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Abstract. In this paper, we introduce some commutativity condition
for subsets in quandles, which we call the s-commutativity. Note that
quandles can be regarded as a generalization of symmetric spaces, and
the notion of s-commutative subsets is a generalization of antipodal sub-
sets. We study maximal s-commutative subsets in quandles, and show
that they have some nice properties. As one example, any maximal s-
commutative subsets in quandles are subquandles. We also determine
maximal s-commutative subsets in spheres, projective spaces, and dihe-
dral quandles. In these quandles, maximal s-commutative subsets turn
out to be unique up to automorphisms.

1. Introduction

A quandle is a set equipped with a binary operator, whose axioms are
corresponding to the Reidemeister moves of knots. Although the notion
of quandles is originated in knot theory ([5]), it now plays important roles
in many branches of mathematics. Quandles have been studied actively
from various perspectives and viewpoints. As one aspect, quandles can be
regarded as a generalization of symmetric spaces. The definition of quandles
can be formulated as follows.

Definition 1.1. Let Q be a set, and s be a map from Q into Map(Q,Q),
that is, a map sx : Q → Q is equipped for each x ∈ Q. Then a pair (Q, s) is
called a quandle if

(Q1) for any x ∈ Q, sx(x) = x,
(Q2) for any x ∈ Q, sx is bijective,
(Q3) for any x, y ∈ Q, sx ◦ sy = ssx(y) ◦ sx.
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As has already been mentioned in [5], symmetric spaces are quandles by
taking sx as the point symmetry at x (for symmetric spaces, see Subsec-
tion 2.4). It is then natural to study quandles by referring to the theory
of symmetric spaces. There have been such studies, for which we refer to
[3, 4, 8] and references therein.

This paper also studies quandles from the viewpoint of symmetric spaces.
In the theory of Riemannian symmetric spaces, important notions include
not only Riemannian geometric properties (such as curvatures), but also
ones derived from the point symmetries. A typical and most important
example is the notion of antipodal subsets, introduced by Chen and Nagano
([2]). The definition can easily be transferred to quandles as follows.

Definition 1.2. A subset X in a quandle (Q, s) is said to be antipodal if
sx(y) = y holds for any x, y ∈ X.

This notion generalizes the antipodal points in the unit sphere Sn. For
each x ∈ Sn, the point −x is an antipodal point of x. The subset {±x}
is an antipodal subset in Sn, which is maximal with respect to inclusion
relation. Furthermore, every maximal antipodal subset in Sn is of this form
(see Section 3 for details and more examples). For other spaces, it would
probably be surprising that the classifications of maximal antipodal subsets
are involved in general, and it is still open for some symmetric spaces (see
Remark 3.12).

As one of important applications of antipodal subsets, the notion of 2-
numbers has been introduced ([2]). The 2-number of a compact Riemannian
symmetric space is defined by the supremum of the cardinalities of antipo-
dal subsets, which is in fact finite. The 2-number is related to topological
information of the symmetric space, such as the Euler characteristic ([2])
and the Z2-Betti number ([7]). For further results and applications, we refer
to a survey article [1] and references therein.

In a possible structure theory of quandles, it would be reasonable to expect
to have a nice class of subsets, which reflect some properties of the ambient
quandles. In this paper, we introduce the notion of s-commutative subsets
in quandles, which would form a nice class of subsets. The definition is given
as follows (see Section 4 for details).

Definition 1.3. A subset X in a quandle (Q, s) is said to be s-commutative
if sx ◦ sy = sy ◦ sx holds for any x, y ∈ X.

Note that the s-commutativity condition itself can also been seen in [2,
Proposition 3.4], but the notion of s-commutative subsets would be new.
One of the purposes of this paper is to study some fundamental properties
of s-commutative subsets. Recall that antipodal subsets play important roles
in the study of symmetric spaces. The notion of s-commutative subsets is a
generalization of antipodal subsets.

Proposition 1.4. Every antipodal subset in a quandle (Q, s) is s-commutative.
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For s-commutative subsets in quandles, it is natural to consider maximal
ones with respect to inclusion relation. Recall that a subset X in (Q, s) is
called a subquandle if X is normalized by s±1

x for every x ∈ X.

Theorem 1.5. Every maximal s-commutative subset in a quandle (Q, s) is
a subquandle.

There are notions of the direct products and the interaction-free unions
of quandles. We also study, in Section 5, the behaviour of antipodal subsets
and s-commutative subsets under these operations.

In Section 6, we determine maximal s-commutative subsets in some sym-
metric spaces and quandles. The first example is the n-dimensional unit
sphere Sn with n ∈ Z>0. Denote by {e1, . . . , en+1} the standard basis of
Rn+1, and by SO(n+ 1) the special orthogonal group of degree n+ 1.

Proposition 1.6. The subset {±e1, . . . ,±en+1} is maximal s-commutative
in the unit sphere Sn, which is unique up to the congruence by SO(n+ 1).

Since the above subset is not antipodal, this example clarifies a difference
between antipodal subsets and s-commutative subsets. The second example
is the n-dimensional real projective space P (Rn+1). We denote by Rx ∈
P (Rn+1) the line spanned by x ∈ Rn+1 \ {0}.

Proposition 1.7. The subset {Re1, . . . ,Ren+1} is maximal s-commutative
in P (Rn+1) if n > 1. If n = 1, then {Re1,Re2,R(e1 + e2),R(e1 − e2)}
is a maximal s-commutative subset in P (R2). In both cases, a maximal s-
commutative subset in P (Rn+1) is unique up to the congruence by SO(n+1).

It is natural but interesting that the shape of a maximal s-commutative
subset in P (Rn+1) depends on n. Note that {Re1,Re2,R(e1+e2),R(e1−e2)}
is s-commutative in P (R2), but not in P (R3). This yields that the s-
commutativity is an extrinsic property. The third example is the dihedral
quandle Rn. Recall that Rn := (Z/nZ, s) with sx(y) := 2x − y (see Exam-
ple 2.5 for details).

Proposition 1.8. For the dihedral quandle Rn, the following subsets are
maximal antipodal and maximal s-commutative, respectively, and all of them
are unique up to the automorphisms:

condition maximal antipodal maximal s-commutative

n is odd {0} {0}
n = 4l − 2 (l ∈ Z>0) {0, 2l − 1} {0, 2l − 1}
n = 4l (l ∈ Z>0) {0, 2l} {0, l, 2l, 3l}

By the results of the above three propositions, one can see that antipodal
subsets and s-commutative subsets are sometimes the same, but sometimes
different, both in the finite and infinite cardinality cases. In Remark 6.6,
we also mention a difference between poles and antipodal subsets in finite
quandles.
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Note that the study on s-commutative subsets is new and undeveloped.
There are many open problems related to symmetric spaces and quandles.
In particular, it would be interesting to determine maximal s-commutative
subsets in symmetric spaces and quandles, and study the uniqueness prop-
erties. Note that SO(n+ 1) (and also the orthogonal group O(n+ 1)) acts
on Sn and P (Rn+1) as automorphisms of quandles. Therefore, for the above
cases Sn, P (Rn+1), and Rn, maximal s-commutative subsets are unique up
to automorphisms. However, this would be not true in general.

Our studies on quandles from the viewpoint of symmetric spaces have
been influenced strongly by Professor Tadashi Nagano. In particular, the
fourth author obtained his PhD degree under the supervision of Professor
Tadashi Nagano, and learned many things about symmetric spaces. Without
his guidance, our studies would not have been possible. The authors are also
grateful to Hiroyuki Tasaki and Makiko Sumi Tanaka for their kind supports
and helpful discussions.

2. Preliminaries

In this section, we recall some basic notions on quandles. In particular,
the direct product and the interaction-free union of quandles are studied. We
also recall some examples of quandles, including symmetric spaces, whose
subsets will be studied in the following sections. Throughout this paper,
quandles are denoted by Q = (Q, s) as in Definition 1.1, and s is called the
quandle structure on Q.

2.1. Quandles. In this subsection, we recall some basic notions on quan-
dles. First of all, we recall the notion of subquandles.

Definition 2.1. Let (Q, s) be a quandle. A subset X of Q is called a
subquandle if for any x ∈ X it satisfies s±1

x (X) ⊂ X.

Note that X is a subquandle if and only if sx(X) = X for any x ∈ X. It
is easy to see that every subquandle is naturally a quandle. We also note
that the condition sx(X) ⊂ X is not sufficient to define subquandles, since
sx is not necessary involutive.

Definition 2.2. Let (M, sM ) and (N, sN ) be quandles. Then a map f :
M → N is called a homomorphism if it satisfies

sNf(x) ◦ f = f ◦ sMx (∀x ∈ M).

Note that the inverse map of a bijective homomorphism is also a ho-
momorphism. Hence, a bijective homomorphism is called an isomorphism.
The notions of automorphisms and the automorphism groups are defined
naturally.

Definition 2.3. For a quandle Q = (Q, s), a bijective homomorphism from
(Q, s) to (Q, s) itself is called an automorphism. The group consisting of all
automorphisms is called the automorphism group of (Q, s), and denoted by
Aut(Q) or Aut(Q, s).
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A quandle Q is said to be homogeneous if Aut(Q) acts transitively on Q.
Note that sx ∈ Aut(Q) holds for any x ∈ Q.

Example 2.4. Let M be a set. Then one obtains a quandle structure s on
M by putting sx := idM for every x ∈ M . This (M, s) is called a trivial
quandle. A trivial quandle (M, s) is homogeneous, since any bijection from
M to M is an automorphism.

The next example is the dihedral quandle, which would be the simplest
non-trivial quandles. We denote by Z/nZ the cyclic group of order n.

Example 2.5. Let us fix n ∈ Z>0, and put Rn := Z/nZ. Then we have a
quandle structure s on Rn by putting

sx : Rn → Rn : y 7→ 2x− y,

for each x ∈ Rn. This (Rn, s) is called the dihedral quandle of order n.
The dihedral quandle (Rn, s) is homogeneous, since the following f is an
automorphism:

f : Rn → Rn : x 7→ x+ 1.

We note that, in terms of the above automorphism f , the cyclic group
Z/nZ acts on (Rn, s) as automorphisms.

2.2. Direct products of quandles. In this subsection, we consider a fam-
ily of quandles {Qλ = (Qλ, s

λ)}λ∈Λ, and study the direct product quandle∏
λ∈ΛQλ. As a set, it is the direct product set of {Qλ}λ∈Λ, whose elements

will be denoted as (xλ)λ. The next proposition has been known, and can be
proved directly.

Proposition 2.6. Let Q :=
∏

λ∈ΛQλ be the direct product set. Then the

map sQ : Q → Map(Q,Q) defined by the following is a quandle structure on
Q:

sQ(xλ)λ
: Q → Q : (yλ)λ 7→ (sλxλ

(yλ))λ.

The obtained quandle is called the direct product quandle of a family
of quandles {Qλ}λ∈Λ, and denoted by

∏
λ∈ΛQλ. In the remaining of this

subsection, we show some properties of the direct product quandles. We
start from the following.

Proposition 2.7. For any η ∈ Λ, the natural projection pη :
∏

λ∈ΛQλ → Qη

is a quandle homomorphism.

Proof. We denote by sQ the quandle structure on the direct product quandle
Q :=

∏
λ∈ΛQλ. Take any (xλ)λ, (yλ)λ ∈ Q, and any η ∈ Λ. Then we have

(pη ◦ sQ(xλ)λ
)((yλ)λ) = pη((s

λ
xλ
(yλ))λ) = sηxη

(yη) = (sηpη((xλ)λ)
◦ pη)((yλ)λ),

which proves that pη is a quandle homomorphism. □
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The next proposition gives a key property of direct product quandles.
Namely, a family of quandle homomorphisms into Qλ gives rise to a quandle
homomorphism into

∏
λ∈ΛQλ.

Proposition 2.8. Let Z be a quandle, and πλ : Z → Qλ be a quandle
homomorphism for each λ ∈ Λ. Then the map

h : Z →
∏

λ∈ΛQλ : x 7→ (πλ(x))λ

is the unique quandle homomorphism satisfying pλ ◦ h = πλ for any λ ∈ Λ.

Proof. Denote by sZ and sQ the quandle structures on Z andQ :=
∏

λ∈ΛQλ,
respectively. Then, since each πλ is a quandle homomorphism, we have

(h ◦ sZx )(y) = h(sZx (y)) = (πλ(s
Z
x (y)))λ = ((sλπλ(x)

◦ πλ)(y))λ
= sQ(πλ(x))λ

(πλ(y))λ = (sQh(x) ◦ h)(y)

for any x, y ∈ Z. This shows that h is a quandle homomorphism. It is clear
that h satisfies pλ ◦h = πλ for any λ ∈ Λ. The uniqueness follows easily. □

By applying Proposition 2.8, we obtain a property of quandle automor-
phisms on

∏
λ∈ΛQλ. Namely, the direct product group

∏
λ∈ΛAut(Qλ)

of the automorphism groups of Qλ can be understood as a subgroup of
Aut(

∏
λ∈ΛQλ).

Proposition 2.9. For each (fλ)λ ∈
∏

λ∈ΛAut(Qλ), the following map∏
λ∈Λ fλ is an automorphism on the quandle

∏
λ∈ΛQλ:∏

λ∈Λ fλ :
∏

λ∈ΛQλ →
∏

λ∈ΛQλ : (xλ)λ 7→ (fλ(xλ))λ.

Proof. Put Z :=
∏

λ∈ΛQλ, and πλ := fλ ◦pλ for each λ ∈ Λ. Since πλ : Z →
Qλ is a quandle homomorphism, it follows from Proposition 2.8 that

h : Z →
∏

λ∈ΛQλ : x 7→ (πλ(x))λ

is a quandle homomorphism. Then so is
∏

λ∈Λ fλ, since

h((xλ)λ) = ((fλ ◦ pλ)((xλ)λ))λ = (fλ(xλ))λ = (
∏

λ∈Λ fλ)((xλ)λ).

Furthermore, this is bijective, since
∏

λ∈Λ(f
−1
λ ) is the inverse map. □

As another application of Proposition 2.8, one can see that the quandle
structure on

∏
λ∈ΛQλ is canonical, in the following sense.

Proposition 2.10. Let s′ be a quandle structure on the direct product set∏
λ∈ΛQλ, and suppose that the projection pλ is a quandle homomorphism

onto Qλ for any λ ∈ Λ. Then (
∏

λ∈ΛQλ, s
′) coincides with the direct product

quandle of {Qλ}λ∈Λ.

Proof. We apply Proposition 2.8 for the quandle Z := (
∏

λ∈ΛQλ, s
′) and

the quandle homomorphisms pλ : Z → Qλ. Then the obtained quandle
homomorphism h : Z →

∏
λ∈ΛQλ is the identify map, since

h((xλ)λ) = (pλ((xλ)λ))λ = (xλ)λ



A COMMUTATIVITY CONDITION FOR SUBSETS IN QUANDLES 7

for any (xλ)λ ∈ Z. Since h = id is a quandle homomorphism, we conclude
that s′ coincides with the quandle structure sQ on the direct product quandle∏

λ∈ΛQλ. This completes the proof. □
It should be noted that, by Proposition 2.8, the direct product quandle∏
λ∈ΛQλ is the product of the family {Qλ = (Mλ, s

λ)}λ∈Λ in the category of
quandles and quandle homomorphisms. This means that it has the following
universal property.

Universal property of direct products: Let us fix any quandle Z
and any quandle homomorphism πλ : Z → Qλ for each λ ∈ Λ. Then
there exists a unique quandle homomorphism h : Z →

∏
λ∈ΛQλ such

that pλ ◦ h = πλ for any λ ∈ Λ.

2.3. Interaction-free unions of quandles. Same as in the previous sub-
section, we consider a family of quandles {Qλ = (Qλ, s

λ)}λ∈Λ. In this sub-

section, we study the interaction-free union quandle
⊔free

λ∈ΛQλ, defined by
the following.

Proposition 2.11. Let Q :=
⊔

λ∈ΛQλ be the disjoint union as a set. Then

the map sfree : Q → Map(Q,Q) defined by the following is a quandle struc-
ture on Q: for each x ∈ Qη,

sfreex (y) :=

{
sηx(y) (if y ∈ Qη),
y (otherwise).

Proof. Let x ∈ Mη. Then the quandle structure sfree can be written as

sfreex |Mη = sηx, sfreex |Mη′ = id (for η′ 6= η).

Then one can check Conditions (Q1), (Q2), and (Q3) of quandles easily. □

We denote by
⊔free

λ∈ΛQλ := (
⊔

λ∈ΛQλ, s
free), which will be called the

interaction-free union of the family of quandles {Qλ}λ∈Λ in this paper. Sim-
ilar to the case of direct product quandles, it satisfies the following.

Proposition 2.12. The natural inclusion map ιη : Qη →
⊔free

λ∈ΛQλ is a
quandle homomorphism for any η ∈ Λ.

Proof. Take any x, y ∈ Mη. Then we have

(ιη ◦ sηx)(y) = sηx(y) = sfreex (y) = (sfreeιη(x)
◦ ιη)(y),

which completes the proof. □
We here give a property on quandle homomorphisms. Namely, if a family

of quandle homomorphisms from Qλ satisfies some condition, then it gives

rise to a quandle homomorphism from
⊔free

λ∈ΛQλ.

Proposition 2.13. Let (Z, sZ) be a quandle, and ι′λ : Qλ → Z be a quandle
homomorphism for each λ ∈ Λ. Assume that it satisfies

(sZι′η(x) ◦ ι
′
ξ)(y) = ι′ξ(y) (∀x ∈ Qη, ∀y ∈ Qξ with η 6= ξ).
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Then the map h :
⊔free

λ∈ΛQλ → Z defined by

h(x) := ι′η(x) (if x ∈ Qη)

is the unique quandle homomorphism satisfying h ◦ ιη = ι′η for any η ∈ Λ.

Proof. It is easy to see that h ◦ ιη = ι′η for any η ∈ Λ, and that the map
h with this property is unique. Hence we have only to show that h is a
quandle homomorphism. Take any η, ξ ∈ Λ, x ∈ Qη, and y ∈ Qξ. We claim
that

(sZh(x) ◦ h)(y) = (h ◦ sfreex )(y).

If η = ξ, then the claim follows from the property of ι′ξ : Qξ → Z, which is
a quandle homomorphism. In fact, we have

(sZh(x) ◦ h)(y) = (sZι′η(x) ◦ ι
′
η)(y) = (ι′η ◦ sηx)(y) = (h ◦ sfreex )(y).

If η 6= ξ, then the claim follows from the definition of sfree and the assump-
tion. One can see that

(sZh(x) ◦ h)(y) = (sZι′η(x) ◦ ι
′
ξ)(y) = ι′ξ(y) = h(y) = (h ◦ sfreex )(y).

This proves the claim, which completes the proof of the proposition. □

The above proposition gives us a relationship between quandle automor-

phism groups. Let us consider the automorphism group Aut(
⊔free

λ∈ΛQλ) of the
interaction-free union quandle, and the direct product group

∏
λ∈ΛAut(Qλ)

of the automorphism groups of Qλ. The next proposition means that the
latter can be understood as a subgroup of the former.

Proposition 2.14. Let (fλ)λ ∈
∏

λ∈ΛAut(Qλ). Then the map
⊔

λ∈Λ fλ
defined by the following is an automorphism on the quandle

⊔free
λ∈ΛQλ:⊔

λ∈Λ fλ :
⊔free

λ∈ΛQλ →
⊔free

λ∈ΛQλ : xη 7→ fη(xη) (for xη ∈ Qη).

Proof. We consider Z :=
⊔free

λ∈ΛQλ and ι′λ := ιλ ◦ fλ. Then they satisfy the
assumption of Proposition 2.13. We thus have a quandle homomorphism h,
which satisfies for any xη ∈ Qη that

h(xη) = ι′η(xη) = (ιη ◦ fη)(xη) = fη(xη) = (
⊔

λ∈Λ fλ)(xη).

This yields that
⊔

λ∈Λ fλ is a homomorphism. One also knows that it is

bijective, since
⊔

λ∈Λ(f
−1
λ ) is the inverse map. □

We saw some properties of interaction-free union quandles, which are
similar to the case of direct product quandles. However, we cannot say that
sfree is a canonical quandle structure on

⊔
λ∈ΛQλ, in the following sense.

Remark 2.15. A quandle structure s′ on Q :=
⊔

λ∈ΛQλ, satisfying that each
inclusion map ιλ : Qλ → (Q, s′) is a quandle homomorphism, is not unique
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in general. A simple example is given by the dihedral quandle R4. Let us
consider

R4 = {0, 1, 2, 3}, Q1 := {0, 2}, Q2 := {1, 3}.
Then one knows R4 = Q1

⊔
Q2 as a set, both inclusion maps are quandle

homomorphisms, but the quandle structure on R4 is different from sfree.

We also note that, in the category of quandles and quandle homomor-

phisms, the interaction-free union
⊔free

λ∈ΛQλ is not the coproduct of {Qλ}λ∈Λ
in general.

2.4. Symmetric spaces. Symmetric spaces form an important subclass
of quandles. As is well-known, there are several equivalent definitions of
symmetric spaces. For the following definition, we refer to the book by Loos
([6]).

Definition 2.16. A smooth manifold M equipped with a family of diffeo-
morphisms {sx : M → M}x∈M indexed by M is called a symmetric space
if

(1) The map M ×M → M : (x, y) 7→ sx(y) is smooth.
(2) For each x ∈ M , the point x is an isolated fixed point of sx : M → M .
(3) s2x = idM for each x ∈ M .
(4) sx ◦ sy = sy ◦ ssy(x) for each x, y ∈ M .

The diffeomorphism sx : M → M is called the point symmetry at x ∈ M .
Note that Loos ([6]) uses a binary operator x · y, but the above definition is
a paraphrase in terms of the correspondence sx(y) = x · y.
Remark 2.17. According to this definition, one can easily see that every
symmetric space is a quandle. We identify a family of diffeomorphisms
{sx : M → M}x∈M with a quandle structure s : M → Map(M,M) naturally.

In the following we give fundamental examples of symmetric spaces, such
as spheres and real projective spaces. For both examples, we use the stan-
dard inner-product 〈·, ·〉 on Rn+1, and the reflection rV : Rn+1 → Rn+1 with
respect to a subspace V . Recall that rV is defined by

rV (v + w) = v − w (for any v ∈ V and w ∈ V ⊥),

where V ⊥ is the orthogonal compliment of V in Rn+1 with respect to 〈, 〉.
Example 2.18. Let n ∈ Z>0, and we realize the n-dimensional sphere as

Sn := {x ∈ Rn+1 | 〈x, x〉 = 1}.
For each x ∈ Sn, we define sx := rRx, the reflection with respect to the line
Rx. One also can write sx as

sx : Sn → Sn : y 7→ −y + 2〈x, y〉x.
Then Sn is a compact symmetric space with point symmetries s := {sx}x∈Sn .
One can easily see that the orthogonal group O(n+1) can be considered as
a subgroup of Aut(Sn, s). Therefore spheres are homogeneous quandles.
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Note that Aut(Sn, s) is the automorphism group of the quandle (Sn, s)
in the sense of Definition 2.3. There is another notion of the automorphism
groups of symmetric spaces, but we do not use it in this paper.

Example 2.19. Let n ∈ Z>0, and we realize the n-dimensional real projec-
tive space by

P (Rn+1) := {one-dimensional subspaces in Rn+1}.

For each ℓ ∈ P (Rn+1), in terms of the reflection rℓ, let us define

sℓ : P (Rn+1) → P (Rn+1) : ℓ′ 7→ rℓ(ℓ
′).

Then P (Rn+1) is a compact symmetric space with respect to the point
symmetries s := {sℓ}ℓ∈P (Rn+1). One can easily see that the orthogonal group

O(n + 1) can be considered as a subgroup of Aut(P (Rn+1), s). Therefore,
real projective spaces are homogeneous quandles.

3. Poles and antipodal subsets

There are notions of poles and antipodal subsets in the theory of (Rie-
mannian) symmetric spaces. In this section, we directly transfer these no-
tions to quandles. Throughout this section, Q = (Q, s) denotes a quandle,
and Aut(Q) denotes the automorphism group of Q.

3.1. Poles. In this subsection, we introduce the notion of poles in quandles,
and describe some examples. We start from the notion of pole pairs in a
quandle (Q, s), which gives a binary relation on Q.

Definition 3.1. Let x, y ∈ Q. Then a pair (x, y) is called a pole pair in Q
if it satisfies sx = sy.

By definition, (x, x) is always a pole pair, which is said to be trivial. We
are interested in studying non-trivial pole pairs in given quandles.

Remark 3.2. The notion of poles has been defined for symmetric spaces by
Chen and Nagano ([2]). In fact, the condition of the original definition is
different, but sx = sy is one of equivalent conditions for (x, y) to be a pole
pair ([2, Proposition 2.9]).

In terms of the notion of pole pairs, one can define the notion of pole
subsets of quandles.

Definition 3.3. A subset X in Q is called a pole subset if (x, y) is a pole
pair for any x, y ∈ X.

It is clear that any subset of a pole subset is also a pole subset. Therefore
it is natural to consider the maximal ones with respect to inclusion relation.
We denote the collection of all maximal pole subsets in Q by

MS(Q; pole).
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Proposition 3.4. Let f ∈ Aut(Q). If X is a pole or maximal pole subset
in Q, then f(X) is also a pole or maximal pole subset in Q, respectively. In
particular, the automorphism group Aut(Q) acts on MS(Q; pole).

Proof. By the definition of quandle automorphisms, we have

f ◦ sx ◦ f−1 = sf(x) (∀x ∈ Q).

Therefore, (x, y) is a pole pair if and only if so is (f(x), f(y)). Then one can
easily show the first assertion, that is, if X is a pole subset then so is f(X).

In order to show the assertion on maximality, assume that X is a maximal
pole subset in Q. Then f(X) is a pole subset. Take a pole subset B with
f(X) ⊂ B. Since f−1(B) is a pole subset containing X, one has X =
f−1(B), that is f(X) = B. This completes the proof of the maximality of
f(X) as a pole subset. □

By this proposition, it is natural to consider the classification of maximal
pole subsets, up to automorphisms. This problem is essentially equivalent
to determine the orbit space of the action of Aut(Q),

Aut(Q)\MS(Q; pole).

We here note that a maximal pole subset is determined by one element in
the following sense. For each x ∈ Q, we denote by

P (Q;x) := {y ∈ Q | (x, y) is a pole pair in Q}.

Then P (Q;x) is a maximal pole subset in Q, since the concept of pole pairs
defines an equivalent relation on Q. Conversely, a maximal pole subset in Q
containing x coincides with P (Q;x). By this argument, for a homogeneous
quandle Q, the above orbit space is always a singleton, that is, a maximal
pole subset in Q is unique up to automorphisms.

Although we know the uniqueness of pole subsets in homogeneous quan-
dles, it is a different problem to give an explicit expression. In the remaining
of this subsection, we describe maximal pole subsets in the quandles given
in the previous section. Note that the maximal pole subsets in the spheres
Sn and the real projective spaces P (Rn+1) have been well-known. We here
recall them for the reader’s convenience.

Example 3.5. Let us consider the n-dimensional sphere Sn as in Example
2.18. Then a pair of points (x, y) on Sn is a pole pair if and only if x = ±y.
Therefore every maximal pole subset in Sn is of the form {±x}.

Proof. Take x, y ∈ Sn. Recall that sx and sy are the reflections with respect
to the lines Rx and Ry, respectively. Therefore, (x, y) is a pole pair if and
only if Rx = Ry, that is, x = ±y. □

We next describe pole subsets in the real projective spaces P (Rn+1). Re-
call that the point symmetry sℓ at ℓ ∈ P (Rn+1) is defined by the reflection
rℓ : Rn+1 → Rn+1 with respect to ℓ.
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Example 3.6. Let us consider the n-dimensional real projective space
P (Rn+1) as in Example 2.19. If n > 1, then P (Rn+1) does not admit
non-trivial pole pairs. If n = 1, then every maximal pole subset in P (R2) is
of the form {ℓ1, ℓ2}, where ℓ1 is perpendicular to ℓ2.

Proof. Take ℓ1, ℓ2 ∈ P (Rn+1). First of all, we claim that (ℓ1, ℓ2) is a pole
pair if and only if the reflections satisfy rℓ1 = ±rℓ2 . The “if”-part is easy to
check. In order to show the converse, assume that (ℓ1, ℓ2) is a pole pair. By
definition, one has rℓ1(ℓ) = rℓ2(ℓ) for every ℓ ∈ P (Rn+1). We consider

f := r−1
ℓ2

◦ rℓ1 ∈ O(n+ 1).

Since it is orthogonal and normalizes Rei for each i ∈ {1, . . . , n + 1}, there
exists εi ∈ {±1} such that f(ei) = εiei. Furthermore, since f normalizes
R(ei + ej), one can see that εi = εj . This shows f = ± id, which completes
the proof of the claim.

Note that each rℓ has eigenvalues 1 and −1 with multiplicities 1 and n,
respectively. Therefore, if n > 1, then one has rℓ1 6= −rℓ2 . This yields that,
in this case, (ℓ1, ℓ2) is a pole pair if and only if rℓ1 = rℓ2 , that is, ℓ1 = ℓ2.
This completes the proof of the case of n > 1. For the case of n = 1, one
can see that rℓ1 = rℓ2 is equivalent to ℓ1 = ℓ2, and rℓ1 = −rℓ2 is equivalent
to ℓ1 ⊥ ℓ2. □

Finally in this subsection, we describe pole subsets of the dihedral quan-
dles Rn. It would be interesting that it depends on the parity of n.

Example 3.7. Let us consider the dihedral quandle Rn of order n as in
Example 2.5. Then we have the following:

(1) If n is odd, then Rn does not admit non-trivial pole pairs.
(2) If n is even, say n = 2l with l ∈ Z>0, then (x, y) is a pole pair if and

only if x ∈ {y, y + l}. Therefore every maximal pole subset in Rn is
of the form {x, x+ l}.

Proof. Recall that sx(z) = 2x − z for Rn = Z/nZ. Hence, (x, y) is a pole
pair in Rn if and only if

2x = 2y (as in Z/nZ).

If n is odd, then 2(x − y) = 0 is equivalent to x − y = 0, which completes
the proof of (1). If n = 2l with l ∈ Z>0, then 2(x − y) = 0 is equivalent
to x − y ∈ {0, l}. Therefore, in this case, a maximal pole subset in Rn

containing x is of the form {x, x+ l}. □

3.2. Antipodal subsets. In this subsection, we introduce and study an-
tipodal subsets in quandles Q. Similarly to the studies on poles in the
previous subsection, we start from a binary relation on Q.

Definition 3.8. Let x, y ∈ Q. Then (x, y) is called an antipodal pair on Q
if it satisfies sx(y) = y and sy(x) = x.
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We then define the notion of antipodal subsets. The definition would be
simple and natural, but this notion turns out to be quite interesting for
many cases.

Definition 3.9. A subset X in Q is called an antipodal subset if (x, y) is an
antipodal pair in Q for any x, y ∈ X.

It should be noted that any antipodal subset is a subquandle, which is
intrinsically a trivial quandle. Namely, one can rephrase antipodal subsets
as subquandles which are trivial quandles.

Remark 3.10. As mentioned in the introduction, the notion of antipodal
subsets has also been defined for symmetric spaces by Chen and Nagano
([2]). Note that, for connected Riemannian symmetric spaces, sx(y) = y and
sy(x) = x are equivalent. In general they are not equivalent for quandles.

As in the case of pole subsets, it is easy to see that any subset of an
antipodal subset is also antipodal. Therefore it is natural to consider the
maximal ones with respect to inclusion relation. We denote the collection
of all maximal antipodal subsets in Q by

MS(Q; antipodal).

Proposition 3.11. Let f ∈ Aut(Q). If X is an antipodal or maximal
antipodal subset in Q, then f(X) is also an antipodal or maximal antipodal
subset in Q, respectively. In particular, Aut(Q) acts on MS(Q; antipodal).

Proof. Recall that f◦sx◦f−1 = sf(x) holds for every x ∈ Q. Therefore, a pair
(x, y) is antipodal if and only if so is (f(x), f(y)). Then the assertions of this
proposition can be proved by the same argument as for Proposition 3.4. □

Similarly to the case of poles, it is natural to consider the classification of
maximal antipodal subsets up to automorphisms. This problem is essentially
equivalent to determine the orbit space

Aut(Q)\MS(Q; antipodal).

However, in contrast to maximal pole subsets, maximal antipodal subsets
are not necessarily unique even in homogeneous quandles and symmetric
spaces.

Remark 3.12. The study on maximal antipodal subsets in symmetric spaces
has been initiated in [2]. Among others, it has been known that the unique-
ness holds for several symmetric spaces, such as compact Hermitian sym-
metric spaces ([2]) and symmetric R-spaces ([9]). However the uniqueness
does not hold in general, in which cases the classifications of all maximal
antipodal subsets are sometimes involved. For example, the classification
has not been completed for the oriented real Grassmannians Gk(Rn)∼ of
oriented k-planes in Rn with higher k. For more details and recent results,
we refer to [10, 11, 12] and references therein.
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We here recall the classification of maximal antipodal subsets in the
spheres Sn and the real projective spaces P (Rn+1). In both cases, a maximal
antipodal subset is unique up to automorphisms. In fact we show a priori
stronger statements, that is, it is unique up to the congruence by SO(n+1).

Example 3.13. Let Sn be the n-dimensional sphere as in Example 2.18.
Then every antipodal pair in Sn is a pole pair. Therefore, every antipodal
subset in Sn is a pole subset, and a maximal antipodal subset in Sn is unique
up to the congruence by SO(n+ 1).

Proof. Let (x, y) be an antipodal pair in Sn. Since sx is the reflection with
respect to the line Rx, it follows from sx(y) = y that y ∈ Rx. This yields that
(x, y) is a pole pair in Sn. Therefore, every maximal antipodal subset in Sn

is of the form {±x}, which is unique up to the congruence by SO(n+1). □

We next study the real projective space P (Rn+1). In this case, antipodal
subsets are not necessarily pole subsets.

Example 3.14. Let us consider the n-dimensional real projective space
P (Rn+1) as in Example 2.19. A subset X in P (Rn+1) is maximal antipodal
if and only if there exists an orthonormal basis {x1, . . . , xn+1} of Rn+1 such
that

X = {Rx1, . . . ,Rxn+1}.
In particular, a maximal antipodal subset in P (Rn+1) is unique up to the
congruence by SO(n+ 1).

Proof. For each ℓ ∈ P (Rn+1), recall that sℓ is given as the reflection with
respect to the line ℓ. Therefore, for ℓ1, ℓ2 ∈ P (Rn+1), they satisfy sℓ1(ℓ2) =
ℓ2 if and only if

ℓ2 = ℓ1 or ℓ2 ⊥ ℓ1.

By applying this condition, one can directly prove the assertion. In fact, the
“if”-part of the assertion is easy. In order to show the converse implication,
letX be a maximal antipodal subset in P (Rn+1). Take ℓ1 ∈ X. By definition
of antipodal subsets, one has

X ⊂ Fix(sℓ1 , P (Rn+1)),

where the right-hand side denotes the fixed point set of sℓ1 . Then, according
to the above condition, we have

Fix(sℓ1 , P (Rn+1)) = {ℓ1} ∪ {ℓ ∈ P (Rn+1) | ℓ ⊥ ℓ1}.

The second component of the right-hand side is P (ℓ⊥1 )
∼= P (Rn), and X −

{ℓ1} is a maximal antipodal subset in it. Therefore, by an induction on the
dimension, we obtain X = {ℓ1, . . . , ℓn+1}, consisting of n + 1 orthogonal
lines. The uniqueness follows from the fact that all orthonormal bases of
Rn+1 are congruent by SO(n+ 1) up to sign. □
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The above proof was essentially given by Chen and Nagano (see Proposi-
tion 2.10 and Example 2.11 of [2]). Note that they proved a proposition in
more general settings, and our proof describes some details for the case of
P (Rn+1).

Example 3.15. Let Rn be the dihedral quandle Rn of order n as in Ex-
ample 2.5. Then every antipodal pair in Rn is a pole pair. Therefore, every
antipodal subset in Rn is a pole subset, and a maximal antipodal subset in
Rn is unique up to automorphisms.

Proof. Let (x, y) be an antipodal pair in Rn. Then it satisfies

y = sx(y) = 2x− y (in Rn).

Therefore, it follows from an argument in the proof of Example 3.7 that
(x, y) is a pole pair. The uniqueness follows from the fact that the cyclic
group Z/nZ acts on Rn as automorphisms. □

4. s-commutative subsets

Let Q = (Q, s) be a quandle. In this section, we introduce the concept of
s-commutative subsets in Q, which is a generalization of antipodal subsets.
We also prove that any maximal s-commutative subset in Q is a subquandle.

4.1. s-commutative subsets. In this subsection, we introduce the concept
of s-commutative subsets, and study some basic properties. Similarly to the
cases of poles and antipodal subsets, we start from s-commutative pairs of
points.

Definition 4.1. Let x, y ∈ Q. Then (x, y) is called an s-commutative pair
in Q if it satisfies sx ◦ sy = sy ◦ sx.

The following gives a characterization of s-commutative pairs in terms of
pole pairs, which is simple but useful.

Lemma 4.2. Let x, y ∈ Q. Then the following three conditions are mutually
equivalent:

(1) (x, y) is an s-commutative pair in Q.
(2) (x, sy(x)) is a pole pair in Q.
(3) (sx(y), y) is a pole pair in Q.

Proof. By the axiom of quandles, we have

sx ◦ sy ◦ s−1
x = ssx(y).(4.1)

Therefore, sx and sy are commutative if and only if sy = ssx(y) holds. This
proves the equivalence of (1) and (3). By changing the roles of x and y, one
can easily see that (1) and (2) are equivalent. □

Note that every pole pair is an antipodal pair. The next proposition gives
a relationship between antipodal pairs and s-commutative pairs. Recall that
a pole pair (x, y) is said to be trivial if x = y holds.
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Proposition 4.3. Every antipodal pair in Q is an s-commutative pair in
Q. The converse also holds if Q does not admit non-trivial pole pairs.

Proof. Let (x, y) be an antipodal pair in Q. Then we have sy(x) = x. In
particular, (x, sy(x)) = (x, x) is a pole pair. It then follows from Lemma 4.2
that (x, y) is an s-commutative pair in Q, which proves the first assertion.

We show the second assertion. Let (x, y) be an s-commutative pair in
Q. Then, by Lemma 4.2, both of (x, sy(x)) and (sx(y), y) are pole pairs in
Q. Since Q does not admit non-trivial pole pairs by assumption, we have
x = sy(x) and sx(y) = y, which yields that (x, y) is antipodal. □

In terms of the notion of s-commutative pairs, one can naturally define
s-commutative subsets in quandles.

Definition 4.4. A subset X in Q is said to be s-commutative if (x, y) is an
s-commutative pair in Q for any x, y ∈ X.

According to Proposition 4.3, one can easily obtain the following relation-
ship between antipodal subsets and s-commutative subsets.

Proposition 4.5. Every antipodal subset in Q is an s-commutative subset
in Q. The converse also holds if Q does not admit non-trivial pole pairs.

One can apply this proposition to the real projective space P (Rn+1) with
n ≥ 2. In such case, a subset is s-commutative if and only if it is antipodal.
However, as we mentioned in the introduction, an s-commutative subset in
a quandle Q is not necessarily antipodal in general.

4.2. Maximal s-commutative subsets. As for the pole subsets and an-
tipodal subsets, any subset of an s-commutative subset is also s-commutative.
Therefore it is natural to consider the maximal ones with respect to inclu-
sion relation. In this subsection, we study maximal s-commutative subsets
in quandles. We denote the collection of all maximal s-commutative subsets
in Q by

MS(Q; s-commutative).

Proposition 4.6. Let f ∈ Aut(Q). If X is an s-commutative or maximal
s-commutative subset in Q, then f(X) is also s-commutative or maximal
s-commutative in Q, respectively. In particular, the automorphism group
Aut(Q) acts on MS(Q; s-commutative).

Proof. One can prove the proposition similarly to the proofs of Proposi-
tions 3.4 and 3.11. □

As for the cases of maximal pole subsets and maximal antipodal subsets,
the classification of maximal s-commutative subsets in Q up to automor-
phisms is essentially equivalent to determine the orbit space

Aut(Q)\MS(Q; s-commutative).
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For example, this orbit space is a singleton if and only if a maximal s-
commutative subset in Q is unique up to automorphisms. In fact, such
phenomena do occur for many symmetric spaces and quandles.

The following is the main theorem of this section. Recall that a subset X
in Q is a subquandle if and only if it satisfies sx(X) = X for any x ∈ X.

Theorem 4.7. Let X be a maximal s-commutative subset in Q. Then X is
a subquandle in Q.

Proof. Take any x ∈ X. First of all, we claim that X ∪ sx(X) is an s-
commutative subset in Q. Note that X is s-commutative by assumption,
and so is sx(X) by Proposition 4.6. Take any y, z ∈ X, and show that
(y, sx(z)) is an s-commutative pair. Since (x, z) is an s-commutative pair,
(z, sx(z)) is a pole pair by Lemma 4.2. Then we have

sy ◦ ssx(z) = sy ◦ sz = sz ◦ sy = ssx(z) ◦ sy,
which completes the proof of the claim.

One knows X ⊂ X ∪ sx(X). Since X is maximal s-commutative and
X ∪ sx(X) is s-commutative, we have X = X ∪ sx(X). In particular, it
satisfies

sx(X) ⊂ X.

Since sx(X) is maximal s-commutative, one can prove sx(X) = X by the
same argument. □

5. Subsets in direct products and interaction-free unions of
quandles

In this section, we consider the direct product quandle
∏

λ∈ΛQλ and

interaction-free union quandle
⊔free

λ∈ΛQλ of a family of quandles {Qλ}λ∈Λ.
We study pole, antipodal, and s-commutative subsets in these quandles. The
results of this section yield that, reduction arguments to each component
Qλ work for many cases, but not always.

5.1. Subsets in direct products of quandles. In this subsection, we con-
sider the direct product quandle

∏
λ∈ΛQλ of a family of quandles {Qλ}λ∈Λ,

defined in Subsection 2.2. For simplicity of the notation we denote it just
by

∏
Qλ. First of all, we study properties of pairs of points.

Proposition 5.1. Let (xλ)λ, (yλ)λ ∈
∏

Qλ. Then, ((xλ)λ, (yλ)λ) is a pole,
antipodal, or s-commutative pair in

∏
Qλ if and only if (xη, yη) is a pole,

antipodal, or s-commutative pair in Qη for every η ∈ Λ, respectively.

Proof. Denote the quandle structures on Qλ and
∏

Qλ by sλ and s, respec-
tively. Then, by definition, one knows

s(xλ)λ((zλ)λ) = (sλxλ
(zλ))λ.

Therefore, s(xλ)λ = s(yλ)λ holds if and only if it satisfies sηxη = sηyη for every
η ∈ Λ. This proves the assertion on pole pairs. Similarly one can show the
other assertions on antipodal pairs and s-commutative pairs. □
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By applying this properties of pairs, one can obtain properties of subsets.
Recall that pη :

∏
Qλ → Qη denotes the projection for η ∈ Λ. For a family

of subsets {Aλ ⊂ Qλ}λ∈Λ, one can naturally define the subset
∏

Aλ :=∏
λ∈ΛAλ in

∏
Qλ.

Proposition 5.2. Let A be a subset in
∏

Qλ. Then, A is a pole, antipodal,
or s-commutative subset in

∏
Qλ if and only if pη(A) is a pole, antipodal,

or s-commutative subset in Qη for every η ∈ Λ, respectively. In particular,
if Aλ is pole, antipodal, or s-commutative in Qλ for every λ ∈ Λ, then

∏
Aλ

is pole, antipodal, or s-commutative in
∏

Qλ, respectively.

Proof. The first assertion is a direct consequence of Proposition 5.1. The
second one follows easily from pη(

∏
Aλ) = Aη and the first assertion. □

Note that it is not true in general that every pole, antipodal, or s-
commutative subset in

∏
Qλ is of the form

∏
Aλ. However, this is in fact

true for the maximal cases.

Proposition 5.3. Let A be a subset in
∏

Qλ. Then, A is a maximal pole,
maximal antipodal, or maximal s-commutative subset in

∏
Qλ if and only if

there exists a maximal pole, maximal antipodal, or maximal s-commutative
subset Aλ in Qλ for every λ ∈ Λ, respectively, such that A =

∏
Aλ.

Proof. The proof follows from Proposition 5.2. We only prove the case of
s-commutative subsets, since the other cases are completely the same.

First of all, assume that Aλ is maximal s-commutative in Qλ for each
λ ∈ Λ, and prove that

∏
Aλ is maximal s-commutative in

∏
Qλ. One knows∏

Aλ is s-commutative. Let us take an s-commutative subset A′ in
∏

Qλ

with
∏

Aλ ⊂ A′. Then one has Aη ⊂ pη(A
′) for each η ∈ Λ. Since Aη is

maximal s-commutative and pη(A
′) is s-commutative, we have Aη = pη(A

′).
This yields

∏
Aλ = A′, which shows the maximality of

∏
Aλ.

In order to show the converse, let A be a maximal s-commutative subset
in

∏
Qλ. Put Aλ := pλ(A). Then it satisfies A ⊂

∏
Aλ by definition.

Note that each Aλ is s-commutative, and hence so is
∏

Aλ. Therefore the
maximality of A as an s-commutative subset yields that A =

∏
Aλ. One can

also show that each Aλ is maximal s-commutative in Qλ, which follows from
the maximality of A and a similar argument. This completes the proof. □

This proposition can be rephrased in terms of bijective correspondences
as follows. Recall that, for a quandle Q, we denote by

MS(Q; pole), MS(Q; antipodal), MS(Q; s-commutative),

the set of all maximal pole, maximal antipodal, and maximal s-commutative
subsets in Q, respectively.

Theorem 5.4. Let Aλ be a subset in Qλ for each λ ∈ Λ, and consider the
correspondence to a subset

∏
Aλ in

∏
Qλ. Then, this defines the following

bijective maps, which are equivariant with respect to the natural actions by∏
Aut(Qλ):
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(1)
∏

MS(Qλ; pole) → MS(
∏

Qλ; pole).
(2)

∏
MS(Qλ; antipodal) → MS(

∏
Qλ; antipodal).

(3)
∏

MS(Qλ; s-commutative) → MS(
∏

Qλ; s-commutative).

Note that, by Proposition 2.9, the direct product group
∏

Aut(Qλ) acts
naturally on the direct product quandle

∏
Qλ as automorphisms.

5.2. Subsets in interaction-free unions of quandles. Let us consider

the interaction-free union
⊔free

λ∈ΛQλ of a family of quandles {Qλ}λ∈Λ, defined
in Subsection 2.3. As in the previous subsection, we denote it by

⊔freeQλ

for simplicity, and start with studying properties of pairs of points.

Proposition 5.5. Let x ∈ Qλ and y ∈ Qη with λ, η ∈ Λ.

(1) Assume λ = η. Then, (x, y) is a pole, antipodal, or s-commutative

pair in
⊔freeQλ if and only if (x, y) is a pole, antipodal, or s-commutative

pair in Qλ, respectively.

(2) Assume λ 6= η. Then, (x, y) is a pole pair in
⊔freeQλ if and only

if it satisfies sλx = idQλ
and sηy = idQη . On the other hand, (x, y) is

always an antipodal and s-commutative pair in
⊔freeQλ.

Proof. Recall that sfreex = sηx on Qη if x ∈ Qη, and sfreex is the identity map

on Qη if x 6∈ Qη. Then all the assertions follow from this definition of sfree.

For example, assume that (x, y) is a pole pair in
⊔freeQλ with x ∈ Qλ,

y ∈ Qη, and λ 6= η. Then one can show that

sλx = sfreex |Qλ
= sfreey |Qλ

= idQλ
.

Other assertions can be proved easily. □

One can obtain properties of subsets A in
⊔freeQλ, by using the properties

of pairs. In the case of direct products, we have used the projections pη for
η ∈ Λ. For the case of interaction-free unions, the intersections A∩Qη play
similar roles.

Proposition 5.6. Let A be a subset in
⊔freeQλ. If A is a pole, antipodal,

or s-commutative subset in
⊔freeQλ, then A ∩ Qη is a pole, antipodal, or

s-commutative subset in Qη for every η ∈ Λ, respectively. The converse
statements also hold for antipodal and s-commutative subsets.

Proof. The first and second assertions follow from (1) and (2) of Proposi-
tion 5.5, respectively. □

Remark 5.7. One can easily show from Proposition 5.6 that, if Aλ is an
antipodal or s-commutative subset in Qλ for every λ ∈ Λ, then

⊔
Aλ is

an antipodal or s-commutative subset in
⊔freeQλ, respectively. However,

the same statement for pole subsets is not true in general. Namely, the
union

⊔
Aλ is not necessarily a pole subset even if all Aλ are pole. A simple

example can be given by R3
⊔freeR3, the interaction-free union of two copies
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of R3. Let us denote its element as (a)i with a ∈ R3 and i ∈ {1, 2}. Then

{(0)1, (0)2} is the union of pole subsets, but not pole in R3
⊔freeR3.

We then study maximal subsets. Note that there are differences between
properties of maximal pole subsets and those of maximal antipodal or s-
commutative subsets. The following describes maximal pole subsets.

Proposition 5.8. Let A be a nonempty subset in
⊔freeQλ. Then, A is a

maximal pole subset in
⊔freeQλ if and only if one of the following holds:

(i) there exists η ∈ Λ such that A is a maximal pole subset in Qη, and
there exists x ∈ A satisfying sηx 6= idQη , or

(ii) A =
⊔

λ∈Λ{x ∈ Qλ | sλx = idQλ
}.

Proof. First of all, assume that A satisfies (i). Since A is a pole subset in

Qη, it is also pole in
⊔freeQλ by the definition of sfree. It also satisfies the

maximality, since there exists x ∈ A such that sηx 6= idQη . In fact, if (x, y)
is a pole pair, then y ∈ Qη by Proposition 5.5, and hence y ∈ A by the
maximality of A in Qη.

We next consider the case that A is of the form (ii). Since A 6= ∅ by
assumption, there exists x ∈ A. Note that it satisfies sfreex = id. Therefore,
(x, y) is a pole pair if and only if sfreey = id, which is equivalent to y ∈ A.

This proves that A is a maximal pole subset in
⊔freeQλ.

One can prove the converse implication by a similar argument. Let A be

a maximal pole subset in
⊔freeQλ. Since A 6= ∅, there exists x ∈ A ∩ Qη

for some η ∈ Λ. If it satisfies sηx 6= idQη , then one can show that A is of the
form of (i). If it satisfies sηx = idQη , then A must be of the form of (ii). □

The properties of maximal antipodal and s-commutative subsets in
⊔freeQλ

are described in the next proposition. Namely, a reduction argument to each
component Qλ works for these subsets.

Proposition 5.9. Let A be a subset in
⊔freeQλ. Then, A is a maximal

antipodal or s-commutative subset in
⊔freeQλ if and only if there exists a

maximal antipodal or maximal s-commutative subset Aλ in Qλ for every
λ ∈ Λ, respectively, such that A =

⊔
Aλ.

Proof. The proof follows from Proposition 5.6. We only give a sketch of
the proof for the s-commutative case. Let A be a maximal s-commutative

subset in
⊔freeQλ, and put Aλ := A ∩ Qλ for each λ ∈ Λ. Then Aλ is

s-commutative. If A′
λ is an s-commutative subset in Qλ with Aλ ⊂ A′

λ, then
one can see that

A =
⊔
Aλ ⊂

⊔
A′

λ.

Note that
⊔
A′

λ is s-commutative, and A has the maximality. Hence it
satisfies Aλ = A′

λ, which yields that each Aλ is maximal s-commutative.
The converse implication can be proved in a similar way. □
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This proposition can be rephrased in terms of bijective correspondences
as follows. Recall that a family of maximal antipodal subsets {Aλ ⊂ Qλ}λ∈Λ
is regarded as an element in

∏
MS(Qλ; antipodal).

Theorem 5.10. Let Aλ be a subset in Qλ for each λ ∈ Λ, and consider

the correspondence to a subset
⊔
Aλ in

⊔freeQλ. Then, this defines the
following bijective maps, which are equivariant with respect to the natural
actions by

∏
Aut(Qλ):

(1)
∏

MS(Qλ; antipodal) → MS(
⊔freeQλ; antipodal).

(2)
∏

MS(Qλ; s-commutative) → MS(
⊔freeQλ; s-commutative).

We refer to Proposition 2.14 for the action of
∏

Aut(Qλ) on
⊔freeQλ.

Note that a similar statement on maximal pole subsets cannot be true.

6. Examples

In this section, we determine maximal s-commutative subsets in the spheres
Sn, the real projective spaces P (Rn+1), and the dihedral quandles Rn. In
these quandles, a maximal s-commutative subset is turned out to be unique
up to the automorphism.

First of all, we study maximal s-commutative subsets in the spheres Sn,
and prove Proposition 1.6. For this purpose, it is enough to show the next
proposition.

Proposition 6.1. Let Sn be the n-dimensional sphere as in Example 2.18.
Then we have the following:

(1) Let x, y ∈ Sn. Then a pair (x, y) is an s-commutative pair if and
only if x = ±y or 〈x, y〉 = 0.

(2) A subset X ⊂ Sn is maximal s-commutative if and only if there
exists an orthonormal basis {x1, . . . , xn+1} of Rn+1 such that

X = {±x1, . . . ,±xn+1}.
(3) A maximal s-commutative subset in Sn is unique up to the congru-

ence by SO(n+ 1).

Proof. Recall that (x, y) is an s-commutative pair if and only if (x, sy(x))
is a pole pair by Lemma 4.2. Since every pole subset in the sphere Sn is of
the form {±x}, the above condition is equivalent to

sy(x) = ±x.

In the case of sy(x) = x, the pair (x, y) is antipodal, which is equivalent to
y = ±x. In the case of sy(x) = −x, one can easily obtain 〈x, y〉 = 0, which
completes the proof of (1).

We show (2). The “if”-part follows from (1) easily. In order to show
the “only if”-part, let X be a maximal s-commutative subset in Sn. Take
x1 ∈ X. Since any element in X is s-commutative with x1, it follows from
(1) that

X ⊂ {±x1} ∪ {y ∈ Sn | 〈y, x1〉 = 0}.
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Note that X ∪ {−x1} is s-commutative, since sx1 = s−x1 . Hence the max-
imality of X yields that {±x1} ⊂ X. Furthermore, since X is maximal s-
commutative in Sn, we can show that X−{±x1} is maximal s-commutative
in

{y ∈ Sn | 〈y, x1〉 = 0} ∼= Sn−1.

By an inductive argument, one can complete the proof of (2).
The assertion (3) is a direct consequence of (2). □

Remark 6.2. Recall that every maximal s-commutative subset is a subquan-
dle by Theorem 4.7. Therefore, X := {±x1, . . . ,±xn+1} is a subquandle of
Sn, where {x1, . . . , xn+1} is an orthonormal basis of Rn+1. The quandle
structure is given by

sxi = s−xi , sxi(±xj) =

{
±xj (if i = j),
∓xj (if i 6= j).

If n = 1, then the quandle {±x1,±x2} is isomorphic to the dihedral quandle
R4 of order 4. One can also see that, for every n ∈ N, the above quandle is
homogeneous and disconnected. For more details of this quandle, we refer
to [3].

We next study maximal s-commutative subsets in the real projective
spaces P (Rn+1). Proposition 1.7 follows from the next proposition. Re-
call that Rx ∈ P (Rn+1) denotes the line spanned by x ∈ Rn+1.

Proposition 6.3. Let P (Rn+1) be the real projective space as in Example
2.19. Then we have the following:

(1) Let n > 1. Then a subset X ⊂ P (Rn+1) is maximal s-commutative
if and only if it is maximal antipodal, that is, there exists an or-
thonormal basis {x1, . . . , xn+1} of Rn+1 such that

X = {Rx1, . . . ,Rxn+1}.
(2) Let n = 1. Then a subset X ⊂ P (R2) is maximal s-commutative

if and only if there exists an orthonormal basis {x1, x2} of R2 such
that

X = {Rx1, Rx2, R(x1 + x2), R(x1 − x2)}.
(3) For every n, a maximal s-commutative subset in P (Rn+1) is unique

up to the congruence by SO(n+ 1).

Proof. The case of n > 1 is easy. In this case, recall that P (Rn+1) does
not admit non-trivial pole pairs by Example 3.6. Therefore, Proposition 4.5
yields that X ⊂ P (Rn+1) is maximal s-commutative if and only if it is max-
imal antipodal. Hence one can complete the proof of (1) by Example 3.14.

We then consider the case of n = 1. For simplicity of the notation, we
denote by ∠(ℓ1, ℓ2) ∈ [0, π/2] the angle between ℓ1, ℓ2 ∈ P (R2). We claim
that (ℓ1, ℓ2) is an s-commutative pair in P (R2) if and only if

∠(ℓ1, ℓ2) ∈ {0, π/4, π/2}.
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It follows from Lemma 4.2 that (ℓ1, ℓ2) is an s-commutative pair if and only if
(ℓ1, sℓ2(ℓ1)) is a pole pair. By Example 3.6, the latter condition is equivalent
to

∠(ℓ1, sℓ2(ℓ1)) ∈ {0, π/2}.
One can see that ∠(ℓ1, sℓ2(ℓ1)) = 0 is equivalent to ∠(ℓ1, ℓ2) ∈ {0, π/2}.
Furthermore, ∠(ℓ1, sℓ2(ℓ1)) = π/2 is equivalent to ∠(ℓ1, ℓ2) = π/4. This
completes the proof of the claim. By using this claim, the assertion (2) can
be proved directly.

One can then show (3) by the shapes of maximal s-commutative subsets
described in (1) and (2). □

Finally in this section, we study maximal s-commutative subsets in the
dihedral quandles Rn, and prove Proposition 1.8. This follows from the next
proposition. Recall Example 2.5, where the dihedral quandle is defined by
Rn := Z/nZ with quandle structure sx(y) = 2x− y.

Proposition 6.4. Let Rn be the dihedral quandle of order n. Then we have
the following:

(1) Let x, y ∈ Rn. Then a pair (x, y) is s-commutative if and only if it
satisfies 4(x− y) = 0 as in Z/nZ.

(2) If n is odd, then every maximal s-commutative subset is of the form
{x}, which is a maximal pole subset.

(3) If n = 4l−2 with l ∈ Z>0, then every maximal s-commutative subset
is of the form {x, x+ 2l − 1}, which is a maximal pole subset.

(4) If n = 4l with l ∈ Z>0, then every maximal s-commutative subset is
of the form {x, x+ l, x+ 2l, x+ 3l}, which is not antipodal.

(5) For any n ∈ Z>0, a maximal s-commutative subset in Rn is unique
up to the congruence by Aut(Rn, s).

Proof. Let x, y ∈ Rn = Z/nZ. In the following, we calculate everything
as elements of the cyclic group Z/nZ. By the definition of the quandle
structure of Rn, we have

sx ◦ sy(z) = sx(2y − z) = 2x− (2y − z) = 2x− 2y + z.

Therefore, a pair (x, y) is s-commutative if and only if

2x− 2y = 2y − 2x.

This completes the proof of (1). Then, by using this condition, one can
prove (2), (3), and (4) as follows.

If n is odd, then 4(x−y) = 0 is equivalent to x−y = 0. Therefore, in this
case, every maximal s-commutative subset consists of a single point. This
is also a maximal pole subset by Example 3.7, which completes the proof of
(2).

If n = 4l − 2, then 4(x − y) = 0 is equivalent to x − y ∈ {0, 2l − 1}. In
this case, every maximal s-commutative subset is of the form {x, x+2l−1}.
This is a maximal pole subset by Example 3.7, which completes the proof
of (3).
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If n = 4l, then 4(x − y) = 0 is equivalent to x − y ∈ {0, l, 2l, 3l}. In this
case, every maximal s-commutative subset consists of four points as desired.
This is not antipodal by Example 3.15, which proves (4).

The uniqueness claimed in (5) is also easy to see, since the cyclic Z/nZ-
action on Rn is an automorphism. □
Remark 6.5. Recall that maximal s-commutative subsets are subquandles.
In the case of R4l−2 with l ∈ Z>0, the maximal s-commutative subset is
isomorphic to R2, which is a trivial quandle. In the case of R4l with l ∈ Z>0,
the maximal s-commutative subset is isomorphic to R4. One can see the
pictures for the cases of n ∈ {6, 7, 8} in Figure 1.

Figure 1. Maximal s-commutative subsets in Rn with n ∈ {6, 7, 8}

Remark 6.6. Recall that every pole subset is antipodal, and every antipodal
subset is s-commutative. These three notions are different for symmetric
spaces. Recall that a maximal antipodal subset in the real projective space
P (Rn+1) is not pole, and a maximal s-commutative subset in the sphere Sn

is not antipodal. We here note that these three notions are also different for
finite quandles. By the above proposition, a maximal s-commutative subset
in R4l with l ∈ Z>0 is not antipodal. One can see the difference between
pole subsets and antipodal subsets as follows. Consider the interaction-free
union X = {a, 0, 1, 2} of the trivial quandle {a} and the dihedral quandle
R3 = {0, 1, 2}. Then the subset {a, 0} is (maximal) antipodal, but not a
pole subset, since sfreea = idX 6= sfree0 .
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