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Abstract. A solution to the reflection equation associated to a coideal subalgebra of Uq(A
(1)
2n−1) of

type AII in the symmetric tensor representations is presented. If parameters of the coideal subalgebra

are suitably chosen, the K matrix does not depend on the quantum parameter q and still agrees with a
solution in [7] at q = 0.

1. Introduction

Reflection equation assures the integrability in one-dimensional quantum systems or two-dimensional
statistical models with boundaries. In the context of quantum integrability, it is an equation involving
two kinds of linear operators, called quantum R and K matrices, on the twofold tensor product of vector
spaces. The mathematical framework to construct its solution lies in considering a pair of a quantum
group and its coideal subalgebra. They are called a quantum symmetric pair [9] or an ιquantum group
[2] and known to be classified by Satake diagrams [9, 5]. In such a situation, R and K matrices contain
the quantum parameter q. Moreover, if the representations have crystal bases in the sense of Kashiwara
[4], one can take the limit where q goes to 0, and we obtain bijections between sets that still satisfy a
combinatorial version of the reflection equation.

In [7], from the motivation of constructing a so-called box-ball system with boundary, we found three
solutions of the combinatorial K matrix where the combinatorial R matrix in the reflection equation
comes from the crystal basis of the symmetric tensor representation of the quantum affine algebra of
type A. See (2.10)-(2.12) of [7]. They were called “Rotateleft”, “Switch12” and “Switch1n”. However,
their quantum versions, namely, solutions of quantum K matrices, were not found for a long time. Only
recently, in [8] the solution corresponding to “Rotateleft” were found. The purpose of this note is to find
the origin of the other two solutions “Switch12” and “Switch1n” from the list of ιquantum groups. The
correct one was found to be the affine version of type AII. See e.g. [9, 5, 11]. Rather surprisingly, if we
choose parameters in our ιquantum group suitably, the K matrices does not depend on q, although the
R matrices do.

There are many ιquantum groups other than affine type AII which we dealt with in this note, and
there also exists a notion of the universal Kmatrix [5, 2, 3] as with the universal R matrix of a quantum
group. We hope to report more solutions of the reflection equation that become combinatorial upon
taking the limit q → 0 in near future.

2. Uq(A
(1)
2n−1) and relevant R matrices

2.1. Uq(A
(1)
2n−1) and relevant representations. Let U = Uq(A

(1)
2n−1) be the Drinfeld-Jimbo quantum

affine algebra (without the derivation operator). In this note, we assume n ≥ 2. U is generated by
ei, fi, k

±1
i (i ∈ Z2n) obeying the relations

kik
−1
i = k−1

i ki = 1, [ki, kj ] = 0, kiejk
−1
i = qaijej , kifjk

−1
i = q−aijfj , [ei, fj ] = δij

ki − k−1
i

q − q−1
,

1−aij∑
ν=0

(−1)νe
(1−aij−ν)
i eje

(ν)
i = 0,

1−aij∑
ν=0

(−1)νf
(1−aij−ν)
i fjf

(ν)
i = 0 (i ̸= j),

(1)

where e
(ν)
i = eνi /[ν]!, f

(ν)
i = fν

i /[ν]! and [m]! =
∏m

j=1[j]. The Cartan matrix (aij)i,j∈Z2n is given by
aij = 2δi,j − δi,j+1 − δi,j−1. It is well known that U is a Hopf algebra. We employ the coproduct ∆ of
the form

∆(k±1
i ) = k±1

i ⊗ k±1
i , ∆(ei) = ei ⊗ 1 + ki ⊗ ei, ∆(fi) = fi ⊗ k−1

i + 1⊗ fi. (2)
1
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We will be concerned with the two irreducible representations of U labeled with a positive integer l:

πl,x : Uq → End(Vl,x), Vl,x =
⊕
α∈Bl

Q(q)vα, (3)

π∗
l,x : Uq → End(V ∗

l,x), V ∗
l,x =

⊕
α∈Bl

Q(q)v∗α, (4)

where x is a spectral parameter in Q(q) and

Bl = {α = (α1, . . . , α2n) ∈ Z2n
≥0 | |α| = l}. (5)

Here |α| =
∑2n

i=1 αi. The actions of the generators of U on these representations are given by

eivα = xδi,0 [αi+1]vα+ei−ei+1 , eiv
∗
α = xδi,0 [αi]v

∗
α−ei+ei+1

, (6)

fivα = x−δi,0 [αi]vα−ei+ei+1 , fiv
∗
α = x−δi,0 [αi+1]v

∗
α+ei−ei+1

, (7)

kivα = qαi−αi+1vα, kiv
∗
α = q−αi+αi+1v∗α. (8)

Here ei is the i-th standard basis vector and the index j of the Chevalley generators or α should be
understood as elements of Z2n. Vl,x is the l-th symmetric tensor representation of U. V ∗

l,x is constructed
on the dual space of Vl,x by using the anti-automorphism ∗ of U defined on the generators as

e∗i = ei, f∗
i = fi, k∗i = k−1

i ,

and by defining actions on V ∗
l,x as ⟨uv∗, v⟩ = ⟨v∗, u∗v⟩ for u ∈ U, v ∈ Vl,x, v

∗ ∈ V ∗
l,x. Our basis {v∗α}

of V ∗
l,x is changed from the dual basis of {vα} by multiplying

∏
j [αj ]!

−1 on each dual basis vector, so it

turns out that when x = 1 both {vα} and {v∗α} are upper crystal bases [4]. At q = 0, the former gives
the crystal Bl and the latter its dual B∨

l in [7].

2.2. R matrices. We consider the following three R matrices R,R∗, R∗∗ that are defined as intertwiners
between the tensor product representations below.

R(x/y) : Vl,x ⊗ Vm,y → Vm,y ⊗ Vl,x, (πm,y ⊗ πl,x)∆(u)R(x/y) = R(x/y)(πl,x ⊗ πm,y)∆(u), (9)

R∗(x/y) : V ∗
l,x ⊗ Vm,y → Vm,y ⊗ V ∗

l,x, (πm,y ⊗ π∗
l,x)∆(u)R∗(x/y) = R∗(x/y)(π∗

l,x ⊗ πm,y)∆(u), (10)

R∗∗(x/y) : V ∗
l,x ⊗ V ∗

m,y → V ∗
m,y ⊗ V ∗

l,x, (π∗
m,y ⊗ π∗

l,x)∆(u)R∗∗(x/y) = R∗∗(x/y)(π∗
l,x ⊗ π∗

m,y)∆(u), (11)

where u ∈ U. They satisfy the Yang-Baxter equations:

(1⊗R(x))(R(xy)⊗ 1)(1⊗R(y)) = (R(y)⊗ 1)(1⊗R(xy))(R(x)⊗ 1), (12)

(1⊗R∗(x))(R∗(xy)⊗ 1)(1⊗R(y)) = (R(y)⊗ 1)(1⊗R∗(xy))(R∗(x)⊗ 1), (13)

(1⊗R∗∗(x))(R∗(xy)⊗ 1)(1⊗R∗(y)) = (R∗(y)⊗ 1)(1⊗R∗(xy))(R∗∗(x)⊗ 1), (14)

(1⊗R∗∗(x))(R∗∗(xy)⊗ 1)(1⊗R∗∗(y)) = (R∗∗(y)⊗ 1)(1⊗R∗∗(xy))(R∗∗(x)⊗ 1). (15)

3. Reflection equation and its solution

3.1. Coideal subalgebra. We consider two coideal subalgebrasUι
ε (ε = 0, 1) ofU. Set I = {0, 1, . . . , 2n−

1}. An element of I is considered to correspond to a vertex of the Dynkin diagram of A
(1)
2n−1. In view of

this, we identify I with Z2n. For each ε = 0, 1, set

I◦ = {ε, 2 + ε, . . . , 2n− 2 + ε}, I• = I \ I◦.
We define two subalgebras Uι

ε of U for ε = 0, 1. Each one is generated by ei, fi, ki (i ∈ I•), bi (i ∈ I◦)
where

bi = fi + γiTw•(ei)k
−1
i ,

Tw•(ei) = ei+1ei−1ei − q−1(ei+1eiei−1 + ei−1eiei+1) + q−2eiei−1ei+1.

Here γi is a constant. Then, we have

Proposition 1. For i ∈ I◦, ei±1bi = biei±1.

The following fact is well known. See [9, 5, 11] for instance.

Proposition 2. Uι
ε is a right coideal subalgebra of U. Namely, we have ∆(Uι

ε) ⊂ Uι
ε ⊗U.

We also use the following result later.
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• ◦ • · · ·· · ·· · ·◦

◦

•

0

41 2 3 2n − 1
◦ • ◦ · · ·· · ·· · ·•

•

◦

0

41 2 3 2n − 1

Table 1. Satake diagrams of Uι
0 and Uι

1

Lemma 3. For i ∈ I◦, the action of bi on Vl,x or V ∗
l,x is given by

bivα = x−δi,0 [αi]vα−ei+ei+1 − xδi,0+δi,1+δi,−1q−1γi[αi+2]vα+ei−1−ei+2 ,

biv
∗
α = xδi,0 [αi+1]v

∗
α+ei−ei+1

− x−δi,0−δi,1−δi,−1q−1γi[αi−1]v
∗
α−ei−1+ei+2

.

3.2. K matrix and the reflection equation. For each ε = 0, 1, consider a linear map K(x) : Vl,x →
V ∗
l,x−1 satisfying

K(x)πl,x(a) = π∗
l,x−1(a)K(x) for any a ∈ Uι

ε. (16)

To describe the solution, we introduce a particular permutation σ(ε) of entries of α for ε = 0, 1. σ(ε)

switches αi−1 and αi whenever i ≡ ε (mod 2). For instance, when n = 3 we have

σ(0)(α) = (α2, α1, α4, α3, α6, α5), σ(1)(α) = (α6, α3, α2, α5, α4, α1).

Proposition 4. For each ε = 0, 1, the intertwining relation (16) has a solution if and only if∏
j∈I◦

γj = (−q)n,

in which case the solution is unique up to scalar multiple and given by

K(x)vα = xε(α1−α2n)
∏

j=ε,2+ε,...,2n−2+ε

(−q−1γj)
−

∑j
i=1+ε αiv∗σ(ε)(α).

Proof. In the proof we assume i ∈ I•, j ∈ I◦. Define Kβ
α by K(x)vα =

∑
β K

β
αv

∗
β . Note that Kβ

α also

depends on x. Comparing the coefficients of v∗β in K(x)πl,x(a)vα = π∗
l,x−1(a)K(x)vα with ki, ei, fi, bj we

obtain

Kβ
α ̸= 0 ⇒ αi − αi+1 = −βi + βi+1, (17)

[βi + 1]Kβ+ei−ei+1
α = x2δi,0 [αi+1]K

β
α+ei−ei+1

, (18)

[αi + 1]Kβ+ei−ei+1
α = x2δi,0 [βi+1]K

β
α+ei−ei+1

, (19)

xδj,0 [βj+1 + 1]Kβ−ej+ej+1
α − x−δj,0−δj,1−δj,−1q−1γj [βj−1 + 1]Kβ+ej−1−ej+2

α

= x−δj,0 [αj ]K
β
α−ej+ej+1

− xδj,0+δj,1+δj,−1q−1γj [αj+2]K
β
α+ej−1−ej+2

. (20)

Since we look for a nontrivial solution, we assume the right hand side of (17). This condition together
with (18),(19) implies

αi = βi+1, βi = αi+1 (21)

or equivalently β = σ(ε)(α). Then (18) or (19) reduces to

Kσ(ε)(α)
α = x2δi,0K

σ(ε)(α+ei−ei+1)
α+ei−ei+1

. (22)

Similarly, assuming (21), (20) reduces to

xδj,0 [αj+2](K
β−ej+ej+1
α + xδj,1+δj,−1q−1γjK

β
α+ej−1−ej+2

)

= x−δj,0 [αj ](K
β
α−ej+ej+1

+ x−δj,1−δj,−1q−1γjK
β+ej−1−ej+2
α ).

If β = σ(ε)(α) + ej − ej+1, the right hand side vanishes, whereas if β = σ(ε)(α+ ej − ej+1), the left one
does. Under (22), both conditions reduce to

K
σ(ε)(α+ej−1−ej+1)
α+ej−1−ej+1

/Kσ(ε)(α)
α = −xδj,1−δj,−1q−1γj .

Multiplying the above equation for j = ε, 2 + ε, . . . , 2n − 2 + ε, we obtain the condition for K to exist,
and we obtain the unique solution up to scalar multiple. □

In view of this proposition, we set γj = −q for any j ∈ I◦ later in this note.
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Theorem 5. The reflection equation

K1(x)R
∗((xy)−1)K1(y)R(xy−1) = R∗∗(xy−1)K1(y)R

∗((xy)−1)K1(x) (23)

holds as a linear map Vl,x ⊗ Vm,y → V ∗
l,x−1 ⊗ V ∗

m,y−1 . Here K1(x) = K(x)⊗ 1.

The proof is completely the same as that of Theorem 1 in [8] under the assumption that Vl,x ⊗ Vm,y

is irreducible as a Uι
ε-module, which is shown in next section.

4. Proof of the irreducibility of Vl,x ⊗ Vm,y

To show that the reflection equation holds (Theorem 5), we need to prove

Theorem 6. As a Uι
ε-module, Vl,x ⊗ Vm,y is irreducible.

Actually, even when the spectral parameters x, y are specialized to 1, it is irreducible as we will see
below. Hence, in this section we set x = y = 1, since it is enough to show the theorem. Vl,1 will be
denoted by Vl. We can also restrict our proof to the ε = 0 case, since the consideration for the ε = 1
case is just the repetition by shifting the index i of the generators or the entries of α. Finally, in view of
Proposition 4, we specialize γi for i ∈ I◦ to be −q.

4.1. Representation theory of Uq(sl2). Uq(sl2) is the subalgebra of U generated only by e1, f1, k1. Its
irreducible representations are parametrized by their dimensions which run positive integers. Let Ul be
the (l+ 1)-dimensional module of Uq(sl2). As a basis of Ul, one can take {vα| |α| = l} in (3) with n = 1.
The actions of the generators e1, f1, k1 are given by (6)-(8). It is well known that Ul ⊗ Um decomposes
into min(l,m) + 1 components as

Ul ⊗ Um ≃
min(l,m)⊕

j=0

Ul+m−2j

where a highest weight vector of Ul+m−2j is given by

w
(l,m)
j =

j∑
p=0

(−1)pqp(l−p+1)

[
j

p

]
v(l−p,p) ⊗ v(m−j+p,j−p). (24)

Here
[
j
p

]
is the q-binomial coefficient defined by [j]!

[p]![j−p]! .

Now consider the subalgebra U(I•) of U
ι generated by ei, fi, ki (i ∈ I•). Recall I• = {1, 3, . . . , 2n−1}.

U(I•) is isomorphic to Uq(sl2)
⊗n. We want to construct a basis of Vl ⊗ Vm using its U(I•)-module

structure. To parametrize the highest weight vectors of Vl ⊗ Vm, we introduce n-tuples of nonnegative
integers l = (l1, . . . , ln),m = (m1, . . . ,mn) such that |l| = l, |m| = m. Here we use the notation |l| to
signify the sum of entries of the vector l irrespective of the number of entries. Let

ι :
⊕
l,m

(Ul1 ⊗ Um1)⊗ · · · ⊗ (Uln ⊗ Umn) −→ Vl ⊗ Vm

be the linear map sending (v(α1,α2) ⊗ v(β1,β2))⊗ · · · ⊗ (v(α2n−1,α2n) ⊗ v(β2n−1,β2n)) to vα ⊗ vβ . Note that
Uli ⊗ Umi is the tensor product of the irreducible highest weight modules Uli , Umi of the i-th Uq(sl2) of
Uq(sl2)

⊗n generated by e2i−1, f2i−1, k2i−1. Since Uq(sl2) in different positions commute with each other,
one obtains the following proposition.

Proposition 7. For any l,m and j = (j1, . . . , jn) such that 0 ≤ ji ≤ min(li,mi) for 1 ≤ i ≤ n,

w
(l,m)
j = ι(w

(l1,m1)
j1

⊗ · · · ⊗ w
(ln,mn)
jn

)

is a U(I•)-highest weight vector, and we have
⊕

l,m,j U(I•)w
(l,m)
j = Vl ⊗ Vm.

4.2. Necessary formulas. In what follows, we assume i ∈ I◦ = {0, 2, . . . , 2n − 2} and set i = 2s. By
abuse of notation, we denote by es (s = 1, . . . , n) the s-th standard basis vector of the n-dimensional
space, although we have used it in section 2 for the 2n-dimensional space. e0 should be understood as
en. For the action of U on the tensor product, we abbreviate ∆.

Proposition 8. On Vl ⊗ Vm, we have

biw
(l,m)
j = D′

1w
(l−es+es+1,m)
j−es

+D′
2w

(l,m−es+es+1)
j−es

+D′
3w

(l+es−es+1,m)
j−es+1

+D′
4w

(l,m+es−es+1)
j−es+1

,
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where

D′
1 = −q−js−js+1+ls+ms+1+1[js], D′

2 = [js],

D′
3 = −q−js−js+1+ls+1+ms+1+1[js+1], D′

4 = q−2js−2js+1+ls+ls+1+2ms+1+2[js+1].

Proof. Using Proposition 1, one finds that biw
(l,m)
j is a U(I•)-highest weight vector. By the weight

consideration, it should be a linear combination of the following vectors.

w
(l−es+es+1,m)
j−es

, w
(l,m−es+es+1)
j−es

, w
(l+es−es+1,m)
j−es+1

, w
(l,m+es−es+1)
j−es+1

.

The four coefficients can be calculated directly. □

Proposition 9. On Vl ⊗ Vm, we have

bifi−1w
(l,m)
j =

[ls +ms − js + 1]

[ls +ms − 2js + 1]
(B′

1w
(l−es+es+1,m)
j +B′

2w
(l,m−es+es+1)
j )

+
[js+1]

[ls +ms − 2js + 1]
(B′

3w
(l+es−es+1,m)
j+es−es+1

+B′
4w

(l,m+es−es+1)
j+es−es+1

)

+
[ls +ms − 2js]

[ls +ms − 2js + 1]
(D′

1fi−1w
(l−es+es+1,m)
j−es

+D′
2fi−1w

(l,m−es+es+1)
j−es

+D′
3fi−1w

(l+es−es+1,m)
j−es+1

+D′
4fi−1w

(l,m+es−es+1)
j−es+1

),

bifi+1w
(l,m)
j =

[js]

[ls+1 +ms+1 − 2js+1 + 1]
(C ′

1w
(l−es+es+1,m)
j−es+es+1

+ C ′
2w

(l,m−es+es+1)
j−es+es+1

)

+
[ls+1 +ms+1 − js+1 + 1]

[ls+1 +ms+1 − 2js+1 + 1]
(C ′

3w
(l+es−es+1,m)
j + C ′

4w
(l,m+es−es+1)
j )

+
[ls+1 +ms+1 − 2js+1]

[ls+1 +ms+1 − 2js+1 + 1]
(D′

1fi+1w
(l−es+es+1,m)
j−es

+D′
2fi+1w

(l,m−es+es+1)
j−es

+D′
3fi+1w

(l+es−es+1,m)
j−es+1

+D′
4fi+1w

(l,m+es−es+1)
j−es+1

),

where

B′
1 = qjs−js+1−ms+ms+1 [ls − js], B′

2 = [ms − js],

B′
3 = −qjs−js+1−ls−ms+ls+1+ms+1 [ms − js], B′

4 = −q2js−2js+1−ls−2ms+ls+1+2ms+1 [ls − js],

C ′
1 = −q−js+js+1+ls−ls+1 [ms+1 − js+1], C ′

2 = −[ls+1 − js+1],

C ′
3 = q−js+js+1 [ls+1 − js+1], C ′

4 = q−2js+2js+1+ls−ls+1 [ms+1 − js+1],

Proof. Using Proposition 1, we have

ei−1bifi−1w
(l,m)
j = biei−1fi−1w

(l,m)
j = bi{ki−1}w(l,m)

j = [ls +ms − 2js]biw
(l,m)
j ,

ei+1bifi+1w
(l,m)
j = biei+1fi+1w

(l,m)
j = bi{ki+1}w(l,m)

j = [ls+1 +ms+1 − 2js+1]biw
(l,m)
j ,

where {ki} =
ki−k−1

i

q−q−1 . Thus same in Lemma 8, ei+1bifi+1 and ei−1bifi−1 are a linear combination of the

following vectors.

w
(l−es+es+1,m)
j−es

, w
(l,m−es+es+1)
j−es

, w
(l+es−es+1,m)
j−es+1

, w
(l,m+es−es+1)
j−es+1

.

By considering weight, one find that bifi−1 and bifi+1 are a linear combination like a assertion, and
coefficients can be calculated directly. □

Corollary 10. On Vl ⊗ Vm, we have

bifi+1w
(l,m)
o = [ls+1]w

(l+es−es+1,m)
o + qls−ls+1 [ms+1]w

(l,m+es−es+1)
o ,

bifi−1w
(l,m)
o = qms+1−ms [ls]w

(l−es+es+1,m)
o + [ms]w

(l,m−es+es+1)
o .
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Proposition 11. On Vl ⊗ Vm, we have

bifi−1fi+1w
(l,m)
j

= A1w
(l−es+es+1,m)
j+es+1

+B1fi+1w
(l−es+es+1,m)
j + C1fi−1w

(l−es+es+1,m)
j−es+es+1

+D1fi−1fi+1w
(l−es+es+1,m)
j−es

+A2w
(l,m−es+es+1)
j+es+1

+B2fi+1w
(l,m−es+es+1)
j + C2fi−1w

(l,m−es+es+1)
j−es+es+1

+D2fi−1fi+1w
(l,m−es+es+1)
j−es

+A3w
(l+es−es+1,m)
j+es

+B3fi+1w
(l+es−es+1,m)
j+es−es+1

+ C3fi−1w
(l+es−es+1,m)
j +D3fi−1fi+1w

(l+es−es+1,m)
j−es+1

+A4w
(l,m+es−es+1)
j+es

+B4fi+1w
(l,m+es−es+1)
j+es−es+1

+ C4fi−1w
(l,m+es−es+1)
j +D4fi−1fi+1w

(l,m+es−es+1)
j−es+1

,

(25)

where

A1 = qjs+js+1−ls+1−ms−1 [ls − js][ms+1 − js+1][ls +ms − js + 1]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]

A2 = − [ls+1 − js+1][ms − js][ls +ms − js + 1]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]

A3 = qjs+js+1−ls−ms−1 [ls+1 − js+1][ms − js][ls+1 +ms+1 − js+1 + 1]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]

A4 = −q2js+2js+1−ls−ls+1−2ms−2 [ls − js][ms+1 − js+1][ls+1 +ms+1 − js+1 + 1]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]
,

Bj = B′
j

[ls +ms − js + 1][ls+1 +ms+1 − 2js+1]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]
(j = 1, 2),

= B′
j

[js+1][ls+1 +ms+1 − 2js+1]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]
(j = 3, 4),

Cj = C ′
j

[js][ls +ms − 2js]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]
(j = 1, 2),

= C ′
j

[ls +ms − 2js][ls+1 +ms+1 − js+1 + 1]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]
(j = 3, 4),

Dj = D′
j

[ls +ms − 2js][ls+1 +ms+1 − 2js+1]

[ls +ms − 2js + 1][ls+1 +ms+1 − 2js+1 + 1]
(j = 1, 2, 3, 4).

Proof. Similar to Proposition8 and 9, bifi−1fi+1w
(l,m)
j can be expressed with suitable scalarsAj , Bj , Cj , Dj

(1 ≤ j ≤ 4) as (25). By applying ei−1ei+1 on both sides, the first to third terms in each line of the right
hand side vanish. So by Proposition 8, Dj (1 ≤ j ≤ 4) is determined. Then, by applying ei+1 on both
sides of (25), Bj (1 ≤ j ≤ 4) is determined, and by applying ei−1, Cj (1 ≤ j ≤ 4) is done by Proposition
9. Finally, Aj (1 ≤ j ≤ 4) is determined by a direct calculation. □

Corollary 12. On Vl ⊗ Vm, we have

bifi−1fi+1w
(l,m)
j =a1w

(l−es+es+1,m)
j+es+1

+ a2w
(l,m−es+es+1)
j+es+1

+ a3w
(l+es−es+1,m)
j+es

+ a4w
(l,m+es−es+1)
j+es

+ (other terms),

where aj (j = 1, 2, 3, 4) is given in Proposition 11 and (other terms) stands for the linear combination of

vectors of the form w
(l′,m′)
j′ possibly applied by fi−1, fi+1 with (l′,m′) appearing in the right hand side

and j′k ≤ jk for 1 ≤ k ≤ n.

4.3. Proof of Theorem 6. We prove Theorem 6 when ε = 0. Suppose W is a nonzero Uι-invariant
subspace of Vl ⊗ Vm. Note that Uι contains U(I•). In view of Proposition 7, one can assume that W
contains a vector of the form ∑

l,m,j

c(l,m, j)w
(l,m)
j (26)

where c(l,m, j) ∈ Q(q) and l,m, j run over all possible integer vectors such that ls+ms−2js is constant
for any s = 1, . . . , n. By applying bi (i ∈ I◦) in a suitable order, from Proposition 8 one can assume j = o
in (26). Then by Corollary 10, one can eventually assume l = le1,m = me1 where l = |l|,m = |m|.
Hence, we have w

(le1,me1)
o ∈ W .
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Next show w
(l1e1+l2e2,m1e1+m2e2)
o ∈ W for any l1, l2,m1,m2 such that l1 + l2 = l,m1 +m2 = m. We

do it by induction on k = l2 + m2. The k = 0 case is done. Assume w
(l1e1+l2e2,m1e1+m2e2)
o ∈ W for

l2 +m2 = k. By Corollary 10, we have

b2f1w
(l1e1+l2e2,m1e1+m2e2)
o = qm2−m1 [l1]w

((l1−1)e1+(l2+1)e2,m1e1+m2e2)
o + [m1]w

(l1e1+l2e2,(m1−1)e1+(m2+1)e2)
o ,

(b4f5) · · · (b2n−2f2n−1)(b0f1)w
(l1e1+l2e2,m1e1+m2e2)
o

= [l1]w
((l1−1)e1+(l2+1)e2,m1e1+m2e2)
o + ql2−l1 [m1]w

(l1e1+l2e2,(m1−1)e1+(m2+1)e2)
o .

If l1 + m1 ̸= l2 + m2, these two vectors are linearly independent. Hence the induction proceeds up to

k ≤ l1 +m1. When l2 +m2 ≥ l1 +m1, we first recognize that w
(le2,me2)
o ∈ W by applying (b2f1)

l+m to

w
(le1,me1)
o . We then do the same exercise as before.

Let us now show W contains w
(l,m)
o for any possible l and m. From the previous paragraph, we know

w
(l1e1+l2e2,me1)
o ∈ W . Applying bifi−1 (i = 4, . . . , 2n− 2) suitable times, we know w

(l,me1)
o ∈ W for any

l. Then by doing similarly including i = 2, we know w
(l,m)
o ∈ W for any l,m.

By Proposition 7, it is enough to show W contains w
(l,m)
j for any possible l,m, j. From the consid-

erations so far, it is true when |j| = 0. The following proposition makes the induction on |j| work and
finishes the proof of Theorem 6.

Proposition 13. Consider the following matrix C depending on l,m, j. Its row index runs over all
(i, l,m, j) with i = 0, 2, . . . , 2n − 2 and |l| = l, |m| = m, |j| = j, and its column index runs over all
(l′,m′, j′) with |l′| = l, |m′| = m, |j′| = j + 1. The entry for the pair ((i, l,m, j), (l′,m′, j′)) is given by

the coefficient of w
(l′,m′)
j′ in bifi−1fi+1w

(l,m)
j in the previous proposition. Then C is of full rank. Note

that the rank does not depend on the orders of the index sets.

Proof. Let A be the subring of Q(q) defined by A = {f(q) ∈ Q(q) | f(q) is regular at q = 0}. Let αt

(t = 1, 2, 3, 4) be the largest integer such that at in Corollary 12 belongs to qαtA. We have

α1 − α2 = α4 − α3 = js + js+1 − ls −ms+1 − 1 < 0,

α4 − α1 = 2js+1 − ls+1 −ms+1 − 1 < 0,

since jt ≤ min(lt,mt) (t = s, s+ 1). Therefore, α4 is minimal and the others are strictly larger.

For w
(l′,m′)
j′ such that |l′| = l, |m′| = m, |j′| = j + 1, choose the minimal s such j′s > 0 and consider

bifi−1fi+1w
(l′,m′−es+es+1)
j′−es

with i = 2s. By Proposition 11 the fourth term of the above is nonzero.

Consider the row of C corresponding to the index (i, l′,m′ − es + es+1, j
′ − es). By multiplying a

suitable scalar to this row, one can make the ((i, l′,m′ − es + es+1, j
′ − es), (l

′,m′, j′))-entry of C be
1, and the other three nonzero entries in the same row belong to qA. Consider the square matrix C ′

obtained by varying all possible (l′,m′, j′) and picking the corresponding renormalized rows. Then from
the construction, detC ′ belongs to {±1}+ qA. Hence the assertion is confirmed. □
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