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Abstract. It has been known that there exist exactly three left-invariant
Lorentzian metrics up to scaling and automorphisms on the three dimensional
Heisenberg group. In this paper, we classify left-invariant Lorentzian metrics
on the direct product of three dimensional Heisenberg group and the Euclidean
space of dimension n − 3 with n ≥ 4, and prove that there exist exactly six
such metrics on this Lie group up to scaling and automorphisms. Moreover we
show that only one of them is flat, and the other five metrics are Ricci solitons
but not Einstein. We also characterize this flat metric as the unique closed
orbit, where the equivalence class of each left-invariant metric can be identified
with an orbit of a certain group action on some symmetric space.

1. Introduction

Left-invariant metrics on Lie groups, both in Riemannian and pseudo-Riemannian
cases, have been studied actively. Among others, classifications of left-invariant
metrics are fundamental and interesting themes. For example, Milnor classified
left-invariant Riemannian metrics on three dimensional unimodular Lie groups
by using orthonormal bases of Lie algebras in [10], which are now called the
Milnor frames. Note that the Milnor frames play fundamental roles in studying
Ricci soliton metrics (cf. [16]). In general, if we can classify left-invariant metrics
on a given Lie group, then it would be helpful to determine the existence and
nonexistence of distinguished metrics, such as Einstein or Ricci soliton, which is
one of the central problems.

In the Riemannian case, Lauret ([7]) classified Lie groups admitting only one
left-invariant Riemannian metric up to scaling and isometry. Such a Lie group is
isomorphic to, if it is connected and simply-connected, one of

Rn, GRHn (n ≥ 2), H3 × Rn−3 (n ≥ 3),
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where GRHn is so-called the Lie group of the real hyperbolic space RHn (the solv-
able part of the Iwasawa decomposition of the identity component SO0(n, 1) of
SO(n, 1) and acts simply-transitively on RHn), and H3 is the three dimensional
Heisenberg group. For other studies on classifications of left-invariant Riemann-
ian metrics on Lie groups, we refer to [3, 4, 5]. Especially, in [4], a kind of theorem
to classify left-invariant Riemannian metrics on Lie groups is formulated, which is
called aMilnor-type theorem. In [3], Milnor-type theorems have been obtained for
left-invariant Riemannian metrics on all three dimensional solvable Lie groups.
However, even in the Riemannian case, the present status is far from the com-
pletion. For example, left-invariant Ricci soliton metrics on solvable Lie groups
have been classified only for dimension ≤ 6 ([8, 17]).

We are interested in classifications of left-invariant pseudo-Riemannian metrics
on Lie groups. Left-invariant Lorentzian metrics on three dimensional Lie groups
have been studied in [2, 14, 15]. For higher dimensional cases, it would be natural
to start with the above three Lie groups, that is Rn, GRHn , and H3 × Rn−3.
For each signature, it is obvious that Rn admits only one left-invariant pseudo-
Riemannian metric up to scaling and isometry, which is flat. For each non-
Riemannian signature on GRHn (n ≥ 2), it admits exactly three left-invariant
pseudo-Riemannian metrics up to scaling and isometry, all of which have constant
sectional curvatures ([6]). For the case ofH3, it admits exactly three left-invariant
Lorentzian metrics ([14]), only one of which is flat and the other two are Ricci
solitons but not Einstein ([11, 12, 13, 15]). However, the case of H3 ×Rn−3 with
n ≥ 4 is unsolved.

In this paper, we give a classification of left-invariant Lorentzian metrics on
H3×Rn−3 with n ≥ 4, up to scaling and automorphisms. Recall that this criterion
of classification is defined as follows.

Definition 1.1. Let g1 and g2 be left-invariant pseudo-Riemannian metrics on a
Lie group G. Then, (G, g1) and (G, g2) are said to be equivalent up to scaling and
automorphisms if there exist c > 0 and a Lie group automorphism φ : G → G
such that for any p ∈ G and x, y ∈ TpG, it satisfies

g1(x, y)p = cg2(dφp(x), dφp(y))φ(p),

where TpG is the tangent space to p of G, and dφp is the differential map of φ at
p.

If (G, g1) and (G, g2) are equivalent up to scaling and automorphisms, then
they are isometric up to scaling. Note that the converse is not necessarily true.
The first main result of this paper classifies left-invariant Lorentzian metrics on
H3×Rn−3 up to scaling and automorphisms. We have to note that this does not
give a classification up to scaling and isometry (see Remark 5.10).

Theorem 1.2. There exist exactly six left-invariant Lorentzian metrics on H3×
Rn−3 (n ≥ 4) up to scaling and automorphisms.
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In the proof of this theorem, a key idea is a one-to-one correspondence between
the equivalence classes of left-invariant Lorentzian metrics on H3 × Rn−3 up to
scaling and automorphisms, and orbits of some group action. In fact, this group
action is given by the non-maximal parabolic subgroup



∗ ∗ 0 · · · 0 0
∗ ∗ 0 · · · 0 0
∗ ∗ ∗ · · · ∗ 0
...

...
...

. . .
...

...
∗ ∗ ∗ · · · ∗ 0
∗ ∗ ∗ · · · ∗ ∗

 ∈ GL(n,R)


in GL(n,R), where the size of the block decomposition is (2, n − 3, 1), acting
on the pseudo-Riemannian symmetric space GL(n,R)/O(n − 1, 1). Note that
it has already been known that the number of orbits is finite for this action.
Our argument asserts that the number of orbits of this action is exactly six (see
Remark 3.2). This result would have an independent interest. Recall that, in the
cases of GRHn (n ≥ 2) and H3, the corresponding actions are given by maximal
parabolic subgroups in GL(n,R), and there are exactly three orbits ([6, 14]). In
our case, since one has to study the action of a smaller group, we need more
detailed arguments and the number of orbits increases.

The second main result of this paper studies the curvature properties of the
above metrics. In fact, we obtain a Milnor-type theorem for the Lie group H3 ×
Rn−3, which gives a kind of generalization of Milnor frames. By calculating the
curvatures in terms of the obtained Milnor-type theorem, we prove the following.

Theorem 1.3. All of the six left-invariant Lorentzian metrics obtained in The-
orem 1.2 are Ricci soliton metrics. Only one of them is flat, and the other five
are not Einstein.

We also study the closure relation among these six orbits. In view of the
correspondence between the orbits and the equivalence classes of the metrics
mentioned above, it would be natural to expect that some distinguished orbits
are corresponding to some distinguished metrics. This expectation turned out to
be true in our case, which is the last main result. Note that closed orbits do not
degenerate further, and hence can be regarded as the most distinguished orbits
from the viewpoint of the degenerations.

Theorem 1.4. A left-invariant Lorentzian metric on H3×Rn−3 (n ≥ 4) is flat if
and only if the corresponding orbit is a closed orbit, that is, its equivalence class
up to scaling and automorphisms is a closed set in GL(n,R)/O(n− 1, 1).

In the preceding studies, for GRHn (n ≥ 2) and H3, one has the same corre-
spondences. In fact, for each non-Riemannian signature, these Lie groups admit
unique flat left-invariant metrics up to scaling and automorphisms ([6], [15]).
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2. Preliminaries

In this section, we recall a general theory on left-invariant metrics on Lie groups,
both for Riemannian and pseudo-Riemannian. Throughout this section, let G be
a real Lie group of dimension n and g be its corresponding Lie algebra. We fix a
basis {e1, . . . , en} of g, and identify g ∼= Rn as vector spaces.

2.1. The spaces of left-invariant metrics on Lie groups. In this subsection,
we recall the notion of the spaces of left-invariant pseudo-Riemannian metrics on
Lie groups. This notion has been introduced in [6]. We also refer to [5] for the
Riemannian case.

First of all, let us recall the signature of an inner product. Let V be a real
vector space of dimension n and ⟨, ⟩ be an inner product on V , which is not
necessarily positive definite. Fix a basis {v1, . . . , vn} of V and identify V ∼= Rn.
Then, there exists a symmetric matrix A such that for any x, y ∈ V ,

⟨x, y⟩ = txAy.

Then the pair of the numbers of positive and negative eigenvalues of A is called
the signature of ⟨, ⟩. Note that the signature (p, q) with p, q ∈ Z≥0 of ⟨, ⟩ satisfies
p+ q = n, since ⟨, ⟩ is nondegenerate.
Next we consider left-invariant pseudo-Riemannian metrics on G. Recall that

a metric is said to be of signature (p, q) if so is the induced inner product on
each tangent space. We are interested in a classification of left-invariant pseudo-
Riemannian metrics on G. For this purpose, we denote the space of left-invariant
pseudo-Riemannian metrics by

M(p,q)(G) := {a left-invariant metric of signature (p, q) on G}.

We then consider the counterpart in the Lie algebra g of G. It is well-known
that there is a one-to-one correspondence between M(p,q)(G) and the space of
inner products of the same signature,

M(p,q)(g) := {⟨, ⟩ : an inner product of signature (p, q) on g}.

Recall that we identify g ∼= Rn. Then GL(n,R) acts transitively on this space by

g.⟨x, y⟩ := ⟨g−1x, g−1y⟩ (∀x, y ∈ g).
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From now on, we explain the equivalence relation on inner products, which
corresponds to the equivalence relation on M(p,q)(G) given by Definition 1.1. Let
us consider the automorphism group of g,

Aut(g) := {φ ∈ GL(n,R) | ∀x, y ∈ g, φ([x, y]) = [φ(x), φ(y)]}.
We also put R× := R \ {0}. In this paper we consider the group action by

R×Aut(g) := {cφ ∈ GL(n,R) | c ∈ R×, φ ∈ Aut(g)}.
Since this is a subgroup of GL(n,R), it naturally acts on M(p,q)(g). We denote
the orbit through ⟨, ⟩ by R×Aut(g).⟨, ⟩.

Definition 2.1. Let ⟨, ⟩1, ⟨, ⟩2 ∈ M(p,q)(g). Then, (g, ⟨, ⟩1) and (g, ⟨, ⟩2) are said
to be equivalent up to scaling and automorphisms if it satisfies

⟨, ⟩1 ∈ R×Aut(g).⟨, ⟩2.

This notion gives an equivalence relation on M(p,q)(g). If a given Lie group G
is connected and simply-connected, then one knows Aut(G) ∼= Aut(g), and hence
the classification of inner products on g by the action of R×Aut(g) is equivalent to
the classification of left-invariant pseudo-Riemannian metrics on G up to scaling
and automorphisms. Therefore it is natural to consider the following orbit space:

R×Aut(g)\M(p,q)(g) := {R×Aut(g).⟨, ⟩ | ⟨, ⟩ ∈M(p,q)(g)}.
This space can be regarded as the moduli space of left-invariant pseudo-Riemannian
metrics on G of signature (p, q).

Finally in this subsection, we give a remark on a classification of left-invariant
pseudo-Riemannian metrics on G up to scaling and isometry, defined as follows.

Definition 2.2. Let g1, g2 ∈ M(p,q)(G). Then, (G, g1) and (G, g2) are said to
be isometric up to scaling and denoted by g1 ∼G g2 if there exist c > 0 and a
diffeomorphism φ : G→ G such that for any p ∈ G and x, y ∈ TpG,

g1(x, y)p = cg2(dφp(x), dφp(y))φ(p).

One can define an equivalence relation ∼g on M(p,q)(g) induced from ∼G, that
is, there exists a one-to-one correspondence

M(p,q)(G)/ ∼G
1:1←→M(p,q)(g)/ ∼g .

By definition, if two left-invariant metrics are equivalent up to scaling and au-
tomorphisms, then they are isometric up to scaling. Therefore there exists a
surjection

R×Aut(g)\M(p,q)(g) ↠ M(p,q)(g)/ ∼g .

In this paper, as we referred above, we focus on the classification of inner products
by the action of R×Aut(g). In order to obtain the classification up to ∼G or ∼g,
we need to distinguish elements in R×Aut(g)\M(p,q)(g), which can be equivalent
in the sense of ∼g.
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2.2. A set of representatives. As in the previous section, a classification of
left-invariant pseudo-Riemannian metrics on G up to scaling and automorphisms
is equivalent to determine the orbit space R×Aut(g)\M(p,q)(g). In order to de-
termine the orbit space, the notion of set of representatives is useful. In this
subsection, we recall this notion and some of the properties. We also recall the
procedure to obtain Milnor-type theorems.

Let Ik be the unit matrix of order k, and put

Ip,q :=

(
Ip
−Iq

)
.

We consider the canonical inner product of signature (p, q) on g ∼= Rp+q, defined
by

⟨x, y⟩0 := txIp,qy (∀x, y ∈ g).

Definition 2.3. Let H be a subgroup of GL(p+ q,R) and consider the action of
H on M(p,q)(g). Then, a subset U ⊂ GL(p+q,R) is called a set of representatives
of this action if the orbit space satisfies

H\M(p,q)(g) = {H.(g0.⟨, ⟩0) | g0 ∈ U}.

In order to obtain a set of representatives U, the notion of double cosets is use-
ful. Recall that the indefinite orthogonal group O(p, q) is defined as the isotropy
subgroup of GL(p + q,R) at ⟨, ⟩0. One thus has an expression as homogeneous
space

M(p,q)(g) = GL(p+ q,R)/O(p, q),

by which one can see thatM(p,q)(g), and henceM(p,q)(G), is a pseudo-Riemannian
symmetric space. It also follows that the orbit space H\M(p,q)(g) can be repre-
sented as a double coset space. Then one knows the following by a standard
theory of double coset spaces.

Lemma 2.4 (cf. [6]). Consider an action of a subgroup H ⊂ GL(p + q,R) on
M(p,q)(g). Then, a subset U ⊂ GL(p + q,R) is a set of representatives of this
action if and only if for any g ∈ GL(p + q,R), there exists g0 ∈ U such that
g0 ∈ HgO(p, q).

Next we describe two lemmas, which we use to calculate a set of representatives
for our case in Section 3. The first one is about an action of O(1, 1). Note that
O(1, 1) is naturally a subgroup of O(p, q) for p, q ≥ 1.

Lemma 2.5 ([6]). Let (x, y) ̸= (0, 0). Then, there exist a > 0, λ ∈ {0, 1, 2}, and
g ∈ O(1, 1) such that (x, y)g = (−λa, a) holds.

The second lemma states the correspondence between sets of representatives
of the actions of H and H ′, where the latter group is defined by

H ′ := {th | h ∈ H}.
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Lemma 2.6 ([6]). Let H be a subgroup of GL(p + q,R), and U be a set of
representatives of the action of H on M(p,q)(g). Then, the following U∗ is a set
of representatives of the action of H ′ on M(p,q)(g) :

U∗ := {tu−1 | u ∈ U}.

Finally in this subsection, we describe a theorem which gives a procedure to
obtain Milnor-type theorems. For this purpose, we need the notion of pseudo-
orthonormal bases. We put

εi :=

{
1 (i ∈ {1, . . . , p}),
−1 (i ∈ {p+ 1, . . . , p+ q}).

We also use the Kronecker’s delta δij. Then, a basis {x1, . . . , xp+q} of g is said to
be pseudo-orthonormal with respect to ⟨, ⟩ ∈M(p,q)(g) if it satisfies

⟨xi, xj⟩ = εiδij (∀i, j ∈ {1, . . . , p+ q}).

Theorem 2.7 ([6]). Let U be a set of representatives of the action of R×Aut(g)
on M(p,q)(g). Then, for every inner product ⟨, ⟩ of signature (p, q) on g, there
exist k > 0, φ ∈ Aut(g) and g0 ∈ U such that {φg0e1, . . . , φg0ep+q} is pseudo-
orthonormal with respect to k⟨, ⟩.

If we know an expression of a set of representatives U, then we can apply this
theorem to a given Lie algebra, and obtain a pseudo-orthonormal basis. One
can study properties of the inner product, such as the equivalence problem and
curvature properties, in terms of this basis.

3. Calculations of a set of representatives

From now on, we consider left-invariant Lorentzian metrics on the Lie group
G := H3 × Rn−3 with n ≥ 4. For this purpose, we study its corresponding Lie
algebra

g := h3 ⊕ Rn−3 := span{e1, . . . , en | [e1, e2] = en},
where h3 = span{e1, e2, en} is the three dimensional Heisenberg Lie algebra. In
this section, we calculate a set of representatives of the action of R×Aut(g) on
M(n−1,1)(g). First of all, we recall a matrix expression of R×Aut(g).

Proposition 3.1 ([5]). The matrix expression of R×Aut(g) with respect to a
basis {e1, . . . , en} of g coincides with

R×Aut(g) =





∗ ∗ 0 · · · 0 0
∗ ∗ 0 · · · 0 0
∗ ∗ ∗ · · · ∗ 0
...

...
...

. . .
...

...
∗ ∗ ∗ · · · ∗ 0
∗ ∗ ∗ · · · ∗ ∗

 ∈ GL(n,R)


.
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Remark 3.2. In [18], Wolf has obtained the finiteness of orbits of actions of par-
abolic subgroups on symmetric spaces of reductive type. Note that M(n−1,1)(g) is a
pseudo-Riemannian symmetric space of reductive type, and the group R×Aut(g)
is a parabolic subgroup of GL(n,R) for g := h3 ⊕ Rn−3. It then follows that the
number of orbits of this action is finite. The result of this section yields that there
are at most six orbits. In Section 4, we will show that the number of orbits is
exactly six.

In order to make calculations slightly easier, let us consider the action of

H ′ := {th | h ∈ R×Aut(g)}

=





∗ ∗ ∗ · · · ∗ ∗
∗ ∗ ∗ · · · ∗ ∗
0 0 ∗ · · · ∗ ∗
...

...
...

. . .
...

...
0 0 ∗ · · · ∗ ∗
0 0 0 · · · 0 ∗

 ∈ GL(n,R)


.

We will give a set of representatives of the action of H ′ on M(n−1,1)(g). According
to Lemma 2.4, we need to study the double cosets

[[g]] := H ′gO(n− 1, 1).

First of all, we divide the double cosets into three types.

Lemma 3.3. Let g ∈ GL(n,R). Then, there exists λ ∈ {0, 1, 2} such that
∗ · · · · · · ∗ 0
...

. . .
...

...
...

. . .
...

...
∗ · · · · · · ∗ 0
−λ 0 · · · 0 1

 ∈ [[g]].

Proof. The proof of this lemma is similar to the arguments in [6]. Take an
arbitrary g ∈ GL(n,R). First of all, one knows that there exists α ∈ O(n − 1)
such that

[[g]] ∋ g


0

α
...
0

0 · · · 0 1

 =


∗ · · · · · · ∗ ∗
...

. . .
...

...
...

. . .
...

...
∗ · · · · · · ∗ ∗
x 0 · · · 0 y

 =: g1.

Here, note that (x, y) ̸= (0, 0) since det g1 ̸= 0. Hence, by Lemma 2.5, one
can change (x, y) into a certain form by O(1, 1). Since this O(1, 1) can be seen
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naturally as a subgroup of O(n − 1, 1), we obtain that there exist a > 0, λ ∈
{0, 1, 2} and k1 ∈ O(n− 1, 1) such that

[[g]] ∋ g1k1 =


∗ · · · · · · ∗ an
...

. . .
...

...
...

. . .
...

...
∗ · · · · · · ∗ a2
−λa 0 · · · 0 a

 =: g2,

where a2, . . . , an ∈ R. Since a > 0, it follows from the definition of H ′ that

[[g]] ∋


a 0 −an

. . .
...

. . .
...

0 a −a2
0 · · · · · · 0 1/a

 g2 =


∗ · · · · · · ∗ 0
...

. . .
...

...
...

. . .
...

...
∗ · · · · · · ∗ 0
−λ 0 · · · 0 1

 ,

which completes the proof. □
According to this lemma, we define the subsets of GL(n,R) as follows :

Gλ :=




∗ · · · · · · ∗ 0
...

. . .
...

...
...

. . .
...

...
∗ · · · · · · ∗ 0
−λ 0 · · · 0 1

 ∈ GL(n,R)


.

Then we have only to study the double cosets [[g]] where g ∈ Gλ with λ ∈ {0, 1, 2}.
The first case is λ = 0. For this case, every g ∈ G0 gives the same double coset.

Proposition 3.4. For every g ∈ G0, we have In ∈ [[g]].

Proof. Take any g ∈ G0, and denote it as

g =


0

α1
...
0

0 · · · 0 1

 ,

where α1 ∈ GL(n − 1,R). Then there exists α2 ∈ O(n − 1) such that α1α2 is
upper triangular. We note that

[[g]] ∋ g


0

α2
...
0

0 · · · 0 1

 =


0

α1α2
...
0

0 · · · 0 1

 =: g1.
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By definition, one knows g1 ∈ H ′. Since g−1
1 ∈ H ′, we obtain

[[g]] ∋ g−1
1 g1 = In,

which completes the proof. □

Before we consider the remaining cases λ = 1, 2, we prove the next lemma. It
will be used for the both cases.

Lemma 3.5. Let g ∈ Gλ. Then there exists t ∈ R such that

1 0 · · · · · · · · · · · · 0
0
t
0

In−1...
0
−λ


∈ [[g]].

Proof. Take any g ∈ Gλ. First of all, we convert the first column vector of g.
There exists α1 ∈ O(n− 3) such that

[[g]] ∋



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 0
...

... α1
...

0 0 0
0 0 0 · · · 0 1

 g =



∗ ∗ ∗ · · · · · · ∗ 0
∗ ∗ ∗ · · · · · · ∗ 0
∗ ∗ ∗ · · · · · · ∗ 0

0 ∗ ...
. . .

...
...

...
...

...
. . .

... 0
0 ∗ ∗ · · · · · · ∗ 0
−λ 0 0 · · · 0 0 1


=: g1.

Here we look at the (n − 2, n − 2)-submatrix of g1 in the middle. Then there
exists α2 ∈ O(n− 2) such that

[[g]] ∋ g1


1 0 · · · 0 0
0 0
... α2

...
0 0
0 0 · · · 0 1

 =



∗ ∗ · · · · · · ∗ an 0
∗ ∗ · · · · · · ∗ an−1 0

∗ 0
. . .

...
...

...

0
...

. . .
...

...
...

...
... ∗ a3

...
0 0 · · · · · · 0 a 0
−λ 0 0 · · · 0 0 1


=: g2,
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where a3, . . . , an ∈ R. One knows a ̸= 0 since det(g2) ̸= 0. Then it follows from
the definition of H ′ that

h1 :=



1 0 0 · · · 0 −an/a 0
0 1 0 · · · 0 −an−1/a 0
0 0 1 0 −an−2/a 0
...

...
. . .

...
...

0 0 0 1 −a3/a 0
0 0 0 · · · 0 1/a 0
0 0 0 · · · 0 0 1


∈ H ′.(3.1)

By multiplying this matrix, one can directly see that

[[g]] ∋ h1g2 =



∗ ∗ · · · · · · ∗ 0 0
∗ ∗ · · · · · · ∗ 0 0

∗ 0
. . .

...
...

...

0
...

. . .
...

...
...

...
... ∗ 0

...
0 0 · · · · · · 0 1 0
−λ 0 0 · · · 0 0 1


=: g3.

By repeating the same procedure, one can see that there exists h2 ∈ H ′ such that

[[g]] ∋ h2g3 =



∗ ∗ ∗ 0 · · · · · · 0
∗ ∗ ∗ 0 · · · · · · 0
y 0 x 0 · · · · · · 0
0 0 0 1 0
...

...
...

. . .

0 0 0
. . .

−λ 0 0 0 1


=: g4,

where x, y ∈ R. Therefore, in order to prove the lemma, we have only to consider
the case of n = 4, that is,

g′4 :=


∗ ∗ ∗ 0
∗ ∗ ∗ 0
y 0 x 0
−λ 0 0 1

 ,(3.2)

since the remaining blocks of g4 do not have to be changed throughout the fol-
lowing calculations.

We here show that one can assume x ̸= 0 without loss of generality. In order
to prove this, assume that x = 0. Note that y ̸= 0 holds, since det g′4 ̸= 0. Let us
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put

k1 :=


0 0

√
λ2 + 1 λ

0 1 0 0

−
√
λ2 + 1 0 λ2 λ

√
λ2 + 1

−λ 0 λ
√
λ2 + 1 λ2 + 1

 ∈ O(3, 1).

One thus has

[[g]] ∋ g′4k1 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 y

√
λ2 + 1 yλ

−λ 0 0 1

 =: g′5.

Here we can take h3 ∈ H ′ similar to (3.1) such that

[[g]] ∋ h3g
′
5 =


∗ ∗ ∗ 0
∗ ∗ ∗ 0

yλ2 0 y
√
λ2 + 1 0

−λ 0 0 1

 =: g′6.

Note that g′6 is of the same form as g′4 obtained in (3.2), and one knows y
√
λ2 + 1 ̸=

0 since y ̸= 0. This completes the proof of the claim, that is, in (3.2) we can
assume x ̸= 0 without loss of generality.

Now we consider g′4 with x ̸= 0. We can again take h4 ∈ H ′ similar to (3.1)
such that

[[g]] ∋ h4g
′
4 =


b1 b2 0 0
b3 b4 0 0
∗ 0 1 0
−λ 0 0 1

 =: g5,

where b1, b2, b3, b4 ∈ R. Since 0 ̸= det g5 = b1b4 − b2b3, we can take

A :=

(
b1 b2
b3 b4

)−1

, h5 :=

(
A 0
0 I2

)
∈ H ′.

We thus obtain the desired matrix h5g5 ∈ [[g]]. This completes the proof. □
For the latter arguments, we here modify the matrix given in Lemma 3.5. Let

us consider

g :=



1 0 · · · · · · · · · · · · 0
0
t
0

In−1...
0
−λ


∈ Gλ.
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Then there exists α ∈ O(n− 3) which maps t(t, 0, . . . , 0) to t(0, . . . , 0, |t|). There-
fore we obtain

[[g]] ∋



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 0
...

... α
...

0 0 0
0 0 0 · · · 0 1

 g



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 0
...

... α−1 ...
0 0 0
0 0 0 · · · 0 1



=



1 0 · · · · · · · · · 0
0
...
0 In−1

|t|
−λ

 .

(3.3)

We need to study the double cosets [[g]] for g ∈ Gλ with λ ∈ {1, 2}. We here
study the case of λ = 1. In this case there are two possibilities.

Proposition 3.6. Let g ∈ G1. Then there exists ξ ∈ {0, 1} such that
1

. . .
ξ 1
−1 1

 ∈ [[g]].

Proof. Take any g ∈ G1. Then by (3.3), there exists t ≥ 0 such that g can be
turned into

g1 :=


1 0 0 0
0 1 0 0

In−4

t 0 1 0
−1 0 0 1

 ∈ [[g]].

If t = 0, then it corresponds to the case of ξ = 0. Hence we have only to consider
the case of t > 0. Furthermore, we have only to consider the case of n = 4, that
is,

g2 :=


1 0 0 0
0 1 0 0
t 0 1 0
−1 0 0 1

 ∈ [[g]],

since g2 consists of the four (2 × 2)-blocks of the four corners of g1, and the
remaining blocks of g1 do not have to be changed.



14 YUJI KONDO AND HIROSHI TAMARU

We show that [[g2]] contains the matrix in the claim with ξ = 1. Let us put

s := (t− 1)/t, k1 :=


1− s2/2 0 s s2/2

0 1 0 0
−s 0 1 s
−s2/2 0 s 1 + s2/2

 ∈ O(3, 1).

Then a direct calculation yields that

[[g]] ∋ g2k1 =


1− s2/2 0 s s2/2

0 1 0 0
t− s2t/2− s 0 1 + st s2t/2 + s

−1 0 0 1

 =: g3.

We next take

h1 :=


1 0 0 −s2/2
0 1 0 0
0 0 1 −s2t/2− s
0 0 0 1

 ∈ H ′.

Then one obtains

[[g]] ∋ h1g3 =


1 0 s 0
0 1 0 0
t 0 1 + st 0
−1 0 0 1

 =: g4.

We here note that

1 + st = 1 + t− 1 = t ̸= 0.

Hence one can take

h2 :=


t 0 −s 0
0 1 0 0
0 0 1/t 0
0 0 0 1

 ∈ H ′.

We then consider h2g4 ∈ [[g]], and a direct calculation yields that this corresponds
to the desired matrix with ξ = 1. □

The last case is λ = 2, that is, we study the double cosets [[g]] for g ∈ G2. In
this case there are three possibilities.

Proposition 3.7. Let g ∈ G2. Then there exists ξ ∈ {0,
√
3, 2} such that

1
. . .

ξ 1
−2 1

 ∈ [[g]].
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Proof. Take any g ∈ G2. Then, by (3.3), there exists t ≥ 0 such that

g1 :=


1 0 0 0
0 1 0 0

In−4

t 0 1 0
−2 0 0 1

 ∈ [[g]].

Similar to the proof of Proposition 3.6, we have only to consider the case of n = 4,
that is,

g2 :=


1 0 0 0
0 1 0 0
t 0 1 0
−2 0 0 1

 ∈ [[g]].

If t =
√
3, then it corresponds to the case of ξ =

√
3. We need to study the

case of t ̸=
√
3. For this purpose, let us put

φ(s) :=
√
3s2 − 8s+ 5 (s ≥ 5/3).

Then one can directly check that

k1 :=


s 0 −φ(s) −2s+ 2
0 1 0 0

−φ(s) 0 3s− 4 2φ(s)
2s− 2 0 −2φ(s) −4s+ 5

 ∈ O(3, 1).

By multiplying k1 from the right, we have

[[g]] ∋ g2k1 =


s 0 −φ(s) −2s+ 2
0 1 0 0

st− φ(s) 0 −tφ(s) + 3s− 4 −2st+ 2t+ 2φ(s)
−2 0 0 1

 =: g3.

Similar to the previous arguments, we consider the following element in H ′ :

h1 :=


1 0 0 2s− 2
0 1 0 0
0 0 1 2st− 2t− 2φ(s)
0 0 0 1

 ∈ H ′.

Then one has

[[g]] ∋ h1g3 =


−3s+ 4 0 −φ(s) 0

0 1 0 0
3φ(s)− t(3s− 4) 0 −tφ(s) + 3s− 4 0

−2 0 0 1

 =: g4.
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Remember t ≥ 0, and we have to study t ̸=
√
3. We divide the following

argument into two cases. The first case is 0 ≤ t <
√
3. In this case, the (3, 1)-

component of g4 can be zero, that is, the following equation on s has a solution:

3φ(s)− t(3s− 4) = 0.(3.4)

In fact, the left hand side has a negative value when s = 5/3 and has a positive
value as s approaches to +∞. Hence by the intermediate value theorem, this
equation has a solution s = s0. Therefore, by substituting the solution s = s0
into g4, its (3, 1)-component is zero. By multiplying suitable element of H ′ from
the left, one can show that [[g]] contains the desired matrix with ξ = 0.
It remains to study the case of t >

√
3. Similarly to the previous case, the

intermediate value theorem yields that the following has a solution:

3φ(s)− t(3s− 4) = 2(−tφ(s) + 3s− 4).(3.5)

Therefore, by substituting the solution s = s1 into g4, its (3, 1)-component is
2(−tφ(s) + 3s− 4), which is equal to double of the (3, 3)-component. By multi-
plying suitable element of H ′ from the left, one can show that [[g]] contains the
desired matrix with ξ = 2. This completes the proof. □

The next proposition gives a set of representatives of the action of R×Aut(g)
on M(n−1,1)(g).

Proposition 3.8. We put u := {(0, 0), (1, 0), (1, 1), (2, 0), (2,
√
3), (2, 2)}. The

following U is a set of representatives of the action of R×Aut(g) on M(n−1,1)(g) :

U :=




1 ξ λ
. . .

1
1


∣∣∣∣∣∣∣∣(λ, ξ) ∈ u

 .

Proof. From Lemma 3.3 and Propositions 3.4, 3.6 and 3.7, it immediately follows
that the following U∗ is a set of representatives of the action of H ′ on M(n−1,1)(g) :

U∗ :=




1
. . .

ξ 1
−λ 1


∣∣∣∣∣∣∣∣(λ, ξ) ∈ u

 .

One thus has from Lemma 2.6 and the definition of H ′ that

U′ :=




1 −ξ λ
. . .

1
1


∣∣∣∣∣∣∣∣(λ, ξ) ∈ u


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is a set of representatives of the action of R×Aut(g) on M(n−1,1)(g). Moreover,
we consider 

1
. . .

1
−1

1

 ∈ R×Aut(g), O(n− 1, 1).

By multiplying this matrix to each element in U′ from the both sides, one can
change the part (−ξ, λ) into (ξ, λ), which completes the proof. □

4. A Milnor-type theorem and a classification of inner products

In this section, we obtain a Milnor-type theorem for inner products of signature
(n − 1, 1) on g := h3 ⊕ Rn−3 with n ≥ 4, and show that there exist exactly six
such inner products up to scaling and automorphisms. Recall that the set of
representatives is parametrized by

u := {(0, 0), (1, 0), (1, 1), (2, 0), (2,
√
3), (2, 2)}.

4.1. A Milnor-type theorem. In this subsection, we obtain a Milnor-type the-
orem for g := h3 ⊕ Rn−3 with n ≥ 4. First of all, we give some change of basis
for the latter use. Let {e1, . . . , en} be the standard basis of g := h3 ⊕ Rn−3, and
⟨, ⟩0 be the canonical inner product on g with signature (n− 1, 1).

Lemma 4.1. Let λ, ξ ∈ R, and define

gλ,ξ :=


1 ξ λ

. . .
1

1

 , ⟨, ⟩λ,ξ := gλ,ξ.⟨, ⟩0, x′
i := gλ,ξei.

Then {x′
1, . . . , x

′
n} is a pseudo-orthonormal basis of g with respect to ⟨, ⟩λ,ξ, and

the bracket relation among them is given by

[x′
1, x

′
2] = −(λx′

1 − x′
n), [x′

2, x
′
n−1] = ξ(λx′

1 − x′
n), [x′

2, x
′
n] = λ(λx′

1 − x′
n).

Proof. The first assertion is obvious since {e1, . . . , en} is pseudo-orthonormal with
respect to ⟨, ⟩0. We prove the second assertion on the bracket relation. By the
definition of gλ,ξ, it is easy to see that

x′
i = gλ,ξei = ei (i ∈ {1, . . . , n− 2}),

x′
n−1 = gλ,ξen−1 = ξe1 + en−1,

x′
n = gλ,ξen = λe1 + en.

Note that one has

en = −λe1 + (λe1 + en) = −λx′
1 + x′

n.
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Therefore, by the bracket relation [e1, e2] = en with respect to the standard basis,
we can see that

[x′
1, x

′
2] = [e1, e2] = en = −(λx′

1 − x′
n),

[x′
2, x

′
n−1] = [e2, ξe1 + en−1] = −ξen = ξ(λx′

1 − x′
n),

[x′
2, x

′
n] = [e2, λe1 + en] = −λen = λ(λx′

1 − x′
n).

One can also see that the other bracket relations precisely vanish. This completes
the proof of this lemma. □

In terms of this lemma and a description of the set of representatives given in
Proposition 3.8, we can obtain the following Milnor-type theorem.

Theorem 4.2. Let ⟨, ⟩ be an inner product of signature (n− 1, 1) on h3 ⊕ Rn−3

with n ≥ 4. Then, there exist k > 0, (λ, ξ) ∈ u and a pseudo-orthonormal basis
{x1, . . . , xn} with respect to k⟨, ⟩ such that the bracket relation is given by

[x1, x2] = −(λx1 − xn), [x2, xn−1] = ξ(λx1 − xn), [x2, xn] = λ(λx1 − xn).

Proof. Take an inner product ⟨, ⟩ of signature (n − 1, 1) on g := h3 ⊕ Rn−3. By
Proposition 3.8 we know that

U :=

gλ,ξ =


1 ξ λ

. . .
1

1


∣∣∣∣∣∣∣∣(λ, ξ) ∈ u


is a set of representatives of the action of R×Aut(g) on M(n−1,1)(g) with respect
to the standard basis {e1, . . . , en}. Hence, we have from Theorem 2.7 that there
exist k > 0, φ ∈ Aut(g) and (λ, ξ) ∈ u such that {φgλ,ξe1, . . . , φgλ,ξen} is pseudo-
orthonormal with respect to k⟨, ⟩. Let us put

x′
i := gλ,ξei, xi := φx′

i (i ∈ {1, . . . , n}).

The bracket relation among {x′
1, . . . , x

′
n} is given in Lemma 4.1. Then we obtain

the bracket relation among {x1, . . . , xn}, which is of the same form, since φ is an
automorphism. □

4.2. A classification of inner products. In order to give a classification of
inner products of signature (n− 1, 1) on g up to scaling and automorphisms, we
have to distinguish the above six inner products. Fix an inner product ⟨, ⟩ of
signature (n− 1, 1) of g and let {x1, . . . , xn} be a basis given in Theorem 4.2. By
Theorem 4.2, the center Z(g) and the derived ideal [g, g] of g can be expressed as

Z(g) = span{x3, . . . , xn−2, ξx1 − xn−1, λx1 − xn},
[g, g] = span{λx1 − xn}.
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Lemma 4.3. We put

yi := xi+2 (i ∈ {1, . . . , n− 4}),

yn−3 := (1/
√

ξ2 + 1)(ξx1 − xn−1),

yn−2 := λ(x1 + ξxn−1)− (ξ2 + 1)xn.

Then, {y1, . . . , yn−2} is an orthogonal basis of Z(g) with respect to ⟨, ⟩. Especially,
it satisfies ⟨yi, yi⟩ = 1 for each i = 1, . . . , n− 3.

Proof. It follows from direct and easy calculations. □

We then consider the signatures of the restrictions of ⟨, ⟩ to the center Z(g)
and the derived ideal [g, g]. In fact, these data characterize inner products up to
scaling and automorphisms. We denote by [⟨, ⟩λ,ξ] the equivalence class of ⟨, ⟩λ,ξ
up to scaling and automorphisms for each (λ, ξ) ∈ u.

Proposition 4.4. Let ⟨, ⟩ be an inner product of signature (n − 1, 1) on g. If
⟨, ⟩ ∈ [⟨, ⟩λ,ξ], then its restrictions on Z(g) and [g, g] have the signatures given in
Table 1, where the signature convention is (+,−, 0) :

Table 1. Signatures on the subalgebras

(λ, ξ) signature on Z(g) signature on [g, g]

(0, 0) (n− 3, 1, 0) (0, 1, 0)
(1, 0) (n− 3, 0, 1) (0, 0, 1)
(1, 1) (n− 3, 1, 0) (0, 0, 1)
(2, 0) (n− 2, 0, 0) (1, 0, 0)

(2,
√
3) (n− 3, 0, 1) (1, 0, 0)

(2, 2) (n− 3, 1, 0) (1, 0, 0)

Proof. First of all, we consider the signature of ⟨, ⟩′ := ⟨, ⟩ |Z(g)×Z(g). We use
the basis {y1, . . . , yn−2} of Z(g) given in Lemma 4.3. Since it is orthogonal,
the representation matrix of ⟨, ⟩′ is diagonal. One knows ⟨yi, yi⟩′ = 1 for each
i ∈ {1, . . . , n − 3}. Hence, in order to determine the signature, we have only to
compute ⟨yn−2, yn−2⟩′. One has

⟨yn−2, yn−2⟩′ = ⟨λ(x1 + ξxn−1)− (ξ2 + 1)xn, λ(x1 + ξxn−1)− (ξ2 + 1)xn⟩
= λ2⟨x1, x1⟩+ λ2ξ2⟨xn−1, xn−1⟩+ (ξ2 + 1)2⟨xn, xn⟩
= λ2 + λ2ξ2 − (ξ2 + 1)2

= (ξ2 + 1)(λ2 − ξ2 − 1).
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Then one can easily see that

⟨yn−2, yn−2⟩′ < 0 (if (λ, ξ) = (0, 0), (1, 1), (2, 2)),

⟨yn−2, yn−2⟩′ = 0 (if (λ, ξ) = (1, 0), (2,
√
3)),

⟨yn−2, yn−2⟩′ > 0 (if (λ, ξ) = (2, 0)).

According to these three cases, the signature of ⟨, ⟩′ is (n− 3, 1, 0), (n− 3, 0, 1),
and (n− 2, 0, 0), respectively. This proves the left column of Table 1.

It remains to study the signature of ⟨, ⟩ |[g,g]×[g,g]. Remember that [g, g] =
span{λx1 − xn}. One has

⟨λx1 − xn, λx1 − xn⟩ = λ2⟨x1, x1⟩+ ⟨xn, xn⟩ = λ2 − 1.

Hence, if λ = 0, 1, 2, then ⟨, ⟩ is negative definite, degenerate, positive definite on
[g, g], respectively. These complete the proof. □

Finally in this section, we prove Theorem 1.2, which classifies left-invariant
Lorentzian metrics on H3 × Rn−3 up to scaling and automorphisms.

Proof of Theorem 1.2. We show that the action of R×Aut(g) has exactly six or-
bits. It follows from Proposition 3.8 that the number of orbits is at most six.
Thus we have only to show that each ⟨, ⟩λ,ξ is in a distinct orbit. Note that the
action of R×Aut(g) preserves Z(g) and [g, g]. Also, it preserves the signatures
of the restrictions of each inner product on these two subspaces by Sylvester’s
law of inertia. Hence, we obtain from Proposition 4.4 that there exist exactly six
inner products of signature (n− 1, 1) on h3 ⊕Rn−3 with n ≥ 4 up to scaling and
automorphisms, which completes the proof of Theorem 1.2. □

5. Ricci soliton and flat metrics

In this section, we calculate curvatures of an arbitrary left-invariant Lorentzian
metric ⟨, ⟩ on g := h3 ⊕ Rn−3, and prove Theorem 1.3, which is the second main
result. It follows from Theorem 4.2 that there exist k > 0,

(λ, ξ) ∈ u := {(0, 0), (1, 0), (1, 1), (2, 0), (2,
√
3), (2, 2)},

and a pseudo-orthonormal basis {x1, . . . , xn} with respect to k⟨, ⟩ whose bracket
relations are given by

[x1, x2] = −(λx1 − xn), [x2, xn−1] = ξ(λx1 − xn), [x2, xn] = λ(λx1 − xn).

Throughout the following arguments, we calculate the curvatures in terms of this
basis, under the normalization k = 1 for simplicity.
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5.1. Calculations of curvatures. In this subsection, we calculate the curva-
tures of (g, ⟨, ⟩). We here note that span{x3, . . . , xn−2} is a subspace of Z(g),
which is orthogonal to the derived subalgebra [g, g]. Thus {x3, . . . , xn−2} does
not give any influence on calculation of curvatures. Hence we calculate curvatures
only for {x1, x2, xn−1, xn}.
First of all, we calculate the symmetric bilinear map U : g× g → g of (g, ⟨, ⟩)

given by

2⟨U(X,Y ), Z⟩ = ⟨[Z,X], Y ⟩+ ⟨X, [Z, Y ]⟩ (∀X,Y, Z ∈ g).

Lemma 5.1. The map U : g× g→ g of (g, ⟨, ⟩) satisfies the following:

(1) U(x1, x1) = λx2, U(x1, x2) = −(λ/2)x1 − (λξ/2)xn−1 + (λ2/2)xn,
U(x1, xn−1) = (λξ/2)x2, U(x1, xn) = ((λ2 + 1)/2)x2,

(2) U(x2, x2) = 0, U(x2, xn−1) = 0,
U(x2, xn) = −(1/2)x1 − (ξ/2)xn−1 + (λ/2)xn,

(3) U(xn−1, xn−1) = 0, U(xn−1, xn) = (ξ/2)x2,

(4) U(xn, xn) = λx2.

Proof. We show the calculation only for the case of U(x1, x2). By the definition
of U , we obtain

2⟨U(x1, x2), x1⟩ = ⟨x1,−(λx1 − xn)⟩ = −λ,
2⟨U(x1, x2), x2⟩ = ⟨λx1 − xn, x2⟩ = 0,

2⟨U(x1, x2), xn−1⟩ = ⟨x1,−ξ(λx1 − xn)⟩ = −λξ,
2⟨U(x1, x2), xn⟩ = ⟨x1,−λ(λx1 − xn)⟩ = −λ2.

Hence one has the expression of U(x1, x2) in terms of the basis {x1, . . . , xn}. We
can similarly prove the remaining. □

Next, we calculate the Levi-Civita connection ∇ : g× g→ g of (g, ⟨, ⟩) defined
by

∇XY := (1/2)[X,Y ] + U(X,Y ) (∀X,Y ∈ g).

Note that ∇ is bilinear, but neither symmetric nor skew-symmetric.

Lemma 5.2. The Levi-Civita connection ∇ : g × g → g of (g, ⟨, ⟩) satisfies the
following:

(1) ∇x1x1 = λx2, ∇x1x2 = −λx1 − (λξ/2)xn−1 + ((λ2 + 1)/2)xn,
∇x1xn−1 = (λξ/2)x2, ∇x1xn = ((λ2 + 1)/2)x2,

(2) ∇x2x1 = −(λξ/2)xn−1 + ((λ2 − 1)/2)xn, ∇x2x2 = 0,
∇x2xn−1 = (ξ/2)(λx1 − xn), ∇x2xn = ((λ2 − 1)/2)x1 − (ξ/2)xn−1,

(3) ∇xn−1x1 = (λξ/2)x2, ∇xn−1x2 = −(ξ/2)(λx1 − xn),
∇xn−1xn−1 = 0, ∇xn−1xn = (ξ/2)x2,
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(4) ∇xnx1 = ((λ2 + 1)/2)x2, ∇xnx2 = −((λ2 + 1)/2)x1 − (ξ/2)xn−1 + λxn,
∇xnxn−1 = (ξ/2)x2, ∇xnxn = λx2.

Proof. We show the calculation only for a part. One knows

(1/2)[x1, x2] = −(1/2)(λx1 − xn),

U(x1, x2) = −(λ/2)x1 − (λξ/2)xn−1 + (λ2/2)xn.

Then we can calculate ∇x1x2 by taking the sum of them, and ∇x2x1 by taking
the difference. We can similarly prove the remaining. □

Next, we calculate the curvature tensor R : g × g → gl(g) of (g, ⟨, ⟩), taken
with the sign convention

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] (∀X,Y ∈ g),

where gl(g) := {f : g→ g | f is linear}.

Lemma 5.3. The curvature tensor R : g × g → gl(g) of (g, ⟨, ⟩) satisfies the
following:

(1) 4R(x1, x2)x1 = (λ4 − λ2(ξ2 − 2)− 3)x2,
4R(x1, x2)x2 = −(λ4−λ2(ξ2−2)−3)x1−3ξ(λ2−1)xn−1+(4λ3−λ(ξ2+4))xn,
4R(x1, x2)xn−1 = 3ξ(λ2 − 1)x2, 4R(x1, x2)xn = (4λ3 − λ(ξ2 + 4))x2,

(2) 4R(x1, xn−1)x1 = −λ2ξ2xn−1 + λξ(λ2 − 1)xn, R(x1, xn−1)x2 = 0,
4R(x1, xn−1)xn−1 = λξ2(λx1 − xn),
4R(x1, xn−1)xn = λξ(λ2 − 1)x1 − λξ2xn−1,

(3) 4R(x1, xn)x1 = −λξ(λ2 − 1)xn−1 + (λ2 − 1)2xn, R(x1, xn)x2 = 0,
4R(x1, xn)xn−1 = ξ(λ2 − 1)(λx1 − xn),
4R(x1, xn)xn = (λ2 − 1)2x1 − ξ(λ2 − 1)xn−1,

(4) 4R(x2, xn−1)x1 = −3ξ(λ2 − 1)x2,
4R(x2, xn−1)x2 = 3ξ(λ2 − 1)(x1 + ξxn−1 − λxn),
4R(x2, xn−1)xn−1 = −3ξ2(λ2 − 1)x2, 4R(x2, xn−1)xn = −3λξ(λ2 − 1)x2,

(5) 4R(x2, xn)x1 = −(4λ3 − λ(ξ2 + 4))x2,
4R(x2, xn)x2 = (4λ3−λ(ξ2+4))x1+3λξ(λ2−1)xn−1− (3λ4−2λ2−ξ2−1)xn,
4R(x2, xn)xn−1 = −3λξ(λ2−1)x2, 4R(x2, xn)xn = −(3λ4−2λ2−ξ2−1)x2,

(6) 4R(xn−1, xn)x1 = λξ2xn−1 − ξ(λ2 − 1)xn, R(xn−1, xn)x2 = 0,
4R(xn−1, xn)xn−1 = −ξ2(λx1 − xn),
4R(xn−1, xn)xn = −ξ(λ2 − 1)x1 + ξ2xn−1.
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Proof. We show the calculation only for the case of R(x1, x2)x2. It follows from
Lemma 5.2 that

4∇x1∇x2x2 = 4∇x10 = 0,

−4∇x2∇x1x2 = 2∇x2(2λx1 + λξxn−1 − (λ2 + 1)xn)

= (λ2ξ2 − λ4 + 1)x1 + (−λ2ξ + ξ)xn−1 + (2λ(λ2 − 1)− λξ2)xn,

−4∇[x1,x2]x2 = −4∇−λx1+xnx2

= (−2λ2 + 2)x1 + (−2λ2ξ + 2ξ)xn−1 + (2λ3 − 2λ)xn.

One can calculate R(x1, x2)x2 by summing up them. We can similarly prove the
remaining. □

Finally, we calculate the Ricci curvature Ric : g→ g of (g, ⟨, ⟩) given by

Ric(X) :=
∑n−1

i=1 R(X, xi)xi −R(X, xn)xn (∀X ∈ g).

Recall that {x1, . . . , xn} is a pseudo-orthonormal basis of g with respect to ⟨, ⟩.

Lemma 5.4. The Ricci curvature Ric : g→ g of (g, ⟨, ⟩) satisfies the following:

(1) 2Ric(x1) = −(λ4 − λ2ξ2 − 1)x1 − ξ(λ2 − 1)xn−1 + (2λ3 − λ(ξ2 + 2))xn,

(2) 2Ric(x2) = (λ4 − λ2(ξ2 + 2) + ξ2 + 1)x2,

(3) 2Ric(xn−1) = −ξ(λ2 − 1)x1 − ξ2(λ2 − 1)xn−1 + λξ(λ2 − 1)xn,

(4) 2Ric(xn) = −(2λ3 − λ(ξ2 + 2))x1 − λξ(λ2 − 1)xn−1 + (λ4 − ξ2 − 1)xn.

Proof. We show the calculation only for the case of Ric(x1). By the definition of
Ric, we have

Ric(x1) = R(x1, x2)x2 +R(x1, xn−1)xn−1 −R(x1, xn)xn.

By substituting the result of Lemma 5.3, one can obtain the expression of Ric(x1)
in terms of the basis {x1, . . . , xn}. We can similarly prove the remaining. □

5.2. Curvature properties. In this subsection, we study curvature properties
of (g, ⟨, ⟩), such as flat, Einstein, and Ricci soliton. First of all we recall some
fundamental notions.

Definition 5.5. Let g be a Lie algebra. Then, the following set is called the
derivation algebra of g:

Der(g) := {D : g→ g : linear | ∀X,Y ∈ g, D([X,Y ]) = [D(X), Y ] + [X,D(Y )]}.

Definition 5.6. Let g be a Lie algebra and ⟨, ⟩ be an inner product on it.

(i) (g, ⟨, ⟩) is called an algebraic Ricci soliton if there exist c ∈ R and D ∈
Der(g) such that Ric = c · id +D.

(ii) (g, ⟨, ⟩) is called Einstein if there exists c ∈ R such that Ric = c · id.
(iii) (g, ⟨, ⟩) is called flat if the curvature tensor R satisfies R ≡ 0.
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Note that an algebraic Ricci soliton gives rise to a Ricci soliton metric, in the
following sense.

Remark 5.7. Let G be a simply-connected Lie group whose Lie algebra is g,
and g be a left-invariant pseudo-Riemannian metric on G corresponding to an
inner product ⟨, ⟩ on g. If (g, ⟨, ⟩) is an algebraic Ricci soliton, then (G, g) is a
Ricci soliton. This is well-known for the Riemannian case (see [8]), but it also
holds in the pseudo-Riemannian setting ([12]). We refer to [1, 16] and references
therein for Ricci soliton metrics, and also to [9] for soliton geometric structures
on homogeneous spaces including pseudo-Riemannian metrics.

Next we describe the matrix expression of Der(g) for g := h3 ⊕ Rn−3, with
respect to the basis {x1, . . . , xn} fixed at the beginning of this section. We also
use the matrix gλ,ξ given in Lemma 4.1.

Lemma 5.8. The matrix expression of R ⊕ Der(g) with respect to the basis
{x1, . . . , xn} is given by gλ,ξ

−1Dgλ,ξ, where

D :=





∗ ∗ 0 · · · 0 0
∗ ∗ 0 · · · 0 0
∗ ∗ ∗ · · · ∗ 0
...

...
...

. . .
...

...
∗ ∗ ∗ · · · ∗ 0
∗ ∗ ∗ · · · ∗ ∗

 ∈M(n,R)


.

Proof. Recall that the matrix expression of R⊕Der(g) with respect to the stan-
dard basis {e1, . . . , en} of g coincides with D as we mentioned in Proposition 3.1.
Here we put

(x′
1, . . . , x

′
n) = (e1, . . . , en)gλ,ξ.

It follows from Lemma 4.1 that {x′
1, . . . , x

′
n} and {x1, . . . , xn} have the same

bracket relation. Thus the matrix expressions of R ⊕ Der(g) with respect to
these bases are the same. One can easily see that the matrix expression of R ⊕
Der(g) with respect to {x′

1, . . . , x
′
n} coincides with gλ,ξ

−1Dgλ,ξ, which completes
the proof. □

Recall that u consists of six points, and parametrizes the orbit space. For each
pair in u, the Ricci curvatures are calculated in Lemma 5.4. One can then show
the next theorem, which proves Theorem 1.3.

Theorem 5.9. Let (λ, ξ) ∈ u. Then (g, ⟨, ⟩λ,ξ) is flat if and only if (λ, ξ) = (1, 0).
In the case of (λ, ξ) ̸= (1, 0), it satisfies that (g, ⟨, ⟩λ,ξ) is an algebraic Ricci soliton
but not Einstein.

Proof. Since x3, . . . , xn−2 do not give any effect on the curvature tensor R, we
have only to consider the case of n = 4. Recall that

(λ, ξ) ∈ u := {(0, 0), (1, 0), (1, 1), (2, 0), (2,
√
3), (2, 2)}.
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First of all, assume that (g, ⟨, ⟩λ,ξ) is Einstein, and prove (λ, ξ) = (1, 0). We
denote by A ∈ M(4,R) the matrix expression of Ric : g → g with respect to
{x1, . . . , x4}. It follows from Lemma 5.4 that

2A = (λ2 − 1)A1 + ξ2A2,

where the matrices A1 and A2 are defined by

A1 :=


−λ2 − 1 0 −ξ −2λ

0 ∗ 0 0
−ξ 0 −ξ2 −λξ
2λ 0 λξ λ2 + 1

 , A2 :=


λ2 0 0 λ
0 0 0 0
0 0 0 0
−λ 0 0 −1

 .

Since (g, ⟨, ⟩λ,ξ) is Einstein, the (1, 3)-component of 2A satisfies

−ξ(λ2 − 1) = 0.

Hence one has λ = 1 or ξ = 0. If λ = 1, then 2A = ξ2A2. Since A2 is obviously
not a scalar matrix, one has ξ = 0. If ξ = 0, then 2A = (λ2 − 1)A1. One can
see that A1 is not a scalar matrix by comparing the (1, 1) and (4, 4)-components,
which yields λ = 1. This shows that (λ, ξ) = (1, 0).

Then the first assertion follows directly. If (g, ⟨, ⟩λ,ξ) is flat, then it is Einstein,
and hence (λ, ξ) = (1, 0). Conversely, if (λ, ξ) = (1, 0), then one can directly
show from Lemma 5.3 that the curvature tensor R vanishes identically.

Finally, we prove that (g, ⟨, ⟩λ,ξ) is an algebraic Ricci soliton for any (λ, ξ) ∈ u.
With respect to the basis {x1, . . . , x4}, the matrix expression of Ric is A, and
the matrix expression of R ⊕ Der(g) coincides with gλ,ξ

−1Dgλ,ξ by Lemma 5.8.
Therefore, in order to prove that (g, ⟨, ⟩λ,ξ) is an algebraic Ricci soliton, we have
only to show A ∈ gλ,ξ

−1Dgλ,ξ. For this purpose, it is enough to show that

gλ,ξA1gλ,ξ
−1, gλ,ξA2gλ,ξ

−1 ∈ D =



∗ ∗ 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗


 .

This can be proved by direct calculations in terms of

gλ,ξ =


1 ξ λ

1
1

1

 , gλ,ξ
−1 =


1 −ξ −λ

1
1

1

 .
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In fact, one can see that

gλ,ξA1gλ,ξ
−1 =


λ2 − ξ2 − 1 0 0 0

0 ∗ 0 0
−ξ 0 0 0
2λ 0 −λξ −λ2 + 1

 ,

gλ,ξA2gλ,ξ
−1 =


0 0 0 0
0 0 0 0
0 0 0 0
−λ 0 λξ λ2 − 1

 .

This completes the proof of the theorem. □

Recall that the flat inner product of signature (n − 1, 1) on g corresponds to
(λ, ξ) = (1, 0), and it degenerates both on Z(g) and [g, g]. In fact, a similar
property holds for the cases of GRHn (n ≥ 2) and H3 ([6, 11, 15]). For GRHn with
Lie algebra gRHn , there is a unique flat inner product of an arbitrary signature
up to scaling and automorphisms, and it degenerates on [gRHn , gRHn ] (note that
Z(gRHn) = 0). Similarly for H3, there is a unique flat inner product of signature
(2, 1) on h3 up to scaling and automorphisms, and it degenerates on Z(h3) =
[h3, h3].

Remark 5.10. We here mention that there exist at least four left-invariant
Lorentzian metrics on H3 × Rn−3 (n ≥ 4) up to scaling and isometry. Recall
that there exist exactly six such metrics up to scaling and automorphisms. First
of all, we can distinguish only flat metric from the other Ricci soliton metrics
up to scaling and isometry. For the other non-flat Ricci soliton metrics, we have
calculated all the curvatures, and the best criterion would be the eigenvalues of the
Ricci curvatures. According to Lemma 4.1, the eigenvalues of the Ricci curvatures
in the direction of {x1, x2, xn−1, xn} can be calculated as below:

(0, 0) : 1/2, 1/2,−1/2, 0,
(1, 1) : 0, 0, 0, 0,

(2, 0) : 9/2, 9/2,−9/2, 0,

(2,
√
3) : 0, 0, 0, 0,

(2, 2) : 3/2,−3/2,−3/2, 0.

If two inner products are isometric up to scaling, then their sets of eigenvalues
of the Ricci curvatures are the same up to (positive) scaling. Therefore, we have
that

⟨, ⟩1,0, ⟨, ⟩0,0, ⟨, ⟩1,1, ⟨, ⟩2,2
are all distinct up to scaling and isometry. However, as of now we are still not
sure whether we can classify more finely. For example, we do not know whether
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two left-invariant Lorentzian metrics corresponding to ⟨, ⟩0,0 and ⟨, ⟩2,0, and also
⟨, ⟩1,1 and ⟨, ⟩2,√3, respectively, are isometric up to scaling or not.

6. Properties of the orbits

In this section, we study properties of the orbits of the action of R×Aut(g)
on M(n−1,1)(g). In particular, we calculate the codimension of each orbit and
determine all possible degenerations among the orbits, which yields our third
main result. Remember g := h3 ⊕ Rn−3 with n ≥ 4, and there exist exactly six
orbits of the action of R×Aut(g) on M(n−1,1)(g).

6.1. The codimension of each orbit. In this subsection, we calculate the codi-
mensions of the six orbits of R×Aut(g) on M(n−1,1)(g). We use the inner product
⟨, ⟩λ,ξ for each (λ, ξ) ∈ u, defined in Lemma 4.1. For simplicity of notation, we
denote by

H := R×Aut(g), [⟨, ⟩λ,ξ] := H.⟨, ⟩λ,ξ.

In order to calculate the codimensions of the orbits, we have only to know the
dimensions of the stabilizers,

H⟨,⟩λ,ξ = H ∩GL(n,R)⟨,⟩λ,ξ = H ∩ (gλ,ξO(n− 1, 1)gλ,ξ
−1).

First of all we study their Lie algebras. For this purpose, we take the block
decomposition of size (2, n− 4, 2), and consider the subspaces

X :=


 ∗ ∗

∗ ∗

 , Y :=


 ∗

 , Z :=


 ∗
∗ ∗
∗

 .

Note that these subspaces are normalized by the conjugation of gλ,ξ, namely, it
satisfies gλ,ξXgλ,ξ

−1 = X, and so on.

Lemma 6.1. Let us put h′ := h∩(gλ,ξo(n−1, 1)gλ,ξ−1), where h is the Lie algebra
of H. Then we have

(1) dim(X ∩ h′) = 1 + dimUλ,ξ, where

Uλ,ξ :=

{
(b, d) ∈ R2

∣∣∣∣ (λ2 − ξ2 − 1)b = −λξd
(λ2 − 1)d = 0

}
,

(2) dim(Y ∩ h′) = (1/2)(n− 4)(n− 5),
(3) dim(Z ∩ h′) = dimWλ,ξ, where

Wλ,ξ := {(a, c) ∈ Rn−4 × Rn−4 | (λ2 − 1)a = −ξc}.

Proof. Remember that D defined in Lemma 5.8 is the matrix expression of h with
respect to the basis {e1, . . . , en} of g.
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First of all, we prove (1). For this subspace, we have only to consider the case
of n = 4 since four (2× 2)-corner blocks determine the dimension of X ∩ h′. For
any x ∈ o(3, 1), one can write it as

x =


0 a b d
−a 0 c e
−b −c 0 f
d e f 0

 ,

where a, b, c, d, e, f ∈ R. A direct calculation yields that

gλ,ξxgλ,ξ
−1 =


∗ ∗ ξ2b− λξd+ b+ λf λξb− λ2d+ d+ ξf
∗ ∗ ξa+ c λa+ e
∗ ∗ ∗ λb+ f
∗ ∗ ∗ ∗

 .

Hence gλ,ξxgλ,ξ
−1 ∈ D if and only if

c = −ξa, e = −λa, f = −λb,
ξ2b− λξd+ b− λ2b = 0, −λ2d+ d = 0.

Therefore gλ,ξxgλ,ξ
−1 ∈ D is determined by (a, b, d), where a ∈ R and (b, d) ∈ Uλ,ξ.

This completes the proof of (1).
Next we prove (2). This case can be proved easily by

Y ∩ h′ = Y ∩ (gλ,ξo(n− 1, 1)gλ,ξ
−1) ∼= o(n− 4).

Finally we prove (3). Note that Z = gλ,ξZgλ,ξ
−1. Then we obtain

Z ∩ (gλ,ξo(n− 1, 1)gλ,ξ
−1) = gλ,ξ(Z ∩ o(n− 1, 1))gλ,ξ

−1.

For any z ∈ Z ∩ o(n− 1, 1), one can write it as

z =


ta
tb

−a −b c d
−tc
td

 ,

where a, b, c,d ∈ Rn−4. Then a direct calculation yields that

gλ,ξzgλ,ξ
−1 =


ta− ξtc+ λtd

tb
−a −b ξa+ c λa+ d

−tc
td

 .

Hence gλ,ξzgλ,ξ
−1 ∈ D if and only if

b = 0, d = −λa, a− ξc+ λd = 0.
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Therefore gλ,ξzgλ,ξ
−1 ∈ D is determined by (a, c) ∈ Wλ,ξ. This completes the

proof. □
In the next proposition, we calculate the codimension of the orbit for each

(λ, ξ) ∈ u. For the convenience, we also write the signatures of ⟨, ⟩λ,ξ restricted
to Z(g) and [g, g] obtained in Proposition 4.4.

Proposition 6.2. The codimension of each orbit can be summarized as follows.

orbit codimension signature on Z(g) signature on [g, g]

[⟨, ⟩0,0] 0 (n− 3, 1, 0) (0, 1, 0)
[⟨, ⟩1,0] n− 2 (n− 3, 0, 1) (0, 0, 1)
[⟨, ⟩1,1] 1 (n− 3, 1, 0) (0, 0, 1)
[⟨, ⟩2,0] 0 (n− 2, 0, 0) (1, 0, 0)
[⟨, ⟩2,√3] 1 (n− 3, 0, 1) (1, 0, 0)
[⟨, ⟩2,2] 0 (n− 3, 1, 0) (1, 0, 0)

(signature convention = (+,−, 0))

Proof. By Lemma 6.1, one obtains

dimH⟨,⟩λ,ξ = dim h′ = 1 + (1/2)(n− 4)(n− 5) + dimUλ,ξ + dimWλ,ξ.

Also one has

dimM(n−1,1)(g) = dim(GL(n,R)/O(n− 1, 1)) = n(n+ 1)/2,

dimH = dimD = n2 − 3n+ 7.

Thus we have

codim[⟨, ⟩λ,ξ] = dimM(n−1,1)(g)− (dimH − dimH⟨,⟩λ,ξ)

= dimUλ,ξ + dimWλ,ξ − (n− 4).

Hence we have only to calculate the dimensions of Uλ,ξ and Wλ,ξ for each (λ, ξ) ∈
u. First of all, we consider the case (λ, ξ) = (0, 0). In this case, U0,0 and W0,0 are
determined by

b = d = 0, a = 0, c ∈ Rn−4.

This shows dimU0,0 = 0 and dimW0,0 = n− 4, which yields that

codim[⟨, ⟩0,0] = dimU0,0 + dimW0,0 − (n− 4) = 0.

The remaining cases can be proved similarly. We here summarize the results:

(1, 0) : b, d ∈ R, a, c ∈ Rn−4; dimU1,0 + dimW1,0 = 2n− 6,

(1, 1) : b = d, a ∈ Rn−4, c = 0; dimU1,1 + dimW1,1 = n− 3,

(2, 0) : b = d = 0, a = 0, c ∈ Rn−4; dimU2,0 + dimW2,0 = n− 4,

(2,
√
3) : b ∈ R, d = 0, c = −

√
3a; dimU2,

√
3 + dimW2,

√
3 = n− 3,

(2, 2) : b = d = 0, c = −(3/2)a; dimU2,2 + dimW2,2 = n− 4.
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This completes the proof. □

6.2. The degeneration of each orbit. In this subsection, we study degenera-
tions of orbits of the action of R×Aut(g) on M(n−1,1)(g), and prove Theorem 1.4.
First of all we recall the definition of degenerations.

Definition 6.3. Let O1 and O2 be orbits of some action, and assume that O1 ̸=
O2. Then, O1 is said to degenerate to O2 if O2 ⊂ O1 holds, where O1 is the
closure of O1.

In this paper, we denote O1 → O2 when O1 degenerates to O2. Recall that
there are exactly six orbits of the action of R×Aut(g) on M(n−1,1)(g).

Proposition 6.4. All possible degenerations among the six orbits of the action
of R×Aut(g) on M(n−1,1)(g) are given as follows:

[⟨, ⟩0,0] [⟨, ⟩2,2] [⟨, ⟩2,0]
↘ ↙↘ ↙

[⟨, ⟩1,1] [⟨, ⟩2,√3]
↘ ↙

[⟨, ⟩1,0]

.

Proof. We prove that

(1) the six degenerations in the diagram do occur, and
(2) other degenerations do not occur.

First of all we prove (1). Note that, in order to prove O1 → O2, we have only
to show that one point in O2 is contained in O1. In fact, if there exists p ∈ O2

such that p ∈ O1, then we have g.p ∈ O1 for any g ∈ R×Aut(g), which means
O2 ⊂ O1.
In order to show the degenerations, we consider inner products ⟨, ⟩λ,ξ on g

defined in Lemma 4.1, where λ, ξ ∈ R. Recall that there exists a pseudo-
orthonormal basis {x1, . . . , xn} with respect to ⟨, ⟩λ,ξ whose bracket relation is
given by

[x1, x2] = −(λx1 − xn), [x2, xn−1] = ξ(λx1 − xn), [x2, xn] = λ(λx1 − xn).

Note that, according to Proposition 4.4, the orbit [⟨, ⟩λ,ξ] is determined by the
signatures of the restrictions of ⟨, ⟩λ,ξ to Z(g) and [g, g]. One knows

[g, g] = span{λx1 − xn}, ⟨λx1 − xn, λx1 − xn⟩λ,ξ = λ2 − 1.

For the center Z(g), we have a basis {y1, . . . , yn−2} of Z(g) given in Lemma 4.3,
which is orthogonal with respect to ⟨, ⟩λ,ξ, and ⟨yi, yi⟩λ,ξ = 1 holds for every
i ∈ {1, . . . , n− 3}. Therefore, the signature of ⟨, ⟩λ,ξ on Z(g) can be determined
by

yn−2 := λ(x1 + ξxn−1)− (ξ2 + 1)xn, ⟨yn−2, yn−2⟩λ,ξ = (ξ2 + 1)(λ2 − ξ2 − 1).



A CLASSIFICATION OF LEFT-INVARIANT LORENTZIAN METRICS 31

Using these facts, first of all we show [⟨, ⟩0,0] → [⟨, ⟩1,1]. Consider a family of
inner products ⟨, ⟩t,t with t ∈ [0, 1). Then the signature of ⟨, ⟩t,t is (0, 1, 0) on
[g, g], since

⟨tx1 − xn, tx1 − xn⟩t,t = t2 − 1 < 0.

Similarly the signature of ⟨, ⟩t,t is (n− 3, 1, 0) on Z(g), since

⟨yn−2, yn−2⟩t,t = (t2 + 1)(t2 − t2 − 1) < 0.

This yields that

⟨, ⟩t,t ∈ [⟨, ⟩0,0] (t ∈ [0, 1)).

Therefore, by taking the limit under t→ 1, this shows

⟨, ⟩1,1 ∈ [⟨, ⟩0,0],

which completes the proof of [⟨, ⟩0,0] → [⟨, ⟩1,1]. We can similarly prove the
other degenerations. Here we summarize families of inner products to show each
degeneration:

[⟨, ⟩1,1]→ [⟨, ⟩1,0] : ⟨, ⟩1,t ∈ [⟨, ⟩1,1] (t ∈ (0, 1]),

[⟨, ⟩2,0]→ [⟨, ⟩2,√3] : ⟨, ⟩2,t ∈ [⟨, ⟩2,0] (t ∈ [0,
√
3)),

[⟨, ⟩2,√3]→ [⟨, ⟩1,0] : ⟨, ⟩s,t ∈ [⟨, ⟩2,√3] (s ∈ (1, 2], t ∈ (0,
√
3], s2 = t2 + 1),

[⟨, ⟩2,2]→ [⟨, ⟩1,1] : ⟨, ⟩t,t ∈ [⟨, ⟩2,2] (t ∈ (1, 2]),

[⟨, ⟩2,2]→ [⟨, ⟩2,√3] : ⟨, ⟩2,t ∈ [⟨, ⟩2,2] (t ∈ (
√
3, 2]).

We next prove (2). By a general theory, if an orbit O1 degenerates to another
orbit O2, then one has

dimO1 > dimO2.

One knows the dimensions of all orbits in Proposition 6.2. This yields that, in
the diagram of the assertion, horizontal arrows and upward arrows do not occur.
It remains to show that the following two degenerations do not occur:

[⟨, ⟩0,0]→ [⟨, ⟩2,√3], [⟨, ⟩2,0]→ [⟨, ⟩1,1].

This follows from the signatures of inner products. For example, the signatures of
⟨, ⟩0,0 and ⟨, ⟩2,√3 on [g, g] are (+,−, 0) = (0, 1, 0) and (1, 0, 0), respectively. Hence,
if [⟨, ⟩0,0] degenerates to [⟨, ⟩2,√3], then a negative eigenvalue converges to a positive
eigenvalue, with skipping 0. This is a contradiction. By a similar argument, one
can show that [⟨, ⟩2,0] does not degenerate to [⟨, ⟩1,1], which completes the proof
of (2). □

In general, an orbit is closed if and only if it does not degenerate to any other
orbit. Hence, by this proposition, [⟨, ⟩1,0] is a unique closed orbit in M(n−1,1)(g) =
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GL(n,R)/O(n − 1, 1). Note that it is the unique equivalence class of flat left-
invariant Lorentzian metrics on H3 × Rn−3 (n ≥ 4) up to scaling and automor-
phisms from Proposition 5.9. Therefore we obtain Theorem 1.4.
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