yw € W,
(B(s) * M)3 @ (B(s) * M)3, = {B(s)? ©@q My & B(s)? ®q M3}
@ {B(s)? ©g M2, @ B(s)? ©q M2}
()2 @ B(s)?} © M @ {B(s)? @ B(s)2} ©q M,
()% © M2} & {B(s)? ©q M2}
B(s) @ (Mg & MZ).

(B
(B

12

(iii) The structure of M x B(s) € C is such that each composite M * B(s) < (M * B(s))? —
(M * B(s))%, w € W, reads

M * B(s) — (M * B(s))%
M@JRS R oo > Mg?e'aMgs
m® a ——— (Mya, Mys(sa)),
and that
(M+B(s)?={m®d-—m(s6)@1lmec M} {m®dé—md® 1lm € M&}
in (M@ ®rs R) ® (M, @ps R) withm @35 —m(s6) @ 1=md®@1—m®sd, me MY,
(iv) Vw € W,
(M * B(s))g & (M * B(s))2, = {My] ®q B(s)? & Mg, ®q B(s)?}
® {My, ®q B(s)¢ ® My ®q B(s)?}
~ M ©q {B(s)¢ ® B(s)7} & M, @q {B(s)? ® B(s)¢}
~ (Mg & M2} ®r B(s).

Proof: By (2.2.8) one has

B(s) * M ——— (B(s) * M)% = (Q(e) ®g M2) ® (Q(s) ®q ME) ——— MZ ® M&,

GQ®psMm—>a®r1Qps m | Y (@ Q@ My, a @ Mgy) | > (A, (Sa)Msy),

M B(s) —————— (M = B(s))@ = (M3 ®q Q(e)) & (M, ®q Q(s)) — M & Mg,

m®psar>mOplRps a > (My @ a, Mys Q sa) > (M@, Muys(sa)).

2.4. Let BS denote the full subcategory of C consisting of the finite direct sums of B(sy)*-- - *
B(s;)(n), s1,...,8, € S, n € Z. As R-bimodules
B(s1) * -+ B(s;)(n) = (R ®p1 R) Qp -+ Or (R Qper B) ~ R®psr R ®ps2 -+ QOpor R.

Let &Bimod denote the full subcategory of C consisting of the direct summands of objects of
BS. Thus, both BS and GBimod are closed under the monoidal product. Vx = (s1...,s,) € S",
set B(z) = B(s1)*---* B(s,); we set B(()) = R(e) for the empty sequence (). We will also write
B(sy...,s,) for B(z). From (1.7) one has
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Lemma: supp,,(B(z)) = {si'...so|e1,...,e. € {0,1}}. In particular, if x is a reduced
expression of x, suppy,(B(x)) = {y € W|y < x}.
2.5. VM € C, one has from (2.2)

B(s)x M ={R(1)® R(—1)} ®r M ~ M(1) ® M(—1) as graded right R-modules,
M % B(s) =M ®r{R(1)® R(—1)} ~ M(1) ® M(—1) as graded left R-modules.

Lemma: Yz = (sq1,...,s,) € S", B(x) is gradrd free both as a left and right R-module of
graded rank (v +v=')".
Proof: By definition
grk(B(s;)) = grk(R(1) @ R(-1)} = v+ 0!
Thus,
grk(B(s1) * B(s2)) = grk(B(s2)(1) ® B(s2)(—1)} = grk(B(s2)(1)) + grk(B(sz)(—1))
=vw+ov )+ v+o )= (w+ov )

2.6 Let RBimod denote the category of R-bimodules. For M € C we regard B(s) x M =
(R®ps R(1)) ®r M, as a nongraded R-bimodule, to be R ®pgs M.
Lemma: Let M,N €C and s € S.

(i) C(B(s) * M,N) ~C(M, B(s) x N).

(ii) C(M % B(s), N) ~ C(M, N  B(s)).

Proof: Take § € V with (d,a)) =
(i) Define ¥ : RBimod(B(s) * M, N) — RBimod(M, B(s) * N) via
=Yy mi= 1R o(1®Im) — (s6) @ o(1 ®m).
To check it well-defined,

Vg(dm) = 1® ¢(1 ® 6*m) — (s6) @ ¢(1 ® dm)
=1®@¢(1® (—6(sd) + (0 + sd)))m) — (sd) ® ¢(1 ® Im)
=—0(s0) @ P(1@m) + (0 + s0) ® ¢(1 ® Im) — (s0) ® (1 ® dm)
=0{lR (1 ®@m) — (s§) ® p(1 @ m)} = Jthy(m).
Note also that 1, is homogeneous, i.e., graded of degree 0, if ¢ is; if m € M 1® dm €

(B(s) * M) while 1 @ m € (B(s) * M)?!, and hence 1 ® ¢(1 ® dm) € (B(s) * N)?'~! and
50 @ p(1@m) € (B(s) * N)d-1+1,
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Given ¢ € RBimod(M, B(s) x N) write, according to the decompostion B(s) * N = {R ®pg,
R(1)}@r N ~{R*(1) ®0R*(1)} @p N = {R*(1) © (=) R*(1)} @ps N =~ N(1) @ (=s) N (1),
(m) =1Q@¢P1(m) — s0 @ Yo(m)  Mpi(m), tha(m) € N

Thus, ¥1,1¢s € (R®, R)Bimod(M, N). Define ® : RBimod(M, B(s) * N) — RBimod(B(s) *
M, N) via

Y= gy ia®@m = aPa(m), a€ R,me M.
It ¢ is homogeneous, ¢ : M — N (—1), and hence ¢, will also be homogeneous as B(s) * M =~
R(1) ®pgs M; R(1)! ®ps M7 3 a @ m + arpy(m) € NOHDFI—D = Niti,

Now, ¢y,(a @ m) = a(g)2(m) = ap(l ® m) = ¢(a ® m), and hence ¢y, = ¢. Also,
Vg, (M) =1® ¢y(1 Q@ dm) — 50 ® ¢y (1 @ m) = 1 @ a(dm) — 56 @ 1ha(m). But

1 ® 1 (0m) — 56 @ Ya(6m) = 1(dm) = §yp(m) = & @ Pr(m) — 8(s8) @ Ya(m)
= {50+ (56 +6)} @ P1(m) — 3(58) @ ha(m)
= —s0 @ Y1 (m) + 1@ {(s6 + 0)yr(m) — 6(s6)1ha(m)},
(s

U
and hence 11 (m) = 2 (dm) and 11 (0m) = (s0 + )1 (m) — 0(s6)1p2(m). Thus,
Ww(m) =1® ¢1(m) —s50® ¢2(m) = 1/}(771),
and 94, = 9. Tt follows that ¥ and ® are inverse to each other.

We show next that ® and ¥ induce bijections
C(B(s)* M,N) —— C(M, B(s) x N).

For that we have only to verify that V¢ € RBimod(B(s)* M, N), gzﬁ cCiff Y, € C. Put v =1y
for simplicity. We are to check that Vw € W, ¥?(M%) C (B ( V& N)Q iff 9 ((B(s)*M)?) C N9.
Yme M,YVyeW,

(1) {Y1em)},={10¢(l®im)—ss@¢(l@m)}, in (B(s)*N)?
with1@me M =Q ez M
= (¢(1® 6m), — (s0)p(1 ®m)y, ¢(1 ® dm)y, — 66(1 @ m),,) in N2 & NE by (2.3.)
=(p(1®om —s6 @m)y, p(1 ® dm — I @ m)sy)
=(p(0 @m —1® (s0)m)y, p(1 ® om — I @ m)s,) by (2.3.1) again.

Thus, if m € M2, (1) reads
(2) Y (m)y = (%6 @m — 1@ (s8)m),, $*(1 © dm — § @ m),,)

with d @ m — 1 ® (sd)m € (B(s) * M)? and 1 ® dm — 6 @ m € (B(s) * M)%, by (2.3.i). Thus,
if p €C,
PP @m—1® (s0)m) € N? and ¢°%(1®@dm —d®@m) € N

sw)

and hence ¥?(m), = 0 unless y = w. It follows that ¥?(MQ) C (B(s) * N)9.

In turn, (B(s)*M)9 = {§@m—1® (sd)m+1xém'—s@m/|m € MY, m’ € M2} by (2.3.1).
Ify € C,¥m e MY, ¢?(0@m—1® (sd)m) € N¥ by (2) as v?(m) € (B(s)* N)? = N?® N&

sw?
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while Vm' € MY, ¢?(1@dm’'—d@m’) € N2 by (2) again as ¢%¢(m’) € (B(s)*N)¢, = N¢ & NQ.

w

Thus, ¢@((B(s) * M)?) C N2, and ¢ € C.
(ii) Define ¥ : RBimod(M * B(s), N) — RBimod(M, N x B(s)) via
PPy :mi—= dmMI®1) @1 —d(m® 1) sd.
To check that v, is well-defined,
Ye(md) = p(mé* @1) @1 - p(md ® 1) ® 5§
= ¢(m(—0(s8) +6(6 +50))®1) @1 — p(md ® 1) ® 56

=—p(m®1)®(s6) + d(Md®1) ® (6 + 56) — d(Mé ® 1) ® s0
={p(mo®1)®1—p(m®1)®si}d = 1hs(m)o.

If ¢ is graded of degree 0, so is 14; if m € M¢ md ® 1 € (M x B(s))¥! while m ® 1 €
(M % B(s))* !, and hence ¢(mé ® 1) ® 1 € (N * B(s))41"1 ¢p(m @ 1) ® 56 € (N * B(s))4 1L

Given ¢ € RBimod(M, N x B(s)), along the decompostion Nx B(s) = NQgr{R®g, R(1)} ~
N @ps {R°*(1) @ dR*(1)} = N ®rs {R*(1) ® (—s0)R*(1)} ~ N(1) ® (—sd)N(1), write
(m) =11(m) @1 —tha(m) @ s6 Iy (m),v2(m) € N.

Thus, ¥1,1%s € (R, R°)Bimod(M,N). Define ® : RBimod(M, N * B(s)) — RBimod(M x
B(s), N) via

Y= gy m®ar— Pe(m)a, a€ R,me M.
If ¢ is graded of degree 0, ¢y : M — N(—1), so therefore is ¢y; if m € M9, 1y(M) ® 5§ €
(N % B(s))? = {N ®gs R(1)}¢, and hence 15(m) € N1 = N(—=1)4 Ifa € R°, m®a €
(M x B(s))? ! and 1)9(m)a € N4 1+e,

Now, ¢y, (m ® a) = (Yg)2(m)a = ¢(m @ 1)a = ¢(m ® a), and hence ¢y, = ¢. Also,
Vs, (M) = pyp(MI @ 1) @ 1 — ¢y (M ® 1) @ 50 = thy(md) ® 1 — thy(m) ® 6. But

P1(md) @ 1 — Pa(md) ® s6 = 1h(md) = p(m)d = 1(m) @ § — a(m) @ (s6)5
— () @ {55+ (6 + 53)} — va(m)(s6)3 ® 1
= {¢1(m)(0 + s6) — ha(m)(s0)0} @ 1 — ¢1(m) ® s6.

and hence 11(m) = a(md). Then vy, (m) = ¥1(m) @ 1 — 1hy(m) ® s§ = p(m), and hence
Vg, = 9. It follows that ® and W are inverse to each other.

We show next that ¥ and ¢ induce bijections
C(M % B(s),N) —— C(M, N % B(s)).

For that we have only to verify that V¢ € RBimod(M x B(s),N), ¢ € C iff ¢, € C; if ¥ € C,
Yy, € C, and hence we will have ¢, € C. Put ¢ = 14 for simplicity. We must check that
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Vw e W, p?(MP) C (N * B(s))g iff ¢%((M = B(s))3) € Ni. Vm € M, ¥y e W,

(3) W1 e@m)}, ={pméi®@1)®@1—-¢(m®1)®s0}, in (N x*B(s))?
withl@me M =Q@r M
= (¢p(mo ® 1)3/ —¢p(m® 1)y<55)= P(md @ L)ys — p(m ® 1)y85)
in N7 & N by (2.3.i)
=(p(MéR@1 —m®56)y, p(Md L —m ® J)ys)
= (p(m®@ 6 —m(sd) ® 1)y, p(mé ® 1 —m ®d),s) by (2.3.iii) again.

Thus, if m € M2, (3) reads
(4) Pe(m), = (¢%°(Mm @ —m(sd) ®1),,6% (M@ 1 —m®4J),) in NyQ D Ny%

with m® 3§ —m(s6) ®1 € (M x B(s))? and mé ® 1 —m® 4§ € (M x B(s))?, by (2.3.ii). Thus,
if p € C,
PPme5—m(sd) ®1) € N? and ¢%(mdi®@1—m®6) € NY

ws?

and hence ¥?(m), = 0 unless y = w. It follows that ¥?(MQ) C (N * B(s))9.

In turn, (M * B(s))? = {m @6 —m(sd) @1 +m' @ —m'd @ 1lm € M% m' € M%} by
(2.3.iii). If ¢ € C, ¥Ym € M@, Vm' € MC

MR35 —m(sd) ®1) € N? and ¢°%(m' @6 —m'd®1) € N9

by (4) as ¥9(m) € (N B(s))? = N2 ® N, and as v%¢(m’) € (N * B(s))¥, = N¥ & N%. Thus,
#?((M * B(s))?) C N¥, and ¢ € C.

2.7 Duality: Let M € RBimod. Let ModR denote the category of right R-modules, and set
D(M) = ModR(M, R) equipped with a structure of R-bimodule such that

(1) (afb)(m) = f(amb) = f(am)b Vf € D(M),¥Ym € M,Va,b € R.

Assume now that M € C. Thus, M is of finite type either as a left or right R-module by (1.5).
We equip D(M) with a grading such that D(M)" = {f € D(M)|f(M?) C Rt Vj}, i € Z. If
we let ModgrR denote the category of graded right R-modules, D(M)" = ModgrR(M, R(7)).
As M is finite type as a right R-module, one has D(M) = [[.., D(M)" [NvO, 2.4.4]. Also, M
is torsion-free as a right R-module (1.3.2). Thus,

1€EZ

ModR(M, R) ®g Q@ ~ ModR(M, Q) by the five lemma
~ ModQ(M ®r Q, Q)

=Mod@Q( [] MZ.Q) by (1.3.3)

wew

~ H ModQ (M2, Q) from definition (1.2.1).
wew

Vf € ModQ(MZ,Q), Va,b € Q, Vr € M@,
(afb)(x) = flaxb) = f(z(w a)b) = f(z)(w  a)b = {(wd) f(w ™ a)}(z).
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Thus, if we let D'(M)% = ModQ(M, Q), D(M) ®r Q = [[,en D'(M)% is a decomposition as
(R, @)-bimodules. Note also that D(M) is torsion free as a right R-module. For if f € D(M)
and b € R\ 0 with fo =0, Vm € M, 0 = (fb)(m) = f(mb) = f(m)b, and hence f(m) = 0,
and f = 0. Then D(M) — D(M) ®g @, and we may, as in (1.3.3), identify D(M) ®g @ with
Q ®gr D(M). As such

(2) D(M) € ¢ with D(M)? = D'(M)% Yw € W.
Then Vf € D(M),
(3) fu=pr,0 %= (f®rQ)lya = e

We have obtained a contravariant functor D : C — CH.
IfNeC DIM)®r N — ModR(M,N) via f @ n— f(?)n does NOT make sense!

2.8. Yw € W, Vn € Z, one has
(1) D(R(w)(n)) ~ R(w)(—n).

Lemma: VI CW,VM €C, D(M") ~ D(M);.

Proof: As M — M!, D(M") < D(M). Vf € D(M),
fe DM ff flag,, =0 as0— My — M — M" — 0 is exact by (1.4.2)
iff fQ|HwEW\IM3 =0 by (1.4.ii)
iff fe D(M); by (2.7.3).

2.9 Let M € C and w € W. The structure of R-bimodule on M* may be described entirely by
its left /right R-module structure.

Lemma: Assume that M is graded free as a left/right R-module.
(i) D(M),, is also left graded free over R with grk(D(M),) = grk(M®)(v™1).

(it) D(D(M"™)) ~ M" in C.

Proof: By (1.8) we may assume that M* = R(w)(n) for some n € Z. Then

D(M)y =~ D(M™) by (2.8)
= D(R(w)(n)) =~ R(w)(—n),
and hence grk(D(M),) = v™" = grk(R(w)(n))(v™!) = grk(M™)(v~!). One has also
M* = R(w)(n) ~ D(R(w)(—n))
~ D(D(M),) by above
~ D(D(M"™)) by (2.8) again.



2.10. VM € C, recall that D(M) is graded with D(M)" = ModR(M, R)" = {f € ModR(M, R)|
f(M?) C R™™ = ModgrR(M, R(n)) Vi € Z} Vn € Z.

Consider first the case M = B(s), s € S. Let § € V with (J, ) =1, and let
(1) O, : D(B(s)) — B(s) via [+ 1Qg, f(0®gs1)—(s)) @ps f(1 Rps 1).
We show that ® is invertible in C. Va € R,

Py(fa)=1® (fa)(0®@1) = (s0) @ (fa)(l®1)=1® f(0 ®a) — (s0) @ f(1®a)
=1® f(0®1)a—(s0) @ f(1®1)a=df)a.

Likewise, Va € R*, ®4(af) = a®s(f). Also,

O,(6f) =10 f(0*°®1) - (s6) @ f(6 ®1)
—1® f((—6(s6) +6(6 + s8)) @ 1) — (s6) ® f(F @ 1)
=10 f1®1)§(s0)+1® f(6R1)(6+ s8) — (s0) @ f(6® 1)
—5(s0) @ f(1@1)+ (6 +50) @ fOR1) —(s0) @ f(6®1)
=0l f0®1)—(s6) @ F(O@1)} = dd(f).

Thus, ®, is R-bilinear. As 6® 1 € B(s)! and 1 ® 1 € B(s)™!, if f € D(B(s))*, k € Z,
1®r, f6®1) —(s0) @ps f(1®1) € (R®ps R)*! = B(s)¥, and hence @, is graded.

Now, D(B(s))? = D(B(s))¢ @ D(B(s))? with

D(B(s))¢ = ModQ(B(s)?,Q) by (2.7.2)
=ModQ(Q(6®1—-1®s0),Q) by (2.2.6),
D(B(5))? = ModQ(B(5)¢,Q) = ModQ(Q( ® 1 —1®),Q) likewise.

If fe D(B(s)Y, f0®1)=f(1®4) = f(1®1)§, and hence

1 f61)—s6@f101]) =10 f1e1)§—s0® f(1®1)
=(1®6-s0®1)f(1®1)c B(s)9.

If fe D(B(s)Y f(0®1)=f(1®sd) = f(1®1)sd, and hence

I1f(0®1)—s0f(1e]) =10 f(1®1)s0 —sd®@ f(1®1)=(1®s0—s0x1)f(1x1)
=(0®1-106)f(1o1)c B(s)? as
1®s0—s50@1=10((s6+06)—0)—((s0+6) —0)®1

=(504+0)®1-1®5I—(s0+0)R1+001=001-1R0.

Thus, ®; € C'(D(B(s)), B(s)). Finally, Va,b € R, 1 ®gs ¢ + 0 Qps b =1 Rps {a + (s6 + )b} —
$0 ®ps b, and hence

(2) B(s) = {1 ®gs a — $0 Qps bla,b € R}.
Then,

(3) Us:B(s) = D(B(s)) via 1®a—s0®@b— “1®x+0Qy+— br+ay” Ya,b,x,y € R
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gives an inverse to Wy:

1®r+0®y

fH1®f®®LFﬁ5®ﬂ1®DH>f@@”x+f@®”y

Il
fd®z+di®y).

Note also that

m,_Bls) —%—— D(B(s))

ev

NlD((bs)
»
ev,, D?*(B(s)).

(4)

For let f € D(B(s)). Ya,b € R,

(5)  {(D(@5) oV )(l®a—sd@b)H[f)={¥Vs(1®a—sI D)o P }(f)

=V, (1®a—s50®Db)(Df))
=0,(1®a—s0b)(1® f(I®1)—s0® f(1®1))
=0,(10a-s0@b){1{f(6®1)—(s6+0)f11)}+i2 f1x1)}
=b{f(0®1)=(s6+0)f(1® 1)} +af(1®1)
=f0®b) —f((s0+0)®b)+ f(l®a)=f(1®a—sd®Db)
= €V1®a—sé®b(f)-

Then, Vo € C(B(s), B(s)),

m > eV,

(6) ev

as {D?(p)(evm)}(f) = (evm o D(9))(f) = evi(f 0 9) = (f 0 @)(m) = f(p(m)) = eV (f)
Vf € D(B(s)), and hence

(7) D? ~id on B(s).
More generally,

Lemma: VM € C with D(M) € C, Vs e S, D(B(s)* M)~ B(s)*x D(M) in C. In particular,
Ve e S", D(B(z)) ~ B(z) in C, and hence DB ~ B VB € GBimod.

Proof: We regard B(s)x? as R(1)®pgs?. Take 6 € V with (§,a)) = 1. Vf € D(B(s) * M)~ =
ModR(R(1) ®gs M, R)*, define f; € ModR(M, R)*~! and f, € ModR(M, R)**! via

film) = f(1®@m) and fo(m) = f(6@m) Vme M.
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Let ® : D(B(s) * M) — B(s) * D(M) = R(1) ®gs ModR(M, R) via
(8) frr1® fa—(s0) @ fi.
Ya € R, Vm € M,
(fa)i(m) = (fa)(1®@m) = f(1®ma) = f(1®@m)a = fi(m)a,
(fa)2(m) = (fa)(d ®m) = f(0 ® ma) = f(6 @ m)a = fa(m)a,
and hence (fa); = fia, (fa)2 = fea. Thus, & € ModgrR.
Ifae R, Vme M,
(@f)i(m) = (af)(L@m) = fla®m) = f(1®am) = fi(am) = (af1)(m),
(af)2(m) = (af)(6 ®m) = f(ad ®m) = (6 ® am) = fa(am) = (af2)(m),
and hence (af); = afi, (af)2 = afs. Thus, & € R°Modgr. One has
(6f)1(m) = (6f)(1 @m) = f(0 ®m) = f2(m),
(6.f)2(m) = (8f)(6 @ m) = f(6* @ m) = f((—0(s0) + (3 + 50)) @ m)

=—f(1®d(sd)m) + f(6 @ (§ + sd)m) = —f1(0(sd)m) + fo(d + sd)m)
= —(0(s0) f1)(m) + ((6 + s6) f2)(m),

and hence (6f)1 = fa, (0f)2 = —0(s0)f1 + (6 + s9) fo. Then

BOf) =1 (6f)2 — 6 (6f)1 =1 @ {—0(s0)f1 + (6 4 50) f2} — 6 @ fs
=0 RfL+(0+30)® fo—s0R fo=—0(80) @ fi+I® fa

and hence ® € RModgr also.

We show next that Yw € W,

(9) ®U(D(B(s) * M)g) € (B(s) * D(M))g.

Let f € D(B(s) * M)? = ModQ((B(s) * M)?,Q) after (2.7.2). Recall from (2.3.ii) that
{B(s) ®r M2} & {B(s) ®RMQ} (B(s) * M)9 & (B(s) * M) Vy € W. Then

AME) = f1® Mf

( )
F2(Mp) = f(6.® M)
and hence Yy & {w, sw},

F(B(s) * M) & (B(s) = M)g,),

Cf
C f((B(s)* M) @ (B(s) » M)3),

HMP) = 0= fo(M7).

Thus, suppyy(f1), suppy(f2) S {w,sw}, and suppyy(P?(f)) = suppy(l @ f» — 50 ® fi) C
{w,sw} by (1.7). As f € D(B(s) * M)9,

0= f((B(s)* M)3,)
=f{d@m—-1® (sd)m+d@m' —1®dim'|me M2, m' € MZ}) by (2.3.1).
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In particular, Ym € M@

sw?

0=f(0@m—=1& (s0)m) = fa(m) — fi((s6)m) = (f2 — (s6) f1)(m),
and hence (f)sw = (80)(f1)sw by (2.7.3). If m € M3,
0=f0@m—=1®dm)= fo(m)— fi(dm) = (f2 — df1)(m),
and hence (f3), = d(f1)w also. Then
PO (f)ow = (1® f2 = (50) @ fr)au
= ((f2)sw = (80) (1) sw: (f2)w — 6(f1)w) 0 D(M)Z, & D(M)Q by (2.3.i)
= 0.
Thus, suppy,(®?(f)) C {w}, and (9) holds.

Finally, an inverse of ® is given by

U:ig=10¢g+0R@g— “1@my + 6 @ my — g1(m2) + g2(mq + (8 + s6)my)”
Vag1,92 € DM, VYmy,mg € M,
le.,
(10) 1®9g1—30Rgp=10¢g+0Rg —1®(s6+3)go=1R{g1 — (s0+)g2} + I ® g2
= 1 ®@my + 0 ®@my = (g1 — (80 + 6)ga) (ma) + ga(my + (8 + s6)mz)
= g1(ma) + ga(my)”.

If a € R,

U(g)((1®@my + 0 @ my)a) = gi(maa) + ga(mia) = {g1(ma) + g2(m1) }a

= VU(g)(1 ®my + 6 @ my)a,

and hence ¥(g) is right R-linear. To see that ¥(g) € D(B(s) * M)* = ModR(R(1) ®gs M, R)*
ifg=1®g —sd® gy € (B(s)* DM)* = {R(1) ®gs ModR(M, R)}*, k € Z, one has g; €

(DM)EH1 gy € (DML If 1@ my + 5 @ my € (B(s) * M), my € M and my € M1, Thus
g1(ma) + go(my) € R and hence W(g) € D(B(s) * M)*.

2.11. Let B € 6Bimod, and let 5 € C(DB, B)*, ¥p € C(B,DB)* as in (2.10).

Proposition: Vo € C(B, B’), one has a commutative diagram

ev

T

B \WB D<‘V DB

DB
© DSOT D2y

~ DB D(®p)
v /\PB, N 4

B D*B'.

\_/’

ev
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In particular, D* ~id on &Bimod with D : C(B, B') = C(B’, B) wvia ¢ — D(y).

Proof: Let M € GBimod and &), € C(DM, M)* with an inverse Wy, € C(M, DM)* such
that D(®ps) o ¥y, = ev as in (4), and let & € C(D(B(s) * M), B(s) * M)* with an inverse
U e C(B(s)* M,D(B(s) * M))* as in (2.11). It suffices to show that

B(S)*\I/]\/[

~

x  B(s)xM B(s) * DM

qu,
D(B(s) x M)
) lD((B(s)*ch)o@)
ev, D*B(s)*xM).

Let 0 € V with (0,aY) = 1. Let a € R and m € M. Regarding a ® m € R(1) ®gs M =
B(s) * M, we are to show on D(B(s) * M) that

(2) {(Vo (B(s)*Vy))(a®@m)}o{(B(s)*Py)o P} = evegm.
Write a = a; — (sd)ag, ai,as € R*, and let my,my € M. Then, regarding 1 ® my,d ® mg €
R(1) ®pgs R = B(s) x M, one has
{(Wo(B(s) * ¥p))(a@m)Hl®@m; +d@ms) ={V(a® ¥y (m))}(1Rm; +J&ms)
={U(1® a1V (m) — 6 @ as¥p(m)) 1@ my +§ @ my)
= (a1%pr(m))(ms2) + (a2¥pr(m))(mq) by (2.10.10)

while Vf € D(B(s) * M),

{(B(s)%®y) 0 ®}(f) = (B(s) * Par)(1 @ f(627) — s0 @ f(1®7?)) by (2.10.8) with
F(627), fF(187?) € DM and 1 ® f(6®7), 56 ® f(187) € R(1) @p« DM = B(s) * M
=1 Py (f(0R7)) —s0 @ Py (f(1®7)) in R(1) ®ps M = B(s) x M
=1 Py (f(0®7)) — (s04+0 —0) @ Pp(f(1R7?))
= 1@ {Py(f(627?) — (56 +0) @ Ppr(f(1RN)} 46 @ Py (F(127)).

Thus,
{H(Wo (B(s)x War))(a@m)} o {(B(s) x Py) o }](f)
= (a1 p (m)){Pu (f(1R7))} + (a2¥ar (m)){Par(f(0R7)) — (50 + 9)Pr(f(1R7)}
= (Var(aam)) (@ (F(1©7))) + (Var(azm))(@ar(f(6©7)))
= (War(agm)) (@ ((s6 +9) f(127)))
= (Uar(aam)) (@ (F(1©7))) + (Var(azm))(@ar(f(6©7)))
= (War(azm)) (@ (f((s0 + 0)@7))).

Now, Vm € M, Vg € DM,
) (Wa(m))(Pm(g)) = (Yar(m) o Pur)(g) = {D(Pr) © Poar)(m)}Hg) = evin(g) = g(m).
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It follows that

(W o (B(s) # Wa))(a  m)} o {(Bls) 5 By) 0 BH(f)
= f(1®@am)+ f(0 ® agm) — f((sd +J) ® agm) = f(1 ® aym) — f(sd ® agm)
= f(ay ® m) — f((sd)ay ®m) as a,ay € R*
= €V(a,—azsd)om (f) = Vaom(f),

as desired.

2.12. Let RMod (resp. RModgr) denote the category of (resp. graded) left R-modules. VM € C,
Vi € Z, let D'(M)" = RModgr(M, R(i)), and set D'(M) = [[,., D'(M)* ~ RMod(M, R) [NvO,
2.4.4]. We equip D'(M) with a structure of R-bimodule such that (afb)(m) = f(amb) = af(mb)
Vf € DY(M), Va,b € R, Vm € M. Then

Q ®g D' (M) ~ RMod(M, Q) by the 5 lemma
~ QMod(Q @5 M, Q) = QMod( [ [ M2, Q)

weWw

~ [ @Mod(MZ, Q) by (1.2.).

wew

Vf € QMod(M2,Q), Vq1,q2 € Q, Yz € M2, (1 fq2)(2) = f(q12¢2) = q1(wqz) f(z), and hence
01fq = q1(wg) f. Thus, D'(M) admits a structure of C’ with

(1) DY{(M)% = QMod(M&,Q) Yw e W.

Also, D'(M) is torsion free as a left R-module: if af = 0, a € R, f € D' (M), Ym € M,
0= (af)(m)= f(am) =af(m). As R is a domain, if a # 0, f = 0.

In particular, Vw € W, Vn € Z,
(2) D'(R(w)(n)) ~ R(w)(—n).
For let f € D'(R(w)) and a,b € R. Then
(af0)(1) = f(alb) = f(a(wb)) = a(wb) f(1) = (a(wd) f)(1),
and hence afb = a(wb)f.
If fe D{(M),a € R, and m € M, f(ma) = f((wa)m) = (wa)f(m), which may be distinct
from af(m), and hence D!(M) need not be isomorphic to D(M).

Lemma: VM € C with D)(M) € C,Vs € S, D (M*B(s)) ~ D' (M) B(s) in C. In particular,
Vo € S, D'(B(z)) ~ B(z) ~ D(B(x)).

Proof: We regard ? x B(s) as ? @ps R(1). Take 6 € V with (§,aY) = 1. Vf € DY{(M x
B(s))* = RMod(M ®ps R(1),R)*, k € Z, define f; € D'(M)*' = RMod(M, R)* and
fo € D{(M)*' = RMod(M, R)**! via

fitm) = f(m®1) and fo(m) = f(m®9).
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Let ® : DY(M * B(s)) — DY (M) x B(s) = RMod(M, R) ®ps R(1) via f — fo® 1 — fi ® s6.
Va € R°, YVm € M,
(fa)q(m) = (fa)(m@1) = f(m®a) = f(ma®1) = fi(ma) = (fra)(m),
(fa)o(m) = (fa)(m ©® &) = f(m & da) = f(ma ®0) = fo(ma) = (f2a)(m),
and hence (fa); = fia, (fa)s = fea, ®(fa) = (fa)e @1 — (fa); ® $0 = fora® 1 — fla® s =
(fo®1— fi®sd)a=P(f)a. Also,

&
(f0)i(m) = (fo)(m @ 1) = f(m @0) = fa(m),
(f8)2(m) = (f6)(m®6) = f(m @ 6%) = f(m® (6 + 6 — 50))
f(m(sd +6) ®0) = f(mdsd @ 1) = (fa(sd +6))(m) = (f1d50)(m),

and hence (f6)1 = fa, (fd)2 = fa(s0 +0) — f1050. Then

D(f0) = (f0)2®@1—(f0)1®50=fa(s6 +9) @1~ f1ds6 @1 — fo @ 56
:f2®(85—|—5)—f1®585—f2®85=f2®5—f1®5S(5:(f2®1—f1®85)(5
= ®(f)s,

and hence ® is a homomorphism of graded R-bimodules.

We show next that Yw € W,
(3) OU(D'(M * B(s))2) € {D"(M)  B(s)}2.

Let f € DY(M * B(s))? = QMod((M * B(s))9,Q). Recall from (2.3.iv) that, Vy € W, (M

B(s))¢ & (M x B(s))% ~ {MZ? ®x B( )} & {MSZ ®g B(s)}. Then

(f)(MP)

(f2)9 (M)

and hence (f1)%(MZ) = 0

{w,ws}, and Suppw( ()

0= fo((M * B(s))g)

=ff{mei-m)@1+m @6 —m's®1lme MZ

ws?

FUMZ 1) C fO(M * B(s))g & (M * B(s));2),
fQ(MQ ®0) C [U((M = B(s))] & (M * B(s))),

(f)® (MQ) unless y € {w,ws}. Thus, suppy,(f1),suppy(f2) C
suppy(fo ® 1 — f1 ® 88) C {w,ws}. As f € DY(M x B(s))9,

m' € MP}) by (2.3.ii).

In particular, Ym € M@

ws?

0=fUm®d—m(ss) ®1) = (f2)%(m) — (f)?(m(s8)) = (f2 = f1(s8))?(m),
and hence (f2)ws = (f1)ws(80). If m' € M@,
0=fm'®d—m's®1) = (f)%(m) = (f1)?(m'0) = (f = f10)?(m),
and hence (f3), = (f1)wd. Then

P(flws = (fo®1 = f1 ® 5)ws

= ((f2)ws — (f)ws(50), (f2)w — (f1)wd) in DY(M)?, & D'(M)% by (2.3.iii)
0.
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Thus, suppy, (®(f)) € {w}, and (3) holds.

Finally, an inverse of ® is given by W : D'(M) * B(s) — D'(M * B(s)) via
G=01R1—g®@55 = “m @1+my®3 > g1(ma) + ga(m1)” Va1,90 € D(M),Vmy, my € M.
VYa € R,

U(g)(a(mi ® 1+ my®6)) = ¥(g)(am; @ 1 + amg ® 0) = gi(ama) + ga(am)
= a{g1(ma) + g2(m1)} = a¥(g)(m1 ® 1 +my ®J),

and hence ¥(g) is left R-linear. If g = g;®1—go.®s5 € (D'(M)*B(s))* = {RModR(M, R) @ s
R} ke Z,g € D(M)* and g, € DM It my@1+ma®d € (M*B(s))", m; € M™!
and my € M™1. Thus g;(ms) + g2(my) € R"* and hence ¥(g) € D'(M * B(s))*, as desired.

3. &¥E-Hecke algebras

3.1. Let v be an indeterminate. The #Ji-Hecke algebra H of (W,S) is a Z[v, v ']-algebra
having a basis { H,,|w € W} under the multiplication [S97] such that

(i) (Hy +v)(Hs —v 1) =0 VseS,
(i) H,Hy, = H,y, Vx,y € W with {(zy) = ((z) + ((y).
Vs €S, put H, = Hy +v. Thus [S97, p. 84], Vo € W,

(1)

o - H,,+vH, if zs > z,
H, 4+ v 'H, else,

and likewise

Hg, +vH, if sz > x,
H, +v'H, else.

(2) HH, ={

Ve = (s1,...,s,) € S",put H, = H, ...H, . Yw € W, define p¥ € Z[v,v™'| by H, =

S

> wew Py Hy. For s € S we will often abbrev1ate Py as Py

Lemma: >, v/ ™p¥(v7!) = (v+ vt

Proof: One has a Z[v,v!]-algebra homomorphism sgn : H — Z[v,v™!] via H,, ~— v~/ If
L = (Sl7"'7ST)7

(v+v") =sgn(H,) =sgn( Y pyH,) = > pev ™

weWw weWw

Z px Z(w

weWw

and hence
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3.2 Lemma: Yw € W, dimg B(2)% = dimg{B(x)"}¢ = p¥(1).

Proof: The first equality follows from (1.4.ii). For the 2nd equality we argue by induction on
l(w). As Y owpiHy =H, Vs €S,

1 ifw=s,
(1) py =4qv ifw=e,
0 else.

Thus,

0 else.

(1) = {1 if w e {e, s},

On the other hand, as B(s)? = B(s)? @ B(s)¥ with B(s)¢ ~ Q(e) and B(s)? ~ Q(s) by
(2.2.6),
dim B(5)2 = 1 ifw e {e, s},
0 else.
Thus, dim B(s)Q = p¥(1) Yw € W.
Under the specialization v ~» 1 one has

L @y H = ZWV] via 1@ H,—w YweW.
Then, Vz = (s1,...,$;),

(s1+1) . (sp+ 1) 1@ H, =1® Y piHy— > pr(lw.

weW weW

Thus, Vs € S,

S e ay@w=(s+1)(si+1) ... (s, +1) = (s +1) > pf, . (Dw

weWw weW

= Z{p(sl ..... Sr)(l)SﬁL‘ +p?sl ..... sr)(l)x}
zeWw

Then,
(2) p?:i ,,,,, sr)(l) +p1(1;1 ..... sr)<1) = pé,& ..... sr)(l)

VM € C, dim(B(s) * M)? = dim M2 + dim M&, by (2.3.i). Thus,
dim B(z)? = dim B(ss, ..., s,)% + dim B(s, ..., 5,2,
= Play. sy (1) +pf;w sr)(l) by the induction hypothesis

..... Dyeey

-------

3.3. We will eventually show, under additional conditions on K, Soergel’s categorification
theorem that any B*, B € GBimod, w € W, is left/right graded free over R, and that there
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is an isomorphism of Z[v,v~']-algebras [6Bimod] — H via [B] — > ., v “erk(BY)H,,
where [GBimod] is the split Grothendieck group of GBimod.

Let z = (s1,...,8,) € S and e = (e1,...,e,) € {0,1}". Put 2° = s7'...s%, 2y = e,

.ser
xy = st xe = s7's5%, ..., o, = 2% Assign a label U (resp. D) to i € [1,r] iff x;_1s; > ;1

(resp. else). The defect d,(e) of e is defined by
d,(e) = |{i|the label of 7 is U and e; = 0}| — |{i|the label of i is D and e; = 0}|.
One has from [EW16, Lem. 2.7]

pZ’ — Z Udz(e)_

z¢=w

Define u, = (1® 1) %--- % (1®1) € B(sy) *--- x B(s,) = B(z). For our purposes we will
need

Assumption: Vs,t € S distinct with ord(st) = | < oo, putting x = (s,t,...) and y =
(t;s,...) eS8, 30 € C(B(z),B(y)) : ®(uy) = uy; as ord(st) =1,

st...=11s....
N~ =~
l l

3.4. Let s,t € S distinct with ord(st) < co. Let T (s,t) be the set of reflections in (s, t). In the
rest of §3 we will verify

Lemma: If, Vti,ty € T(s,t) distinct, there is v € V such that (v,oy)) = 0 and (v,0y)) = 1,
then Assumption (3.3) holds.

3.5. We will be arguing sometimes over K/m for m € Max(K), see (4.9) for example, in which
case we will assume that (3.4) holds also for V ®k (K/m) in place of V.

We will argue after [S07]. We assume throughout the rest of §3 that the condition in (3.4)
holds. Put W' = (s,t) and 7' = T (s, t) with ord(st) = [. Thus,

(1) T = {Qtv_/, ti/_/|n odd} = {w € W'|[{(w) odd}.

n n

Recall also that a reduced expression of w € W' is a sequence from {s,t} [HRC, Th. 5.5, p.
113).

Lemma: W acts faithfully on V.

Proof: Let w € W’ be trivial on V.

Just suppose £(w) is odd. By (1) there is u € {s,t} with {(uwu) < f(w); if w = (s,t,...,5)
is a reduced expression of w, sws < w. Likewise, if w = (¢,s,...,t).
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Then wwu is also trivial on V. As ¢(uwu) = ¢(w) — 2, by induction on the length either s or
t is trivial on V. Assume for the moment that s is trivial on V. Take v € V with (v,a)) =1
by (1.1.iii). Then v = sv = v — ay, and hence a; = 0, contradicting the standing hypothesis
(1.1.1ii).

Thus, ¢(w) must be even. Then w = wux for some u € {s,t} and x € T’ by (1) again.
Just suppose w # e. Then = # u. Take v € V with (v,a)) = 0 while (v,a)) = 1. Then
UV = WU =V — @, and hence «, = 0, absurd again.

3.6. VM € C with suppy,(M) C W, the decomposition M? = [], ., M is determined
by the R-bimodule structure on M, thanks to (3.5) and Rmk. 1.2.(ii). As supp,,(B(z))
and suppy,(B(y)) in (3.4) are both contained in W', we have only to show the existence of

® € RBimodgr(B(z), B(y)) with ®(uy) = u,. Note also that Vt1,t, € T distinct,
(1) oy and o are linearly independent over K.

For let £ + &0y, = 0 with &;,& € K. Take v € V' with (v,0y)) = 0 and (v, oy,) = 1. Then
0= (v, &0y + &) = & As o, # 0 by the standing hypothesis, & = 0 also.

Thus, Frac(K)ay +Frac(K)ay, is 2-dimensional, which is contained in Frac(K)ay +Frac(K)o,’

al 1 =za) Vo e W by (1.1). It follows that
(2) Frac(K)e,, + Frac(K)e,, = Frac(K)a, + Frac(K)q, .

Note next that we may assume K is infinite by base change, e.g., to K[v] which is free over
K; if we let C(R[v]) denote C over R[v] = R ®x K]v],

C(R[v])(B(z) ®x K[v], B(y) ®x K[v])
~ C(R[U])(R( ) ®x K[v], -+ % B(t) * B(s) * B(y) @x K[v]) Dby (2.6)
~ C(R(e), - * B(t) * B(s ) B(y)) ®x K[v] by (1.6.2); VM € C with supp,, (M) C W',

(M &g K[v]))9") ~ Q(v) @p M ~ Q(v) ®g M? = Q(v) ®¢ [[ M, and hence
zeWw’

(M @x K[])2) =~ Q(v) ©g M2
~ C(B(z), B(y)) @k K[v].

Thus, if -, ®; @ v' € C(R[v])(B(z) @k K[v], B(y) @k K[v]) sends u, ® 1 to u, @ 1, $o(uy) = uy,.
We may then regard R®x R as the K-algebra of rational functions on V'V x V'V with V'V denoting
the K-dual of V.

Ve e W, let Gr(z) = {(f,27 ' f)|f € VV}. VAC W', let

R(A) = (R®x R)/1(UpeaGr(z)) = (R®x R)/ Nyea (ra®1—1®ala € R)
< H{(R@K R)/(za®1—1®ala € R)}

T€A

:HR
A
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using
(3) (Rox R)/(ra®1—1®ala € R) > R via a®b— a(xb).
Thus,

a®br—— (a(zb))sea
R@K R— HA R,

(4)
R(lA)

which induces by base extension

(5) RA® S]] @

To see that, note first that, as W' is faithful on V', Vo € W'\ {e}, ker(z —id) < V. Then
V' D Ugewn ey ker(z — id) as K is now infinite; here we could even argue over Frac(K). Take
c € V\ Ugewn(ey ker(z —id) C R, so xc # ¢ Vo € W'\ {e}. Vo € A, let ¢, € R ®k R such
that ¢, (f,g) = HyeA\{x}{c(f) —c(yg)} Vf,g € VV. Thus, ¢, = 0 on Gr(y) Yy € A\ {z} while
¢z # 0 on Gr(z). Then, V(g,|z € A) € [[4 @,

Yt e = ().

) Cx |Gr(a:)

in QRr{[[Lca(R®x R)/(za®1—-1®ala€ R)} ~[[,Q.

In particular, R(A)? = [[,c4 R(A)Y = [Lew R(A)Y with R(A)¢ = Qg {(R®x R)/(za®
1 —1®ala € R)}, and hence

(6) R(A) € C™.
One has R({z}) ~ R(x). We will abbreviate R({x1,...,x,}) as R(z1,...,x,).

Let R(A)" be the image of R ®k R® in R(A).
Lemma: IfAs=A in W', R(A)T @rs R = R(A) via p @ a > ¢(1 ®a).

Proof: We have only to show that the map is injective. Take 6 € V with (§,«)) = 1. As
R = R* ® dR* by (2.1), one has a CD

R(A)* @+ R s R(A)

{R(A)" @ps R°} @ {R(A)T @ps R} —— R(A)T + R(A)T(1®9).

Thus, it is enough to show that R(A)" N R(A)T(1®0) =0. Let f =g(1®), f,g € R(A)T,
which reads f, = g,(26) Vo € Ain [[, R. As A= As and as both f and g belong to the image
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of R XK R?

Jo = fas Dy (3>
= gus(x50) = g, (2s0) likewise.

Then 0 = g, (2§ — xsd) = g.(za,), and hence g, = 0 Vx € A. Thus, g = 0.
3.7 Lemma: Let x € W' with xs > x and A= {y € W'|ly < z}. Then
R(A) ®r B(s) ~{R(AU As)(1)} ® {R(AN As)(—1)}.

Proof: Assume first that x = e. Then A = {e}, As = {s}, AU As = {e, s}, and AN As = 0.
Thus, we are to show that B(s) ~ R(e, s)(1), and hence we have only to show that

Rex R —% R(e, s).

R®pgs R

Take 6 € V with (0,a)) =1. As R®r« R=R®p- {R*B0R°} by (2.1),let a®1+b®0=0
in R(e,s), a,b € R. Then, calculating in J,, , R by (3.6.3), one has

0=(a®1+b®d).=a+ bd,
0=(a®14+b®0d)s=a+b(sd) =a+0b0— ay),

and hence ac;, = 0 in R. Then a = 0, and hence also b = 0. Thus, R ®ps R = R(e, s), as
desired.

Thus, we may assume x > e. As xs > x, a reduced expression of x must end with ¢ and
(1) A\ As={y e Wly <x,ys £ z}
{{x, tz} if £(x) is odd,

{z, sz} else

_ vt if (x) is odd,
= {x,2r} withr = { .

x sz else.

As xs > x again, r # s. Take vy € V with (v, ) = 0 while (vg,)) = 1, and put § =

r

2 ®1—1®v € Vg RC R®k R. We show next that, Vo € R(A),
(2) ¢& =0in R(A) iff $ =0 in R(AN As)
under the restriction R(A) - R(AN As).

“if” We show ¢ =0 in [[4 R, ie., (¢§), =0Vy € A. As ¢, =0 Vy € AN As, we have only
to verify that £, =0 Vy € A\ As = {z,2r}. But

&= (rvy®1—-1®wv), =zv9—yvy by (3.6.3)
=0 asrvy =g
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“only if” It is enough to show that £, = 0 Vy € AN As. Just Suppose 0 # {'y = xvg — Yvy for
some y € AN As. Then vy =y~ tzvg = y~twrvy. By (3.5.1) either y~'z or y~'zr € T’, which
we denote by z; {z} = {y~'z,y tzr} NT’. Thus, 2vy = vy, and (v, r) =0 = (vp,)). But
r#zifr=z=ylo,y=aort=xr€ A\ As, absurd. If r =z =y~ tar, y = x ¢ As, absurd
again. Then by (3.6.2)

Frac(K)a,” + Frac(K)a) = Frac(K)a, + Frac(K)a,',
and hence 1 = (vg, ) = 0, absurd.
If Ann(¢) = {¢ € R(A)|p¢ = 0}, (2) yields in RBimod
Olanas R(AN As) < A)/Ann(g) -

. \ /

Thus, R(AN As)(—2) ~ R(A)¢{. Also, (3) induces

R(A N AS ............................................ )+€’
R ®k R?
and hence
(4) R(AN As)*(=2) ~ R(A)*¢

Consider next res : R(AU As) — R(A). Under the right multiplication of s on AU As
let R(AU As)® = {¢p € R(IAU As)|o(f, 271 f) = o(f, (xzs)" 1 f) Vf € VV.Vox € AU As}. If
¢ € R(AU As)® with ¢|a = 0, ¢|as = 0 also, and hence

R(AU As) —— R(A).
5 T
) T
R(AU As)®
Also, R(AU As)™ C R(AU As)*; Va € R,Vbe R*, Vf e VY, Vo € AU As,
(6) (a®b)(f,27"f) = a(f)b(a"f) = a(f)(sb)(@™" f) = a(f)b(sz™"f) = (@@ b)(f, (x5) " ).
Let M be the image of R(AU As)™ in R(A) under (5). Then we are left to show that
(7) R(A) = M & R(A)7E,
in which case

R(A) ®r B(s) ~ R(A) ®gs R(1)
~ {R(AU As)" @ps R(1)} ® {R(AN As)T(=2) ®rs R(1)} by (4)
~ R(AUAs)(1) @ {R(AN As)(—1) by (3.6).
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Now,

M+ RA)Y¢ ¢« Rox P+ (R R)E = Rk R°+ R®x R°vy as E=av9 @ 1+ 1 ® vg
=R®g R as R°+ R°vg = R°® R’vy = R by (2.1),

and hence M + R(A)"¢ = R(A).

Let finally ¢¢ = m for some ¢ € R(A)" and m € M. Let ¢ be a lift of ¢ in R ®x R°®.
Consider ¢ = ((by) and m = (my) in [[ 44, B. Thus, Yy € AN As,

my = ngéy = éy(mvo — yvo) by (363),
mys = ngsgys = ¢Eys (iU'UO — yS?}o) likewise

~

with m,; = m, and ngSys = <;A§y by (6). Then 0 = qu(yvo — ysvg) = ¢y(yay). Thus, ¢ =0 in
R(AN As). Then by (4) one has ¢ = 0 in R(A), and (7) holds.

38. If z € W with zs > z, (< z) U (< z)s = (< xs), and hence R(< zs)(1) is a direct
summand of R(< z)®g B(s) by (3.7). Thus, for a reduced expression w = (..., s,t) of w € W',
R(< w)(1) is a direct summand of R(< wt) ®g B(t), R(< wt)(1) is a direct summand of R(<
wts) g B(s),. .., and hence R(< w)(¢(w)) is a direct summand of - - - ®g B(s) ®g B(t) = B(w).
Likewise if (..., s,t) is a reduced expression. Thus, in either case

(1) R(< w)(¢(w)) is a direct summand of B(w).
In particular, R(< w)(¢(w)) € C.

In our set up (3.3), x and y are both reduced expressions of the longest element zy of W'
and [ = {£(z). Thus, R(< 2)(l) is a direct summand of both B(z) and B(y). Write

,,,,,,,, LS B(y).

o

R(< Zo

Lemma: One has

Proof: If w is a reduced expression of w € W', dim B(w)%? = 1 by (2.3), and hence B(w) =
R(< w)(l(w)) & M for some M by (1) with supp,,(M) C (< w) by (2.4). Thus,

B(z) ——— R(< 20)(0)
B(z)™ = {R(< z) (1)} : l l
B(z)™ o {R(L 20)(1) .
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Likewise, { R(< 20)(l)}* ~ B(y)*, and hence the assertion.

3.9. We now complete the proof of (3.4). Define a homomorphism of graded R-bimodules
m¥: B(z) — R(z)(l) via ROps ROpt R+ 3 ag® a1 ® -+~ ®@ a; — ap(say)(stag) ... (st...a).
By (3.5) and Rmk. 1.2.(ii) one has m% € C, which induces by (1.4.v) a surjection mZ €
C(B(x)*, R(2)(l)). Then mZ is invertible by consideration of rank. Likewise, B(y)® o~
R(z)(l) ~ B(x)*>.

Finally, B(z)™" (vesp. B(y)™') is free over K of basis u, (resp. u,). Then by (3.8) we must
have ®(u,) = cu, for some ¢ € K*, and hence ¢~'® will do.

4. Light leaves

We recall from [EW16] Libedinsky’s light leaves [Lib], to describe a basis of B(z)" among
other things. From now on we will assume K is local, so that a direct summand of a graded
free left R-module remains graded free [Lam, Cor. 11.5.4.7, p. 79].

4.1. Let w € W and z,y € S“® 2 reduced expressions of w. Thus, there is a sequence of
reduced expressions 2° = z,z!, ..., 2" = y such that each pair of 2’ and z'+! differs by a single
braid relation. Under the standing hypothesis (3.3) there is ¢; € C(B(z), B(z't!)) such that
Ugi —+ Ugi+1. Their composite B(z) — B(y) is called a rex [EW16, 16.4.2], so that

(1) rex(uy) = uy.

Vs € S, Va € R, set 05(a) = “;**, which is a twisted derivation: Vb € R, Os(ab) =
(0sa)b + (sa)dsb. Define m* € RBimod(B(s), R)! via

R®R®prs R2a®b— ab € R,
i& € RBimod(B(s) * B(s), B(s))™! via
R®ps RQps R2a®@b® cr ads(b) ® c € R®ps R,

and set i§ = m® 0§ € RBimod(B(s) x B(s),R)" : RQgrs R®Qps R 2 a®b® c +— ads(b)c € R.
As (s) acts faithfully on V, one has from Rmk. 1.2(ii) that

m® € C(B(s), R(1)), i€ C(B(s)*B(s),B(s)(~1)), i €C(B(s)*B(s),R).

42, Let z = (s1,...,8.) € S", e = (ey,...,e.) € {0,1}", w = z°. Fix a reduced expresson w
of w. We define a light leaf LL, . € C(B(x), B(w)(d(e))) inductively as follows; the definition
will depend not only on the choice of reduced expression w but also on the choices of rex’s
involved, but that will not be important. Let ., = (s1,...,5),e<x = (e1,...,ex), and
wy = 2255 = s§'... stk Recall from (3.3) labels U, D, and the defect d. Fix a reduced

expresson w,, of wy and define LLy € C(B(z,,), B(w,)(d(ex))) in 4 cases as follows:

Case UO: ey = 0 and wg_15; > wg—1. Thus, d(e<k) = d(e<x—1) + 1, and w,, is a reduced
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LLk§ l w<k 1 ®Rm5k

B(wy)(d(e<k)) < o Blwey—)(d(e<k)),

Case Ul: e, = 1 and wy_15, > wi—1. Thus, d(e<x_1) = d(e<) and (wy_;, Sx) is a reduced
expression of wy.

LL;_1®RrB(sk)
S

B(igkfl) * B(sk) ) B(wgkfl)(d(eﬁk—l)) * B(sy,)

. lrex
LLy Ty
Bw<y)(d(e<k)),
Case D0: e, = 0 and wg_15; < wg—1. Thus, d(e<;) = d(e<x—1) — 1, w,, is a reduced
expression also of wy_; = s§'...s5 ' = si! SZ’“ = =" = wy, and there is a reduced

expression (t1, ..., sx) for wy_.

LLi_1®@RrB(sk) rex® g B(sy)

Bz 1) * B(s) ——— B(w<_1)(d(e<k-1)) * B(sy) ———— B(t1,...,t, s)(d(e<r—1)) * B(sk)

B(ty, ..., t1)(d(e<k—-1)) * B(sk) * B(sk)
Ll lB(tl »»»»» ) (d(e<s—1))®Rigk

B(w,,)(d(e<xk)) < Tex B(t1, ...t sx)(d(e<k—1) — 1).

Case D1: e, = 1 and wg_15 < wg—1. Thus, d(e<y) = d(e<k_1), there is a reduced expression

(t1,...,t;, ) of wy_1, and hence (t1,...,tx_1) is a reduced expression of wy, = wy_1 k.
LLi_1®RrB(sk) rex®p B(s
Blzcyy) * Blsk) ———— Bwe,_)(d(e<k—1)) * B(sk) =% B((ts, ..., ts, si))(d(er1)) * B(se)
LLk:} lB((h ,,,,, t1))(d(e<k—1))®Ri
B(w,,)(d(e<k)) < o B((t1, ..., t))(d(e<k_1)).

Set now LL, e = LL,. One could define LL,, (i, 1) = idp) by taking each w, as a subsequence
of w and taking id for rex in each case Ul, which, however, is not important.

43. Fix x = (s1,...,8,) € S".

Lemma: Lete,f € {0,1}" with 2® = zf. If the labels U/D of e and f coincide at each place,
e="f.

Proof: We argue by descending induction on r to show that e; = f; Vi € [1,r].

€r—1

If the labels of e and f at r are both U, s'...s77's, > si'...s. ", Assume first e, = 0.

e f f e
Just suppose f, = 1. Then s{'...s07' = 2° = 2f = s]' ..., 's,, and hence s§'...s7 7 's, <
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el er 1 fl fr 1 fl fr—l . . .
s1'...8, 1, absurd. If e, =1 and f. =0, s7'...5,/ s, < s7'...s,/ likewise, absurd again.

Thus e, = £, if the labels of e and f at r are both U.

Assume next that the labels of e and f at r are both D. Then s7*...s."'s, < s7'...s077".

Assume e, = 0 and just suppose f, = 1. Then

er_ f— f_
s st =t =af =S s ls, < st s
el er—1 f f1 fr—1 e1
and hence s7'...s. 7 's, = 2°s, = zfs, = s ... 5, > st ... s0 ', absurd. Likewise, if e, = 1,

we must have f, = 1 also. Thus, e, = f,. if the labels of e and f at r are both D also.

Assume now that e; = f; Vj > 4. As s7'...s%" = 2° f = ?...sfr s s% =gt s

by the induction hypothesis. Then e; = f; as in the case ¢

|| |H

4.4. Let w € W and z € §". By (4.3) one can introduce a total order <, ,,, abbreviated simply
as <, on {e € §"|z° = w} in such a way that f < e iff Ji € [1,7]:

(i) the labels of e and f are the same at j Vj < 1,
(ii) the labels of e at 7 is D,
(iii) the labels of f at 4 is U.

In particular, if (i) holds and if the label of e at i is U, regardless of the label of f at 1,
f > e Vs e S, choose ds € V such that (0s,)) = 1. Ve € {0,1}", define b, € B(z) by
bye =b1 g - Qr b, € B(s1) *---* B(s,) = B(z) with

b 1®1 if the label of e at ¢ is U,
)6, @1 else.

Proposition: Let e, f € {0,1}" with 2° = w = 2. Fiz a reduced expression w of w. Under

LL,. € C(B(x), B(w)(d(e))) -

u, iff=e,

Llge(ber) = {0 iff<e

In particular, {LL,c|lz® = w} is a left/right R-linearly independent set. Also, deg(bye) =

—d(e) — ((w).

Proof: We show by induction on k that

u&k if fgk = €<y,

0 if fgk < ecy.

LLk(bESkyfgk) = {

To start the induction, let k = 1. By definition the labels of e and f at 1 are U, and hence

b, =1®1. If e =0, we are in Case U0 and

,<1:f§1

LLl(bgghfSl) =rexom™(1®1) =rex(1) =1 =u,, asw, =0=uw,.
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If e, = 1, we are in Case Ul and

LLi(by_ p.,) =1ex(1® 1) =1®1

= Uy, aswy=s; and w; = (s1).

Assume now that the labels of e<;, and f<;, are the same at all places, and hence e<;, =<k by
(4.3). Assume first that the label of e at kis U, and hence b,_, ., = bp_, ec), = bz, e, ®1®1
by definition. If e, = 0, we are in Case U0, and, suppressing the shifts in the following, have

LLk(bigkvfgk) =1rIexo (B<wk71> Y] mSk) © (LL/C—I R B(Sk)>(b£§k717f§k—1 ®1® 1)
=rex o (B(wy,_,) ®g m*)(uy, , ®1® 1) by the induction hypothesis
=1ex(Uy,  ®1) = rex(ty, ,)
= Uy, by definition (4.1.1).

If e, = 1, we are in Case U1, and have

LLk(bgfkvak) =T1ex o (LLk_l ®R B<Sk))(b§§k,1,f§k—1 & 1 & 1)
= rex(uy, , ®1®1) by the induction hypothesis

= rex(Uy, ) = Uy, -

Assume next that the label of e at k£ is D, and hence b

2tk = b@gkvegk - b&gk,pfgkq@d?k@l'
As wy_18, < wy_1, let (t1,...,1;, sk) be a reduced expression of wy_;. If e, = 0, we are in Case
DO, and have
LLk(b§§k7f§k> =TIex o (B(tl, Ce ,tl) ®R ng) o (rex ®R B(Sk))

o (LLp—1 ®r B(8k))(bae,_, fepy @05, ®1)
=rexo (B(ty,...,t;) ®prig") o (rex Qg B(sp)) (U, ® 5, @1)
by the induction hypothesis
=rexo (B(ty,.... 1) Qr ") (Ug,.. 1,50 @ 05, @ 1) by (4.1.1)
..... 0 @i (1@, ®1)) asl®1®6,, ®1—1®J, ®1 under
B(sy) * B(sy) = R@ps RO R@psx R = R ®pw R @ps R

= 1ex(U(ty,..) ® 1 ® 1) = rex (U, 1,5)) = Uw

77777

= rex(u(,

L
If e, = 1, we are in Case D1, and have

LLi(bs_, o) = rexo (B(ty, ... 1) ®riy*) o (rex ®p B(s))
o (LLy—1 ®r B(8k))(bae,_, fepy ® 05, ®1)
=rexo (B(ty,...,t) ®ri}*) o (rex ®r B(s)) (Uw,_, ®ds, @1)
by the induction hypothesis
=rexo (B(ti,...,t) ®r17")(Uty,..t,50) @ 05, ® 1) by (4.1.1)
=rexo (B(ti,...,t) Qr i) (u@,,..4) ® 1@ 05, @ 1)

.....
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Thus, we are done in the case that e<), = f<;, and hence LL; ¢(bye) = Uy-

Assume finally that f < e. Take k such that the labels of e and f are the same up to k — 1
and the labels of e (resp. f) at kis D (resp. U). Then by_ ¢, = bs_,_ £, ® 1® 1. As the
label of e at k is D, wg_15, < wg_1, and hence wy_; admits a reduced expression (¢y,. .., 1, Sk).

If e, = 1, we are in Case D1, and have

LLk(bigkafgk) = TIex o (B(tl, ce ,tl) KRR Zi ) e} (l"eX KRR B(Sk))
o (LLk 1 ®RB( k))(b Zop_1.f<k—1 ®1® 1)

=rexo (B(t1,..., ;) ®grij*) o (rex ®g B(sk))(uwgk_1 ®1®1)
:reXo<B(t1> ) Rll )(Utl ..... t1,5k) ®1®1)
=rexo (B(ty,...,t) Qr i) (U@, ®1®1® 1) =0.

If e, = 0, we are in Case D0 and

LLi(be_, ty) = 1ex0 (B(t1,... . 1) ®Rig") o (rex ®p B(s))
o (LLy—1 ®r B(sk))(bae,_,fep , ®1®1)

=rexo (B(ty,..., 1) ®riy") o (rex ®r B(sg))(tw,,_, @ 1® 1)
:reXo(B(tl,. 1) @R 10 (Uit @1 ® 1)
=r1exo (B(t1,...,t) ®r ") (U@, ®1®1®1) =0.

4.5 A basis of B(z)": Let w € W,z € §",e € {0,1}" with 2° = w. Let by, be the image of
bye € B(z)~4®9~4") in B(z)* under the projection 7% : B( ) — B(z)". L ot w=(t,...,t) €
S, 1 = ((w), be a reduced expression of w. Recall m' € C(B ( i), R(t )( )) i € [1,1], via
a® b a(td) from (2.2.17), and set m¥ = m't o (B(s1) xm™)o---o (B(ty,...,t_ 2)*mtl*1)o
(B(t1,...,ti-1) *m") € C(B(w), R(w)(¢(w))). Thus, m¥ : B(_) ® Rt R - Qpu R >
ap®a; Q-+ a; = ag(tray) ... (11 ... GLay).

Theorem: (i) B(x)" is left/right graded free over R having a basis {by

gl"k Z ,Ud(e +o(w) __ - (w )pg
ec{0,1}"

e=w

|z = w}, so

In particular, B(z)® ~ R(z)({(x)) of basis b7 ) = m5(ug).
(i4) {m¥ o LL,c|z® = w} forms a left/right R-linear basis of C*(B(z), R(w)).
Proof: By (4.4)

m%(u,) =1 iff =e,

Mm*(LLge(byg)) = {0 iff<e
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Asm®o LL,, € C(B(z), R(w)(l 4+ d(e)), one obtains from (1.4.v)

m¥PoLL, e

B(z) ———— R(w)(l + d(e))

B(z)®

w 1 iff=e,
77Z)e(bg,f> - { .

such that

0 iff <e.

Thus, {by.|z® = w} is a left/right R-linearly independent set. Moreover, by descending in-
duction on e there is ¥, € Yo + Y yuo R such that Vf with 2f = w, ¢¥L(b%) = O¢e.
Then []._, Rby, — B(z)" splits via ) ., ve(m)by, <+ m, and hence one can write
B(z)" =N &]L._, Rby . with some left /right R- module N Then in B(z)%

(Bx)")? =N ] Qv¥.

But

dimg(B(z)")? = p¥(1) by (3.2)
= dimg( [ @b¥.) by (3.3),

ze=w

and hence N9 = 0. As N < B(z)" is torsion-free over R, we must have N = 0, and hence
B(z)" =[] e_,, Ry Then

gl“k(B(@)w) _ Z pde+ — Z v

re=w rze=w

=u'p¥ by (3.3).

(ii) As (¢,|z° = w) forms a dual basis of (b¥,|z° = w),
RMod(B H Ri.

where the left R-linear structure on the LHS is such that (a¢)(m) = ¢(am) = ap(m), m €
B(z)". Asp € Vet s RUL, (Ye|2® = w) also forms a left R-linear basis of RMod(B(z)", R).
As CH(B(x), R(w)) = C(B(x)", R(w)) ~ RMod(B(x)", R) and as tie(byg) = (m®o LLye) (b2,)
Vf <e, (m¥o LL,|2° = w) forms a left R-linear basis of C*(B(z), R(w)). Likewise as a right
R-module.

4.6 VB € 6Bimod, Yw € W, B" is graded free over R by (4.5), and hence

~ [[{R(w)()}*™ Im; € N,

i€EZ
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Corollary: B, is left/right graded free over R. In particular, Vx € 8",
grk(B(z)y,) = v_é(“’)pg(v_l).

Proof: We may assume B = B(z) for some z € §”. Then

B(z), ~ D(B(z)), by (2.10)
~ D(B(z)") by (2.8).

As B(z)" is R-graded free of graded rank v/)p¥ by (4.5), so therefore is B(z),, by (2.9) with

grk(B(z),) = grk(B(z)*)(v™!) = v Wpy(v7h).

4.7 Corollary: Let w be a reduced expression of w € W. VB € GBimod, one has, as graded
left /right R-modules,

CH(B,B(w)) > RMod(B", B(w)")

\» |2
C(B, B(w)").
Proof: Note first that

C*(B, B(w)*) =~ C*(B", B(w)") by (1.4.v)
— RMod(B", B(w)").

We may assume B = B(z) for some z € §". By (4.5.1) one has a CD

CHB(z), B(w)) — C*(B(z), B(w)")

t(B(x ,mﬂ\’\ ll
CH(B(z),m®) CHB(z), R(w)(L(w)))

with C*(B(z), m%)(LL,e|2z® = w) forming a basis of C*(B(x), R(w)(¢(w))) by (4.5).
4.8. We say I C W is W-open iff Vw € I, Vu' € W with w’ < w, w’ € I; such a subset is called

“closed” in [Ab19a]. The present terminology appears in better accordance, however, with the
one in [Ab19b]. See (8.1) for more details.

Lemma: Let I be a finite W-open subset of W and w a mazimal element of I. There exists

enumeration wy,we, ... of elements of W such that Vi € Nt {wy,ws,...,w;} is W-open,
w=wy, and I = {wy,...,wy}.

Proof: Put & = |I|. Let wy,...,w;_1 be enumeration of elements of I \ {w} such that
Vi,j € [Lk[, w; < w; = 1 < j. Let wy41,... be enumeration of elements of W\ I. Put

w = wy. Then {wy,...,w;} is W-open Vi < k as I is W-open. Let i > k and let w; < w;,
JeEN. Ifj<k,j<i Ilfj>k, k+1<j<iby construction. Thus, {ws,...,w;} is W-open
Vi e N*.
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4.9. VLL, e € C(B(z), B(w)(d(e))), let LL; ., = D(LL,). Thus, one has from (2.10) a CD

LLV

BUw)(=d(©)) v » Bla)

: | D(LL: e | Z
D(B(w)(d(e))) (o) » D(B(z))
[l [l
Mod R(B(w)(d(e)), R) » ModR(B(z), R).

ModR(LLy,e,R)

Let 7% : B(z) — B(x)" be the projection. Let I be a W-open and w € I. Then B(z)p{uw) =
B(z)n Hye[\{w} ()¢ = ker(B(z); — B(z)“), and hence

Yy

which we will still denote by 77",

Theorem: Assume that w is a maximal element of I. Let w be a reduced expression of w and
x €S8 Then (my (LLy o(uy))|z® = w) forms a left/right R-linear basis of B(x)1/B(Z)n {w}-

Proof: Put I’ =1\ {w}. By (2.4) one has suppy,(B(w)) = {y € W]y <w} C I. By (1.4.v)

B(w)(~d(e)) —> Blz) — ™ B(a)”

N T ]

" B(x)r — B(2)i/B@)r.

and hence 73 (LL} .(uy)) € B(z);/B(z)r. One has
B(&)I = B<£> N H B(@)g = B(i) N H B<£>§ - B(@)IﬁsuppW(B(g))a
yel yelNsuppyy (B(z))

and B(z)r = B(Z)rnsuppyy(B(z))- Thus, there is nothing to show if I N suppy,(B(z)) = I' N
suppy,(B(z)), and hence we may assume w € suppy,(B(z)). Also, I Nsuppy,(B(z)) = {I N

(Uyesuppyy (B(@)) (£ 4))} Nsuppyy (B(z)). Then

B(z)r = B@)Iﬁsuppw(B(g)) = B(l)lﬁ{uyesuppw(s<£))(Sy)}ﬂSUPpw(B(g))7
B(z)r = B(2)rrsuppy(B@) = B(Z)1'0{Uy couppyy (50 (<1 10510y (B(2))
= B(Z){10(Uycouppyy (52 (<)) Msuppyy (Bl@) P\ {w}

Thus, replacing I by I N {Uyesupp,y(B2) (X ¥)}, we may assume that I is finite.

We first show that the 7y (LL) (uy)), 2° = w, are left/right R-linearly independent in
B(z)". As B(x)" is graded free over R by (4.5), it is enough to show that they are linearly
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independent over ). From (4.5.1) one has a CD

B(w)(~d(e)) ——— B(z)

mﬂ(:d(y |t |

(2) R(w)(f(w) = d(e)) = B(w)*“(=d(e)) -~ > B@)"
(1.4 1)] ](1.4.1)

B(w)w(=d(e)) 4y > B@)w.

As m¥(uy,) = 1, m¥(—d(e))(uy) # 0. On the other hand, from (2.8) and (2.10) one has a CD

rTw

As (B(w)*)? ~ Q ~ B(w)? by (1.4.ii), letting u}, € B(w)¥ denote the element corresponding
to (72)%?(1 ® uy), one has from (2) and (3)

(my 0 LLyo)?(1® uy) = (LL o o D(m*)(=d(e)))? (uy,).

Thus, we have only to show that the (LLY, o D(m®)(—d(e)))?(u,), 2° = w, are linearly
independent over ().

Now, by (4.5) the m% o LL, ., 2° = w, are linearly independent over R in C*(B(z), R(w)).
Recall from (4.5) (resp. (2.7)) that the R-bimodule structure on C*(X,Y) (resp. D(X) =

ModR(X, R)) is given by (a¢b)(x) = ¢(axb) = ap(x)b (resp. (afb)(x) = f(azxb) = f(ax)b)
Va,b € R,V € X. Then

{(@(D))(f)}(z) = {a(De)()}(x) = {a(f o
= [((a9)(x)) = (f o (ag))(z
¢)a

and hence a(D¢) = D(a¢), likewise (D¢)a =
by (4.5), LLye 0o D(m%) = (D(m%o LL, ), 2°

O)}Hx) = (f o d)(ax) = f(d(ax)) = f(ad(x))
{D(ag)(f)}(x),

)=
D(¢a). As C*(B(z), R(w)) is graded free over R
= w), are linearly independent over R in
C*(D(R(w)), D(B(x))) < RBimod(D(B(w)"), D(B(z))) by (3)
~ RBimod(B(w)., B(z)) by (2.8) and (2.10).

Then, the (LL, o0 D(m%)(—d(e)))? are linearly independent over @ in QMod(B(w)%, B(z)%).
As B(w)% ~ Q, we must have the (LLye o0 D(m®)(—d(e)))?(us,), 2° = w, linearly independent
over Q in B(x)?, as desired.

Let next wy, wy, ... be an enumeration of elements of W as in (4.8). Fix a reduced expression
wy, of wy for each k € N*. Put I(k) = {wi,...,wy} and consider a filtration B(z),, =
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B(g)[(l) S B(g)[(g) S ... of B(g) with
(4) H Ry (LLy o () € B(2)10)/B(2) 1(-1)-

We must show that the containment is an equality. Assume first that K is a field. As deg(u., ) =
—((wy,) and as LL . € C(B(w)(~deg(e)), B(z)), Rry*(LLy (uw,)) = R(wp)(((wi) — deg(e)).
Then o

(5) grk( H Rry*(LL, o(tw,)) Z ptwr)—deg(e)

re=wy Te=wy

= vg(w’“)p;”k(v_l) by (3.3).
On the other hand,

ZU (wk)pgk *1 Z v

=@w+vH)" by (3.1)
= grk(B(z)) by (2.5).

Thus, if K is a field, one obtains from (1.8) that (4) is an equality.

In general, let m be the maximal ideal of K. By above one has a CD

{B(z)r)/B(@)16-1)} ®x (K/m)

(6) - — |

oo, (R/mR)TH (DL o (U,) == {B(z) @k (K/m)} 10 /{B(z) @x (K/m)} 1),
and hence
(1) {B(@)1/B@)16-1)} ®x (K/m) — {B(z) @k (K/m)}iw)/{B(z) ©x (K/m)} -1 k.
Then, also, B(z)rx) ®x (K/m) — {B(z) ®x (K/m)} )

We show by descending induction on & that (7) is invertible, and hence (4) will turn an
isomorphism upon base change to K/m. To begin the induction, take k > 0 so B(z) = B(z) 1)
Assume now 1nduct1vely that B(x)ia)/B(x) -1y is graded free for k' > k, so therefore is

B(z)/B(x) ). Then B(z)u is a direct summand of B(z), and hence B(z) ) ®x (K/m) —»

{B(z) ®k (K/m)} 1(k) is injective as well, and hence invertible. Thus, one has a CD of exact
TOWS

B(2)r(k-1) ®x (K/m) —> B(z)1) @ (K/m) ———— {B(2)1x)/B(@) 11y} ©x (K/m) —— 0

| | l

{B(z) ®x (K/m)}r(-1) = {B(z) ®x (K/m)} ) = {B(z) @k (K/m)} 1) /{B(z) @k (K/m)} -1y = 0.
Then by the 5-lemma [Hfif], Lem. 4.2.23, p. 248] (7) must be injective as well.

Now,
R ek (K/m) = Sx(V) @k (K/m) ~ Sg/m(V @k (K/m)).
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As B(z)rx)/B(x)1g-1) is a subquotient of B(z), it is of finite type over R, and hence each
homogeneous piece {B(z) )/ B(z) -1y}, ¢ € Z, is of finite type over K. One thus obtains by
graded NAK [BH, Ex. 1.5.24(b)]

[T Rr(LLY o(uwy)) = {B(2)r09/B(@) o) }-

Tre=wy

4.10. Remarks: (i) As (4.9.7) is invertible, one obtains also B(z)x) ®x (K/m) ~ {B(z) ®
(K/m)} k). Any finite W-open I can be realized as I(k). Thus, VB € &Bimod, V W-open I,
one has

(ii) Let R? = Rt e 7'] We know from (2.2.16) that any B € G&Bimod splits already over
RY R°@p B =1],en BY with BY = (R"®z B)N BY. Then, ¥.J C W, one has exact sequences

0—B,»+B— [] B
weW\J

and
0= {Bex (K/m}, = Beg (K/m) = [ (Box (K/m)b,
weW\J

where (B ®k (K/m))? is the w-piece of (B ®x (K/m))? = (R @k (K/m))[ai|5 € S| @ Rrew(K/m)
(B ®x (K/m)). As B(x)? (K/m) ~ (B(z) ® (K/m))? for all z € S™ and w € W, one has
B? ® (K/m) ~ (B ® (K/m))? also. Then

(1) B @k (K/m) — {B @k (K/m)},,
which induces (4.9.7).

(iii) Assume in (ii) that K is a DVR. We show that (1) is invertible. Write m = ¢K. Let
b € B, vanishing in {B ®k (K/m)};. Then b € mB, and hence b = &' for some ¥ € B. If we
write b = Zwew b, in (B ®x (K/m))? with b/, € (B ®x (K/m))? &b, =0Vw € W\ J. As
(B ®k (K/m))? is torsion-free, we must have b/, = 0 Yw € W\ J. Then ¥ € Bj, and hence
be mBJ. ThUS, BJ XK (K/m) ~ {B XK (K/m)}J

4.11. Let B € GBimod.

Corollary: (i) Yw € W, B" is left graded free over R.

(i) VI W-open, Yw € W mazimal in I, B<,,/B<w = Br/Bpjw}-
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(111) If w is a reduced expression of w € W,

C*B(w), B) +——~— C¥B(w), B<y,)

L 1

fu)  Ba CH(B(w), Beu/B-u)
,g \L 2|
BSw/B<w Cﬁ(B(w)v (Bﬁw)w)

il !
(B<w)” «——=— CH(B(w)", (B<w)")-

Proof: We may assume B = B(z) for some z € §". (i) follows from (4.5.i). One has

B(iL‘)<w < > B(Z)I

| |

B(2)<w/B(x)<w > B(x)r/B(Z)nfw}-

As the my (LLy o(uy)), 2° = w, give a basis of both B(z)<w/B(2)<w and B(z);/B(z)n w) by
(4.9), (i ) follows.

(iii) As suppy,(B(w)) = (S w) = {y € W]y < w} by (2.4), one has

Ci(B(w), B(z)) 57— CH(B(w), B(z)<w)

(1.4.v)
|

CHB(w), (B(z)<w)")

4

CHB(w), B(z)<w/B()<w)

z‘(m.v)
CH(B(w)", B(z)<w/B(2)<w)
B(z )<w/B( Jew g CHR(w)(E(w)), Bew/Bew),
under which LLY o+ 7%(LLY ((uy)) by (4.9.1). As the 7¥(LLY (1)), 2° = w, form a basis

of B(z)<w/B(z )<w by ( 9), the assertion follows.

4.12. Recall the set T = UyepwSw ™! of reflections. Let w € W and put f = [ ay € R, which

teT
tw<w

is well-defined up to K* (1.1). As ¢(w) = |{t € T|tw < w}| [BB, Cor. 1.4.5], deg(f) = 2¢(w).

Proposition: VB € GBimod and w € W, there is an isomorphism of left/right graded free
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R-modules By, ~ f(B<w/B<w) =~ (B<w/B<w)(—2¢(w)) such that

B, ——— B,

l

f(B<w/B<w) —— B<w/B<w.

Proof: We may assume that B = B(z) for some z € §". From (4.6) one has B(x),, is left /right
graded free over R of graded rank v=“®)p¥(v=") while (72 (LLY ,(uy))|2® = w) gives a left R-
linear bas1s of B(z)<w/B(Z)<w by (4.9). Thus, B(z )<w/B( )<w is graded free over R of graded
rank v)p¥(v7!) by (4.9.4), and

(1) grk(f(B(z)<w/B(2)<w)) = v pl (v7") = grk(B(z)uw),

and hence B(z), and f(B(z)<w/B(Z)<w) are isomorphic as graded R-modules.

We know from (4.10.i) that

(2) (B(2)<w/B(2)<w) @ (K/m) >~ {B(z) ®x (K/m)}<./{B(z) ®k (K/m)}<w.
We show also that
(3) B(z)w @ (K/m) ~ {B(z) @k (K/m)}..

B(z) - B(z)" — B(z)® From (4.10.ii) one has a sequence B(z) — B(z)" — B(z)?, which
induces a CD

B(z) ®@x (K/m) —— B(z)” @x (K/m) ——— B(z);, ®x (K/m)

{B(2) ®x (K/m)}" —— {B(z) ®x (K/m)}].

As B(x)Y is graded free by (4.5), B(z)" ®k (K/m) ~ {B(z) ®x (K/m)}" by rank. Then, letting
Dg /m = Mod(R/mR)(?, R/mR), one has
B(z)w @k (K/m) ~ D(B(z)") ®x (K/m) by (2.8) and (2.10)
~ Dg/m(B(2)" @k (K/m)) as B(z)" is graded free of finite rank over R again
~ Dg/m((B(z) @k (K/m))")
~ {B(z) ®x (K/m)},, by (2.8) and (2.10) again.

Assume next that z is a reduced expression of w. Let us thus write w for z. One has
B(w)<w/B(w) <y ~ B(w)". We show that

B(w), <=2
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It will then follow from (1)-(3) and by graded NAK that B(w), — fB(w)”. We argue by
induction on ¢(w). The assertion holds if /(w) = 0 with f = 1. If {(w) = 1, see (2.2.14).
Write w = (s1,...,8,). Put s = 57 and sw = (sa,...,s,) a reduced expression of sw < w. Let
d € V with (0,aY) =1. As R = R° ®dR*® by (2.1), any element of B(w) = B(s) * B(sw) =
R®ps B(sw)(1) is of the form 1®@m+d®@m/’ for some m, m' € B(sw). Let 1@m+I@m’ € B(w),,.
Then supp,y (m), suppy,(m’) C {w, sw} by (2.3.1). As B(sw)* =0 by (2.3),

(4) mi, =0 = m,.

Then m' € B(sw)s,, and hence by the induction hypothesis

"e( H a;)B(sw

teT
tsw<sw

As1@m+d@m' € B(w)y, (1®@m+d®@m')s, =0. Then
0 = (Mgy + 0mly,, my + (s0)m.,) in B(w)fw P B(w)g by (2.3.1)

= (mgsw + 0ml,,0) by (2),
and hence mg, = —om’,. Thus,
Mg + (80)m, = —asml, = —am’ € ag( H o) B(sw
)

One has
Ht € Tjtw < w}| = €(w) =1+ £(sw) = [{s} U {sts7 |t € T, tsw < sw}|.

If tsw < sw, stsw < w as sw < w, and hence {t € T|tw < w} = {s}U{sts |t € T, tsw < sw}.

Then, up to K%,
s( H ) = s(—ay H ay),

teT teT
tsw<sw tsw<sw

and hence mg, + (s6)m., € (sf)B(sw)*™. Take n € B(sw) with mg, + (s0)m}, = (Sf)Nsw.
Then
Iegm+d@m' =1m+0@m),
= (M + oM, Mgy + (s0)m,) in B(w)? @ B(w)?, by (2.3.i)
= (0,mew + (s6)my,) by (4) again

= (0, (s)nsw)
= f(0,n4,) by (2.3.i)
= f(ny,Nsw) as n, =0 by (4)
= f(1®n), by (2.3.)
€ f(B@)® with B(w) = R ®p B(sw),

as desired.
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Consider finally z € 8" in general. By (1)-(3) and by graded NAK again we have only to
verify that f(B(2)<w/B(z)<w) < B(x)y in B(2)<w/B(x)<w. Let m € B(z)<,. By (4.9) we
may assume

m =y (LL} ,(uy)) Je with z° = w

Then
Ty (Uy))  with fry (uy) € B(w), by the case above

5. Categorification

In this section we assume that K is a complete noetherian local domain. Thus, C is Krull-
Schmidt [CR, pf of (6.10), p. 126]; [AJS, E.6] does not apply.

5.1 Indecomposable Soergel bimodules: Recall from (2.2.18) that each B(s), s € S, is
indecomposable in C'.

Theorem: (i) Yw € W, 3! up to isomorphism indecomposable B(w) € &Bimod: supp,,(B(w)) C
{r e W|x < w} and B(w)" ~ R(w)(¢(w)) in C.

(1) ¥ indecomposable B € GBimod, 3!(w,n) € W x Z: B ~ B(w)(n) in C.

(111) D(B(w)) ~ B(w).
(i) ¥V reduced expression w of w, Im,, € N: B(w) ~ B(w) & Hy<w,nez{B(y)(n)}®m”’y-

Proof: Fix a reduced expression w of w. Recall from (4.5.1) that B(w)"” ~ R(w)({(w)). As
suppy(B(w)) = {y € W]y < w} by (2.4), there is a unique indecomposable direct summand
B(w) of B(w) such that B(w)" ~ R(w)({(w)). Then

D(B(w))w = D(B(w)") by (2.8)
~ D(R(w)(f(w))) = R(w)(={(w)).

If M is an indecomposable direct summand of B(w) not isomorphic to B(w), M, < M" = 0.
As D(B(w)) ~ B(w) by (2.10), D(B(w)) is a direct summand of B(w), and hence we must
have D(B(w)) ~ B(w). By (4.5.1) again there remains only to show that an indecomposable of
GBimod is of the form B(w)(n) for some w € W and n € Z. Let B € GBimod indecomposable.
Let w € W with ¢(w) maximal such that BY # 0. Put I = {y € W|l(y) < ¢(w)}. Thus, I
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is W-open and B; = B. Then B;/Bpw ~ B*. By (4.5) and graded Quillen-Suslin B" is
left graded free over R. As B(w)" ~ R(w)({(w)), {B(w)(n)}" is a direct summand of B" for

some n € Z. Let {B(w)(n)}" # B™ be the associated imbedding and the projection. By
(4.7) let # € C(B, B(w)(n)) be a lift of 7 and by (4.11) let 7 € C(B(w)(n), B) be a lift of 4;
BY ~ B;/Bp uwy ~ Bew/B<. Write

B(w)(n) —— B(w)(n) B —"— B(w)(n)

@
3

Then .
B(w)(n) = B(w)(n)

| |

B(w)(n)” - Bw)(n)®,

and hence 1 — 701 & C(B(w)(n), B(w)(n))*. Then 7 oi € C(B(w)(n), B(w)(n))* [AF, 15.15].
Thus, B(w)(n) is a direct summand of B, and hence B(w)(n) ~ B.

5.2. Let [6Bimod] denote the split Grothendieck group of GBimod. Thus, [6Bimod] admits a
structure of Z[v, v~!]-algebra such that v[B] = [B(1)] and [B|[B'| = [B* B'| VB, B’ € &Bimod.
By (5.1.1) (resp. (5.1.iv)) ([B(w)]|w € W) (resp. ([B(w)]|lw € W) with w a chosen reduced
expression of each w) forms a Z[v, v~!]-linear basis of [&Bimod]. Thus,

[GBimod] = > Z[v,v Y[B@)] = [] Zlv,v "[Bw)] = [] Zv,v "[B(w)).

reN w wew
zeS” reduced

By (4.5) and by graded Quillen-Suslin each B*, B € GBimod, w € W, is left graded free over
R. Define ch : [6Bimod| — H via

[B] = > v gk(B")H,.
weW
We will abbreviate ch([B]) as ch(B). In particular, Vs € S, ch(B(s)) = H, by (2.2.12, 13).
Proposition: Vz € 8", ch(B(z)) = H,

T

Proof: One has

LHS = > v~ ™grk(B(z)") H,
weW
= Z v ph by (4.5.4)
weW

=Y wrH,

wew
= H, by definition (3.1).
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5.3. Vo € 8", Yy € §*, one has from (5.2)
ch(B(z))ch(B(y)) = H,H, = H,, = ch(B(zy)).

As [6Bimod] = Z[v, v~ '|[B(z)], ch : [6Bimod] — H is a Z[v,v~']-algebra homomorphism.
If w is a reduced expression of w € W, H, € H,, + Zy<wZ[v,v*1]Hy from definition. Thus,

(H,|w € W) with w a chosen reduced expression of w is a Z[v,v™']-linear basis of H, and we
have obtained a categorification of H:

Theorem: ch : [6Bimod] — H is an isomorphism of Zv,v~']-algebras.

5.4. Recall from [S97, p. 84] a ring involution ? on H such that
Z aywHy — Z aw(v H Y, ay € Zv, v,
wew wew
define a ring anti-involution w such that
Z aywH, — Z aw(v Y H
wew wew
and a Z[v, v™!]-linear map e such that
Z awHy, — ae.
weW

Let also £ = ? o g 0 7. Recall from (3.1.i) that

(1) H?>=v'H,—vH,+1 Vs€S.
Lemma: ¢ is a trace, i.e., e(hh') = ¢(h'h) Yh,h' € H, and so is .

Proof: It is enough to check that e(H,H) = e(HH,) Vx € W, Vs € S§; if y € W with sy > vy,

e(H,(HsHy)) = e((H.Hs)Hy)
e(H,(H,H,)) by induction on {(y)
e((HyH,)H,) = e(H;(HyH,)) = e((HsHy) He).

Assume first s > x. Then H, H, = H,, and hence e(H,H,) = 0. If sx > x, e(H,H,) =0
likewise. If sz < x, write x = sy with y < z. As xs > x, y > e. Then

e(H.H,) = e(H,H,H,)) = e((v"'H, —vH, + 1)H,) = 0.

Assume next rs < s, and write x = zs with z < . If 2 = ¢, z = s and the assertion holds.
Thus, we may assume z > e. Then

e(H,H,) = e(H.H?) = e(H.(v"'H, —vH, + 1)) = 0.
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If st > x, e(HsH,) = 0 as well. If sz < x, write z = sy with y < x. Asy # e, e(H;H,) =
e(H?H,) = 0.

5.5. One has from (5.4.1)
(1) H'=H,+v—v"' VseS.

Lemma: Let sy,...,s. €S.

(Z) w(ﬂ(51 ..... 87-)) = ﬂ(&,- ..... s1)7 ﬂ(sl ..... s,-)) = ﬂ(sl ..... Sr)"

Proof: (i) We know H, = H_ Vs € S. Also,

wH)=wH,+v)=H'4+v ' '=H+v—v ' +v'=H,+v=H,

(ii) One has

-----

= ﬁ(s,« ,,,,, $1) by (1)
= Z pY H, by definition again.

(ST 7777 51)
5.6. VB € GBimod, Vsq,...,s, € S, one has

(1) C*(B(sy,...,8:),B) ~C*R(e),B * B(s,,...,s1)) by (2.6)
~{B* B(sy,...,51)}e by (1.6.3),

which is left /right graded free over R by (4.6).

Theorem: VB,B' € &Bimod, C*(B, B') is left/right graded free over R with
gtk(CF(B, B')) = &{w(ch(B))ch(B")}.

Proof: Vs e S,

E(w(ch(B * B(s)))chB') = &(w(ch(B)H,)chB') by (5.3)
H w(chB)chB') by (5.5.1)

(chB)ch(B")H,) as ¢ is also an anti-involution
w(chB)ch(B' % B(s))) by (5.3) again.
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We may assume B = B(sy,...,s,) and B’ = B(ty,...,t;) for some s1,...,8.,t1,...,4 €S.
It is now enough by (1) to show that

grk(B(ty, ..., t;,Sr ..., 51)e) = E(w(chR(e))ch(B(t1, ..., t, Sr...,51))).

One has
RHS = &(ch(B(t1,...,t;, 8 ...,51)))
= g(ﬂ(tl ..... tl,ST...,81)) by (5 2)
- 5(ﬂ(t1 ..... tl,sr...,sl)) by (5 5 1)
- 8( Z pu£1 ~~~~~ t1,5r...,51) w) = p(tl ..... t1,Sr...,S1) = p(etl ..... thsr...,sl)(v_l)
weW
= LHS by (4.6),
as desired.

5.7 Formula for the morphism space: Recall from [Lib, 4.3] that
(1) e(H,Hy) = dpye Y,y €W.

Corollary: Vx e S", Vy € S,

grk(CH(B(z), B(y)) = Y (wrwy)(v).

Proof: Write x = (s1,...,s,) and 2’ = (s,,...,$1). Then

grk(C*(B(z), B(y))) = £(w(chB(z))chB(y)) by (5.6)
— (w(H)H,) by (52)
— &(H,H,) by (5.5.)
- (I,
=e(HyH,) by (5.5.i) again
(> poH, Y piH.) = Y pipie(HyuH.)
weW zeEW w,zEW
= pu'py by (1)
wew
= Z pepy by (5.5.i)
wew
= )
wew

5.8 Double leaves: Let 2 € 8",y € ' e € {0,1}",f € {0,1} with 2° = y*. Fix a reduced
expression w of w = z® = y°. Thus, one has LL,. € C(B(z), B(w)(d(e))) and LL); €
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C(B(w), B(y)(d(f))). Put LLes = LLy¢(d(e)) o LLye € C(B(z), B(y)(d(e) + d(f))), which we
call a double leaf from B(xz) to B(y):

LLe s

By Mt + Bly)(d(e) +d(f)).
Lm %;/’f(d(e))
B(w)(d(e))

Theorem: (LLeglz® =yf e € S",f € S') forms aleft/right graded R-linear basis of C*(B(z), B(y)).

Proof: One has

gk( [ R(LLep)) = 3 v d@-d0 = 37 §7 o) 3= )

ecS" fes! ee,f . wew ge‘;w ny
£e:yf z°=y Yy =w

=Y i ey ()

wew B

= CY(B(x). B(y) by (5.7).

Then, arguing as in (4.9) using (1.8) and graded NAK [BH, Ex. 1.5.24(b)], one has only to
show that the LLe¢ are linearly independent over R.

Let Zze:yf CoflLog = 0, coy € R,e € 8", f € §'. Put [ = {2° = gf € Wicer # 0,e €
S". f € 8'} and just suppose I # (). Let I= U.er(< 2). Thus, [ is W-open. If w is a reduced
expression of w € I, suppy,(B(w)) = (< w) C I by (2.4). Then by (1.4.v)

ce,fLLe,f

B(z) —— B(y)(d(e) + d(f))

Let w be a maximal element of /. Then w remains maximal in /. Put J = I\ {w}. Consider
the projection 7 : B(y) — (B(y))". As m¥ 0 LLes = 0 unless w = 2° = y* by the maximality
of w, one has -

0= W;U o E Ce7fLLe,f = E Ce7f7T;U o LLe7f.

Ee:gf e,f
ze=yf=w

Put £ = {e € S§"|ces # 0,2° = w}. Recall from (4.4) the total order on E. Let € be the
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minimum element of E. Ve € E, LL, ¢(bye) = 0 unless € = e by (4.4), and hence

Z Ce7f7T;U OLLe7f(bgye/) = Zce/7f71';ﬂ OLLe/’f(bLe/)

e,f .
x® :yf:w Yy =w

= Z Cer g7, (LL, ¢(uy) by (4.4) again.

Then cer ¢ = 0 VE with y* = w by (4.9), absurd.

5.9. VB € GBimod, Yw € W, put BO" = B<,,/ By, which is graded free over R by (4.12). Let
(B : R(w)(i)), i € Z, denote the multiplicity of R(w)(i) appearing in B
Let z € W. One has
B(z)Y ~ D(B(x),) by (2.9) and (5.1)
~ D(B(z )0“(—25( ))) by (4.12)
~ D H R(w) (i — 20(w))PE@sRw)0) ) ~ H R(w)(20(w) — i)B@@gr)@) |

Then
ch(B(r) = Y v gk(B(e) ) Hy = Y v (B)i: Rw)(i)e* ™ H,
weW weW ez
=33 v I(B@)2 : R(w)(U(w) + 5)) Ho.
weW jEZ

As the [B(x)], z € W, form a basis of [6Bimod], we have obtained an analogue of [S07, Prop.
5.9]

Proposition: VB € GBimod,

= > > v (B Rw)(U(w) + ) Ho.

weW jeZ

5.10. Back to complete noetherian local domain K, put HX = ch(B(z)) Yoz € W. Recall from
(5.1) that suppW(B(x)) C (< z) and that B(x)x ~ R(x)(¢(x)). Thus,

(1) H% = ch(B Z v " Wark(B(x))H, = H, + Z’u Verk(B(z)Y)H,.

yeW y<x
Put bl = v~*Wgrk(B(z)¥) € N[v,v™!]. In particular, HY* = H Vs € S. By (5.3) the HX,
r € W, form a Z[v,v"!|-linear basis of H. In case K is a field of characteristic p, we call
(Hx|z € W) (resp. h¥,) the p-KL basis (resp. a p-KL polynomial) of #.
Lemma: (i) VB € GBimod, ch(B) = ch(DB).

(i) Yo € W, Vs € S with sx < x, H.HS = (v+ v )HY, and hence B(s) * B(x) ~
B(z)(1) @ B(x)(—1).
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Proof: (i) It is enough to show that ﬂ_f = H* V2 € W. Induction on /(z). We may assume
((x) > 1. Take s € § with sz < x. Recall from [BB, Prop. 2.2.7] that Vy < sz, sy < x. Then

(2) > v grk((B(s) x B(sx))")Hy, = ch(B(s) * B(sx))
= H HE by (5.3)

=H,(Hy+ Y by H,)

y<sx

=H, + ZmyHy 3m, € N[v,v™'] by (3.1.2) .

y<x

In particular, v=*@grk((B(s) * B(sx))*) = 1, and hence (B(s) * B(sz))* ~ R(x)({(z)). As
suppy (B(s) * B(sx)) C (< x) by (1.7), one can write

B(s) * B(sz o [[B)(m)®™  Im,, €N.

y<zxz
nez

Put m;, = > ., my.v" € N[v,v™]. As D(B(s) * B(sx)) ~ B(s) * B(sz) by (2.10), one has
Myn = My —n Yy €W, Vn € Z, and hence

/A— n -n __ -n __ /
my == E mym’U == E mym'U == E my7_nU - my.

nez ne”Z nez
Then
HE+ S ml HS = 5+ g% = H HY,
y<z y<zx
= H _H% by the induction hypothesis
o K / K
- ﬂx + Z myﬂy
y<x

=H Hf + Z m;ﬂ_ﬂj by the induction hypothesis again,

y<z
and hence ﬂ_ﬂzf = 0%
(ii) As in (2) one has
H.H* = (w+vHH, + ZayHy Ja, € N[v,v™ 1],
y<z

and hence one can write
B(s) = B(x) ~ B(z)(1) ® B(z)(-1) @ [ [By)(n)*»"  3b,, € N.
y<zx

neL

As the graded left R-rank coincides with the graded right R-rank on GBimod, grk(B(s) *
B(z)) = (v+vY)grk(B(z)) by (2.5). We must then have B(s) x B(x) ~ B(z)(1) & B(z)(—1).
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5.11. Recall from (2.2.16) that B(s), s € S, splits over R? = R[.-|t € S] in the sense that
R @r B(s) = B(s)? @ B(s)? with B(s)? ~ R%e) and B(s)? ~ R%(s). Let Cx be C and Ci/m
denote C over Rg/m = Sk/m(V ®x K/m) and denote an object in Cx (resp. Ck/m) with subscript
K (resp. K/m). Thus, Bx(s) ®x K/m ~ Bg/n(s) in Ck/m graded free over Rk, of rank 1 4 v.
Then by (2.3) inductively

(1) By (w) @k K/m ~ Bgm(w) Vw €S,
and by (4.5) and (4.6)
(2) BK(Q)& QK K/m = BK/m(w)e'

It follows for any z = (21,...,2,) € " and y = (y1,...,y) € S* that

(3) Ci(Bx(z), Bx(y)) ®x K/m =~ Bi(y1, ..., Yk, Trs- .., 21)e ®x K/m by as in (5.6.1)

~ Brjm(Y1s -3 Yky Ty oo T1)e

=~ Cﬂﬁg/m(BK/m(ﬁ)v BK/m(Q))

~ Cf (B (z) ®x K/m, Bx(y) ©x K/m).
If z is a reduced expression of z € W, taking direct summands yields
As Cx(Bx(x), Bx(x)) is local, so is Cx /m(Bx(7) ®x K/m, Bx(r) ®x K/m). As Bk (r) @x K/m is
a direct summand of Bg/m(z) with (Bg(z) @k K/m)* ~ Rg/m(€(z)) by (4.5), we must have by
(5.1)

(5) Bx () @k K/m ~ By m(z).

Likewise,
(6)  Cx(Bk(z), Bk(z)) ®k Frac(K) o Cprack) (B (7) ®x Frac(K), Bk () ®k Frac(K)).

Does LHS remain local for p > 0 if K = Z,?

Vo € W, put HY™ = ch(Bg/m(z)) and HE*®) = ch(Bpacmx) (). As ch(Bg/m(r)) =
ch(Bk(z) ®x K/m) = ch(Bk(z)) = ch(Bg(z) ®x Frac(K)) by (5), one has

BK<I> ®]K FI‘&C(K) - BFraC(]K) (I) EB HBFraC(K) (y> (n>€9my,n Elm%” < N

y<x
nez
If we put my, =Y, mynv™ € Nfv, v,
(7) Eg/m _ ﬂgraC(K) + Z Z mymvnﬂgrac]l{
y<xr neZ
= IO £ "y, JHEE with = my,, by (5.10.4).
y<x
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5.12. We now compare Hy = chB(z), x € W, over various K, arguing after [JW17].

If z is a reduced expression of z € W, recall from (5.1) and (5.2) that

r) @ [[By)(n)®e»  3m(y,n) €N,
y<x
ne’

and hence
H, = chB(z) = H* + Zm(y, n)v"Hy.

y<zxz
nez

Accordingly, to determine Hx, we may compute the multiplicities (B(w) : B(y)(n)) of B(y)(n),
y € W, n € Z, in a decomposition of B(w) into indecomposables for a reduced expression w of
each w < z.

Fix a reduced expression w € 8™ and a reduced expression z of x. Let C** denote the ideal
quotient [F11i], Def. 3.2.43] of &Bimod by the set of morphisms factoring through B(y)(n) for
all reduced expressions y of y <z and n € Z. Then

(1) C**(B(w), B(z)) = C**(B(w), B(x) ® [ [ By)(n)®rwm)
o~ C’@( ) D HC’@ B(y)(n))®mwmn = Cfx(B(w), B(z))

as C**(B(w), B(y)(n)) < C**(B(w), B(y)(n)) = 0 Vy < x, Vn € Z. In particular,

2) C**(B(z), B(x)) ~ C**(B(x), B(x)) & [[C** (By)(n), B(z))®nom

= C**(B(z), B(x))
as C**(B(y)(n), B(z)) < C**(B(y)(n), B(z)) = 0 Vy < x, Vn € Z. Also, one has from (2.11)
(3) C**(B(x)(n), B(w)) ~ C**(B(w), B(x)(-n)) via [+ DFf.

Assume from now on that K is a field, unless otherwise specified. Recall from (5.8) that

(LLeg = LL}¢(d(e))oLLye|w® = zf,e € §",f € S'®)) forms an R-linear basis of C*( B(w), B(x)).

Thus,
C*"*(B(w), B(z)) = [ [ ¢**(B(w), B(z)(n)) = Y RLLuye

nez egfr
with LL, e € C**(B(w), B(z)(d(e))). In particular,
C*"¥(B(x), B(w)) = C***(B(z), B(z)) = RLLy...1)

.....

with LLx (1
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Lemma: (i) C***(B(w), B(z)) remains graded free over R with basis LLy,e, w® = x. In
particular, C***(B(z), B(z)) is graded R-free of basis LLy 1, 1)-

(i) Vn # 0, B(z)(n) % B(x) in C*®.

Proof: As suppy,(B(y)(n)) Z z for any reduced expression y of y < x and n € Z, under
m¥: B(z) — R(x)({(z)) from (4.5) one has

C¥(B(w), B(z)) — C*(B(w), R(z)({(2))).

C**4(B(w), B(z))

As the images of LL, e, w® = x, remain R-linearly independent, (LL,, |w® = ) forms a basis
of C*"¥(B(w), B(z)) ~ C***(B(w), B(z)). In particular, C*"*(B(z), B(z)) = RLLy .. 1) ~ R,
and hence

C**(B(x), B(x)(n)) = R"LLyq,..1y Vn € L.

5.13. Keep the notation of (5.12). We have seen above that each C**(B(w), B(z)(n)), n € Z, is
finite dimensional over K. Being a quotient of C(B(z), B(z)), C**(B(z), B(r)) remains local
and hence B(z)(n) remains indecomposable in C** Vn € Z.

Consider the local intersection form, cf. [JW17],

CA*(B(w), B(x)(n)) x CA*(B(x)(n), Bw)) o B > ]II{N
(f.9) \\ C**(B(x), B())
|N
fog C**(B(x)(n), B(z)(n)).

Let fi,..., fa (tesp. g1,...,gs) be a K-linear basis of C**(B(w), B(z)(n)) = Z R”_d(e)L[@,%e

we=zx

(resp. C**(B(w), B(x)(—n)) = Z RO LL, 4 e, and put vk (I zn) = vk [ fioDg; icalye-

Lemma: 1k (ly,.,) = (B(w): B(x)(n)) the multiplicity of B(x)(n) in B(w) in C.
Proof: Put I = I,,,, and write B(w) = B(x)(n)®" & B for some m € N with (B(w) :

B(z)(n)) = m in C. By (5.12) the same holds in C*®. Then

C**(B(w), B(x)(n)) = C**(B(x)(n)*", B(z)(n)) & C**
C**(B()(n), B(w)) = C**(B(x)(n), B(x)(n)*") & C**

with [(C**(B(z)(n)*", B(x )(n)) C**(B(z)(n), B)) = 1(C**(B, B
B(z)(n)®m)). If there are f € C**(B, B(x)(n)) and g € C“( (x)(n),

12

B(x)(n)),
(z)(n), B)

(z)(n)),C**(B(z)(n),
B) with 0 # I(f,9) =

( (B,
( (B

12
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fog, we may assume f o g = idp)m) as fog € K*, and hence B(z)(n) would be a direct
summand of B, absurd. Thus, I induces a perfect pairing [:

CA*(B(w), B(x)(n)) x C**(B(x)(n), B(w)) ———— K

C**(B(x)(n)®", B(x)(n)) x C**(B(x)(n), B(z)(n)*")
with 1k (I) = 1k (I) = m.

5.14. Keep the notation from (5.12). Recall that the LL, e, w® = x, are all defined over a
complete noetherian local domain, a fortiori, over the prime fields I, or Q. Thus, rk (I 4.n)
depends only on ch(K). Also, if p > 0, rk(l,.n,) over F, coincides with the one over Q
by (5.11). Let us Bg(x) denote the indecomposable B(x) over R = Skg(V') to emphasize the
reference to K. We have obtained

Proposition: Let x € W.
(i) If K is a field, ch(Bk(x)) depends only on ch(K).

(i) If p > 0 depending on x, ch(Br,(v)) = ch(Bg(x)).

6. Sheaves on moment graphs
Assume that K is a complete noetherian local domain, “local” to ensure the Quillen-Souslin.

6.1 Recall from [F08a], [FO8b] an R-algebra, called the structure algebra of the moment graph
associated to (W, S),

Z={(zy) € HHRd|th =z, mod o YweWVteT}
deN W

with a(z,) = (azy) Ya € R ¥(z,) € Z. Thus, Z is a graded R-algebra with Z¢ C T[], R*
INvO, 1.2.3].

Fiebig [F08a] proved that the category of Soergel bimodules as in [S07] is equivalent to
a certain full subcategory of Z-modules if V' is reflection faithful. We will give a version
corresponding to our GBimod.

Let M be a graded left Z-module. Then M is equipped with a structure of left R by module
via R <— Z via a+— alz = (a,...,a). One has also (wa),, € Z. We define a right action of R
by letting a act by (wa),, € Z, which makes M into an R-bimodule:

(1) ma = (wa),m Vm € M.

To equip M with a structure of C’, we need further some finiteness condition on M. VI C W,
put
Z'={(2y) € R'|2w = 2o mod o, Yw € I Vt € T with tw € I}.
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If I is finite, one has from [FO8b, 3.2]/[JGr, 2.7.1, 2.10]

(2) (2N =Qer2' ~Q =]]@

For let & = {(z,t) € I x T|tx € I,x < tz}. VE = (x,t) € €, put ag = oy and let T, g, T g
R — R/(ag) be the quotients. Then

2l ke{(J[R) < ([T B/(ap)) = I R/(ew)} via (), (bg)) = (1 p(ar) = be).

zel Ee& z€l,E€E
and hence
(219 ~ker{Q@r {(J[R) x (][ R/(e£))} = Qer( [[ R/(ar)}
xzel Ee& zel , E€E

as ( is flat over R
~ker{[[(Q®n B) x [[(Q&r (R/(@s)} = [ (Qer (R/(an)}
zel EcE zcl,EcE
as [ is finite

~ ker(Q' — 0) = Q.

Let now ZMod" denote the full subcategory of graded left Z-modules such that the action
of Z factors through the projection Z — Z7 for some I finite C W. In [F08a] the image of
Z in Z! is denoted Z!, and the natural map Z — Z! may not be surjective. The present
definition of ZMod! itself, however, remains the same as his. Let M € ZMod! with the action
of Z factoring through Z7, I finite. Then M% is a (Z7)%-module. As (Z1)? ~ Q! by (2),
M@ = T1],.,e.M% with e, = (0,...,0,1,0,...,0), 1 at the z-th place. Put M? = e, M©.
Then

(3) MC = {m € M®m = e,m}
= {m e M®zm=z,mVz € 2"} with z;m = (2, ..., 2)m by definition
={m e M®zm=z,mVz € Z}.

For let m € M® with zm = z,m Vz € Z. Write e, = Y@z, 2 € Z! q; € Q. Then

e;m = (Z ¢ ® z)m = Z ¢i(z)am = m.

Thus, Vm € M2, Va € R, ma = (ya),ewm = (za)m, and hence M comes equipped with
a structure of C’, which is independent of the choice of finite I by the 3rd equality of (3). If
f € ZMod! (M, N), there is finite I the actions of Z on M and N both factor through Z’.
Vm € MY, z € I, one has e, f¢(m) = f9(e,m) = f¥(m), and hence f@(m) € N¥. One thus

obtains a faithful functor F : ZMod! — C’.

Proposition: VM, N € ZMod! with N torsion-free as a left R-module,
ZMod! (M, N) ~ C'(F(M), F(N)).
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Proof: Let ¢ € C'(F(M), F(N)). Thus, Vw € W,

MQ¢_Q>NQ

o]

M > NG

Vm € M,Vz = (z,) € Z, one has in N9
¢(Zm)w - st((zm)w) - ¢w((26w)m) - gbw(zwewm) - qubw(ewm) - Zw¢w(mw) - Zw¢(m)w

= 24(m), by (3)
= ze,d(m) = ewzd(m) = (26(m))u.

As N < N =T, o N& by the hypothesis, one obtains that ¢(zm) = z¢(m), and hence ¢ is
Z-linear.

6.2. Vs € S, let Z° = {(zy) € Z|zys = 2 Yw € W}, which forms a subalgebra of Z. We say
that the GKM condition holds on V' iff V¢, ¢’ € T distinct, a; and oy are linearly independent
over K.

Lemma: Assume the GKM condition on V. Let s € S and choose 6 € V' with (0, a)) = 1.
Then Z = Z° @ (w6) ew Z°.

Proof: Let z = (z,) € Z. Yw € W, define y,, € R such that z,—2uys = Zuw— Zwsw-1w = (WAs) Y.
Let t € T\ {wsw™'}. Then

Ziw — Ztws = (twag) Yy, by definition
= (W)Y, mod ay by (1.1.ii),

and hence modulo oy
(was)<yw - ym;) = (Zw - Zws) - (th - ths) = (Zw - th) - (ths - zws) =0.

As t # wsw™!, wa, and ay are linearly independent by (1.1.ii) and the GKM condition, and
hence ¥, = Y. On the other hand, if t = wsw™!, tw = ws, and hence

(wsas)yw = _(was)yw = Rws T Rw = Rtw T Rtws — (twas)ytw = (wsas)ytun
and hence Y5 = Yo = Y again. Thus, (y, ) € Z°.
Now put y = (yy)w and z = z — (W) wewy € Z. Then, Vs € S,

Tws = Zws — (WSO)Yws = 2ws — (WS0)y, asy € Z°
= Zy — (W)Y — W(0 — Qg) Yy = Ty

and hence x € Z* and z = x + (wd),ewy. Finally, assume x + (wd),y = 0 for x,y € Z°. Then,
Yw e W, Vs €S,

Ty + (wé)yw =0=1oys + (WS5)yws
=Ty +w(d—as)y, asz,y€ 2’
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and hence (way)y, = 0. Then y,, = 0, and y = 0, hence also z = 0.

6.3. YM € ZMod", Vs € S, Z ®z. M remains in ZMod!. For let I C W be a finite set
and 7 : Z — Z! be the natural map factoring through which Z acts on M. If z € Z, write
2z =21 + (W0)wewz2 with 21,29 € Z° by (6.2). Then z acts on Z ®zs M via

m(21) + (W) wewn(22) = m(21) + (W) werm(22) = m(z1 + (W) wewz2) = 7(2),

and hence Z acts on Z ®zs M through 7.

Proposition: Assume that the GKM condition holds on V. YM € ZMod!, Vs € S,
F(Z®zs M)~ F(M)x* B(s)(—1).

Proof: Take § € V with (0,a)) = 1. Define a map ¢ : F(M) x B(s)(—1) — Z ®z« M via
F(M)®gr B(s)(—1) = M @rs R 5 m®a — (wa)yew @ m; if b € R®, wb = wsb Yw € W,
and hence (wb)y,eyw € Z°. Then (w(ab)), @ m = (wa), @ (wb),m = (wa),, ® mb by definition
(6.1.1), and hence ¢ is well-defined. Also, Vb € R,

(w(ab))wew @ m = (Wh)wew (Wa)weyw @ M = (Wh)wew{ (Wa)weyy @ m}
= {(wa)yeyw @ m}b by definition (6.1.1) again.

Thus, ¢ is a homomorphism of graded R-bimodules. Moreover, F(M)xB(s)(—1) = {F(M)®pgs
R} & {F(M) ®ps 6R*} while
Z @z M ={2°® (w),2°} ®z: M by (6.2)

and hence ¢ is bijective.

Finally, we show that ¢@((F(M) * B(s)(—1))?) C (2 ®zs M) Yw € I. By (2.3.iii) any
element of (F(M)xB(s)(—1))¥ is of the form m®d—m(sé)@1+m'@5—m/é®1, m € M2, m' €
ME.. Thus, we are to check that (wd), ®@m —1@m(s6) + (wd),@m' —1@m'§ € (Z®zs M)9.
For that by (6.1.3) it is enough to show that, Vz € Z,

2{(wd),@m—1@m(sd)+(wd),@m'—1@md} = 2z, {(wd),@m—1m(sd)+(wd),m'—1m'd}.

If z € 2%,
LHS = (wd), ® 2m — 1 ® zm(sd) + (wd), @ zm' — 1 @ zm/d
= (W) ® zuym — 1 ® 2,m(50) + (W) @ zysm' — 1 ® 2,sm'd by (6.1.3) on M
W0)y @ Zym — 1 @ z,;m(s6) + (Wd)y @ zym' —1® z,m'd as z € Z°
= Zp{(wd)y, @®m — 1 @m(s0) + (wd), @M — 1 @m0} as z, reads (zy, ..., 2,) € Z°.
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wd)y, @m — 1@ m(sd) + (wd), ®m' —1@md}

= {(wd)y @®m —1@m(s6) + (wd), ®m' —1®@md}d by definition (6.1.3)
=d(mR6—m(sd) @1 +m' @6 —m'd§ @1)§
=p((mRFI—m(sd) @1 +m' @6 —m'0 ®1)§) as ¢ is right R-linear
=dp(m®@5 —m(sd) @5 +m' ® 6> —m'§ ®0)
= d(m @ (0(6 4 s6) — dsd) — m(sd) @6 +m' @ (6(6 + s6) — dsd) —m'd ® 9)
=p(m(d+50) 5 —mdsd @1 —m(s6) @5 +m/'(6 +80) @6 —m'dsd @1 —m'0 ® )
= p(md @6 —w(dsd)m ® 1+ m'sd @ 6 — (ws)(0sd)m’ ® 1)
= ¢((wd)m @ § — (wd)(wsd)m @ 1 + (ws)(sd)m' @ § — (ws)(§)(wd)m’ @ 1)
= o(wd)(m @6 — (wsd)m 1 +m' ® § — (wsd)m’ ® 1))
= (wd)p(m @5 — (wsd)m @1+ m' @ 6 — (wsd)m’ @ 1) as ¢ is left R-linear
= (wd)p(m@J—msdR@1+m' @5 —m'd®1)

(wd){(wd)y @ m — 1@ m(sd) + (wd), @m' — 1@ m'd},

as desired.

6.4. Define a structure of graded Z-module on R via za = z.a Va € R Vz € Z with z, denoting
the e-th component of z, which we will denote by Rz. Thus, Rz € ZMod" with F(Rz) ~ R(e).
Vs € S, (6.3) yields

F(Z®zs Rz) ~ F(Rz) %« B(s)(—1) ~ R(e) x B(s)(—1) ~ B(s)(—1),
and hence

(1) F(Z®zs Rz(1)) ~ B(s).

Let ZMod® denote the full subcategory of ZMod' consisting of the direct summands of
direct sums of Z®zs; - Qzsr1 ZQ®zsr Rz(n), n € Z, s1,...,8. €S. As an element of ZMod®
is torsion free over R by (6.2), from (1) one obtains

Theorem: If the GKM condition holds on V, F induces an equivalence ZMod® — &Bimod.

7. Deformation of Schubert calculus [S92]

Soergel bimodules were originally thought of as the algebras of regular functions of some
subvarieties of V* x V* over C with V* denoting the complexification of the geometric repre-
sentation of W [S92]. Thus, V is the C-linear dual of the V*; in [S92] the present V' is denoted
V*. In this section we will verify that Soergel’s results carry over to our set-up in case W is the
Weyl group of a root system A and V' denoting a weight lattice of A under the base change
to K. We will assume, unless otherwise specified, that K is an infinite field and that, in order
for Demazure’s result [Dem| holds, the characteristic of K is not a torsion prime of A and the
weight lattice, cf. [JMW, 2.6]. In the simply-connected simple cases the torsion primes are
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An, Cn ‘ Bn (Tl 2 3), Dn, GQ ‘ E6, E7, F4 ‘ Eg
none ‘ 2 ‘ 2,3 ‘ 2.3,5

In addition, we assume that 2 # 0 in K and also that 3 # 0 if Gy is involved as a component.
Thus, the GKM condition holds on V*.

7.1. Under the standing assumptions on K two distinct coroots remain distinct in V*, and
hence

Lemma: The representation V* of W is faithful.

Proof: Let w € W be trivial on V*. Then w fixes every coroot in AY, and hence w = e [HLA,
10.3].

7.2. Throughout the rest of §7 we will consider the W-action on V* x V* acting only on the
2nd component. We will regard R®g R as the set of rational functions on V* x V* with induced
W-action: Vf € R®@g R, Vw € W, V(v, ) € V* x V* (wf)(v,n) = f(v,w p).

Vs € S, define a twisted derivation d; : R — R via f — £=°L f € R, which is unfortunately

2ces 7
distinct from 0, introduced in (4.1) by a factor of % Thus, Vg € R,
(1) 9s(fg) = (0:f)g + (sf)0sg.

For X C V*xV*let I(X) = Ann(X) = {f € R®xR|f|x = 0} and put R(X) = (RexR)/I(X).
If X is a closed s-stable subset of V* x V* Vf € I(X)Vx € X, (sf)(z) = f(sz) = 0, and hence
s acts on R(X). If, moreover, no irreducible component of X lies in (V* x V*)* = {(v, ) €
V*x V* sy = p}, 0s acts on R(X). For let f € I(X). It is enough to show that O,f € I(X') for
each irreducible component X’ of X. One has

(05 )|z (20) [ = (f = 8f)|xr = —(5f)]x = 0.

Just suppose (2a;)|x = 0. Thus, V(v, 1) € X', 0 = (205) (v, 1) = (2a) (). As X' € (VF x V*)*,
however, there is (v, u) € X' with p # su = p — as(pn)a, and hence ag(p) # 0, absurd. Then
2a5 # 0 in R(X'), and hence (0 f)|x # 0 as R(X') is a domain.

Note also that 0; on R(X) is left R-linear as

(2) Os(a®b) =a®0sb Va,be R.

Vw € W, put X, = {(rv,w 'v) € V* x V*|lv € V*}. Thus, Vy € W, y'X,, = X,,. One has

(3) R(X,) =(RexR)/(a®1—-1®@w 'alac R)~ R via a® b+ a(wb)
with inverse a ® 1 <+ a,

under which R(X,,) comes equipped with a structure of C such that
(4) R(X.,) ~ R(w).



This is the reason why we defined X,, in the present form rather than the one in [S92].

If A C W is right s-stable, i.e., As = A, X4 = UyueaX,, is closed and s-stable in V* x V*.
As W is faithful on V* X, € (V* x V*)* Yw € W. Thus, for any right s-stable A C W one
may consider the action of s and 95 on R(X,).

7.3. Let R" be the set of W-invariants of R. Va € RV, Vf € R(Xy), w € W, Vv € V*,
(fa)(v,w'v) = a(w™ ) flv,w V) = a(v)f(v,w V) = (af)(v,w V),
and hence the right and the left actions of R”Y on R(Xyy) coincide. Thus,

R®pw R « R®g R

R(Xw) = (R®k R)/ Nuew (a® 1 —1®w 'ala € R).

Lemma: (i) There is an isomorphism of graded K-algebras R @ pw R — R(Xyy).

(i) R(Xyw) € C with R(Xw)? = [, @ such that R(Xw) > f — (fuw)wew € [, @ with
fw = flx, € R(X,) ~ R(w).

Proof: Let K = ker(R®pw R — R(X)y)). There is an exact sequence
0>QrK—>QrRpw R— Qg R(Xw) — 0
with
QRrR®pw R~ Q®p Rpw (RY)®™ by [Dem]
~ Q\WI
while

Q@rR(xw) < Qer [[(RexR)/(a®1-1®w 'aac R) ~]]Q.
weW w

As Wis faithful on V, ker(w—idy) < V Vw € W\ {e}, and hence U,,ew gy ker(w—idy) C V.
Take v € V' \ Uyew (e} ker(w — idy), and hence wy # v Vw # e. Vo € W, define f* € R ®x R

via f*(v, p) = [L,em\ gy 17 (V) = vy} V(v p) € V* x V*. Then f* =0 on X, Vy € W {z}
while f?|x, # 0, and hence f* # 0 in R(X,) ~ R. Then V¥(¢,). € Q"

w

w
wew flx, zEW

and hence @ ®p R(Xy) ~ [[,, Q. It follows that Q ®g K = 0. As R®pw R ~ R®M is
torsion-free over R, so is K, and hence K = 0.

7.4. Yw € W, let (s1,...,5,) € S" be a reduced expression of w, and set 9, = Js, ... 05, : R —
R, which is independent of the choice of the reduced expression [Dem, Th. 1, p. 291]. Put
0. = idg. By (7.2) the 0,’s act on R(Xyy), which are left R-linear as they act only on the 2nd
component. Let wy be the longest element of W.
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Lemma: Vf e R(Xw), Yy €W, Ouf = (0w, f)y®1 in R(Xyy) regarding (Ow, f), € R(y) such
that (Owy f)y(V) = Owef) (v, y~tv) Vv € V.

Proof: Let f € R®g R. Writing f =) . a, ® b;, Vs € S,

sO,f = Z fi ® s0b;

_Zj;@@b as s0sb; = b_bizﬁsbi

—20

:asfa

and hence, by the independence of the choice of the reduced expression of wy, Oy, f € (RRxR)"Y
Then, writing 0y, f = >, a; ® b} with the a; K-linearly independent, we see that b; € R" Vi.
Thus, Oy, f =Y, aib, ® 1 in R(%W) under

7717

R®x R —» R(Xw).

R@RW R
Yv e V¥ Yy, w e W,

(Ouo /) (v w0 0) = (@) () = Do /)0,y ) = Qo )y () = (O f)y © 1) (v, w ™ 'w).

i

7.5 Lemma: VI Q R(Xy), Vs € S, I + 01 < R(Xy).

Proof: As 0; is left R-linear (7.2.2), it is enough to check that Va € R, Vf € I, (0sf)a =
(0sf) (1 ®a) € I+ 9s1. One has

OsI 2 05(fa) = 05(f(1®a)) = (0sf)(1®a)+ fos(1®a) by (7.2.1).
As fos(1®a) €1, (0sf)(1®a) € I+ 0.

7.6. Choose f € R(%w)?\0 for some d € N with f|x, = 0Yw € W\ {wo}; Xuo € Unew fuo) Xu

by the irreducibility of X,, ~ V*, and hence such f is available. Then f € R(Xw)d \ 0 by
(7.3.4i).

Lemma: (i) Vy e W, (0, f)| 1 # 0. In particular, d > 2{(wy).
(ii) Yw € W with (ayf)\xwow,l 40, w<y.

Proof: Put for simplicity X, = X,-1. One first check that, Vg € R(X)y),

(1) if glxr = =0, (0s9)|x, = 0 and (0s9)|x,, =0,
(2) if glx;, = 0 but glx,, # 0, (0s9)|x, # 0 and (9s9)|x,,, # 0.
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To see (1), just suppose that (0sg)|x;, # 0. There is v € V* with (0s9)(v,wv) # 0 but
2a(wr) = 0. Then

g wr) — (sg)(v,wr) 0 —g(v,swr)
(9:9)(v, wr) = 205 (wr) o 2a5(wv) 0
absurd. Likewise, (0sg)|x,, = 0. For (2), if g(v, swv) # 0,
(2005) (wr)(0sg) (v, wv) = g(v, wr) = (sg) (v, wv) = —g(v, swv) # 0,
(20i) (swr)(059) (v, swrv) = g(v, swr) — (sg)(v, swr) = g(v, swr) # 0.

We now argue by induction on y € W. If y = e, the assertions hold as f | X, # 0 by the choice
of f. If y > e, write y = sz > z for some s € S. By the induction hypothesns (0x f)‘%;wo #0

while (9,f) Kiruy = = 0. Then (0, f)|3%w0 = 9,(8,f) | %,., 7 0 by (2), and hence (i). Assume
next that (0, f)|x/ ;é 0. Then 0,(0, f)|3€4m # 0, and hence by (1) either (8xf)|%w0 # 0 or
(&Tf) g #£0. If the former, w < x < y by the induction hypothesis. If the latter, sw < x

by the induction hypothesis, and hence w < y, as desired.

7.7. Keep the notation of (7.6). As f € R(Xyy)u,, one has
(1) Rf = fR < R(Xw).

Then, Vs € S, Rf + RO, f = Rf +8,(Rf) < R(Xy) by (7.5). Assume now that Yorew Ox(Rf) D
R(Xyy) and write w = sy > y. VYa € R,

(awf)a = (asayf)a
€ Z dx(Rf) + 0, Z d,(Rf) by the hypothesis and by (7.5) again

=Y 0.(Rf) + Y 0.0.(Rf) = Y 0.(R),

and hence by (7.2.2) and by induction one obtains that

(2) Y R@uf) =) 9u(Rf) < R(Zw).

wew wew
By (7.6.1) one has (9, f)e # 0. AS Ouy f = (O f)e®1 by (7.4) and as Y wew RO, f < R(Xw)
by (2),
(Ouo N)eR(EW) = (D )e(1® DR(EW) = ((Ou e @ R(Ew) = (Buy /)R(Ew) € D RWf.

wew

Lemma: > ., ROywf = (Ouy f)eR(Xw) with the yf, w € W, left R-linearly independent.

Proof: Let first > awawf =0, a, € R. Then on X, = X!

wowo

0= Z (awawf)‘%é = (awoawof)’ﬂuowo with (awof)‘xiﬂowo # 0 by (7.6),

weWw
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and hence a,,, # 0 as R(X)) ~ R is a domain. If s € S,

0= Z (@O f) |2, = (@suOuo f)

w<wo

Xigwy  With (8swof)|xgwow0 # 0,
and hence ag,, = 0. Likewise, by descending induction on w, get all a,, = 0. Thus, the 0, f
are left R-linearly independent, and hence (9w, f)eR(Xw) C [1,cpn ROwf-

Recall from [Dem] that, letting R denote the W-invariants of R, R has an R"-linear basis
(up|w € W) with deg(uy,) = 20(w) Yw € W. Thus, the 1 ® u,,, w € W, form a left R-linear
basis of R(Xy) ~ R ®zw R by (7.2). Then by counting the dimension of both sides in each

degree one obtains that (9, f)eR(Xw) = Moew RO, f.

78. Let f € R(Xw)d, as before. By (7.7) there is ¢ € R(Xyy) such that f = (0w, f)ed>. Then
deg(¢) = 20(wp) and ¢ € R(Xyy)y,. Thus,

Proposition: (i) ¢ € R(Xy)a "\ 0.

(i1) (Owp|lw € W) forms a left R-linear basis of R(Xyy).

Proof: (ii) As 0,,6 # 0 by (7.6) of degree 0, 0y, € K*. Then by (7.7)

(Ouof)eR(Ew) = Y ROu((Ouipf)e®) = (Ounf)e Y ROuwo.

wew wew

As R(Xyy) is left R-free by [Dem|, we must have

Xw) =Y Ro.6= [] Rouo.

wew wew

7.9. K the notation of (7.8).

Corollary: (i) YVw € W, Oy-14,¢ € R(%W)Q;SU) with (Ow-1uw,®)w 7 0, .6, Op-14y@ €
R(%yy)2®), (Ow1we®?) |z, # 0, and Yy € W with (Oy-14,0)|x, # 0, y > w.

(it) Yw € W,
= 1ROy 1uwn® and R(Ew)zw = [[ROy-10,6
yeW yeW
y>w yLw

In particular, R(Xw)sw/R(Xw)sw = R(w)(—20(w)) = R(Xw)zw/R(Xw)gw and R(Xw)w, =
R ~ R(wg)(—20(wy)).

Proof: Yo,y € W, if (0,0)|x, # 0, (8:f)|x, # 0 as {v € V*(0.0)(v,y ') # 0} € {v €
V*(8ug f)e(v) = (B, f)(v,v) = 0}. Thus, (7.6) holds with f replaced by ¢.
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(i) One has (Op-14®)w = (aw*1w0¢)|%wo(w—1w0)—1 # 0 by (7.61). If 0 # (Ow-11?)y
Qw100 |2, (101 ¥~ Wo < w™wg by (7.6.ii), and hence y > w. Also, deg(dy-1u,9)
20(wg) — 20(wtwy) = 26(w).

(ii) Let ZyEW ayOy—10y 0 € R(Xw)>w, ay € R. If ay # 0, ay(Oy-1,,0)y 7# 0 as (Oy-14y0)y 7 0
by (i) and as {v € V*|(9y-14,0) (v, y 'v) # 0} € {v € V*|a,(v) = 0}, and hence the assertions.

7.10. Let now ¢ = wo¢ with ¢ as in (7.8). Then ¢ € R(aew)if(““) \ 0. In particular, ¥|x, # 0
while ¢|x, = 0 Yw > e. Then, using (7.6.1,2), one checks that

(1) ‘v’y € W7 (ay¢)|fy—1 7é 07

(2) Vw € W with (0,4)|x,_, #0, w <y,

Arguing as in (7.7.2), one also obtains that

(3) > RO,¥ < R(Xy).

weWw

with the 0,1, w € W, left R-linearly independent as in (7.7). As (Ow®)w, € K* by (1) and as
8w0,¢} ( wow)wo ®1 by (7 4) R(%W) (8 ,QZ}) R(xW) g Zwew Raw% and hence by [Dem]

again
(4) R(Xw) =Y _ Ro = [] Rowv.

wew wew

Corollary: (i)Vw e W, 0,19 € R(%W)% wow) with (By-11)y # 0, i.e., Op11) € R(Xyy)2wow),
(Op—11)|x, # 0 and Yy € W with (0,,- 11/))|35y 0,y <w.

(11) Yw € W,
R(Xw)<w = [[ RO, and R(Ew)zw = [[ RO
yew yeW
y<w yFw

In particular, R(%W)<M/R(%W) <w =~ R(w)(—2l(wow)) =~ R(Xw) 2w/ R(Xw)pw and R(Xw)e =
Rip ~ R(e)(=2((w)).

Proof: (i) One has (0p-1¢)w = (Op-19)|z, # 0 by (1). If 0 # (0 _1w) = (Ow17)|x,
y~! <w ! by (2), and hence y < w. Also, deg(dy,-11) = 20(wp) — 20(w™!) = 2€(w0w).

(ii) Argue as in (7.9.ii).
8. Properties (S) and (LE)

Assume in this section that W is a finite Weyl group and V' the K-linear space by base
change of a weight lattice of the root system associated to W. We will preview the properties
(S) and (LE) of [Ab19b], which in turn are modelled after the ones in [FL15], applied to C to
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extend the character homomorphism ch : [&Bimod] — #H to the Grothendieck groups of the
objects of C admitting a A-flag (resp. V-flag) and express it in terms of the multiplicities of the
A- (resp. V-) subquoteints as in (5.9). These are analogues of Soergel’s formulae [S07] in case
V' is reflection faithful. Precisely, all the above hold if K is a field satisfying the characteristic
condition of §7. Over a complete DVR K, however, we will have also to work over the residue
field of K as in (4.9), for which the objects in C have to split already over R? = R[-|t € T]

rather than over Q. Thus, let C? denote the full subcategory of C* consisting of those M
splitting over R?: R? ®@p M =[], oy MY with M? = (R® @z M) N M&. Note that &Bimod is
a subcategory of C?.

We assume throughout the section that K is a complete DVR, unless otherwise specified,
with the hypotheses in §7 on the characteristic of K and of K/m for the maximal ideal m of K.

81. Vr e W, put (€ z) ={w € Wjw < z} and (> z) = {w € W|w > z}. Define (> w)
and (< w) likewise. We say that I C W is W-open iff I = U,¢;(< x). The W-opens define a
topology on the set W. Thus, J C W is closed iff J = U,e;(> ), in which case we will say J
is W-closed. Vt € T, let R* = R[z-|u € T \ {t}]. Under the standing hypothesis one has

(1) ﬂteTRat — R

VM € C? put M* = R* ®@p M. VJ C W, one has

(2)  (My)* =R*®p(Mn]] M)

weJ

= (R* @r M)N (R* ®@p [[ M%) as R™ is flat over R [BCA, Lem. 1.2.6.7]

weJ
=M ] MG = (M),

weJ

We say that M belongs to C°" iff the following two properties (S°*) and (LE) hold on M:
(Sou) VW—open Il and ]2, M[1U12 = Mh —+ MIQ,
we)  wer ae— [ aen[[a@- ] oealla)
Qe(t)\W z€Q Qe(ty\W z€Q
VM € C? VJ C W, arguing as in (4.10.iii) yields that
Then, VM € C°,

(4) properties (S°) and (LE) carry over to M ®k (K/m).
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For

(M/mM)IlUI2 = (M11UI2>/m(MI1U12) by (3)
= (MII + MIQ)/m(Mh + MIZ) = (MII + MIQ) ®x (K/m)
= Mh Kk (K/m> + Mfz Kk (K/m) as (Mh + MI2) XK (K/m)7
M[l XK (K/m) and M[2 XK (K/m) all lie in M Rxr (K/m)
~ (MmM);, + (MmM);, by (3) again.
Likewise,
(M/mM)* =~ {M ®x (K/m)}* ~ (R/mR)™ ©p M ~ M° /m(M*) ~ M* @, (K/m)
= ] mn M)} ex ®/m)= [ {(M*)e@x (K/m)}
Qe\wW LSy Qen\w
= H (M /mM*)q asin (3)

Qe(t)\Ww

= [ {/mp) 0 [ (M/md)3}.

Qe(t)\W e
82 Let M eC’ teT,weW, andn € Z.

Lemma: (i) If suppy, (M) C {w,tw}, (S°*) holds on M.
(11) If (LE) holds on M, so does (S°") on M®*.
(111) R(w)(n) € C°.

Proof: Let I; and I, be 2 W-opens. Recall that either w < tw or tw < w [HRC, 5.9

(1) We may assume that I;N{w, tw} 2 N{w,tw}. Let I} be the smallest W-open containing
I n{w,tw}, j € [1,2]. Then I] D I}, I{ N{w, tw} = I N{w, tw}, I} N {w, tw} = I, N {w, tw},
and hence

My =M (][] M) by definition

x€l]

=Mn( I MH=mn( [ MH=Mmn(]]M)

zelin{w,tw} zeliN{w,tw} z€h

as suppyy(M) € {w, tw}
= M;,.

Likewise, Mfé = MIQ, MI{UIé = MhUIQ- Then M]1U12 = MI{Ufé = M[{ == M[1 == M]l + M[2 as
My, = My C My = Mj,.

(i) Put 8 = a;. Assume now that (LE) holds on M. VQ € (t)\W, put M5 = M? N
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(erQM ). Thus, M? =[], M& by (LE). If T is W-open, one has

(M%) = M7 {[J ("2} = HME A{ITT M2y = H{Mﬁ (TT )3

zel zel Q zel

= H 2); by definition,
Q

and hence
(Mﬁ)flub = H(Mg)flub

—H{ M), + (M)} as (S°) holds on MJ by (i)

= {H (M)} +A{] (M)} = (MP)1, + (MP),.

8.3. Let K be a W-locally closed subset and write K = I N J with I W-open and J W-closed.
VM € C", set M@ = M;/Mpy. If K =1'"nJ" with I’ W-open and J" W-closed,

qunnnJ)y=InJnJYyuI'nJnJ)=(KNnJYU(KNJ)=KUK =K.

Also,
(1) TUr'=1u{(Iul)\ (JnJ)},
(2) IN{Iul)\(JnJH}=1\J

Forlet x € I'\I. As(I'\I)n(JnJ)C I'nJI\I=InJ)\I=0,x¢ JnJ.
Then xz € (JUI')\(JNJ'), and (1) holds. Let next y € IN{(IUI")\(JNJ")} = I\(JNJ") D I\ J.
Just suppose y € J. Theny € INJ =1'NnJ CJ, and hence y € J N .J', absurd, and hence
also (2). Then

(3) MIUI’/M(IUI’)\(JHJ/) = MIu{(IuI/)\(JmJ/)}/M(qu/)\(mj/) by (1)
= {Mr + Mauryunry Y/ Maoryonr by (S)
~ My /{Mr 0 Murynm}
= M;/Mingaurywnmy - by (14
= M;/Mp; by (2).

Lemma: (i) M € C with MY* < M? and is, in M, independent of the choice of I and J
to express K .

(ii) suppyy (Mg") = suppy, (M) N K.
(ii1) If suppy, (M) C K, M = M.

(iv) Mg @ (K/m) ~ {M @k (K/m)}x.
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Proof: (iii) One has

Mg = M;/Mp,
= M;/0 as (I\J)Nsuppy,(M)C (I\J)Nn{INJ)=0
= M as suppy, (M) C I.

(i), (ii) By (1.4.2) one has Mp* = M;/(M;)pg =~ (M;)'" torsion-free over R. In particular,
M < (M9 = (M/Mp )9 = (M7)?/ (Mp 5)°
= ([TM&)/(T] M) by (1440

xel zel\J
~ T w2 = [T 2
zelnJ reK

and hence M € C% with

suppyy (M) = {z € WI(MR)? # 0} = {z € WI(]] M), # 0} = {& € K|MZ # 0}
yeK
= suppy, (M) N K.

To see that (S°") and (LE) hold on Mp", we first show that VI’ W-open,
(4) (M) = Mgy
If K is W-open, the assertion follows from (1.4.iii). If K is W-closed, put I; = W \ K. Then

(Mg = Mg [T (e

zel’
= (M/Mp)n [T M2 by (i)
zel'NK
while
M?{um’ = MI’/MI/\K = MI’/MI'mll

= M[//(M]/ N Mh) by (14111) again

~ (MI’ + MIl)/Mh'
AS Mlo(umll S (MIO(UQI/)Q - ]—[Z‘GI’HK Mg, Mlo(uml/ S (M?{u)]'/ Let m e M Wlth m “I'_ MII 6

Heernx M&. Then m, = 0 unless x € I’ U I}, and hence

m & MI/Uh
= Mp + M, as (S°) holds on M.

Thus, M, =~ (M) . In general, write K = I N.J with I W-open and J W-closed. One has
M = MS§%, ~ (M9*); by what we have just verified, and hence

(M) p ~ (M3") 1) = (M3") i by (1.4.iii)
~ M~ by above
= My, as desired.
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We now show that (S°") holds on M. Given W-open I; and I, one has

(M) non = Ml%um(llulg) by (3)
= M&%ﬂll)u(Kﬂlg) = M(OluﬂImJ)U(IﬂIQOJ) = M{(:)(ulﬂfl)U(IQIQ)}ﬁJ

= Minun)/Minmunyng = Maanoan) /Mnmuon) g
= {Mrnr, + Minn } /Mun@on)pg  as (S™) holds on M

~ Mmll /M(mh)\J + Mm[2/M(IﬂIQ)\J = M?(umll + M?(um’g
= (Mg + (Mg')r, Dy (3) again,
and hence (M) o, = (M), + (M),

We show finally that (LE) holds on Mg Let t € 7 and put 8 = ;. As (MP)? =
M;/Mp ;)P ~ (M;)?/(Mp ;)?, we have only to verify (LE) holding on M;. Let m € (M;)? <
\ \

MPB. As (LE) holds on M, one can write m = > 0c\w Mo With mg € MPO]],cq ME. Asm e

(M)P < (M;)Q = [,er MZ, however, m, = 0 unless = € I. Thus, mg € (M)’ N ][, .o (M1)E,
as desired.

(iv) follows from (8.1.3).

8.4. Let M € C°" and K; W-locally closed. By (8.3.i) one has Mg € C".
Lemma: If Ky is another W-locally closed, (Mg)%, ~ M2% k., .

Proof: Write K; = I; N J; with I; W-open and J; W-closed, i € {1,2}. Then

(MR ks = (MR 1/ (MEY) 1\,
= M?(%OIQ/M})EQ(]Q\JQ) by (834)

with
M;)(Llr‘llg = M?lumIQHJl = Mhﬁfz/M(Ilﬁb)\Jl?
M ag) = MR umnn = Munm\e) /Mnn@ g = Mnnnyn/Maon) o),

and hence

(M?(li)%g = Mhﬁfz/{M(hﬂb)\h + M(11012)\J2}
= Mnnn/Munnn\nyo{hnp)\ey  as (S™) holds on M

P _ ou _ ou
- MllmIQ/M(IlnIQ)\(JlmJ2) - MllﬂlgﬂJ1ﬂJ2 - MKﬂ_]KQ‘

8.5. Let M € C™. Yw € W, {w} = (< w) N (> w) is W-locally closed. Put Mp* = Mp), =

M, /M () (>w) for simplicity.

The filtration M2}, i € N, of M°" by length with (< i) = {w € W|{(w) < i} admits a
refinement by W-opens such that each subquotient is of the form M°" w € W. We say that

w

M admits a V-flag iff each M2", w € W, is graded free over R, i.e., M2" ~ [],., R(w) ()™ for
some n; € N. Let Cy denote the full subcategory of C? consisting of the objects with V-flags.
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Lemma: VM € Cy, VK W-locally closed, M € Cy and is left/right graded free over R. In
particular, M € C.

Proof: By (8.3.i) we know that M* € C°". YVw € W, one has

(1) (Mo = Mghuy by (8:4)
My ifw e K,
o else.
Let [y =0 C I; C -+ C Iy = W be a filtration of W by W-opens. Then M = (Mou)1|w|

with all (M), /(M}’{“) o~ (M7 > J € [1, W], graded free by (1), and so therefore is
Mou |

86. Let M € C,s € S,t € Tandput a = a,, f = a;. VQ € (H)\W, put M® = MP N
(ILyeq MQ) = MP N (M8 @ M7). Let 6 € V with (§,a") =
Lemma: (i) If Q= Qs, (M x B(s))" ~ M @ B(s).
(ii) If 2 # Qs, the right actions of a on both Mt and (M * B(s)) are invertible and
(M+B(s)? 2 {M*@rR6®1 -1} {M¥*RrRE®1—-1®90)}.

(111) If (LE) holds on M, so does it on M * B VB € GBimod.

Proof: (i) One has

(M % B(s))” = (M * B(s))’ 0 [[ (M * B(s))$

= (M x B(s))° ﬂﬁ{ Mg ®r B(s)) ® (M, ®r B(s)?)} by (2.3.3)

= (M * B(s) Bﬂﬁ{ Mg @r B(s)?) @ (Mg ®r B(s)?)}} as Qs =Q

= (M ®g B(s) 5:169]_[ M @ B(s)?)

~ (MP @p B(s mﬁ ME ®r B(s)) ~ (M° @5 B(s)) N {(][ MY) ®r B(s)}
= (M°n ] M2 ;ZQB(S) as B(s) is free over R -
= M* ®Rw;§28)-

(ii) Let w € ©Q and put v = wa. Thus, Q = {w,tw} and Qs = {ws,tws}. As Qs # Q,
QsNQ = (0, and hence v # £+, ty # £5. Then~,ty € (Rﬁ) Let m € M2 = MPN(MYPa M)
and write m = my 4+ my with m; € M9 and my, € M. Take b € V with (dg,8Y) = 1.
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Va € R, mia = (wa)my; = ymy and mea = (twa)mg = (ty)ms. Thus, ma = ymy + (ty)ma,
mw‘lég = 557711 + (tég)mg = 55m1 + (55 — ﬁ)mg Then in M#

1 <”Ya BV> -1
{;m%— W(d@»m—mw ds) o
1 (8 (. 8")
= (; + W)(vml + (ty)ma) — ) ———{0pymu + (65 — B)(ty)ma}
— (4 (v,8Y)ds <%5v>5ﬁ>m1 n (t_ i (v:8)95 {7, 8")(dg —5))m2

ty ty gl gl gl
=mqj + Mgy = m.

Thus, M%a = M. As M is right torsion-free over R by (1.3.2), the right multiplication by «
on M* is invertible, and on (M * B(s))" as M x B(s) € C by (2.3). Thus,

(M + B(s)) = (M« B(s))" ©r B

Put B(s)[2] = B(s) ®@r R[1]. As (0®1-1®sd)a=a(d®1—-1®sd) and as (0®1—-1®Q8)a =
(sa)(0®1-1®0J) =—a(d®1—1®:7), one has from (2.2.16)
(1) B(s)[é]:R[é](cS@l—1®35)@R[$](5®1—1®5)

with R[L](6® 1 1©50) C B(s)@ and R[1](6® 1 - 1® §) C B(s)?. Thus,

(M % B(s))® ®g R[é] = (M B(s)[é])ﬁ N JJ (M« B(s))§ [BCA, Lem. 1.2.6.7]

= (M" @ B(s)[=]) N {(M * B(5))3 @ (M * B(s)),}

= (M” @g B(s)[=])N
{(M2 ®r B(5)?) @ (M2, @ B(s)?) & (M2, ©r B(s)?) @ (M3, ®r B(s)9)}
:MB®R{R[$](6®1—1®56)@R[é](5®1—1®5)}
N{MP@r RO®1—1®58)®ME r RO®1—1® s0)
OMLRRRED1-1R0)BME, QR RE@1—-1®0)}
=M @r{RO®1-12s0)®RE®1-1®4)}
N{(MEDME)RRrROED1 —1®s0)d (MY &M2)RrROD1—1®0))}
as a € (RP)*
= {MPN(MEdME)@r RG®1—1® s6)
S{MPN (ML ®M2)}RrROE®1—1®0)
={M*@rR(®1-1®s0)}0{M¥rRO®1—-1x4)}.

QIO |+

(iii) We may assume that B = B(s). We are to show that (M * B(s))’? = Hoe @ (M *
B(s)) Write {Q € &)\W|Qs # Q}/(s) = {Qy,...,Q}. Thus, {Q € )\W|Qs # Q} =
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{,Q;s]i € [1,r]}. Then

[ xB(s) {H (M * B(s }@H{M*B N @ (M * B(s))%*}
Qe(t)y\W

={ [ (M*" ®r B(s) }@]_[{MQ ©r RO 1 —1® sd)
Qs=0Q i=1
OMPRRROR1—100)dM¥" QrR(E®1—1® s6)

MY RrRO®1—-1®46)} by (i) and (ii)
= { [T (% ©r B(s))}
Qs=0

® ﬁ{M“i SR (R0 1—100) @ RL]6®1—100)})

pay o o

1 1

©{MY¥* @p {R[a](é R1-1®9) R[EW ®1—1®s6)}}
as the right multiplications by o on M*% and on M*%* are both invertible

—{H (M" @g B(s) }GBH{ (M @p B(s)|~ e (o ®RB(S)%])}

by (1)
—{H (M® @ B(s) }@H{ (M® @ B(s)) ® (M ©g B(s))}

as the right multiplications by o on M*% and on M*%* are invertible again

= I erBs)=( [ M orBs)

Qe)\W Qe\w
= MP @i B(s) as (LE) holds on M
= (M * B(s))".

7. Let se Sand I CW with Is=1.
Lemma: VM €C, (M * B(s)); ~ M; ®g B(s).

Proof: One has
{(M % B(s))1}9 = [[(M = B(s))% by (14.i)

wel

= [T{M2 @r B(5)2) & (ME @1 B(s)2)} by (2.3)

wel

= JTHM)2 01 B(5)?) & (M), ©r B(s)?)}  as Is =1

wel

= (M; ®g B(s))°,

81



and hence

(M % B(s)); = (M + B(s)) N (M; ®g B(5))? = (M ®g: R(1)) N {(M)? ®p- R(1)}
~ (M N (M;)?) ®rs R(1) as R is free over R®
= M[ ®Rs R(l) ~ M[ ®R B(S)

8.8. Let M € C°", s € S, w € W with w < ws. Let I (resp. J) be a W-open (resp. W-closed)
with I N J = {w,ws}. Thus, I \ {w,ws} =1\ J and I\ {ws} = (I \ J)U (< w) are both
W-open. As B(s) is free over R, M ®p B(s) € C?, which may, however, not belong to C°".

Lemma: If I = Is, there are isomorphisms of left graded R-modules

(M @ B(8))1\fws} /(M @r B(8)) 1\ fwaws) = My sy (—1),
(M ®@r B(5))1/(M ®r B(8))1\fws) = M} 6 (1).

Proof: Put N = M ®p B(s). By (1.4) one has all Ni, Np\qws}, N\ {wws} € c’. Put L, =
N twsy/Ni\fwwsys L = Ni/Npfwwsys Le = Ni/Npqws}, and consider an exact sequence
(1) 0—L —L—Ly—0.

Thus, one has a CD of exact sequences

0 > LY y L9 s LS > 0

N l 0

0 > N9 » N NY —— N9 —— 0.

By (1.4) again all Ly, L, L, € C°. In particular,
(2) Li=LiN(L)°~LNNS=LNLY ~LNLY.
To see the last isomorphism, if z € LN LY, 2 =0 in Ly < LY, and hence 2 € Ly by (1).

Now,

L= (M; ®r B(5))/(Mnwwsy ®r B(s)) by (8.7)
= (MI/MI\{w ws}) QO Rs R(l)
~ My wsy @rs R(1) by (8.3) as M € C™"

= {wws}®RB<>

Then Ly o~ LN LY =~ (M), ®r B(s)) N L.
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By (2.3.iii) one has

L(—1) ~ (Mg @ B(s))(~1) s L9 = (M, o B)G = (M2, )9 (M2 )%,
Ul
Mf’tbl),ws} ®rs R® ® Moqlllj,ws} ®Rs R*6 (ml ® 15 ma & 6) ? (ml,w + m2,w§a miws + m2,1z)355)

!

L’UQJS =~ (M?'Ll[l),ws} ®R B(s))’uQJS

g
(Mou )gs SB) (Mfu )g (ml,ws + m2,w557 miw + m2,w55)'

{w,ws} w,ws}
As suppyy (L) = {w, ws}, one has that
(3) (m ®1,my®9) € L?U it (m1,0s + M2ws0, M1 + Mo yysd) =0
o {mlvw = —Mgys0 = —(WsH) Mgy,

Miws = —Mawsd = — (W) Mo,
iff my = —(wsd)my as supp,y,(m), suppy,(mz) C {w, ws}.
Thus,
Li~LNLe ~ {(—(wsd)m @ 1,m & 6)|m € My sy H(1)
~ M a(=1) as deg(d) =2 = deg(wsd).

{w,ws}

Consider next an epi of graded left R-modules
¢ L= My g ®rs R(1) = M7, (1) via m®aw (wsa)m,

under which (m; ® 1,mg ® §) = my + (wsd)my. Then ker ¢ = L N L2 by (3), and hence

foasy (1) = L/(LOLY) = L/Ly by (2)
~ LQ.

8.9. Let s € S, w € W with w < ws. Recall from [BB, Prop. 2.2.7] that
(1) Ve e W with z < ws and z < zs, x < w and zs < ws.
Likewise,

(2) if x > w and x > xs, then xs > w.

For z has a reduced expression (si,...,s,) with s, = s. As ws > w, a subexpression of
(S1,.--,8—_1) gives w, and hence xs = s1...8,_1 > w.

Note also that
(3) VI W-open, I U Is remains W-open.

For if x € Is and y < x, s € I, and hence we may assume = > xs. If y < ys, y < xs by (1),
and hence y € I. If y > ys, ys < zs by (1) again. Then ys € I, and hence y € Is.
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Lemma: Let M € Cy and I W-open, J W-closed. There are isomorphisms of graded left

R-modules
Mg ) i I = {ws},
(M x B(s))1/(M * B(s)) s = { o }(—1) if 10 J = {w}.

{w,ws}

Proof: Put N = M % B(s) € C; M € C by (8.5).

Assume first that 1 N J = {ws}. Put I = (< ws), which is right s-invariat by (1). As I is
W-open with ws € I, I C I. Thus

Nh/NIl\{ws} — NI/NI\{ws} = NI/NI\J-
As T1N(> w) = {w,ws}, Np, /N qwsy =~ M2 (1) by (8.8), and hence MP" (1) < N;/Np ;.

{w,ws} {w,ws}

Let t € T and put 3 = oy. As R = R[a—lu|u € T\ {t}] is flat over R, M” = RP @p M €
C°%(RP) the category C°" over R? [BCA, Lem. 1.2.6.7]. Then (LE) holds on N” ~ M? x B(s)
by (8.6.iii), and hence (S°%) holds on N* = (N#)# by (8.2). Thus, N° € C°*(R"). In particular,
(NP)ou . does not depend on the choice of I and J by (8.3), and hence

(N?) 1/ (N?)pg = (N?) sy = (N?)1 /(NP 1 guws)
~ (MP)§: (1) by (8.8) again.

{w,ws}

As M admits a V-flag, M?" . is graded free over R by (8.5). Then

{w,ws}

{owsy (1) = Neer{ My 0 (1)} by (8.1.1)
= e (M) {wsy (1) = Neer{ (N )1 /(N*) s}
Z NI/NI\J as NI/N[\J S C(Z) by (14)

Thus, Ni/Npy = Mgy 0 (1)

Assume next that 7 N J = {w}. Let us first observe that
(4) Ni/Npg = Mgy 0 (=1).

{w,ws}

As I\ J =1\ (>w), we may assume J = (> w). Then J = Js by (2). Put I, = I U Is, which
is W-open by (3). Then ;N J =(INJ)UIsNJ)=(INJ)U(IsNJs)=(INnJ)U(INJ)s=
{w,ws}, and hence I} \ {w,ws} = I} \ J and I} \ {ws} = I} \ (> ws) are both W-open. Also,
I\ A{ws} D I;if I 5 ws, I O {w,ws} implying I NJ 2O {w,ws}, absurd. As I F ws again,
I\A{w,ws} = I'\{w} = I\ J, and hence N;/Nn; = Nip\fuwsp /N fwwsp = M7y 0 (—1) by
(8.8) again, and (4) holds.

Take now a sequence of W-opens ) = Iy C --- C Ijyy) = W with ;1| = |[;] +1 Vi such that
I =1 and Iy = I \ {w} for some k € [1,|W|]. Put I = W| and write I; = I;_; U {w;}.

Assume for the moment that K is a field. Then dimg N¢ = 22:1 dimg (N7, /Ny, _,)*. By the
case I NJ = {ws} and by (4) one has

-1 it w; <wjs,

{wjwss} 1 else.

dimK(NIj/NIj_l)d < dimg (M7 yewi)  with  e(w;) = {
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Then

Z dlmK {w sz})d"'a w;) Z{dlm Mou)d+5(wy) + dim (Mi?s)d+g(wj)}

Jj=1
= > dimg(Mpy ) > dimg (M) )
W S>W;j W S>W;j
+ Z dim]K(MOu ) 4 Z dimg (M {w 8})d+1
w; s<W; W s<W;
= Y dimg(Mp )+ D dimg (M 4)*
W S>W;j wjs<W;
+ Z dimy ( MOu d“—i— Z dimK(qu‘;j})d’l
Wi s<W; Wi s<W;

= dimg (Mg )+ ) dimg (M) 5)* = dimg M + dimg M4
j J

On the other hand, taking § € V with (4,a) =1, one has N = M ®gs R(1) = M (1) ®gs R* ®
M(1) ®pgs R°0, and hence
dimg N¢ = dimg M (1)* + dimg M(1)*?  as degd = 2

= dlmK Md+1 + dlmK Md 1 Z dlmK )d+€(wj)

{w wjs}
2 Z dimK(N[j/Nijl)d = dlmK Nd.
J
We must then have in (4) an isomorphism

(5) Ni/Nig = My s (=1).

Back to general complete DVR K with maximal ideal m, write m = (a). By (8.1.3) one has
Np, @k (K/m) ~ {N ®k (K/m)};,, and hence we may regard (N;, ®x K/m); giving a filtration
of N @k (K/m) with (N;/Nps) @k (K/m) ~ M2" -\ (—1) ®x (K/m) by (5). It then follows

{w,ws}

from (4) and by graded NAK that N;/Np; = My sy (—1).

8.10. Let M € Cy and s € S.
Lemma: VI, I[s W-open with Iy O I, (M *x B(s))r, /(M x B(s))y, is left graded free over R.

Proof: Put N = M % B(s). Take a sequence [, = I} C I} C --- C I = I; of W-opens with
’[;l = ’[]/_1‘ =+ 1Vi e [1,?"], and write I]/ = [j,'—l L {w]} As {w]} = [] \ ijl = [] N (W \ ijl)a
one has from (8.9)

Np[Np_ >~ My, o (e(wy))  Fe(w;) € {£1},

j—1 {w; w]s}

which is graded free over R by (8.5). Thus, Ny, /N;, = Ny /Ny, is graded free over R.

8.11. Though we do not know if C°" x GBimod = C°",
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Proposition: Cy * ©Bimod = Cy. In particular, GBimod < Cy.

Proof: Let M € Cy. We have by (8.10) only to show that M % B(s) € C", s € S. Put
N =M % B(s).

We know from (8.6) that (LE) holds on N. To see that (S°") holds on N, let I; and I be 2
Wh-opens. Consider Ny, /Np,n, < Npurn, /N, both terms of which are graded free over R by
(8.10). Let t € T and put 5 = ay. Then (S°") holds on N by (8.2), and hence the imbedding
turns invertible upon base extension to R” by (8.3). Thus,

Nnon /N = Mier(Nrun /Ni,)™ by (8.1.1)
~ Mer(NiUL/Ni) by [BCA, Lem. 1.2.6.7]
= ﬂteT(Nﬁt/Nﬁtmz) Nh/NIlﬁIw
and hence N]lu]2 = N[l + NIQ'

8.12. Let [Cy] denote the split Grothendieck group of Cy and define chy : [Cy| — H by
[M] = > o gk(MgH,y = Y > o7 (MY": R(w)(((w) + j))H, VM € Cy,

wew weW jez
extending (5.9) to [Cy]. We will abbreviate chy([M]) as chy(M). In particular, Vs € C,
chy (B(s)) = grk(B(s)¢") + verk(B(s)g*)
— aK(B(s),) + veK(B)/BG) H, = ek(B().) + vark(B) ) H,
— v+ vgrk(R(e)(1))H, by (2.2.10, 13)
— v+ H, = H,
= ch(B(s)) from (5.2).
Then, one has as in [SO7, Prop. 5.9],

Corollary: chy s H-linear in the sense that VM € Cy, VB € GBimod,
chy (M * B) = chy(M)ch(B).

Proof: We may assume B = B(s) for some s € S. One has from (8.9)
vgrk(M™ 1) if ws <w

{w,ws}

v tgrk(Mer . L) else

{w,ws}

grk((M * B(s)),") = {

) o{erk(My") + grk(Mpy )} if ws <w
) o {ark(MOY) + grk(MeE )Y else.

{ws}
Then
chy (M * B(s)) = > o"“grk((M = B(s))o") H,
wew
= Z v gyl (Mow) + grk(Mov) H,, + Z v ork (Mow) + grk(Mov) H,,
w€<l/\/ w€>\/\/
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while

chy (M —{Zv Vark(Mov)H,, }(H, + v)
wew

H H if
_ ZU grk Mou ws+v,1w it ws > w
H,s +vH, else

weWw
= Z 0! grk(MoY)(H s + vH,) Z ) grk (MO (Hys + v H,),
w€>1/\/ w€<VV

and hence chy (M * B(s)) = chg(M)H, = chy(M)ch(B(s)), as desired.

8.13. As the category Cy is additive, but not necessarily abelian, we define an exact structure
after [F08a, 2.5], [FO8b, 4.1].

Definition: We say that condition (ES) holds on a complex My — My — M;s in Cy iff
the sequence 0 — (Mp)S" — (Ma)d" — (M3)0" — 0 is exact Yw € W as graded R-modules.
We define a category Cp' to be the full category of Cy consisting of M such that ¥ complex
M, — My — Mj in Cy with (ES), the induced sequence 0 — C(M, Mi(n)) — C(M, My(n)) —
C(M, Ms(n)) — 0 is exact Vn € Z.

Thus, C®* consists of the “projectives” in Cy. As R(e) € Cy and as M, = M" VM € Cy,
one has by (1.4.3)

(1) Re) € Cp'
We will show that &Bimod = Cy".

8.14. Let My — My — M3 be a complex in Cy with (ES) holding. Consider a refinement I,
by W-opens of the length filtration (M;)<;, | € N, of each M;, i € [1,3], such that I, = 0,
I, = I,y U{x,} for some x, € W, n € [1,|W|]. Thus, Iy = W. Consider a CD

As I} = {x1} and as (ES) ensures an exact sequence 0 — (M)3" — (M) — (M3)" — 0

Tn

Vn, the top and the bottom rows are both exact. As the columns are all split exact at least
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as left R-modules, the middle row must be exact. Repeating the argument, one obtains that
0 — My — My — M3 — 0 must be exact. Moreover,

Lemma: YK W-locally closed, 0 — (M7)% — (Ma)% — (M3)% — 0 is ezact.

Proof: By (8.4) on the complex (M)% — (Ms)% — (Ms3)$% the property (ES) holds, and
hence the assertion by above.

8.15. We now show
Theorem: C'x GBimod = C%' = GBimod.

Proof: For the first equality we have only to show that M x B(s) € C3* VM € C%' Vs € S. We
know from (8.11) that M % B(s) € Cy. Assume that (ES) holds on a complex M; — My — My
in Cy. By adjunction (2.6) one has a CD

0 —— C(M = B(s), My) —— C(M % B(s), My) —— C(M % B(s), Ms) — 0
| | !
0 —— C(M, M x B(s)) — C(M, My x B(s)) — C(M, M3 x B(s)) —— 0.
Thus, the exactness of the top row will follow if (ES) holds on the complex M; x B(s) —

M, x B(s) — M3 * B(s); we know that the complex lies in Cy by (8.11). Yw € W, one has by
(8.9) a CD

0 —— (M1 % B(s))) —— (M B(s))o! —— (M3 * B(s))% —— 0

| | |

0 —— (M) (£ —— (Mo)P® o (E£1) —— (M) 2 (£1) —— 0

{w,ws} {w,ws} {w,ws}

with £1 varying simultaneously, the bottom row of which is exact by (8.14). The first equality
holds.

As R(e)(n) € C¥' by (8.13.1), one obtains by above that &Bimod C C®'. Assume now
that M € C%' is indecomposable. Refining the length filtration of M, take W-opens I and I’
with I’ = I U {w} for some w such that suppy,(M) \ I = {w}. Thus, suppy,, (M) C I’ and
suppy(M/M;) = {w}. Then

(M/Mp)ot = M/M; by (8.3.iii)
= M]//M] as ], Q suppW(M)
~ Mp",

and hence (ES) holds on the complex M; — M % M/M; in Cy. Let R(w)(n) # M /M
such that moi = id g(w)(n) for some n € Z. As B(w)” ~ R(w)({(w)) by (5.1) and as B(w) € Cp",
one obtains from (1.4.v)

C(B(w)(n = L(w)), M) —— C(B(w)(n — £(w)), M /M)

7 C(R(w)(n), M/M).
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Let i € C(B(w)(n — £(w)), M) be a lift of i. Likewise, let 7o g € C(M, B(w)(n — {(w))) be a
lift of 7 o ¢ along

C(M,B(w)(n—f(w))) — C(M, R(w)(n))
ey !

C(M /My, R(w)(n)).

Y(n—L(w)), B(w)(n—{(w)))*. As B(w)(n—{(w)) is indecomposable,

Then id—7 o goi ¢ C(B(w
i & C(B(w)(n — £(w)), B(w)(n — £(w)))*. Thus, 7 splits, and hence is

—
we must have mo g o
invertible.

8.16. Turning to W-closed, we say that M € C? belongs to C® iff the following two properties
)

(S*) and (LE) hold on M:

(Sfe) VW—CIOSQd Il and ]2, M[1U12 = M[1 + MIQ,

(LE) vie T,M* = [ (Mn]]M2).
Qe)\W z€Q

Writing K = I N J with I W-closed and J W-open for a W-locally closed subset K of W,
VM € C*, put M = M;/Mjp ;. Then the analogues of (8.3) and (8.4) hold for M.

8.17. Let M € Cf. Yw € W, let M = Mfe b and say that M admits a A-flag iff each M,
w € W, is graded free over R. Let Ca denote the full subcategory of C? consisting of those with
A-flags.

Let M € Ca and I W-closed, J W-open, s € S, w € W with ws < w; note that the order
is reveresed here. As in (8.9) there are isomorphisms of left graded R-modules

) (M = B(s))1/(M = Bls)) s =~ {%ﬁ Zigmw ot
Then, as in (8.11), one obtains that

(2) Ca * GBimod = Ca.

As R(e)(n) € Ca Vn € Z, together with (8.11) one has

(3) SBimod < Ca N Cy.

Let now [Ca] denote the split Grothendieck group of Ca, and define chp : [CaA] — H via
(M] = > o Wgk(MEH, = > Y o' (M R(w)(—(w) +14))H,, VM € Ca.
wew weW i€z
In particular, Vs € S,
(4)  cha(B(s)) = gr(B(s)e) + vgr(B(s)S) Hy = gr(B(s)) + vgr(B(s)s) Hs by (14.2)
=v+uw tH, by (2212, 11)
= ﬂs.

89



One shows as in (8.12) that cha is H-linear: VM € Ca, VB € &Bimod,

(5) cha(M % B) = cha(M)ch(B),
obtaining an analogue of [S07, Prop. 5.7]. Thus, together with (8.12),
(6) cha = ch = chy on [6Bimod].

Then, VB € GBimod, Yw € W, v*®grk(Bf) = v=grk(Bv) = v*grk(Bov), and hence
(7) By (20(w)) ~ B* =~ D(By")(26(w)).

8.18. If I is W-open (resp. W-closed), one has from (1.4.2)
M" ~ M/Myn; =~ M (vesp. M™).
It follows from (8.5) (resp. (8.16)) and (8.17.3), in accordance with [FO8b, Def. 2.8,

Proposition: VM € Cy (resp. Ca), VI W-closed (resp. W-open), M! is graded free over R.
In particular, VB € &Bimod, VI W-closed/W-open, M is graded free over R.

8.19. Recall from [L85, 1.4]/[S07, pf of Th. 5.15] an Z[v,v~!]-bilinear form ( , ) : H x H —
Zlv,v '] such that (H,, H,) = 6., Vz,y € W. Vs € S,

H,s+vH,, Hy) if xs >,

(
HH., H,) =
(HoH,, Hy) {(Hxs+lex,Hy) else

Ozsy + V0gy if xs >z,
Opsy + 07 10,, else

while

| (H,,Hys +v 'H,) else

O ,ys + V0gy if ys > v,
Opys +0 105, else

- {(Hz,Hys VoH,)  ifys >y,
(

If s > x,
v if x =y only if ys >y,
Opsy + Vg y = Oz ys + 005,y = < 1 if x = ys only if y > ys,
0 else
= <H$7 Hyﬂs>'
If s <z,
1 if xs =y only if y < ys,
Ousy + 0V 0py = vt if 2 =y only if ys < y,
0 else
= <H337 Hyﬂs>'
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Thus, in either case (H,H,, H,) = (H,, H,H ), and hence VH, H'|H" € H,
(1) (HH" H'Y = (H, H'H").

We now obtain an analogue of [S07, Th. 5.15]

Theorem: VB € GBimod, VM € Cy,

grk(CH(B, M)) = > ) (B : R(w)(—L(w) + 1)) (Mg : R(w)(L(w) + j))o' .

weEW i,jEZL

Proof: We have only to show by (8.12) and (8.18) that

grk(C¥(B, M)) = (cha(B), chy(M)).
By (1), (8.12) and (8.17.5) we are further reduced to showing that

grk(C#(R(e), M)) = (cha(R(e)), chy (M)).

One has
LHS = grk(M,) by (1.6.3)
= grk(Mg")
while
RHS = (1, > "™ grk(Mg")H,,) = grk(Mg")
wew
as desired.

8.20. As in (8.13) we define an “exact structure” on Ca as follows.

Definition: We say that condition (ES) holds on a complex My — My — Ms in Ca iff the
sequence 0 — (M) — (M) — (M3)® — 0 is evact Vw € W as graded R-modules. We

w

define a category C% to be the full category of Ca consisting of M such that ¥ complex M; —
My — Ms in Ca with (ES) holding, the induced sequence 0 — C(M, My(n)) — C(M, Ma(n)) —
C(M, Ms(n)) — 0 is exact ¥n € Z.

Thus, C' consists of the “projectives” in Ca. Note that R(e) € Cy NCa. As observed in
(2.2.15), however,

(1) R(e) € Cp"\ CE,
and hence &Bimod Z CE.

8.21. Nonetheless, as in (8.15) one has

Proposition: C * GBimod = Cf.
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9. Z for finite Weyl groups

Assume that K is a complete DVR under the characteristic restrictions from §8. Recall Z
over the present K from (6.1). As Z is torsion-free over R, F'(Z) € C*. The argument of (6.1.2)
actually shows that F(Z) € C*: F(2)? = ][, B*(w), andalso that supp,,(F(Z)) = W. We
will give an isomorphism R®pw R — F(Z) of graded K-algebras compatible with the structures
of R-bimodules, and show that F'(Z)(¢(wp)) ~ B(wp) in C. We will suppress F.

9.1. We start with
Lemma: Z € C"nN(Cfe.

Proof: We check first that (LE) holds on Z. Let ¢t € T and put 3 = a;. Then R? = R[i|u €
T\ {t}] and hence

2P =R ®@p Z = {(2) € (R%)Y|24 = 21, mod B Yw € W}
= J] {(0....,0,a,0,...,0,a+bB,0....,0)|a,b € R’}

wew
w<tw

with a at the w-th and a + b3 at the tw-th

= II @ n]]z).

QeN\W weQ

The same argument shows also that (LE) holds on each Z°.
To check (S°") on Z, let I; and I, be W-open. Then Z;, + Z;, C Z;,,. Also,

(21 + 2)" = (2,)° + (Z1,)°
= (2%, + (2%, by (8.1.2)
= (Z2°),ur, by (8.2.ii) as (LE) holds on Z?
= (Zn,u1,)” by (8.1.2) again.
Thus,

Zn+ 2, = et (21 + 21,)* as Me7 R = R in each component
= Nier(Znun)™ = Znun,

and hence Z € C°". Likewise Z € C'e.

9.2. We show next that Z € Cy N Ca. More precisely,
Lemma: Yw € W, Z% ~ R(w)(—2l(wow)) and Z° ~ R(w)(—20(w)).

Proof: By definition Z<,, = {(2,) € 2|2, = 0Vax L w} and Z.,, = {(2,) € 2|z, = 0V £ w}.
Put f = ][] o Then V(a,) € Z<4, flaw, and hence the projectioin 7, : Z<,, — R onto the
teT

tw>w
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w-th component induces an imbedding Z" = Z<,,/ 2., — fR:

ZSwL)R

]

Zot e > fR.
To see the first assertion, we have only to show that 7, induces a surjection 7, : Z<,, - fR.

As Zo, @x K[v] ~ (Z @k K[v]) <, and as R @k K[v] ~ Sk (V @k K[v]), we may assume that
K is infinite; the assumption that K is a complete noetherian local domain is irrelevant for the
surjectivity of 7/ . Now, the surjectivity of 7/, follows from that of 7/, @k K, ¥m € Max(K) [AM,
Prop. 3.9], which in turn will follow from the surjectivity of 7/, ®x, Kq/mK, ~ 7/, @k K/m
by graded NAK. Thus, we may further assume that K is a field, and hence an infinite field by
base extension.

One has a homomorphism of graded K-algebrasn : RQpw R — 2 via a®b+— (a(wbd)),ew
compatible with the structures of R-bimodules. For g € R ®gpw R write g = Y, a; ® b;. Then
Yy e W, Vv € V, one has a CD

U > 2 ai(wb;)
Romw R —" 4 R l

K 32 ai(w)(ybi)(v) = 32, ai(w)bi(y~'v).

Thus, n(0,-1¢) € Zii(jwow) \ 0 by (7.10). As f|n(0p-11)w, one can take 1 such that f =
N(0yy-11)., and the first assertion follows.

Likewise the second, using (7.9) instead of (7.10).

9.3. By going up to K[v] and then using graded NAK one obtains that (7.3) carries over to the
setup over present K. In particular, by [Dem]| one has

(1) gtk(R(%w)) = grtk(R@pw R) = > o™ = grk(Z2).
weWw
As in the proof of (9.2), Vw € W, by graded NAK one obtains by induction on ¢(w)

R R —1— Z

J J

(R®pw R)<y > Zew.

As Z € Cy, Z admits a filtration whose refinement has all its subquotients of the form Zo",
and hence 7 is surjective. Then 7 must be bijective by (1). Thus,

Theorem: 7 is an isomorphism of graded K-algebras compatible with the structures of R-
bimodules.
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9.4. Let Zmodgr'® denote the category of graded left Z-modules of finite type that are torsion-
free over R. As any object M of C admits a structure of left R ® piw R-module, M € Zmodgr
via (9.3), and hence by (6.1) one obtains

Corollary: the functor F : Zmodgr'® — C is an equivalence.
9.5. The quotient Z — Z/Z_,,, ~ Z"° induces a complex Z_,, = Z — Z“° in Cy on which

(ES) holds; Vz € W,
(Zw())gu ~ 4 Zou

T, w0 “wq

<Z<wo)gu = {

Z it v < w,

0 else.

As B(wy) € C®', one obtains from (1.5.v)
CH(B(wy), Z) — C*H(B(wq), 2*°) ~ C*(B(w)™, Z“).
One has

B(wg)"™® ~ R(wo)(¢(wg)) by (5.1)
~ Z"({(wy)) by the presence of (1,...,1) in Z.
Let ¢ € C(B(wy), Z(£(wy))) be a lift of the isomorpshim B(wg)"° ~ Z*°({(wy)). Let f € B(wy)
such that its image in B(wg)" gives a K-linear basis of (B(wp)“0)~“*0). By (1) there is
Y € C(Z(L(wy)), B(wp)) such that 1 — f. Then ¢ o) —idz ) = 0 mod Z.y, (f(wy)), and
hence ¢ 0 ¢ — idz(gue)) & C(Z(€(wy)), Z(L(wy)))*. As C(Z,Z) ~ Zmodgr(Z, 2) ~ 2° = K,
C(Z(l(wp)), Z(L(wy))) is local. Thus, ¢ o) € C(Z(l(wy)), Z(l(wy)))*. Then Z(l(wp)) is a
direct summand of B(wy), and hence Z(¢(wg)) ~ B(wg). Thus,

Theorem: There is an isomorphism B(wg) — F(Z)({(wy)) in C.

9.6. Recall from (8.20) that a complex M; — My — Mj in Cx on which (ES) holds forms in
fact an exact sequence. Then Z € C& by (9.4.1). Thus, despite the fact that &Bimod Z CE,
one has from (9.5) and (8.21)

Corollary: (i) B(wg) ~ Z(¢(wy)) € C2 N CE.

(ii) VB € &Bimod, B(wp) * B € C%.
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IT. Abe’s bimodules

Given a root datum (X, A, XV AY) and a complete DVR K, Abe’s bimodules are graded
bimodules over the symmetric algebra S = Sg(Xy), X = XY ®zK. They are torsion free over
S and are equipped with a “weight space” decomposition over S? = S [é|a € A] parametrized
by the alcoves in X ®7R. They are designed ingeneously to admit a right action by the monoidal
category &B of Soergel bimodules over S associated to the Coxeter system (W, S) from I with
W =W, x ZA, Wy denoting the Weyl group of the root system A. The linear representation
of W on X} is given by annihilating Z, in particular, not faithful. To define the action, he
prepares another graded K-algebra R isomorphic to S and regards &8 over R. Thus, Abe’s
bimodules are graded (S, R)-bimodules M such that S* ®s M =[], , MY, A denoting the set
of alcoves. On each MY the isomorphism between R and S is defined separately depending on
A. Tt is assumed on K that 2 € K* and that the GKM condition holds, so that the Weyl group
Wy acts faithfully on X. Then the (S, R)-bimodule structure on M gives a decomposition
SP@s M = [oczaa M with MY = [],4cq M%. Thus, a morphism of Abe’s bimodules from

M to N is defined to be a (S, R)-bilinear map ¢ such that (S® ®@g @) (M%) C Hpearzassa MY,
for each A € A, where B > A is the strong linkage/generic Chevalley-Bruhat order on .A.

Later on an ideal quotient IC of the category is introduced such that any morphism ¢ : M —
N with (S ®s ©)(M%) C [1gou M) VA € A be annihilated. Then a full subcategory Ka
of K consisting of those admitting a A-flag categorifies Lusztig’s periodic module for the %5
Ji-Hecke algebra H of (W, S), and its subcategory Kp of “projectives” is equivalent to a certain
subcategory Kajs p of the combinatorial category of AJS [AJS]. If K is an algebraically closed
field of characteristic p > h the Coxeter number of A, Kajs p is equivalent to the category of
projectives of the principal block of G1T" deformed over the completion S of S with respect to
the augmentation ideal, where Gy (resp. T') is the Frobenius kernel (resp. maximal torus) of
the reductive algebraic group over K associated to the root datum. A A-flag on M is a filtration
of M such that each subquotient associated to an alcove be free over S. To define a filtration
and to verify that the &B-action on K preserve Ka, the properties (S) and (LE), extracted
from [F08a], [FO8b], [FL15], play important roles. Likewise, to define a “projective”, property
(ES) from [F08a], [FO8b] is used, and the construction of a projective is done appealing to
the structure algebra of the moment graph associated to Wy. Finally, the action of &8 on
the projectives is extended to the whole of the principal block of G171 corrsponding to the
wall-crossing functors. For p > 0 Lusztig’s conjecture on the irreducible G;T-characters is
proved.

1. Preliminaries

1.1. Let (X,A, XY AY) be a root datum [Sp, 7.4.1]. Let A denote the set of alcoves in
Xr = X ®z R, i.e., the set of connected components of Xg \ UA{I/ € Xg|(v,a¥) = n}. Let
[e1S
nez

Wy be the Weyl group of A and W = Wy x ZA with ZA acting on Xy by translations. Thus,
W acts simply transitively on A [J, 11.6.2.4]. Fix a positive system AT and let A" be the set
of dominant alcoves in A, i.e., those A € A such that, Vv € A, Vo € AT, (v,a¥) > 0. Let
A™ denote the bottom dominant alcove, and let S be the set of reflections in the walls of A™.
Thus, (W, S) forms a Coxeter system with the length function denoted ¢. Putting Sy = SNWY,
(Wy, S¢) forms a Coxeter subsystem. Through the bijection W — A via x — z AT, we transport
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the right action of W onto A [S97, p. 92]: Vy € W,
(1) (xAT)y = ayAT.

Let A = wA"™ = ATw, w € W. If s € S is the reflection with respect to a wall H of A*,
As = wsA™ is the alcove adjacent to A over the wall wH of A. Vo € A, Vn € Z, let so., € W
be the reflection with respect to the hyperplane H,, = {\ € Xg|(\,a¥) = n}: Vu € Xg,

Sampt =t — {p, @) + na.

If H,, is a wall of A defining s, wHy,,, = Hypan and As = wsAt = wsw 'wAT = wsw™ A =
WSanW A = SyanA. As the left and right multiplications on W are compatible, so they are

on A: Vx,y e W, A € A,

(2)  (2A)y = (2(wAT))y = ((zw)AT)y = (zw)y A" = 2(wy) AT = z((wy)A") = (Ay).
In particular, letting ¢, v € ZA, denote the translation by ~,

(3) (A+7)y = (t,A)y = t,(Ay) = Ay + 7.

More generally, let X = {\ € Xg|(\,a") € Z Ya € A}; X may not contain all the special
points in Xg [L80]. Then X acts on A by translation. Note, however, that (3) does not carry
over; it may happen that (A + \)y # Ay + A if A € X \ ZA.

1.2 Some technicalities: Abe’s bimodules admit an action of Soergel bimodules, which
require a linear acton of W. For that let A = {f : A — X|f(zA) =zf(A) VA € AVx € W},
where Z is the image of x under the projection W — W;. VA € A, there is a bijection A — X
written f + fa := f(A) with inverse A\ — A4 such that M (zA) = 2\ Vo € W. Through the
bijection we import a structure of abelian group on A from X:

(f+9)a=fat+ga Yf,g€A,

which is independent of the choice of A; we are to check that (fa+g4)* = (fg +9g5)”, B € A.
If B=wA, weW,

fB+gs = f(B)+g(B) = f(wA) + g(wA) = wf(A) +wg(A) = w{f(A) +g(A)}
= @(fa+ga) = 0{{(fa+9a)" a} = 0{(fa+94)" (A)} = (fa + g4)* (wA)
= (fa+94)"(B) ={(fa+94)"}5,

and hence (fp + g5)% = (fa + ga)?, as desired.

If we transport the structure of W-module on X likewise such that (zf)4 = z(fa), however,
the structure on A depends on the choice of A:

(@f)p = a(fp) = 2{[(B)} = z{f(wA)} = a{w(f(A))},

which is not equal in general to x{f(A)} = x(fa). Instead, we define a W-action on A such
that Ve e W, Vf € A, VA€ A,

(1) (xf)(A) = f(Ax).
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So-defined x f is indeed an element of A thanks to (1.1.2). Also, Yy € W,

((zy) /)(A) = f(Alzy)) = F((Ax)y) = (y])(Az) = (2(yf))(A),
and hence (zy)f = x(yf). Thus, the bijection 74 : A — X is not W-equivariant.

Likewise, we introduce
N={f:A— XY|f(zA) =zf(A) Vz € W}.
Each A € A defines a bijection A’ — XV via
(2) Fes fa= f(A)

with inverse written v — v“, under which we transport the structure of abelian group onto A’:
(f+9)a= fa+gaVf,g € N. The structure is independent of the choice of A as for A above,
and we define a Z-linear W-action on A’ via

(3) (@f)(A) = f(Az) VA€ A

Now, Vf e AN, Vge A,V e W,
(4) (9(zA), f(zA)) = (2g(A), 2f(A)) = (9(A), f(A)) = (9a, fa).

Vf e N, let now f € AY = Modz(A, Z) such that f(g ) = (g4, fa), which is independent of the
choice of A by (4). Then

(5) N~A via fef
For define AV — A’ via ¢ — (¢/)? with ¢’ € X" such that ¢'(\) = ¢(A\) VA € X. Vg € A,

—_—~—

(¢)4(9) = (g, ((¢))a) = {ga, &) = 6((94)") = 6(9),
and hence (7;5’\)7‘ = ¢. Also,

(9, ()M a) = (ga, F) = F((9a)") = [(9) = (ga. fa),
and hence (f)* = f.

Thus, we will identify AV with A’, and obtain a Z-linear action of WW on A, and hence a
K-linear action on Ay = AY ®7 K, on which Abe’s theory of Soergel bimodules in I is applied.
Vge A\, VfeN Ve eW,

f(xg) = ((xg)a, fa) = ((2g)(4), f(A)) = (g(Ax), f(A))

{ )

= (g(yAT ), f(yAT)) writing A =yAT, y e W

= (g(yzA"), f(yA")) = (GTg(A"), 5f(AT)) = (9(AT), 271 f(A"))
= (g(4"), ( ‘1A+)> = {o(4 ), f(AT2TY) = (g(AT), (71 f)(AT))
= (ga+. (27" f)ar) = 271 f(g),
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and hence

(6) (zg, f) = (g, 27 f).

Note that the bijection (2) is not Wy-equivariant:

(7) (zf)a = f(Ax) = faz = f(Az)
= f(wATz) if A=wA"
= f(wzAT) by definition
= fwzw 'wA") = f(wrw 'A) = wrzw-{f(A)}
# o{f(A)} = z(fa).
If we take A = A%, however, Vo € Wy, Vf € A, (xf)a+ = xfa+. Thus, the isomorphism
between XV and AY using A* gives a Wy-equivariant isomorphism of K-modules

(8) XY@, K 3 A @, K.

Lemma: Let fe Ade X, ye XV, ge A,z eW, Ac A.
(i) (2f)a = faa-
(i) Tfa = foa-
(i4i) xAA% = M.
(iv) (ZN)*4 = N,
(o) (#7)4 =

(vi) zg™* = g™

Proof: (i) (zf)a = (zf)(A) = f(Azx) = fas.
(i) zfa = 2(f(A)) = f(xA) = fra.
(iii) One has
(zAA%) 4 = (A7) (A) = \®(Az) by definition (1)
= (A = A= (A4
As 74 is bijective, the assertion follows.
(iv) {(@A)*}oa = 2A = 2{(M)a} = 2{ (M) (A)} = (AW)(zA4) = (\)aa
(V) {1 }ea = 27 = 2{(v") a} = 294(A) = v (@A) = (+")aa.
(vi) Under the identification of AY with A’ one has
(xg*") a4 = (xg*")(A) = g**(Az) by definition (3)
=g= (gA)Av
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and hence xg4* = g4.

1.3. Recall the strong linkage on A from [J, I1.6], which we will denote by > after [L80]. Thus,
VAe A,w e W with A <wA, and v € A,

(1) wY — vV € R20A+.

The strong linkage is distinct from the PO on A induced by the Chevalley-Bruhat order on W;
if s € Sf, sAT = Ats ¥ A*. For the precise relationship between the two, cf. [S97, claim 4.14,
p. 96].

Lemma: Let VA, A" € A with A’ = A+~ for some v € ZA, A < A’ iff v € NAT.

Proof: “if” We may assume v € A", Take n € Z with n — 1 < (1,7Y) < n Vv € A.
Then A < s,,A by definition. Also, (s,,1,7") = (v — 1,7}y + ny,7Y) = —(1,7Y) + 2n <
1-n+2n=n+1, and hence A < s, ,A <5, ,115,,4=A+7.

“only if” Take v € A. Then (v+v)—v € R5oAT by (1), and hence v € R5o0ATNZA = NAT
[HLA, 10.1].

1.4. We say J C Aisopen iff VA € J, VA" € A with A’ < A, A" € J. This defines a topology
on A; A and () are both open. If J,’s are open, so is U, J,,. If J and J’ are open, so is J N .J'.
Thus, I C A is closed iff VA € I, VA’ € A with A’ > A, A’ € I. For if I is closed, let A € [
and A" € Awith A" > A. If A’ ¢ I, A" € A\ I open, and hence A € A\ I, absurd. Assume
conversely the condition that VA € [\VA' € Awith A’ > A A€ [. Let A€ A\ I and A’ < A.
Then A" & I by the assumption.

VA, A" e A let (> A) ={B € A|B > A}, and define (> A), (< A), (< A) likewise. Put also
[A, A= (> A)N (< A), ete. For a« € AT taken € Z withn —1 < < a’) <nVv e A, and
set a T A=s5,,A>A Letalsoa] A=54,-1A4. Thus,a T (el A)=A=al (aTA).

Lemma: Let Q2 € ZA\A be a ZA-orbit in A. If I is closed in Q, so is [x = {Az|A € I} in
Qu Ve eW.

Proof: Note first that I is closed in Q iff I = {Upe; (> B)}NQ = Upe{(> B)NQ} it VB € 1,
VB € Q with B’ > B, B' € I.

Let B € [ and B’ € Q) with B'x > Bx. Write Q2 = A+7ZA for some A € A. Then B = A+~
and B’ = A+« for some v, € ZA, and hence

Az ++"=(A++)z by (1.1.3)

Then ' — v € NAT by (1.3), and, in turn, B’ > B. Then B’ € I, and B'x € Ix.
1.5. Fix a complete DVR K with maximal ideal m throughout the rest of II, so that our

categories be Krull-Semidt. Put Ay = AY @z K, X = XV ®z K, and R = Skg(A). We endow
R with a grading such that deg(Ay) = 2, and consider Soergel bimodules in I over R.
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Throughout IT we impose on K the conditions
(A1) 2 € KX,

(A2) The GKM condition, cf. [F11, Lem. 9.2]: Va, 8 € AT distinct, Vm € Max(K), «¥ and 8
remain linearly independent in Xy and in XV ®7 (K/m),

in addition to the characteristic restrictions on K from I such that chK is either 0 or above the
torsion primes.

Under those assumptions one has
Lemma: The representation Xy of Wy is faithful.

Proof: Let w € Wy be trivial on X}{. As 2 distinct coroots remain distinct in Xy by the
standing assumption, w fixes every coroot over Z already, and hence w = e [HLA, 10.3].

2. Abe’s bimodules
2.1. Set S = Sg(Xy) endowed with a grading such that deg(Xy) = 2, and let S? = Sl=le € Al

Let Sp be a commutative flat graded S-algebra. For an S-module M put M 0= 8% ¢ M.
In particular, S§ ~ Sy[-t|a € A]. Define a category K'(Sy) to consist of the graded (S, R)-
bimodules M such that

(i) M is torsion-free of finite type over S,

(i) M? admits a decomposition M? = [[,_, MY such that VA € A, MY is an (S8, R)-
bimodule with mf = fam Vm € Mg Vf € R; precisely, if f =), fi ® a;, fi € A and q; € K,
fa=>.(fi)aa; € S, and extend the operation to the whole of R.

A morphism ¢ € K/'(Sp)(M, N) is a homomorphism of graded (Sy, R)-modules, i.e., of degree
0, such that (M%) C [, N9 VA € A. We equip K'(S)(M, N) with a structure of (Sp, R)-
bimodule such that Va € Sy, Vf € R, Vm € M

(1) (apf)(m) = plamf) = ap(m)f.

Thus, I@’(Sp) forms an (Sp, R)-bilinear category [H1f, Def. 3.1.11, p. 124, Def. 3.2.3, p.
130]. Put K'(S0)*(M, N) = [1,c, K'(So0)(M, N(i)), which comes equipped with a structure of
graded (Sp, R)-bimodule. Assume that ¢ € K'(Sp)(M, N) is invertible with inverse 1. VA € A,
ida = 1% o 0. As each ¥, B € A, is injective, we must have

(0]
MY 2 NO

oo

MY Ty NG
YA

Let ¢ € K'(So)(M, N) in general. If K is the kernel of ¢ as graded (S, R)-bimodules, by
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flat base change K" = ker(¢”) = [, 4 ker(¢%). Thus,

(2) K < M gives the kernel of ¢ in K'(Sp).
Assume now that ¢ € K/'(Sp)(M, M) is an idempotent. Then M = kerp @ ker(1 — ¢) as
(So, R)-bimodules with (ker )? = ker(¢?) = [, 4 ker(¢%) and (ker(1 — ¢))? = ker(1 — ¢?) =

[Tacaker((1— @)%) = e ker(1 — %) As M5 > (ker )y @ (ker(1 - ) VA € A,

IT 2% =M% > (] (ker )} @ { ] ] (ker(1 — 9))%} = (kero)? @ (ker(1 — ))" = M,
AeA AeA AeA

and hence MY = (ker ©)% @ (ker(1 — )% VA € A. Thus, the decomposition M = kerp @
ker(1 — ¢) occurs in K'(.Sy), and

(3) K'(Sp) is Karoubian/idempotent complete [Hfifl, Def. 3.3.40, p. 174].

As ker(1 —¢) = o(M), ¢ is the identity on ker(1 — ¢) and ¢ vanishes on ker ¢. Thus, VA € A,

MY a0

o]

MO oy MO,

As M € K'(Sy) is torsion-free over S, M < M® = [],., M4 We will denote the M’-
component of the image of m € M by my. We define the support of M to be supp4(M) =
{A € AIMY #0}. Vm € M, put supp 4(m) = {A € Almy4 # 0}.

Note that

(4) M € K'(Sy) is also torsion-free over R.

For if ma = 0, m € K'(So), a € R, writem =", ymain M? = S°@gM. Then 0= 3", axma
VA. If my # 0, there is b € S* with bmy € M. Then ba, = 0, and hence a4 = 0.

Let v € ZA. VM € K'(Sp), let T,(M) = M and T.,(M)% = M}
Vf € R,

., VAe A Vme T, (M),
mf = farym = f(A+y)m = f(A)m by definition
= fam,
and hence T, (M) comes equipped with a structure of K'(Sp), and T., defines an automorphism

of K'(S,) with adjoint T ,. IfAe X, A A+ ) defines a permutation on A. Unless A € ZA,
however, there is f € R with fay) # fa.

For a graded Sy-module M we let M?, i € Z, denote its homogeneous piece of degree 7. If
n € Z, we let M(n) denote a graded Sp-module with M(n)" = M™* i € Z. We say that M
is graded free over Sy iff M =~ [, ., So(n)®™™Mn) for some m(M,n) € N, in which case we
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call 3> ., m(M,n)v" € Z[v,v™"], the Laurent polynomial ring in v, the graded rank of M and
denote it by grk(M).

2.2 Remarks: Let M € K'(Sp).
(i) Let Q € ZA\A be a ZA-orbit in A. Vm € [[ ., MY, Vf € R,
(1) fa €S :mf = fom.
Forif Q= A+ZA and A’ = A+, v € ZA, Vf e N,
far=f(A) = f(A+7) = f(A) = [fa,
and hence Vg € R, g4 = ga.

As the left action of Wy is simply transitive on ZA\A,

(2) M =TT (J] Mb) with mf = (wfo)mVfeRvYme [ M}.

weWy Bewl) Bew2

For if A € Q,
wa - fwA by (1)
=wfy by (1.2.i)
=wfa
=wfq by (1) again.

Now, W; separates ZA\A by the simply transitive action, acts faithfully on Xy by (1.5),
and M is torsion-free over S. It follows that the decomposition of M? into the [] Bew? Mg,

w € Wy, is determined by the (Sp, R)-bimodule structure on M. Then, VN € K'(Sy), Vo €
(So, R)Bimod(M, N), Yw € Wy,

ACTT Mb) < T N
Bew) BewQ

For let m € [[epq M% and A’ € A with ¢(m)a # 0. Let 2 € Wy such that A’ € 2. Then,
Vf e Ag,

(fwa — fea)p(m)ar = ©(fuam)ar — frap(m)a = p(mf)a — faop(m)a by (1)
= (p(m)f)ar — faop(m)a =0 by (1) again.

As M is torsion-free over S, fua — fza = 0, and hence wz ™ far = fuu1a = fuo = foo = fa
by (1.2). Then wx ™" is trivial on the whole of A, and w = z by (1.5). Thus, V' € ZA\ A,

(3) ST M) < T Mh

AeQY AeQY

For an example of ¢ € K'(M, N) such that ¢°(MY%)  N% for some A, see if in (7.3).
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(i) For X C Aset My =M N[ ex MG As M < M°, (Mix))? < [Taex M5 It m e MY,
A € X, take b € S* such that bm € M. Then bm € My, and hence m € (M[X])w. Thus,
(Mix7)® = [Tacx M5. Then, by setting

MY ifBeX
M 0 _ B )
( [X]>B {0 else,

one obtains that Mx) € I@’(SO). Thus, M +— Mx] defines an endofunctor of I@’(SO). In
particular, as M is of finite type over S, we must have supp 4(M) finite.

(iii) Let R? = R[ﬁ]av € AY], which is independent of the choice of A € A; write

A=gzAT x € W. Then (V)" = (z7'a¥)*" by (1.2.v) with z'a" = (z"'a)" € A. Note
also that

((@)*)a = (@) (A) = (@) (zAT) = 2{(a")*" (AN} = 72" € A,
As M € K'(S,) has finite support, there is an isomorphism of graded (Sy, R)-bimodules

f|—>Z—mA with m = ZmAme S®®SM.
g e 94

M®RR®—>M® via m®

For denote the map by 7. Any element of M ®pz R is of the form m ® % for some f € (R%)*.
If 0 = n(m@%) = ZAflAmA, then 0 = (ZAfLAmA)f = > ,my =1®m, and hence m = 0.
To see the surjectivity, Va € (S?)*,

1 1 g 1
a@m:ZEmA :n(ZmAa_A@)g)
A A
with ¢ € (R?)* such that maty =%my e MnN MY VA, which exists as M has finite support.

2.3. A primary example of an object of K'(Sp) is afforded by Sy itself. As S is a domain and
as Sy is flat over S, it is torsion-free over S. Let A € A and let R act on Sy from the right such
that gf = fag Vg € So, Vf € R, which defines a structure of graded (Sy, R)-bimodule denoted
So(A). Then Sy(A)? = SO(A)A, and Sy(A) € K'(Sp), which we will call the standard module
associated to A. Thus, grk(Sy(A4)) = 1.

VM € K'(S,), one has by (2.2.3)
K'(S0)*(So(A), M) ~ {m € M|supp 4(m) € A+ NA}.
In particular, as K is a complete DVR, Sy(A) is indecomposable if (Sy)° = K.

2.4. Let I be a closed subset of A. VM € K'(Sp), let M; = My = M N ][, MY as in Rmk.
2.2.ii. One has M € K'(Sy) with

0 else,

() — {Mg if Ael.
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In particular,

M if I D su M),
0 if INsuppy(M) = 0.

Also,

Lemma: (i) If I’ is another closed subset of A, My N\ Mp = M~y = (Mj) .

So(A) if Ael,
0 else.

(ii) VA € A, So(A); = {

2.5. Properties (S) and (LE): We will argue as in (1.8), but with W® = (s,) X Za < W and
S = S[ﬁ%w € AT\ {a}| Va € AT. As S is a UFD, under the standing assumptions (1.5), one
has

(1) ma€A+Sa - S
For each S-module M put M® = S* ®g M € K'((Sp)®). YM € K'(Sy), we say M € K(Sp)
iff the following 2 conditions hold on M:
(S) V closed I and I, C A, My, = M, + My,
(LE) Va € AT, M* = [Tgeppe a(M* N1 4eq MY).

Arguing as in (1.4.9.iii) shows, VM € K'(Sy), VI closed in W, as M is torsion free over S,
that

(2) M @k (K/m) ~ {M @ (K/m)}/.
Then, one obtains as in (1.8.1.4) that

(3) if M € K(Sy), properties (S) and (LE) carry over onto M ®g (K/m).

Let ¢ € K(So)(M, M) be an idempotent, let K be the kernel of ¢ in K'(Sp), and let N be a
direct complement of K in K'(Sp). Then M4 = K% @ N% VA € A by (2.1.3). If I is closed in
A, one has in K'(Sp)

Mr=(EKeN)n[[EeN);=EaeN)n{([[&DHe ]V}
Ael Ael Ael

=ENJ[EHe N[N =Ko Ny
Ael Ael

Then KhUIQ D NI1U12 = MhUIQ = MIl + Mfz = (KII S NII) + (KIQ S NIQ) = (Kh + KIQ) D
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(N7, + Np,), and hence Ky, = Ky, + Kp,. Also,

E*oN =M= [ M n(J]MD}= ][ {(KeNn(J]Ke N}

Qewe\A AeQ QeWa\ A Aef

= [ (& enyn([E e N}

Qewa\A AeQ)

= II (& enyn([T &S @ (J] V)
Qewe\A A€ A€

= II (& n]]&De @ n ]~
Qewa\A AeQ AeQ

={ I s n]I&iye{ [I vn]] N0k

Qewe\A AEQ Qewe\A AeQ

and hence K* = [[gepya a(K* N[ 14eq K%). Thus, K € K(Sp), and

(4) K(Sp) remains Karoubian/idempotent complete [FHff], Def. 3.3.40, p. 174].

Let v € ZA and M € K(S). For closed I; and I,

(5) T (M), = M N H MY,
Ael1Uly
= Mony+y as (WU DL)+7y:={A+7[A € LU L} is closed
= M(Il-‘r’Y)U(IQ—I—'y) Wlth [] —+ v = {A —+ fy‘A c ]’]}’ ] _ 172
= M4y + M4 as both I ++ and I + 7 remain closed
=T\ (M)1, + Ty (M),

If o € AT,
(6) Ty =M= J] (e J] MY
Qewe\A AeQ)
= [ on]]Mh) asQ+yewn\w
Qewe\A AeQ
= I @en]]T,mn%.
Qewa\A AeQ

Thus, T, induces an automorphism of K(Sj).

Lemma: Let M € K'(Sy), a € AT, and A € A.
(1) If supp 4(M) C WA, (S) holds on M.
(i1) If (LE) holds on M, so does (S) on M®.
(iii) So(A) € K(S).
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Proof: Let I, I, be two closed subsets of A.

() Put Q=W*A={...;al(alA)=A—-a,al A, A at A at(aTA) =A+q,...},
which is totally ordered under >. Thus, either Iy N Q2 C I, NQ or [, N C I NQ; assume
Be(lhn)\(I,NnQ)andlet B € ,NQ. If B < B, Be I,NQ as I, is closed, absurd, and
hence B < B’ as () is totally ordered. Then B’ € I, N Q2 as I; is closed.

Thus, we may assume that [1,NQ D LNQ. Let I{ = 1 NQ and I, = I,NQ. Then I] D 1),
INQ=LNQ, I5NQ=1,NQ, and hence

My =M (]] Mf) by definition

BelI
=un( T Mh=mn( J] M) =mn(J] MB) assupp (M) CQ
BelinQ Bel1nNQ Bel,

= M;,.
Likewise, My, = My,, My, = Mrup,. Then

MIlUIQ = MI{UI& = M[i = Mfl
:M[1+M[2 aSMIQIM]égM[{:Mh.

(i) YQ € WN\A, put Mg = (M) = M0 ([T 4eq MY) € K'(Sp). Thus, M =[], M§ by
(LE). VI closed in A, one has

(M) = M {T Ty = (T M) n{ LT M%) = [Tvs 0 (T ()%

AeT Acl Q Q AeT
«
= H(MQ)I7
Q
and hence

(M) nor, = H(MS)IlLJIQ

= [TH{M)n + (M)} as (S) holds on Mg by (i)
= {13} + {TT(M8) Y = (M%), + (M),

2.6. Let K be a locally closed subset of A, ie., K = I N J 3I closed and J open in A.
VM € K(Sp), put Mg = M;/Mp s, which might be denoted M in the notation of (1.8). Then

My is torsion-free over over S; if m € My and a € S\ 0 with am € Mpy, m € [],,, Mg
and am € [ cp ;s MY%. Then m €[] Aen\J MY already as M? is torsion-free over S, and hence
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m € Mp ;. In particular,
(1) My < (Mg)" = (My/Mp )" =~ (M)" /(M )"
=(JTMY/CTT MD by (24)

Ael Ael\J

~ 1 M= 1 M8

AelnJ AeK
and hence My € l@’(So) with
MY if A€ K,
0 else.
In particular,

supp 4(Mg) = supp4(M) N K.

Also,
(2) My is in M? independent of the choice of I and J expressing K.
For if K = I'NJ" with I’ closed and J’ open,
qgurnUnJ)y=IUnJnJYyuI'nJnJ)=(KnNnJYU(KNJ)=KUK =K.
Thus it is enough to check that M;/Mp ; = Mp /Moy nry. Now,
(3) Tur'=1ru{(Iu)\ (JnJ)},
(4) IN{Iu\(JnJ)}=1\J.

Forlet A e I'\I. As('\I)n(UnJ)C InJ)\I=InH\I =0, A¢g JnNJ.
Then A € (IUI")\(JNJ'), and (3) holds. Let next A € IN{(IUI")\(JNJ")} =I\(JNJ") D I\J.
Just suppose A€ J. Then Ae INnJ=1I'NnJ C.J, and hence A € JN J', absurd, and hence
also (4). Thus

Mo /Moy ngy = Miogaoryanoyy/Maoryansy by (3)
= {M; + Muuryunmnt/ Maorynansy by (S)
~ Mp/{M; N Moy nsy}
= M7 /Mnomnanayy by (2.4.1)
= M;/Mp; by (4).

If supp 4(M) C K, one has

(5) My = M;/Mp
=M/0 as (I\J)Nsuppy(M)C({I\J)Nn({INJ)=0
=M.
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VAe A, {A} = (> A)N (< A) is locally closed. One has from (2.4.ii)

So(A) ~ S()(A){A} if Ae K,
0 else.

(6) So(A)k =~ {

Warning: Although My < M?, that My = M N ([ e M%) need not hold, cf. (1.2.2.13).

2.7. Let K be a locally closed set in A and write K = I N J with I closed and J open.
Lemma: VM € K(Sy), Mx € K(So).

Proof: We first show that VI’ closed in A,
(1) (Mg)r = Mgnr.
If K is closed, the assertion follows from (2.4.i). If K is open, put I; = A\ K. Then
(Mg)rr = Mic 0 [ [ (Mi)%s = Manie 0 ] ] (M)
Aer Ael
=(M/M,)n [ M} by (26.1,2)
Ael'NK
while
Mynr = Mp /Mg = Mp /Mpar,
= Mp/(Mp 0 M) by (2.4.) again
~ (MI’ + M[l)/Mjl.
As MKHI’ < (MKQII)Q) = HAGI’QK Mg, MK(‘]I’ < (MK)[/. Let m € M with m + Mh €
Hacrnx Mg. Then my = 0 unless A € I’ U I, and hence
m & Mjlujl
= Mp + M, as (S) holds on M.

Thus, Mynp ~ (Mg)p. In general, one has Mg = M~y ~ (M;); by above, and hence
(Mg)p >~ ((My)r)r = (Mj)inr by (2.4.1)

~ Mjm[m[/ by above

= Mgnp, as desired.

We show now that (S) holds on M. Let Iy, I3 closed in A. One has

(MK)IQLJfg = MKﬂ(I2u13) by (1)
= M(knn)urnis) = Miunnnnuinsng = Myannyoanis)ng
= Min(nut)/Minmumng = Minn)yuiant)/Minson)hg
= {M[mjg + MIﬂ]3}/M{]m([2U]3)}\J as (S) holds on M
~ Minn /Mannng + Minn/Maanyg = Minn, + Mknr,
= (Mg), + (Mg)r, by (1) again.
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We show finally that (LE) holds on Mg. Let a € A*. As (Mg)* = (M;/Mps)*
(Mp)*/(Mp)®, it is enough to verify that (LE) holds on M;. Let m € (M;)* < M®. As (LE
holds on M, one can write m = Y, mg with mg € Mo*N[,cq M. Asm € (M;p)* < (M;)"
[15e; MY, however, ma = 0 unless A € I. Thus, mq € (M7)® N [{acq(M7)%, as desired.

~—

28. If K = INJ is locally closed in A with I (resp. J) closed (resp. open) in A, Yo €

K(So)(M, N),

and hence one obtains an endofunctor ?x on K(Sp).
Lemma: YM € K(Sy), VK1, Ky locally closed in A, (Mg,)k, = Mg, nxk,-

Proof: Write K; = I; N J; with I; closed and J; open in A, i € {1,2}. Then

(Mk)) i, = (Mi) 1,/ (M) 1\,
= Mg,nn, /Mg @\ by (2.7.1)

with
MKlﬁIQ - Mflﬂfgﬁjl - MllﬂIQ/M(I1ﬂ12)\J17
MKlﬂ(Ig\Jz) = Mhﬂ([z\JQ)ﬂJl = Mhﬂ([g\]g)/M{Ilﬂ(IQ\JQ)}\Jl = M(Ilﬁfg)\Jg/M(Ilﬂfg)\JlUJ2)7

and hence

(MKl)K2 = MllﬂIQ/{M(hﬂb)\Jl + M(Ilﬂb)\b}
= Mpnn /Mo nn)\nuinnn)gey - as (S) holds on M
- Mhﬁ]g/M(hﬂfg)\(JlﬂJz) - MflﬁfgﬁJlﬁJQ - MKlﬁKz'

2.9. Let M € K(Sy). If Iy C I C --- C I, is a chain of closed subsets of A with supp 4(M)NI, =
) and supp 4(M) C I, one has a filtration of M
0=M, <M, <---<M,=M

such that ]\4]]./.]\4]]._1 ~ MIj\ijl; Ij \Ij—l = Ij N (A\Ij_l) and Ij \ (A\Ij_1> =1j1. One thus
obtains exact sequences [FHf], Def. 3.3.29, p. 168]

(1) 0— My, — My, — Mp\g,_, — 0.
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Lemma: Let M, ..., M; € K(Sy). VI closed in A, YA € I with I\ {A} closed, there is a chain
of closed subsets Iy C Iy C --- C I, in A and k € [1,7] such that |I;| = |I,_1| + 1 Vj € [1,r],
I N {Ussupp 4 (M)} = I N {Usupp 4 (M)}, Ir—1 = I \ {A}, and Vi € [1,1], (M;), = 0 while
(M;)1, = M;. In particular, (M;); = (M;)r, Vi € [1,1].

Proof: From [L80, Prop. 3.7] one has Ay, A,, € A with Ul_ supp ,(M;) C [Ag, A,]. Put Iy =
I\ (< A,). Enumerate (I\ {A})N[Ao, An] ={A1,..., A1} and [Ag, A, )\ I = {Aks1,.. ., A}
such that A; > A; implies ¢ < j Vi, j. Putting Ay, = A and [; = Iy U {A,,..., A;} will do.

2.10 A-flags: We say that M € /@(So) admits a A-flag iff each M4y, A € A, is a graded free
So-module, i.e., VA € A, In; € N,i € Z: Meay ~ [,y So(A)(7)%mi.

As supp4(M) is finite, there exist Ag, A € A with supp (M) C [Ap, Ax]. One can
construct a chain of closed subsets as in (2.9) whose associated filtration is such that its sub-
quotients are all of the form M. Dually, put I = (> Ay), Iy = I \ (£ Ax), choose A; € A
minimal in [y, and put I} = Iy \ {A1}. If By € [} and By > B;, By € I; as I is closed by
the minimality of A;. Take A; minimal in [; and put Io = [; U {As}. Then I, = I} U{As}
is closed likewise. Repeat to get an enumeration A, As, ..., A, = Ay of [Ag, Ax] such that
Iivn = 1; \ {Aj41} is closed Vj € [0,n]. Thus, Iy D I D ... form a chain of closed subsets of
A such that M = M, > My, > --- > My, =0 with My, /My, ~ Ma,,,) Vj. In particular,
M itself is graded free over Sy. A A-flag is called a standard filtration in [Ab19b]. Let Ka(So)
denote the full subcategory of K(Sy) consisting of the objects M with a A-flag.

Let M € Ka(Sp). If v € ZA, VA € A,

(1) Ty (M) ay = Ty (M) zayn<a) = Ty (M)>a/T (M) a0 (4)
= Moapr /M angamy = Miatqy,

and hence T, restricts to an automorphism of Ka(Sp).

VK locally closed in A,

. M{A} ifAe K,
o else.
Thus,

Lemma: VM ¢ I@A(Sg), VK locally closed in A, My € EA(SQ) and is graded free over Sy.

Proof: One has My € I@A(Sg) by (2). We may then assume that K = A, and Mg = M is
graded free over Sy as observed above.

2.11. Note that the category I@(So) is not necessarily abelian; a quotient may not be torsion-free.

Definition: We say that property (ES), short for “exact structure”, holds on a complex M; —
My — Ms in Ka(So) iff the sequence 0 — (M) a3y = (Ma)(ay — (M3)gay — 0is exact VA € A,
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which is just an exact sequence of graded left Sy-modules, cf. [FO8b, 4.1], [F08a, 2.5]. We
define a category Kp(Sp) to be the full category of ICa(Sy) consisting of M such that ¥ complex
M, — My — M; in Ka(Sp) with (ES), the induced sequence 0 — IC(M, M;) — K(M, M;) —
(M, M3) — 0 is exact, in which case 0 — K(M, My(n)) — K(M, Ma(n)) — K(M, M3(n)) — 0
is exact Vn € Z.

One has both Ka(Sy) and @P(So) Karoubian/idempotent complete by (2.5.4). As antici-
pated in (1.1.6/9.20), So(A) € Kp(Sp). A first example in Kp(Sy) will be constructed using a
Soergel bimodule in C.

Let M € K(Sp) and let M; — M, — Ms be a complex with (ES). Let v € ZA. One has a
CD
(1)

0 —— K(S0)(T (M), Mi(n)) — K(S0)(T+(M), Mz (n)) —— K(S0)(T (M), M3(n)) — 0

0 — K(So)(M, T_x(Mi(n))) — K(So)(M,T_\(Ma(n))) — K(So)(M, T_x(Ms(n))) — 0.

As T_x(M;(n))ay = T _x(Mi)gay(n) =~ (M;)ga-xy(n) by (2.10.1), T_x(My) — T_A\(M) —
T_x(Mj3) forms a complex with (ES), and hence the bottom sequence of (1) is exact. Thus, T,
restricts again to an automorphism of Kp(Sp).

Take now a chain Iy D I; D ... I, of closed subsets of A with Iy D U?_ supp 4(M;), (M;);, =0
Vi, and Ij = Ij+1U{Aj+1} for some Aj+1 S A,j € [0,7’[. ThUS, VZ, (Mi)lj/(Mi)Ij_H ~ (Mi){Aj-H}'
One has a CD

with the top and the bottom rows exact by (ES) on the complex and inductively. As the
columns are all split exact, the middle row must be exact, and hence exactness of 0 — M; —
My — M3 — 0 follows. More generally,

Lemma: VYK locally closed in A, the sequence 0 — (M) — (Ms)x — (Ms)x — 0 is exact.

Proof: As the (M;)x — (M) — (Ms)g forms a complex in Ka(S,) with (ES) by (2.10.2),
the assertion follows from the above.
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2.12. Lemma: VM ¢ I@A(So), V1, Iy both closed with Iy C I, (ES) holds on complex My, —
M[l — MI1/M12-

Proof: As My, /M;, = M\, by (2.6), VA € A, sequence
0= (Mp)gay = (Mp)ay = (M, /Mp,) a3 = 0

reads by (2.8)
0 — Mpngay = Mpngay = Mp1)nay — 0,

which is exact.

2.13 Base change: Let S; be a commutative flat graded SO algebra. VM € K'(Sy), S ®Rg, M is
a graded (51, R)-bimodule. Setting (S ®g, M)? = Sy @5, M4 VA € A yields Sy ®s, M € K'(S,):
as S1 ®g, M is torsion-free over S,

(1) S @g, M — S @4 (S) @5, M) ~ S? @5, M ~ S ®g, S @5, M ~ Sy @g, M
= Sl ®So H Mg = H (Sl ®50 Mg)

AcA AcA
= [[ (51 @5, M
AcA
If I is closed in A,
(2)  (S1®sy M) = (51 ®s, M) N H (S ®s, M
Ael
= (S1®s, M) N [[(S1 ®s, MY}) by definition
Ael
= (Sl ®s0 M) N (Sl ®s0 H Mg)
Ael
~ S Rs, (M N H M%) in S; ®g, M as S is flat over Sy [BCA, Lem. 1.2.6.7]
Ael
= Sl ®50 M].
If K =1nNJ with J open in A,
(3) (51 ®s, M)k = (51 ®s, M)1/(S1 ®s, M)1\s
~ 51 ®s, (M;/Mpns) by (2)
= 51 ®s, M.
If a € AT, (S M)* = 5% ®g (51 ®g, M) ~ 51 ®g, (S*®s M) =51 ®s, M, and hence

S1 ®s, K (S ) C /6( ) as Sy is flat over Sy again. VA € A, (S1 ®s, M)ay = S1 ®g, M{ay by
(3) as {A} = (= A) N (< A) is locally closed. Then Sy ®g, Ka(So) C Ka(S1).

s = Kal(S), Ko = Kn(S). ¥x € A* LI {0}, put K = K/(S*),
— Kp(S*).

Set K' = K/(S),
K* = K(5%), Ki = K

???iz
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VA € A, one has 51 ®g Sp(A) ~ S1(A).
2.14 The category over S”: Let M € K% = Ka(S?). Then

M~ S"og M =M =[] M}
AcA
with
M?l = (M{A})w ~ M{A} by (2.6.1)
~ H Sw )(n;) 3In; € Z.

Proposition: VM € K%,
M >~ My ® Mgy @--- @ Mgy 34, A €A
= {H s’ (A)(ni)} & - @ {H Sw )(ni,) }

2.15. Let M € K/(S,). Consider D(M) = SMod(M, R) equipped with a structure of (S, R)-
bimodule such that (apf)(m) = p(amf), Vo € D(M), a € S, f € R, with gradation such
that D(M)" = {p € D(M)|p(M?) C R™ Vj} Vi € Z. As M is of finite type over S, one has

D(M) =11, D(M)". Also,

S? @y D(M) ~ SMod(M, 5%) ~ $"Mod(M", §%) ~ S"Mod( [ M4, 5”)
AcA
~ H S"Mod (MY, S%)  as supp 4(M) is finite.
AeA

If ¢ € S°Mod(M%, S?), Vf € R, Vm € MY,
(e f)(m) = o(mf) = o(fam) = fap(m),
and hence of = fap. If a € S\ 0 and ap = 0, then Ym € M,
0 = (ap)(m) = p(am) = ap(m),

@(m) = 0 as S is a domain. Then ¢ = 0, and hence D(M) is torsion-free of finite type over
S, and admits a structure of K'(Sp) with D(M)% = S®Mod(M9, S?) VA € A. If M € K(Sp),
however, the conditions (S) and (LE) may be hard to verify on D(M).

3. Action of the Soergel bimodules

3.1. To define Soergel bimodules of the Coxeter system (W, S) over R = Sk(Ay) as in (1.2),
we need a, € Ag and o) € Aff Vs € S. Fix A € A. There is @ € At and n € Z such that
SanA = As. Put g =a? € A and o) = (o) € AV, If t = wsw™, w € W, write Aw = w'A.
Then

-1 / -1 / -1 / n—1 /
At = Awsw™ = w'Asw™ = w'sq pAwT = W'sa (W) A = s,,,A I €Z,

and we put oy = (w'a)?, o) = (w'aV).
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Lemma: (i) The pair (as, o)) is independent of the choice of A up to sign.

(ii) ap = way, af = wa!, the pair of which is independent of the choice of A up to sign.

Proof: (i) Let A’ € Aand § € A*Y, m € Z with A's = sg,, A’. Take x € W with A’ = zA.
Writing x = t,x with t, € ZA, Vv € X,

(:Usa,nafl)u = txfsa,n(tx:i)’ll/ = t,TSq4 nf’l( 2)V
=t,2{z (v —t,) — (T (v—t,),a")a+na}
=t,(v—t, — (v —t,,7a")Ta + nZa) = v — (v,7a")Ta + nTa + (t,, 7a")Ta
= S:f&’n+<tw’ja\/>y.
and hence
(1) a:sa’nxfl = Szant(te,3aV)-

Then A's = zS$qnA = 2S00 'TA = Szantite 50V TA = Szamt it zayA’. Thus, f = eta,c €

{:l:l}7

(ii) One has
(wa)a = (w(a))a = (wa™)(4) = a’(Aw) = o’ (w'A) = w'(a’(4)) = wa = (Wa)),
and hence wa, = (w'a)? = ;. Likewise,
Ja = (w(a"))a = (w(a")")(4) = (") (Aw)
= (@) (0 A) = W) () = W = (@a') )
and hence wa) = (w'a¥)* = .
3.2. One has, Vs € S, VA € A, Vv € AV,
(1) sA=A—(\,al)as, and sv=v— (a,v)a,.
For if A € A,
(sA)a = (sA)(A) = A(As) = )\( nA) = 8 A(A) = sa204 = Mg — (Mg, 0N
= A — (A4, ((a) A
= (A= (A af)as)a by (125)

and likewise the second.

b
\_/
\/
/\
\/

Also,
(2) {ag,af) = ((as)a, (@))a)  from (1.2.5)
= ( at A (aV)A)A> in the notation of (3.1)
={(a,a") =2
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As2 € K* by (1.5.A1), o) # 0in A and (ag, ?) : A — Kis surjective. Thus, the assumptions
n (I.1.1) are fulfilled with V' = Ay.

We add another
Assumption: The assumption (1.3.3) holds.

For a sufficient condition under which the assumption holds see (I1.3.4); if the fundamental
weights exist in Ak, the sufficient condition may fail. In type Gs let aq,as be the simple
roots with ay short. In characteristic 3 there is no A € Ax such that (\ o)) = 0 while that
(N, 20 + 3ay) = 1. On the other hand, let A* = {ay,...,a;} be the set of simple roots
and assume that Vi € [1,1], Jw; € Xk : Vj € [L,{], (w,a)) = &;;. Given two reflections
ti,ta we may assume oy, = o for some i € [1,1]. Thus we are after ), c;o; € Xx with
(322 ¢y, apy) = 1. 1f chK > 3, writing oy =S bra), ged(b|1 < k < 1) € K¥, and hence
such ) c;w; exists. If det[((az, o)) € K*, those w;’s exist in Zk Koy if M({ai, o) = id,
(O Miraus, o) = 65

3.3. Let now &8 denote the monoidal category of graded R-bimodules defined in (I1.2), de-
noted &Bimod there, for the present Coxeter system (W,S) and the representation Ay with
{as,aY|s € S} from (3.1). Recall R? = R[W[@ € A] for A € A from Rmk. 2.2.(iii) and
Q@ = Frac(R).

VB € &8, put B’ = R® @z B. Vs € S, recall from (1.2.2) an object B(s) = R ®@ps R(1)

with R* = {a € R|sa = a}. From (1.2.2.16) one has B(s)? = [, .,y B(s)?, with

RS, ®1—-1®s0,) ifw=e,
(1) B(s) ={ RV, ®1-1®6,) ifw=s,,

0 else
where 05 € A with (ag,ds) = 1. Also, from (1.2.2.8)
B(s) > Q®g B(s) =Q(e) ®Q(s) via a®b+ (ab,a(sb)).

Lemma: VB € 6B, B® ~ [, B? as R*-bimodules with amb = a(xb)m Va,b € R, ¥m €
BY such that Q ®g Bw ~ Q ®p BY ~ BY? as Q-bimodules.

Proof: Let M € RBimod with M? = e M? as R’-bimodules such that
(2) amb = a(zbym VYa,be R Vm e M.
Then
(B(s) @r M)" = R* ©r B(s) @ M ~ (R’ @ B(s)) ®p (R ©r M) = B(s)" © M

(Rm D R@ ) @po H Mw H{ Rw X Ro MQ) (Rg K Ro M:g)}v
TzeW

and hence (B(s) @z M)? = [ [, (B(s) ®r M)? with (2) holding on (B(s) @z M)? = (R? @ o
M) @ (RY @po M?). The assertion follows inductively.
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3.4 The action: VM € K'(S,), VB € &%, we define M*B € K/'(S) to be the (Sy, R)-bimodule
M ®p B with

(1) (M #B)Yy = [] M4, ©po BY = [] M4, @ B,
zeW zeW

As B is a free left R-module, M ®p B remains torsion-free over S. Ym € M Aac ., Vb e Bw
VYa € R’ (m®b)a=m® (za)b = m(za) ® b = (2a) g,-1m @ b with

(xa) gp—1 = Gpp-1, by (1.2.)
= a4,

and hence (1) is well-defined. Let ¢ € K/(Sp)(M, N). By (2.2.3)

oMY )S  JT ML
A'eAxz—147ZA
A'>Ax—1

If A = Ax~! + v with v € ZA, A’ > Az~ iff v € NAT by (1.3). Then A’z = A + v as the
right W-action commute with the left W-action, and hence A’z > A by (1.3) again. Then

H N.E)\’ = H Ng’m*1 = H N(Z)’xfl’

A'eAz—1+ZA Alz=leAz=14ZA A€ A+ZA
A'> Az~ Alg=1>Ag—1 A'>A

and hence

(p®@r B(M§, @ B) S [] N, ®rBlC ]_[ (N % B)Y,.
A'>A

A'CA+TZA
A'>A

Thus, (¢®B)*(M*B)%) € [Ly=4(N*B)%, and p@zB € K'(S,). Likewise, Vi) € 6B(B, B'),
M @1 € K'(So)(M * B,M % B'). Thus, * is bi-functorial, and defines a right action of the
monoidal category &8 of Soergel bimodules on K'(Sy). We will denote ¢y ®g B (resp. M ®@g 1)
by @ x B (resp. M *1)).

Let v € ZA. VA € A,

T,(M *B)jy = (M *B)ly,, = HMAJrvx 1 ®n B;

TeEW
= H ]\49196,“W ®r BY by (1.1.3), which may fail for ¥ € X in general
zeEW
— JI m )8, @r BY = {T, (M) = BYS,
xeW
and hence
(2) T,(M xB)=T,(M) * B.

3.5 Lemma: YM € K'(Sp), supp (M % B) = {Az|A € supp 4(M), z € suppy,(B)}.
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Proof: One has

supp 4(M * B) = {A[Ax’l € supp 4(M) 3z € suppy,(B)}
= {Az|A € supp4(M), z € supp,,(B)}.

3.6. For M € K'(Sp) let us regard M % B(s) as M ®ps R = (M ®ps R*) ® (M ®gs R*6,), using
that R = R® @ §,R* with (ay,d,) = 1 from (1.2.1). Accordingly, (M * B(s))? = (M® @ps R®) @
(M® @ps R*S,). Then

(1) (M=*B(s)% = ] M- ®ro B(s)) by definition (3.4.1)
zeW
= M{ @po B(s)e © MY, ©po B(s),
= M, @p R0, @1 —1®350,) ® MY, @poe R*(6, ®1—1®46,) by (3.3.1)
= {md, @1 —m®sd,Jme My} {m's, @1 —m @d|m € MY}
~ MY @ M,

under (m ® f,m' ® g) — (mf +m'g,m(sf) +m’'(sg)) as left Si-modules;

(mds ® 1 —m ® sd5,m'0, @ 1 —m' @ &)

(mds —m(sds) +m'ds — m'ds, mds — mds +m'ds —m'sd;)

= (m(0s — 895),m'(d5 — 805)) = (ma,,m'a)) = ((a))am, (@) asm’)

= (a'm, —a"'m’)
as (0))as = (a))(As) = (a))(sanA) = sa(a)(4)) = sa((a¥)*(A)) = sa((@”))a = saa’ =
—a, with a" € (S?)*. The isomorphism is, however, only left S2-linear. For recall from (3.3.1)
the right R-module structure on B(s), which reads, Va € R, (0,®1 —1® sds)a =a(ds®@1—-1®
805) = ads®1 —a® sds while (0, ®1—1®0ds)a = (sa)(0s @1 —1® ;) = (sa)ds ®1 — (sa) ® sds,
and hence

(Mds @1 —m® 80,m'ds @1 —m' @) f = (mfos @1 —mf @ sds,m'(sf)ds @1 —m/(sf) ® Jy)
= (mfos —mf(sds),m'(sf)ds — m'(sf)sds) = (mfa),m'(sf)a))

= (maf,m'a;(sf))

Thus, the right action on Mgs must be twisted by s. The projection

M x B(s) —— (M x B(s))%,
o 2

M4 o MY,

now reads

(2) MRps Ro>m®® f— (mAf,mAsz).

Proposition: VM, N € K'(S,), Vn € Z,
l@'(So)(M x B(s),N(n)) ~ K'(So) (M, (N B(s))(n)).
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Proof: As (Sp, R)-bimodules we regard M x B(s) = M ®gs R and N * B(s) = N ®ps R. Put
d = ds € A above. Recall from [Lib, Lem. 3.3]/(1.2.6.ii) a bijection (Sp, R)Bimodgr(M ® gs
R,N) — (S, R)Bimodgr(M, N®gs R) via ¢ — 1) such that ¢)(m) = p(mi®1)@1—p(m®1)®sd.
Thus, it is enough to verify that ¢ € K'(Sp) iff ¢ € K'(Sp).

Vm e M with1®@m e M? =5 @4 M, VA € A, one has in N@,EBNQ),S

(3) Y em)y={pmi®1)®@1—p(m®1)® 5}
= (p(md @ 1) ar, p(md @ 1) ars) — (p(m @ 1) 486, p(m @ 1) ars6) by (2)
=(p(MI®1—m®s0))a,p(mMd @1 —m &) as).

Thus, if m € Mﬁ,
(4) YO(m)a = (¢9(md @1 —m @ s6))ar, p? (M @ 1 = m @ ) ars)-
Asmé®1—m®sd € (MxB(s)% and as mé®1 —m®§ € (M * B(s))%,, one has from (2.2.3)

(Mm@ 1 —m®sd) € H NY,

A'€A+ZA
A>A

P?mé®@1—m®46) € H N%,.

A'€As+ZA
A'>As

and hence 9% (m) 4 = 0 unless either A’ € A+ZA and A’ > Aor A's € As+ZA and A’s > As.
In the 2nd case write A’s = As+, v € ZA. Then v € NA by (1.3). As A/ =A+~, A > A
by (1.3) again. Thus, )% (m) € [[ 45 4(N * B(s))a, as desired.

Conversely, assume 1) € K'(Sp). One has from (1)
(M xB(s), ={(mi®@1-—m®sd,mdéx1—m @dme M\ meM,}
If me MY,

[T(Pmé @1 —m® 58) 4, p2(mS © 1 = m @ 6),) = ¥(m) by (4)
A/
e I &W«Bs)yW= JI W% enNi,
A'€cA+7Z A€ A+7ZA
A'>A A'>A

and hence ?(md ®@ 1 —m @ s6) € [{ 44 N%. Itm' e MY,

m)e [ W«B@)h= [ (N} oNL).

A'€As+7Z A€ As+7Z
A'>As A'>As

and hence p?(m'6 @1 —m'®8) € [ N9, by (4) again, in which case writing A’ = As+,
AlEAs+T.
A'>As

v € ZA, v € NA by (1.3) agaln and A’s = A+ ~. Then A's > A by (1.3) agaln and

©?(m :f® 1-=m'®3) € [Tya N A/ HA/>ANA/ Thus, ¢9((M * B(s ))g) C HasaN A’? as
desu"e
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3.7. We will show that Ka(Sp)*&B = Ka(Sp) and that Kp(Sy)*SB = Kp(Sp). To start with,
recall W = {e, 5o} X Za, @ € A*, from (2.5). Let M € K'(Sp) and put M = MoN[],., MY
v e W\ A.

Lemma: Let s € S and 65 € A with (o, 05) =1, e.g., sa.

N =

(i) If Qs = Q, (M * B(s))* ~ M% x B(s).
(ii) If Qs # Q, the right action by o on M is invertible and
(M % B(s)?~M?®@r R0, ®1—1®56,) ® M¥ @ R(6, @1 —1®6,).

(111) If (LE) holds on M, so does it on M x B VB € &B.

Proof: (i) One has

(M % B(5))? = (M * B(s))* N [ (M * B(s

AeQ)
= (M« B(s))* N [[{M% @& B(s)? & MY, @r B(s)}
AeQ
= (M« B(s))*n{(J] Mi @r B(s)}) & (] M§ @r B(s)})} as Qs =0
AeQ AcQ
~ (M“ @z B(s)) N [ (M4 @r B(s)")
AeQ
~ (M“N H M%) ®r B(s) as B(s) is left R-free
AeQ
= M® % B(s).

(ii) Let A € Q and put 8Y = (o)) a; As = s, AIr € Z. As Q= WA = (A+Za)U (s A+
Za) and Qs = W*As = (As + Za) U (soAs + Za), As # sqnA Vn € Z, and hence  # +a
and s, # +a. Thus, BY,s,8" € (S%)*. Take 6 € Xy with (a,d) = 1. Vm € M, there are
m1 € [ acniza Mg, and my € [ e, 4470 Mg, such that m = my +msy. Vf € R, one has from
(2.2.1) that myf = famy and mof = s,(fa)ma, and hence

mie) = (a))ami = B'my,  maa] = sa((@))a)ma = 58" ms,
my 0% = (§4) amy = dmy, mad?t = sa((6)a)ma = (sad)ma = (6 — ”)my.

Then may) = BYmy + 843Vmy, mé? = dmy + (6 — a¥)msy, and hence

im < BV> m—m A a\/
R oy (om = md*))a
(a, V)0 v v _ (a, BY) Vin — as (8Ym
<6V 30, (Bv)){ﬁ my + sq(8")ma} —ﬁvsa(m{‘w L+ (8 )sa(BY)ma}

=myi + Mg = M.
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Thus, M%) = M®?. Also, if m € M® with ma) = 0, 0 == Ym; + s.(8Y)ma.  As
BY,54(8Y) € ("%, we must have m; = my = 0, and hence m = 0. It now follows that
the right multiplication by o on M is invertible, and also on (M * B(s))®. Then

(M % B(s))® ~ (M % B(s))" ®r R[i\/]

S

Put B(s)[=% 7| =B(s )®RR[%] As (d®1—1®sd)a) = o (®1-1®sd) and as (I@1—1®0)ay =
s(a)) (6 ® 1-1® J) = :(5 ®1—1®46) by (3.2.2), one has from (3.3.1)
B(s)%] _ R[alv](5® 1-1650)® R w1100

with R[]0 ®1—1® s6) C B(s)? while R[](§®1—1®§) C B(s)?. Thus,

(M o+ B(s))® ©n RI] = (M = B(s)[))* 0 [T (M  Bs))

= (M* &g B(S)[&]) N [T{ME ®r B(s)2) @ (M4, ©r B(s)?)}

{(M“@RR[ SJ0®1-1®s0)) @ (M"@RR[ ](5@1—1@5))}

S S

ﬂ{HMA®RR[ J6@1-10s9) e [ MierRl— ](5@1—1®5)}

AEQ AeQs 3
= (M [ M%) ®RR[ J0®1-10s6) e (M n [T M%) @ Rl ](5@1—1@5)
AEQ 5 AeQs 5

as ) is invertible on M and on M
=M*RRRO®1-1®s0) O M* @z RE®1—-1857).

(iii) It is enough to show that (M * B(s))* = [Igepya\ 4 (M * B(s))%. Let {Q,...,9Q,} be a
complete set of representatives of {2 € W\ A|Qs # Q}/{e, s}. Then {2 € W\ A|Qs # Q} =
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{Q, Qs|i € [1,r]}, and hence

[T (xB(s) _{]_[ (M * B(s }@H{(M*B(s))gi@(M*B(s))gis}

Qewa\A

_{H (M % B(s }@H{M*B N @ (M x B(s))%*} by (i)

= {J] (1« B(s }EBH{MQ R ROR1-1®s0) &MY @p RO®1—16)

Qs=0Q i=1
@MQiS®RR(6®1—1®35)@M” ©rRO®1-1®06)} by (i)

= (T o= 56 e T @ 1) B ) @ (M @) B[]}

i1 a Qg as

by (ii) again

= { [T (M« B(s }@H{ & (M™% x B(s))}

Qs=0
= ( H MQ ) x B(s
Qewa\A
= M“«x B(s) as (LE) holds on M
= (M * B(s))*.

3.8. Let M € K(Sy) and s € S. As (LE) holds on M % B(s) by (3.7), so does (S) on (M x B(s))*
Va € AT by (2.5).

Lemma: If [ is closed in A with Is =1, (M % B(s)); = M % B(s).

Proof: One has
(M x B(s))1)" = JT(M * B(s))%y = [T{M4 @r B(s)? & M}, @r B(s)}
Ael Ael

= 1L, 05 B(s)2 & (M) @ B(s)2} by (2.4) as Is = 1
AeA

= JT{1)% ®r B(s)} = (M; = B(s))",

AcA

and hence

(M % B(s)); = (M % B(s)) N (M % B(s))? = (M ®gs R(1)) N (M;)? @ps R(1)
~ (M N (M;)?) @gs R(1) as R is free over R®
= M; ®ps R(1) = M; * B(s).

3.9. Let M € K(Sp), s € S, and put N = M * B(s). Let A € A with As < A. We know that
{A, As} = (> As) N (< A) [L80, 1.4.1] is locally closed.
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Lemma: Let I = Is (resp. J) closed (resp. open) in A with I N J = {A, As}. One has
1somorphisms of graded left So-modules

Npgasy/Nigaasy = Miaasy(—=1),  Nr/Npjgasy =~ Miaas(1).
Proof: Note first that I\ {4, As} =T\ Jand I\ {As} = (I\J)U (> A) are both closed, and
hence that Ny, NI\{As}, NI\{A,As} € IC/(SO).
Consider a short exact sequence
(1) 0 — Npqasy/Nngaasy — Ni/Npgaasy — Ni/Npgasy — 0.

Put Ly = Npjasy/Nnga,asy, L = Ni/Npga,as, L= Ni/Npasy- By flat base change (1) yields
a CD of exact sequences

0 > LY > LV > LV > 0
(2) ~‘ ~ ~
0 > N » NYo N, —— N%, —— 0.

By (2.6) all Ly, L, L € K'(So), and hence Ly = Ly N (L) = LN LY = LN LY if z € LN LY,
r=0in L < L? and hence x € L; from (1). We are then to show that LN LY ~ M4 49 (—1)
and L ~ Mya a5(1) as graded left Sp-modules. One has

(3) L= (M; B(s))/(Mna,asy % B(s)) by (3.8)

~ {M; ®@ps R(1)}/{Mpna,45y @rs R(1)}

~ (M;/Mpgaasy) ®rs R(1) as R is flat over R*
= M{A,As} R Rs R(l) as M € I@(S@)

= M{A,As} * B(S)

By (3.6.2) one has

L(-1) LY~ (Miaasy)h & (Mpaaa)s
I
Mia a5y ®rs R®© Myg a5y @rs R%0 (M1 ®1,me ® ) ——— (m1,4 + Mo, a0, M1 a5 + M2 4550)
LY,
~|
(Mia,a) % @ (Mpa,as))’ (m1,as +ma2 As0,m1 4 + M2 A50).

Then

(4) (m ®1,my®9) € Lg iff My as + Mo as0 =0 =my g+ mgasd

o My A = —Mo 50 = —(80) 4z 4
M1 as = —04sMaas = —(50) ama as by (1.2.)

iff my = —(sd)ams as supp4(m1) and supp 4(m2) C {A, As}.
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Thus,

LNLh={(—(s6)am®1,m®d)|m € Maas}(1)
~ Mpaag(~1) as deg(d) = 2 = deg((s6) ).

Consider next an epi of graded left Sp-modules
L~ M{A,As} X Rs R(l) — M{A,AS}(l) via m® f — (sf)Am.

As (my ® 1,my ® §) = my + (s6) ama, its kernel is L N LY by (4), and hence M4 4 (1) ~
L/(LNLY%)~L/L, ~L.

3.10. Let A € A with As < A. Recall from [L80, Prop. 3.2] that
(1) VB € Awith B < A, Bs < A.
Then
)

For if B < A, Bs < A, and hence (< A)s C (< A). In turn, hitting s from the right yields
(£ A4) S (< A)s.

IN

A= (< A)s.

Let I (resp. J) be closed (resp. open) in A. Then
(3) I'UIs is closed.

For let B € Is and B’ > B. Then Bs € I. Assume first B’ < B’s. Then Bs < B’s by (1), and
hence B's € I, and B’ € Is. If B's < B’, Bs < B’ by (1) again, and hence B’ € I, as desired.

As we do not know yet if M B(s) € K(Sp), it is not appropriate to express (M B(s)); /(M %
B(s))ng as (M * B(s))rus.
Lemma: Let M € Ka(So).

(i) If INJ = {As}, (M x B(s))r/(M * B(s))ng ~ Mgaas(1) as graded left So-modules.

(ii) If INJ = {A}, (M % B(s))1 /(M x B(s)) g ~ Ma,asy(—1) as graded left Sy-modules.

Proof: Put N = M x B(s) € K'(S;).

(i) Put I = (> As). Then I, = I;s by [L80, Prop. 3.2]. As [ is closed with As € I, I; C I.
Thus
N1, /Nigasy = Ni/Nngasy = Ni/Np -
As Iy N (£ A) = {A, As} by [L80, 1.4.1], Ni,/Ni\jasy =~ Mia (1) by (3.9), and hence
Miaasy(1) < Ni/Np.

Vo € AT, M® € K(S$) by (2.13). Then (LE) holds on N ~ M® x B(s) by (3.7), and hence
(S) holds on N* = (N®)® by (2.5). Thus, N* € K(S§). Then (N®)p s does not depend on the
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choice of I and J by (2.6.2), and hence

(N)1/(N®)ng = (N) 1, /(N) 1\ g5y
~ M{O‘AvAS}(l) by (3.9) again.

As M admits a A-flag, M4 a5 is graded free over Sy by (2.10). Then
Ma,asp(1) = Naea(M{y 45y (1)) = Naca{(N*)r/(N*) s}
> N;/Npy as Ni/Npy € I@’(So) is torsion-free over S.
Thus, Nj/Npg = Mgy 44(1).
(ii) We first show that
(4) Ni/Npg = Maas(—1).

As I\ J =1\ (< A), we may assume J = (< A). Then J = Js by (2). Put I}, = IU[s, which is
right s-invariant closed in A by (3). As ILnJ = (INJ)U(IsNJ) = (INJ)u(INnJ)s = {A, As},
IN{A, As} = I})\ J and 1)\ {As} = I}\ (< As) are both closed. Also, I}\{As} D I;if I 5 As,
I D {A, As} implying INJ D {A, As}, absurd. As I Z As again, I\ {A, As} = I\{A} =1\,
and hence NI/N[\J — Np \{As}/NI’\{AAs} ~ M{AAS}( ) by (39)

Take now a sequence of closed subsets Iy C --- C I, with |I;41] = |I;| + 1 Vi such that
Iy=1Iysand I, = I,s, Nj, =0, N;, = N, I, = I and Iy, = I \ {A} for some k € [1,r]. Write
Ii — Ii—l L {Al}

Assume for the moment that K is a field. Thus, letting ?¢ denote the d-th homogeneous
piece, dimg N¢ = > dimg (Ny, /Ny,_,)®. By (i) and (4) one has

—1 if Ajs < A,

. . d+e(Aj) .
dlmK(NIj/NIj—l>d < dim myg My as) with - 2(4;) = {1 else.

Then
e A dte(A;)
Z dimg {AEA = Z{dunK {AE} + dimg M{A;} 73

_ Z dlm]K M(;H-l} + Z dlmK M?Xls} + Z d]H]K A } + Z dlmK M{dA 13}

Ajs>A;j Ajs>A;j Ajs<Aj Ajs<Aj

B . d+1 d+1

= Z dimg M A} + Z dimg M A} + Z dimyg M A } + Z dimg M, (A }
Ajs>A; Ajs<Aj Ajs<Aj Ajs<Aj

=y dimg MY+ dimg MY = dimge MO+ dimg M9
j J

On the other hand, if (a,,d) =1, N = M ®gs R(1) = M (1) ®gs R*® M(1) ®gs R*0, and hence

dimg N¢ = dimg M (1)* + dimg M(1)*2  as degd = 2
= dimg M*™ + dimg M4
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Then
dimg N* =Y dimg (Ny, /Ny, ) < > dimg M) = dimg N7,
J J

It follows that we must have in (4) an isomorphism N;/Np; = Ma as3(1).

Back to the general complete DVR K, we have from (2.5.2) that
N[j ®K (K/m) ~ {N ®]K (K/m)}[j,

and hence (Nj, ®k (K/m)); gives a filtration of N ®x (K/m). Then N;/Np; ®k (K/m) =
Miaasy(—1) @k K/m as left Sk m-modules by the case considered above. Then by (1) and
graded NAK

(N1/NpJ) @k K = M6 (—1) @ K,

and hence N;/Npj = Maas(—1).

3.11. Let M € Ka(Sy), s € S, and N = M x B(s).

Lemma: VI, and Iy closed with Iy O I, Ny, /Ny, is graded free over Sy.

Proof: Take a sequence Iy = I C I} C --- C I = I of closed subsets in A with |I]| = |I]_;|+1

Vi e [1,r], and write I = I/ U{A;}. As {A;} =L\ IL,_1 = LN(A\I;_1), one has from (3.10)
Nfz{/NIL ~ M{Ai7Ais}(5(Ai)) 36(141') € {:l:l},

which is graded free over Sy by (2.10); if A;s < A;, {A;, Ais} = (> A;s) N (< A;) by [L80,
1.4.1]. Then Ny, /Ny, = N, /Ny, is graded free over Sp.

1

3.12. We are now ready to show
Proposition: Ka(Sy) * B = Ka(Sp).

Proof: Put N = M = B(s), M € Ka(Sy), s € S. ‘We know from (3.7) that (LE) holds
on N. We show next that (S) holds on N, so N € K. Given I; and Iy both closed in A,
consider Ny, /Npnr, — Nrun/Ni,. Both terms of the imbedding are graded free over Sy by
(3.11). Ya € AT, (S) holds on N by (2.5), and hence the imbedding turns invertible upon
base extension to S§ by S“®g?. Then

NI1UI2/N12 = ma(NﬁUIQ/NJ%) = ﬂa(Nﬁ/Nﬁmz) = Nh/NhﬂIm

and hence Ny, = Ni, + Ny,.

Finally, VA € A, Niay >~ Ma a5 (F1) by (3.10), which is graded free over S by (2.10), and
hence N € Ka(Sp).

3.13. Corollary: VM € Ka(Sy), VA€ A, Vs € S,

v Hgrk(Mpay) + grk(Masy)}  if As < A,

grk((M * B(s))gay) = {v{grk(M{A}) + grk(Mag)} else.
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Proof: One has M * B(s) € Ka by (3.12), and by (3.10)

(M N B(S)){A} ~ M{A,AS}<_1) if As < A,
My a5 (1) else.
Thus, if As < A,
grk((M * B(s))ay) = v 'grk(M{a,as1) by convention (1.7.2)
= v~ {grk(Miay) + grk(Maq)},
and likewise if As > A.
3.14 Proposition: Iép(So) x* 6B C ’6]3(50).

Proof: We have only to show that M*B(s) € Kp(Sp) VM € Kp(Sy) Vs € S. As M*B(s) € Ka
by (3.12), we are left to show that ¥V complex M; — My — Mj in Ka(Sy) with (ES),

(1) 0= Ka(So)(M % B(s), My) = Ka(So)(M  B(s), M) — Ka(So)(M % B(s), M3) = 0

1s exact.

By (3.6) the sequence (1) reads
0 = Ka(So)(M, My  B(s)) = Ka(So)(M, My x B(s)) = Ka(So)(M, My * B(s)) = 0.

As M € Kp(Sp), it is enough to show that (ES) holds on the complex M; x B(s) — Ma* B(s) —
M; « B(s), i.e., VA € A,

0 — (M x B(s))gay = (Ma* B(s))ay = (M3 * B(s)){a — 0
is exact. By (3.13) the sequence reads

0 = (Mi)ga,as(£1) = (Ma)a,a5)(F£1) = (M3)(a,a5(£1) =0
with +1 varying simultaneously, which is exact by (2.11).

3.15. Recall from (1.2.5), fixing A € A, an isomororphism of graded K-algebras S = Sk (Xy) ~
Sk(AY) = R via a — a® Va € S. Under the identification one has, VB € &8, Vo € W, an
isomorphism of R?-bimodules S(A) * B = S(A) @z B — B via a ® m + a*m such that

S(A)x B » B
(1) (S(A) % B)P oo s BY

J J

S(
(S(A).B)%, = S(A))y ®p B! = 5" @p Bl —— B,

One has, Ym € B, Va € S,
(1em)a® =a(l®@m)=a®@m=1® a*m— a*m = maz~"(a")

with 27" (a?) = 27 (@ ") = a* by (1.2.vi). The following justifies (1.8.17)
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Proposition: S(A)*? imbeds GB into Ka.

Proof: As S(A) € Ka, the assertion follows from (3.12).
4. Projectives

VM,N € K/, SModgr*(M, N) = SMod(M, N) [AJS, E.1] is of finite type over S as both M
and N are. Then (K')*(M, N) is of finite type over S, and hence K'(M, N) is finite dimensional
over K. It follows that K’ is Krull-Schmidt [CR, pf of 16.10, p. 126], and so is Kp. In this
section we will study Kp.

4.1. Recall from (1.9.5) that B(wy) € C&. Let A~ = ATwy, = woAT and set Q(A™) =
S(A™) % Bwo)(—L(wp)). As S(A~) € Ka, one has Q(A™) € Ka by (3.12). Specifically, recall
from (1.9.4) an isomorphism B(wp)(—¢(wp)) ~ F(Z) in C. We will denote Z by Z; in present
Chap. II and suppress F. In particular, suppyy,(B(wo)) = Wy, and hence supp 4(Q(A7)) =
A"Wr = WA~ Recall from (1.9.2) that, Vw € W,

B(wo)(—0(wo))fy = (Z1)fuy = Rw)(—26(w)).
Let d: A x A — Z be a function from [L80, 1.4]. It follows that

(1) QA7) awy = S(Aw)(=2l(w)) = S(A"w)(2d(A"w, A7)
= S(wowwoA™)(2d(wowweA™, A7)).

Recall also from (1.9.3) an isomorphism R ® ,w; R — Z; of graded K-algebras compatible
with their structure of R-bimodules.

Lemma: YM € K'(Sy), K'(S0) (So @5 Q(A™), M) =~ M 4.

Proof: Define a structure of right R-module on S using an isomorphism S ~ R via f4- < f.
One then obtains an isomorphism of (.S, R)-bimodules

QA_) ~S(A7)* (R & Wy R)~ S®gr (R @ pwy R) ~ S®wa R,
and hence Sy ®s Q(A-) ~ Sy @ v, R.
VA e A Vm e MY Vf e RV, one has mf = fam = f(A)m with

flA)=f(zA™) fA=zA",zeW
=Zf(A7) = f(TA™) by definition (1.2)
= f(ZwoA") = f(AT7wo) = f(A weTwy) = (weZwof)(A~) by definition (1.2.3)
= f(A7) as feRM
= fa-,

and hence M admits a structure of Sy ® p,w, R-module. Then

K'(S0)4(So @5 Q(A-), M) < (Sp ® pw; R)Mod(Sy @ pw; R, M) =~ M.
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Moreover, Vo € K'(S0)4(So ®5 Q(A™), M), ©(So ®s Q(A™)) = ¢((Sy ®s Q(A7))sa-) < Mxy-,
and hence K'(8)*(So ®s Q(A_), M) < Ms4-.

Now, given m € M 4-, let i € (Sy ® pw; R)Mod(Sy ® pw; R, M) such that 1g,e wy B
- R

To see that 1 € K'(Sp)f(So ®s Q(A™), M), one has to check that YA € W;A~, ¢%((S, ®g
Q(A7)%) € M?,. By Rmk. 2.2.(i) one has ¢?((Sy @5 Q(A7))%) C Hecarza MY, Then the
assertion will follow from the following lemma.

4.2. YA € X. Let A7 = A~ + X, and Wy, = Cyp(\) = {z € W]zh = \} = tyWyt .
Lemma: VAe W \A[, (A+ZA)N (> A))={A" € A+ZAJA > A}.

Proof: We may assume that A = 0. It is enough to show that LHS C RHS. Let A’ € LHS.
Write A = wA™, w € Wy, and A’ = A+, v € ZA. By (1.3) one has only to check that
~v € NAT. Write A’ = zA, x € W. By definition, Vv € A, zv — v € NA*". The assertion
follows.

4.3. Given a complex M — M’ — M" in Ka(Sy) with (ES), one has an exact sequence
0— Msa- — ML, — MY, — 0by (2.11), and hence a sequence

0 — K(S0)"(Q(A7), M) — K(So)*(Q(A™), M) = K(S0)"(Q(A™), M") — 0.
is exact by (4.1). Thus, Sy ®g Q(A™) € Kp(Sp). Also, from (4.1) one has, as K-modules,
K(Q(A7), QA7) = {Q(A7)24-}° = QA7) = 2] =K,
and hence, together with (4.1.1),

Proposition: Sy, ®g Q(A™) is an object of Kp(Sy) with supp4(So ®@s Q(A7)) = AWy such
that {So ®s Q(A™)}ray = So(A)(2d(A, A7) VA€ A~ Wy. In K', Q(A™) is indecomposable.

4.4. Put A~ = woA". Let A € A~ and write A = A 2z, x € W. Then, Vy € W with y < z,
Yw € Wf,
(1) wA Ty > A.

For d(A, A™) = {(z) by [L80, Lem. 3.6], and hence A~y > A by [L80, Cor. 3.4]. If wA~y & A,
take w’ € Wy such that w'wA~y € A-. Then w'wA y € A~ < wA™y by [J, 11.6.4.5], and
hence we may assume wA~y € A~. Write y = 2y with 2 € Wy and ¢/ € W with A7y € A~
such that ¢(y) = ¢(z) + £(y') [L80, Lem. 3.6]. Then

wA Yy = wA 2y = wwoAT 2y = wwyzATY = wwozweATy > A7y
> A~z by [L80, Cor. 3.4] again as 3y <y < .

Lemma: Let A€ A andwrite A= A"x,x € W. Letz = (s1,...,58) be a reduced expression

of .

128



(1) (Q(AT) * B(z))gay = S(A)(r).
(i) supp 4 (Q(A™) * B(z)) € (= A).

Proof: (i) VM € K/, Vs € S, one has supp (M * B(s)) = supp 4(M) Usupp 4(M)s by (3.5).
As suppyy(B(z)) = (< z) by (1.2.4),

supp4(Q(A7) * B(z)) = ygwsuppA(Q(A’))y = {wA ylw e Wy,y <z}

y<z

C (> 4) by (1).

(i) Induction onr. If r =0, Q(A™)a-y ~ S(A7) by (4.1.1). Put Q@ = Q(A™)*B(s1,...,5.-1)

and s = s,. Then As > A. As @) € Ka by (3.12), one has by (3.10) an isomorphism of graded
S-modules (Q * B(s))1ay =~ Qa,45 (1) with

Quansy = (Quansy)zas  as supp4(Qqa,asy) € suppy(Q) € (= As) by (ii)
= Qa,4s}n(z4s) Dy (2.8)
= Qqas)
~ S(r —1) by the induction hypothesis.

Thus, (Q(A™) * B(z))1ay = (Q * B(s))qay = S(A)(r — 1)(1) = S(A)(r).

4.5. Let A € A, write A = A"z, and let  be a reduced expression of x € W. By (4.4) there
is an indecomposable direct summand Q(A)(¢(z)) of Q(A™) * B(z) such that supp4(Q(A)) C
(> A) and that Q(A);ay ~ S(A). For A € A in general, take v € ZA such that A €

A=+ ={B+7|Bc A}, and set Q(A) = T,(Q(A — 7)), which belongs to Kp by (2.11)
with K'(Q(A), Q(A)) ~ K.

We show next that any object of Kp is a direct sum of Q(A)(n)’s, A € A, n € Z. Thus, let
M € Kp. Let A € A be minimal in supp 4(M). Then May = M>a/M- 4 # 0, which is graded
free over S, and hence there is n € Z such that Q(A)(n)¢4y is a direct summand of Ma;. Let

Q(A)(n) 14y F> May

be the corresponding imbedding and the projection, resp., of degree 0. Let I be a closed subset
of A with I D supp4(M) and I\ {A} is closed. Then I O (> A) D supp4(Q(A4)). By (2.12)
the property (ES) holds on both complexes Mpay — My = M — M;/Mpgay = Mpay and

Q(A)(n)nay = Q(A)(n)r = Q(A)(n) = Q(A)(n)gay. As Q(A)(n) and M € Kp, one has

M ————— My «—— M

A

Q(A)(n) — Q(A)(n)ray —— Q(A)(n)

such that # o7 € K(Q(A)(n),Q(A)(n)) ~ K inducing the identity on Q(A)(n)ay. Then,
id—7oi & K(Q(A)(n), Q(A)(n))*. As K is local, we must have 701 € K(Q(A)(n), Q(A)(n))*,

and hence Q(A)(n) is a direct summand of M in Kp. We have now obtained
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Theorem: (i) VA € A, there is a unique, up to isomorphism, Q(A) € Kp indecomposable in
K" such that supp 4(Q(A)) C (> A) and Q(A)gay ~ S(A).

(ii) Any object of Kp is a direct sum of Q(A)(n), A€ A, n € Z.

4.6. Vy € ZA, put A7 = A” + . Then Q(A7) =~ T_,(Q(A7)) by the unicity (4.5). In
particular,

(1) supp4(Q(A5)) = AS Wy,

and

(2) any object of Kp is a direct summand of a direct sum of some

Q(A) x B(z)(n), y € ZA,z €S, reN, n € Z.
Also, VM € K'(S,),
(3) K'(S0)*(So ®s Q(AS), M) =~ K'(S0) (T_,(So @5 Q(A7)), M)
~ K'(90)}(So @5 Q(A7), T,(M))

~A{T,(M)}>a- by (4.1)
= Mop-yy = MEA;'

Corollary: Let M,N € Kp.
(i) KEH(M, N) is graded free of finite rank over S.
(i) So @g KHM, N) ~ K(Sp)!(So ®g M, Sy @5 N).

Proof: (i) By (2) we may assume M = Q(AJ) * B(s1,...,s,)(n) for some v € ZA, n € Z,
S1y...,8 € S. Then

KM, N) =~ K5%(Q(A7), N * B(s,) * -+ % B(s1)(—n)) by (3.6)
= (N*B(S'I’a"-asl)(_n))ZA; by (3)a
which is graded free of finite rank over S by (3.12) and (2.10).
(ii) By (3.6) again we may assume that M = Q(A7) for some v € ZA. Then

So @5 KH(M,N) ~ Sy ®g N, ,- by (4.6.3)
~ (SO Rg N)ZA;
~ K(S0)*(So ®g M, Sy ®¢ N) by (4.6.3) again.

4.7. VA € X, let A; = A" + A. Recall W)\ = Cw(/\) = tAWft_)\. Yw € Wf, t)\wt_)\ = t,\_w,\w
with A — wA € ZA. In particular, Vo € AT, thsat_x = Sa, 0 av) = trav)aSa- Thus, WAA] =
{t,\wt_,\A; = wA™ + >\|w S Wf}
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Proposition: One has supp 4(Q(A})) = WHhA, with
QA ) fwa-+x = S(WA™ + A)(=20(w)) = S(wA™ + N)(2d(wA™ + X, AY)).
VM € K'(So), K'(S0)*(So ®s Q(Ay), M) ~ M. ,-.

A
Proof: Let @Q = {a € HWXA; Slaa = a0t ,4 mod a¥ YA € WA\A, Ya € AT} with ap,
B € A, denoting the B-th component of a, not to be confused with Frac(R) in I. We equip
@ with a structure of (S, R)-bimodule such that, Va € @, Vb € S, Vg € R, VA € W)A},
(ba)A = bCLA while (ag)A = gAGA. As IrSal—x = Sa,(\aV) = t()\,a\/)cvsa; Gtysat_ A = SadA by
(1.2.i), and Q is well-defined. As in (1.6.1.2), Q? ~ HWAA; SY with, VB € A,

ot = {S(B)@ if B € W\A;,
0~

0 else,
and hence Q € K’ with support WHAL . Va € AT,

Q*=1{ac H S%aa = a5, vy,a mod ' VA e W AL}
W)\A;
= H {(0,...,0,a,0,...,0,a’,0...,0)|a,a’ € S* with a = d’ mod "}

AEWAA;\
A<Sa7<)\’av>A

with a (resp. a’) placed at the A-th (resp. sq (xqv)A-th)

= I @ n]]a%,

Qewa\A AeQ

and hence (LE) holds on Q. To check (S) on @, let I; and I, be 2 closed subsets of A. As
Qlj = {(GA) € Q'GA =0VA € Ij}’ j S [LQ]? Qh + QIQ - QIlUIQ' By (25) and (LE) on Qaa
a € AT, the inclusion turns to an equality upon base extension to S®. Then

Qrn + Qn =Naea+(Qr, + Q)"  as Nyea+S* = S in each coomponent
= mOéEA+ (Q?l + Q?;) = ﬂa€A+Q?1UIQ = QIIUI27

and hence Q € K.

Let now Z' = {z € [}y, 525w = 2w mod &’ Vw € Wy Va € A"} equipped with a
structure of (S, R)-bimodule such that, Vz € Z', Va € S, Vg € R, Vw € Wy, (az),, = az,, while
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(29)w = Gwa-2zw. Under the identification S ~ R via a ~— a”",

S(A7) 2y = S(A7) ®r {2 € [[ Rlzw = 20 mod (o))" Yw € Wy VEt € T}
Wy
with A*t = s,, A" after (3.1)

~ {z € [[S1(z)* = (20)* mod (o))" Vw € Wy VE € T}
={z € HS|th =z, mod ((a})*" ) - Yw e Wy Vte T} with
w

()" )a- = (@) )(A7) = ()" ) (woAT) = wo((a)* (A)) = woey
={z € HS|th =z, mod wo, Yw € Wy Vt € T},
W

and hence
QAT )=5SA)«xZr~{ac H Slaa-tw = an-, mod woay Yw € Wy ¥Vt € T} with
A_Wf
A"w = wowwoA~  and AT tw = wotwowowwy A~
={a € H S|awa- = aya- mod o Yw € Wy Vt € T}
WfA7

~ Z' by setting z, = aya-, w € Wy,
which equippes Z’ with a structure of Kp. Then n : 2 — Q via z — a with apa-1+» = 2w
Vw € Wy is an isomorphism of graded left S-modules, though not compatible with the structure

of right R-modules unless A € ZA. Nonetheless, under 7 one obtains an isomorphism of graded
left S-modules

Quua—+x = Zipy = QA7 )fwa—y
~ S(=2l(w)) = S(2d(wA™ + A\, wA™)) by (4.1.1).
Thus, Q € Ka.
Recall that, VM € K/, Ym € M, Vg € RWr,
(1) mg = ga-m.

For we may assume that m € Mg for some A € A If A = wA™ + v, w € Wy, v € ZA,
mg = gam with

9(A) = g(wA™ +7) = w(ga-)

g(wA™) = g(ww0A+) = g(A+ww0) = g(A” wowwy) = (wowwog)(A™)
=g(A7) asge R

= ga-.

Thus, the action by S ®x R on M factors through S ® ,w; R.
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Consider finally a graded homomorphism of (S, R)-modules & : S @ jw; R — Q via a ® g
(agwa-1alw € W), which is well-defined by (1) as (agwa-salw € Wy) = a(llw € Wy)g.
Writing Ay, = A~ + A =2 A~ + v for some v € Wy and v € ZA, one has, Vg € R, w € Wy,

Gwa-+x = g(WA™ + A) = g(w(@A™ +v—=A) + A) = g(wzA™ + wy —wA + )
=g(wrA™) aswy—wA+ X €ZA
= g(wzweAT) = g(wATzwy) = g(wA wezwy) = (Werweg)(WA™) = (WeTW0G)wa-
and hence obtains a CD

SO R —f

S®wa woxTwo ?J/N Tﬁ
S®@pw; R ——— 2’
a® g —— (agpa-|w € Wy).
As S @, worwy? and n are both bijective as well as the bottom map by (4.1), so is §. Then
VM e K/'(Sp),
K'(S0)4(So ®5 Q, M) < (Sp ® w; R)Mod(Sy ® pw; R, M) ~ M.

As supp4(Q) = WAL, K'(S0)4(So ®sQ, M) < M, 5, which is an equality by (4.2) as in (4.1).
Thus, Q € Kp, and by unicity Q ~ Q(AY).

4.8. Keep the notation of (4.7). Under the isomorphism S ~ R via a — a*", one has

S(A) x Zp = {z € [[ Slotw = 20 mod ((a))* )4+ = o) Yw € W, Vt € T}
Wy
= 2" = Q(A7) = S(A7) x B(wo)(—L(wo)),

and hence
S(AT) % B(wo)(—f(wp)) =~ S(A™) * B(wo)(—£(wp)).

Let A € X and Wy, = Cy(\) = tWst_y as in (4.7). Let Wy = {w € W|ATw € Wy AT},
If Afa" = 2A] and Afy = yAf, o',y € W, A{(2"y) = (¢4))y = «(A]y) = 2(yA}) =
(zy)AY, and hence one has isomorphisms of groups

W, — > W, ——~ W,

' S T s T

trSal_y = Sa,(AaV) — Squ.

Thus, for each v € A™, let 8§, € W} and 5, € W, denote the elements corresponding to s,
under the isomorphisms. Let w) € W with Afw} = A} = w)A}. Then by (1.9.4)

B(w\)(—L(w))) ~ 2\ :={z € H R|zg = 2y mod ay Va' € Wy Va € AT},
1458
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and hence, under the isomorphism R ~ S via g — ¢ At

S(AL) * B(wy) (—0(wh)) = {a € [ [ Slautg,m = ang, mod (af),r Vo' € W) Va € AT}
4%
={a € IV:[SM%MQ = a,,y mod (O‘sy’a)Ai Vz € W) Va € AT},
A
If AY = Ate, v € W, §, AT = 5,ATw = AT5,0 = Ataa 5,0 = A sz-1,, for some n € Z
as §a = IaSal_x = tr- sadSa = Sa,(\a)- Then A+§:)¢ = A+3£*1a,n = Sifla,nA—i_a and hence
ay = (z'a)V)A" = (z7'a¥)4" by definition (3.1). Thus,

() ar = (@ 1)) = (@ ') (AT2) = (@7 1a)Y (2AT) = 2{(@ ") (A7)}

z(z ") = aV.

It follows that
S(AT) * B(w))(—l(w))) = {a € H Slas,a =as mod o’ VA € W\AT Va € AT}
WA
=Q as WhA] = {wAt + ANw € Wi} = {wA™ + AMw € Wi} = WHA
~ S(A}) * B(w))(—C(w))) likewise.
We have obtained

Corollary: S(A7) x B(wh)(—€(wo)) ~ Q(AY) ~ S(AY) * B(wh)(—€(wp)).

5. Categorification

5.1. Recall from (I.3.1) the #¥i-Hecke algebra H over Z[v,v~!] associated to (W,S). The
periodic module P =[], Z[v,v"'|A is a right H-module [S97, Lem. 4.1] such that

As it As> A
1 AH, = ’
(1) {As + (vt —v)A else,

ie.,
As +vA if As> A
AH = A(H, = ’
= (Hs +v) {As +ov A else.

For an additive category C let [C] denote its split Grothendieck group. Recall from (1.5.3) a
Zlv, v~ '-algebra isomorphism

(2) [6B] = H via [B(s)|— H,=H,+v Vs€S.

By (3.12) the abelian group [Ka] admits a structure of right [&%5]-module such that [M][B] =
[M + B| VM € Ka VB € 6%. Fix a length function ¢ : A — Z in the sense of [L80, 1.11]:
VA,Be A, d(A,B) ={(B) — K(A). Define ch : [Ca] — P via

Z (% grk M{A})A
AcA
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which is [&9B] ~ H-linear: VM € Ka, Vs € S,

h[M * B(s Zv Jerk((M * B(s))(ay)A
AcA
_ Z ) {vgrk(Myay) + v grk(Myag)) A if As < A,
= {vgrk(May) + vgrk(Mas) A else
by (3.13)
— Z {1) grk M{A}) + v grk(M{As})}A
A>As

+ Y I grk(May) + o grk(Mag) }A,

A<As
in which the coefficient of A is
{ ok (Mpay) + v/ grk(Mag) if As < A,
Kok (May) + v/ A9 grk(Mas)  else

1 if As < A,
—1 else.

as l(A) — L(As) = d(As, A) = {
On the other hand,

(ch[M])(H, +v) =Y v"Wgrk(M4y)
AeA

Z {v"@grk (May)As+v “A)- Yark(May) A}
A>As

As+vA if As > A,
As+v 1A else

+ Z {v grk (Miay)As + ! lgrk(M{A})A}'
A<As

Thus, ch[M * B(s)] = (ch[M])(Hs 4+ v) = (ch[M])[B(s)] under the identification [&B] ~ H.

As the [S(A)], A € A, form a Z[v,v~"|-linear basis of [Ka] and as ch[S(A)] = v/ A, we
have obtained a categorification of the periodic modules:

Theorem: ch: [Ka] = P is an H-linear isomorphism.

5.2. By (3.14) the H-linear isomorphism ch: [Ka] — P restricts to an H-linear map on [Kp).

YA € X, put ey = > wew, v —HwA)wAy, which is distinct from one in [L80, 1.7, p. 125] but
agrees Wlth Ey in [S97, p. 93] up to a power of v;

(1) ex= Y vAL N = Y AT (At 1))

AEW A+ weWy
_ Z L) —L(AT+X) (WA' + ) = Z Uz(w)—E(A;r)(wAJr + )
wEWy weWy
as ((AT) — l(wAT + X) = d(wAT + X\, AT + X)) = d(wA™, AT) = {(w)
_ U—Z(ARL)E)\'
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Set PV = Doacx OHCP = HAeAZ[v,U*I]A.
Lemma: V) e X, ch[Q(A))] = (A ey = A —lwo) B, |

Proof: By (4.7)

Z v W grk(Q Al )iay)A = Z UK(WA;)grk(Q(A;){wA;})wA;
AeA wEW)
= Z v A grle(S(2d(w Ay, AY)))wAy = Z AN F2AWALAD 1 AT
wWEW wEW
_ Z v L(wAY )+2L(A U)AA = E(Af)e)\.
wEW

5.3. Identify [6B] with # by (5.1.2). VA € X, ey = v 2MA0ch[Q(AT)] by (5.2). As ch :
[Kp] — P is H-equivariant, the map is surjective. On the other hand, by (4.5),

Kpl =[] Zlv, v "[Q(A)] with ch[Q(A)] € v' WA+ Y~ Zv,07"|A,

AceA A'>A

and hence the ch[Q(A)], A € A, remain Z[v, v~ ']-linearly independent. Thus,
Corollary: ch: [I@p} — P is an isomorphism of right H-modules.

5.4. Let A € X. From (4.8) recall Wy = Cy(\), W = {x € W|Afz € WAAT}, w) € W such
that Afw} = Ay, and B(w)}) ~ Z,(l(wy)). Yz €W,

D(B(w))") ~ B(w)), by (I1.2.8 and 4.5)
~ Z,({(wo))x
N {(Haem oy, )R()(Uwo)) = R(x)(~L(wo)) if & € W,

0 else,

and hence by (1.2.9)

Moo else
In particular,
(2) ch[B(w))] = Z U*é(x)grk(B(wi\)x)Hm — plwo) Z U%(:p)Hx'
Q?EW& -Z’EW&

5.5. Keep the notation of (5.4). Let Sy = t,Spt_y and 8§ = {x € W{|ATx € S\}. Thus, one
has isomorphisms of Coxeter systems (Wy,Sy) o~ (W), Sy) =~ (W4, S4). Let II, be the set of
alcoves in the box {r € Xg|(A\,a¥) —1 < (r,a") < (\,a") Yo € A®} and put I, = II w).
Thus, A} (resp. AY) is the top (resp. bottom) alcove of I} (resp. IIy).
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Lemma: Yw € W with Afw C Iy (resp. Ayw C Il ), B(whw) is a direct summand of
B(wh) * B(w\w)(¢(wy)). In particular,

S(AY) * B(ww) (resp. S(A})* B(wjw)) € Kp.

Proof: Va € W, one has ch[B(z)] = H, by (1.5.2). As sw\w < w\w Vs € S}, H ch[B(w\w)] =
(v+v1)ch[B(wiw)] by (1.5.10.ii), and hence Hych[B(wjw)] = v~'ch[B(wiw)]. Thus, Yz € W},

(1) H,ch[B(w\w)] = v=@ch[B(wiw)].
Put | = {(w)) = ¢(wy). Then
ch([B(w)) * B(wyw)]) = ch[B(w})]ch[B(wiw)]
= > v WHH ch[B(wjw)] by (5.4.2)
yeW;
= Z v 2 WHCh[B(wiw)] by (1).
yeEW,
It follows from the isomorphism [&B] ~ H that B(w)) * B(w\w) ~ Hyewg B(whw)(l —2((y)).
Thus, S(A) ) * B(w\w) is a direct summand of S(A} ) * B(w)) * B(w\w)(—!) ~ Q(A} ) * B(w\w)

by (4.8). Then S(A;) * B(wiw) € Kp by (3.14). Likewise S(A}) * B(wiw) € Kp for w with
A w e II7.

5.6. Keep the notation of (5.5). Recall P, € P° from [S97, Th. 4.3] and let (H, |z € W) be
the KL-basis of H.

Lemma: Yw € W with Afw € I, AYH = Pty

Proof: We make use of results from [L.80]. The action of H on A in loc. cit. (resp. in the
present setup after [S97]) is from the left (resp. right) with respect to the Coxeter system
(W, S) with S associated to the faces of an arbitrary alcove, i.e., the orbits of an alcove, and
hence S remains the same as the one in [L80]. Thus, our AT, is v*T,-1 Ay for, A€ A,y € W
and Ay, denoting the element of M in [L80, 1.6], corresponding to A [S97, Rmk. 4.2]; Asy...s,
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in [S97] is v*Ws,. ... s; Ay in [L80]. One has

A H 0y = Ay Z hywiwHy after [S97, Def. 2.5]

yeWw
= A Z UZ(“’/A“’)_Z(Z’)Py7w;wvz(y)Ty by [S97, Rmk. 2.5 and a remark on p. 84]
yeW
=D AP Tt (A7)
yeW

+U(AT) Z Pyt i1 Ty-1(AY)L [K88, 1.6.6]
yeWw
= AR ST P 1y Ty (A7) = oS ADC L (47),
yeWw
. a Kazhdan-Lusztig basis element of H [L80, 5.1]

1w>\
wiat)y, by [L80, proof of Th. 5.2, p. 136]
= o AN " Qp 14y By by definition [L80, Th. 5.2]

with C*_

_ JUwhw)+(AT)

BeA
= plwAw)+UAY) Z vd(A;B)pB,AinL by [S97, Rmk. 4.4]; there is an error in sign
BeA
loc. cit.
A0 Zvd(Aiw’B)vaAva_z(B)B by [S97, Rmk. 4.2] again
BeA

— WA w)+U(AT) —L(A w) Z PpacnB
AN

BeA
= E :pB,A;\"wB
BeA

= PAM; by definition [S97, Rmk. 4.4]
=P

AT w)\w

6. Quotient categories

In order to relate our categories to the combinatorial category of [AJS], we have to introduce
ideal quotients of the categories.

6.1. VM, N € K'(Sp), put

Z(M,N) = {p € K'(So)(M, N)| " (M%) € T] NG}

A'>A

As @"(MY) C T1 =4 N,  forms an ideal of the set of morphisms of K'(So) [H1f, Def. 3.2.41,
p. 146]. Define K'(S;) to be the ideal quotient K'(Sy)/Z [, Def. 3.2.43, p. 147], and
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likewise K(Sp) and KCa(Sp). VA € A, recall from (2.8.1) the endofunctor ?;4y on K(Sp);

®
My ——— Ny

M>p/Ms 4 N>a/Nsa.
Vo € K(So)(M, N), VA € A,
(1) Py c T Ny iff ey =0,
A'>A

and hence 7¢4y induces a functor IC(Sy) — SoModgr via M +— Myay. Thus, one can define that
(ES) holds on a complex My — My — Ms in K(Sy) iff 0 — M gay — Magay — M3 a3 — 0 is
exact as left Sy-modules VA € A. Note, however, that a sequence M; — M, — M;3 in I@(SO)
may form a complex only in K(Sp) but not in (Sp). For the time being we define p(Sy) to be
the full subcategory of ICa(Sy) consisting of M € Ka(Sp) such that V complex My — My — My
in Ka(S5) with (ES) holding, sequence

0— ICA(S())(M, Ml) — ICA(S())<M, Mg) — ICA(So)(M, Mg) —0
is exact. We will see below that Kp(Sp) is, in fact, the ideal quotient of Kp(Sp).

Lemma: Let M,N € K'(Sy), ¢ € K'(So)(M,N), and B € &B. If (M%) C 1. NY
VAe A,

(¢ B) (M xB)y) C [T (V=B
A'>A

Proof: By definition (M % B)Y = M® . ®r BY. By Rmk. 2.2.(i) under the hypothesis
A zeEW 7 Az x

] 0 0 1]
pr(Mz(?lel) QR Bg c | | NA’ @R Bx = H NA%*l ®r Bm
A'>A Alg=1> Az
AcAz14+ZA Az~ lcAz=147A

Write A’z = Az=' + Iy € ZA. By (1.3) one has that A’z=! > Az~! iff v € NAT, in which
case A" = (Az™t +v)x = (t, Az~ Y)a =t,A = A+ ~, and hence A’ > A. Thus,

(ex B (M *B)%) € [T M@ BY = [ (V5 B
A'>A A'>A

6.2. From the lemma above one has obtained a bifunctor K'(Sy) x &8 — K'(Sp) via (M, B) —
M x B, and by (3.12) a bifunctor Ka(Sp) X 6B — Ka(Sy)-

Proposition: VM, N € K'(Sy), Vs € S,
K'(So)(M x B(s), N) ~ K'(So)(M, N % B(s)).

139



Proof: Take § € A} with (as,d) = 1. Recall from the proof of Prop. 3.6 a bijection

(So, R)Bimod(M ®ps R, N) = (Sp, R)Bimod(M, N @gs R) via ¢+
with 1(m) = p(md®@1) @1 —p(m®1)® s6, and that ¢ € K'(Sy) iff ¥ € K'(S;). The argument
also shows that VA € A, ¢"((M * B(s))%) C [Lysa N4 iff 92(M3) € TTawa(N * B(s))%
Thus, (NS ’C/(S()) iff @D € ’C/(S())
6.3. Any quotient of a local ring remains local [AF, 15.15, p. 170], and hence

(1) any indecomposable in K'(.Sy) remains so in K'(.Sp).

Lemma: Let K be a locally closed subset of A such that VA € K, (A+ZA)NK = {A}.
(i) Vo € K(So)(M, N) vanishing in K(Sy), ¢x : Mg — N vanishes in K(Sp).

(ii) Let My — My — M; be a sequence in Ka(So). If (ES) holds on the sequence in K(So),
(ES) holds on the sequence (My)x — (Ma)x — (M3)k in K(So). In particular, 0 — (M) —
(M) — (M3) — 0 is exact in (Sp, R)Bimodgr by (2.11).

Proof: (i) VA € A,

Ay c T N by Rk 2.2.(3)
A'>A
A€ A+ZA

=0 in (Ng)'= J] N} as (A+ZA)N K = {4},
A'eK

and hence wx = 0 in K(Sp).

(ii) The composite M; — M3 vanishes in K(Sy) by the hypothesis. Then so does (M;)x —
(M3) i in K(Sp) by (i), and hence (ES) holds on (M) — (Ms)x — (Ms)k in K(Sp).

6.4 Lemma: If (ES) holds on a complex My — My — Mj in KCa(Sy), so does it on My« B —
Myx B — My *x B in ]CA(S()) VB € &%8. ThUS, ’CP(S()) * 6B C Kp(So)

Proof: We may assume B = B(s) for some s € S. From (3.12) we know that each M;* B(s) €
}CA(S()), and from (310) that, VA € .A, (Ml * B(S)){A} =~ (Mi){A,As}<5(A)) with E(A) = =#1
depending on whether or not As > A. By (6.3.ii) one has an exact sequence

0= (Mi)gaasy = (Ma)gaas — (M3)ga,asp — 0
in (Sp, R)Bimodgr. Thus,
0 — (M * B(s))gay = (Ma* B(s))ay = (M3 * B(s)){a — 0
is exact in (Sp, R)Bimodgr.

If M € Kp(Sp), one has a CD by (6.2)
0 —— K(So)(M x B(s), My) —— K(So)(M * B(s), My) — K(So)(M * B(s), M3) — 0

~| ~| ~|

0 — K(So)(M, My * B(s)) — K(So)(M, My + B(s)) —— K(So)(M, M; x B(s)) — 0
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with the bottom row exact by above. Thus, M x B(s) € Kp(S)).

6.5. Let A € X and put [ = (> A}). Then
(1) W) Aj is open in I, and hence locally closed in A.

For let A; € Wy A, and A, € I with Ay < A;. We are to check that 4, € W) A . As
W = W, X ZA is transitive on A, there is A3 € W) A} such that Ay € A3 +ZA. Then Ay > As
by (4.2). Write A; = zA3, x € W), and Ay = A3 + v for some v € ZA. Thus, v € NAT by
(1.3). AswAs3=A; > Ay = A3+, A+~ ™ zX. Then NA'T 3 2\ — (A +7) = —v, and hence
v =0. Thus, Ay = A3 € W) A}

Also,
(2) VA € W)\A;, (A + ZA) N W)\A; = {A}
For LHS C (A+ZA)NI = (A+ZA)Nn (> A) by (4.2). Thus, if A’ € LHS, A’ = A+ v for

some 7 € NA* by (1.3). As A € AN A, we must have v = 0, and hence A’ = A.

Lemma: VM € K(Sy), K(S0)*(So ®@s Q(AY), M) ~ My, 4 as graded (So, R)-bimodules.

Proof: Recall from (4.7) that K(S0)!(So ®s Q(AY), M) ~ M; via ¢ + ©(q). Let ¢ €
K(S0)(So @5 Q(A}), M) with ¢((So © Q(A7))%) € LLyos MY VA € A As suppy(Sy @
Q(A))) = WHA,, (imp)s = 0 VA € Wy A by (2) and Rmk. 2.2.(1). As W)A] is open in
I, imp © Mp,y, 4-, and hence ©(q) € Mp,y, 4~ On the other hand, Sy ®s Q(AY) = Soqf2.

It follows that {¢|?((So ®s Q(AY))Y%) C [Tawy MY VA € A} is sent under the isomorphism
onto {m € M;lmy =0VA € W\A] }. Thus,

K(S0)(So ®s Q(A;), M) — MI/MI\WAA; = MI/MI\(A\(I\WAA;)) = MIO(A\(I\WAA;)) = MWAA;'

6.6. Recall that Kp is defined as the full subcategory of Ka consisting of those M € Ob(Ka) =
Ob(Ka) such that V complex M; — My — Mj in Ka with (ES) holding, i.e., 0 — (M;)ra) —
(Ms)gay — (Ms)ray — 0 is exact as left S-modules/(S, R)-bimodules VA € A,

0 — KCaA(M, My) — Ka(M, M) — Ka(M, Ms) — 0

is exact.

Proposition: Ob(Kp) = Ob(Kp), and hence Kp is the ideal quotient of Kp. ¥y € ZA, the
automorphism T on Kp induces an automorphism of Kp denoted by the same letter.

Proof: We show first that Ob(Kp) C Ob(Kp). Let M € Ob(Kp). By (4.6.2) we may assume
M = Q(A)) * B(sy,...,s,) for some A € X, s1,...,s, € S. By (6.4) we may further assume
M = Q(A}).

Put K = W)A, . Let M; — My — Ms be a complex in K with (ES) holding. By (6.5) one
has K locally closed and K% (M, M;) ~ (M;)x Vi. As KN (A+ZA) = {A} VA € K by (6.5.2),

0— (Ml)[( — (MQ)K — (Mg)[( — 0
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is exact as (S, R)-bimodules by (6.3.ii). Thus, M € Kp.

Let now M’ € Ob(Kp). As Q(A) € Kp remains indecomposable in K VA € A, the proof of
(4.5) carries over to K p to yield that M’ is a direct sum of Q(A)(n)’s, A € A, n € Z, in Kx; there
exist ' € K(Q(A)(n), M') and p' € K(M',Q(A)(n)) such that p' o i’ € K(Q(A)(n), Q(A)(n))*.
If 7/ (resp. p') is a lift in K of ¢/ (resp. p'), we may assume p' o i’ + ¢ = id for some ¢ €
K(Q(A)(n), Q(A)(n)) with ¢(Q(A)()%) € [Lyy QAN VA € A. As i is nilpotent,
P ot € K(Q(A)(n),Q(A)(n))*. Thus, M’ € Kp.

6.7. Recall that Sy denotes a flat commutative graded S-algebra.

Corollary: Let M € Kp, N € KA.

(i) So @5 K(M,N) = K(So)(So @5 M, Sy ®g N) via a @ ¢ — a(Sy ®s ©).

(ZZ) So®g M € ICP(SO)
Proof: By (4.6.2) we may assume M = Q(A}) % B(z)(n) for some A € X, n € Z, x =
(s1,...,8.) € S".

(i) By (6.2) we may further assume that M = Q(A}). By (6.5) one has a CD

So ®s KHQ(AY), N) —— K(S0)*(So ®s Q(Ay), So ®s N)
N| |N

So @5 Nyy, a5 > (S0 @5 Ny, ar

with the bottom row invertible by (2.13.3).

(ii) Let My — My — M3 be a complex in ICa(Sp) with (ES) holding. By (6.2) and (6.5) one
has a CD

~ ~ v

/C(So)ﬁ(so és M, M) — ]C(So)ﬁ(so ®s Q(AY), My x B(z)(—n)) — {M; * B@S(_”)}WAA;

2 2 N

K(S0)!(So ®s M, M) == K(S0)*(So ®s Q(Ay), Mz + B(z)(—n)) = {M; * B(@(_”)}WAA;

~ 2 v

IC(50)£(S0 @ M, M) 2= KC(Sy)(So @5 QUAY ), My » Bx)(—n) == {My  B(z)(—n) o=

2 2 2

0 0 0

with the right column exact by (6.4), (6.5.2) and (6.3.ii).
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6.8. By (6.6) one may define ch : [Kp] — P° by the same formula as on [Kp]. Thus, under the
identification [&*B] ~ H, one obtains from (5.3)

Theorem: ch : [Kp] — P is an isomorphism of right H-modules.

6.9. Recall from (1.5.4)/[S97, p. 84] a ring endomorphism ? of H such that o = v~ and
H, = (H,-1)"' Yo € W. Recall also from [S97, Th. 4.1] an H-skew linear involution ? on P°
such that VYm € P°, Vh € H, mh = mh.

VA € X, one has

1) h(QUA) (o) — £(A3)) = o)) ch(Q(45,))
— w0 DA ) By by (5.2)
— B, by [S97, Th. 4.3]
= "= Ch(Q(AY)) by (5.2) again
— ch(Q(A5)(U(wn) — (A7),
Vm' € P, writing m = Y, cad and m' = 3, daA, ca,da € Zlv, v, set (m,m')p =

> aea cada. Recall from (I.5.4) an anti-involution w : H — Hviay oy aoHy — > oy G H, ' =
> wew @z (vHH Y In particular, w(H,) = H, Vs € S by (L5.5).

Lemma: Vm € P°, Vm' € P, Vh € H,

(mh,m)p = (m, m'w(h))p.

Proof: If the assertion holds for h, h' € H,
(mhh',m")p = (mh,m'w(h))p = (m,m'w(h)w(h))p = (m,m'w(hh))p.
Also, as MU = mv = mv~?,

(mv, 'y = v~ () = (mom'v™)p = (m,mw(v))p.

Thus, we may assume that h =H,_, s € S, m = E), A € X,m =A, A e A

One has
B, = B\H, = v e, H, = o) 3" oA+ \H, by (5.2.1)
AeWw A+
= ) W ADUH +N) by (5.1.1),

AeW A+

and hence both sides vanish unless A’ — A € (W;AT) U (W;ATs). Thus, we may assume that
A e {A+ XN As+ NA e WrAT}
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Assume first that A= A+ X\, A € W;AT, and As > A. Then

E\H,=E\H, = Z v BADL(Bs +vB) + A} + Z vUBAN(Bs + v B) + A},

BEWfA+ BEWfA+
Bs>B Bs<B
and hence
d(A,AT)+1 d(As,AT) +
(E)\H57A/)77 = vd A A1 v if As © WfA ’
— pUAAT)+ else
while

(E)\a A/w(ﬂs))P = (E)n AI&S)P = (E)n (A + )\)HS)P
= (E\,AH_,+ N)p by (5.1.1) again

pUAANFL L d(AsAT) if Ag € Wi AT,

= (Ex, (As +vA) + N)p = {Ud(A7A+)+1 else.

Assume next that A’= A+ X\, A € WyAT, and As < A. Then

dAAT)-1 4 d(As,A%)  if A A+
(ExH,, A)p = {Zd(A,Aﬂl o F AW

else

while
(E)U A,w(ﬂs))") = (E>H A/ﬂs)P = (E,\, (AS + v_lA) + )‘)73

B {Ud(As,A+) + Ud(A»A+)71 if As € WfAJra

+)_
pUAAT)—1 else.

6.10 Formula for the mophism space: As Ob(Ka) = Ob(Ka), one has from (5.1) an
H-linear map ch : [lCa] — P.

Theorem: VP € Kp, VM € Ka, K¥(P, M) is left graded free over S with
grk(ICH(P, M) = v™*"0) (ch(P), ch(M))p.

Proof: As [Kp] —%— PO with ch(Q(Ay)*B(s))*---*B(s,)) = v e H, ... H, A€ X,
S1,...,8 €S, by (5.2) and (5.3), and as

PO = Z Zlv,v 'e\H,, ... H
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Then, as w is an anti-involution, one may assume by (6.2) and (6.9) that P = Q(A)). Let
(7,7) be a Z[v,v"!|-bilinear pairing on P such that (A, A’) = d4 4 VA, A" € A. Recall from
(6.9.1) that

—ch(Q(A;)) — U A wo) U*Z(A;)+E(wo)+€(A§)€)\ ERICOPN

Then
(ch(Q(Ay)), ch(M))p = v*“(ey, ch(M))’ Y v ALY o Wark(May) A
AEWyAY AcA
= p2Hwo) Z grk(May) = v%(wﬂ)grk(MWAA;)

AEW AL
= 0?0 grk(KH(Q(AY), M)) by (6.5).

6.11 The category K¢ = Kp(S%): Fix a € AT. VA € A, let Q,(A) = {(a,b) € S*la = b
mod o'} = {(a,a + ba¥)|a,b € S} with the left daiagonal S-action and a right action of R
given by (a,b)f = (faa, (safa)b Vf € R. Thus, Qu(A)? = S? ® S?. Recall from (1.4) that
atA=s,,A>Awithn € Z such that Vv € A, n — 1 < (v,a") <n. By (1.2)

(1) Sa(fa) = sa(f(A)) = [(saA) = [(SanA) = fara.

Define VA’ € A,
SP@0 if A= A,
Qa(A)) =038 if A/ =at A,

0 else.

Thus, Qa(A) € K'. As supp 4(Qa(A) CWeA={...,A—a,(a T A —a,A,at A, A+a,...},
(S) holds on a 1 A by (2.5.1). Also,

Qal(A)" = Qa(A)* N (8" @ %) = Qu(A)* N{Qu(A)% ® Qu(A)oy4}-
If § € At \ {#a},

Qu(A) = 57 & 5% = {Qa(A)’ N Qu(A)4} @ {Qa(A)’ N Qu(A)]4}-
Thus, (LE) holds on Q.(A), and hence Q,(A) € K. One has

ro(A){A} Qo(A)>4/Qa(A)sa = Qu(A)/Qu(A)>a
={(a,b) € S*la=b mod a”}/{(0,b)|a¥|b} = S via (a,b)r>a
as Qa( ) - Qa( )>A + {(aaa)|a € S},
Q ( ){aTA} Qa( ) — S(_2>7

and hence Q,(A) € Ka.

Consider a graded (S,R)-bimodule homomorphism £ : S ®x R — Q.(A) via a ® f —
(afa,afora). Let S = {a € S|sqa = a}. Ya € 5%,

(a®)atra = sa((a?)a) by (1)

= S0 = a,
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and hence
S @k R —— Qu(A).

S ®gsa R
If § € X¥ with (o, ) = 1, one has as in (1.2.1).
(2) S = 5% @ 05%.
By (1) again

§(1®1) = (1,s4(1a)) = (1, 1),
5(1 ® 5A> ((5A)A’ ((5A)CVTA) (5’ 8015) - (57 0 — a\/)7
and hence ¢ is surjective. Va,b € S with 0 = £(1 ® a? + 0 @ b)) = ((a?)a, sa((a?)a)) +
b

(6(b*) 4,080((a?)4)) = (a+06b, 50a+054b)), 0 = —54(0b) +sab = — (6 — ") sab+ 05,0 = V50D,
and hence b = 0. Then a = 0, and ¢ is bijective. Thus,

(3) S Qg R~ Qu(A).
Then
(Qa(A), Qa(A)) < (S ®sea R)Modgr(S @gsa R, Qa(A)) =~ M
~ Qa(A)? asdeg(l1®1)=0
=K(1®1),
and hence
(4) Qa(A) is indecomposable in K'.
Likewise,
(5) Qa(A)® is indecomposable in (K')°.

Let now that M € K’ with supp 4(M) C WA, Va € 5% Vr € Z,
(6150t = 0" (80, 4) = 0(a”(A)) = 500 = a,

and hence M admits a structure of left graded S ®gs. R-module. Then K'(Q(A), M)
(S ®gsa R)Mod(S ®gsa R, M) ~ M. As suppy(Qa(A)) = {4,a T A} with A < (o T
K'(Qa(A), M) C Ms 4. Given m € M4, take ¢ € (S ®g:a R)Mod(Qa,, M) with ¢(1,1) =
As MY, is an (S, R)-bisubmodule of M?, im(¢?) € M? . In particular,

<
A),
m.

(Qa( )aTA) - H Mﬁ’,, by Rmk. 2.2.i,
A'e{(atA)+ZAINW>AN(>A)

< I MY asAg{(atA)+ZA}NW"A,

A'>atA
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and hence ¢ € K'(Q,(A), M), and
(6) ﬁlﬁ(@a(A% M) = MEA-

Under the isomorphism {¢ € K*(Qa(A), M)|¢?(Qa(A)%) C [Tanop MY VA € {A a1+ A}}
is mapped onto {m € Msalma =0VA € {A,at A}}asaT A& (> A)N(A+ZA)NWA.
Also, {A,a T A} isopen in (> A); if A/ € {Ajat A and A < A" < A, A =at1 A As
d(A,a 1 A) =1 by [L80, Lem. 2.5], we must have A” = A. Thus,

(7) K*(Qa(A),, M) ~ Mxa/Mzap(aatay = Miaaray-
Likewise, VM € K with supp 4(M) C WA,
(8) (K (Qa(A)*, M) = Ma atay-

Lemma: Q,(A)* € K%.

Proof: Let M € K4. As (LE) holds on M, M = M* = [, M; with supp4(M;) C W*A; for
some A; € A. As {A,a T A} C WA, one has by (8)

(9) (K (QalA)*, M) ~ H(Mi){A,aTA} = Miaatay-

Given a complex M’ — M — M" in K% with (ES) holding, one has from (9) a CD

0 —— (K (Q%as M) —— (KVHQG 0 M) —— (K)HQG 0 M) —— 0
[ [ [
0 — M{AMA} _ M{A,QTA} _ MgA,aTA} — 0

with the bottom row exactby (6.3.ii); (A+ZA)N{A,a T A} = {A}, (a T A+ZA)N{A,a T A} =
{a 1 A}.

6.12. One can now argue as in (6.6) to obtain
Proposition: Any object of K% is a direct sum of some Qo(A)*(n), A€ A,n € Z.

7. The combinatorial category of AJS

We recall the combinatorial category of AJS after a version by Fiebig [F11], which we denote
by Kajs. We construct a functor F : Ka — Kajs, and show that F is fully faithful on Cp. Let
Sp be a flat commutative graded S-algebra.

7.1. The category Kajs(Sp) is defined as follows [F11, Defs. 5.2, 5.3]. An object of Kxjs5(.So)
is M = (M(A)A € A),(M(A,a)|A € A,a € AY)), where M(A) is a graded (Sp)?-
module while M(A,«) is a graded (Sp)*-submodule of M(A) ® M(a T A). A morphism
f € Kass(So)(M, N) is a collection of f(A) € (Sp)’Modgr(M(A), N(A)), A € A, sending each
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M(A, ) into N(A, a), « € AT. Put Kajs = Kajs(S) and i ;5 = Kays(S*) for x € {0} UAT.
Vs € §, the wall-crossing translation endofunctor @, on K4 g is defined as

(1) (O M)(A) = M(A) & M(As),
M(A, ) & M(As, a) if As € WA,
(OM)(A,a) =< {(z,y) € M(A,0)?* |z —y € a"M(A,a)} if As=at A,
a’M(As,a) ® M(at A, «) if As=a | A.

Define a functor F(Sp) : Ia(So) — Kajs(So) by setting
{F(So)(M)}(A) = MY and  {F(So)(M)}(A, @) = im(M} 440 — M3 S My 0)-

Recall from (2.13.3) that (Maara)® ~ (M%)aata). Put F = F(S) and F* = F(S*) for
* € {0} UA. As M € Ka(So), one has M = [y 4 M with supp ,(M®) C Q by (LE).
Then

(2)  {F(So)(M)HA, ) = im((M™Y ) oty = My @ M2, ,) as {A,a T A} C WA
~ (M N4 ara

as (MWQA)[A,aTA] < HA’G[A,aTA}ﬂQ ME)V = M,?x ® Mgm-

7.2. Let M € Ka and s € S. Take 6 € Ay with (ay,d) = 1. Recall from (3.3) that B(s)? =
B(s)? @ B(s)? with B(s)? (resp. B(s)?) free over R” of basis b, = (6 ® 1 — 1 ® s0) (resp.

S (&

by=0®1-1®0)). VA€ A,

(1) {F(M % B(s))}(A) = (M * B(s))%
~ (M4 ®p Rb,) ® (MY, ®p Rb,) ~ M4 @ M%, by (3.6.1)
= (FM)(A) ® (FM)(As) = {O(FM)}(A).

Proposition: VM € K, Vs € S, F(M % B(s)) ~ O4(F(M)).

Proof: Let o € A™. We verify under (1) that
@) F(M 5 B(s))(A,0) ~ {6,(FM)}H(A, ).
Put 2 = W*A. By (7.1.2) one has LHS ~ {(M * B(s))"} (4,414
Assume first that As & Q. As As € Qs \ Q,
(M * B(s))? ~ (M® ®p Rb.) ® (M™ ®p Rb;) by (3.7.ii)
with, VA" € A,

(M ®p Rb.)% = (MDY, @ Rb, as b, € B(s)?,
(M ®@p Rb,)% = (M), ®r Rb, asb, € B(s)".
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Then
(M @p Rbe)iaara) = (M? @ Rbe)sa/(M* ©p Rbe)(zan (<ata)
~ (MQ)[A,(XTA] ®R Rbea
(MQS Or Rbs)[A,aTA] = (MQS)[AS,QTAS] ®r Rbs
as Qs N[A,a 1 (A)]s = QsN [As,a T (As)],

and hence

{(M % B(8)*}aara) =2 (M) aa14) ©r Rbe & (M) 45,0149 @R Rbs

(M)
~ (M) (4,014 B (M ))[ASVQTAS] as graded left S“-modules
= (FM)(A,a) @ (FM)(As,«a) by (7.1.2) again
= {0,(FM)}(A, a).

Assume next that As =a 1T A. Then Qs =Q, [A,aT Al =[4,As] = {4, As} = (> A) N (L
As) with (> A) = (> A)s [L80, Prop. 3.2], and by (3.1)
(3) (a))a = xa”.
Then

{(M % B(5))*}aara) = (M? % B(5))jaara) by (3.7.)
= (M) 4,014 * B(s) by (3.9.3).
On the other hand,
{O(FM)}HA, @) = {(z,y) € (FM)(A,a)*|z —y € o (FM)(A, o)}
={(z,y) € {(MQ){A,AS}}QM —y € av(MQ){A,As}} by (7.1.2).

Put N = M* for simplicity. We are to show that N 45 ®pB(s) and {(z,y) € N*|z—y € aVN}
coincide in

(M{aas) * B(s))" = (Mgaasy * B(9)% @ (Myaagy * B(s))h, = (M © M3,) © (M4, & MY).
We let mp, m € M, B € A, denote the B-component of m in M?. Regarding Nia,asy®rB(s) as

N{A,As}®RSR = (N{A,As}®RR)€B(N{A,A5}®RR5>7 the image 0fm1®1+m2®5, mi, My € N{A,As}7
in (M4 o M) e MY, oMb is

(ml,A> M1, As, 1, As, ml,A) + (m2,A(5, m2,A5857 m2,A557 m2,A$5) by (3-6-1)
= (mya + 0ama a,my as + (50) asM2 A5, M1 As + 45T a5, M1,4 + (80) a2 4)
= (m1a + 6ama a, M1 as + 0ama as, My as + (860) Ao as, My 4 + (50)ama a) by (1.2.1)

with

(m1,aF0ama,a, M1 as + 0am2,45) — (m1,a 4 (56) AT, 4, 1M1,45 + (50) ATN12,45)
— (5 — (58)a) (., Ma0s) = (6 — 58)a(maas s 1a,05) = (0)) a0,y 02,0
= iav(mz,A, ,MaAs) by (3),
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and hence Nya a5 ®rB(s) C (O5(FM))(A, o). Given (z,z—(a))ay) € RHS for x,y € Nia a4},
take my = — 04y, ma =y € Niaasp. Then my ® 1+ my ® 0 realizes (z,z — (a))ay).

Assume finally that As =a ] A. Then Qs =Qand As< A<aftA<(atA)s=A+«
and (a))a = o again. One has

{(M % B(5))"}Haara) = (N % B(5))[aar4) by (3.7.)
= (N * B(8))>a/(N * B(5)) (> a)\(<atA)
= (N # B(8))>as/(N * B(5))(>as)\(<ata) as supp4(N * B(s)) € (2
= (N * B(5)))as,014]
with
(N % B(8)sas —— [Tysa(N * B(s))%
(4) l

(N % B(5))asata) = (N * B(s))% & (N * B(s))gra
I
(Nz(?l D Ngs) D (N(Z)TA 2 N?H—oz)'

[0

As (> As) = (> As)s by [L80, Prop. 3.2], (N x B(s))sas < (N % B(s))>as = N>as * B(s) by
(3.8). Consider

Noay % B(s) < > Lars as (N % B(s)%,
NZA;:X)RS R lproj
e (W« B(s))a, & (N« Bs))a & (N = (o))
» ~

(mASfa mAva mAf7 mASva mOLTAfv mA-I-Osz) (Ngs D Ng) S5 (Ng D Nge) D (NgTA D Ng—&-o/)

from (3.6.1). Any element of N> 45s®ps R = N> 45®ps (R°@& R?0) is of the form m; ®1+m9®4 for
some my, My € N> s, and my @ 14+my @8 € (N x B(s))s 4, iff its As-component in (N x B(s))?
vanishes. Writing (N * B(s))%, ~ N% @ NY,

(m1 @1+ my®0)as = (M1 as + Mo asd, M1+ maasd) by (3.6.1)
= (M as + (50) ama a5, M1 4 + (50) amaa) by (1.2.).
Thus, it suffices to show that
(5) {m1 @1+ ma®9 € Nsas @ps Rlmya + (86) amaa =0 =mq a5+ (55) ama as}
under (4) coincides in (N % B(s))% @ (N * B(s))gM = (NN o (NgTA @ NY., ) with
@' (FM)(As,a) & (FM)(a T A, a) = & Nias aras)) D Niata,ara] = & Nias a] ® Niata, a+a]
from (7.1.2). The image of m; ® 1 + ms ® 0 in (5) under (4) is
(M1, + Mo a6, M1 s + M2 4580, M1 ara + M2 atad, M1 At + M2 a4+a50)
= (m1a+ 0amaa, My as + (50) AsMa as, M1 ata + Ot AM2 014, M1 Ata + (50) AtaM2 Ata)

= (M1, + 6amo a, M1 as + 0aM2 A5, M1 ara + (50) AM2,a14, M1 At + (86) aM2 A1a)
by (1.2.1)
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with mLA—i—c?AmZA = —(35)Am27A+5Am2,A = (a;/)AmZA and mLAS—{—(SAmQ,AS = —(85)Am2,A8+
dama as = () )ama as. Thus, by (3) again, the images of the elements of (5) are contained in
o’ Nias,a] ® Niata, atal-

Let finally my € Nias,a = Noas/Nagy<a) and my € Niapaava) = Naapa/Narapcata):
Take a lift m; € N>4s and mg € Nsara, resp. Put m = ma @ 1+ my @ § — (s6)am1 @ 1 =
{mg — (s5)Am1} RI+mM ® o€ NZAS Rps R. As mo € NZOJTAv Mo A = 0= M2 As- Then

Mo A — (50)amia+ (50)amia =0 =mg as — (56) a4my as + (50) a1 45,

and hence m belongs to (5). As the image of m in (N% @ N%,) @ (NSTA & NLQ) is

() ama,a, (o)) ama as, {ma—(50) a1 Yara+0aramiara, {ma—(56) ami} ara+(50) ayami ata)
= ((a;/)Aml,A7 (a;/)Aml,Am ma atA, mz,A+a)

as Opta = OAsta = 0as = (50)4 and (s0)ara = (89)a, realizing ((ay)am), mj). The assertion
follows.

7.3. We now start a task of showing that F is fully faithful on Kp. Recall from (6.12) that
the objects of K% are easy to describe. Let A € A and a € A*. Recall from (6.11) that
Q.(A) = {(a,b) € S*la = b mod a"} € Ka with the right R-action (a,b)f = (faa, (Safa)b)
and VA’ € A,

(SP@a0 if A = A,

Qu(A)% =20@ 5 if A/ =atA4,

0 else,

SP@0 if A=atA,

Qalat Ay =508 8" ifA=at(atd)=A+a,

\

0 else,

(P @0 ifA=alA,
Qulal A% =208 8" if A = 4,

0 else.

\

Define
in € K(Qu(A), Qa(A)(2)) via (a,b) = (0,a"b),
iy € K(Qa(A),Qu(a T A)) via (a,b) — (b,a),
iy € K(Qa(A),Qula L A)(2)) via (a,b) — (0,a"a);

We will denote their images in K by the same letters.

7.4. Let Sy be a flat commutative graded S-algebra.

Lemma: Let A A € A.

(i) K(S0)#(So @5 Qa(A), So @5 QulA)) = K(S0)* (S ®s Qua(A), Sy ®s Qa(A)) = Soid & Syio.

In particular, K(So)(So ®s Qa(A), So ®s Qa(A)) = K(S50) (S @s Qa(A), So @s Qa(A)) = Kid,
and Sy ®s Qu(A) remains indecomposable in both K(Sy) and K(Sy).
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(ii) K(S0)*(So @5 Qa(A), So @5 Qala T A)) = Spig -
(i) K(S0)*(So @5 Qu(A), So @5 Qala | A)) = Suig -
(i) f Ad{a ] AL A at A}, K(So)*(So ®s QalA), Sy ®s Qu(A)) = 0.

Proof: Put M = Sy ®s Qa(A). Thus, supp 4(M) = {A,a T A}.
(i) Let ¢ € K(So)(M, M). Then

Py c [ My by Rmk. 2.2.(),

A>A
A'€AVZA
= MY,
SOQ(MBTA) - MEM likewise,
and hence
(1) LML) C MY, VA€ A

Thus, K(So)*(M, M) = K(So) (M, M).

We show next that ¢ € Spid @ Spip. By (1) we must have ©? = (1, ¢,) for some ¢, py €
SIMod(S8,S8). Then ¢, = aidgp for some a € SY. Put o = ¢ —aid. As (¢), = 0,
imy C 0® aVSy, and hence 1) = biy for some b € Sy.

(i) Put N = Sy @5 Qa(ar T A), and ¢ € K(Sp) (M, N). VA" € A,

N _ {S® if A' e {atAA+al,
Al T

0 else,

and hence by Rmk. 2.2.(i)

0 0 | | 0 0 0 0 | | 0 0
90 (MA)Q NA/:NA-i-OU (70 (MaTA)g NA/:NOATA'
A'>A A'>atA
A'€A+ZA A'eatA+ZA

Thus, there are ¢, pa € SoMod(Sp, Sy) such that Va,b € Sy, p(a,b) = (¢1(b), pa2(a)). Write
1 = cid for some ¢ € Sy. Then (p — cif)?(MY, ,) = 0, and hence ¢ — cif =0 in K(So).

(iif) Put N = Sy ®g Qula | A), and o € K(Sp)}(M, N). VA € A,

N _ {s@ if A’ € {al A, A},
A

0 else,

and hence
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Thus, there is ¢ € SoMod(Sy, Sy) such that Va,b € Sy, ¢(a,b) = (0,p1(a)). As ¢; = cid for
some ¢ € Sy, ¢(1,1) = (0, ¢), and hence a”|c. Thus, ¢ € Syiy .

(iv) Let ¢ € K(S0)*(So ©s Qu(A), So ®s Qala L A)). As supp4(Qa(A)) = {A,a T A} is
disjoint from supp 4(Qa(A4")) = {A",a T A}, ¢ =0 in K(Sp).

7.5. We calculate next in Kajs. Let A € A, o € AT, and put Qa4 = F(Qa(A)). Thus,
VA € A, VB € AT,
SO if A e {A at A,

0 else,

QualA) = F(Qa(A))(A) = Qu(A)ly = {
QaalA ) = (Qu( A ) 5141 € Qu(A) ® Qu(Dfira by (7.12).

Lemma: In Q.(A)"% @ Qa(A)%TA, one has

(5% 0 if A€ {A a1 A} and 8 +# a,

00 8° A €{BLABL(aTA)} andB#£a,
aVS*®0 ifA=atAandfp=q,

{Qa(A)}* if A=A and f = «,

0dS° if A'=al A and f = «,

0 else.

Qa,A(A,7 6) =

\

Proof: Assume first that 8 # a. One has {Q,(A)} = 5% ®5 Qu(A) = SP(A) @ SP(a T A) as
a € (S#)*, and hence in Q,(A)% @ QQ(A)gTA,
(SP(A) @0 if A=A,
SPA) @0 if A" =a1 A,
{(Qa(A)}arprar = 0@ SP(B1T A if A/ =5 A,
0@ SP(BTA) ifA=8LatA,

L0 else.

Assume next that § = a. As Q. (A)* = {(a,b) € S*(A) ® S*(a T A)la=b mod a"},

{(Qa(A)}araran = {(Qal(A)*} o4 /{(Qal(A)*}zan(zarar)
a’S*(A) @0 ifA=atA,

~Qa(A)e if A/ = A,
S l0®aYSHatA) if A =alA,
0 else.

7.6 . Put 1o = Fip),tq = F(ig), 19 = F(ig). Thus,

Qaa(A) s Q4 (A)(2) Qualat A
[l [l [l [l
S ———— 5°(2), S0 » S0(2),

aVid




o +
Oua(A) D Quianld)  QualatA) 2T » Quraala T A)
I I I I

) ———— 0, S0 - > 57,
Lo (A) (o
Qual4) * Quiaald)  QualatA) TV Quualat A)
I I I [
S0 —— S0(2), S0 > 0.

Lemma: (i) Kas(50)* (S0 ®5 Qaar So @5 Q) = Soid & Sptg.
(1) Kass(50)*(So ®s Qa.ar So @s Qataa) = Soig -
(11) Ka3s(S0)*(So @5 Qaa, So ®5 Qajaa) = Sotg -
(i) IfAg {al A A at A}, Kais(S0) (So ®5 Oaas So @5 Qarg) = 0.

Proof: Put M = Sy ®5 Qa4

(i) Let ¢ € Kays(So) (M, M). As M(A") = 0 unless A" € {A,a T A}, p(A’) = 0 unless
A" e {A,at A}. By (7.5) one has, V3 € AT, a CD

M(B L Ay M(A) LD (5| A) @ M(A)

J J

M(B L A, B) M(B LA, B)

[l [l
0® Sy » 0@ Sy

(BlAB)

Then (A)(S5) C SF, and hence p(A)(Sy) = @(A)(N3S5) C NESH = Sy. As p(A) is Sp-linear,
©(A) = cid for some ¢ € Sy. If 5 # «, one has a CD

plat)op(Brata)

M(at Ay M(BTat A » Mt A)e M(BTatA)
M(at A, B) M(at A, B)
Il Il
SEa0 S s SV @0,

and hence (a1 A)(S)) C Sy. If B = a, one has a CD

p(atA)@p(A+a)

M(aTA) e M(A+ ) > M(aTA) e M(A+ «a)

J J

M(aT A ) M(aT A )
Il Il
a’S§ a0 > o' S§ 0,

@(CVTAva)
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and hence aVp(a 1 A)(S§) = p(a T A)(aVSF) C avS§. As Sy is flat over S,

PSR AN Ry

N| |N

and hence p(a 1 A)(S§) € S§. Then p(a T A)(Sy) = pla T A)(Ngea+So) € Npea+So = So,
and p(a T A) = didg for some d € Sp. Put ¢ = ¢ —cid. Then (A) = 0, and hence

M(A o) > (w(A)(lsg),w(a 0 A)(lsg‘)) = (0,d — ¢). Thus, a'|d — ¢ and ¢ = SFy,.

(11) Put N = SO Xs QoaTApm and let ¥ € }CAJS(M7N)' As {A,OK T A} N {CY T AaA + CY} =
{a1 A}, p(A") =0 unless A’ = a1t A by (7.5). VG € AT\ {a}, one has by (7.5) a CD

Mt Ay M(B 1+ at Ay ATDEETD, Ar(a+ A) @ N(BTat A)

J J

M(at A, B) N(at A, pB)
Il Il
SPa0 > SV @0,

w(atA,p)

and hence (a1 A)(Sy) C Sy. Also, there is a CD

M(A) & M(a 1 A) AT MA@ N(at A)
M(A, ) N(A a)

Il Il
{(a,b) € (S§)*la=b mod a"} > 0D S§.

(A,0)

As (a,a) € M(A, @) Va € S, p(at A)(S§) C S5 Then p(a T A)(So) = p(a T A)(Ngea+Sy) C
Ngear@(at A)(SY) C Ngeat Sy = S, and hence p(a 1 A) € Spid. Thus, ¢ € S

(iii) Put N = Sy ®s5 Qajaa, and let ¢ € Kags(So) (M, N). As {A,at A}N{a | A A} =
{A}, p(A’) =0 unless A’ = A by (7.5). V5 € AT\ {a}, one has by (7.5) a CD

M(A) & M(B 1+ A) — DD w4y @ N (B 1 A)

J J

M(A, B) N(4,B)
[l [l
Sy &0 > Sy @0,

©(A,B)
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and hence p(A)(SF) C SP. Also, there is a CD

M(A) & M(a 1 A) AR, N(A) @ N(a T A)
M(A, ) N(A )

I I
{(a,b) € (S$)*la=b mod o'} > oSG @0,

o(A,a)

and hence o(A)(S§) C avSg. As S§ = a¥Sy VB # a, p(A)(Sy) = @(A)(NsearSy) C
ﬂ5€A+aVSg = a”Sy. Thus, p(A) € a¥Spid, and ¢ € Speg -

(iv) Let ¢ € Kays(50)*(So®sQaa, So®sQara). As{A,at AJN{A,at A} =0, p(A") =0
VA" € A, and hence ¢ = 0. O

7.7. Putting together (7.4) and (7.6) yields

Lemma: VA A € A, Va e AT,

’C(So)ﬁ(so ®s Qa(A), S @5 Qu(A')) m Kas(50)*(So @5 F(QalA)), So ®s F(Qa(A)))

~

= Ka35(50)* (S0 @5 Qe So @5 Qara)-

7.8. Let a € AT. VA A" € A,

(1) K3 (Qa(A), Qu(A)®) = Kp(S5%)(S* @5 Qu(A), S @5 Qu(A))
~ Kais(S*)(S* ®s Qan, S ®s Qara) by (7.7)
= Kys(F*(Qa(A)"), F*(Qal(A)Y)).

Then by (6.12) one has K§(M, N) ~ K ;5(F*(M), F*(N)) VM, N € K¢. Thus,
Lemma: Vo € AT, the functor F* : K% — K% 5 is fully faithful.

7.9. VM,N € Kp, one has K%(M, N) graded free over S by (6.10). Then

(1) KL (M, N) = Naent S* @5 K5(M, N)
= Npeat (KPS @5 M, S*®g N) by (6.7)
= Naeat+ (K5 (F(S* @5 M), F*(S* ®s N)) by (7.8)
= Naeat (K55) (Y ®g F(M), S* @ F(N))
> K4 o (F(M), F(N)) as it is torsion-free over S.

Proposition: The functor F : Kp — Kays is fully faithful.
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Proof: We are to show that VM, N € Kp, Kp(M,N) ~ Kajs(F(M),F(N)). For that it is
enough to show that VM, N € Kp, K%(M, N) ~ K4 ,o(F(M), F(N)). By the CD

F(M,N)*

Kp(M, N) > Kius(F(M), F(N))

\ /

[Taca S"Mod (M, N§)
F(M,N)* is injective, and hence bijective by (1).

7.10. Put Q) = F(Q(A))) VA € X. Let Kays.p be the full subcategory of Kajs consisting
of the direct summands of direct sums of objects of the form (O o --- 06, )(Qy)(n), X €

X,s1,...,8 € 8,n€Z. From (7.2) and (7.9) one obtains
Theorem: Kp >~ Kajsp. In particular, Kajs p admits a right action of &*B.

8. GT-representations

Assume from now on throughout the rest of the paper that K is an algebraically closed field
of characteristic p > h the Coxeter number of A [J, 11.6.2.9]; for the characteristic requirement
see also [RW18, 4.2]. Let G be a simply connected semisimple algebraic group over K with the
root datum (X,0, XV, AY), T a maximal torus of G, g = Lie(G),h = Lie(T'). In particular,
X = X. Let S be the completion of S = Sg(Xy¥) at the maximal ideal (Xy). For S" € {S,K}
let Cg denote the category of [AJS, 2.3]; S is flat over S [AM, 10.14]. Thus Cg is equivalent
to the category of finite dimensional G1T-modules, G; the Frobenius kernel of G. VA € X let
S’(A) € Csr denote the Verma module of highest weight A and Ps/(\) € Cs an indecomposable
projective such that K ®g¢ Ps/()) is the projective cover of the irreducible of highest weight A;
such exsists over S by [AJS, 4.19]. Let p = Y nenr . Yw e W, set we, 0 = pw(%p - p).
Let Cg/o denote the full subcategory of Cs: consisting of the quotients of [, ., Ps(w ,0)%w,
ny € N. Thus, Cg g is a direct summand of Cs [AJS, 6.13]. If b denotes the principal block of
Cs over S’ [AJS, 6.9], the category Dy (b) from [AJS, 6.9, 6.10] is a full subcategory of Cso. Set
Proj(Cs0) = {P € Cg o|P projective}. The category Cg o is equipped with the wall-crossing
functors Oy, s € S, [AJS, 16.3].

8.1. Let Kajs(S) denote the category Kajs over S in place of S, denoted Kj(0) in [F11, Def.
5.2, p. 156], consisting of objects M = (M(A)|A € A), ( M(A,a)|A € A,a € AT)) with
M(A) an S’-module and M(A,a) an S*-submodule of M(A) & M(a T A), equipped with
wall-crossing functors ©,, s € S; in particular, the morphisms in ICAJS(S') is ungraded. Let

Kays,p(S) denote the full subcategory of KCajs(S) consisting of the direct summands of direct
sums of some (O, 0--- 060 )(S®s Qr)(n), A € X, 51,...,8. € S,n € Z.

A main theorem of [AJS] may be phrased as

Theorem: There is an equivalence of categories V : Proj (ngo) — KAJS7P(S) compatible with
O, and O, Vs € S.
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Proof: By [AJS, 9.4, 14.14.6] there is a fully faithful functor V, : Dg(b) — Kass(S) compatible
with all ©, and O, s € S.

Let A € II,, A € X, and let z,y € W such that A = zA and A} = yA*. If (s1,...,5,)
is a reduced expression of =, Py(z e, 0) is a direct summand of O, o---0 0, Zs(y e, 0) with
Z4(0) denoting the deformed G;7-Verma module over S of highest weight y e, 0 [F11, Prop.
8.3]. Then expanding [F11, Th. 8.5] and restricting to Proj(Cg ) yields the assertion.

8.2. Define a category K @g Proj(Cg ) whose objects are the same as those of Proj(Cg,) with

{K @5 Proj(Cg o) }(M, N) = K ®@g Proj(Cg ) (M, N) VM, N € Ob(Proj(Cs))-
Lemma: K ®g Proj(Cg,) =~ Proj(Cx).

Proof: Define a functor K ®¢ Proj(Cg,) — Proj(Cx o) via P+ K ®g¢ P, which is well-defined
and dense by [AJS, 4.19]. Also,

{K ®g Proj(Cg o) }(M, N) = K®g Proj(Cg,)(M, N) by definition
~ Proj(Cko)(K®gs M, K®s N) by [AJS, 3.3].

8.3. Let Ki‘}gg’]g denote the degraded category of Kaysp. Define S ®g Ki%gsr,P as in (8.2);
the objects are the same as those of iCdAngg,P with {S ®g lCingép (M,N) =5 ®g lCdAef]gSiP(M, N)

VM, N € Ob(lCi‘}gsr,P). There is a fully faithful functor F : g@glCdA(}gsr’P — Kass.p(S) [AJS, 14.8].

In particular, the indecomposables are preserved under F'. The indecomposables of Ic;if;gg’ p are

those of Kays.p by [GG, Th. 3.1], and hence correspond to Q(A)’s, A € A, under (7.10). On

the other hand, the indecomposables of Kajs p(S) ~ Proj(Cs, o) are also parametrized by A by
(8.1). Thus, F is dense, and we have obtained an equivalence

(1) Kass,p(S) = S @5 Ky p.

A

Define now categories K ®¢ Kays p(S) and K ®g ICing;P as in (8.2) likewise. The objects of

~

those may now be identified by (1). Then, VM, N € Ob(Kajs.p(5)),

{K®g KAJS,P(S)}(Ma N) =K®g ICAJS,P(S)(M, N) by definition
~ K ®g (S @5 Kyl p)(M,N) by (1)
~ K@ K (M, N).

Thus, we have obtained another equivalence

Lemma: K ®g Kajsp(S) ~K®g KdA?IgSr,P‘
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8.4. Let K&® denote the degradation of Kp. One has obtained
(1) Proj(Ck o) ~ K ®g Proj(Cs,) by (8.2)

~

~ K Rg lCAJ&p(S) by (81)
~K@sKyEp by (8.3)
~ K ®g K& by (7.10).

As the action of &8 on Kp is S-linear, it induces an action on K ®g ICdPegr, and hence on
Proj(Ck ), which we write as (M, B) — M % B. Under this action each B(s), s € S, acts as the
wall-crossing translation functor ©, on Proj(Ck) by (7.2) and (8.1). We now start showing
that the action extends onto the whole of Ck .

Recall first auto-equivalence T, on Kp from (6.6), and define an auto-equivalence T ;g on
Kajs,p via Tags(M)(A) = M(A+7) and Tajs(M)(A, ) = M(A+7,a) YA € AVa € AT.
As T, (resp. Tass,) is S-linear, K ®g T, (resp. K®g Tays,) defines an auto-equivalence on
K ®g Kp (resp. K®g Kaysp) equipping it with a structure of ZA-category [AJS, E.1]. Then
the equivalences K ®g K ~ K ®g IC%% p = Proj(Cx ) from (1) are those of ZA-categories.

Recall also that Ck ( is equipped with a structure of ZA-category such that M — M ®py,y €
ZA, and so is Proj(Ck ). Fix a projective ZA-generator P of Cx o and set £ = C%O(P, P) =
HVGZA Ck,o(P, P ®xk pv), which is a ZA-graded algebra. Let modzaE denote the category of
ZA-graded right E-modules of finite type. By [AJS, E.4] there is an equivalences of categories

(2) C]K,O — modZAE via M~ CHﬁ(’O(P, M) = H CKQ(P, M XK p’y),
YZA

where the structure of graded right E-module on C&}O(P, M) is given by setting fo = f o ¢,

fe C£,O(P, M),p € E. Let Proj;(F) denote the full subcategory of modza E consisting of
its projectives.

Lemma: V(@ € Proj(Cky), VB € &*B, Vy € ZA, (Q * B) @k py ~ (Q ®k py) * B.

Proof: By the equivalences of ZA-categories K®g Ky ~ K@y ICingSi p = Proj(Cx ) it suffices

to check that T (M % B) ~ T, (M)« BYM € Kp, VB € &8, which holds by (3.4.2).

8.5. Now that the action of &8 on Proj(Ck ) is compatible with its structure of ZA-category,
there is induced an action of &8 on Proj,,(£) under (8.4.2), which we denote by (M, B) —
M * B. In particular, VB € &8, let E(B) = CHﬁQO(P, P x B). Recall that B is a left graded free
R-module by (1.2.2.1) and by graded Quillen-Suslin [Lam, Cor. 11.5.4.7, p. 79]. Then

(1) Cho(P,P+B) ~ E x B € Proj,a(E) via ¢(?) ®rb <1 ¢ *b.
Lemma: V(Q € Proj,A(E), VB € 6B, Q ®g E(B) ~ Q * B.

Proof: Vv € ZA, let Q¥ denote the v-th homogeneous part of Q. Vz € QY, let ¢, €
modza E(E,Q(v)) via 1 — . Under the ZA-graded equivalence Proja(E) ~ K ®g KK&
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(8.4.1) one obtains

¢u % B € Proj(E)(E x B,Q(v) * B)
~ Proj;(E)(E * B,(Q+ B)(v)) by (84),

which in turn induces a morphism of Proj,a (F)

Q®p B(B) v P QB (pax B)m).

i / /

Q g (E*B) rTR®m

Ifz@meQ"® E(B), (p.x B)(m) € {(Qx*B)(v)}* = (Q=* B)". This is an isomorphism if
(Q = E, and hence in general by the 5-lemma.

8.6. VM € modyaE, VB € &8, set M « B = M @p E(B). VB' € &,

E(B) ®5 E(B') ~ E(B)* B'~ (E+ B)+ B' by (8.5)
= Ex* (B« B') as Projy(F) admits a right &8B-action
~ E(Bx B'),

and hence

(M *B)+«B'={M ®g E(B)} ®; E(B") ~ M @ (E(B) @ E(B"))
~ M @p E(B*B')= M % (Bx*B').

Thus, modza E2 comes equipped with a right action by &5, and so therefore does Cx o under
(8.4.2). One has obtained

Theorem: There is a right action of &B on the whole of Cxo such that each B(s), s € S,
acts by the wall-crossing translation functor ©.

Proof: To see the last assertion, let M € Cgp and let P — P — M — 0 be a projective
resolution. As both *B(s) and Oy are exact, one has a CD of exact sequences

Os(P) — O4P) —— O,(M) —— 0

Nl lw

P % B(s) —— Px B(s) —— M % B(s) —— 0,
and hence ©4(M) ~ M * B(s).

8.7 Characters: Each P € Proj(Cs) admits a Verma flag [AJS, 2.16]. Let (P : Zg(w o, 0)),
w € W, denote the multiplicity of Zg(we,0) in the flag, and likewise (S®g P : S®gZg(we,0)).

Lemma: VP € Proj(Csp), VM € Kp with Vs(P) ~ F(M) in Kass,
(P . Z,g(U) .P O)) = I'kS(M{wA+}).
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Proof: Let V(S ®g P) = (M(A)|A € A),(M(A,a)|]A € A,a € AT)). Then
(P: Zs(we,0) = (S®gP:8®s Zs(we,0))
=1k goM(wA™) by [AJS, 14.10]

=rk SM(S ®s M)?LAwL) =1k S”(Mgm)
= I"ks(M{wA+}>.

8.8. Now, indecomposable Ps(w e, 0), w € W, is characterized in Proj(Cgg) by the properties
that (Ps(w e, 0) : Zg(w e, 0)) = 1 and that (Ps(w e, 0) : Zg(x e, 0)) = 0 unless zAT > wA™,
and hence

Proposition: Yw € W, Vg(Ps(w e,0)) ~ F(Q(wAT)).
8.9. From (8.7) and (8.8) follows
Corollary: Va,y € W, (Pk(xe,0): Zx(y ®,0)) =1k (Q(zAT)ya+y).

8.10. Let A € X, wy,w),w € W such that Ayw) = A} = wy A} and Afw C II,. Soergel’s
conjecture on B(wjw) states that ch[B(w\w)] = H,,. This holds for large p by [EW14],

transferring to the Elias-Williamson diagrammatic category from &8 by an equivalence [Ab19a,
Th. 5.9], but fails in general [W]; ch[B(xz)],z € W, can be computed in terms of the ranks of
the local intersection forms [JW17] as in (5.13). The computations may be done in principle,
using only the diagrammatic relations of [EW16], independent of the ambient spaces of the
realizations of (W, S).

Theorem: If Soergel’s conjecture holds on B(w\w),

S(AY) * B(wyw) ~ Q(A w)(£(wo) — £(w)).

Proof: We know from (5.5) that S(A}) * B(wiw) € Kp, and hence belong to Kp by (6.6).
One has

(1) ch[S(AY) * B(wyw)] = ch[S(A})]H,,,,,
_ ,Ufé(A;)Agﬂw;w

=0, by (56),

by (5.1) under the hypothesis

and hence
ch[S(AY)(L(AY)) * Bwyw)] = Py,
= ch[S(A})({(A})) * B(w\w)] by [S97, Th. 4.3].
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On the other hand, as wyAfw = A w is the minimal alcove appearing in P At OnC has from
[S97, Lem. 4.21]

(2) Par, €0 (A w+ Y v 'Zv]B).
Beé
Then by (6.10)
grk(KCF(S(AY) (U(A})) * B(whw), S(AL)(U(AY)) * B(whw)) € v @0 (1 4 o =2Z[v7]),

and hence K(S(A,)(U(A})) * B(w\w), S(A})(4(A))) * B(w\w)) = K and S(A)(¢(A))) *
B(wiw) is indecomposable.

Meanwhile, ch[Q(A}w)] € v~ A\W) AT w + ZB>A;wZ[v,v_1]B by (4.5). It follows from (2)
and (5.3) that S(A})(¢(A))) * B(whw)(—{(wy)) ~ Q(A w)(¢(A,w)), and hence

S(AY) * Blwyw) =~ Q(Ayw)(¢(wo) + £(A w) — £(A)) = Q(A w)(E(wo) — £(w)).

8.11. Let w € W with ATw C II. Let ps p denote the periodic KL-polynomials from [S97,
Rmk. 4.4].

Corollary: If Soergel’s conjecture holds on B(wow), 1k s(Q(A™w)1a}) = paatw(l) VA € A,
and hence Vx € W,
(Px(wow ,0) : Zg(x 0,0)) = pats a+w(l).

Proof: Put [ = ¢(wp). One has

) N B grk(Q(A™w) ) B = ch[Q(Aw) (I — £(w))]
BeA

= ch[S(A7) * B(wow)] by (8.10)

= )P, by (8.10.1)

= A7) ZpB7A+wB by definition [S97, Rmk. 4.4].
B

Thus, 1k (Q(A™w)(By) = P a+w(l). Then

(PK(UJOU) .p 0) . ZK(l’ .P O)) = I'k S(Q(wowA+){xA+}) by (89)
=rk S(Q(A_w){,qw}) = pA+m,A+w(1)-

8.12. One has

Pareite(l) = Qarparw(l) with Q as in [L8O] by [S97, Rmk. 4.4]
= (Px(wow e, 0) : Zg(x »,0)) cf. [K88, 5.1.1],
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which is consistent with (8.11). Also,

[Zk(z ®,0) : Lg(wow e, 0)] = puoza+ wa+ (1) after [F10, 3.4]

= QwoxA+,wA+(1)
= Qua+wa+(1) Dby [L80, Cor. 8.4]

= pa:A+,wA+(1) = pA+1:,A+w(1) = (PK(wOw ®) O) : ZK<x ® 0))7

which is again consistent with (8.11).
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