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Abstract

We discuss the Cauchy problem for the following parabolic attraction-repulsion
chemotaxis system:

∂tu = ∆u−∇ · (u∇(β1v1 − β2v2)), t > 0, x ∈ R2,

∂tvj = ∆vj − λjvj + u, t > 0, x ∈ R2 (j = 1, 2),

u(t, 0) = u0(x), vj0(t, 0) = vj0(x), x ∈ R2 (j = 1, 2)

with constants βj , λj > 0 (j = 1, 2). In this paper we prove that the nonnegative
solutions exist globally in time under the assumption (β1 − β2)

∫
R2 u0 dx < 8π in the

attractive dominant case β1 > β2.
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1 Introduction

In this paper we consider the Cauchy problem for a parabolic attraction-repulsion chemo-
taxis system:

(CP)


∂tu = ∆u−∇ · (β1u∇v1) +∇ · (β2u∇v2), t > 0, x ∈ R2,

τj∂tvj = ∆vj − λjvj + u, t > 0, x ∈ R2 (j = 1, 2),

u(0, x) = u0(x), τjvj(0, x) = τjvj0(x), x ∈ R2 (j = 1, 2),
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where βj , λj (j = 1, 2) are positive constants, τ1, τ2 ∈ {0, 1}, and u0, v10, and v20 are
nonnegative functions. For initial data, we impose the following regularity conditions:

u0 ≥ 0, u0 ̸≡ 0, u0 ∈ L1(R2) ∩ L∞(R2),(1.1)

vj0 ≥ 0, vj0, ∇vj0 ∈ L1(R2) ∩ L∞(R2) (j = 1, 2).(1.2)

This system was proposed in [11] to describe the aggregation process of Microglia. In the
system, the functions u(t, x), v1(t, x), and v2(t, x) on [0,∞)× R2 represent the density of
Microglia, the chemical concentration of attractive, and repulsive signals, respectively.

Various types of Chemotaxis model have been widely and extensively studied in the
past decades. In particular, the parabolic-elliptic-elliptic counterpart:

(1.3)


∂tu = ∆u−∇ · (β1u∇v1) +∇ · (β2u∇v2), t > 0, x ∈ R2,

0 = ∆vj − λjvj + u, t > 0, x ∈ R2 (j = 1, 2),

u(0, x) = u0(x), x ∈ R2

attracts lots of attention by several researchers, for instance, Shi–Wang [22] and Nagai–
Yamada [18,20]. The main question posed in these works is to ask if the system (1.3) has
global-in-time (classical) solutions depending on the relation between β1, β2 and on the
size of initial mass ∥u0∥L1 . We just recall some known results. For the repulsion-dominant
case, i.e., β1 < β2, Shi–Wang [22] proved that, without any restriction on the size of initial
mass ∥u0∥L1(R2), every local-in-time solution of the system (1.3) may be extended for all
time and remains bounded in R2 uniformly with respect to t. Nagai–Yamada [18] proved
that this result continues to hold for the balanced case, i.e., β1 = β2. In view of the
relation between β1 and β2, this last result is optimal in the sense that the result does
not necessarily hold for the attraction-dominant case, i.e., β1 > β2. In this case, Nagai–
Yamada [18,20] showed that all solutions exist globally in time if ∥u0∥L1(R2) ≤ 8π/(β1−β2).
Moreover, the boundedness of global in time solutions was discussed in Nagai–Yamada [21].
On the other hand, Shi–Wang [22] proved that finite-time blow up does occur for some
initial data satisfying ∥u0∥L1(R2) > 8π/(β1 − β2). More precisely, it was proved that there
exists a small number r0 > 0 such that if the size of initial mass ∥u0∥L1(R2) is larger than
8π/(β1 − β2) and ∫

R2

|x− x0|2 u0(x)dx < r0

with some point x0 ∈ R2, then the solution blows up in finite time. Here, by finite-time
blow-up, we mean

(1.4) lim sup
t→Tmax

∥u(·, t)∥L∞(R2) = +∞

for some Tmax < ∞. Such a value Tmax is called the maximal existence time. In this sense,
we understand that the number 8π/(β1−β2) is the threshold value for initial mass, below
which solutions are global in time and above which some solutions blow up in finite time.
This critical mass phenomenon is well-known for the classical Keller–Segel model, which
corresponds to the case β2 = 0 in (1.3). See, for instance, [3, 14–17,19].
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We shall turn our attention to the fully parabolic system (CP). The Cauchy–Neumann
problem on bounded domains Ω in R2 have been treated by many researchers (see [2, 4,
7–10, 24]). Fujie–Suzuki [4] especially showed that the global existence of solutions holds
if ∥u0∥L1(Ω) < 4π/(β1 − β2), or the radially symmetric function u0 satisfies ∥u0∥L1(Ω) <
8π/(β1−β2). Concerning the Cauchy problem for (CP) in R2, the result obtained for (1.3)
with β1 = β2 was extended therein to the system (CP) by Jin–Liu [6]. For the repulsion-
dominant case, i.e., β1 < β2, the third author [26] has recently proved that every global
solution is bounded uniformly in time. For the attraction-dominant case, i.e., β1 > β2,
Shi–You [23] recently asserted that nonnegative solutions to (CP) with τ1 = 1 and τ2 = 0
exist globally in time under the condition ∥u0∥L1(R2) < 8π/(β1−β2). However, to the best
of our knowledge, the case β1 > β2 and τ1 = τ2 = 1 has been left open. Our aim in this
article is to fill this gap. We are now in a position to state our main result.

Theorem 1.1. Let u0 and vj0 (j = 1, 2) satisfy (1.1) and (1.2), respectively. Assume that
β1 > β2 holds. If the initial mass is subcritical in the sense that

(1.5)

∫
R2

u0 dx <
8π

β1 − β2

is true, then the nonnegative solution of (CP) with τ1 = τ2 = 1 exists globally in time.

Our strategy for proving Theorem 1.1 is to use the characterization of maximal exis-
tence time in terms of the L∞-norm of u(t) (cf. (iv) of Proposition 2.1). In order to obtain
a priori estimates on ∥u(t)∥L∞(R2), we rely on Moser iteration scheme, which has been used
in a number of PDE problems. It is essential to show its first step, i.e., obtaining an a pri-
ori estimate on ∥u(t)∥L2(R2). To this end, we introduce a functional F(u, v, w)(t)(cf. (3.3)
below), what we call modified free energy functional, for the particular system (CP)
with τ1 = τ2 = 1. This nontrivial definition of F(u, v, w)(t) captures a feature of the
fully parabolic system and is different from the one introduced in [23] for partially el-
liptic simplified systems. In fact, we first introduce a change of unknown functions and
then define the functional F(u, v, w)(t) for the new unknown functions. In particular, it
involves three absorption terms, which make our analysis successful in deriving desired
estimates. We then combine a useful modified free energy identity on F(u, v, w)(t) with
the Trudinger–Moser inequality, using the idea of [12] that makes the inequality useful
even in unbounded domains. Consequently, we obtain an estimate of the form:

(1.6) δ0

∫
R2

(1+u(t)) log(1+u(t)) dx+
1

β1 − β2

∫ t

0

∫
R2

(β1∂tv1(s)−β2∂tv2(s))
2 dxdτ ≤ C,

where δ0 ∈ (0, 1] is some constant. Once this is shown, we can argue as in [23], to conclude
the proof of Theorem 1.1.

The rest of this article is structured as follows: In Section 2 we collect some tools used
in Theorem 1.1. Section 3 is devoted to the proof of the modified free energy identity (3.4)
below. In Section 4 we derive a priori estimates (1.6) by applying the modified free energy
identity and the Trudinger–Moser inequality. We prove Theorem 1.1 in Section 5. For the
convenience of readers, we demonstrate the Moser iteration technique in the Appendix.
As a result, we show that (1.6) implies an L∞ bound for u(t) for any time-interval.
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Notation. For 1 ≤ p ≤ ∞ and T > 0, let Lp be the standard Lebesgue space on R2 with
the norm ∥ · ∥p and let Lp(0, T ;X) be the set of all p-integrable functions over interval
(0, T ) with values in a Banach space X, whose norm is denoted as ∥ · ∥Lp(0,T ;X). For k ∈ N
and 1 ≤ p ≤ ∞, W k,p stands for the standard Sobolev space on R2 with the norm ∥ · ∥Wk,p

and W k,2 =: Hk. Symbol Z+ is the set of all nonnegative integers. We set |α| = α1 + α2

for α = (α1, α2) ∈ Z2
+. Partial derivatives of order m with respect to t and xj are denoted

by ∂m
t and ∂m

j , respectively, and set ∇ = t(∂1, ∂2) and ∂α
x = ∂α1

1 ∂α2
2 for α = (α1, α2) ∈ Z2

+.
Symbol C is a positive constant which may vary line to line. In particular, C(∗, . . . , ∗)
denotes a positive constant depending on the quantities in parentheses.

2 Preliminaries

First of all, we state that the existence of local in time solutions to (CP) and some
properties of the solutions are established by virtue of the method in [22, §2] (see also [23]).

Proposition 2.1. Let u0 and vj0 (j = 1, 2) satisfy (1.1) and (1.2), respectively. Then
there exists a positive constant T0 such that the system (CP) has a unique smooth solution
(u, v1, v2) on [0, T0]× R2. Furthermore, the following assertions hold:

(i) u, v1, v2 ∈ C([0, T0];L
p) (1 ≤ p < ∞), sup0<t<T0

∥(u, v1, v2)∥∞ < ∞.

(ii) ∂k
t ∂

α
xu, ∂

k
t ∂

α
x v1, ∂

k
t ∂

α
x v2 ∈ C((0, T0];L

p) (1 < p ≤ ∞, k ∈ Z+, α ∈ Z2
+, k + |α| ≥ 1).

(iii) u(t, x) > 0, v1(t, x) > 0, v2(t, x) > 0 (0 < t < T0, x ∈ R2).

(iv) If the maximal existence time Tmax is finite, then

(2.1) lim sup
t↑Tmax

∥u(·, t)∥∞ = +∞.

Proposition 2.2. For every 0 < t < T , we have

∥u(t)∥1 = ∥u0∥1,(2.2)

∥vj(t)∥1 = e−λjt∥vj0∥1 + λ−1
j (1− e−λjt)∥u0∥1 (j = 1, 2).(2.3)

Given a function f ∈ Lq (1 ≤ q ≤ ∞), we define, as usual, the heat semigroup et∆f as

(et∆f)(x) :=

∫
R2

G(t, x− y)f(y) dy, t > 0,

where G(t, x) =
1

4πt
exp

(
−|x|2

4t

)
.

We just recall some basic estimates concerning the heat semigroup as well as the Trudinger–
Moser inequality:
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Proposition 2.3 (Lp-Lq estimates [5]). Let 1 ≤ q ≤ p ≤ ∞ and α ∈ Z2
+ hold. Then there

exists a positive constant C(p, q, α) depending only on p, q, and α such that

(2.4) ∥∂α
x e

t∆f∥p ≤ C(p, q, α)t−1/q+1/p−|α|/2∥f∥q, t > 0.

In particular, C(p, q, α) = 1 if |α| = 0 and p = q.

Proposition 2.4. Let λ > 0, 0 < T ≤ ∞, and f ∈ L∞(0, T ;Lq) (1 ≤ q ≤ ∞) be given.
Then the functions Fλ(t) ∈ W 1,p, 0 ≤ t < T , defined as

(2.5) Fλ(t) :=

∫ t

0
e−λ(t−s)e(t−s)∆f(s) ds, 0 < t < T

enjoy the following estimates:

(i) If 1 < q ≤ p ≤ ∞ or 1 = q ≤ p < ∞, then:

∥Fλ(t)∥p ≤ C(p, q)λ−(1−1/q+1/p)∥f∥L∞(0,T ;Lq), 0 < t < T.

(ii) If 1 ≤ q ≤ p < 2q/(2− q), 2 < q ≤ p ≤ ∞ or 2 = q ≤ p < ∞, then:

∥∇Fλ(t)∥p ≤ C(p, q)λ−(1/2−1/q+1/p)∥f∥L∞(0,T ;Lq), 0 < t < T.

Proof. The proof is the same as in [20, Lemma 2.3], so we omit it.

Proposition 2.5 (Trudinger–Moser inequality [13, 25]). Let Ω be a two-dimensional do-
main with finite Lebesgue measure. Then there exists a positive constant CTM , independent
of Ω, such that inequality

(2.6)
1

|Ω|

∫
Ω
e|g| dx ≤ CTM exp

(
1

16π
∥∇g∥L2(Ω)

)
holds for every g ∈ H1

0 (Ω), where |Ω| denotes the Lebesgue measure of Ω.

Remark 2.6. (i) The Trudinger–Moser inequality holds for open sets Ω with |Ω| < ∞
by the proof of Moser [13] using rearrangement techniques.

(ii) We have CTM ≥ 1 by taking g ≡ 0 in (2.6).

3 Modified free energy identity

In what follows, we denote by (u, v1, v2) the nonnegative solution of (CP) defined on [0, T ]
for some 0 < T < ∞. Let us set

(3.1) v = β1v1 − β2v2, w = v1 − v2, β = β1 − β2.
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Under the assumption β1 ̸= β2, system (CP) is reduced to

∂tu = ∆u−∇ · (u∇v),(3.2a)

∂tv = ∆v − a1v + a2w + βu,(3.2b)

∂tw = ∆w − b1w − b2v,(3.2c)

where

a1 =
λ1β1 − λ2β2

β
, a2 =

β1β2(λ1 − λ2)

β
, b1 =

λ2β1 − λ1β2
β

, b2 =
λ1 − λ2

β
.

Putting a = b(λ1 − λ2)/β and b = β1β2/β, we now define a functional F(u, v, w)(t) as

F(u, v, w)(t) =

∫
R2

(1 + u(t)) log(1 + u(t)) dx−
∫
R2

u(t)v(t) dx(3.3)

+
1

2β

∫
R2

(|∇v(t)|2 + a1v
2(t)) dx− a

∫
R2

v(t)w(t) dx

− b

2

∫
R2

(|∇w(t)|2 + b1w
2(t)) dx

and call it modified free energy functional for the system (3.2).
Due to the regularity properties of solutions and the elementary estimates

(1 + s) log(1 + s) =

{
O(s) as s → 0
O(s1+α) as s → ∞

for every α > 0, it turns out that the functional F(u, v, w)(t) (0 ≤ t < Tmax) is well-defined.

Remark 3.1. In the case λ1 = λ2, we have a1 = b1 = λ1 and a2 = b2 = 0, so system (3.2)
is reduced to a classical parabolic Keller–Segel system. For this system, the global existence
has been already discussed in [12]. Although, the second component, which corresponds
to v above is assumed to be nonnegative in [12], the proof there works without any change
even if it is sign-changing. We therefore assume λ1 ̸= λ2 throughout this article.

We now state a modified free energy identity.

Lemma 3.2 (Modified free energy identity). For every 0 < t < T , one has

(3.4) F(u, v, w)(t) +D(t) = F(u, v, w)(0) +

∫ t

0

∫
R2

(
1

4
|∇v|2 + b(∂tw)

2

)
dxds,

where

D(t) =
1

β

∫ t

0

∫
R2

(∂tv)
2 dxds+

∫ t

0

∫
R2

u|∇(log(1 + u)− v)|2 dxds

+

∫ t

0

∫
R2

∣∣∣∇(log(1 + u)− v

2

)∣∣∣2 dxds.

6



Proof. Noting
∫
R2 ∂tu dx = 0 due to (2.2), we have

d

dt

∫
R2

{(1 + u) log(1 + u)− uv} dx =

∫
R2

∂tu(log(1 + u)− v) dx−
∫
R2

u∂tv dx.

Using ∂tu = ∇ · (u∇(log(1 + u)− v)) + ∆ log(1 + u) and integration by parts, we obtain∫
R2

∂tu(log(1 + u)− v) dx

=

∫
R2

∇ · (u∇(log(1 + u)− v))(log(1 + u)− v) dx+

∫
R2

∆log(1 + u)(log(1 + u)− v) dx

=−
∫
R2

u|∇(log(1 + u)− v)|2 dx−
∫
R2

∇ log(1 + u) · ∇(log(1 + u)− v) dx

=−
∫
R2

u|∇(log(1 + u)− v)|2 dx−
∫
R2

|∇ log(1 + u)|2 dx+

∫
R2

∇ log(1 + u) · ∇v dx

=−
∫
R2

u|∇(log(1 + u)− v)|2 dx−
∫
R2

∣∣∣∇(log(1 + u)− v

2

)∣∣∣2 dx+
1

4

∫
R2

|∇v|2 dx,

whence:

(3.5)
d

dt

∫
R2

{(1 + u) log(1 + u)− uv} dx+

∫
R2

u|∇(log(1 + u)− v)|2 dx

+

∫
R2

∣∣∣∇(log(1 + u)− v

2

)∣∣∣2 dx+

∫
R2

u∂tv dx =
1

4

∫
R2

|∇v|2 dx.

By use of (3.2b), we obtain

∫
R2

u∂tv dx =
1

β

∫
R2

(∂tv −∆v + a1v − a2w)∂tv dx

=
1

β

∫
R2

(∂tv)
2 dx+

1

β

∫
R2

∇v · ∇∂tv dx+
a1
β

∫
R2

v∂tv dx− a2
β

∫
R2

w∂tv dx

=
1

β

∫
R2

(∂tv)
2 dx+

1

2β

d

dt

∫
R2

(|∇v|2 + a1v
2) dx− a2

β

d

dt

∫
R2

vw dx

+
a2
β

∫
R2

v∂tw dx.

(3.6)

Also, we see from −∂tw +∆w − b1w = b2v that∫
R2

v∂tw dx =
1

b2

∫
R2

(−∂tw +∆w − b1w)∂tw dx

=− 1

b2

∫
R2

(∂tw)
2 dx− 1

2b2

d

dt

∫
R2

(|∇w|2 + b1w
2) dx,

which together with a2/(βb2) = β1β2/β = b implies that

(3.7)
a2
β

∫
R2

v∂tw dx = −b

∫
R2

(∂tw)
2 dx− b

2

d

dt

∫
R2

(|∇w|2 + b1w
2) dx.
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Substituting (3.7) into (3.6) and then making use of a2/β = bb2 = a, we have∫
R2

u∂tv dx =
1

β

∫
R2

(∂tv)
2 dx+

1

2β

d

dt

∫
R2

(|∇v|2 + a1v
2) dx− a

d

dt

∫
R2

vw dx

− b

2

d

dt

∫
R2

(|∇w|2 + b1w
2) dx− b

∫
R2

(∂tw)
2 dx.

(3.8)

Combining (3.5) with (3.8) gives that

d

dt

∫
R2

{(1 + u) log(1 + u)− uv} dx+
1

2β

d

dt

∫
R2

(|∇v|2 + a1v
2) dx

− a
d

dt

∫
R2

vw dx− b

2

d

dt

∫
R2

(|∇w|2 + b1w
2) dx

+

∫
R2

u|∇(log(1 + u)− v)|2 dx+

∫
R2

∣∣∣∇(log(1 + u)− v

2

)∣∣∣2 dx+
1

β

∫
R2

(∂tv)
2 dx

=
1

4

∫
R2

|∇v|2 dx+ b

∫
R2

(∂tw)
2 dx.

(3.9)

The integration of the last identity over [0, T ] completes the proof.

4 A priori estimates for the system (CP)

In this section let v, w and β be the same symbols as in (3.1). We begin with showing
some auxiliary estimates.

Lemma 4.1. The following estimates are true:

(i) For every 1 ≤ p < ∞ and each j = 1, 2, there exists a constant C1 = C1(p, λj) such
that

∥vj(t)∥p ≤ e−λjt∥vj0∥p + C1∥u0∥1 (0 < t < T ).

(ii) For every 1 ≤ p < ∞ and 0 < t < T , there exists a constant C2 = C2(p, λ1, λ2) > 0
such that

∥w(t)∥p ≤ e−λ1t∥w(0)∥p + C2(e
−λ2t∥v20∥1 + ∥u0∥1) (0 < t < T ).

(iii) For every 2 ≤ p < ∞ and 0 < t < T , there exists a constant C3 = C3(p, λ1, λ2) > 0
such that

∥∇w(t)∥p ≤ e−λ1t∥∇w(0)∥p + C3(e
−λ2t∥v20∥2 + ∥u0∥1) (0 < t < T ).

(iv) There exists a constant C4 = C4(λ1, λ2) > 0 such that∫ T

0
∥∂tw(t)∥22 dt ≤ C4(∥(v10, v20)∥2H1 + T∥u0∥21).
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Proof. The first claim (i) is an immediate consequence of (2.4) and Proposition 2.4(i).
Notice that w satisfies equation ∂tw = ∆w− λ1w+ (λ2 − λ1)v2. By means of the heat

semigroup, this can be recast as the integral equation

w(t) = e−λ1tet∆w(0) + (λ2 − λ1)

∫ t

0
e−λ1(t−s)e(t−s)∆v2(s) ds.

For 1 ≤ p ≤ ∞, the Lp-Lp estimate (2.4) yields

∥et∆w(0)∥p ≤ ∥w(0)∥p, 0 < t < T.

Taking advantage of Proposition 2.4(i) and Lemma 4.1(i), we may obtain∥∥∥∥(λ2 − λ1)

∫ t

0
e−λ1(t−s)e(t−s)∆v2(s) ds

∥∥∥∥
p

≤ C(p, λ1, λ2)(e
−λ2t∥v20∥1 + ∥u0∥1)

for 0 < t < T . Due to these estimates, we deduce the second claim (ii).
Assume that 2 ≤ p < ∞. Since ∇et∆w(0) = et∆∇w(0), it follows from (2.4) that

∥∇et∆w(0)∥p ≤ ∥∇w(0)∥p, 0 < t < T.

Applying Proposition 2.4(ii) and Lemma 4.1(i), we obtain∥∥∥∥(λ2 − λ1)

∫ t

0
e−λ1(t−s)∇e(t−s)∆v2(s) ds

∥∥∥∥
p

≤ C(p, λ1, λ2)∥v2∥L∞(0,T ;L2) ≤ C(p, λ1, λ2)(e
−λ2t∥v20∥2 + ∥u0∥1)

for 0 < t < T . The third claim (iii) then follows.
We finally show the fourth claim (iv). Multiplying the equation ∂tw = ∆w − λ1w +

(λ2 − λ1)v2 by ∂tw and integrating the identity over R2, we obtain∫
R2

(∂tw)
2 dx =

∫
R2

∆w∂tw dx− λ1

∫
R2

w∂tw dx+ (λ2 − λ1)

∫
R2

v2∂tw dx

=−
∫
R2

∇w · ∂t∇w dx− d

dt

(
λ1

2

∫
R2

w2 dx

)
+ (λ2 − λ1)

∫
R2

v2∂tw dx

≤− d

dt

(
1

2

∫
R2

|∇w|2 dx+
λ1

2

∫
R2

w2 dx

)
+

(λ2 − λ1)
2

2

∫
R2

v22 dx

+
1

2

∫
R2

(∂tw)
2 dx,

whence:

∥∂tw(t)∥22 +
d

dt
(∥∇w(t)∥22 + λ1∥w(t)∥22) ≤ (λ2 − λ1)

2∥v2(t)∥22.

An integration of the last inequality in time leads to∫ T

0
∥∂tw(t)∥22 dt+ ∥∇w(T )∥22 + λ1∥w(T )∥22

≤ ∥∇w(0)∥22 + λ1∥w(0)∥22 + (λ2 − λ1)
2

∫ T

0
∥v2(t)∥22 dt.
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Notice that ∥∇w(0)∥22 + λ1∥w(0)∥22 ≤ C(λ1)(∥v10∥2H1 + ∥v20∥2H1). Due to Lemma 4.1(i),
we have ∫ T

0
∥v2(t)∥22 dt ≤ C(λ2)(∥v20∥2H1 + T∥u0∥21).

Therefore the fourth claim (iv) follows. The proof is now complete.

Lemma 4.2. For 0 < t ≤ T , s > 0, let us set

M(t) =

∫
D(t,s)

u(t) dx, D(t, s) = {x ∈ R2 | v(t, x) > s}.

Then for every δ ∈ [0, 1), the inequality∫
R2

u(t)v(t) dx ≤ (1− δ)

∫
D(t,s)

(1 + u(t)) log(1 + u(t)) dx(4.1)

+
1

16π(1− δ)

{
∥u0∥1 +

β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)}
∥∇v(t)∥22 + C(δ, s)

holds, where

C(δ, s)(4.2)

=

s∥u0∥1, D(t, s) = ∅,

(1− δ)

{
∥u0∥1 +

β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)}
logCTM + s∥u0∥1, D(t, s) ̸= ∅,

and CTM (≥ 1) is the constant in the Trudinger–Moser inequality (2.6).

Proof. Consider the case D(t, s) = ∅. Due to v(t, x) ≤ s (x ∈ R2), we have∫
R2

u(t)v(t) dx ≤s

∫
R2

u(t) dx = s∥u0∥1.

Hence (4.1) holds in this case.
Consider next the case D(t, s) ̸= ∅. Since v(t) ∈ C(R2), the set D(t, s) is open in R2.

Due to the fact v(t) ∈ L1(R2), we have |D(t, s)| < ∞. It follows that∫
R2

u(t)v(t) dx =

∫
D(t,s)

u(t){v(t)− s} dx+ s

∫
D(t,s)

u(t) dx+

∫
R2\D(t,s)

u(t)v(t) dx

≤
∫
D(t,s)

u(t)(v(t)− s)+ dx+ s

∫
D(t,s)

u(t) dx+ s

∫
R2\D(t,s)

u(t) dx

≤
∫
D(t,s)

(1 + u(t))(v(t)− s)+ dx+ s∥u0∥1.(4.3)

Let us write

g(t) := (1− δ)(1 + u(t)), h(t) :=
(v(t)− s)+

1− δ
,
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so that ∫
D(t,s)

(1 + u(t))(v(t)− s)+ dx =

∫
D(t,s)

g(t)h(t) dx,(4.4) ∫
D(t,s)

g(t) dx =(1− δ)(|D(t, s)|+M(t)) =: M̃(t, s).(4.5)

Applying Jensen’s inequality for a convex function − log ·, we obtain

1

M̃(t, s)

(∫
D(t,s)

g(t)h(t) dx−
∫
D(t,s)

g(t) log g(t) dx

)
=

∫
D(t,s)

g(t)

M̃(t, s)
log

eh(t)

g(t)
dx(4.6)

≤ log

(∫
D(t,s)

eh(t)

M̃(t, s)
dx

)
.

It then follows from (4.3)–(4.6) that

∫
R2

u(t)v(t) dx

(4.7)

≤
∫
D(t,s)

g(t) log g(t) dx+ M̃(t, s) log

(∫
D(t,s)

eh(t)

M̃(t, s)
dx

)
+ s∥u0∥1

≤
∫
D(t,s)

g(t) log g(t) dx+ M̃(t, s) log

(∫
D(t,s)

eh(t) dx

)
− M̃(t, s) log M̃(t, s) + s∥u0∥1.

A straightforward calculation shows that∫
D(t,s)

g(t) log g(t) dx = M̃(t, s) log(1− δ) + (1− δ)

∫
D(t,s)

(1 + u(t)) log(1 + u(t)) dx,

where M̃(t, s) is as in (4.5). Due to this and (4.7), we have∫
R2

u(t)v(t) dx ≤ (1− δ)

∫
D(t,s)

(1 + u(t)) log(1 + u(t)) dx(4.8)

+M̃(t, s) log

(∫
D(t,s)

eh(t) dx

)
+ M̃(t, s)(log(1− δ)− log M̃(t, s)) + s∥u0∥1.

We shall now pay attention to the second term of the right-hand side of (4.8). Since
v(t) ∈ H1(R2) ∩ C(R2), we have

(v(t)− s)+ = 0 on ∂D(t, s), ∇(v(t)− s)+ =

{
∇v(t), in D(t, s),

0, in R2 \D(t, s),

whence (v(t)− s)+ ∈ H1
0 (D(t, s)). Applying the Trudinger–Moser inequality (2.6) and

|D(t, s)|+M(t) =
M̃(t, s)

1− δ

11



for the second term of the right-hand side of (4.8), we then obtain

M̃(t, s) log

(∫
D(t,s)

eh(t) dx

)(4.9)

≤ M̃(t, s)

[
1

16π
∥∇h(t)∥2L2(D(t,s)) + log(CTM |D(t, s)|)

]
≤ M̃(t, s)

16π(1− δ)2
∥∇v(t)∥22 + M̃(t, s) logCTM + M̃(t, s) log

M̃(t, s)

1− δ

≤ |D(t, s)|+M(t)

16π(1− δ)
∥∇v(t)∥22 + M̃(t, s) logCTM + M̃(t, s)(log M̃(t, s)− log(1− δ)).

Using (4.9) in (4.8), we have∫
R2

u(t)v(t) dx ≤ (1− δ)

∫
D(t,s)

(1 + u(t)) log(1 + u(t)) dx(4.10)

+
|D(t, s)|+M(t)

16π(1− δ)
∥∇v(t)∥22 + M̃(t, s) logCTM + s∥u0∥1.

In order to estimate the measure |D(t, s)|, we recall v = β1v1 − β2v2 and (2.3). Then:∫
D(t,s)

s dx ≤
∫
D(t,s)

v(t, x) dx ≤ β1

∫
R2

v1(t, x) dx

≤ β1e
−λ1t

∫
R2

v10 dx+
β1
λ1

(1− e−λ1t)

∫
R2

u0 dx ≤ β1

(
∥v10∥1 +

1

λ1
∥u0∥1

)
,

whence:

(4.11) |D(t, s)| ≤ β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)
.

Combining (4.10) with (4.11) as well as an obvious estimate M(t) ≤ ∥u0∥1, we obtain∫
R2

u(t)v(t) dx ≤(1− δ)

∫
D(t,s)

(1 + u(t)) log(1 + u(t)) dx

+
1

16π(1− δ)

{
∥u0∥1 +

β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)}
∥∇v(t)∥22

+ (1− δ)

{
∥u0∥1 +

β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)}
logCTM + s∥u0∥1

for every δ ∈ [0, 1) and t ∈ (0, T ]. Here we have used the fact that CTM ≥ 1 as well (See
Remark 2.6). The claim (4.1) then follows and the proof is complete.
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Lemma 4.3. Assume that the initial mass is subcritical, i.e., ∥u0∥1 < 8π/β. Then there
exist constants δ0 ∈ (0, 1) and s0 > 0 such that

F(u, v, w)(t) ≥δ0

∫
R2

(1 + u(t)) log(1 + u(t)) dx− C(δ0, s0) +G(t)(4.12)

with G(t) =
a1
2β

∥v(t)∥22 − a

∫
R2

v(t)w(t) dx− b

2
(∥∇w(t)∥22 + b1∥w(t)∥22),

where F(u, v, w)(t) and C(δ0, s0) are given in (3.3) and (4.2), respectively.

Proof. Fix δ ∈ [0, 1). Due to (3.3) and (4.1), we have

F(u, v, w)(t) ≥δ

∫
R2

(1 + u(t)) log(1 + u(t)) dx

+ (1− δ)

∫
D(t,s)

(1 + u(t)) log(1 + u(t)) dx−
∫
R2

u(t)v(t) dx+
1

2β
∥∇v(t)∥22

+
a1
2β

∥v(t)∥22 − a

∫
R2

v(t)w(t) dx− b

2
(∥∇w(t)∥22 + b1∥w(t)∥22)

≥δ

∫
R2

(1 + u(t)) log(1 + u(t)) dx

+

[
1

2β
− 1

16π(1− δ)

{
∥u0∥1 +

β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)}]
∥∇v(t)∥22

− C(δ, s) +G(t).

We now take a number δ0 ∈ (0, 1) such that

0 < δ0 <
8π − β∥u0∥1

8π

(Note that we can certainly take such a δ0 since ∥u0∥1 < 8π/β by assumption). Set

1

2β
− ∥u0∥1

16π(1− δ0)
=: A(β, δ0, ∥u0∥1) > 0.

For such a δ0, we choose a number s0 > 0 sufficiently large so that

s0 >
β1(λ1∥v10∥1 + ∥u0∥1)

16πλ1A(β, δ0, ∥u0∥1)(1− δ0)

or equivalently,

A(δ0, β, ∥u0∥1)−
β1

16π(1− δ0)s0

(
∥v10∥1 +

1

λ1
∥u0∥1

)
> 0.

It then follows that

1

2β
− 1

16π(1− δ0)

{
∥u0∥1 +

β1
s0

(
∥v10∥1 +

1

λ1
∥u0∥1

)}
> 0,

whence the claim holds. The proof is now complete.
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Lemma 4.4. Under the assumption of ∥u0∥1 < 8π/β, there holds

(4.13) δ0

∫
R2

(1 + u(t)) log(1 + u(t)) dx+
1

β

∫ t

0

∫
R2

(∂tv)
2 dxds ≤ C(T )

for 0 < t < T , where δ0 ∈ (0, 1) is the constant defined in Lemma 4.3.

Proof. To estimate
∫
R2 u(t)v(t)dx, we shall use the inequality (4.1) from Lemma 4.2. Due

to (4.1) with δ = 0, we have∫
R2

u(t)v(t) dx ≤
∫
D(t,s)

(1 + u(t)) log(1 + u(t)) dx(4.14)

+
1

16π

{
∥u0∥1 +

β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)}
∥∇v(t)∥22 + C(0, s).

Recalling the definition of the modified free energy functional, we deduce from (4.14),

1

2β
∥∇v(t)∥22

=F(u, v, w)(t)−
∫
R2

(1 + u(t)) log(1 + u(t)) dx+

∫
R2

u(t)v(t) dx−G(t)

≤F(u, v, w)(t) +

{∫
R2

u(t)v(t) dx−
∫
D(t,s)

(1 + u(t)) log(1 + u(t)) dx

}
−G(t)

≤F(u, v, w)(t) +
1

16π

{
∥u0∥1 +

β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)}
∥∇v(t)∥22 + C(0, s) + |G(t)|,

which implies that for 0 < t < T ,

k(s)∥∇v(t)∥22 ≤F(u, v, w)(t) + C(0, s) + |G(t)|

with k(s) :=
1

2β
− 1

16π

{
∥u0∥1 +

β1
s

(
∥v10∥1 +

1

λ1
∥u0∥1

)}
.

Since ∥u0∥1 < 8π/β by assumption, there exists s1 > 0 such that k(s1) > 0 holds, whence:

(4.15) ∥∇v(t)∥22 ≤
1

k(s1)
{F(u, v, w)(t) + C(0, s1) + |G(t)|} (0 < t < T ).

Summarizing (3.4) and (4.15), we obtain

(4.16) F(u, v, w)(t) +D(t)

≤ F(u, v, w)(0) +
1

4k(s1)

∫ t

0
F(u, v, w)(s) ds+

1

4k(s1)

∫ t

0
{C(0, s1) + |G(s)|} ds

+ b

∫ t

0
∥∂tw(s)∥22 ds.
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Here Lemma 4.1(i)–(iii) give

|G(t)| ≤|a1|
2β

∥v(t)∥22 + |a|∥v(t)∥2∥w(t)∥2 +
b

2
(∥∇w(t)∥22 + |b1|∥w(t)∥22)(4.17)

≤C(∥(u0, v10, v20)∥1, ∥(v10, v20)∥H1),

and also Lemma 4.1(iv) yields∫ T

0
∥∂tw(s)∥22 ds ≤ C4(∥(v10, v20)∥2H1 + T∥u0∥21).

Hence,

F(u, v, w)(0) +
1

4k(s1)

∫ t

0
{C(0, s1) + |G(s)|} ds+ b

∫ t

0
∥∂tw(s)∥22 ds ≤ C̃(T ),

where C̃(T ) := F(u, v, w)(0) + C(∥(u0, v10, v20)∥1, ∥(v10, v20)∥H1 , T ) > 0. This implies

(4.18) F(u, v, w)(t) +D(t) ≤ C̃(T ) +
1

4k(s1)

∫ t

0
F(u, v, w)(s) ds (0 < t < T ).

By noticing the positivity of D(t), the application of the Gronwall inequality to (4.18)
then shows that the inequality

F(u, v, w)(t) +D(t) ≤ C̃(T ) +
C̃(T )

4k(s1)
e

T
4k(s1) =: Ĉ(T )

holds for 0 < t < T . Due to this, (4.12) and (4.17), we have

δ0

∫
R2

(1 + u(t)) log(1 + u(t)) dx+
1

β

∫ t

0

∫
R2

(∂tv)
2 dxds

≤ F(u, v, w)(t) +D(t) + C(δ0, s0)−G(t) ≤ C(T )

for 0 < t < T , where C(T ) := Ĉ(T ) + C(δ0, s0) + C(∥(u0, v10, v20)∥1, ∥(v10, v20)∥H1 , T ).
The proof is now complete.

5 Proof of Theorem 1.1

The following proposition is key one to show Theorem 1.1.

Proposition 5.1. Let 0 < T < ∞. Assume that the nonnegative solution (u, v1, v2) to
(CP) on [0, T ]× R2 satisfies

(5.1) δ0

∫
R2

(1 + u(t)) log(1 + u(t)) dx+
1

β1 − β2

∫ t

0

∫
R2

(∂tv(s))
2 dxdτ ≤ C,

where v = β1v1 − β2v2 and δ0 ∈ (0, 1) is some constant. Then:

(5.2) sup
0<t<T

∥u(t)∥L∞ ≤ C(T ).
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The proof of Proposition 5.1 is the same as in Shi–You [23, §5] (see also [12, 16]), but
for the reader’s convenience, we give its proof in the Appendix.

We now begin the proof of Theorem 1.1. Assume Tmax < ∞. Since ∥u0∥1 < 8π/(β1 −
β2) by assumption, Lemma 4.4 guarantees that the a priori estimate (4.13) holds for T =
Tmax. Proposition 5.1 then guarantees sup0<t<Tmax

∥u(t)∥∞ ≤ C(Tmax), which contradicts
(2.1). The proof is complete.

A Proof of Proposition 5.1

The following Gagliardo–Nirenberg inequality in R2 is used in the course of the proof of
Proposition 5.1 (for the inequality, see, e.g., [5]): Let 1 ≤ q ≤ p < ∞ and σ = 1 − q/p.
Then there is a positive constant C depending only on p and q such that for all f ∈ Lq

with |∇f | ∈ L2,

(A.1) ∥f∥p ≤ C∥∇f ||σ2∥f∥1−σ
q .

Let v, w, and β be the ones defined as in (3.1). Following Shi–You [23, §5], we show
Proposition 5.1. We prepare some lemmas.

Lemma A.1. There is a postive constant C(T ) depending on T such that

(A.2) sup
0<t<T

∥u(t)∥2 ≤ C(T ).

Proof. Multiplying equation (3.2a) by u and then integrating by parts, we have

1

2

d

dt
∥u∥22 + ∥∇u∥22 = −1

2

∫
R2

u2∆v dx

= −1

2

∫
R2

u2∂tv dx− 1

2

∫
R2

u2 (a1v − a2w) dx+
β

2
∥u∥33.

Here we have used ∆v = ∂tv+(a1v− a2w)−βu by (3.2b). The Hölder inequality and the
Gagliardo–Nirenberg inequality (A.1) with p = 4, q = 2 imply that

−1

2

∫
R2

u2∂tv dx ≤ 1

2
∥u∥24∥∂tv∥2 ≤ C

(
∥∇u∥1/22 ∥u∥1/22

)2
∥∂tv∥2

= C∥∇u∥2∥u∥2∥∂tv∥2 ≤
1

4
∥∇u∥22 + C∥∂tv∥22∥u∥22.

Using the Hölder inequality and Young’s inequality, we get

−1

2

∫
R2

u2(a1v − a2w) dx ≤1

2

(∫
R2

u3 dx

) 2
3
(∫

R2

|a1v − a2w|3 dx
) 1

3

≤β

2

∫
R2

u3 dx+ C

∫
R2

|a1v − a2w|3 dx

≤β

2
∥u∥33 + C

(
∥v∥33 + ∥w∥33

)
,
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which yields that

−1

2

∫
R2

u2 (a1v − a2w) dx+
β

2
∥u∥33 ≤ β∥u∥33 + C(∥v∥33 + ∥w∥33).

It here follows from [16, Lemma 2.1, (2.3)] that for any ε > 0,

β∥u∥33 ≤ Cβε∥(1 + u) log(1 + u)∥1∥∇u∥22 + C(ε)β∥u∥21.

Notice that a bound

∥(1 + u(t)) log(1 + u(t))∥1 ≤ C(T ), 0 < t < T,

holds due to (5.1). Taking ε > 0 such that CβεC(T ) ≤ 1/4, we observe that

−1

2

∫
R2

u2 (a1v − a2w) dx+
β

2
∥u∥33 ≤

1

4
∥∇u∥22 + C(∥v∥33 + ∥w∥33 + ∥u0∥21).

Hence
d

dt
∥u∥22 + ∥∇u∥22 ≤ C∥∂tv∥22∥u∥22 + C(∥v∥33 + ∥w∥33 + ∥u0∥21).

Applying the Gronwall inequality to the differential inequality above yields that

∥u(t)∥22 ≤∥u0∥22 exp
(
C

∫ t

0
∥∂tv∥22 dτ

)
(A.3)

+ C

∫ t

0
(∥v∥33 + ∥w∥33 + ∥u0∥21) exp

(
C

∫ t

s
∥∂tv∥22 dτ

)
ds.

As a consequence, we obtain (A.2) because the right hand side of (A.3) is bounded in
(0, T ) due to (5.1) and Lemma 4.1 (i)–(ii).

Lemma A.2. The following estimate holds:

(A.4) sup
0<t<T

∥∇v(t)∥4 ≤ C(T ).

Proof. By the heat semigroup et∆, we have

(A.5) ∇vj(t) = e−λjtet∆∇vj0 +

∫ t

0
e−λj(t−s)∇e(t−s)∆u(s) ds, j = 1, 2.

Due to Lp-Lq estimate (2.4) for et∆ and Lemma 2.4(ii), we see that

∥∇vj(t)∥4 ≤e−λjt∥∇v0∥4 + Cλ
−3/4
j sup

0<t<T
∥u(t)∥2.

Hence this together with (A.2) and v = β1v1−β2v2 implies the desired estimate (A.4).

Lemma A.3. There exists a positive constant C(T ) such that

(A.6) sup
0<t<T

∥u(t)∥3 ≤ C(T ).
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Proof. Multiplying equation (3.2a) by u2 and integrating by parts, we obtain

1

3

d

dt
∥u∥33 +

8

9
∥∇u3/2∥22 = −4

3

∫
R2

u3/2∇u3/2 · ∇v dx.

Using the Hölder inequality and applying the Gagliardo-Nirenberg inequality (A.?) as
p = 4, q = 4/3 and f = u3/2 yield that

− 4

3

∫
R2

u3/2∇u3/2 · ∇v dx ≤ 4

3
∥u3/2∥4∥∇u3/2∥2∥∇v∥4

≤ C
(
∥∇u3/2∥2/32 ∥u3/2∥1/34/3

)
∥∇u3/2∥2∥∇v∥4 = C∥∇u3/2∥5/32 ∥u∥1/22 ∥∇v∥4

≤ 5

9
∥∇u3/2∥22 + C∥u∥32∥∇v∥64.

Hence:

(A.7)
d

dt
∥u∥33 + ∥∇u3/2∥22 ≤ C∥u∥32∥∇v∥64.

By the application of the Gagliardo–Nirenberg inequality (A.1) with p = 2, q = 4/3 and
f = u3/2 again, we observe that

∥∇u3/2∥22 ≥ ∥u∥33 − C∥u∥32.

Combining this estimate with (A.7), we get

d

dt
∥u∥33 + ∥u∥33 ≤ C(1 + ∥∇v∥64)∥u∥32.

Therefore (A.6) is derived by applying the Gronwall inequality and using Lemmas A.1
and A.2.

Lemma A.4. There exists a positive constant C(T ) such that

(A.8) sup
0<t<T

∥∇v(t)∥∞ ≤ C(T ).

Proof. By taking the L∞-norm in (A.5), the Lp-Lq estimate (2.4) for et∆ and Proposition
2.4(ii) yield that

∥∇vj(t)∥∞ ≤e−λjt∥∇v0∥∞ + Cλ
−1/6
j sup

0<t<T
∥u(t)∥3.

Consequently, by Lemma A.3 and v = β1v1 − β2v2 we observe the desired estimate (A.8).

Proof of Proposition 5.1. The proof is based on the Moser’s iteration technique (see [1]
for example), which is often used in the study of PDEs. For the reader’s convenience, we
are going to give the detailed proof.
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Multiplying equation (3.2a) by up−1 (p ≥ 2) and then integrating by parts, we have

d

dt
∥u∥pp +

4(p− 1)

p
∥∇up/2∥22 = 2(p− 1)

∫
R2

up/2∇up/2 · ∇v dx.

By use of the Hölder inequality and the Gagliardo–Nirenberg inequality, we see that

∥up/2∇up/2 · ∇v∥1 ≤ ∥∇v∥∞∥up/2∥2∥∇up/2∥2
≤ ∥∇v∥∞∥∇up/2∥3/22 ∥up/2∥1/21

≤ p−1∥∇up/2∥22 + Cp3∥∇v∥4∞∥up/2∥21,

which gives

(A.9)
d

dt
∥u∥pp +

2(p− 1)

p
∥∇up/2∥22 ≤ Cp3(p− 1)∥∇v∥4∞∥up/2∥21.

By the application of the Gagliardo–Nirenberg inequality, we obtain

2(p− 1)

p
∥∇up/2∥22 ≥ p(p− 1)∥u∥pp − Cp3(p− 1)∥up/2∥21.

This together with (A.9) yields that

d

dt
∥u∥pp + p(p− 1)∥u∥pp ≤ Cp3(p− 1)(1 + ∥∇v∥4∞)∥up/2∥21.

Therefore, applying the Gronwall ineqality and using Lemma A.4, we have

∥u(t)∥pp ≤e−p(p−1)t∥u0∥pp + Cp3(p− 1)

∫ t

0
e−p(p−1)(t−s)(1 + ∥∇v∥4∞)∥u∥pp/2 ds

≤e−p(p−1)t∥u0∥pp + Cp3(p− 1)

(
sup

0<t<T
∥u(t)∥p/2p/2

)2 ∫ t

0
e−p(p−1)(t−s) ds

≤e−p(p−1)t∥u0∥pp + Cp2
(

sup
0<t<T

∥u(t)∥p/2p/2

)2

.

Set p = 2k (k = 1, 2, . . .) and

Φk := sup
0<t<T

∥u(t)∥2k2k .

Then for each k = 1, 2, . . ., we have

Φk ≤e−2k(2k−1)t∥u0∥1∥u0∥2
k−1

∞ + C22kΦ2
k−1(A.10)

≤e−2k(2k−1)td2
k
+ C22kΦ2

k−1

≤C22k max{d2k ,Φ2
k−1},
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where d := max{∥u0∥1, ∥u0∥∞}. Because Φ2
k−1 ≤ C2(22(k−1))2max{d2k ,Φ22

k−2} due to
(A.10), we find that

Φk ≤ C1+222k+22(k−1)max{d2k ,Φ22

k−2}.

Repeating this procedure, we obtain

Φk ≤ C
∑k

j=1 2
j−1

2
∑k

j=1 2
j(k+1−j)max{d2k ,Φ2k

0 },

which yields that

∥u(t)∥2k ≤ C
∑k

j=1 2
−(k−j)−1

2
∑k

j=1 2
−(k−j)(k−j+1)max{d,Φ0}

= C
∑k

j=1 2
−j

2
∑k

j=1 j2
−(j−1)

max{d,Φ0}.

Passing to the limit k → ∞, we obtain the desired estimate (5.2). The proof is complete.
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