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Abstract

We discuss the Cauchy problem for a parabolic attraction-repulsion chemotaxis system:
∂tu = ∆u−∇ · (β1u∇v1) +∇ · (β2u∇v2), t > 0, x ∈ R2,

∂tvj = ∆vj − λjvj + u, t > 0, x ∈ R2 (j = 1, 2),

u(0, x) = u0(x), vj0(0, x) = vj0(x), x ∈ R2 (j = 1, 2)

with positive constants βj , λj > 0 (j = 1, 2) satisfying β1 > β2. In our companion paper, the authors
proved the existence of global-in-time solutions for any initial data with (β1 − β2)

∫
R2 u0 dx < 8π. In

this paper, we prove that every solution stays bounded as t → ∞ provided that (β1 −β2)
∫
R2 u0 dx <

4π.
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1 Introduction

In this paper, we consider the Cauchy problem:
∂tu = ∆u−∇ · (β1u∇v1) +∇ · (β2u∇v2), t > 0, x ∈ R2,

∂tvj = ∆vj − λjvj + u, t > 0, x ∈ R2 (j = 1, 2),

u(0, x) = u0(x), vj(0, x) = vj0(x), x ∈ R2 (j = 1, 2),

(CP)

where βj , λj (j = 1, 2) are positive constants and u0, vj0 are nonnegative functions satisfying

u0 ≥ 0, u0 ̸≡ 0, u0 ∈ L1 ∩ L∞(R2), vj0 ≥ 0, vj0, |∇vj0| ∈ L1 ∩ L∞(R2).

This system was proposed in [6] to describe the aggregation process of Microglia, in which functions
u(t, x), v1(t, x), and v2(t, x) represent the density of Microglia, the chemical concentration of attractive,
and repulsive signals, respectively.
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The Cauchy–Neumann problem (CP) on bounded domains have been studied by many researchers
(cf. [1, 3, 4, 5] and references cited therein), whereas only a few results were obtained for the Cauchy
problem (CP) in R2. In what follows, the symbols for the integral over the whole space, Lebesgue spaces,
and their norms are abbreviated as

∫
dx :=

∫
R2 dx, L

p := Lp(R2), and ∥ · ∥p := ∥ · ∥Lp (1 ≤ p ≤ ∞),
respectively. Jin–Liu [2] proved that every solution (u, v1, v2) to the Cauchy problem (CP) is globally
bounded provided that β1 = β2. They also proved that for all 1 < p ≤ ∞,

sup
t>0

(1 + t)
1−1/p ∥u(t)∥p <∞, (1.1a)

lim
t→∞

t1−1/p∥u(t)− ∥u0∥1G(t)∥p =0 (1.1b)

as well as the same asymptotic profiles for v1 and v2, where G(t) = G(x, t) denotes the usual heat kernel
in R2. For the repulsion-dominant case β1 < β2, the third author [10] has recently proven that every
solution is bounded globally in time. The most delicate situation is the attraction-dominant case β1 > β2
since it is expected that the attraction can dominate over repulsive and diffusive effects, so that finite or
infinite time blow-up can occur. In this case, the authors [7] have proven that every nonnegative solution
with (β1 − β2)∥u0∥1 < 8π exists globally in time. However, there is no result as to whether or not it
remains bounded as t → ∞. The goal of this paper is to solve this last problem under an additional
condition on initial data. We are now in a position to state our main result.

Theorem 1.1. Assume β1 > β2 and ∫
u0 dx <

4π

β1 − β2
.

Then the nonnegative solution of (CP) exists globally in time and satisfies

sup
t>0

(∥u(t)∥∞ + ∥v1(t)∥∞ + ∥v2(t)∥∞) <∞. (1.2)

Remark 1.2. Once the boundedness is established, the same analysis as in [2] (which goes back to [8])
on asymptotic profile works without any change (even for β1 ̸= β2), and therefore (1.1) holds as well.

2 Proof of Theorem 1.1

We first recall the following inequality, which is a crucial key to show Theorem 1.1:

Lemma 2.1 ([9, Lemma 2.3]). For 0 < ε < 1 and nonnegative functions g ∈ L1 ∩W 1,2(R2),∫
g2 dx ≤ 1 + ε

4π

(∫
g dx

)(∫
|∇g|2

1 + g
dx

)
+

2

ε

∫
g dx.

In what follows, let 0 < T <∞ and (u, v1, v2) be the nonnegative solution to (CP) on [0, T ]× R2.
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Proof of Theorem 1.1. By (CP), the fact of
∫
∂tudx = 0, and an integration by parts, we obtain

d

dt

∫
(1 + u) log(1 + u) dx+

∫
|∇u|2

1 + u
dx

=

∫
∇ · (∇u− u∇(β1v1 − β2v2)) log(1 + u) dx+

∫
|∇u|2

1 + u
dx

=

∫
∇u · ∇(β1v1 − β2v2) dx−

∫
∇ log(1 + u) · ∇(β1v1 − β2v2) dx. (2.1)

Set

ψ = β1v1 − β2v2, h = λ2β2v2 − λ1β1v1, (2.2a)

β = β1 − β2, (2.2b)

where β is positive by assumption. Due to (CP), we have

∂tψ = ∆ψ + h+ βu. (2.3)

Integrating by parts in (2.1) and using (2.3), we obtain, after re-grouping of terms,

d

dt

∫
(1 + u) log(1 + u) dx+

∫
|∇u|2

1 + u
dx

=− β

∫
u log(1 + u)dx+

∫
(u− log(1 + u))hdx+ β

∫
u2dx−

∫
u∂tψdx+

∫
∂tψ log(1 + u)dx. (2.4)

Let us write

−β
∫
u log(1 + u)dx = −β

∫
(1 + u) log(1 + u)dx+ β

∫
log(1 + u)dx. (2.5)

By use of x ≥ log(1 + x), Hölder’s and Young’s inequalities as well as mass conservation, we obtain

β

∫
log(1 + u) dx ≤ β

∫
u dx = β∥u0∥1, (2.6)∫

(u− log(1 + u))|h| dx ≤ 2

(∫
u2 dx

)1/2(∫
h2 dx

)1/2

≤ ε

∫
u2 dx+

1

ε

∫
h2 dx, (2.7)

where the constant ε > 0 is arbitrary. Multiply −∂tψ/β for the both sides of (2.3) and integrate the
resulted identity over R2. An integration by parts then shows

− 1

β

∫
(∂tψ)

2 dx =
1

β

∫
∇ψ · ∇∂tψ dx− 1

β

∫
h∂tψ dx−

∫
u∂tψ dx.

Since ∂t
(
|∇ψ|2

)
= 2∇ψ · ∇(∂tψ), a similar argument to the one used to derive (2.7) shows

−
∫
u∂tψ dx =− 1

β

∫
(∂tψ)

2 dx− 1

2β

d

dt

(∫
|∇ψ|2 dx

)
+

1

β

∫
h∂tψ dx

≤− 3

4β

∫
(∂tψ)

2 dx− 1

2β

d

dt

(∫
|∇ψ|2 dx

)
+

1

β

∫
h2 dx. (2.8)
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Since
√
x ≥ log(1 + x), it follows by Hölder’s and Young’s inequalities as well as mass conservation that∫

∂tψ log(1 + u) dx ≤
∫
u1/2|∂tψ| dx

≤∥u0∥1/21

(∫
(∂tψ)

2 dx

)1/2

≤ 1

4β

∫
(∂tψ)

2 dx+ β∥u0∥1. (2.9)

Putting (2.4)–(2.9) together, we have

d

dt

(∫
(1+ u) log(1 + u) dx+

1

2β

∫
|∇ψ|2 dx

)
+

∫
|∇u|2

1 + u
dx+

1

2β

∫
(∂tψ)

2 dx

≤− β

∫
(1 + u) log(1 + u) dx+ (β + ε)

∫
u2 dx+ 2β∥u0∥1 + C1(ε)

∫
h2 dx. (2.10)

Due to (2.3) and an integration by parts, we readily obtain

1

4

d

dt

(∫
ψ2 dx

)
+

1

2

∫
|∇ψ|2 dx =

1

2

∫
hψ dx+

β

2

∫
uψ dx

≤ 1

4

∫ (
h2 + ψ2

)
dx+ ε

∫
u2 dx+

β2

16ε

∫
ψ2 dx, (2.11)

where Young’s inequality has been used as well. Adding the inequality (2.11) to (2.10) and (β/4)
∫
ψ2 dx

to the both sides of the resulted inequality yields that

d

dt

(∫
(1+ u) log(1 + u) dx+

1

2β

∫
|∇ψ|2 dx+

1

4

∫
ψ2 dx

)
+ β

∫
(1 + u) log(1 + u) dx+

1

2

∫
|∇ψ|2 dx+

∫
|∇u|2

1 + u
dx+

1

2β

∫
(∂tψ)

2 dx+
β

4

∫
ψ2 dx

≤ (β + 2ε)

∫
u2 dx+ 2β∥u0∥1 + C1(ε)

∫
h2 dx+ C2(ε)

∫
ψ2 dx.

This is rewritten as

d

dt
F + βF +

1

2β

∫
(∂tψ)

2 dx+

∫
|∇u|2

1 + u
dx ≤ (β + 2ε)

∫
u2 dx+ G(ε) (2.12)

with

F :=

∫
(1 + u) log(1 + u) dx+

1

2β

∫
|∇ψ|2 dx+

1

4

∫
ψ2 dx,

G(ε) := 2β∥u0∥1 + C1(ε)

∫
h2 dx+ C2(ε)

∫
ψ2 dx. (2.13)

Applying Lemma 2.1 with g = u, we obtain∫
u2 dx ≤ 1 + ε

4π
∥u0∥1

∫
|∇u|2

1 + u
dx+ C3(ε)∥u0∥1. (2.14)
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Due to our assumption ∥u0∥1 < 4π/β, there exists a small constant ε = ε0 > 0 such that

(β + 2ε0)
1 + ε0
4π

∥u0∥1 < 1. (2.15)

We deduce from (2.12), (2.14), and (2.15) that

d

dt
F + βF ≤ G(ε0) + C3(ε0)∥u0∥1. (2.16)

We now estimate each term that constitutes G (cf. (2.13)). By standard computations, one may
rewrite equations ∂tvj = ∆vj − λjvj + u (j = 1, 2) to equivalent integral equations. Applying the Lp-Lq

estimates (q = 1 or q = p) for the heat semigroup to the resulted equations, we then obtain

∥vj(t)∥p ≤e−λjt∥et∆vj0∥p +
∫ t

0

e−λj(t−s)∥e(t−s)∆u(s)∥p ds ≤ C(∥vj0∥p, λj , ∥u0∥1)

for any 1 ≤ p <∞, j = 1, 2, 0 < t < T . Therefore quantities ∥ψ(t)∥2 and ∥h(t)∥2 (cf. (2.2a)) are bounded
by a positive constant depending only on β1, β2, λ1, λ2, ∥u0∥1, ∥v10∥2, and ∥v20∥2. Hence the application
of Gronwall’s inequality to (2.16) shows that

F(t) ≤ F(0)e−βt + C(β1, β2, λ1, λ2, ε0, ∥u0∥1, ∥v10∥2, ∥v20∥2) (2.17)

for 0 < t < T . Since the uniform bound (2.17) with respect to T is in hand, a standard iteration argument
(cf. [5, Section 3]) yields a uniform bound on sup0<t<T ∥u(t)∥∞. Consequently, the nonnegative solution
to (CP) may be extended globally in time and

sup
t>0

∥u(t)∥∞ <∞. (2.18)

The combination of (2.18) and the L∞-L∞ estimate for the heat semigroup readily yields uniform bounds
for ∥v1(t)∥∞ and ∥v2(t)∥∞, whence (1.2). The proof is now complete.
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[1] T. Cieślak, K. Fujie, Some remarks on well–posedness of the higher–dimensional chemorepulsion
system, Bull. Pol. Acad. Sci. Math. 67 (2019) 165–178.

[2] H. Y. Jin, Z. Liu, Large time behavior of the full attraction–repulsion Keller–Segel system in the
whole space, Appl. Math. Lett. 47 (2015) 13–20.

[3] H. Y. Jin, Z.A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis,
J. Differential Equations 260 (2016) 162–196.

[4] K. Lin, C. Mu, Global existence and convergence to steady states for an attraction–repulsion chemo-
taxis system, Nonlinear Anal. Real World Appl. 31 (2016) 630–642.

5



[5] D. Liu, Y. Tao, Global boundedness in a fully parabolic attraction–repulsion chemotaxis model,
Math. Methods Appl. Sci. 38 (2015) 2537–2546.

[6] M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic signaling, microglia, and
Alzheimer’s disease senile plaques: Is there a connection? Bull. Math. Biol. 65 (2003) 693–730.

[7] T. Nagai, Y. Seki, T. Yamada, Global existence of solutions to a parabolic attraction-repulsion
chemotaxis system in R2: the attractive dominant case, submitted.

[8] T. Nagai, R. Syukuinn, M. Umesako, Decay properties and asymptotic profiles of bounded solutions
to a parabolic system of chemotaxis in Rn, Funkcial. Ekvac. 46 (2003), 383–407.

[9] T. Nagai, T. Yamada, Boundedness of solutions to the Cauchy problem for an attraction-
repulsion chemotaxis system in two-dimensional space, Rend. Istit. Mat. Univ. Trieste, 52(2020),
1–19 (electronic preview).

[10] T. Yamada, Global existence and boundedness of solutions to a parabolic attraction–repulsion chemo-
taxis system in R2: the repulsive dominant case, preprint.

6


