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Abstract. Parallel Kähler submanifolds here mean complex submanifolds
immersed in complex projective spaces with parallel second fundamental form.

Such submanifolds were classified by Hisao Nakagawa and Ryoichi Takagi
(1976), Masaru Takeuchi (1978, 1984) by two different methods of unitary rep-
resentation theory and Jordan triple systems. In this article we briefly survey
such related submanifold theory and give the third proof for their classification

theorem, based on the differential geometric characterization of R-spaces due

to Carlos Olmos and Cristián U. Sánchez (1991).

1. Introduction

Let Mm be a complex m-dimensional complex submanifold immersed in a
complex n-dimensional complex projective space CPn. Here CPn is endowed with
the Fubini-Study metric of constant holomorphic sectional curvature 4. Then M
becomes intrinsically a Kähler manifold with respect to the metric gM and complex
structure J induced from CPn, thus M is also called a Kähler submanifold of CPn.
When M is not contained in any proper totally geodesic complex submanifold
CP k (0 ≤ k ≤ n− 1) of CPn, we say that M is fully immersed in CPn. We denote
by αM the second fundamental form of M in CPn. The covariant derivative ∇∗αM

of αM in terms of the normal connection ∇⊥ and the Levi-Civita connection ∇M

is defined as

(1.1) (∇∗αM )X(Y, Z) := ∇⊥
X(αM (Y, Z))− αM (∇M

X Y, Z)− αM (Y,∇M
X Z)

for any smooth vector fields X,Y, Z on M . If αM satisfies the equation

(1.2) ∇∗αM = 0,

then we say that the submanifold M has parallel second fundamental form. A
complex submanifold of CPn with parallel second fundamental form is called simply
a parallel Kähler submanifold. From the Gauss equation it is well-known that any

2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C42, 53C55.
Key words and phrases. Kähler submanifolds, parallel second fundamental forms, R-spaces.
This work is partly supported by JSPS KAKENHI Grant Numbers JP17H06127,

JP18K03307, JP18H03668 and by Osaka City University Advanced Mathematical In-
stitute: MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics

JPMXP0619217849.

1



2 YOSHIHIRO OHNITA

Kähler submanifold M of CPn with parallel second fundamental form is a locally
Hermitian symmetric space. In 1976-77 Nakagawa and Takagi [11] and Takeuchi
[19] have classified parallel Kähler submanifolds of CPn as follows:

Theorem 1.1 (Nakagawa and Takagi [11], Takeuchi [19]). A complex subman-
ifold M fully immersed in CPn has parallel second fundamental form if and only if
it is congruent to the open part of one of the following seven complex submanifolds:

M1 = CPm(4) ⊂ CPm(4) totally geodesic

M2 = CPm(2) ⊂ CPn+ 1
2n(n+1)(4)

M3 = CPn−s(4)× CP s(4) −→ CPn+s(n−s)(4)

M4 = Qn(C) −→ CPn+1(4) (n ≥ 3)

M5 = SU(s+ 2)/S(U(2)× U(s)) −→ CP 2s+ 1
2 s(s+1)(4) (s ≥ 3)

M6 = SO(10)/U(5) −→ CP 15(4)

M7 = E6/((U(1)× Spin(10))/Z4) −→ CP 26(4)

Note that they are Hermitian symmetric spaces of compact type and rank at
most 2. Several beautiful curvature characterizations related to those seven Kähler
submanifolds are known as [16] etc., inspired by Ogiue’s conjectures ([12]).

The first proof of Theorem 1.1 was given by Nakagawa-Takagi ([11]) and
Takeuchi ([19]) by the method of the unitary representation theory for compact
Lie groups. For a Kähler immersion φ : M → CPn, the degree d(φ) of φ (cf. [11])
is defined in terms of the higher order holomorphic osculating spaces along φ, and by
definition d(φ) = 1 or 2 if and only if φ has parallel second fundamental form. By
Calabi’s rigidity and extension theorem ([2]), we may assume that M is a compact
Hermitian symmetric space and φ is full, and then φ is an equivariant holomorphic
map with respect to a unitary representation ρ of a maximal connected isometry
group G on M into SU(n+1). Moreover, if we decompose M into a direct product
of irreducible compact Hermitian symmetric spaces Mi (1 ≤ i ≤ ℓ), then there is
the pi-th standard embedding φi : Mi → CPni for each i such that φ is expressed
as a tensor product map of those equivariant holomorphic maps φi. If we denote

by ri the rank of each Mi, then they showed the degree formula d(φ) =
∑ℓ

i=1 piri
([11], [19]). By determining all Kähler immersions φ with d(φ) = 1 or 2, they
obtained Theorem 1.1.

The second proof of Theorem 1.1 was given by Takeuchi ([20]) in 1984 by
the algebraic method of Jordan triple systems. It is based on the correspon-
dence between positive definite Hermitian Jordan triple systems and irreducible
symmetric bounded domains, which is due to M.Koecher ([9]), see also I. Satake
([17]). A crucial point of [20] is to construct a positive definite Hermitian Jor-
dan triple system with a Jordan product defined from the second fundamental
form of a given parallel Kähler submanifold of CPn. The corresponding symmet-
ric bounded domain is an irreducible Hermitian symmetric space G∗/K of non-
compact type. Let g∗ = k + p∗ be the Cartan decomposition of g∗ and we have
an identification p1,0 ∼= Cn+1, where pC = p1,0 + p0,1 is the eigenspace decompo-
sition of the complexification pC = (p∗)C with respect to the complex structure
tensor of the Hermitian symmetric space G∗/K. We take the highest root vector
E+( ̸= 0) ∈ p1,0 relative to the maximal abelian subalgebra of k. Through the
Hopf fibration π : S2n+1(1) → CPn, he showed that the original parallel Kähler
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submaifold Mm is congruent to π(Ad(K)E+) ⊂ CPn, which is the projection of
an R-space Ad(K)E+. In general an R-space is by definition a compact homoge-
neous space obtained as an orbit of the isotropy representation of a Riemannian
symmetric space, i.e. an s-representation (see Section 2). In this way he obtained

Theorem 1.2 (Takeuchi [20]). Any parallel Kähler submanifold of CPn can
be obtained by the projection of an R-space obtained as an orbit of the isotropy
representation of an irreducible Hermitian symmetric space.

In 1991 Olmos and Sánchez ([13]) gave a differential geometric characteriza-
tion of R-spaces standardly embedded in Euclidean spaces. They showed that a
submanifold N immersed in a Euclidean space Rm+k is a standardly embedded
R-space if and only if there exists a canonical connection ∇c (see Section 2 for
the definition) on the tangent vector bundle TN such that the second fundamental
form αN of N satisfies the equation

(1.3) (∇cαN )X(Y, Z) := ∇⊥
X(αN (Y, Z))− αN (∇c

XY, Z)− αN (Y,∇c
XZ) = 0

for each smooth vector field X,Y, Z on M . It successfully generalizes the clas-
sification theorem due to Ferus ([7],[8], see also [4]) for parallel submanifolds in
Euclidean spaces by means of symmetric R-spaces in the case when ∇c is the Levi-
Civita connection ∇N of N . Differential geometry of symmetric R-spaces has a
long and fruitful history and it was first studied by a pioneering work of Tadashi
Nagano [10] in 1965 from the viewpoint of transformation groups.

In this article we shall give the third proof of Theorems 1.1 and 1.2 based
on the differential geometric characterization of R-spaces due to Olmos-Sánchez.
The main results of this article (Theorem 3.2) are the explicit construction of a
canonical connection (different from the Levi-Civita connection!) on the inverse

image M̂ of any complex submanifold M of CPn under the Hopf fibration and
that M̂ satisfies the Olmos-Sánchez’s condition (1.3) with respect to this canonical
connection if and only if M is a parallel Kähler submanifold of CPn. Moreover
by Olmos-Sánchez’s theorem and some elementary arguments it will be shown that
such an inverse image is a standardly embedded R-space obtained as an orbit of
the isotropy representation of an irreducible Hermitian symmetric space. It implies
the classification theorem of parallel Kähler submanifolds of CPn.

This article is organized as follows: In Section 2 we recall the definition of
R-spaces and the standard embeddings constructed from an arbitrary given com-
pact symmetric space G/K. And we explain the precise definition of a canonical
connection on a Riemannian manifold and Olmos-Sánchez’s theorem of differential
geometric characterizations for R-spaces. In Section 3 we show our main results.
Our main tool is the classical technique of Riemannian submersions ([14]) for the
Hopf fibration restricted to a Kähler submanifold of a complex projective space.
Moreover we discuss related properties and the classification theorem of parallel
Kähler submanifolds.

As other related topics, totally complex submanifolds in quaternionic projective
spaces with parallel second fundamental form were classified by K.Tsukada in 1985
([21]). More recently we have also obtained a similar result for such submanifolds.
It will be described in detail in the forthcoming joint paper with Kaname Hashimoto
(OCAMI) and Jong Taek Cho (Chonnam National University).

Throughout this article any manifold is smooth, connected and second count-
able.
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2. R-spaces and Olmos-Sánchez’s characterization

Let (G,K) be a compact symmetric pair associated with a compact symmetric
space G/K. Here G is a connected compact Lie group with Lie algebra g and K
is a compact Lie subgroup of G with Lie algebra k. Let g = k+ p be the canonical
decomposition of g as a symmetric Lie algebra. The vector space p can be regarded
as a Euclidean space by the restriction of an Ad(G)-invariant inner product ⟨ , ⟩ of
g to p. The isotropy representation of a compact symmetric space G/K is given by
an orthogonal representation of K on the vector space p

Adp : K ∋ a 7−→ Ad(a)|p ∈ O(p),

which is also called an s-representation. It is well-known to be a polar represen-
tation. For any non-zero H ∈ p, we define a compact homogeneous space K/KH

diffeomorphic to an orbit of the isotropy representation of K through H by

ΦH : K/KH ∋ aKH 7−→ Ad(a)H ∈ Ad(K)H ⊂ p

where KH := {a ∈ K | Ad(a)H = H}. Then so obtained compact homogeneous
space K/KH is called an R-space and the embedding ΦH : K/KH → p is called
the standard embedding of R-space K/KH . When K/KH is a compact symmet-
ric space, K/KH is called a symmetric R-space. Then the standard embedding
ΦH : K/KH → p has parallel second fundamental form and symmetric R-spaces
give all submanifolds of Euclidean spaces with parallel second fundamental form
(Ferus [7]). When H ∈ p is a regular element (by definition Ad(K)H is of maximal
dimension), K/KH is called a regular R-space. Then ΦH : K/KH → p is a homo-
geneous isoparametric submanifold of a Euclidean space and regular R-spaces give
all homogeneous isoparametric submanifolds of Euclidean spaces ([15] and [3]).

Olmos and Sánchez ([13]) have showed that a general R-space standardly em-
bedded into a Euclidean spaces can be characterized by the parallelism of the second
fundamental form with respect to the normal connection and a canonical connection
(not necessary the Levi-Civita connection!) on a given submanifold of a Euclidean
space. Next we shall describe their results.

Let N be a connected submanifold immersed in the Euclidean space Rl. Let gN
be a Riemannian metric on N induced from Rl and let ∇N denote the Levi-Civita
connection of a Riemannian manifold (N, gN ). An affine connection ∇̃ on N is

called a metric connection with respect to g if ∇̃ satisfies the condition

(2.1) ∇̃gN = 0.

Let D be a tensor field on N of type (1, 2) defined by

(2.2) D := ∇N − ∇̃.

The metric condition (2.1) is equivalent to the condition that for each vector X ∈
TN the linear endomorphism DX is skew-symmetric with respect to gN , that is,

(2.3) gN (DXY, Z) + gN (Y,DXZ) = 0 (∀Y, Z ∈ TN).

A metric connection ∇c is called a canonical connection of a Riemannian manifold
(N, gN ) if ∇c satisfies the condition

(2.4) ∇cDc = 0,

where Dc := ∇N−∇c is a tensor field on N of type (1, 2). Note that the Levi-Civita
connection itself is a trivial example of a canonical connection of (N, gN ) as Dc = 0
in this case.
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The covariant derivative ∇cαN of the second fundamental form αN in terms of
the normal connection ∇⊥ and a canonical connection ∇c is defined by

(2.5) (∇c
XαN )(Y, Z) := ∇⊥

X(αN (Y, Z))− αN (∇c
XY, Z)− αN (Y,∇c

XZ)

for any smooth vector fields X,Y, Z on M . Then

Theorem 2.1 (Olmos and Sánchez [13]). Let N be a connected compact sub-
manifold fully embedded in the Euclidean space Rl. Then the following three condi-
tions are equivalent each other:

(1) There is a canonical connection ∇c on N such that

(2.6) ∇cαN = 0.

(2) N is a homogeneous submanifold with constant principal curvatures (see
[13, p.127, Definition 1.2] for the definition).

(3) N is an orbit of an s-representation, that is, an R-space standardly em-
bedded in the Euclidean space.

In this case we call a tensor field Dc on N of type (1, 2) defined defined by
Dc := ∇N −∇c a homogeneous structure tensor field on a submanifold N . Notice
that the argument of [13] also works to have the local version of this theorem.
The proof of the implication (2) ⇒ (3) uses the classification theorem of polar
representations by Dadok [3], which clams that any orthogonal polar representation
is orbit-equivalent to an s-representation. See also [5], [6], [1] for a conceptional
proof of Dadok’s result subject to some restriction and further works.

3. Homogeneous structure on the inverse images of parallel Kähler
submanifolds under the Hopf fibration

Let Cn+1 be an n+ 1-dimensional complex Euclidean space with the standard
Hermitian inner product ⟨⟨x,y⟩⟩ :=

∑n+1
i=1 xiȳi for each x = (x1, · · · , xn+1),y =

(y1, · · · , yn+1) ∈ Cn+1. Let ⟨x,y⟩ := Re⟨⟨x,y⟩⟩ denote the standard real inner
product of Cn+1. Let S2n+1(1) := {x ∈ Cn+1 | ⟨x,x⟩ = 1} be the unit standard
hypersphere of Cn+1 and π : S2n+1(1) −→ CPn be the Hopf fibration over an n-
dimensional complex projective space CPn. We endow CPn with the Fubini-Study
metric of constant holomorphic sectional curvature 4 so that π : S2n+1(1) −→ CPn

is a Riemannian submersion. Then we have an orthogonal direct sum decomposition
of the tangent vector bundle of S2n+1(1) into vertical and horizontal subbundles:

TS2n+1(1) = VS2n+1(1)⊕HS2n+1(1).

For a tangent vector or a vector field X on CPn, we denote by X̃ the horizontal
lift of X to S2n+1(1). A horizontal vector field on CPn is called basis if it is given
as a horizontal lift of a vector field on S2n+1(1).

We denote also by x the position vector of a point in Cn+1. The vertical
subspace at each point x ∈ S2n+1(1) is expressed as

VxS
2n+1(1) = R

√
−1x.

At each point x ∈ S2n+1(1), the restriction of the differential of π to the hor-
izontal subspace (dπ)x : HxS

2n+1(1) → Tπ(x)CPn is a linear isometry and we

have (dπ)x(X̃) = X for each vector X ∈ Tπ(x)CPn. Each horizontal subspace

HxS
2n+1(1) is invariant under the scalar multiplication by

√
−1 on Cn+1. The
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complex structure tensor J of CPn is induced by this multiplication
√
−1× and it

can be described as

JX = J(dπ)x(X̃) = (dπ)x(
√
−1X̃) or J̃X =

√
−1X̃ ∈ HxS

2n+1(1).

Under the identification Tπ(x)CPn ∼= T 1,0
π(x)CP

n = HomC(Cx, (Cx)⊥), for each

X ∈ Tπ(x)CPn we have X̃ = X(x) ∈ (Cx)⊥ = HxS
2n+1(1) ∈ Cn+1 and

(JX)(x) = X(
√
−1x) =

√
−1X(x),

where (Cx)⊥ denotes an n-dimensional complex vector subspace of Cn+1 defined
by

(Cx)⊥ := {v ∈ Cn+1 | ⟨⟨v, w⟩⟩ = 0 (∀w ∈ Cx)}.
In this case the O’Neill tensors T and A for the Riemannian submersion ([14])

are given by T = 0 and

(3.1) AX̃ Ỹ = −⟨
√
−1X̃, Ỹ ⟩

√
−1x

for each horizontal vectors X̃,Ỹ at x ∈ S2n+1(1).
Suppose that Mm is a complex m-dimensional complex submanifold immersed

in CPn. The inverse image of the submanifold M under the Hopf fibration π :
S2n+1(1) −→ CPn is defined as

M̂ =π−1(M)

={(p,x) ∈ M × S2n+1(1) | p ∈ M,x ∈ π−1(φ(p)) ⊂ S2n+1(1)}.

Cn+1

∪

S2n+1(1)

π π S1

CPn

-M̂ = π−1(M)
φ̂

? ?
S1

M
φ

-

Then M̂ is a real 2m+1-dimensional submanifold immersed in S2n+1(1) ⊂ Cn+1 ∼=
R2n+2 and the projection π : M̂ → M is also a Riemannian submersion, so that we
have an orthogonal direct sum decomposition of the tangent vector bundle of M̂
into vertical and horizontal subbundles:

TM̂ = VM̂ ⊕HM̂.

Here note that the vertical subspace at each point x ∈ M̂ is given by

VxM̂ = VxS
2n+1(1) = R

√
−1x.

We shall construct explicitly a homogeneous structure tensor field D in the
sense of Olmos and Sánchez on the inverse image M̂ = π−1(M).

Now we define the tensor field D of type (1, 2) on M̂ = π−1(M) ⊂ S2n+1(1) by

(3.2)


DX̃(Ỹ ) := −⟨

√
−1X̃, Ỹ ⟩

√
−1x ∈ VxM̂,

DX̃(V ) :=
√
−1X̃ = J̃X ∈ HxM̂,

DV (X̃) :=
1

2

√
−1X̃ =

1

2
J̃X ∈ HxM̂,

DV (V ) := 0
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for each horizontal vectors X̃, Ỹ and the vertical vector V =
√
−1x on M̂ .

Remark 3.1. We can also define the tensor field D of type (1, 2) on S2n+1(1)
by

(3.3)


DX̃(Ỹ ) := −⟨

√
−1X̃, Ỹ ⟩

√
−1x ∈ VxS

2n+1(1),

DX̃(V ) :=
√
−1X̃ = J̃X ∈ HxS

2n+1(1),

DV (X̃) :=
1

2

√
−1X̃ =

1

2
J̃X ∈ HxS

2n+1(1),

DV (V ) := 0

for each horizontal vectors X̃, Ỹ on S2n+1(1) and the vertical vector V =
√
−1x on

S2n+1(1). Notice that if M is a complex manifold of CPn, then the restriction of

D to its inverse image M̂ = π−1(M) coincides with the tensor field D of type (1, 2)

on M̂ defined by (3.2). Also note that DX̃(Ỹ ) = AX̃(Ỹ ).

Then the main result of this article is described as follows:

Theorem 3.2. Suppose that M is a complex submanifold immersed in CPn.

Let ∇M̂ be the Levi-Civita connection of its inverse image M̂ = π−1(M) ⊂ S2n+1(1)

and D be a tensor field of type (1, 2) defined by (3.2) on M̂ = π−1(M). Then

(1) The affine connection ∇c := ∇M̂ − D of M̂ is a (non-trivial) canonical

connection on M̂ .
(2) M has parallel second fundamental form if and only if M̂ satisfies

(3.4) ∇cαM̂ = 0.

We prove this theorem by showing the following Lemmas 3.3, 3.4 and ??.

Lemma 3.3. The affine connection ∇c is a metric connection on M̂ , that is.

(3.5) gM̂ (Duv, w) + gM̂ (v,Duw) = 0

for all vectors u, v, w ∈ TM̂ .

Proof. Following the definition of D, for each horizontal vectors X̃, Ỹ , Z̃ and
a vertical vector V =

√
−1x we compute

gM̂ (DX̃ Ỹ , Z̃) + gM̂ (Ỹ ,DX̃ Z̃) =0 + 0 = 0,

gM̂ (DX̃V, Z̃) + gM̂ (V,DX̃ Z̃) =⟨
√
−1X̃, Z̃⟩ − ⟨

√
−1X̃, Z̃⟩ = 0 + 0 = 0,

gM̂ (DX̃V, V ) + gM̂ (V,DX̃V ) =0 + 0 = 0,

gM̂ (DV Ỹ , Z̃) + gM̂ (Ỹ ,DV Z̃) =
1

2
⟨
√
−1Ỹ , Z̃⟩+ 1

2
⟨Ỹ ,

√
−1Z̃⟩

=
1

2
⟨
√
−1Ỹ , Z̃⟩ − 1

2
⟨
√
−1Ỹ , Z̃⟩

=0,

gM̂ (DV V, Z̃) + gM̂ (V,DV Z̃) =0 + 0 = 0,

gM̂ (DV V, V ) + gM̂ (V,DV V ) =0.

□
Lemma 3.4. The tensor field D on M̂ satisfies the equation

(3.6) ∇M̂D = D ·D.
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Proof. Let X̃, Ỹ , Z̃ be any basic horizontal vector fields on M̂ and V =
√
−1x

be a vertical vector field on M̂ . First we show the equation

(3.7) (∇M̂
Z̃
D)X̃(Ỹ ) = (DZ̃ ·D)X̃(Ỹ ).

By the definition of D we compute

(∇M̂
Z̃
D)X̃(Ỹ )

=∇M̂
Z̃
(DX̃ Ỹ )−D∇M̂

Z̃
X̃
Ỹ −DX̃(∇M̂

Z̃
Ỹ )

=∇M̂
Z̃
(DX̃ Ỹ )−D−⟨

√
−1Z̃,X̃⟩V Ỹ −DX̃(−⟨

√
−1Z̃, Ỹ ⟩V )

=− ⟨
√
−1X̃, Ỹ ⟩

√
−1Z̃ + ⟨

√
−1Z̃, X̃⟩

√
−1

2
Ỹ + ⟨

√
−1Z̃, Ỹ ⟩

√
−1X̃.

On the other hand, we compute

(DZ̃ ·D)X̃(Ỹ )

=DZ̃(DX̃ Ỹ )−DDZ̃X̃ Ỹ −DX̃(DZ̃ Ỹ )

=− ⟨
√
−1X̃, Ỹ ⟩

√
−1Z̃ + ⟨

√
−1Z̃, X̃⟩

√
−1

2
Ỹ + ⟨

√
−1Z̃, Ỹ ⟩

√
−1X̃

Hence we obtain the equation (3.7). Following the definition of D, we can check all
of the following other equations:

(3.8) (∇M̂
V D)X̃(Ỹ ) = (DV ·D)X̃(Ỹ )

(3.9) (∇M̂
Z̃
D)X̃(V ) = (DZ̃ ·D)X̃(V )

(3.10) (∇M̂
Z̃
D)V (Ỹ ) = (DZ̃ ·D)V (Ỹ )

(3.11) (∇M̂
V D)X̃(V ) = (DV ·D)X̃(V )

(3.12) (∇M̂
Z̃
D)V (V ) = (DZ̃ ·D)V (V )

(3.13) (∇M̂
V D)V (Ỹ ) = (DV ·D)V (Ỹ )

(3.14) (∇M̂
V D)V (V ) = (DV ·D)V (V )

However they are also quite elementary computations. □

Since (3.6) is equivalent to (2.4), it follows from Lemmas 3.5 and 3.6 that ∇c

is a canonical connection on M̂ .

Lemma 3.5. ∇∗αM = 0 if and only if ∇cαM̂ = 0, that is,

(3.15) (∇∗
uα

M̂ )(v, w) + αM̂ (Duv, w) + αM̂ (v,Duw) = 0

for all vectors u, v, w ∈ TM̂ .
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Proof. We use some results from the fundamental equations of Riemannian
submersions (cf. [14]). The second fundamental forms of M̂ and M are related as

(3.16) αM̂ (X̃, Ỹ ) = (αM (X,Y ))̃

for any tangent vectors X, Y on M . By tanking the covariant derivative of the
equation (3.16) in the horizontal direction Z̃ we have

(3.17) (∇∗
Z̃
αM̂ )(X̃, Ỹ ) + αM̂ (AZ̃X̃, Ỹ ) + αM̂ (X̃,AZ̃ Ỹ ) = ((∇∗

Zα
M )(X,Y ))̃

for any tangent vectors X, Y , Z on M . Since the fibers of π : S2n+1(1) → CPn are
totally geodesic, we have

(3.18) αM̂ (V,W ) = 0

for any vertical vectors V , W on M̂ . It follows from (3.18) that

(3.19) (∇∗
Uα

M̂ )(V,W ) = 0

for any vertical vectors U , V , W on M̂ . Moreover, sinceM is a complex submanifold
of CPn, for each normal vector field ξ to M we compute

gS2n+1(αM̂ (V, Ỹ ), ξ̃) =gS2n+1(∇S2n+1

Ỹ
V, ξ̃)

=− gS2n+1(V,∇S2n+1

Ỹ
ξ̃)

=− gS2n+1(V,AỸ ξ̃)

=− gS2n+1(V,−⟨
√
−1Ỹ , ξ̃⟩

√
−1x)

=gS2n+1(V, ⟨J̃Y , ξ̃⟩
√
−1x)

=⟨J̃Y , ξ̃⟩gS2n+1(V,
√
−1x)

=gCPn(JY, ξ)gS2n+1(V,
√
−1x) = 0.

Hence we have

(3.20) αM̂ (V, Ỹ ) = 0

for any vertical vector V and any horizontal vector Ỹ on M . It follows from (3.20)
that

(3.21) (∇∗
Uα

M̂ )(V, Ỹ ) = 0

for any vertical vectors U , V and any horizontal vector Ỹ on M̂ . It follows from
(3.18) and (3.20) that

(3.22) (∇∗
X̃
αM̂ )(V,W ) = 0

for any vertical vectors V , W and any horizontal vector X̃ on M̂ .
By (3.17), (3.18), (3.20) and the definition of D, we have

(∇∗
Z̃
αM̂ )(X̃, Ỹ ) + αM̂ (DZ̃X̃, Ỹ ) + αM̂ (X̃,DZ̃ Ỹ )

=(∇∗
Z̃
αM̂ )(X̃, Ỹ ) = ((∇∗

Zα
M )(X,Y ))̃ .

(3.23)

By differentiating (3.16) in the vertical direction V =
√
−1x, we have

gS2n+1((∇∗
V α

M̂ )(X̃, Ỹ ), ξ̃)

+gS2n+1(αM̂ (J̃X, Ỹ ), ξ̃) + gS2n+1(αM̂ (X̃, J̃Y ), ξ̃) + gS2n+1(αM̂ (X̃, Ỹ ), J̃ξ) = 0
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for any tangent vectors X, Y on M and any normal vector ξ to M . By (3.16), the
identity for a Kähler submanifold M and the definition of D we compute

gS2n+1(αM̂ (J̃X, Ỹ ), ξ̃) + gS2n+1(αM̂ (X̃, J̃Y ), ξ̃) + gS2n+1(αM̂ (X̃, Ỹ ), J̃ξ)

=gCPn(αM (JX, Y ), ξ) ◦ π + gCPn(αM (X, JY ), ξ) ◦ π + gCPn(αM (X,Y ), Jξ) ◦ π
=gCPn(αM (JX, Y ), ξ) ◦ π

=
1

2
gCPn(αM (JX, Y ), ξ) ◦ π +

1

2
gCPn(αM (X, JY ), ξ) ◦ π

=
1

2
gS2n+1(αM̂ (J̃X, Ỹ ), ξ̃) +

1

2
gS2n+1(αM̂ (X̃, J̃Y ), ξ̃)

=gS2n+1(αM̂ (
1

2

√
−1X̃, Ỹ ), ξ̃) + gS2n+1(αM̂ (X̃,

1

2
Ỹ ), ξ̃)

=gS2n+1(αM̂ (DV X̃, Ỹ ), ξ̃) + gS2n+1(αM̂ (X̃,DV Ỹ ), ξ̃).

Hence we have

(3.24) (∇∗
V α

M̂ )(X̃, Ỹ ) + αM̂ (DV X̃, Ỹ ) + αM̂ (X̃,DV Ỹ ) = 0.

It follows from (3.19) and the definition of D that

(∇∗
Uα

M̂ )(V,W ) + αM̂ (DUV,W ) + αM̂ (V,DUW ) =(∇∗
Uα

M̂ )(V,W )

=0.
(3.25)

By using (3.18), (3.20) and the definition of D, we compute

(∇∗
X̃
αM̂ )(V,W ) + αM̂ (DX̃V,W ) + αM̂ (V,DX̃W ) =(∇∗

X̃
αM̂ )(V,W )

=0.
(3.26)

By differentiating (3.20) in the horizontal direction X̃, we have

(∇∗
X̃
αM̂ )(V, Ỹ ) + αM̂ ((AX̃V )TM̂ , Ỹ ) = 0.

By (3.18) and the definition of D it becomes

(∇∗
X̃
αN̂ )(V, Ỹ ) + αN̂ (DX̃V, Ỹ ) + αN̂ (V,DX̃ Ỹ )

=(∇∗
X̃
αN̂ )(V, Ỹ ) + αN̂ (DX̃V, Ỹ )

=(∇∗
X̃
αN̂ )(V, Ỹ ) + αN̂ ((AX̃V )TN̂ , Ỹ ) = 0.

(3.27)

By using (3.22), (3.18), (3.20) we compute

(3.28) (∇∗
WαM̂ )(V, Ỹ ) + αM̂ (DWV, Ỹ ) + αM̂ (V,DW Ỹ ) = (∇∗

WαM̂ )(V, Ỹ ) = 0.

By those six equations (3.23), (3.24), (3.25), (3.26), (3.27) and (3.28), we obtain
Lemma 3.5. □

Since (3.15) is equivalent to (3.4), we obtain Theorem 3.2. Therefore by Olmos

and Sánchez’s theorem 2.1 M̂ is obtained as a standardly embedded R-space, that
is, an orbit of the isotropy representation of a Riemannian symmetric pair (G,K).

In order to construct extrinsic symmetries of M̂ ⊂ S2n+1(1) ⊂ Cn+1, we recall

the argument of [13]. For any p, q ∈ M̂ , let τ = τ(t) (t ∈ [a, b]) be a piecewise

smooth curve on M̂ joining from p = τ(a) to q = τ(b). Let

τ ba : TpM̂ −→ TqM̂
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denote the parallel displacement along τ with respect to the canonical connection
∇c. Since the curvature tensor field Rc and the torsion tensor field T c of ∇c satisfy
∇cRc = 0 and ∇cT c = 0, there is a local isometry s : Up → Uq of M̂ such that

s(p) = s̃(p) = q,

s(p′) = s̃(p′) (∀p′ ∈ Up),

(ds)p = τ ba.

Let

(τ⊥)ba : T⊥
p M̂ −→ T⊥

q M̂

denote the parallel displacement along τ with respect to the normal connection ∇⊥.
By using the orthogonal direct sum decompositions as real vector subspaces

Cn+1 ∼= R2n+2 =Rx(p)⊕ TpM̂ ⊕ T⊥
p M̂

=Rx(q)⊕ TqM̂ ⊕ T⊥
q M̂,

we define an isometry s̃ of S2n+1(1), that is, s̃ ∈ SO(2n+ 2) by
s̃(x(p)) := x(q),

s̃|TpM̂
:= (ds)p = τ ba,

s̃|T⊥
p M̂ := (τ⊥)ba.

Then it follows from the condition ∇cαM̂ = 0 and the linearity of s̃ that
s(p) = s̃(p) = q,

s(p′) = s̃(p′) (∀p′ ∈ Up),

(ds)p = (ds̃)p|TpM = s̃|TpM = τ ba,

(ds̃)p|T⊥
p M = s̃|T⊥

p M = (τ⊥)ba.

Moreover we can show

Lemma 3.6.

s̃(
√
−1x) =

√
−1s̃(x) (∀x ∈ Cn+1)

and hence s̃ ∈ U(n+ 1).

Proof. We consider the trivial vector bundle

Cn+1 := M̂ × Cn+1

over N̂ with fiber Cn+1 as a real vector bundle. For each point x ∈ M̂ we have
orthogonal direct sum decompositions

Cn+1 =Rx⊕ TxM̂ ⊕ T⊥
x M̂

=Rx⊕ (VxM̂ ⊕HxM̂)⊕ T⊥
x M̂.

Let

RM̂ :=
⨿
x∈M̂

Rx

be the real trivial line bundle over M̂ equipped with the subbundle connection ∂RM̂

on RM̂ ⊂ Cn+1 induced from the trivial connection ∂, so that the position vector

x of points of M̂ gives a parallel global section of RM̂ with respect to ∂RM̂ . Then
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we have the following orthogonal direct sum decompositions of Cn+1 as real vector
subbundles:

Cn+1 =RM̂ ⊕ TM̂ ⊕ TM̂

=RM̂ ⊕ (VM̂ ⊕HM̂)⊕ T⊥M̂.

Along the first orthogonal decomposition we endow the vector bundle Cn+1 with
the direct sum connection

∂RM̂ ⊕∇c ⊕∇⊥.

Let EndR(Cn+1) be the vector bundles of R-linear endomorphisms at each fiber of
Cn+1. The multiplication

√
−1× : Cn+1 → Cn+1 by

√
−1 on Cn+1 can be regarded

as R-linear endomorphisms at each fiber of Cn+1, and thus it defines a smooth
section

√
−1× of the real vector bundle EndR(Cn+1). Then we have only to show

that this section
√
−1× of EndR(Cn+1) is parallel with respect to the connection

∂RM̂ ⊕∇c ⊕∇⊥, .
Since M is a complex submanifold of CPn, at each point x ∈ M̂ the real vector

subspaces Rx⊕R
√
−1x, HxM̂ and T⊥

x M̂ are invariant under the multiplication by√
−1, respectively. Thus the real vector subbundles RN̂ ⊕ (VM̂ , HM̂) and T⊥M̂

are invariant under the action of the section
√
−1× of EndR(Cn+1), respectively.

Set (V )x :=
√
−1x (∀x ∈ M̂), which is a vertical vector field on N̂ . First

we observe that V =
√
−1x is a parallel vector field on M̂ with respect to the

canonical connection ∇c. Indeed, Since ∇M̂
V V = 0 and Dc

V V = 0, we have ∇c
V V =

∇M̂
V V − Dc

V V = 0. Since ∇M̂
X̃
V = (∂X̃V )TM̂ =

√
−1X̃ and Dc

X̃
V =

√
−1X̃ we

have ∇c
X̃
V = ∇M̂

X̃
V −Dc

X̃
V =

√
−1X̃ −

√
−1X̃ = 0. It implies that

(3.29) ∇c(
√
−1x) = 0 =

√
−1∂RM̂x.

Particularly the vertical subbundle VM̂ and horizontal subbundleHM̂ are invariant
under parallel translations relative to ∇c respectively. Moreover, by ∇cDV = 0 and
elementary computations we have

(3.30) ∇c(
√
−1X̃) = ∇c(2DV X̃) = 2DV (∇cX̃) =

√
−1∇cX̃,

(3.31) ∇⊥(
√
−1ξ̃) =

√
−1∇⊥ξ̃

for any tangent vector field X and normal vector field ξ on M . Those equations
(3.29), (3.30) and (3.31) mean the parallelism of

√
−1× ∈ EndR(Cn+1) with respect

to ∂RM̂ ⊕ ∇c ⊕ ∇⊥, Since a linear isomorphism s̃ : (Cn+1)x(p) → (Cn+1)x(q) is a

parallel displacement along τ with respect to ∂RM̂ ⊕ ∇c ⊕ ∇⊥, it preserves the
parallel section

√
−1×, namely, we obtain

s̃(
√
−1x) =

√
−1s̃(x) (∀x ∈ Cn+1).

□

Hence (G,K) must be an Hermitian symmetric pair. Moreover by the following
lemma we see that (G,K) is irreducible.

Lemma 3.7. Let N be a complex submanifold of CPn and N̂ = π−1(N) ⊂
S2n+1(1) be the inverse image of N under the Hopf fibration π : S2n+1(1) → CPn.
Suppose that

Cn+1 = Cℓ1+1 ⊕ Cℓ2+1
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and

N̂ = π−1(N) = N̂1 × N̂2 ⊂ S2ℓ1+1(r1)× S2ℓ2+1(r2) ⊂ Cℓ1+1 ⊕ Cℓ2+1,

where N̂1 × N̂2 is a Riemannian direct product of submanifolds N̂i ⊂ S2ℓi+1(r1) ⊂
Cℓi+1 with ri ≥ 0 for i = 1, 2 and (r1)

2 + (r2)
2 = 1. Then r1 = 0 or r2 = 0.

Proof. Let x ∈ N̂ . By the Riemannian product N̂ = N̂1 × N̂2, the position
vector x ∈ N̂ can be orthogonally decomposed as

x = x1 + x2, xi ∈ N̂i ⊂ S2ℓi+1(r1) ⊂ Cℓi+1 (i = 1, 2)

and the tangent space of N̂ at x can be orthogonally decomposed as

TxN̂ = Tx1
N̂1 ⊕ Tx2

N̂2.

By using the orthogonal decomposition of the tangent vector space into vertical
and horizontal subspaces

TxN̂ = VxN̂ ⊕HxN̂ ,

we have
√
−1x1 +

√
−1x2 =

√
−1x ∈ VxN̂ ⊂ TxN̂ = Tx1N̂1 ⊕ Tx2N̂2 ⊂ Cℓ1+1 ⊕ Cℓ2+1.

From this equation we see that
√
−1x1 ∈ Tx1N̂1,

√
−1x2 ∈ Tx2N̂2.

If we set
Hxi

N̂i := {v ∈ Txi
N̂i | ⟨v,

√
−1xi⟩ = 0} (i = 1, 2),

then each tangent vector spaces can be orthogonally decomposed as

Tx1
N̂1 = R

√
−1x1 ⊕Hx1

N̂1, Tx2
N̂2 = R

√
−1x2 ⊕Hx2

N̂2,

On the other hand, since M̂ is the inverse image of M we have

TxS
2n+1(1) = VxS

2n+1(1)⊕HxS
2n+1(1),

and
VxN̂ = VxS

2n+1(1) = R
√
−1x = R

√
−1(x1 + x2).

Assume that r1 > 0 and r2 > 0. Then we can take a non-zero vector

√
−1

(
1

r21
x1 −

1

r22
x2

)
∈ Tx1

N̂1 ⊕ Tx1
N̂2 = TxN̂ ,

so that we have
√
−1x =

√
−1(x1 + x2) ⊥

√
−1

(
1

r21
x1 −

1

r22
x2

)
.

Because ⟨√
−1x,

√
−1

(
1

r21
x1 −

1

r22
x2

)⟩
=

⟨√
−1(x1 + x2),

√
−1

(
1

r21
x1 −

1

r22
x2

)⟩
=

1

r21
⟨x1,x1⟩ −

1

r22
⟨x2,x2⟩ =

1

r21
r21 −

1

r22
r22 = 1− 1 = 0.

Hence we obtain
√
−1

(
1

r21
x1 −

1

r22
x2

)
∈ HxN̂ .
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However, since M is a complex submanifold of CPn, we have
√
−1HxN̂ = HxN̂

and thus

− 1

r21
x1 +

1

r22
x2 =

√
−1

√
−1

(
1

r21
x1 −

1

r22
x2

)
∈
√
−1HxN̂ = HxN̂ ⊂ TxN̂ = Tx1

N̂1 ⊕ Tx2
N̂2 ⊂ Cℓ1+1 ⊕ Cℓ2+1.

Hence x1 ∈ Tx1
N̂1 and x2 ∈ Tx2

N̂2, a contradiction. Therefore we obtain that
r1 = 0 or r2 = 0. □

Therefore we obtain a result of Takeuchi (Theorem 1.2) as a corollary:

Corollary 3.8. Assume that M is a parallel Kähler submanifold of CPn.
Then its inverse image M̂ = π−1(M) ⊂ S2n+1(1) ⊂ Cn+1 is a standardly embedded
R-space which is obtained as an orbit of the isotropy representation of an irreducible
Hermitian symmetric pair (G,K).

By using results of [18] we can also determine explicitly seven Kähler subman-
ifols of complex projective spaces, which give all parallel Kähler submanifolds of
CPn.

Mm m n (G,K)

CPm(4) m m (SU(m+ 2), S(U(m+ 1)× U(1)))

CPm(2) m m+ m(m+1)
2

(Sp(m+ 1), U(m+ 1))

CPm−s(1)× CP s(1) m m+ s(m− s) (SU(m+ 2), S(U(m− s+ 1)× U(s+ 1)))

Qm(C) m m+ 1 (SO(m+ 4), SO(m+ 2)× SO(2))

SU(s+ 2)/S(U(2)× U(s)) 2s 2s+ s(s+1)
2

(SO(2(s+ 2)), U(s+ 2))

SO(10)/U(5) 10 15 (E6, (Spin(10)× U(1))/Z4)

E6/((Spin(10)× U(1))/Z4) 16 26 (E7, (E6 × U(1))/Z3)
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