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Abstract. We study (κ, µ)-spaces whose Boeckx invariants satisfy I ≤
−1, from the viewpoint of submanifold geometry. We give a Lie theoretic
proof that these spaces can be realized as homogeneous hypersurfaces
in noncompact real two-plane Grassmannians.

1. Introduction

In [8], Blair, Koufogiorgos and Papantoniou introduced the following class
of contact metric manifolds:

Definition 1.1. Let (κ, µ) ∈ R2. A contact metric manifold (M,η, ξ, φ, g)
is called a (κ, µ)-space if the Riemannian curvature tensor R satisfies

R(X,Y )ξ = (κI + µh)(η(Y )X − η(X)Y )

for any vector fields X and Y on M , where I denotes the identity transfor-
mation and h := (1/2)Lξφ is the Lie derivative of φ along ξ.

We remark that (κ, µ)-spaces satisfy the inequality κ ≤ 1, and if κ = 1
then they are Sasakian. This class of contact metric manifolds contains not
only Sasakian manifolds, but also many non-Sasakian manifolds including
standard examples of contact metric manifolds, such as the unit tangent
sphere bundles of Riemannian manifolds with constant sectional curvature
c 6= 1. Moreover (κ, µ)-spaces have fruitful geometric properties. Among
others, (κ, µ)-spaces are stable under D-homothetic transformations, and
have a strongly pseudoconvex CR-structure. For more details, we refer to
[8].

In [9, 10], Boeckx has studied (κ, µ)-spaces deeply. He proved that every
non-Sasakian (κ, µ)-space is locally homogeneous, and its local geometry is
completely determined by the dimension and the numbers (κ, µ). Further-
more he introduced an invariant IM defined by IM = (1 − µ/2)/

√
1− κ

for a non-Sasakian (κ, µ)-space M . This invariant completely determines
a (κ, µ)-space locally up to equivalence and D-homothetic transformations.
Also local models of non-Sasakian (κ, µ)-spaces have been obtained. The
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unit tangent sphere bundles of Riemannian manifolds with constant sec-
tional curvature c 6= 1 provide examples of (κ, µ)-spaces with Boeckx invari-
ant I > −1. For the case of I ≤ −1, Boeckx gave examples of (κ, µ)-spaces
with any odd dimension and value I ≤ −1 by a two-parameter family of Lie
groups endowed with certain left-invariant contact metric structure. Later,
another geometric construction of (κ, µ)-spaces with I ≤ −1 has been ob-
tained by Loiudice and Lotta ([17]). Namely, these spaces can be constructed
as the tangent hyperquadric bundles of Lorentzian manifolds with constant
sectional curvature c (c ≤ 0, c 6= −1).

On the other hand, from the view points of CR geometry and submani-
fold geometry, it would be a natural question whether a given (κ, µ)-space
can be realized as a real hypersurface in a Kähler manifold. In [1], Adachi,
Kameda and Maeda proved that a Sasakian space form with constant ϕ-
sectional curvature c + 1 (c 6= 0) can be realized as a real hypersurface in

a nonflat complex space form M̃(c). The realization problem has also been
studied for non-Sasakian cases. Cho and Inoguchi ([13]) proved that for any
I > 0, there exists a (κ, µ)-space with Boeckx invariant I, which can be real-
ized as a homogeneous hypersurface in a non-flat complex space form. Cho
and the authors ([12]) showed that the (0, 4)-space (whose Boeckx invariant
is I = −1) can be realized as a homogeneous hypersurface in the noncompact
real two-plane Grassmannian G∗

2(Rn+3) = SO0(2, n+1)/(SO(2)×SO(n+1)).
Recently, Cho ([11]) proved that for any I 6= 1, there exists a (κ, µ)-space
with Boeckx invariant I, which can be realized as a homogeneous hypersur-
face in the real two-plane Grassmannian G2(Rn+3) or its noncompact dual
G∗

2(Rn+3). We will summarize the details in Subsection 2.2.
In the present paper, we study (κ, µ)-spaces whose Boeckx invariants

satisfy I ≤ −1, from the viewpoint of submanifold geometry. As a result,
we give a Lie theoretic proof that (κ, µ)-spaces with I < −1 can be realized as
homogeneous hypersurfaces in G∗

2(Rn+3). In fact, we describe realizations of
(0, µ)-spaces for all µ > 4. As mentioned above, a realization of the (0, 4)-
space (thus I = −1) has been obtained. Our argument gives an explicit
description of a deformation from (κ, µ)-spaces with I < −1 to the one with
I = −1.

2. Notes on (κ, µ)-spaces

2.1. Preliminaries for contact metric manifolds. In this subsection, we
recall necessary notions for contact metric manifolds, especially for (κ, µ)-
spaces. We refer to [7]. Let M be a (2n + 1)-dimensional manifold, and
denote by X(M) the set of all smooth vector fields on M .

Definition 2.1. We call M an almost contact manifold if it is equipped
with a 1-form η, a vector field ξ ∈ X(M), and a (1, 1)-tensor field φ such
that

(2.1) η(ξ) = 1, φ2X = −X + η(X)ξ (∀X ∈ X(M)).
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An almost contact manifold is denoted by a quadruplet (M,η, ξ, φ). The
vector field ξ is called the characteristic vector field. Note that it follows
that

(2.2) φξ = 0, η ◦ φ = 0.

Definition 2.2. Let (M,η, ξ, φ) be an almost contact manifold. Then, a
Riemannian metric g is called an associated metric if it satisfies

(2.3) g(φX,φY ) = g(X,Y )− η(X)η(Y ) (∀X,Y ∈ X(M)).

We call such (M,η, ξ, φ, g) an almost contact metric manifold, or an al-
most contact Riemannian manifold. Note that, for an almost contact mani-
fold (M,η, ξ, φ), there always exists an associated metric (see [19]). It follows
from (2.1), (2.2), and (2.3) that

η(X) = g(X, ξ) (∀X ∈ X(M)).

For an almost contact metric manifold (M,η, ξ, φ, g), the fundamental 2-
form Φ on M is defined by

Φ(X,Y ) = g(X,φY ) (X,Y ∈ X(M)).

Definition 2.3. An almost contact metric manifold (M,η, ξ, φ, g) is called
a contact metric manifold, or a contact Riemannian manifold if Φ = dη
holds.

A contact metric manifold is denoted by (M,η, ξ, φ, g), and (η, ξ, φ, g) is
called a contact metric structure on M . Note that Φ = dη implies

η ∧ (dη)n 6= 0.

The notion of (κ, µ)-spaces was introduced by Blair, Koufogiorgos, and
Papantoniou in [8] (see Definition 1.1). We here recall some known facts on
(κ, µ)-spaces according to [7]. Let (M,η, ξ, φ, g) be a (κ, µ)-space. Recall
that κ ≤ 1. Moreover, if κ = 1, then µ = 0 and hence (M,η, ξ, φ, g) is
a Sasakian manifold. If κ < 1, then (M,η, ξ, φ, g) is not Sasakian, and
its Riemannian curvature tensor is completely determined by the (κ, µ)-
condition. For a contact metric manifold (M,η, ξ, φ, g), a D-homothetic
deformation means the change of the structure tensors by

η̄ := aη, ξ̄ := (1/a)ξ, φ̄ := φ, ḡ := ag + a(a− 1)η ⊗ η,

where a is a positive constant. Then, (M, η̄, ξ̄, φ̄, ḡ) is again a contact met-
ric manifold. The class of all (κ, µ)-spaces are preserved by D-homothetic
deformations, namely, a D-homothetic deformation maps a (κ, µ)-space to
a (κ̄, µ̄)-space, where

κ̄ = (κ+ a2 − 1)/a2, µ̄ = (µ+ 2a− 2)/a.

Boeckx ([9]) proved that every non-Sasakian (κ, µ)-space is locally homo-
geneous. Moreover, he introduced an invariant

IM = (1− µ/2)/
√
1− κ
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for non-Sasakian (κ, µ)-space M , which is called the Boeckx invariant. He
also proved in [10] that a non-Sasakian (κ, µ)-space is locally isometric (as
contact metric manifolds) to a (κ′, µ′)-space up toD-homothetic deformation
if and only if they have the same Boeckx invariant.

Local models of non-Sasakian (κ, µ)-spaces have been obtained. The mod-
els for the case of I > −1 can be given as follows:

Theorem 2.4 ([8]). Every (κ, µ)-space with Boeckx invariant I > −1 is
locally isometric, up to a D-homothetic deformation, to the unit tangent
sphere bundle of a Riemannian manifold with constant sectional curvature
c 6= 1, endowed with the standard contact metric structure.

The models for the case of I ≤ −1 are more involved, but can be con-
structed explicitly as follows:

Definition 2.5 ([10]). Let α, β ∈ R. Then, we define a real (2n + 1)-
dimensional Lie algebra gα,β with basis {ξ,X1, X2, . . . , Xn, Y1, Y2, . . . , Yn}
as follows:

(1) the bracket product [ξ,Xi] is given by

[ξ,X1] = −(1/2)αβX2 − (1/2)α2Y1,

[ξ,X2] = (1/2)αβX1 − (1/2)α2Y2,

[ξ,Xi] = −(1/2)α2Yi, (i 6= 1, 2)

(2) the bracket product [ξ, Yi] is given by

[ξ, Y1] = (1/2)β2X1 − (1/2)αβY2,

[ξ, Y2] = (1/2)β2X2 + (1/2)αβY1,

[ξ, Yi] = (1/2)β2Xi, (i 6= 1, 2)

(3) the bracket product [Xi, Xj ] is given by

[X1, Xi] = αXi, (i 6= 1)

[Xi, Xj ] = 0, (i, j 6= 1)

(4) the bracket product [Yi, Yj ] is given by

[Y2, Yi] = βYi, (i 6= 2)

[Yi, Yj ] = 0, (i, j 6= 2)
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(5) the bracket product [Xi, Yj ] is given by

[X1, Y1] = −βX2 + 2ξ,

[X1, Yi] = 0, (i 6= 1)

[X2, Y1] = βX1 − αY2,

[X2, Y2] = αY1 + 2ξ,

[X2, Yi] = βXi, (i 6= 1, 2)

[Xi, Y1] = −αYi, (i 6= 1, 2)

[Xi, Y2] = 0, (i 6= 1, 2)

[Xi, Yj ] = δij(−βX2 + αY1 + 2ξ). (i, j 6= 1, 2)

It follows from long but direct calculations that gα,β is a Lie algebra,
that is, the above defined bracket product satisfies the Jacobi identity. We
denote by Gα,β the simply-connected Lie group with Lie algebra gα,β. We
now define some left-invariant structures on Gα,β as follows:

• the left-invariant metric g is defined so that the above basis is or-
thonormal,

• the characteristic vector field is given by ξ,
• the 1-form η is the metric dual of ξ, that is, η(X) = g(X, ξ),
• the (1, 1)-tensor field φ is defined by

φ(ξ) = 0, φ(Xi) = Yi, φ(Yi) = −Xi.

Then, Boeckx showed the following.

Proposition 2.6 ([10]). Assume that β > α ≥ 0. Then, (Gα,β, η, ξ, φ, g) is

a (κ, µ)-space with Boeckx invariant IGα,β
= −β2+α2

β2−α2 ≤ −1, where

κ = 1− (β2 − α2)2

16
, µ = 2 +

α2 + β2

2
.

Loiudice and Lotta gave another construction of (κ, µ)-spaces with Boeckx
invariant I ≤ −1.

Theorem 2.7 ([17]). Every non-Sasakian (κ, µ)-space with Boeckx invariant
I ≤ −1 is locally isometric, up to a D-homothetic deformation, to the tan-
gent hyperquadric bundle of a Lorentzian manifold with constant sectional
curvature c ≤ 0 with c 6= −1, endowed with the standard contact metric
structure.

We also note that, in [18], Loiudice and Lotta gave other homogeneous
models of non-Sasakian (κ, µ)-spaces, which provide geometric interpreta-
tions of the Boeckx invariants.

2.2. Realizations of (κ, µ)-spaces as real hypersurfaces. In this sub-
section, we mention some known facts for realization problems of (κ, µ)-
spaces as homogeneous real hypersurfaces in a Kähler manifold.

First of all, we recall that any hypersurfaces in a Kähler manifold are
almost contact metric manifolds with respect to the following structures:
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Proposition 2.8 ([3, 7]). Let (M,J, g) be a Kähler manifold, and M be
a connected oriented real hypersurface in M . Denote by N a unit normal
vector field of M . We define the structures (η, ξ, φ, g) on M as follows:

• the Riemannian metric g is induced from the Riemannian metric on
M ,

• the characteristic vector field ξ is defined by ξ := −JN ,
• the 1-form η is the metric dual of ξ, that is, η(X) = g(X, ξ),
• the (1, 1)-tensor field φ is defined by φX = JX − η(X)N .

Then, (M,η, ξ, φ, g) is an almost contact metric manifold.

From now on, we always consider the above induced almost contact metric
structure on a hypersurface in a Kähler manifold. For realizations of non-
Sasakian (κ, µ)-spaces, it is well-known that Rn × Sn−1(4) in Cn is a (0, 0)-
space, whose Boeckx invariant is I = 0. If we take, as an ambient space, the
complex projective space CPn(c) or the complex hyperbolic space CHn(c)
with constant holomorphic sectional curvature c, the following facts have
been known:

Theorem 2.9 ([13]). (1) For any c > 0, the tube of radius

r =
2√
c
tan−1

(√
c+ 4−

√
c

2

)
<

π

2
√
c

around the complex quadric Qn−1 in CPn(c) is a (−c/4,−
√
c/2)-

space, whose Boeckx invariant is I =
√
1 + c/4 > 1.

(2) For any c ∈ (−4, 0), the tube of radius

r =
1√
−c

tanh−1

(√
−c

2

)
around the totally geodesic real hyperbolic space RHn(c/4) in CHn(c)
is a (3c/4,−c/2)-space, whose Boeckx invariant is

0 < I =
c+ 4

2
√
4− 3c

< 1.

On the realization problem in terms of the Boeckx invariant I, we have
mentioned the cases for 0 ≤ I < 1 and 1 < I. For the remaining cases,
it was shown that they can be realized as homogeneous real hypersurfaces
in real two-plane Grassmannians and its noncompact duals. Let n ≥ 2,
and G2(Rn+3) be the real two-plane Grassmannian. Note that this can be
identified with the complex quadric Qn+1 as Kähler manifolds. We also
denote by G∗

2(Rn+3) the noncompact real two-plane Grassmannian, which
is the noncompact dual of G2(Rn+3). Recall that G2(Rn+3) and G∗

2(Rn+3)
have nonnegative and nonpositive sectional curvatures, respectively. The
normalizations of the Riemannian metrics on these Grassmannians will be
expressed in terms of the maximal or minimal sectional curvatures.
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Theorem 2.10 ([11, 12]). A horosphere in G∗
2(Rn+3) whose center at in-

finity is determined by an A-principal geodesic in G∗
2(Rn+3) with minimal

sectional curvature −8 is a (0, 4)-space, whose Boeckx invariant is I = −1.

For the A-principal geodesics in G∗
2(Rn+3), we refer to [3].

Theorem 2.11 ([11]). (1) For any c > 0, the tube of radius

r =

√
2

c
tan−1 2

√
2√
c

<
π√
2c

around the real form Sn+1 of G2(Rn+3) with maximal sectional cur-
vature c is a (0,−c/2)-space, whose Boeckx invariant is I = 1+c/4 >
1.

(2) For any c ∈ (−8, 0), the tube of radius

r =

√
2

|c|
coth−1 2

√
2√
|c|

< ∞

around the totally real submanifold RHn+1 in G∗
2(Rn+3) with minimal

sectional curvature c is a (0,−c/2)-space, whose Boeckx invariant is
−1 < I = 1 + c/4 < 1.

(3) For any c < −8, the tube of radius

r =

√
2

|c|
tanh−1 2

√
2√
|c|

< ∞

around the totally geodesic G∗
2(Rn+2) in G∗

2(Rn+3) with minimal sec-
tional curvature c is a (0,−c/2)-space, whose Boeckx invariant is
I = 1 + c/4 < −1.

For details of geometry of the above contact real hypersurfaces inG∗
2(Rn+3),

we refer to [3].

3. Noncompact real two-plane Grassmannians

From now on, we will denote by Mr a tube around the totally geodesic
G∗

2(Rn+2) with radius r > 0 in the noncompact real two-plane Grassmannian
G∗

2(Rn+3). In this section, we recall a expression of Mr as a homogeneous
space.

3.1. Review for G∗
2(Rn+3). In this subsection, we recall some basic facts

on Riemannian symmetric spaces, and particularly, the noncompact real
two-plane Grassmannians. We refer to [14].

Let g be a real Lie algebra, k be a compact subalgebra of g, and θ be an in-
volutive automorphism of g. Then the triplet (g, k, θ) is called an orthogonal
symmetric Lie algebra if it satisfies

k = gθ := {X ∈ g | θ(X) = X}.
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It is well-known that orthogonal symmetric Lie algebras correspond to Rie-
mannian symmetric spaces. In fact, for each (g, k, θ), one obtains a Rie-
mannian symmetric space G/K, by putting G a connected Lie group with
Lie algebra g and K a Lie subgroup of G with Lie algebra k. Recall that the
point [e] = eK ∈ G/K is called the origin of G/K, and usually denoted by
o.

We here introduce the noncompact real two-plane Grassmannians. For
simplicity of notation, we denote by Im the identity matrix, and also by

Ip,q :=

[
Ip

−Iq

]
∈ M(p+ q;R).

We denote by XT the transposed matrix of X. The proof of the following
proposition is an easy exercise of linear algebra.

Proposition 3.1. The triplet (g, k, θ) defined as follows is an orthogonal
symmetric Lie algebra:

(1) g := so(2, n+ 1) := {X ∈ gl(n+ 3;R) | XI2,n+1 + I2,n+1X
T = 0},

(2) θ : g → g : X 7→ I2,n+1XI2,n+1,
(3) k := so(2)⊕ so(n+ 1).

Let us consider the corresponding Riemannian symmetric space. We need
the indefinite special orthogonal group

SO(2, n+ 1) := {g ∈ SL(n+ 3;R) | gI2,n+1g
T = I2,n+1}.

Let SO0(2, n + 1) be the connected component of SO(2, n + 1) containing
the identity. Then the corresponding Riemannian symmetric space can be
expressed as

G∗
2(Rn+3) = SO0(2, n+ 1)/(SO(2)× SO(n+ 1)),

which we call the noncompact real two-plane Grassmannian. This is an
irreducible Hermitian symmetric space of noncompact type if n ≥ 2. Note
that this symmetric space is of dimension 2(n+ 1), and of rank 2.

3.2. Some homogeneous hypersurfaces in G∗
2(Rn+3). For the Lie alge-

bra g = so(2, n+ 1), one has an automorphism

ρ : g → g : X 7→ In+2,1XIn+2,1.(3.1)

Then one can see that gρ = so(2, n), and the corresponding connected Lie
subgroup is SO0(2, n). In this subsection, we study orbits of this group.

Recall that a reflective submanifold of a Riemannian manifold is a con-
nected component of the fixed point set with respect to an involutive isom-
etry. It is easy to see that every reflective submanifold is totally geodesic,
that is, the second fundamental form vanishes identically. For reflective
submanifolds, we refer to [15].

Proposition 3.2. For the action of SO0(2, n) on G∗
2(Rn+3), the orbit through

the origin coincides with G∗
2(Rn+2), which is reflective (and hence totally ge-

odesic).
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Proof. In general, let G/K be a Riemannian symmetric space, and (g, k, θ)
be its orthogonal symmetric Lie algebra. Then ρ : g → g is called an in-
volutive automorphism of (g, k, θ) if ρ is a Lie algebra automorphism of g,
ρ(k) = k, and ρ commutes with θ. One knows that there is a one-to-one
correspondence between reflective submanifolds in G/K and involutive au-
tomorphisms of (g, k, θ). In fact, for an involutive automorphism ρ of (g, k, θ),
the fixed point set gρ is a subalgebra, and the orbit of the corresponding
connected Lie subgroup through the origin is a reflective submanifold (which
is a connected component of the involutive isometry of G/K induced from
ρ).

We apply this general theory to the orthogonal symmetric Lie algebra
(g, k, θ) given in Proposition 3.1. It is easy to see that ρ defined in (3.1)
is an involutive automorphism of (g, k, θ). Therefore, the orbit of SO0(2, n)
through the origin is reflective.

It remains to show that the orbit through the origin is G∗
2(Rn+2). For

simplicity of notation, we put H := SO0(2, n). The orbit through the origin
o ∈ G∗

2(Rn+3) is represented as H.o ∼= H/Ho, where Ho denotes the isotropy
subgroup of H at o. One can easily see that

Ho = H ∩ (SO(2)× SO(n+ 1)) = SO(2)× SO(n),

which shows that H.o coincides with G∗
2(Rn+2). This completes the proof.

□

For an isometric action on a Riemannian manifold, maximal dimensional
orbits are said to be regular, and other orbits singular. The cohomogeneity of
an isometric action is the codimension of a regular orbit. Therefore, regular
orbits of cohomogeneity one actions are homogeneous hypersurfaces.

Cohomogeneity one actions on Riemannian symmetric spaces of noncom-
pact type have been studied in [4, 5, 6]. In this case, it has been known that
each action admits at most one singular orbit. Furthermore, if there exists a
singular orbit, then all regular orbits are tubes around it. The classification
of cohomogeneity one actions up to orbit equivalence has been obtained just
for some spaces. However, the case of noncompact real two-plane Grass-
mannians has been completed by Berndt and Domı́nguez-Vázquez ([2]). In
their list one can find the following.

Proposition 3.3 ([2]). The action of SO0(2, n) on G∗
2(Rn+3) is a cohomo-

geneity one action. Therefore, every tube Mr around G∗
2(Rn+2) with radius

r > 0 is a homogeneous hypersurface.

4. Proof of the main theorem

In this section, we prove that every tube Mr around G∗
2(Rn+2) with ra-

dius r > 0 is obtained as an orbit of certain smaller subgroup Q ⊊ SO0(2, n)
(Subsection 4.2), and for some particular radius it is a (κ, µ)-space (Sub-
section 4.3). Our proof is based on Lie theoretic arguments, in which the
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solvable model of the noncompact real two-plane Grassmannian plays a key
role.

4.1. The solvable model of G∗
2(Rn+3). In this subsection, we review some

general facts on Iwasawa decompositions and the solvable model of the non-
compact real two-plane Grassmannian G∗

2(Rn+3). Refer to [14] and [12].
Let G/K be a Riemannian symmetric space of noncompact type, and

(g, k, θ) be the corresponding orthogonal symmetric Lie algebra. Denote the
Killing form of g by B, and the orthogonal complement of k with respect to
B by p. One then obtains the Cartan decomposition g = k⊕ p. Let us fix a
as a maximal abelian subspace of p, and denote the dual space of a by a∗.
Then, for each λ ∈ a∗, we define

gλ := {X ∈ g | ad(H)X = λ(H)X for all H ∈ a },

and call λ ∈ a a (restricted) root if λ 6= 0 and gλ 6= 0. Denote by Σ the set
of roots. Then, one obtains the root space decomposition

g = g0 ⊕
⊕
λ∈Σ

gλ.

Now we review the Iwasawa decompositions. Let us fix Λ as a set of
simple roots, and then denote the set of positive roots associated with Λ by
Σ+. Then, one can consider

n :=
⊕
λ∈Σ+

gλ, and s := a⊕ n,

which are a nilpotent and solvable Lie subalgebra of g, respectively. We
then obtain g = k ⊕ a ⊕ n = k ⊕ s (as a vector space), which is called the
Iwasawa decomposition of g, and we call s the solvable part of the Iwasawa
decomposition.

Recall that G/K denotes a Riemannian symmetric space of noncompact
type. As usual, we identify the tangent space To(G/K) with p, where o :=
eK. Let us denote by S the connected subgroup of G corresponding to s.
One knows that S acts on G/K simply-transitively, and hence, s can be
identified with To(G/K) ∼= p. Therefore, the geometrical structures (e.g.,
the Riemannian metric) on G/K derive ones on s. We call a collection of the
bracket relation on s and its related structures the solvable model of G/K.

From now on, we consider the noncompact real two-plane Grassmannians
G∗

2(Rn+3) with n ≥ 2. Note that it is a Hermitian symmetric space of
noncompact type, and we hereafter assume that it has the minimal sectional
curvature −c2 with c > 0.

Let us describe the solvable model of G∗
2(Rn+3). We keep to use the

notations mentioned above. One knows that the root system Σ of g =
so(2, n+ 1) is of B2-type, and therefore, we can put

Σ+ := {α1, α2, α1 + α2, α1 + 2α2},
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where α1 and α2 stand for simple roots satisfying |α1| > |α2|. Then, the
solvable part of the Iwasawa decomposition of g is given by

s = a⊕ (gα1 ⊕ gα2 ⊕ gα1+α2 ⊕ gα1+2α2) ⊂ so(2, n+ 1).

Let 〈, 〉s and J be the induced metric and complex structure on s from
G∗

2(Rn+3), respectively. According to [12, Theorem 4.2] and its proof, one
obtains the solvable model of G∗

2(Rn+3) with minimal sectional curvature
−c2 as follows:

Theorem 4.1 ([12]). There exists a basis

s = span{A1, A2, X0, Y1, . . . , Yn−1, Z1, . . . , Zn−1,W0}
such that

(1) Ai ∈ a, X0 ∈ gα1, Yi ∈ gα2, Zi ∈ gα1+α2, W0 ∈ gα1+2α2, and they
have the following bracket relations:

• [A1, X0] = cX0, [A1, Yi] = −(c/2)Yi, [A1, Zi] = (c/2)Zi,
• [A2, Yi] = (c/2)Yi, [A2, Zi] = (c/2)Zi, [A2,W0] = cW0,
• [X0, Yi] = cZi, [Yi, Zi] = cW0,
• and other relations vanish;

(2) they are orthonormal with respect to 〈, 〉s;
(3) J satisfies that JA1 = −X0, JA2 = W0, JYi = Zi.

4.2. The Lie group Q. We have studied the totally geodesic submanifold
G∗

2(Rn+2) of G∗
2(Rn+3) in the previous section. In this subsection, we show

that G∗
2(Rn+2) and its tube Mr with radius r > 0 are obtained as orbits of

a smaller subgroup Q ⊊ SO0(2, n).

Definition 4.2. We define q := (s	 span{Y1, Z1})⊕ g−α1 .

One can easily see that q is a Lie subalgebra of so(2, n+1). In particular,
we have

q =

{
span{A1, A2, X0,W0, θX0} if n = 2,

span{A1, A2, X0, Y2, . . . Yn−1, Z2, . . . Zn−1,W0, θX0} if n > 2.

Especially, the bracket relations on q can be calculated from Theorem 4.1
and the following Lemma.

Lemma 4.3. One has

(1) [θX0, A1] = cθX0, [θX0, A2] = 0,
(2) [θX0, X0] = 2cA1, [θX0, Yi] = 0, [θX0, Zi] = −cYi, [θX0,W0] = 0.

Proof. First, it follows from Theorem 4.1 that

[θX0, Ai] = θ[X0,−Ai] = δ1i · cθX0,

which shows the assertion (1).
Next, we show (2). Let us take a constant k > 0 such that kB(X,Y )

coincides with the metric on To(G/K) = p, and define a metric 〈, 〉g on g
by 〈X,Y 〉g = −kB(X, θX). Then one knows 〈[θX, Y ], Z〉g = 〈X, [Y, Z]〉g for
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any X,Y, Z ∈ g, and 〈X,Y 〉s = (1/2)〈X,Y 〉g for any X,Y ∈ n. See [12,
Section 4] for more details.

The property of root space decompositions shows that

[θX0, X0] ∈ a, [θX0, Zi] ∈ gα2 , [θX0, Yi] = [θX0,W0] = 0.

If we put [θX0, X0] =
∑

aiAi ∈ a, then it satisfies

ai = 〈[θX0, X0], Ai〉g = δ1i · c〈X0, X0〉g = δ1i · 2c.

This shows [θX0, X0] = 2cA1. Similarly, putting [θX0, Zi] =
∑

bjYj ∈ gα2 ,
we have

bj = (1/2)〈[θX0, Zi], Yj〉g = (1/2)(−c)〈Zi, Zj〉g,= δij · (−c)

which shows [θX0, Zi] = −cYi. This completes the proof. □

Throughout this paper, let us denote by Q the connected subgroup of G
corresponding to q.

Proposition 4.4. The action of Q on G∗
2(Rn+3) is orbit equivalent to the

action of SO0(2, n). Therefore, it is of cohomogeneity one, and the orbits of
Q are the totally geodesic G∗

2(Rn+2) and its tubes Mr with radius r > 0.

Proof. According to the general theory, a cohomogeneity one action is de-
termined by one orbit up to orbit equivalence (since the other orbits are
tubes around it or equidistant hypersurfaces). Therefore, it is enough to
show that the orbit of Q through o is the totally geodesic G∗

2(Rn+2), and
the action of Q is of cohomogeneity one.

First of all, we show the former claim, that is,

Q.o = G∗
2(Rn+2).(4.1)

Recall that so(2, n+1) = gρ, where the involutive automorphism ρ is defined
in (3.1). By the construction of the solvable model in [12], one can show
that q ⊂ gρ. In fact, it satisfies

ρ(Ai) = Ai, ρ(X0) = X0, ρ(W0) = W0,

ρ(Yi) = Yi, ρ(Zi) = Zi (i ∈ {1, . . . , n− 2}),
ρ(Yn−1) = −Yn−1, ρ(Zn−1) = −Zn−1.

This yields that

Q.o ⊂ SO0(2, n).o = G∗
2(Rn+2).

In order to show the converse inclusion, recall Q.o = Q/Qo. For the Lie
algebra qo of the isotropy subgroup Qo, one has

qo = q ∩ (so(2)⊕ so(n+ 1)) = qθ = span{(1 + θ)X0},

which is one-dimensional. Therefore, one can calculate thatQ.o andG∗
2(Rn+2)

have the same dimension. Since both are connected and complete, this com-
pletes the proof of (4.1).
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It remains to show the latter claim, that is, the action of Q is of cohomo-
geneity one. This follows from the slice theorem. In general, the cohomo-
geneity of an isometric action coincides with the cohomogeneity of the slice
representation at some point. Note that the slice representation of Q at the
origin o is the action of Qo on the normal space νo(Q.o). Since the tangent
space of Q.o at o coincides with the image of the orthogonal projection of q
onto p = g−θ, the normal space is given by

νo(Q.o) = span{(1− θ)Yn−1, (1− θ)Zn−1}.
By the bracket relations described in the definition of the solvable model and
Lemma 4.3, qo = span{(1 + θ)X0} acts nontrivially on νo(Q.o). Therefore,
the slice representation is isomorphic to the standard action of SO(2) on R2,
which is of cohomogeneity one. This completes the proof. □
4.3. The Lie group Q(s) and the main theorem. In this subsection, we
prove that the tube Mr is a (κ, µ)-space for some particular radius r > 0.
First of all, we give a parameter change of the radius function, which makes
the latter calculations simpler.

Lemma 4.5. For t > 0, let us put p := exp(−tZ1).o, and denote by r(t) the
distance between Q.p and Q.o = G∗

2(Rn+2). Then the function r = r(t) is
monotonic increasing and can take any positive values.

Proof. We consider γ(u) = exp(−u(1 − θ)Z1).o, which is the unit speed
geodesic starting at o. Then γ is perpendicular to Q.o at o. Since the action
of Q is of cohomogeneity one and Q.o is a singular orbit, the geodesic ray
γ([0,∞)) can be identified with the orbit space. Hence γ([0,∞)) intersects
with Q.p at exactly one point, which is γ(r(t)).

One can see this picture in some RH2. Let H be the connected Lie sub-
group with Lie algebra span{[θZ1, Z1], Z1, θZ1} ∼= sl(2,R). Then the orbit
H.o is a totally geodesic submanifold and isometric to RH2. By definition,
the point p and the geodesic γ are contained in this RH2. The two points
p and γ(r(t)) are related as follows. Define A′ := exp(R[θZ1, Z1]) ⊂ H.
Then H.o is a geodesic, and H.p is an equidistant curve of H.o in RH2. By
a general property of RH2, the curve H.p intersects with the geodesic γ at
exactly one point. Note that A′ ⊂ Q, and hence A′.p ⊂ Q.p. Therefore, this
intersecting point is γ(r(t)). This yields that the function r(t) can be de-
fined by using only RH2, and the assertion follows from properties of curves
in RH2. □

Then we again replace the parameter from t ∈ (0,∞) to s ∈ (0, π/2) by
t(s) := (

√
2/c) tan(s), and define the subgroup Q(s) as follows:

Definition 4.6. For s ∈ (0, π/2), we define Q(s) := gQg−1, where g :=
exp(t(s)Z1).

The orbit Q(s).o is isometrically congruent to Mr. Indeed,

g−1.(Q(s).o) = g−1.(gQg−1.o) = Q.p = Mr,
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where p := g−1.o = exp(−tZ1).o and r := d(p,Q.o). Lemma 4.5 states that
the converse holds.

Proposition 4.7. Every tube Mr around G∗
2(Rn+2) with radius r > 0 is iso-

metrically congruent to the orbit Q(s).o through the origin for some unique
s ∈ (0, π/2).

Proof. From Lemma 4.5, for r > 0, there uniquely exists t > 0 such that
d(p,Q.o) = r, where p := exp(−tZ1).o. We can also choose s ∈ (0, π/2)
satisfying t = (

√
2/c) tan(s) uniquely. Then, the congruency of Mr and

Q(s).o follows from the above argument, which completes the proof. □
Let s ∈ (0, π/2). Since Q(s).o = Q(s)/{e}, we hereafter identify Q(s).o

with the Lie group Q(s), and study the geometry at the Lie algebra level.
We denote by q(s) the Lie algebra of Q(s). Since q(s) = Ad(exp(tZ1))q, we
have

q(s) = span{A1 − (1/
√
2) tan(s)Z1, A2 − (1/

√
2) tan(s)Z1,

X0,W0, θX0 +
√
2 tan(s)Y1}

when n = 2, and

q(s) = span{A1 − (1/
√
2) tan(s)Z1, A2 − (1/

√
2) tan(s)Z1,

X0, Y2, . . . , Yn−1, Z2, . . . , Zn−1,W0, θX0 +
√
2 tan(s)Y1}

when n > 2.
For later convenience, we define

ξ := sin(s)(−X0 +W0)/
√
2− cos(s)Y1

− cos(s) cot(s)(X0 + θX0)/
√
2,

ξ⊥ := (−X0 −W0)/
√
2,

T := (−A1 +A2)/
√
2,

Ỹ1 := cos(s)(−X0 +W0)/
√
2 + sin(s)Y1

+ cos(s)(X0 + θX0)/
√
2,

Z̃1 := cos(s)(−A1 −A2)/
√
2 + sin(s)Z1.

Then, one can see that

q(s) =

{
span{ξ, ξ⊥, T, Ỹ1, Z̃1} if n = 2,

span{ξ, ξ⊥, T, Ỹ1, Y2, . . . , Yn−1, Z̃1, Z2, . . . , Zn−1} if n > 2.
(4.2)

Now we describe the almost contact metric structure of Q(s).o = Q(s).
Let us identify the tangent space To(G

∗
2(Rn+3)) with s, and denote by ϖ :

g ∼= k ⊕ s → s the orthogonal projection. One can see that To(Q(s).o) ∼=
ϖ(q(s)) ⊂ s is of codimension one, whose unit normal vector is given by

N := sin(s)(−A1 −A2)/
√
2− cos(s)Z1 ∈ s.
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Then, according to Proposition 2.8, we equip Q(s).o (and hence Q(s)) with
the almost contact metric structure with respect to N .

Proposition 4.8. For the almost contact metric structure on Q(s), one has

(1) the metric 〈, 〉 makes the basis of (4.2) orthonormal;
(2) ξ defined above is the characteristic vector field;

(3) the (1, 1)-tensor φ satisfies that φ(ξ) = 0, φ(ξ⊥) = T , φ(Ỹ1) = Z̃1,
and φ(Yi) = Zi for i ∈ {2, . . . , n− 1}.

Proof. First, we note that for the elements in the basis (4.2),

ϖ(ξ) = sin(s)(−X0 +W0)/
√
2− cos(s)Y1,

ϖ(Ỹ1) = cos(s)(−X0 +W0)/
√
2 + sin(s)Y1,

and otherwise ϖ(X) = X holds. Since the metric on q(s) is given by
〈X,Y 〉 := 〈ϖ(X), ϖ(Y )〉s, the assertion (1) follows from Theorem 4.1 (2).
The assertion (2) follows from Theorem 4.1 (3), namely,

−JN = sin(s)(−X0 +W0)/
√
2− cos(s)Y1 = ϖ(ξ).

The assertion (3) can be shown similarly. □

Now, we are in position to prove the main theorem.

Theorem 4.9. For s ∈ (0, π/2), the hypersurface Q(s).o in G∗
2(Rn+3)

with minimal sectional curvature −8 csc(s)2 is a (0, 4 csc(s)2)-space, whose
Boeckx invariant is I = 1− 2 csc(s)2 < −1.

Proof. Take any s ∈ (0, π/2), and normalize the metric on G∗
2(Rn+3) so that

the minimal sectional curvature is −8 csc(s)2. One can prove the theorem
by giving an explicit isomorphism between q(s) and gα,β as (almost) contact
metric Lie algebras. Let us consider the following correspondence from q(s)
to gα,β:

ξ 7→ ξ̂, −Z̃i 7→ X̂1, ξ⊥ 7→ X̂2, Ỹi 7→ Ŷ1, T 7→ Ŷ2,

in addition, if n > 2,

−Zi 7→ X̂i+1, Yi 7→ Ŷi+1,

where {ξ̂, X̂1, . . . , X̂n, Ŷ1, . . . , Ŷn} is the basis of gα,β mentioned in Defini-
tion 2.5. By calculating the bracket relations on q(s) and comparing them
to ones on gα,β, one can show that the above correspondence is an isomor-
phism between q(s) and gα,β as Lie algebras. Similarly, by comparing their
contact structures, one can show that they are isomorphic as contact metric
algebras. □

This theorem gives realizations of (κ, µ)-spaces with Boeckx invariant
I < −1, in fact (0, µ)-spaces for µ > 4, as homogeneous hypersurfaces in
G∗

2(Rn+3).
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Remark 4.10. (1) In Theorem 4.9, let us consider the limit s → π/2.
Then, the hypersurface Q(s).o is deformed to SN .o, where SN is the
connected subgroup of S corresponding to s	span{(−A1−A2)/

√
2}.

It has been known in [12] that the hypersurface SN .o is a (0, 4)-space.
Therefore, our theorem describes such deformation explicitly.

(2) Since two Lie algebras q(s) and q are conjugate, gα,β is also iso-
morphic to q as Lie algebras. This fact gives us another expression
of gα,β as a Lie algebra. In particular, when n = 2, one see that
gα,β ∼= sl3(R)× aff(R), which has been mentioned in [16].
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