SOLUTION TO THE REFLECTION EQUATION RELATED
TO THE :QUANTUM GROUP OF TYPE AII

HIROTO KUSANO AND MASATO OKADO

ABSTRACT. A solution to the reflection equation associated to a coideal subalgebra of Uq(A(QZ)_l) of
type AIl in the symmetric tensor representations is presented. If parameters of the coideal subalgebra
are suitably chosen, the K matrix does not depend on the quantum parameter ¢ and still agrees with a
solution in [7] at ¢ = 0.

1. INTRODUCTION

Reflection equation assures the integrability in one-dimensional quantum systems or two-dimensional
statistical models with boundaries. In the context of quantum integrability, it is an equation involving
two kinds of linear operators, called quantum R and K matrices, on the twofold tensor product of vector
spaces. The mathematical framework to construct its solution lies in considering a pair of a quantum
group and its coideal subalgebra. They are called a quantum symmetric pair [9] or an (quantum group
[2] and known to be classified by Satake diagrams [9, 5]. In such a situation, R and K matrices contain
the quantum parameter q. Moreover, if the representations have crystal bases in the sense of Kashiwara
[4], one can take the limit where ¢ goes to 0, and we obtain bijections between sets that still satisfy a
combinatorial version of the reflection equation.

In [7], from the motivation of constructing a so-called box-ball system with boundary, we found three
solutions of the combinatorial K matrix where the combinatorial R matrix in the reflection equation
comes from the crystal basis of the symmetric tensor representation of the quantum affine algebra of
type A. See (2.10)-(2.12) of [7]. They were called “Rotateleft”, “Switch;2” and “Switchy,,”. However,
their quantum versions, namely, solutions of quantum K matrices, were not found for a long time. Only
recently, in [8] the solution corresponding to “Rotateleft” were found. The purpose of this note is to find
the origin of the other two solutions “Switch;s” and “Switchy,,” from the list of quantum groups. The
correct one was found to be the affine version of type AIL See e.g. [9, 5, 11]. Rather surprisingly, if we
choose parameters in our tquantum group suitably, the K matrices does not depend on ¢, although the
R matrices do.

There are many tquantum groups other than affine type AIl which we dealt with in this note, and
there also exists a notion of the universal Kmatrix [5, 2, 3] as with the universal R matrix of a quantum
group. We hope to report more solutions of the reflection equation that become combinatorial upon
taking the limit ¢ — 0 in near future.

1
2. Uq(Aén)fl) AND RELEVANT R MATRICES

2.1. Uq(Agil)_l) and relevant representations. Let U = Uq(Agln)_l) be the Drinfeld-Jimbo quantum
affine algebra (without the derivation operator). In this note, we assume n > 2. U is generated by
e, fi, k;iﬂ (i € Zsy,) obeying the relations

ki — k!
kiky =k ke =1, (ki k] =0, kiejkyt=q%ey, kifikit=q7" fh, e fi] = 0ij———,
qa—4q
1—aj 1—ayj; (1)
v 17043'711 v v 17aijfl/ v . .
> e e =0, 3 ()T =0 (4 ),
v=0 v=0
where egy) = e/ /[v]!, fl-(y) = f//v]! and [m]! = J[;L,[j]. The Cartan matrix (aij); jez,, is given by

aij = 20;,5 — 05 j+1 — 0;,j—1. It is well known that U is a Hopf algebra. We employ the coproduct A of
the form
AR =kH 0k, Ale)=ei@1+ki®e, A(fi)=fiok ' +1® fi. (2)
1
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We will be concerned with the two irreducible representations of U labeled with a positive integer I:

e Uy = End(Viy), Vie = @ Qg)va., (3)
aEB;

: Uy — End(V)%,) = P Qg (4)
a€EB;

where z is a spectral parameter in Q(¢g) and

Bi={a=(a1,...,00,) € 2%y | || = 1}. (5)
Here |a] = anl «;. The actions of the generators of U on these representations are given by
€ilg = xélﬁo[ai+1]va+ei_ei+l, evy = x40 [a,-]v;_ei+ei+l, (6)
fiva =270 [0i]va—e e fivg = 270l 10k e (7)
kivg = ¢& ity kvl = g @ity (8)

Here e; is the i-th standard basis vector and the index j of the Chevalley generators or a should be
understood as elements of Zs,,. V; , is the [-th symmetric tensor representation of U. Vl*x is constructed
on the dual space of V; , by using the anti-automorphism * of U defined on the generators as

6:267;, fz*:fl) k;k:k;17
and by defining actions on Vj*, as (uv*,v) = (v*,u*v) for u € U,v € Vi ;,v* € V[',. Our basis {v;}
of V}*, is changed from the dual basis of {v,} by multiplying J]; [a;]!! on each dual basis vector, so it

turns out that when x = 1 both {v,} and {v}} are upper crystal bases [4]. At ¢ = 0, the former gives
the crystal B; and the latter its dual B} in [7].

2.2. R matrices. We consider the following three R matrices R, R*, R** that are defined as intertwiners
between the tensor product representations below.

R(x/y) : Vie @ Viny = Viny @ Vig,  (Tmy @ me)A(u)R(z/y) = R(z/y)(me @ Tmy)Aw),  (9)

R (2/y) : Vi @ Ving = Viny @ Vi, (Tamyy @ 1) A(uw) R (2/y) = R*(2/y) (], @ Tmy) A(u),  (10)

R (x/y) : Vi @ Vi y = Vi y @ Vi, (T @ M) A(w) R (z/y) = R (2/y)(n7, @ 7y ) A(w), (11)
where u € U. They satisfy the Yang-Baxter equations:

(1@ R(z))(R(zy) ® 1)(1© R(y)) = (R(y) © 1)(1 @ R(zy))(R(x) @ 1), (12)

(1@ R (2))(R*(zy) @ D1 © R(y)) = (R(y) © 1)(1 ® R (zy))(R"(z) © 1), (13)
(1o R™(x))(R*(zy) © 1)(1 @ R*(y)) = (B"(y) © 1)(1 @ R*(zy))(R™ (z) @ 1), (14)
(1® R™(x))(R™(zy) @ 1)(1 @ R (y)) = (R (y) @ (1 @ B (zy))(R™ () @ 1). (15)

3. REFLECTION EQUATION AND ITS SOLUTION

3.1. Coideal subalgebra. We consider two coideal subalgebras U% (¢ = 0,1) of U. Set I = {0,1,...,2n—

1}. An element of I is considered to correspond to a vertex of the Dynkin diagram of A;}f
this, we identify I with Zs,,. For each € = 0,1, set

I,={¢,24¢,....2n—2+¢}, I, =1\L.

We define two subalgebras UL of U for € = 0,1. Each one is generated by e;, fi, k; (i € I.),b; (i € I,)
where

1- In view of

bi = fi +vilw, (61')/5;17
Tw.(€;) = eit1€i—1e; — q (eiy1€i€i-1 + €i_1€ieir1) +q 2eiei_1€it1.

Here ~; is a constant. Then, we have
Proposition 1. Fori € I,, e;41b; = b;ej+1.
The following fact is well known. See [9, 5, 11] for instance.
Proposition 2. U: is a right coideal subalgebra of U. Namely, we have A(UL) C UL & U.

We also use the following result later.



TABLE 1. Satake diagrams of Uj and Uj

Lemma 3. Fori € I, the action of b; on V), or Vi, is given by

5«;,0[ 0i,0+0i,14+6i,—1

—1
4 iliv2|Vate, 1 —eiys
—0i,0—0i,1—0i,—1,—1 [~. *
! q ’yl[al_l]va—ei—1+e7‘,+2'

3.2. K matrix and the reflection equation. For each ¢ = 0,1, consider a linecar map K(z) : V; , —
Vi*.—1 satisfying

bivg = 7 [i]Va—e;feiy — T

2 — p0i0[n. * _
blvoz =z [a1+1}va+ei—ei+1 z

K(z)m 2(a) = 7] ,-1(a)K(z) for any a € Ug. (16)
To describe the solution, we introduce a particular permutation () of entries of a for e = 0,1. o(©)
switches a;—1 and «; whenever i = ¢ (mod 2). For instance, when n = 3 we have
U(O) (Oé) = (a2a a1, 04,03, 0g, O[5), 0(1) (Of) = (OZG, a3, g, 05, 04, 061).

Proposition 4. For each e = 0,1, the intertwining relation (16) has a solution if and only if

1=

jEIo
in which case the solution is unique up to scalar multiple and given by

K (2)v = af(@1702n) H (=g ')~ Sicie aivj;(s)(a)'
j=¢,2+4e,....2n—2+¢€

Proof. Tn the proof we assume i € I,,j € I,. Define Kf by K(x)v, = Y5 KJvj. Note that K[ also
depends on z. Comparing the coefficients of v; in K(z)m . (a)ve = 7}, 1 (a) K (z)ve with ki, e;, fi, b; we
obtain

KP 40 = o—aip1=—Bi+Bis1, (17)
[BZ + 1]K£+€i*€i+l _ :L.26i,0 [ai+1}K2+ei—e,,+1’ (18)
[ai + 1]Kg+ei—ei+1 _ x26'i'0[5i+1}K5+ei76i+17 (19)

2030[Byy + KLttt — gm0 0am0tgm (g, g 4 K e eire

— 950 [Qj}[(ﬁ 85,046;,140;5,—1

a—ejtej

a2 K e, ey (20)
Since we look for a nontrivial solution, we assume the right hand side of (17). This condition together
with (18),(19) implies

a; = Bit1, Bi =it (21)
or equivalently 3 = o(¥)(a). Then (18) or (19) reduces to
o) (a 4 o e;—e;t1
Kg7(@ = g2y lotemen) (22)

Similarly, assuming (21), (20) reduces to

55 B—ej+e; 8j1+65,-1,—1. 3B
T Jyo[a]“‘rQ](Ka ITEIHL 4 g0 lq PYJKoz+e]'_1—ej+2)

= xiéj’o[aj](Kg—ej-i-ejﬂ + xiéj’l76j7_1q717jK5+6j_176'j+2)~

If =0 (a)+e; — e;i1, the right hand side vanishes, whereas if 8 = 0*)(a + €; — €;11), the left one
does. Under (22), both conditions reduce to

o) (atej_1—eji1) () S§i1—8: 1 —1
KaJrejfl*Jejirl a /Kg (@) = —xt g Vi

Multiplying the above equation for j = ¢,2+¢,...,2n — 2 + €, we obtain the condition for K to exist,

and we obtain the unique solution up to scalar multiple. O

In view of this proposition, we set v; = —¢q for any j € I, later in this note.
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Theorem 5. The reflection equation
Ki(2)R*((wy) ) K1 (y)R(zy ™) = R™ (xy™ K (y) R* ((xy) ™) K (x) (23)
holds as a linear map Vi 4 @ Vi, — Vl’fx,l ® Vn’;,yfl' Here Ki(z) = K(z) ® 1.

The proof is completely the same as that of Theorem 1 in [8] under the assumption that V; , ® V;, ,,
is irreducible as a Ui-module, which is shown in next section.

4. PROOF OF THE IRREDUCIBILITY OF V), ® Vj, 4
To show that the reflection equation holds (Theorem 5), we need to prove
Theorem 6. As a Ul-module, V| z ® Vi, y is irreducible.

Actually, even when the spectral parameters x,y are specialized to 1, it is irreducible as we will see
below. Hence, in this section we set © = y = 1, since it is enough to show the theorem. V;; will be
denoted by V;. We can also restrict our proof to the e = 0 case, since the consideration for the ¢ = 1
case is just the repetition by shifting the index i of the generators or the entries of «. Finally, in view of
Proposition 4, we specialize ~; for i € I, to be —q.

4.1. Representation theory of U,(slz). U,(sl2) is the subalgebra of U generated only by es, f1, k1. Its
irreducible representations are parametrized by their dimensions which run positive integers. Let U; be
the (I + 1)-dimensional module of Uy(slz). As a basis of U, one can take {v,| |a| =1} in (3) with n = 1.
The actions of the generators eq, f1, k1 are given by (6)-(8). It is well known that U; ® U, decomposes
into min(l, m) + 1 components as
min(l,m)
U, ®U, ~ @ Uirm—2j
§=0
where a highest weight vector of Uji,,—o; is given by

j )
wi'™ =3 (~1)pgrt Py m VU(i—pp) @ V(m—j+p.j—p): (24)
p=0
Here m is the g-binomial coefficient defined by ﬁ
Now consider the subalgebra U(I,) of U* generated by e;, fi, k; (¢ € I). Recall I, = {1,3,...,2n—1}.
U(I,) is isomorphic to U,(slz)®™. We want to construct a basis of V; ® V;,, using its U([,)-module
structure. To parametrize the highest weight vectors of V; ® V,,,, we introduce n-tuples of nonnegative
integers I = (I1,...,0y),m = (mq,...,my) such that |l| = I,|m| = m. Here we use the notation |I| to
signify the sum of entries of the vector I irrespective of the number of entries. Let

P, @Um) @@ (U, @ Up,) — Vi@ Vi
lm

be the linear map sending (v(a,,as) @ V(8,,8,)) @ *** @ (V(agn_1,a2n) @ V(Ban_1,82n)) 10 Vo @ vg. Note that
Ui, @ Uy, is the tensor product of the irreducible highest weight modules Uy, , Uy, of the i-th U,(slz) of
U,(sl2)®™ generated by e2;_1, f2i—1,k2i—1. Since U,(sl2) in different positions commute with each other,
one obtains the following proposition.

Proposition 7. For any l,m and j = (j1,-..,7n) such that 0 < j; < min(l;,m;) for 1 <i <mn,

tm) _

(™ @@ )

W it n
is a U(I,)-highest weight vector, and we have @, ,,, ; U(I.)wy’m) =V ® V.
4.2. Necessary formulas. In what follows, we assume ¢ € I, = {0,2,...,2n — 2} and set i = 2s. By
abuse of notation, we denote by es (s = 1,...,n) the s-th standard basis vector of the n-dimensional

space, although we have used it in section 2 for the 2n-dimensional space. ey should be understood as
e,. For the action of U on the tensor product, we abbreviate A.

Proposition 8. On V; ® V,,, we have

o Am) oy (L-estesyi,m) 1o (m—estesy) 1, (I+es—esi1,m) 7o (Imtes—esyr)
b,wj =Dyw;_, + Dyw; " + D3'wjfes+1 + D4wj—es+1 ,



where

U —Js—Js ls s 1 [
Dy = —q I dertletmentt5 10 DY =[],
Dé — q_jc_]s+1+ls+1+ms+l+1[] +1] D:L — q—2js—2j5+1+ls+ls+1+2ms+1+2[j8+1]_

Proof. Using Proposition 1, one finds that bi'w;l’m) is a U(/,)-highest weight vector. By the weight
consideration, it should be a linear combination of the following vectors.

(l—estest1,m) (Im—es+esy1) (l+es—es+1,m) @, m+es—es+1)
Jj—es ? Ti—es ? T g—esq1 J—€st1
The four coefficients can be calculated directly. O

Proposition 9. On V; ® V,,,, we have

l ls +mg — js + 1 l—es+estr1,m lm—es+es

bifi-1w ( ™ = [E . —2j +1]](B'w§ teot )+Bé'w§. + +1))

[jerl] 7 (l+es—esy1,m) 7 (ILmtes—esi1)

[ls +mg — 2.]3 + 1] (BS j+eS_eS‘:r11 + B4 Jtes—est1 " )

ls s 2 .s
T [+;m— 2j ]+]1]( iy e Dy fi g e e
l+ s €s ) l + s~ €Es
+D fioqw e ™ Dl fi e e,
L [Js] l-es+est1,m lLm—e;+e;
bifi+1w.§' ™ = - ( i ;7654’65:1 : +O§w.§7€s+es+l +1))

(lo1 +mMer1 — 2js1 + 1]
ls s - .s 1 es;—e m-+te;—e
[ 41+ Msy1 ].+1 + ] (C/w;lJr s—€st1,m +C4 (l +es s+1))
(lsr1 +msy1 — 2541 + 1]
[ls-‘rl +Mmsq1 — 2js+1]
[ls+1 + Ms41 — 2js+1 +1

(l+es—esy1,m) (I,m+es—esy1)
+D3fz+1'w + D4f2+1w ),

+

- es+e§+1,m)+D2fl+1w(lm estesi1)

+ ]( 1f1+1wg e

Jj—e: s+1 J— €s41
where
I js—Js —ms+m, - ! .
By = ¢/ e mme et 1o — 5], By = [ms — js),
Bé — _q]S_Js-%-l_ls_m‘e+l‘e+l+ms+1 [ms _ ]S] BZ/L — _q2]s_2Js+1_ls_2ms+ls+1+2ms+l [ZS _ jS]7
/ —_ - 4S+ 45‘ +l5_l5 y ! _— Y
Cy=—q 7 M1 = Jor1),  Co = —[ls1 — Jsal,

! —Js+Js . I —25s+2sp1+Hls—1s -
Cy = q 7t lgp — joya], Cf =q PeT0n msy1 — Jsral,

Proof. Using Proposition 1, we have

e;i—1b; fi— lwgl URES biei—1fi- lw(l ™ = bi{k‘i—l}wg‘l’m = [ls +ms — 2js]bi w(l m)’
eit1b; fz+1’w§l’m) = b; €@+1fz+1w§ = bi{kiﬂ}’w;l’ = [lsg1 +mgy1 — 233+1]bi’w§l’m),

where {k;} = . Thus same in Lemma 8, €;+1b; fi+1 and e;_1b; f;_1 are a linear combination of the
following vectors

(l—es+esy1,m) (Im—es+esy1) (l+e5—es+1,m) (, m+es—es+1)

j—es » Hj—es » j—est J—est1

By considering weight, one find that b;f;—1 and b;f;11 are a linear combination like a assertion, and
coefficients can be calculated directly. 0

Corollary 10. On V; ® V,,,, we have

bi firprwd™ = [lgpq]wltesmesm) 4 glamlon [ Jphmtes—es),

bifi 1wgl,m) = @M1 [ls]wsjlfeﬂresﬂ,m) + [ms]wgl,mfes+es+1).
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Proposition 11. On V, ® V,,,, we have

Ilm
bififlfiJrlw; )
l—es+esy1,m l—es+esy1,m l—est+esi1,m l—est+esp1,m
= Aw! i )+B1f¢+1’w§~ O fiw) A )+D1fi—1fi+1w§_es )

Jt+es+1 j—estesii
(I,m—es+tesy1) (I,m—es+esy1) (I,m—es+tesy1) (Im—es+esy1)
+ Adsw; o + Ba firiw; A Coficvw T, o T+ Daficafipiwy e T

(I+es—esy1,m) ) (I+es;—est1,m) ) (I+es—esy1,m) ] (I+es—esp1,m)
+ A?’wj-i-es + B3fz+1wj+es—es+1 + C3f1_1wj + DSf’_lfi+1wj—es+1

(I,m+tes—esi1)

(Im+tes—esy1) (lmtes—est1) (Im+tes—esy1)
+ Agwji, + Bafiriwjiie. — . T+ Cafiiw; + Dyficrfirrw;Ze ;
(25)

where
Us - js][merl - js+1][ls +ms — js + 1]
(ls +mgs —2js + 1[lsp1 +msy1 — 2js41 + 1]
[ls+1 = Jss1l[ms — Jsllls +ms — js + 1]
[ls +ms = 2js + [lsy1 + ms1 — 251 + 1]
[st1 = Jsra]lms — Jsllls+1 + msg1 — Joy1 + 1]
[ls +ms — 255 + [ls41 + Ms1 — 2541 + 1]
2552541 —ls—lsp1—2ms—2 [ls - js“ms+1 - js+1][ls+1 + Mst1 — js+1 + 1]

A = qjs+js+1 —lsy1—ms—1

Ay =—

As = qu+Js+1*ls —ms—1

Ay = - - )
! I [ls + ms — 2js + 1[ls+1 + Msp1 — 2Js+1 + 1]
s — 7 1 -2
Bj _ B; [ls + mg '.]s + Hls—H + Mgy '.]s—',-l] (j —1, 2)7
[ls +ms — 2js + 1 [Lsg1 + Msg1 — 2st1 + 1]
_ Ust1]lls+1 + Mst1 — 2js41] (j = 3.4)
! [ls +ms —2js + 1] [ls-i-l + M1 — 2541 + 1] e
js)[ls + ms — 2]
C:Cl [js][s S s :1727
! / [le +ms — 2js + ]-] [ls+1 + Mmes41 — 2js+1 + 1] J )
—C [ls +ms — 2.]'3][13—}-1 + Mst1 — Js+1 + 1] 3 4)
][l5+ms—2js+1][18+1+m5+1 _2js+1 +1] ’ ’
ls s 2 .s ls s -2 ‘s .
D, = Dyt Z Bl H e Mol (g 930,

J [ls + ms — 2.75 + 1][ls+1 + Ms+1 — 2j5+1 + 1]

Proof. Similar to Proposition8 and 9, bifi_lfi_l,_lwgl,m) can be expressed with suitable scalars A;, B;, C;, D;
(1 <j<4)as (25). By applying e;_1e;+1 on both sides, the first to third terms in each line of the right
hand side vanish. So by Proposition 8, D; (1 < j < 4) is determined. Then, by applying e;+1 on both
sides of (25), B, (1 < j <4) is determined, and by applying e;,_1, C; (1 < j <4) is done by Proposition
9. Finally, A; (1 <j <4) is determined by a direct calculation. O

Corollary 12. On V; ® V,,,, we have

(I,m+tes—esi1)
Jjtes

(l+es—esy1,m)
Jjtes

(Im—estesy1)
Jjtest1

(tm) _ (I—estest1,m)
bificifiprw;” =awy 0

+ (other terms),

+ asw + asw + agw

where a; (j =1,2,3,4) is given in Proposition 11 and (other terms) stands for the linear combination of
vectors of the form 'w;l, ™) possibly applied by f;_1, fix1 with (I';m’) appearing in the right hand side
and ji, < g for 1 <k <n.

4.3. Proof of Theorem 6. We prove Theorem 6 when ¢ = 0. Suppose W is a nonzero U‘-invariant
subspace of V; ® V,,,. Note that U* contains U(I,). In view of Proposition 7, one can assume that W

contains a vector of the form
Z c(l,m,j)wy’m) (26)

Lm,jg
where ¢(I,m, j) € Q(q) and I, m, j run over all possible integer vectors such that I; +mg — 2J, is constant
for any s = 1,...,n. By applying b; (i € I,) in a suitable order, from Proposition 8 one can assume j = o

in (26). Then by Corollary 10, one can eventually assume I = le;, m = me; where | = [l|,m = |m)|.

l
Hence, we have wgel’mel) ew.



Next show wf,lleﬁbe%mleﬁmwﬁ € W for any 11,12, m1, ms such that I; + 1o = I,m; + mg = m. We
do it by induction on & = Iy + mg3. The & = 0 case is done. Assume wglel+l262’mlel+m2e2) € W for

lo +mgo = k. By Corollary 10, we have
b2f1w(l1e1+lze2,m1e1+mgeg) — qm27m1 [Zl]w((ll71)el+(l2+1)52,mlel+m262) + [ml]w(llel+l2ez,(m171)el+(m2+1)82)
o o o )

(bafs) -+ (ban—2fan—1)(bofr)w(rer Hizezmiertmaez)

_ [ll]wg(ll*1)81+(l2+1)627m1€1+m282) + qlzfll [ml]wg1€1+l262,(m1*1)81+(m2+1)€2).

If I3 + my1 # ls + mo, these two vectors are linearly independent. Hence the induction proceeds up to
(lez,me2)

k <ly +myi. When I + mo > 11 + m1, we first recognize that we € W by applying (bo.f1)"*™ to
{lerme1) YWe then do the same exercise as before.
Let us now show W contains 'wg ™) for any possible [ and m. From the previous paragraph, we know
(l,meq)

wiertlzezmen) oy Applying b; f;—1 (i =4,...,2n — 2) suitable times, we know w, € W for any

l. Then by doing similarly including ¢ = 2, we know wg’m) € W for any I, m.

By Proposition 7, it is enough to show W contains wg-l’m) for any possible I, m,j. From the consid-
erations so far, it is true when |j| = 0. The following proposition makes the induction on |j| work and

finishes the proof of Theorem 6.

Proposition 13. Consider the following matriz C depending on l,m,j. Its row index runs over all
(i, 5,m,5) withi = 0,2,...,2n — 2 and |l| = I,|m| = m,|j| = j, and its column index runs over all
(', m', ") with |U'| = 1,|m/| = m,|j'| =7+ 1. The entry for the pair ((i,1,m,3),(l',m’,j")) is given by
the coefficient of wgl, ™) in bifi,lfiﬂw;l’m) in the previous proposition. Then C is of full rank. Note

that the rank does not depend on the orders of the index sets.

Proof. Let A be the subring of Q(q) defined by A = {f(q) € Q(q)| f(q) is regular at ¢ = 0}. Let oy
(t=1,2,3,4) be the largest integer such that a; in Corollary 12 belongs to ¢** A. We have

oy — Qg =0y — Q3= Js+ Jer1 — ls —mep1 — 1 <0,
Qg — a1 = 2541 — lsp1 —msp1 — 1 <0,

since j; < min(lg, m¢) (t = s, s+ 1). Therefore, ay is minimal and the others are strictly larger.

For wg.l,l’m,) such that |l'| =1, |m/| = m,|j'| = j + 1, choose the minimal s such j/ > 0 and consider

bifi_lfi+1w§.l/,;z/_e“+e”1) with i = 2s. By Proposition 11 the fourth term of the above is nonzero.
Consider the row of C' corresponding to the index (i,1',m' — es + es11,j’ — es). By multiplying a
suitable scalar to this row, one can make the ((i,I',m’ — e, + e41,5 — es), (I, m',j"))-entry of C be
1, and the other three nonzero entries in the same row belong to qA. Consider the square matrix C’
obtained by varying all possible (I, m/, j') and picking the corresponding renormalized rows. Then from
the construction, det C” belongs to {1} + ¢A. Hence the assertion is confirmed. O
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