CALABI-YAU STRUCTURE AND BARGMANN TYPE TRANSFORMATION ON THE
CAYLEY PROJECTIVE PLANE

KURANDO BABA AND KENRO FURUTANI

ABSTRACT. Our purpose is to show the existence of a Calabi-Yau structure on the punctured cotangent
bundle T (P20) of the Cayley projective plane P20 and to construct a Bargmann type transformation from
a space of holomorphic functions on T (P20) to La-space on P20. The space of holomorphic functions
corresponds to the Fock space in the case of the original Bargmann transformation. A K&hler structure
on Tg(P20) was shown by identifying it with a quadrics in the complex space C27\{0} and the natural
symplectic form of the cotangent bundle T (P20) is expressed as a Kihler form. Our method to construct
the transformation is the pairing of polarizations, one is the natural Lagrangian foliation given by the
projection map q : Tjy (P2®) — P20 and the polarization given by the Kihler structure.

The transformation gives a quantization of the geodesic flow in terms of one parameter group of elliptic
Fourier integral operators whose canonical relations are defined by the graph of the geodesic flow action at
each time. It turn out that for the Cayley projective plane the results are not same with other cases of the
original Bargmann transformation for Euclidean space, spheres and other projective spaces.

1. INTRODUCTION

The fundamental and historical problem in the quantization theory will be how to assign a function on a
phase space to an operator acting on the space of quantum states and the assignment satisfies some algebraic
condition, like a Lie algebra homomorphism. The phase space appearing in the theory has a structure,
a symplectic structure. There are many theory relating with this problem. One method is the theory of
deformation quantization. Also there is the opposite theory, an assignment of operators to functions, from
an operator to a function. In the (pseudo)differential operator theory and Fourier integral operator theory,
the basic assignment of operators to their principal symbol (and sub-principal symbol) is a fundamental
isomorphism between the spaces of operators and functions on the phase space modulo lower order classes.

The famous transformation, called Bargmann transformation was introduced in [Ba] and gives one aspect
of the quantization of the unitary representation. The method to construct such a transformation is given
by the pairing of two polarizations, real polarization and complex polarization, on C™ interpreted as C" =
T*(R™) =2 R™ x R™, complex space and fiber space by Lagrangian fibers = : C* — R™. Under precise
treatments of this method it was given a similar operator for the case of the sphere in [Ra2], in [FY] for the
complex projective space and for the quaternion projective spaces in [Ful].

Among the projective spaces the Cayley projective plane P20 is the exceptional one and our purpose in
this paper is to show that we can also construct such an operator for this manifold in the same method. This
case will be one of the non-trivial examples to which we can apply this method, ” pairing of two polarizations’
([Ra2], [Til], [Li2], [Ful], [FY]).

In the paper [Fu2] a Kihler structure on its punctured cotangent bundle 7§ (P?Q) was constructed by
embedding it into the complex space C27\{0} as an intersection of null sets of several quadric polynomials,
which gives the realization of the natural symplectic form as a K&hler form. Here we show the holomor-
phic triviality of the canonical line bundle of this complex manifold by giving a nowhere vanishing global
holomorphic 16-form explicitly.
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There are several study of the existence of Kéhler structure on the (punctured) cotangent bundle of a
certain class of manifolds, like [Ral], [Sz1], [Sz2], [Koi], [Li], [FT], also see [Be], [So] in relation with a special
property of the geodesic flow, SCy-manifolds.

The classical Bargmann transformation gives a correspondence between monomials on C™ and Hermite
functions on R™, which are the eigenfunctions of the harmonic oscillator and this facts were applied to various
problems, especially to Toplitz operator theory (there are so many, but here I just cite one book [BS]). Also
there are many precise treatments and modifications of this transformation (for examples, [lil], and recent
works in [Chl], [Ch2] ).

For our case we show the restrictions of monomials defined on C27\{0} to the embedded punctured
cotangent bundle T (P20) are mapped to eigenfunctions of the Laplacian on P2Q.

This paper is organized as follows. In §2, we explain a realization of quaternion and octanion number
fields, H and O, in a complex matrix algebra. Multiplication law in the octanion is interpreted in the two
2 x 2-complex matrix algebra C(2) x C(2).

In §3, we introduce the Jordan algebra [J(3) of 3 x 3 octanion matrices. Cayley projective plane P20
is realized in this Jordan algebra. Following an earlier result in [Fu2] we explain the embedding of the
punctured cotangent bundle T (P20) of the Cayley projective plane into the complexified Jordan algebra
C®rJ(3) =: J(3)C of 3 x 3 complexified octanion matrices:

70 : T*(P?0) — J(3)C.

We denote the image 70(T*(P?Q)) = Xg. Also we state that the natural symplectic form wP?0 is a Kahler
form.

In §4, using the defining equations of the punctured cotangent bundle of the Cayley projective plane embed-
ded in the complex Jordan algebra [7(3)®, we give an open covering by complex coordinates neighborhoods
and show by an elementary way that the canonical line bundle of the complex structure is holomorphically
trivial by explicitly constructing a nowhere vanishing holomorphic global section (we put it Qg), that is, a
16-degree holomorphic differential form which coincides with the restriction of a smooth 16-degree differential
form on the whole complexified Jordan algebra 7 (3)C.

In §5, we resume a basic fact on symplectic manifolds with integral symplectic form and a method of
the geometric quantization. Here we consider two types of typical polarizations (real and positive complex).
Then we apply the method to our case (= T (P20)) and give a Bargmann type transformation in the form
of a fiber integration on the punctured cotangent bundle T (P?Q) to the base space P2Q.

In §6, first we show the nowhere vanishing holomorphic global section 2 constructed in §4 is Fy-invariant.

_ 1 16
Incidentally, we determine the product 2o0A{)g in terms of the Liouville volume form dVr-(p2q) := 61 (wP 2@>

of the cotangent bundle 7*(P20).

Also we introduce a class of subspaces consisting of holomorphic functions on Xg satisfying some Lo
conditions. These will correspond to the Fock space in the Euclidean case.

In §7, we determine the exterior product of the Riemann volume form pull-backed to the cotangent bundle
T3 (P%20) and the nowhere vanishing global holomorphic section Qg in terms of the Liouville volume form.
For this purpose we fix a local coordinates at a point in P?Q which is also used in the section §9.

In §8, we discuss invariant polynomials and a similar feature to harmonic polynomials with respect to the
natural representation of the group Fj to the Jordan algebra [J(3) and its extension to the polynomial algebra.
Then, based on a general theorem in [He| (also [HL] and [Ko]) we state the eigenfunction decomposition of
Lo space of P20.

In §9, based on the data obtained until §8 we discuss our Bargmann type transformation is a bounded
operator, or isomorphism or unbounded according to the Hilbert space structures in the Fock-like space.
Some cases says there are quantum states in Ly (P?Q) which are approximated by classical phenomena, but
can not be observed directly by classical mechanical way.

Finally in §10 we mention that our Fock-like spaces have the reproducing kernel and a relation with the
geodesic flow action.
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2. REPRESENTATIONS OF QUATERNION AND OCTANION ALGEBRAS BY COMPLEX MATRIX ALGEBRAS

First, we fix a representation of quaternion numbers h = hol + hii + hoj + hsk (1, i, j, k are standard
basis of the quaternion number field H and h; € R) as a 2 x 2 complex matrix in the following way:

ho + h1v—1 ha + h3v/—1 _ A Iz E(C(Q)
Chy + ha/=1  hy — hyy/—1 BTN ’

where we understand that quaternions hgl 4+ hii and ho + hzi € H are complex numbers A = hg +
v—1hy and g = ho + hgy/—1 € C respectively. Hence by this representation the complexification C @y H is
isomorphic to the “algebra” of the whole 2 x 2 complex matrix algebra C(2) (we put z; = z; + v/ —1y; € C):

20+ v—1z 2o +v—1z23
(2.2) CRrH 3 h = 201 4+ 211 + 29 + 23k — S (C(Q)
—2z9 + 712’3 zZ0 — V 7121

(2.1) pH:HBh'—><

We denote this map also by pg and the inverse map is

_ _ + 24 21— 24, 22— 23,  Z2+ 23
2.3 L.e@2)sAa= (" 2)— L4y =21 1+ i+ +
23 gt C@a A= (2 2) i) = T D 2oy

For h = hol + h1i+ h2j+ hsk € H (or € C ®gH), we denote its conjugation by 0(h) = hol — hii— hoj — hsk,

then for pg(h) = <Z; Zi), pu(0(h)) = (_w4 _wuf) and the product pg(6(h))pu(h) = pa(h)pu(0(h)) =

k.

ws
(wiwyg — wows) - Id = det py(h) - Id, where Id is 2 x 2 identity matrix.

Let {e;}7_, be the standard basis of the octanion number field O such that ey is the basis of the center.
We identify eg = 1, e; = i, e3 = j and e; = k with the basis {1,1,]j,k} of the quaternion number field. By
the multiplication law e;eq = €;44 (i = 0,1,2,3) we express an (complexified) octanion number z = " z;e;
as the sum of two quaternion numbers:

3 3
szxiei—FZ Tiys€;-es=a+b-eg c HPHey or € CRrH G C @rHey.
i=0 i=0

The complexification C ®rO is identified as
CorO=C(2) ®C(2)eys

through the map pg ® pu =: po-
We define the conjugation operation in @ (and also in C®g Q) with the same notation 6 for the quaternion
case as

7
0:h= Zhiei — e(h) = hol — Zhiei.
i=1
The conjugation 6 is interpreted in the matrix representation through the representation pg as

(2.4) 0:C(2)&C(2es> Z+Wey = (2 Z2> + (“’1 “’2> ey

Z4 w3 W4

> 0(Z + Wey) =0(Z) — Wey = ( “ _22> - <“’1 “’2> es.

—23 21 w3  Wyq
Remark 1. The multiplication law of the octanions in the matriz form is given in (4.4).

Remark 2. We use the conjugation Z = x — /—1y only for the complex number z = x + \/—1y and do not
use the operation 6 for the conjugate of complexr numbers to avoid confusion. So, for a complex octanion
number z = > {z}.e;, {z}i € C, we mean z = 3 {z}ie; and it holds 0(Z) = 0(z). Also for an octanion

matric A= ( z; ) we mean A= ( z;; ) and 0(A) = ( 0(zij) )
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3. CAYLEY PROJECTIVE PLANE AND ITS PUNCTURED COTANGENT BUNDLE

In this section, we refer [SV], [M] and [Yo] for all the necessary facts on the exceptional group F, and the
Cayley projective plane.
Let J(3) be a subspace of the 3 x 3 octanion matrices:

t1 z  0(y)

J3) = 0(z) to x z,y,z€0,t; R
y 0(z) i3
We introduce a product in J(3), called a “Jordan product”, by
AB+ BA
T(3) % T(3) 3 (A, B) —s Ao B = % e 7(3).

It is called an exceptional Jordan algebra and of 27-dimensional over R. Then the group of R-linear algebra
automorphisms is the exceptional Lie group Fj:

(3.1) Fy:={geGL(JB)) 2GL27,R) | g(Ao B) =g(A) o g(B), g(Id) =1Id, A,B € J(3)}.

There are various characterizations for the group Fy (see for examples, [Yo], [SV]).
The complexification C ®g J(3) =: J(3)C consists of 3 x 3 matrices with components of the complexified
octanions of the form:

3 z  0(y)
TR =10k & = z,y,2 € Cer0, & eC
y  Ox) &

and is an exceptional Jordan algebra over C of the complex dimension 27. The complex linear automorphisms
a: J(3)¢ — J(3)C satisfying the conditions

a(AoB) =a(A)oa(B), a(ld) =1Id
is the complex Lie group F4©. We may regard F, C F,° in a natural way.
Definition 3.1. The Cayley projective plane P?Q is defined as
PPO={XeJB) | X=X, tr(X)=&G+&+&=1}.

It is known that the group Fj acts on P20 in two point homogeneous way.

1 0 0
Let X; = [0 0 0] € P20, then it is known that the stationary subgroup of the point X; in Fj is
0 0 0
isomorphic to Spin(9) and Fy 3 g — ¢ - X gives an isomorphism:
(3.2) F,/Spin(9) = P?0.
&1 w3 0(z2) m ys  0(y2)
For X = [ 0(z3) & 1 |, Y =16(ys) me Y1 € J(3), we define their inner product by
vy O(w) &3 yv2 0(y1) 3
3
(3.3) <X Y STOm (X oY) =3 Gy +2 < 2y SF,
=1

where < -, - >E denotes the standard Euclidean inner product of z; and y; € O = RS,
This inner product has a property

(3.4) <XoV,Z>I¥=c X Yoz>T0® XY ZecJT3).

In particular, since the trace function J(3) > A —— tr (A) is invariant under the Fy action, that is
(3.5) tr(g-A) =tr(A), g € Fu, A€ J(3),
this inner product is invariant under the action by Fy (hence Fy can be seen as Fy C SO(27)):

(3.6) < g~A,g~B>‘7(3):tr(g-Aog~B):tr(g~(AOB)):tr(AOB) =< A,B>70)
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The tangent bundle 7(P20) is identified with a subspace in J(3) x J(3) such that
1
T(P%0) = {(X, Y)eJB)xJB) | X € PO, XoY = 2Y} :

We consider the Riemannian metric gPQ@ on the manifold P?Q being induced from the inner product in
2
JB): gx “(V1,Y2) :=< Y1, Yo TG ¥y, Y, € Ty (P20).
Using this metric, hereafter we identify the tangent bundle T(P?Q) and the cotangent bundle T*(P?Q).

0 % 0
V2
Let Y} = % 0 0] €Tx,(P?*0). The stationary subgroup at the point (X1,Y;) € T(P20) is known
0 0 0

as being isomorphic to Spin(7) and the two point homogeneity of the action by Fjy gives us the isomorphism
Fy/Spin(7) = S(P?0), the unit (co)tangent sphere bundle of P?Q.

The inner product on J(3), < -, - >7) is extended to the complexification J(3)C as a complex bi-linear
form in a natural way, which we denote by < -, - >7 (3%, Then the extension as the Hermitian inner product
on the complexification 7 (3)C is given by < A, B >7®)° A, B e 7(3)C (see Remark 2 for the matrix B).

We will denote the norm of a € O by |a| = /< a,a >E* and by || X|] = V< X, X >IG) the norm of
X € J(3), respectively. Also with the same way for elements a € C ®xQ and A € J(3)C, we denote their
norms.

The punctured cotangent bundle 7*(P2Q)\{0} =: T (P20) is realized as a subspace in 7 (3)* with the
following form:

Theorem 3.2. ([Fu2]) Let Xg be a subspace in J(3)C:

&z 6y
3. 0= = z 2 x z,y,z € CRRO, & € C, :Oa 0
(3.7) X A 0(z) ¢ y C®r0O, & € C, A? A#

y b)) &
Then the correspondence between Tg (P?Q) and Xq is given by

Y|IY
(3.8) 70 : T5(P?0) 2 (X,Y) — (X, Y) = 1@ (JY|PX - Y?) +V-1® |\f;
Then

Theorem 3.3. ([Fu2])
(3.9) " (\/72 90 ||A||1/2) = WP,

where we denote by wP’0 the natural symplectic form on the cotangent bundle T*(P?Q).

1

The inverse 79~ is given by

o i Xp 2 A (X,Y) = (X(A),Y(A) € I(3) x T(3),
A

X(A) = g - (A+A) + i

(3.10)
Y(4) = =L ||A|7Y2 (A -A).

4. COMPLEX COORDINATE NEIGHBORHOODS AND CALABI-YAU STRUCTURE

We denote the holomorphic part of the complexified cotangent bundle T*(Xp)®C by T*'(X@)C (and likewise

T+ (Xo)C is the anti-holomorphic subbundle).
6
In this section we show that the canonical line bundle A T* (Xg)® is holomorphically trivial by explicitly

constructing a nowhere vanishing global holomorphic section (Theorem 4.7).

For this purpose we consider an open covering by explicit coordinates neighborhoods and show that the
Jacobians of the coordinates transformations is a coboundary form of C*-valued zero form.

The condition in (3.7) is expressed in the following six equations in terms of octanions:

(4.1) (§3+&)r +0(yz) =0, (§1 + &)y +0(zx) =0, (&2 +&1)z +0(zy) =0,
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(4.2) G2+ 20(2) +0(y)y =0, &2 +0(2)z + 20(z) = 0, &+ 0(x)z + yo(y) = 0.

The condition 0 # A € Xg is equivalent to one of the components x,y, or z being non zero. Then this
implies
Proposition 4.1.

Xo 3 A, thentr(A) =& +&+& =0.

This property does not appear in an explicit form in (4.1) and (4.2) but plays an important role in §8.
Although it is proved in [Fu2], we give an elementary proof based on the permitted regulations in the octanion.

Proof. Since the associativity
a-0(a)b=ab(a) b
holds, by multiplying z from the left to the equality (&3 + &2)x + 6(yz) = 0 it holds the equality:
z- (&t &)+ 2-0(2)0(y) = (& + &2)zx +20(2) - 0(y) = —(§3 + &2) (&1 + &€3)0(y) + 20(2) - 0(y) = 0.

Hence if we assume y # 0

(&3 + &) (&1 +&3) = 20(2)
and by the same way

(§2 +&1) (& + &) = O()z.
These imply that

E+&) (G +&) +(©+a)(E+Ha)+&° =G+ &+ &) =0.

and we have

§1+&+8=0.
From the arguments above the same holds for other cases of x # 0 or z # 0. O

Remark 3. The property above can be seen easily, if we use the transitivity of the action of the group Fy on
the (co)tangent sphere bundle.
Also from the definition of the map 1o, tr(A) = tr(mo(X,Y)) = 0 is equivalent to tr (V) = 0.

Here we mention the following fact, which is a special case described in Proposition 8.20.

Lemma 4.2. Assume that a linear function f : J(3)¢ — C
7 3
F(A) =2 (ai{w}i +bif{vi +ei{u}) + Y @i
i=0 i=1

vanishes on Xg. Then f is a constant multiple of the trace function A — tr (A), A € J(3)C.

a a 0(b)
Proof. Put a=> ae;, b=> bie;,c=>. cie; cECRr O and B= | 0(a) as c € J(3)C.
b 6(c) as
Then
f(A) =tr (Ao B) := fg(A).
0 =z 6(y)
Let Y =16(2) 0 0 | ¢€Tx,(P?0), wherez=> ze;,y=> ye; €0, then
y 0 0
[P +1yl*> 0 0 0 V=1z /=10(y)
T0(X1,Y) = 0 —[2? —=0(y2) | + VI +lyl* [ V=10(2) 0 0 € Xo.
0 —yz  —y]? V-ly 0 0

Here we put y = 0, and we may assume for such A = 7(X;,Y)
Fa(A) = tr (Bo 4) = (|2%)(1 — az) +2 3 V=T|z|za; =0,

for any £z; € R. Then oy = a3 and also a; = 0 for ¢ = 0,---,7. Likewise we have ; = a3 and b; = 0 for
’[: = O7 e 77'
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Then we may assume
fB(mo(X1,Y)) =< Z cie;, 0(yz) >E°= 0 for any y, z € O.
Hence ¢; = 0 for i = 0,--- ,7, which shows our assertion, that isa=b=¢c¢=0, a := a1 = as = az and

fB(A) = a1& + 2o + asés = a - tr (A).

O
Corollary 4.3. The space spanned by Xo (:= [Xg]) 4s a 26-dimensional subspace in J(3)C.
Let z,y,z € C ®r0O and put
_ _[”A 22 wr w2
po(z) =2+ Wey = (Z3 24) + (w3 w, ) &
Yyr Y2 U1 V2
4.3 =Y +Vey = ,
43) pol) =¥ 4 Ve = (M B) (U 2,
T T up u
po(r) =X +Uey = <x;, xi + u; uj) e4, where z;, w;, y;, v, x;,u; € C.

Then the conditions (4.1) and (4.2) are rewritten in terms of the matrices Z, W, Y, V, X, U as

§(0(X)—Ueys) =Y +Vey)(Z+Wey) =YZ - 0W)V + (WY +VO0(Z))ey,
(4.4) &EOY)—Ves) =(Z4+Wey) (X +Ueys) =ZX — U)W + (UZ + WO(X))ey,

53(9(2) — We4) = (X + Ue4)(Y + Ve4) = XY — Q(V)U + (VX + U@(Y))e4,

&2+ det Z +det W 4+ detY +detV =0,
(4.5) € +det Z 4+ det W 4 det X + det U = 0,

&3 +detY 4+ detV + det X + det U = 0.

& z  0(y)
Hereafter (until §7), we denote the matrix A = | 0(z) &2 x € J(3)C in the form of a vector
y 0@ &
c (C27.'
(46) A <—)(§1752,€3,Zl,...72’4,11)1,...7’LU4,y1,...7y4,7]1,...,7]4,$1,...,.%'47’[1,1,...,11,4)
= (a1,a9,0a3,04,...,...,a97) € C¥,

using the components given in (4.3) by the map po.
The conditions for matrices in Xg require that at least one of the off-diagonal components in the matrix
A is non-zero. Hence, for example, we assume that there is at least one component in the matrix pg(z) =

Z+Wey = SR I (e ey, say z1 # 0 and put O,, = {A € Xg | 21 # 0}. Also we define other
23 24 w3 Wy

open subsets {O,,, Ou,, Oy, Oy, Oy,, Oy, iy in a same way like O,,. Then we have
Proposition 4.4. The 24 subsets

(4.7) (02,0, Oy, 0u,, O, O Yoy =i U

are all open coordinate neighborhoods and totally is an open covering of Xg.

Proof. We show a coordinates for the case O,,. Other cases will be shown by the same way.
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From the equations in (4.4) we select 5 equations expressed in 2 x 2 complex matrices including the complex
variable z; and from the equation (4.5) we select one equation also including the complex variable z;:

& < a4 —:Cz) _ <y1 Y2\ (21 22\ _ < Wy —wz> <Ul Uz) ,
—r3 1 Y3 Y4 3z —wz w1 U3 U4
—& (Ul uz) _ (w1 w2 Y1 Y2 + (Ul U2> Z4 —22>
uz U4 wy wa) \Ys Ya v va) \—z3 =1 )’

£ Yo Y2\ _ (A1 22 Ty T2\ [ U4 —Us9 w1 Wy
(4.8) —Y3 U1 23 24 r3 X —u3 U1 w3 wq)’
v v up u2\ (21 22 (wl wo [y —xo

52 (1}3 1]4) - us Ug zZ3 24 w3 Wy —XI3 T
£ 24 TR2\ _ (Z1 X2 Yr Y2y [ va  —U2 ur U2
—23 21 T3 X4 Ys Y4 —v3 U1 Uz Ug

2
£ + 2124 — 2223 + WiwWy — Wow3 + T1X4 — ToT3 + Urug — uguz = 0.

BN

N

i

From these we can select 10 equations including the variable z;:

f1 = —&ys + 2121 + 2223 — (wgw1 — ugws) = 0,

Jo = &y2 + 2122 + 2224 — (Ugwz — ugwy) = 0,

f3 = &u1 +u1z1 + upzs + (wirs — woxz) = 0,

Ja = &3 +u3zy + ugzz + (w3zy — wyws) = 0,

fs = —&1xa + y121 + Y223 — (wav1 — wavsg) =0,

fo = &ixs + Y321 + yazs — (—wsvy + wyv3) =0,

fr =& ug — v122 + V221 + wiys + ways = 0,

fs = &1ug — v320 + V421 + w3ys + ways = 0,

fo = —&321 + w3y2 + Tays — (—v3uz + viug) =0,

fio = &° + 2124 — 2023 + Wiwa — Wow3 + T1T4 — ToT3 + UrUs — Uguz = 0.

(4.9)

The 10 variables
(410) $1a$27ulau3ay17y37U27U47537Z4

are coeflicients of the variable z1, and can be solved easily.
In fact, with one more additional equation

(4.11) Ju=&+&+86=0,

we can solve the 11 variables

(4.12) {1, x2,u1, U3, Y1, Y3, V2, V4, 24, &3, 1}

in terms of the remaining 16 variables

(4.13) {73, 24, U2, Us, Y2, Ya, V1, V3, 21, 22, 23, W1, W, W3, Wq , &2},

in which, except z; # 0 other variables can take any values in C.
Here, if we choose the equation

2
flo =& + 2124 — 2223 + W1 Ws — WaW3 + Y1Y4 — Y23 + V104 — Vav3 = 0,

instead of the tenth equation fig in (4.9)(= first equation in (4.5)), then the variable &; should be chosen as

an independent variable.
In any choice(in O,, case, & or &) once we fix them (here we choose as above), and denote by P,, the

projection map
P, 0, (81,820,835, 21, -+ oy 24, W, o e oy WAy YTy e ey Yy Uly e o ey Udy T1ye ey Ty Uly e vy Usg)
= (a1,...,a27) — (&2, 21, 22, 23, W1, Wa, W3, W4, Y2, Y4, V1, V3, T3, Tq, U2, Ug)
= (a2, as, as, ag, as, ag, @10, a11, a13, 15, a16, A1s, 422, A23, A5, da7) € C x C* x CM.
Then, the pair (O,,, P,,) is a local coordinates neighborhood (note that dim¢ Xgp = 16). O

In any case in Uy, once we fix independent variables, then we denote the dependent variables as x1 (), xo(*) - - -
(or ay(*),a2(x),...,) etc., where x means the independent variables.
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Corollary 4.5. Fach coordinate neighborhood Oy in Uy is dense in Xg. Hence any number of intersections
of open sets in Uy is also open dense.

Proof. Tt will be enough to show the case O,,. So, let A € Xp\O,,. Assume, say A € O,,, then the subset
z1 = 0 is defined by an rational equation: z; = 52y4722x3;f4w17“2w3 = 0. Hence the subset z; = 0 must be

at most codimension 1 in Xg. O

Proposition 4.6. Let O,, and O, be any of two open coordinate neighborhoods in Uy = {O4,}72,. Then
the Jacobian Jyu; o, = det d(Paj o Pajl) of the coordinate transformation Py, 0 Pajl is given by

5
(4.14) Ty ar = (“J) on Py, (0, N O,,).
a

i

Proof. Let 0 = (O 1) and define a map

10
(4.15) 5:C(2)5S+—5(8):=0c-S-0cC(2),

then 6(5(S)) = (0(S)). This property of & naturally induces an automorphism of [7(3)€, which we denote
by the same notation & : J(3)¢ — J(3)C.
By the Lemma 4.5, it will be enough to determine the Jacobian J,, 4, for the cases of

O, N Oy, = Og, NO,,, for i > 5.
Also by the symmetry of the components y and x it is enough for the cases of
0., N0, = 04, NO,,, fori=17 ~ 24.

Finally, by the automorphism & explained above and the symmetry between z and = we see that it is enough
to determine them for the 5 cases

0,,N0;,,0;, NO;,,0; NOuy,, Oz N Oy, Oz N Oy,

All the determinations can be done by the basic way of the calculation of the determinants. So we show
two cases O, N O,, and O, N O,,, how they look like.

[1] 0.,NO0., = 04, NO,, case: For this case we consider the coordinate transformation P,, o P,;*, which
is given by the correspondence:

(62)217ZQa237w17w2aw37w47y2ay4yvl7v3ax37l‘47u2;u4)
(52;21722’24,71)1,w27w37w4,y2ay4,’02,v47x1,$2,u2,U4)
where the coordinates (€2, 21, 22, 24, W1, Wa, W3, Wy, Y2, Y4, V2, V4, T1, T, Uz, Uy) are given by the rational func-

tions:

_ $aya—zoxzt+(uswi —ugws)
- )

_ —&2y2—zamat(uswar—usws)
zZ1 ?

T

T2 e Uz = Uz, Uq = Ug,
_ —&1ustvizo—wiya—ways —§1us+v320 —W3Y2—WaYs
)

(416) Y2 = Y2, ,Ys = Y4, V2= 1 y, U4 = P

2
=82 +2023— W1 WAt W2W3—T1T4+T2T3—UI UL+ U2U3

21 =21, k2 =22, 24 =

)

Wy =wy, Wy =Wz, W3=wWsz, Wy= w4721 & =&
We change the orderings of the coordinates in P,, (O,,) with “even” permutations as
(€2, 21, 22, W1, W2, W3, Wa, Y2, Ya, U2, Us, 23, V1, V3, T3, T4)
and P,,(0,,) as
(&2, 21, 22, W1, Wa, W3, W4, Y2, Ya, U2, Ud, 24, V2, Vg, T1, T2).

Then the Jacobi matrix is of the form that

Id C
(4.17) H :
0511 D



10 KURANDO BABA AND KENRO FURUTANI

where Idp is 11 x 11 identity matrix, 0511 is 5 x 11 zero matrix and D is given by

2 0 0 0 0
0o 2 0 0 0

(4.18) D= 0 * z% 0 0
To * ok —z—f 0
—xy ok Ok * —22

Z1

(the 11 x 5 matrix C' and components * are given by some functions). Hence the Jacobian J,, ., is

5
Joyey = det D = (“)

21

[II] Oy, N O, = Og, N O,, case: For this case we consider the coordinate transformation P,, o szl,
which is given by the correspondence:

(627 21,22, 23, W1, W2, W3, W4, Y2, Y4, V1, U3, 1‘37374,“2,’&4)
— (52721,22723,24,wl,w27w37y3,y4,1117v2,3317333,U1,U2),

where the coordinates (x1,x3,u1,us, Y3, Y4, V1, V2, 21, 22, 23, 24, W1, W2, W3, E2) are given by the rational func-
tions:

_ $oya—zoxz+(ugwi —usws _ _ —&av1—uszz—(wiTga—wary _
= y T3 =T3, UL = = y U2 = U2,

zZ1
ys = —§123—yaz3+(—wzvi+wivz Vs = Ys v = vy = —§1ugt+vizo—wi1Y2—wWaya
4.19 2 ’ \ ’ Z ’
( ) —&9° 42023 —wiwatwows —x1 T4+ Tow3—usUsF U U
zZ1

1

21 = Z1, z9 = Z2, 23 = 23, 24 = )

wy =wi, wp=wz, wz=ws & =~E.
We change the orderings of the coordinates in P,,(O,,) by the “odd” permutation as
(€2, 21, 22, 23, W1, Wa, W3, W4, Y2, Ya, V1, U3, T3, Ta, U2, Us)
— (€2, 21, 22, 23, W1, Wa, W3, Y4, V1, T3, Uz, W4, Y2, U3, T4, Us)
and Py, (O, ) by the even permutation as
(&2, 21, 22, 23, 24, W1, W2, W3, Y3, Y4, V1, V2, T1, T3, U1, U2)

(525 21, %2, 23, W1, W2, W3, Y4, V1, T3, U2, 24»y37U2a5517U1)

Then the Jacobi matrix is of the form that

Idy; '
(4.20) (05711 D

where the matrix D’ is given by

% 0 0 0 0
* 0 —-*% 0 0
z1
(4.21) D = * 1:—11 0 0 0
* 0 0 0 —%
* 0 0 Yo 0

RIS

z

(the matrix C’ and components * are given by some functions) Hence the Jacobian J,,, ,, is

5
Juy.zy = det D' = — (1”1) .
21

From the above Proposition 4.6 we can see that the C*-valued 1-cocycle defined by {Ja; a; }a;,a,€{z1,--- .- Jua)
is the coboundary of C*-valued 0-cochain {h; = %}, we have
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Theorem 4.7. The set of holomorphic sections

1 1 1 1 1 1
hZ‘ = 77hw. = 77h P — 77}1/”' = 77hr» = 77}1/“' = —= )
{ oty e T ® }

each function is defined on the open coordinate neighborhood O, , O, and so on, together define a nowhere
6
vanishing global holomorphic section Qg of the canonical line bundle \ T* (Xg)C.

Here the above local sections, for example h,, defined on O,,, should be understood as the coefficient of a
16-degree (= highest degree) holomorphic differential form:

hzl (527 21, 22, 23, W1, W2, W3, W4, Y2, Y4, V1, ’U3,Z‘3,.T4,U;2,U,4)

1
= 5 déaNdz1 Adzo Adzg Adw Adwe Adws Adw g Adys Adys Advy Advs Adxs Adx g Adus Aduy
1

1
= 75(1(12 /\da4/\da5 /\da6 /\dag /\dag /\dalo/\dalg /\da15/\da16 /\da18 /\da22 /\da23 /\da25 /\da27 .
ay

Remark 4. As in the case for the sphere, the nowhere vanishing global holomorphic 16-form Qg coincides
with the restriction of a smooth 16-form Qg defined on the whole space J(3)C and there is a smooth 11-form
n on J(3)C with the property that

Q@ An = daiNasAag - - - Nagy.
For the description of these smooth forms we need a troublesome preparation for the coordinates choices and
we do not use the forms later so that we omit the construction.

We mention that since the transition function of the canonical line bundle on Xg is invariant under the
multiplication by non-zero complex numbers, it is a pull-back of a complex line bundle on the quotient space
Xp := C*\Xgp. More precisely

Proposition 4.8. (1) Interpreting the calculations above in terms of the homogeneous coordinates we see

_ 15, _ 5
that the canonical line bundle K¥° =\ T* (Xg)® of the quotient space Xg is isomorphic to @ £*|X , where
0
L is the tautological line bundle on the projective space P?°C, L C P?6C x C?7.

(2) Let V be the kernel of the projection map 7 : Xg — Xg,
V :=ker dn C T(Xp),

which can be seen naturally as a complex line bundle trivialized by the holomorphic vector field corresponding
to the dilation action
Xop2Ar—t-AeXp.

In this sense we denote it by Vc. Then by the exact sequence
{0} — (T (X0)®) — T™ (X0)® — Yo" — {0}

we know that the canonical line bundle K*® = 7*(K*0) @ Vo* is holomorphically trivial, since (L) is
holomorphically trivial.

5. SYMPLECTIC MANIFOLDS AND POLARIZATIONS

In this section we review an aspect of a geometric quantization theory in a restricted framework fitting
only to our purpose. In the subsections §5.3 and §5.4 and in section §6 we explain how the framework is
adapted to our case.

5.1. Integral symplectic manifold. Let (M,w™) be a symplectic manifold with the symplectic form w?.

In this paper we assume that
[In1] the map H?(M,Z) — H3,(M,R) is injective, or the group H?*(M,Z) has no torsion and,

[[n2] the de Rham cohomology class [w™] of the symplectic form w? is in this image.

Then the complex line bundle L,n =1L € H*(M,C*) = H?(M,Z) corresponding to the cohomology class
[wM] is unique(of course, up to isomorphism). The first condition is satisfied, for example if M is simply
connected and our case M = Xg satisfies both of these conditions trivially, since H?(Xq,Z) = {0}.

Under these assumptions, the unique complex line bundle I has the canonically defined connection V,
which is defined as follows:
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Let {U;} be an open covering of M with several “good” properties required in the arguments below
(it is always possible for manifolds). Then there are one-forms {f;}, each of which is defined on U; and
df; = w™. Then the correction of smooth functions {ci;} defined by dc;; = f; — fi; on U; N U; satisfy that
¢jk — Cik + ¢i; takes integers on U; N U; N Uy, and the transition functions {g¢;; = ezﬂﬁciﬂ'} defines the line
bundle 7 : L — M.

The connection V on L is defined as

Vx(s;) =2rv—-1< f;, X > s; onU;, (X is a vector field)
where s; is a nowhere vanishing section on U; identifying U; x C and 7= (U;) C L in such a way that
U xC3 (2,2) = 2 si(z) € mH(Uy).

Here < f;, X > denotes the pairing of a one-form f; and a tangent vector X.

If we choose all the functions c¢;; being real valued, we may regard that the line bundle L is equipped with
an Hermitian inner product, which we denote by < -, - >L at © € M. Hereafter we assume that the line
bundle 1L is equipped with such an Hermitian inner product.

We may regard that the space C°°(M) is a Lie algebra by the Poisson bracket {f,g} := wM(H;, H,),
where Hy denotes the Hamilton vector field with the Hamiltonian f defined by < df, e >= w™ (H/,e). The
space I'(IL, M) is a central object in the quantization theory. There is a basic fact that the correspondence
from g € C°°(M) to the operator T, assignment of a function to an operator,

Ty:T(L,M)> s+ Vg, (s)+ 21V —1g-s

is a Lie algebra homomorphism, [Ty, T,] = Ty, 4y, and it is the main theme in the quantization theory how
to assign a function on a phase space to an operator on the configuration space.

5.2. Real and complex polarizations. Let (M,w™) be a symplectic manifold with the symplectic form
wM (dim M = 2n). The skew-symmetric bi-linear form w}J,V[ at each point p € M is naturally extended to the
complexification T(M) ® C := T(M)C as the skew-symmetric complex bi-linear form which we denote with
the same notation.

Let F be a subbundle of the complex fiber dimension n in T'(M)C satisfying the properties that

(1) F is maximal isotropic with respect to the skew-symmetric bi-linear form wM,

(2) F is integral, that is ' N F has constant rank and F, F + F is closed

under bracket operation of vector fields taking values in these subbundles.

In this paper we only treat two extreme cases,

(P1) F=TF, and
(P2) F+F=T(M)C.

First one is the complexification of a Lagrangian foliation L C T(M), F = L ® C and we call it a real
polarization. The second case is called a complex polarization.

If there is a polarization satisfying the second condition F' 4+ F = T(M)®, then M has a almost complex
structure J and the subbundle F is identified with (0, 1)-vectors in T (M)® (anti-complex subbundle). The
integrability condition implies that M becomes a complex manifold. When we put

g(a, B) == w™(J(a),B), a,p vector fields on M,

then ¢ is a non-singular symmetric bi-linear form on T(M) and moreover it defines an Hermitian form on
T(M)C. Under the condition that the form g is positive definite, then it is equivalent that M has a Kéhler
structure. We call such a polarization a positive polarization.

Hence it is equivalent that if there is a positive complex polarization on the symplectic manifold M, then
M is a Kéhler manifold and the symplectic form w™ is a Kahler form. Also real polarization is always
positive.

In this paper we consider two polarizations on the space Xg, one is the real polarization F naturally defined
on the cotangent bundle and a Kdhler polarization (= positive complex polarization) G described in (3.7) and

Theorem (3.3).
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5.3. Hilbert space structure on the spaces of polarized sections. Now let M be a symplectic manifold
satisfying the conditions [Inl] and [In2] as in the subsection § 5.1 and fix a line bundle L corresponding to
the cohomology class [w™] with the connection V and the Hermitian inner product explained in the above
subsections and assume that there is a polarization F' on M.

Let U be an open subset in M. We introduce a space Cr(U) C C*(U) by

Cr(U)={hecC®U) | X(h)=0, "X € I'(F,U), vector fields taking values in F'}
and a subspace I'p(LL, U) of smooth sections in I'(L, U) by
Ir(L,U)={s € T(L,U) | Vx(s) =0, "X € ['(F,U)}.
Let U be an open subset such that there is an one-form 6 on U satisfying
df =w™, and < 6,X >=0 for vectors X € F.

Although it is not canonical, we may locally identify the spaces Cr(U) and I'r(IL,U) by fixing a nowhere
vanishing section s : U — L with the property that Vx(s) =0 for X € F in such a way that

Cr(U)s 9o p-selp(L,U).
Then under this identification, the connection V is
Vx(p-s)=X(p) - s+2rvV—1p <0, X >-s=X(p) s,

for vector field X taking values in F.

If F is a real polarization, then the function space Cr(U) consists of such functions that are constant
along each leaf N U of the Lagrangian foliation, and if F' is a complex polarization, then Cr(U) consists of
holomorphic functions on U.

We call these sections € T'r(L, U) “polarized sections’ (with respect to a polarization F') and are the
main objects in the geometric quantization theory. We may regard, according to the polarization, that they
express quantum states in the real polarization case and that they express good classical observables in the
complex polarization. The above identification indicates the local nature of the polarized sections according
to the polarization.

One basic problem is to introduce an inner product on the space T'rp(IL, M) of L-valued polarized sections
and a related space (which will be explained later) in a reasonable way (or without additional assumptions) to
make it a (pre-)Hilbert space and the most interesting problem is to see a transformation from one space of
polarized sections T'(IL, M) (by a polarization G) to another space T'r(IL, M) of polarized sections by another
polarization F.

We discuss two cases according to the polarizations (real and positive complex) how we introduce an inner
product below in [RP] (real polarization) and in [CP] (complex polarization).

Under our assumptions we work only on density, (partial) half density, or (partial)l/4-density spaces. The
meaning of “partial” will be explained in Remark 5.

[RP] Let F be a real polarization. In this paper, for avoiding unnecessary generality, we assume more
strongly that
(RP1) there is a submersion to an orientable manifold N,

®: M — N

whose fibers are connected Lagrangian submanifolds.
So, the real polarization F' is defined as the kernel F' = Ker d® of a surjective submersion ® : M — N
and the functions in Cr(M) are naturally descended to the base space N, that is *(C*°(N)) = Cp(M).
Let o, f € T'p(L, M), then by the equality

0=<Vx(a), >+ <a,Vx(B) >'=X(< a,8>L), for X € F,

the function < o, f > is constant on each fiber. Hence it can be naturally identified with a function on
the base manifold N. For such functions we need not integrate along the leaves and it will be enough to
consider the integration to the transversal direction of the leaves. This is realized by the integration on the
base space to make the space I'r(IL, M) into a (pre) Hilbert space. There are many way to choose a measure
on N, say a Riemann volume form to integrate it.
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Instead of the space I'r(LL, M), we consider L-valued polarized (or exactly to say, we call horizontal and

partial) half-densities ¢ € T'p (]L ® ‘ A FO|,M> and/or horizontal and partial %—densities pelr (]L ®

A/ ’ A F0|,M>7 where FO is the annihilator of F,

FO={¢eT"(M)| <&{X>=0,"XeF}.

We can introduce a (partial) connection Yy (&) := ix(d§) on m/tix FO = A\ (d®)*(®*(T*(N))), where £

max

is a differential form € F( N FO, M), X € F and ix denotes the interior product with a tangent vector

XePF.
Note that

iX(dg):z’XodfeF(nKIFo,M), forXeFandger(WKFo,M).
Since ix () = 0 for € € r(m/‘(w FO,M) by X € F
Vx(f-&) =ixod(f-§) =ixo(df N+ [-d§) =X(f)-&—df Nix(§) + f-ix(dE)
=X(f)e+f-Vx(f-§), for X € F and f € C®°(M),

max
the vector fields taking values in F' work as a differentiation on the space of the differential forms F( A

max
FO M ) Hence we can consider the differentiation Yx along the polarization F for the sections € F( A

max
F07M) and also sections € I‘(| A FO|,M) too.

Then under our assumption (RP1) and according to the definition of the partial connection, the sections
max max

&€ FF< N F°, M) can be descended to the sections € I'( A T*(N), N), hence it holds

(5.1) 3" (F(n}a\z T*(N),N)) ng(n}a\m FO,M).

We may regard a differential form in I’ F( N F°, M ) a polarized (or horizontal) “partial” half density (or
half degree form) on M.

Remark 5. By our assumption (RP1), there is an exact sequence
(5.2) {0} — F° — T*(M) — F* — {0},

and the injective bundle map on M, (d®)* : ®*(T*(N)) — T*(M), which is the dual of the differential
d®. Since the polarization F coincides with the wvertical subbundle of the projection map ®, the image
(d®)*(®*(T*(N))) = F°.

By the assumption (RP1) we regard that A\ T*(N) = | A T*(N)| (line bundles of the highest degree
differential form and density (volume form) line bundle) and we consider the square root bundle \/ /\ FoO.

max

Sections in Tp( N\ FO, M) or Tp(\/ N\ F9 M) are not the half densities or 1/4-densities, since
T*(M) =2 NF*® \ F° = trivial bundle given by the Liouville volume form. So we should call the sections in

max

Lr( AF°, M) or in Trp(\/ AF° M) polarized “partial” half density or “partial” 1/4-density.
max max
Differential forms p € I‘F< A FO,M) is descended to densities p, € I'( A T*(N),N) (highest degree
differential form) on the base manifold N, that is there is a unique highest degree differential form p, €

max

I'( AT*(N),N) such that ®*(u.) = p by the isomorphism (5.1), and then we can integrate u. on N. Hence
we have a natural linear form

IN:I‘F( /\FO,M)BM'—HN(M) :Z/N,U*EC.
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If we denote the inverse map of ®* of (5.1) by ®,, then

Jyr= foo

In turn, we consider the square root bundle Y/ m/lin 0 which can be seen as a partial 1/4-density bundle
on M. Then we can also introduce a partial connection X7X1/ % on the line bundle \V m/((mF 0 and as well it is
defined also on the line bundle L ® Y/ m/(in 0. Hence we consider “L-valued polarized (or horizontal) partial
%-densiti@s Ta@nelp (L @\ m/((zFO, M) and define their product by making use of the Hermitian inner

product on L with the formula

FF<]L® \/WKxFO,M) x PF(]L® \/n}a\zFO?M) N FF(%xFO,M)

w w

(5.3) (a®u,BRV) — <a,ﬁ>ﬂ‘~u®1/€rp< /\FO,M).

max

The resulting horizontal partial half density < a, 8 >* u®@v € T'r( A F°, M), is identified with a density

max
on N. Hence we can define a pairing (or an inner product) for the sections in I'p (]L ®\ AFO, M) by the
integration of the corresponding density on IV in a natural way,

FF(L®W M) er(M@\/% M) s,

w
(a®p,b@v) — IN(Pu(< a,b >Y p@v)) :/ b (<a,b>" pev).
N

For the real polarization F on our space Xg, first we trivialize the line bundle IL by a nowhere vanishing
polarized section sy € T'x(L,Xgp) with < sgp,Sg >h= 1. We call this trivialization of the line bundle L a
Tunitary trivialization”.

Next, let dvpzg be the Riemann volume form on P2Q. We consider the square root

\/{qo (10) "1} (dvp2g) = {qo (10) '} (y/dvp2g) € F]:(\/ ”K’J .7-'07X@),

and identify a L-valued polarized partial 1/4-density E@u € T ¢ (IL® vV AFO, X@) with f-so®+/{qo (10)~1}*(dvp2g),
where the function f can been as a pull-back of a function g € C*°(P?0), f = q*(g). Then we may identify
it with a half density on N of the form g - \/dvp2g. Hence we identify the Lo-space with respect to the

Riemann volume form dvp:g (we denote it by Lo(P?Q,dvp2g)) and the space of L-valued polarized partial

1/4-densities Tz (L @\ A F°, X@) (after taking completion).

[CP] Let G be a positive complex polarization on M whose symplectic form w?

form:

V=109¢p =wM
The line bundle L corresponding to the cohomology class [w?/]
< -,- > as was explained in 5.1.

The inner product < a,b > of two sections a,b € T'¢(LL, M) is a function on M and can be integrated with

is expressed as a Kahler
is equipped with an Hermitian inner product

respect to the Liouville volume form dVis := et 1)”(n e { M} (dim M = 2n). Hence we can introduce
an inner product on the space I'¢(L, M) 1ntr1n81cally, since we do not depend on any other additional
assumptions.

We can also introduce an inner product on the space of L-valued “polarized” sections of the canonical line
bundle K¢ for the complex polarization G.
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The canonical line bundle K¢ = A T* (M) is the line bundle of the highest degree exterior product of
the holomorphic part 7% (M)€ of the complexified cotangent bundle 7*(M)€ ( (1,0) type cotangent vectors ),
which is the annihilator of the complex polarization G ( (0,1) tangent vectors), like F for the real polarization

F'. The sections of the canonical line bundle can be thought as half densities (or complex valued half density)

by the isomorphism K¢ @ KG = A T*(M)C. We can introduce a partial connection Yx (X € G) along
the complex polarization G in the similar way as for the real polarization. Then we consider the space
I'o(L® K% M) of “L-valued polarized sections of the canonical line bundle” and using the Hermitian inner
product on L we have a highest degree differential form

max

<a®ubv>=< a,b>ﬂ‘~u/\P€F( /\T*(M)C,M>,

where a,b € T'g(IL, M) and p,v € T'¢(K%, M). The quantity A7 can be seen as a (complex valued) density
on M. Hence we have an intrinsic (pre-)Hilbert space structure on the space I'¢(L ® K%, M).

For the complex polarization G on our space Xg, we use a structure so called Calabi-Yau structure on
Xo to identify the space I'g(L ® K9,Xg) and the space Cg(Xo) of holomorphic functions on Xo by the
correspondence

(5.4) 7:Cg(Xg) 2 h—y(h) =h-to® Qo € I'g(L® K9,Xp).

The existence of the nowhere vanishing holomorphic 16-form Qg on Xg was proved in Proposition (4.7) and
to is taken for trivializing the line bundle L satisfying the property ng(to) =0.

We call a trivialization of the line bundle L by the section tg a “holomorphic trivialization”. We will
determine the relation of the sections sg and tg, to = goso in the subsection § 6.1.

5.4. Pairing of polarizations and a Bargmann type transformation. First, we recall the fiber inte-
gration. Let ¢ : M — N be a differentiable map between two manifolds.

q

P
Let 0 € F( AT* (M), M) be a differential form with the degree p > dim M — dim N :=d. For g € F( A

T*(N), N) with compact support satisfying ¢ = m —p = dim M — p > 0 (we denote the space of sections
with compact support by T'g(*, *)). We assume

[ lono@)l < +oc
M

q
for any g € FO( AT*(N )) and define a linear functional

g— | o n¢(g),
M

q
which is understood as a distribution on the space FO( NT™* (N)) We denote this distribution by ¢.(o) and
express as

(55) 6.0 = [ 6.0)ng= [ ond(o)
N M
If ¢ is a submersion, then ¢, (o) is a smooth differential form of degree p — d.

In the last subsection we introduced inner products on the spaces I' <]L ®\ AFO, M) and I'¢ (L QN T (M)C, M> =

T'g (IL @ K% M ) for a real polarization F satisfying the condition (RP1) and a positive complex polarization
G on an integral symplectic manifold M. Our main purpose is to construct a transformation

(5.6) B:Tg (Lo K¢ M) —>rF(L®\/nXI FO,M)

or it may be understood as a sesqui-linear form on

(5.7) FF(]L®\/7<C FO,M) xFG(]L®KG,M) Idxp
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FF(L®\/7<C FO, M) er(L®\/WK FO,M) —C,

For the sections (¢ ®@ u, S Qv) € I‘F(]L® vV A FO,M> x g (L@KG, M) their product
<a75>L'|N®V|

max
(| * | means a section of {KG ® Y\ /\F0|) is understood as a partial 3/4-density on M and so we need some
modification to integrate it, since there are no manifold of the dimension 3/4 x dim M.

Since we identify the half density space I' (\/ /\ T*(N),N ) with a Lo-space by fixing a Riemann volume
form dvy, we define a sequi-linear form

M(L@\/n}a\m FO,M) xTg(L& K¢, M) —C
(5.8) FF(L®\/7<EF0,M)er(L@@KG,M)a(a@u,ﬁ@y)

%/ <a,B > @ (f.doy) AT,
M

where we can put u = ®*(f,)\/®*(dvn) with a function f, € C°°(N), that is we multiply the partial 1/4-
density /®*(dvy) to the partial 1/4-density v = ®*(f,)/®*(dvn), then /@*(dvy) ® \/P*(dvn) ® p is a

(complex valued) highest degree differential form (or can be thought as a density) on M and we can define
a sesqui-linear form.
Once we have a sesqui-linear form

P:FF(]L®\/ A FO,M) ><FG<L®KG,M) —C

Pla@umBov)=> Iy(® <aa>" 1o mwm),
where we put B(BQv) =3 a; @ ;.

it is rewritten as

In our space Ty (P*0) =~ Xgp we have two polarizations F (real) and G (Kdhler) and we identify the spaces
Cg(Xo) and T'g(L ® K9,Xg) by (5.4). The inner product on the space Cg(Xg) induced by the map v will be
explicitly described in (6.9) at the end of § 6.2 in terms of the Liouville volume form. There we will introduce
a parameter family of inner products on the space I'g(L ® K9,Xq).

We recall the sections sg and tg and describe our Bargmann type transformation including the quantity
< 8p, tg Sk

Let 6P°C be the canonical one-form on the cotangent bundle T*(P?Q), then dor*0 = PO gnd for any
XeF, < 9P2@, X >=0. So let sy be a nowhere vanishing polarized (with respect to the real polarization JF)
global section of I defining a trivialization Xo x C =2 L by the correspondence

(5.9) XoxC> (4,z)«— z-s0(A) €L,

with < sq, sop >F= 1.
Also by the relation

o (V=280 |4]1?) = ",
given in Theorem (3.3), we take a (complex)one-form
0g = V=20114]|"?,

then dro*(0g) = wP’© and 0g(X) =0 for X € G, since X is a (0,1) tangent vector.
Then we can trivialize the line bundle I by making use of a nowhere vanishing global section to in a similar
way to (5.9).
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Using the identifications (5.4) and the correspondence

C*(P?0) 5 g (a0 70}*(9) - 30 @ a0 r0 1} (dvpao)
— {a0 0} (9) 50 @ {0 o~} (dupao)

the integral (5.8) is rewritten as

(5.10) {qo T@_l}*(g) he < s, to > {qo T@_l}*(d’l)p2@) A Qo,
Xo

and it is also expressed in terms of the fiber integration as follows:

{aomo '} (g9) - b < so,t0 >" {qo7o '} (dvp20) A Qo
Xo

(5.11) = / g-{qo70 " }.(< s0,t0 > -h - Qo) dup2g.
P20
Then the Bargmann type transformation
B : Og(Xg) = C°(P?0), Cg > h+— B(h),
1s defined as
(5.12) B(h) = {qo7o ulh < to,s0 > Qo).

Hence we can express the integral (5.11) as
/ g - B(h) dvpzg.
P20

Remark 6. The section sg is free of U(1)-multiple and tq is of free from a constant € C*.

6. BARGMANN TYPE TRANSFORMATION

For expressing the Bargmann type transformation explicitly and to determine its Lo continuity, we need to
know the function < sg,ty >"= go, and relations of Qg A Qg and {qo 7o' }*(dvp2g) A Qo with the Liouville
volume form dVrp-(p2g) explicitly. In this section we determine them.

6.1. Holomorphic trivialization and unitary trivialization. The relation of the sections sy and tg is
given by a function gy =< sg, to >, that is

(6.1) to = go - So-
The function gg satisfies an equation
Vx(to) = 2mvV—1 < V=20 ||A]|"/2, X > go - so
= Vx(g()S()) = X(go)So + 2w/ —1go- < 9P2®,X > S,

and we have an equation for the function gg:

(6.2) 2mv/—1- (T@* (ﬁ\/iaHAHl/?) - 0P2@) go = dgo.

Put g = e2™V=IX then the equation (6.2) reduces to the equation

(6.3) X = 75" (ﬁﬁa \|A||1/2> _gPo,

To get a solution A we need to consider the real and imaginary parts in the formula
V2y/=10 || Al

separately. So, put
ot (VEVTO|[A|[2) = a4 vTb
with real and imaginary parts of the one-form 7* (v2v/=19 || A[|'/2) on J(3) x J(3). Then

d(d)) = d(ro" (VZV=10|A||'/2) - 67°0) = 0
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implies that there are real valued functions Ar. and Ay, such that
a—0F"0 = d\pe, and
dAjm = D.
The problem to solve the equation (6.3) reduces to find explicitly the functions Ag. and Azp,.
Let (X,Y) € T§ (P?0) C J(3) x J(3). Here again we remark that we are identifying the cotangent space

T%(P%0) and the tangent space Tx (P20) by the Riemannian metric defined by (Y7, Y2)§2© = tr (Y7 oY)
for Y; € Tx (P?0) = J(3), that is for Y; € Tx (P?0) C J(3), i = 1,2,

€1 us  6(us) m vy O(v2)
Yi=|0(us) e U1 , Ya=[0(vz) m2 v |, €, ER, uv; € OXRE,
Ug 9(’[1,1) €3 V2 9(1}1) 3
(64) (Yl, YQ)P @ =tr (Yl [©) Yg) = Z €;1; -+ 2 Z(Ui, ’Ui)]RS
Based on this expression, by the notation (Y, dX) for
&1 Zs3 ( ) €1 us 0(u2)
X = 9($3) 52 X1 € j(?)), Y = G(Ug) €2 U1 € j(g),
T2 0(1’1) 53 u2 9(’&1) €3

we mean the canonical one-form

(V,dX) =Y edé; +2> {ur}id{ar}i + {us}id{wa}i + {us}hid{ws}i

on T*(J(3)) 2 J(3) x (J(3))" = T (3) x (J(3)), or its restriction to T*(P?Q), that is, in the inner product
expression (6.4) we understand as n; and {vi}; (k=1,2,3,i =0,---,7) are replaced by the differentials d¢;
and d{z}; of the corresponding components in X € J(3), respectively.

Also for A € J(3)€ and an one form B on J(3)C we express the complex one form (A,dB) in the same
way.

Let (X,Y) € T(P?0) = T*(P?0) and put A = mo(X,Y) = 1@ (|[Y|]?X = V?) + v=T@ L then

Proposition 6.1. (see [Fu2])
1
SIVIE = llall® = [l 1A% = llal* + [[pl* = [IY]]", and (da,a) = [[Y|*(Y,dY) = (db,b).

In the expression
7*(dA, A) = (1*(dA),7*(A) = (a — vV/—1b,da + v/—1db) = d||A||?
= (a,da) + (b,db) + vV—1((a, db) — (b,da)), and

(a,db) — (b,da) = 2(db, a) (dY,X) - |[Y||(dY,Y oY)}

f ailhalk
and it is proved in [Fu2] (page 179) that
dY,Y oY) =0.

Hence
2 1 2
5 (V2V=10[|A[['/?) — 67C = \ﬁklm{\/*2 (dY, X) = 2[Y|P(Y,dY) — 67 ©

v—1 v—1
S (vay) =Y
V2llY | V2
since d(X,Y) = (dX,Y) + (Y,dX) = dtr(X oY) = 0 for (X,Y) € T*(P?0). Hence finally we may choose
the solutions Ag. and Ap,, with

= —(dY. X) — (V.dX) + et

1
Are =0 and Ap,, = —||Y||.
R I \/5” ||
Hence

Proposition 6.2.

—V2r

o _ 1/2
go=e HY”, or it is expressed on Xg as gg = e vV |JA[YE
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Now we have
B : Cg(X@) — COO(P2(D)),
(6.5) B(h) = {qo (10) e (h- < to,50 >* Qo) = {qo (r0) " Ju(h-e VI ),

Remark 7. The solution Are can be an arbitrary real constant. However the absolute value |go| does not
depend on the chosen constant Age.

6.2. Fock-like space. We show

Proposition 6.3. The nowhere vanishing global holomorphic section Qg of the canonical line bundle K9 is
Fy-invariant.

Proof. Let a € F;. The action of @ on Xg is naturally defined from the action on P?Q and the action is
holomorphic. We denote it with the same notation « : Xg — Xg.
We can put o*(Qg) = K, - Qo with a nowhere vanishing holomorphic function K, = K, (A).
Then
a*(Q@) /\a*(Q@) = Oz*(Q@/\Q@) = |Ka|2 . Q@/\Q@.
We can express

) %6!{7_@71}* ((wP2(O))16>

1
by the Liouville volume form 1—6|(wp 2@)16 and a function D = D(A) on Xgp. Hence
1

* eyl * — * 2
o (90 \ ) = o’ (D) - 5 {ro™'} (@70)10),
since the action by a on Xg is symplectic. Hence
a*(D) = |K,|* - D.

By comparing the behaviours of {2g and the Liouville volume form dVp2g under the dilation action by positive
numbers:

Qo \Qo =D

TtZX@%X@, A—>t'A,

we can see on the coordinate neighborhood O,

77 (2 \ Qo) = @d(m) A Nd(tE) N\ %

1 1 _
=t2 —duy A Nd —dzZi A Ad
P & N\ = 3

d(tzr) A - ANd(t&)

1

= 22 . . —
=t D4 16!

(ro~ 1} <(wp2@)16) — D(t- A) 'tsl%!{T@*l}* ((wP2@)16>.

Hence
D(t-A) =t D(A).
Note that the action T} on Tg (P?Q) defined via the map g is
(6.6) 10 ' oTiomp : Ty (P?0) 3 (X,Y) — (X, V1Y) € T; (P?0).
Then since ||a(A)|| = ||A]|

@ (D)) = D (a(a) = b (Jlaa) 24 )
=111 (g ) = A ol ().
hence
a(Ad) 1\ 2 A
(67) P (jaam) = P ()

This equality implies that the function K, is bounded on Xg. Especially, if we consider it on the coordinate
open subset O, 2 C* x C' (z; # 0), then it can be extended to a holomorphic function on C x C'* > O,
and is bounded there. Hence the function K, is a constant function on the whole space Xp.
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Then by the property
Ka.g = Ka . Kg,a,ﬁ S F47
F, 5 a — K, is a one-dimensional representation of the compact simply connected group Fj, so that
we have not only |K,| = 1 for any a € Fy, but also it must hold always K, = 1. This implies Qg is
Fy-invariant. O

Corollary 6.4. Since the action of Fy on S(Xo) ={A € X | ||A|| =1} is transitive, the function is of the
form D(A) = Cy x ||A||** with the constant C; = 226. Especially we have

(68) (Q(O) A\ Q@) (X Y) _ 226HY||28 = <wp2©) 16

Proof. Tt is enough to determine the constant C7.
Following the expression (4.6) of the matrix A € J(3)¢ we denote

& d+c'es O +b'eq)
A= 10+ "eq) & a +a'ey | €TB3)°C
b +b'es 6(a+a"ey) &3
by
(6175276372172272372%w17w27w37w4»ylayZuy37y4ax17x27m3ax4au17u27u37u4)7
where
_ Z2 w; w2
PH ( )+pH - < Z4> + <U}3 ’LU4> €y,
b + b” _ (Y Y2 + U1 V2 e,
( )+ pa( Ys Y4 U3 V4 :

puta’) + ( ) (e

The correspondence between ¢ = ¢’ + c’ey = > {c};e; (and also b = b +b"eys = > {b};e;,a=d +a’es =
>~ {a}ie;), and the components {z;,w;} is given in (2.2) and (2.3).
By a simple calculation we have

HA||2 _ Z ‘€Z|2 + 22 |a/‘2 + |a//|2 + |b/|2 + |b//|2 + |CI|2 + |CH|2
3 4
= Z &> + Z 2i? + Jwil® + |yl + il + i) + ] .
i=1 i=1
Then we rewrite for A € O,

A (§1a£2a§37 R1,%2,%3, %4, W1, W2, W3, W4, Y1, Y2, Y3, Y4, L1,T2, T3, T4, ulau27u37u4))

as

(73, T4, U2, Us, Y2, Ya, V1, V3, 21, 22, 23, W1, W2, W3, Wa, &2 5 T1, T2, U, U3, Y1, Y3, V2, V4, 24, E1,€3)

:(517 ...... ,S16 ; S17," " 7827),
that is, the first 16 coordinates give local coordinates on O,, and the remaining coordinates (si7,- - , S27)
are rational functions of the coordinates (s1,-- -, s16), that is s; = s;(s1,--- , 16), 7 > 17 (especially sg = 21

and the explicit form of each s; for j > 16 is given in (4.16)).

In particular, we see from the explicit form of these functions at the point A = A(z1) = A(0,--- ,z1,-++,0,50,---

Sj(A(Zl)) :Sj(())"' a07zl70a"' 70) :Sj(ov"' a0a59707"' 70) :Oa 17S.] §277
and for i < 16, j > 17

2 (A1) =0,

On O, it holds

Q@/\Q@ —5 das Adwg A /\dw4/\d§2/\dm*3/\d:74/\--~/\dw74/\d§72
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1 _ 2
= ‘ |10d81 A - /\dSlﬁ/\dﬁ/\"'/\dSl6 ZD( ) 16'{T 1} (((.UP ®)16).

We calculate the right hand side at the point A(z1) = (0,---,0,21,0,...;0,---,0) € O,, using the expression
of wP*® (see Theorem 3.2):

© = {ro}*(V=200]4]"/2).
Then

27 —3/4
55”/1”1/2:%'5 (Z&‘F) -Zsﬁd&'
3 (& —7/4 97 o7 —3/4 o
() > A3 i+ Hwe)
=1 i=1

i=1

Here we evaluate it at the point A(z1), then it is given by

16

|S9| /2 so|? dsgAdsg + — |39|—3/2 > dsinds;
=1

Lomsy2 L3 .

= E'SE" dsgNdsg + Z|59| Z dsiNdsy.
1<i<8 and 10<i<16
Hence
_ 16 1 1
(wP2@)16 = (V—Q 88”14”1/2) = 16! - TG . E( /_2)16 . Wdi/\dsl/\ ...... A ds1g/N\dSs16
9
1
=16! ————dsgy Adsy AN------ A dsig N dsig

226 . | g9[24

at the point A(z1) = A(0,---,0,89,0,---,0;0,---,0) (sg = 21). Consequently we have

O — 0O~ _ 59 a1 —24 —
Q®/\Q©|A(Z1)_Q®/\Q@|A(z1)_D<|S > ‘ 9| .ﬁ|89| dsg N Ndsy N-eee-- /\d816/\d516

and the constant C7 is
_ 626 _ 926 14 O _ 926 14 -1 16
€y = 2%, D(A) = 2|4, 05 AT = 29I o o (1070,
O

Let C[J(3)C = > Pr[J(3)C] be the algebra of polynomials (and of polynomial functions) on J(3)¢
with the 27 complex variables (1, &2, &3, 2i, wi, Yi, Vi, i, u;) (1 = 1,---,4 and Py is a subspace of degree k
homogeneous polynomials) and denote their restrictions to Xg by C[Xg] = > Pr[Xo].

Recall the correspondence

7:C[Xp] = > PulXo] 3 pr— 7(p) =p- to ® Qo € Tg(L ® K Xo).
We define a parameter family of inner products {(*, *). }cer on the space I'g(L ® K9, Xg) by the following
way that
Ig(L® K9, Xg) x 'g(L® K9, Xg) 3 (h-to® Qo, g-to® Q)

— h g < to,to >" [|AIF - Q0 \ Qo

(6.9) = 2% / hege e 2VRRIAIYE A 01 (dVieg) = () g)e,

then through the map 7 we also consider a parameter family of inner products on the space C[Xg].

Remark 8. According to the value of €, the integral (6.9) for functions f,g € Pr[Xo] need not be fi-
nite. In fact, for k > —11 — €/2 the integral (6.9) converges. We denote by F. the completion of the
space Y ;< “11-e/2 Pr[Xo] with respect to the integral (6.9) and the the remaining finite dimensional space
> k<—11-e/2 P[Xo] with a suitable inner product.
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7. PAIRING WITH THE RIEMANN VOLUME FORM
Let dvp2g be the Riemann volume form on P20Q. The purpose in this section is to show

Proposition 7.1.
{ao o™} (dvpao)(A) A Qo (4)

10 = Cael) tro7y (7)) ) =21 ey (15 (o70) ) ()
(7.2) A =19(X,Y) € 10(T§ (P?0)) = Xo.

The homogeneity order is determined by comparing their orders in the both sides (see the relation (6.6)).

7.1. A local coordinates. For the determination of the constant Crc(A/||A||) we choose a local coordinates

1 0 O
around the point X; = [0 0 0] € P20.
0 0 O
tl C 9(())
The condition X? = X = | 0(b) 1o a for X € P20 C J(3) is expressed as
b H(a) t3
(t3 +t2)a 4 0(bc) = a, (t1 +t3)b + 0(ca) = b, (t2 + t1)c + 0(ab) = c,
(7.3) t12 4+ cl(c) + 0(b)b = t1,t22 + 0(c)c + ab(a) = ta, t32 + 0(a)a + bO(b) = t3 and

tI‘X = tl +t2+t3 = ].
where a,b,c € O, t; € R. Using the last equation in (7.3), first 6 conditions are rewritten in the forms of

tia = 6(be), tab=06(ca), tzc=0(ab),
(t1 —1/2)2 4+ cO(c) + 0(b)b = (t1 — 1/2)% + |c|® + |b]? = 1/4,

(7.4) (ts — 1/2)2 4+ 0(c)e + ab(a) = (ts — 1/2)2 + [cf? + |af? = 1/4,
(t3 — 1/2)2 +0(z)x + bO(b) = (t3 — 1/2)% + |a]® + |b|> = 1/4.
Let
(7.5) Wi={(b.0) € 0| | + P < é}

Then we can solve the equations (7.4) in the following order:
First, we solve the fourth equation in (7.4) with respect to ¢; under the condition |c[? 4 [b]? < & with the

solution
1 1 1
== ——1b2 = |2 > =.
L=y Bl > 5

Then the component a is given by (b, ¢) by the first equation in (7.4) as
0(be)
th

This solution a satisfies the inequality:

|bc] [ +]el* _ 1
=— <2 — < =
ol =3 2 8
With these we can solve the variable t5 in the fifth equation in (7.4) with the solution
1 1
t2=5 =47~ I ~lal

where [c|? + [a]? < § + g5 < § implies that ¢ < 3.
Now, with these solutions expressed in terms of the variables (b,c) € W; we define a map
tl C H(b)
(7.6) MWy 3 (be)— X = |[0(c) 1o a € P?0.
b G(a) ]. — tl — t2

Then the matrix M(b, c) satisfies the condition (7.4), so that we can choose components (b, ¢) as a local

coordinates around the point X;. We denote by Wy = M(W;). The point X; corresponds to (0,0) € W;.
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Lemma 7.2. In terms of the local coordinates

7 7
(b,c) = (Z {b}iei, ) {C}iei>
i=0 i=0
introduced above around the point X1, the Riemann volume form dvpzq at the point X1 is
(77) d’Up2@(O, 0) = d{b}o VANRERWAN d{b}7 A\ d{C}O VANRERWAN d{6}7.
Proof. We can see this by

oo (5i05) = (a2 50 () + 2 5 (ser ). = (st )

where we know

9t1(0,0) —{b}o 0t(0,0)  —2b0 — 23 7_o{a}i Gt

— =0, = =0, etc.,
9{b}o V1/4 —1b]2 = |c|? |6=0,e=0 o{b}o 24/1/4 — |b|? — |a|? |6=0,e=0

since a(0,0) = > {a};e; = 0. Other derivatives are also

ati _ ati -0 8{a}j{a}k -0 a{a}j{a}k —0.
o{by; (0,0 e}y (0.0 b} |(0.0) {c} (0,0

Moo (a{i}) - (a{i})xl’ Moo <a{a}) - <a{i}i)xg

Then the metric tensor g;; with respect to the coordinates (b, ¢) at the point (b,c) = (0,0) is g;; = d;;. O

Hence

7.2. Explicit determination of the pairing with the Riemann volume form. Let

&1 z  0(y)
A=10(z) & x | € Xgp,where & € C, z,y,x € CRg O.
y 0z &
Put 70~ 1(A4) = (X(A),Y(A)), then
A+A AoA
(4) = + (see (3.10))
2[lAll (1A
Gtb | €1 +12 > +1y|? 2tz —€aF—Eat0@ytay)  OuHT) | —0(6F+Eay)+eT4Ee
2[[A[[ [|A[[? 2M1AN = 2[[A[[2 2[[AJl _2[JA[P?
0(2+%2) + —0(&3Zz+E€32)+TY+ay La+&2 + [&2)2+ 2% +|z|? +T + =617 124+0(Yz+yZ)
2[[ A _2[A]l? 2[[ A [NA[[? 211AnN = 2ATE
y+y + —&2y—Coy+0(zT+2x) 0(z+x) + —0(&1T+612)+yz+yz £3+E€s + [&3]° + =] * +]y]
2[[A[] 2] A 2[1AJl 2[[A[? 2[[AJ] A

From the above expression of 79~ 1(A) = (X(A),Y(A)) we consider two components of the matrix X (4) €
P20 for A€ U,,:

2+Z  —&Z— &3z + 0(Ty + 27)

c= + . b= y+7 | —(&y+&y) +0(2T + Zx)

2|4 2[| A2 2|4 2[|A[?
1 \/—160 0
Take a point A; = | V—1eg -1 0| € O.,, then qo 79 (4;) = X;. On the other hand the point
0 0 0

A; € Xg corresponds to the matrices

A1<—>(§l7€27£3aZaWKMX7U): (17_1a05 <\/(? \/071)7(8 8)a<8 8)7(8 8)a<8 8)7(8 8

(see the matrix representation (4.3) of the octanions and and vector representation (4.6) of elements in
JT(3)°).

So we consider points A € U, around a point

)

PZl (A) = (§2a 21, 22, 23, W1, W2, W3, W4, Y2,Y4,V1, V3, T3, T4, U2, U4)
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=(-1,v-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0).
By the explicit expression (4.16) of the other dependent variables (1, &3, 24, Y1, Y3, U2, U4, T1, T2, U1, u2) in the
matrix representation (£1,&2,&3, Z, W)Y, V, X, U) of A; is (0,0,0,0,0,0,0,0,v/—1,1,0).
For avoiding the confusion of the expression of octanion and its matrix expression by the mp po, recall

the correspondence (2.2) and (2.3)).
Now we determine the differentials modulo anti—holomorphic differentials

{qoy'} Z{qOT@ “(d{c}) ®e; = Z d({aor5'}*({c}:)) ®e;, and

7
{ao5"} Z{qw@ “(dfp}) @ei =Y d({qory '} ({bh) @ei,
i=0
at the point A;.
Each component of b and c is given by
bt {zh | &z - &{z}i + {0(Ty +27)}s
L 2]/ 4]P o
Ayt +{u) |, & — S{uli + {0 + 22) )
Oh= oA 20| AT |

The pull-back {q o 70~ }*(dvp2g) is expressed as

16 16—1
{aom0 '} (dvpg) = Y %i, with %, er(/\ T (Xo) ®/\T* (Xo) )

i=0
In particular,
L, AQ=0fori>1, and ij = Y16—j-
Hence for the determination of the constant Cre(Y/||Y]]), it is enough to consider the terms consisting of
holomorphic differentials

d£27 le, dZQ? ng, dwl» dw27 dea dU}4, dy27 dy47 dvlv dea dx?)v de4, du?v d’LL4

and may ignore the anti-holomorphic differentials dzs, dz4, etc, so that in the expression of equalities below
we denote them as * = *, which means both sides coincide modulo anti-holomorphic differentials.

Here we gather up relations of the holomorphic differentials of dependent variables by independent variables
at the point A;. See (4.16) for the explicit expression of each variable £;,&s,- -+ -+ ,T1, T2, U7, Uz in terms of
independent variables &s, 21, -+ , X3, T4, U, Ug.

All the equalities in the Lemmas blow hold at the point A;.

Lemma 7.3.
|Av]| = 2, dl|All}s, = {Z1dz1 + Zadzs + E1déy + Eadba}a, = —2dEs,
24(Ar) = V=1, dzaja, = —dz — 2/ —1dEp, €3(A1) = 0,ds)a, =0, déyj4, = —d,
dxy g, = V—=1dys, dyrja, = —V—1dzs, dys| s, = V—1das, drya, = —v/—1dys,
dvaja, = V—1dus, dvga, = V—1duy, duyja, = —v/—1duvy, dug|a, = —v/—1dwvs.

Lemma 7.4.

_ dizh {zhi 4+ {E)

d = -d
thia = ga g ~ A
and for each i =0, ---,7
—V —1d§2 d§2 — vV —1d21 d ng dZQ + ng
d{cloja, = 92 d{chija, = 92 -, d{ctay, = CER , dictspy, = T5/T
dwi + dwy dwi — dwy dwy — dws dwy + dws
d{c}4\A1 =3 d{c}5\A1 = 237\/:, d{C}G\Al =3 GZ{C}7|A1 = 237\/51
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dys —/—1dz d{y} d{z};
d{blo4, = 25— 52 2, d{bli,, = {23} +\/:17{23},

where we can ignore the term {zT}, since {x}i| 4, = 0 and d{Zz}i,, = > {Zlad{z}s = {Zlod{a}tijs, =

—v/=1d{z}; and fori=1,--- 7, cncsee;
Wby, = m_z—@7 Aibhaja, = dyg_gﬂ d{b}a)a, = dxg_g—@,
Holaja, = dv1+2—\qu4’ d{b}s|4, = _du4+2—\2—ﬁdv1’

Holoya, = w’ d{b}7|a, = duz_g—\zﬁdvg.

Based on these data

Proposition 7.5. At the point Ay, the holomorphic component of the pull-back {qo 70~ }*(dvp2g) is equal

to
{q o T@_l}*(d’l}pz@)|Al = {q o T@_l}*(d{c}o A A d{C}7 A\ d{b}o VANRERWAN d{b}7)‘A1
_ —V—ldgg A dfg — v —1dz dzg — dz3 dzo + dzs A dwy + dwy A dwy — dwy
o 22 22 23 23/—1 23 23/—1
dwy — dws  dws +dws  dys —/—1ldry drg—+/—1dy,
AN A - A A
23 23y/~=1 22 22
dys —v/—1ldxs drs —+/—1dys dvi + v/ —1duy duy + /—1dvy
A A A N —
22 22 22 22
—d’Ug + —1dU2 d'LLQ — \/jdvg
A N
22 22
1
= T ~dxs ANdxg A\ dug N dug Adys A dyg Advp Advg Adzy Adzo Adzg
A dw1 A dw2 A d’UJg A dU)4 AN dfg
Hence

Corollary 7.6.

16!

75) =2 AP g ((070)")

{QOT@*l}*(dyng)/\ﬁ(A) = ORCL{T@)%}* ((WP2@> 16> ”

By this formula (7.8) we have an expression of the Bargmann type transformation (5.12).

Corollary 7.7.
B(R)(X) - dvpo(X) = {ao o'} (h- g0 {ao o~} (dvpao) A Do)

—(aoro ). (hego- 2 JAIP - (o) (5°)))

(7.9) = 2% q, (h(ro(X, %) - ™I 4] B+ @V (pagy (X, ) )

8. INVARIANT POLYNOMIALS AND HARMONIC POLYNOMIALS ON THE JORDAN ALGEBRA J(3)

In this section we describe invariant polynomials on J(3) and commuting differential operators with
constant coefficients under the action by the automorphism group Fj of the Jordan algebra J(3) (see [He]
and [HL] for the framework here and [Yo] for necessary properties of Fy in relation with P20).
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8.1. Correspondence between polynomials and differential operators with constant coefficients.
Let

RY x RN 3 (2,6) = (1, ., 2N, €1 .., EN) < @, £ >= Z z:& € R,
be the standard non-degenerate symmetric bi-linear form. We also use the same notation for its extension to
the complex bi-linear form defined on CV x CV.
Differential operators D, with constant (complex) coefficients are expressed in the form

ole N
D=D,= ) aa%:ZaaDw

loa| <k

3|a| gort-tan

where a,, € C and D' := o Ox1%1 - - Oz yoN

Let D =Y a, D2 be a constant coefficient partial differential operator defined on RY, then by the relation
(8.1) e_<x’£>Dw(e<.7£>)($) = Z aq &% = QD<£)a
where €% = &% ... &Y, the correspondence D +— QP (€) is bijective, that is, the algebra C[RY] =

oo
Clxy,...,on] = Y. Pilz1,-..,zn] of (complex coefficient) polynomials on RY and the algebra D[z1, ..., zN] =
k=0
o0
Dilz1,...,zN] of linear differential operators with constant (complex) coefficients are isomorphic. Here
k=0
we denote by Py[z1, .. ., zn] the subspace of homogeneous polynomials of degree k and by Dy, = Dglz1,. ..,z N]

the subspace consisting of homogeneous differential operators with constant coefficients of order k.

We will denote the differential operator corresponding to a polynomial Q € Clz1, ..., zy] by D9.

Let g € GL(N,R) and define P, : C[z1,...,2nx] — C[z1,..., 2] an algebra isomorphism in the natural
way:

Q=Q) =) aa " — Py(Q)(2) = Qg (2)) =) aa- (g7 (z))*, where

9*1 — ( {9’1}1‘@)7 and (g*l(x))a _ <Z {971}1,1' xz> (Z {g—l}Nyi :Ez>

The following relation will be seen easily.

an

Lemma 8.1. Let g € GL(N,R) and D a linear differential operator with constant coefficients. Then,
PyoD = DoP, on the space of the whole polynomial functions, if and only if QP (&) = QP (tgfl(f)).

Next, we introduce an Hermitian inner product < -, - > on the space of polynomials C[zy,...,zy] by
the following way:

we fix the coordinates (z1,---,7x) € RY and define the inner product between monomials z® and z° by
(8.2) < z%, 2% >=o! -an!- Oay 81 Oan,Br =00 3.

The inner product on the space Clx1,...,zN]| introduced above is used only in this section.

Then the following properties will be seen easily too.

Lemma 8.2. Let D = > a,Df be a differential operator with constant coefficients and P the polynomial
corresponding to D according to the correspondence (8.1), that is

e D) (2) = P(E) = ) aaE”
Then for any polynomial Q =Y Cpa’
(8.3) < P Q >=< Zaaxa,ZCﬂxB >>:Za!-5aﬁ-aa~075
[e3

(8.4) =D"(Q)(0) =: (D", Q) = (D?, P),
where we replace the variables &; to x;. In particular, if the order of the differential operator D and the degree
of a polynomial QQ coincides, then o o
D(Q)(z) = D(Q)(0),
and the spaces Py, and Py are always orthogonal, if k # .
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It holds a kind of associativity:
(8.5) (D1 0 Da, Q) = D10 D2(Q)(0) =< Py - P, Q >=< P1,D5(Q) >= (D1, D2(Q))).

The equation (8.3) can be understood that the Hermitian inner product we introduced is a pairing between
the space Dlx1,...,zn] of differential operators with constant coefficients and the space of polynomials,
especially by this pairing the space D(RY) is identified with the (restricted) dual space D[ry,...,rn] =
o0
> Prlzi, ..., zn]" of Clzy,...,zy]. With respect to the action of g € GL(N,R) on Clxy,...,zx] the dual
k=0
action of g on D(RY) is

DRYN)> D+ Py ' oDoPy = P;(D)
and satisfies the relation

(8.6) (Pg(D), f) = (D, Py(f)), D €Dlay,...,an], f€Clay,...,azn].

8.2. Trace function and invariant polynomials. We recall two important properties Theorems 8.3 and
8.4 on the action of the group Fy on J(3). Also the properties (3.5), (3.6) should be reminded in this section
(see [SV] and [Yo]).

Theorem 8.3. For any A € J(3), there exists an element o € Fy such that

& 000
(8.7) aA)=[0 & o],
0 0 &

where the triple of quantities {&;} depends only on A and does not depend on such an element o € Fy which
send A to a diagonal matriz in J(3).

Theorem 8.4. The representation of Fy to J(3) is decomposed into two mutually orthogonal irreducible
subspaces, that is
JB)=TB)@R-Id,
where Jo(3) ={ A€ T3)| tr(A) =0 } and Id is the 3 x 3 identity matriz which is the fized point in J(3)
under the action of Fy.
It holds the same decomposition in the complezified Jordan algebra J(3)C by the action of the complex
group F,C.

In this section we express

& = 0(y)
\7(3)9A: H(Z) 52 €T <_>(ZO7"' s 27,90, Y7, L0, ;$77§15527§3)
y 0z) &

with the coefficients of

z= Z {z}.€; = Z Zi€i, Yy = Z {y}ie; = Z yiei, T = Z {z};e; = Z x;e;

and do not use the notation {z};, {y}i, {x}: (see (4.6)). We also denote these coordinates as

(88) (ZOa"' s 27,Y0, 0 Y7, L0, ax7a§1a§2a€3) = (515 """ 7824782573267527)
or
(89) (207"' y 27, Y0, Y7, Loyttt ax7vfla£2a£3):(sla """ 7824751752753)'

We denote the (complex valued) polynomial algebra over J(3) by C[J(3)] with the independent variables
{ziy...,2i,&1,&, &} and also regard it as the the algebra of polynomial functions. It is equipped with an
Hermitian inner product explained in the preceding subsection § 8.1.

Then, we can identify by the isometric way the space P1[7(3)] = (J(3)C)* with the space J(3)® through
the correspondence
(8.10) TB)E3 A haePTB), ha(X)=tr(XoAd) =< X, A>T

The action of the group Fy is extended to the space C[J(3)] as denoted in §8.1 :

CT(3)] 2 Q — (Py(Q)(X) = Qg™ (X))
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and the extended action leaves the degree of the polynomials and the inner product.

Definition 8.5. We denote a subspace in each Pi[J(3)] by Iy consisting of invariant polynomials under the
extended action of the group Fy and put I = Ip, = Y ;<o Ik, the algebra of invariant polynomials under the
action of the Lie group Fy on J(3).

By the property (3.4), the functions J(3) > A — tr(A*) := Ty(A) is well-defined and are invariant
polynomials (off course, these are also well defined on J(3)C). Then,

Proposition 8.6. All the invariant polynomials in Pr[T(3)] are given by the linear sums of polynomials of
the products

Tlil A T2i2 A T3i3
under the condition that i1 + 2is + 3iz = k (0 < 41,149,153 < k) and

dim¢ Iy, = {number of the solutions (i1,12,i3) under the condition iy + 2is + 3iz = k}
[k/3]

S )

Proof. Let f € Ij be an invariant polynomial. Then by the property (8.7) in Theorem 8.3 and the invariance

& 0 0
of the trace function (3.5), f(4) = f(a(4)) = f 0 & 0 depend only on the triple {¢;}?_; which
0 0 &

appears when it is expressed as a diagonal matrix given in the above Theorem 8.3.
Let o1 : J(3) = J(3) be a permutation defined by

0 1 0 0 1 0
(8.12) o1:JB)2A— |1 0 0fAl1 0 0o]eg@).
0 0 1 0 0 1

Likewise we can define other two permutations oy and o3 among the quantities {&} by the matrices
0 0 1 1 0 O
0 1 O0)and [0 O 1], respectively. These are elements in Fy and satisfy f(o;(A)) = f(A).
1 0 0 0 1 0

Hence the invariant polynomial ring I = Ip, = Y I in C[J(3)] is generated by three elementary
k>0
symmetric polynomials

S +8&+8&, &1l +86&85G+E86 and  §16283.
This is equivalent to say that the subalgebra of invariant polynomials of positive degree I, := 3" k>1 Lk (i.e.,
without constant terms) is generated by three invariant polynomials

3 7 3
NA) =t(A)=3 ¢ DA =t =23 (2+u’+e)+ 3 &2 =[]
=1 1=0 =1

Ty(A) = tr (Ao (Ao A) =< A, Ao A >TO)=< Ao A, A>TO)

3
_Z 3 (12 (€1 + &) + [yl (& + &) + 2P (& + &)
+Zm~y+9(zx'y)+xy~z+9(xy~z)+yz~x+9(yz~x)
2
+x~yz—|—9(x-yz)+y~zm+9(y~zx)+z~xy+9(z-xy)
2
3
= Z P43 (122G + &)+ WP (& + &) + o2 (& + &) + 6 - Re(z - yz),

i=1
(Re(x - yz) = {x - yz}o is the real part of the octanion x - yz).

The last formula (8.11) is given by solving the equation i; + 2 - ig + 3 - i3 = k (see Appendix). O
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In the proof above we used a property of the multiplication low in the octanion O:
Re(z - yz) = Re(y - zx) = Re(z - zy), Re(zx -y) = Re(0(y) - 0(2x)) = Re(y - zz) and similar identities.
Next, we mention (see Lemma 8.1 and Theorem 8.3 )

Proposition 8.7. The invariant polynomial ring I = > I, and differential operators with constant coeffi-

cients commuting with the Fy action are isomorphic. Especially, the differential operators corresponding to
the generators Ty, To and T3 of the invariant polynomial ring are
0 0 0

T1 = €_<w’5>L(6<.’£>)(I) +— L= L(Zayvxaflvg%gfi) = 6751 + 8752 + 8753,

7 3
0? 0? 0? 0?
T2<—>—A::2E (8212++3y¢2+31‘i2)+ E —3

B B 9 93
— = + -
+3 (852 + 863) ° Z axiQ +6 ZO 8:518%82;@

=0 i,5,k=

The second operator is the Laplacian on the Euclidean space R*" =2 7 (3).
3

The last term of the operator T' consists of 8 partial differential operators of the form ————— with
8mi8yj8,zk
suitable signs.

We define an Fy-invariant subspace Hj in Pi[J(3)] inductively and call polynomials therein “Cayley
harmonic polynomial”.

Definition 8.8.
(0) Hy is the space of the constant functions = Py,
7 3
(1) Hy = {the linear functions: >_ (a;z; + biy; + ciz;) + > di&; with Y d; = 0},

1=0 =1
this space is isomorphic to {B € J(3)C | tr(B)=0 },
and we have an orthogonal decomposition P1 = Hy &, Holy,

(k) Hy, is the orthogonal complement of the space (Zi:ol H; - Ik_i> taken in Py,

N
(8.13) PelT(3)] = He ®1 Y Hii- I

i=1

The subspace Hj can be seen as the space corresponding to the space of harmonic polynomials for the
case of SO(n) acting on R™. In fact

Proposition 8.9. Let §; be
D ={Q e Pr[TB)] | L(Q) = 0,A(Q) = 0,I'(Q) = 0}.
Then 95, = Hy,.
Before proving this Proposition we show a
Lemma 8.10. For each k the space
(8.14) I+ Hy Iy1+-+Hygy - =l +Pr- I+ +Pr1 - I

The right hand side need not be a direct sum, while the left hand side is a direct sum which will be proved
later after several preparations.
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Proof. 1t is apparent

k—1
Z H; - I,_; C ZPZ o P
=0

Since I D I - I,
H1'11+12 D) (Hl'Il +Il'11)+[2:P1'Il+IQ.
HEI’ICE, H1 . Il + .[2 = Pl . Il +.[2
Assume

Jj—1 Jj—1
ZH'L'Ij—i = Zpi'lj—iy fOI’]Sk
=0 =0

Then using the property I; D I, - I, for a + b = j, we can show inductively

Jj—1 J—1
ZHi.Ij_i D ZP@'IJ'_Z', for j < k.
i=0 =0

O
Proof of the Proposition 8.9.
At this stage, it will be apparent that the conditions
[Q) =0, A@ =0, and L(Q) =0
are together equivalent to the condition that a polynomial @ € Py, is orthogonal to the subspace
In+Hy Iy +- -+ Hpq - 1y
O

Lemma 8.11.
L(Th) =3, L(Tz)=2T, L(T3) =31,
A(Ty) = 198, A(T3) = 19877, I(T3) = 562.
Remark 9. Invariant polynomials above need not be orthogonal. For example
< T, Tv? >= L*(1)(0) = L(L(T))(0) = 2L(T})(0) = 6.
Next we show that the sum (8.14) is a direct sum as mentioned in the above Lemma 8.10(summed up in

Proposition 8.17).
By definition it is enough to show the sum

Hy 1 L+ -+ Hy - Ipq + I
is a direct sum. For this purpose we prepare several lemmas.
Lemma 8.12. The map L : I}, — I_1 is surjective for allk =1, 2, -+,

Proof. Let t : Ij;, — Ir41 be a map defined by

then t is injective. In fact, if there is an element T € I satisfying
Lot(T)=L(Th-T)=3T+1T,- L(T) =0,
then again we have
3L(T) +3L(T)+ T, - L*(T) = 0 and 3T — %Tf -L*(T) = 0.
By iterating this procedure we have
T =0.

Hence the map L ot is injective, which means that the map L : Iy11 — I is already surjective (in fact
isomorphic) on t(1). O

Based on the equality (8.14) and the Lemma below (8.14), we can construct an orthogonal basis of the

space Ij, inductively {pg (z)}f;"f v in the following way:
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Definition 8.13.
I =[{e(1) =11},
L =[{p2(1) =T =T -1 (1), 92(2) = To — 1/3T7}],
where v2(2) is taken to be orthogonal to p2(1) and equivalently L(p2(2)) =0,
Iy =[{ps(1) = T7 = Tipa(1), ¥3(2) = Thp2(2), p3(3) = T3 — ToTy + 2/9T7}],
where @3(3) is taken to be orthogonal to p3(1) and 3(2), which is also taken
to satisfy L(p3(3)) =0 and is determined uniquely up to constant multiples.
Likewise we can continue the construction in such a way that if {pg(i)}Y" ™ is constructed as above for
k=1,23,4, then we define fork > 5
or+1() = T1pg(i) fori=1---,dim Iy and for j =1, -+ ,dim I — dim I,
Yr+1(dim Iy, + j) is chosen as being orthogonal to all Ygy1(i), i =1,---, dim I +j — 1.
The orthogonality condition < 41 (dim Iy, + 7), Tk (i) >= 0 implies that L(pg41(dim Iy, + 7)) = 0.

Lemma 8.14. The construction is guaranteed by the property that if f and g € I, is orthogonal and L(g) = 0,
then Ty - f and T - g is orthogonal, since

< Tif, Thg>=< f,L(Tig) >=3< f,g>=0.
Lemma 8.15. Put Ny, = {T € I}, | L(T) = 0}, then
dim Njy1 = dim I 1 — dim I,
and is equal to the number of the non-negative integer solutions (a,b) of the equation
(8.15) 2a+3b=Fk+1.

Proof. Put ¢2(2) = Ty — 1/3T% 1= ¢ and p3(3) = T3 — ToTy + 2/9T% := ¢3. Then both of these are
irreducible polynomials, since they are not decomposed into lower degree polynomials even on the subspace
z=y=2=0.

By L(y2 - ¢3) = 0, products of any powers of these two polynomials are in the kernel of the map L. So
corresponding to the non-negative integer solutions (a,b) of (8.15) we have a basis of the kernel Ny 1. O

Lemma 8.16. For any j and ¢
dim H; - I; = dim H; - dim I,.

Proof. Tt will be apparent if dim I, = 1.
We prove the property by induction and we show that the natural map H; Ny — H; - Ny is isomorphic.
So we assume for ¢ < k and any j > 0 it holds the isomorphism

(8.16) H, © N, = H, - Nj.
Let
(817) Z ha,b : 902(1 : 410317 =0, ha,b € Hj'

(a,b) run through the solutions of (8.15)
Let (a1,b1), (az,b2),- -, (an,by) be all the solutions of (8.15):

Assume a; > ag > -+ > ay, then by < by < -+ < b,. Then the we can assume the expression (8.17) has one
of the following two forms:

(8.18) [1]: if ap > 0,02 - p+ @3 - ha b,
(8.19) 2]+ if ap, =0,02"" "1 p+3° - g, p, = 0.

In any case the polynomial ¢y does not divide the polynomial ¢3, so that we may put hq, 1, = @2 - @ with
a polynomial € Pj_,. Then by the equality (8.14) the polynomial Q - @2 € Hj_1 -Ih + Hj_o - In +--- +
Hy - I;_1 +I;. On the other hand @ - 2 = hq, s, € H;. Hence by the definition of the space H; which is

=0, or
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orthogonal complement of the space H;_y - Iy + Hj_o - Is +--- + Hy - I;_1 + I;, hence hg,, 5, = 0 and also
p = 0. By iterating the arguments we see that in the expression

a; bi
E hai,bi : <P2 : <P3
(as,b;) run through the solutions of (8.15)

all the coefficient polynomials h,, », must be zero.
Finally we see from the sequences

{O} E— Hj@Nk+1 — Hj®1k+1 ﬂ) Hj®Ik — {O}

l l !

inclusion
{O} e Hj'Nk+1 Hj'lk+l E— Hj'[k E— {0}

two spaces
H; @Iy = Hj- Iy
are isomorphic. O

Proposition 8.17. For each k, the sum Hy + Hy_1 -1y 4+ --- Hy - I,_1 + Iy is a direct sum.

Proof. First we remark that the sums P; = Hy + I; and P, = Hs + H; - I; + 1> are orthogonal sums. The
first one is included in the definition and the second one is shown as

< Ty, To >=< hy, L(Te) >»=< hy, 271 >=< L(hy),2Ty >=0, where hy € H;.

Then we assume that the sum
are direct sums for j < k.

We express
TeHy, Lh+Hx1-Ic+---+Hy - I+ Ii1 as
2 dim Iy, dim T4
T=he Ti+ Y heo1(i)-o2(i) 4+ > ha(Dep@) + D> ho(i)prer (i) =0,
i=1 i=1 i=1

where hj(i) € Hj and ¢;(i) are the basis polynomials of I; constructed in the Definition 8.13. Then by the
induction hypothesis, L(T) = 0 implies
dim I,
hie =0, hie—1(1)p2 = 0, hie—a(1)pa(1) + hie—a(2)03(2) = 0,-++, > Nige(i) =0,
i=1

that is, the coefficient polynomials h;(#) of the basis included in the orthogonal complement of N are zero.
Hence it will be enough to show

dim Iy, dim Tj4q
(8.20) hi—1(2)p2 + hip—2(3)p3 + -+ + Z hy (i) () + Z Xigr41(i) =0
i=dim [, _1+1 i=dim I, +1

implies all the coefficient polynomials h;(i) = 0 and constants \; = 0. As in the proof of the Lemma 8.16,
the equation (8.20) can be rewritten as

(8.21) 2 P=—p3-Q

where the polynomial P = hi_1(2) 4+ --- is the sum of all the terms including some power (> 0) of g
and Q = g1 + gops + - -+ (especially g1 = hr_2(3) € Hi_2) is a polynomials of the polynomial ¢3 with the
coeflicient polynomials g; € H; with the degree of g; = k + 1 — 3i. Since @2 does not divide ¢3, () must be
divided by 9, that is we have

P21 =0Q=g1+gepz+---,
where Q1 € Pr_4. Hence by Lemma 8.10

Q=91+92p3+ € Hp_gli + Hy—alo + -+ + I,
which implies that g; = 0. Hence we can rewrite (8.21) as

sﬂz'P:—S032'Q2~



34 KURANDO BABA AND KENRO FURUTANI

By iterating the same arguments as above we see that Q = 0. Hence P = 0.
Then we can apply the same argument to the polynomial P by expressing P as

P:@2P1+R:0a

where P is the sum of terms in P of the form Ay - 0303’ a >0, b >0, hap € Hy_1-24—3, and R is a
polynomial of 3,
R = hj+ B3 + hol + - --

with coefficients h], € Hi_1_34.
Again by the same argument as above we see that P = 0, which proves our assertion. g

We put H := > ,-, Hk, and denote by I, (J(3)%) = Y I,(J(3)°) invariant polynomial functions
= £>0
extended to the complexification J(3)C in the natural way.
Since the function taking the trace A + tr(A) is linear and A + AF is an operation inside the Jordan
algebra J(3) (according to the definition of products) and also its complexification J(3)€, the extensions of
the invariant polynomials T} to 7 (3)* coincide with the trace functions on the complexification 7 (3):

TJ(B3) 3 Ar—tr(A), A% — tr(A?) and A3 — tr (43).

Let Nz s)c be the common null set (other than zero) of the invariant polynomial functions (with respect
to F action) considered on the complexified space J(3)C:

&1 < 0(y)
Nyge =4 A=[0(z) & x | €JB)|A#0, Ti(A) = Ta(A) = T5(A) =0
y 0 &

Remark 10. Let A € Ng(3)c. Then at least one of the three components z,y,x does not vanish. Since if
A€ Ny and assume z =y =1 =0, then Ty (A) = > & =0, To(A) = &2 =0and T3(A) =Y &% =0.
Hence these imply that & = 0 too.

By the Proposition 4.1

Proposition 8.18. Xo = 710(T;(P?0)) C Ny and the non-singular part of the space Ngz)c has
dim Nj(g)c =24.

Proof. Let A € Xg. Then T1(A) = 0y + 12 + 13 = 0 (Proposition 4.1), and A% = 0 implies T5(A) = 0 and
T3(A) = 0 trivially. Hence Xg = 70(75 (P?0)) C Ny (3)c.
The second assertion is seen by noting that at the points z = y = x = 0 the three differentials

dTy, dTs, dI3
are linearly independent. 0
Let A € J(3)¢ and consider the functions of the form
(8.22) JB) 29X r—tr(XoA)=ha(X).
Since Xg is Fy invariant, the nontrivial subspace in H;j linearly spanned by the functions
JB)> X ——tr(XoA):=ha(X), Ac J3)E, tr(A) =0,

is an invariant subspace in H;. Here note that tr (g(X) o A) = tr (X otg(A)) for g € Fy and tr (tg(A)) =
" (ﬁgwe\%r the representation of the group Fjy to Hj is irreducible (Theorem 8.4), the space H; must be
spanned by these functions. Also the same holds that the subspace in H; linearly spanned by the functions

{tr(XoA)=ha(X)| A€ NJ(S)c}
coincides with H; (see Proposition 4.2 and Corollary 4.3). These facts imply

Proposition 8.19. All the point in Ny can be expressed as a linear sum of points in Xo and this fact
implies that the space Nz (3)c is path-wise-connected.
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Proof. Since any linear function J(3) > X +— tr(X o A) = ha(X) with A € Ny(z)c is a linear sum of
functions of the form tr (X o B;) = hp,(X) with B; € Xg,

tr (X oA) = Z citr (X o B;) on J(3), where B; € X,

A =3 ¢;B; with these B; € Xg.
Let A and A" € Ny(g)c. Assume A=) ¢;B; and A" = ) ¢;B] where B;, B] € N 7(3c. Then the second
assertion is proved by connecting points B; and B; suitably in Xg. O

In general, the space Hy of “Cayley-harmonic polynomials” is an orthogonal sum of two subspaces H ,El)
and H,f), H,El) is the subspace linearly spanned by the powers tr(X o A)k with A € Nz g)c and H,f) is the
orthogonal complement of H ,51) in Hy. The orthogonality is equivalent to the property that Cayley-harmonic
functions in H,f) are vanishing on the subset Nz s)c (see [He]).

In our case the second subspace H 22) is always {0}, that is,

Proposition 8.20.

2 = B\ LT 3)F) = He (LT (3)°) = {0},

Proof. The first equality is a consequence of Hilbert Nullstellensatz and the irreducibility of N z(3)c implies
the second equality.

We see the latter one by the following observation that the equation T7(A) = 0 is linear so that if
we replace the variable {3 by & = —&1 — &2, then the space Nj(3)c can be seen as a subset defined by
T3(A) = 0 in the quadrics Q2 = {4 € C?*\{0} | T2(A) = 0} and the polynomial T3 restricted on the
space z = y = x = 0 is irreducible even modulo T3, i.e., there are no decomposition such that T5(A) =
&6 + 667 = (a6 + V&) (a&i® + B&réa +762%) on &7 + &° + &1& = 0. Hence the space Ny (z)c must be
irreducible and we have

O

In fact, our space Nz (3)c is an irreducible algebraic manifold and a complete intersection. In particular,
there are points in Nz g)c at which the differentials dT7, dT5, dT3 are linearly independent (see the Lemma
4 on page 345 [Ko] for these aspects).

Especially, as a corollary of Proposition 8.19 we have

Proposition 8.21. The representation of Fy to the space Hy, = H,gl) 18 irreducible for each k.

Proof. Since Xg is connected, if the space Hy is decomposed into two invariant subspaces, Hy = G1 ® G,
then they are orthogonal. Consequently, according to this decomposition the space Xg must be separated into
two non intersecting closed subsets and this is a contradiction.

Hence each Hj must be irreducible under the action by the group Fj. O

Now we sum up a conclusion as

Theorem 8.22. Since the functions in the invariant polynomials I, are constant on the manifold P2Q, by
restricting polynomial functions in Py[J (3)] to P?Q the decompositions Py[T (3)] = Hx + [1Hx—1 + - - + I,
for each k give totally a decomposition of a subspace in C=(P?*Q) as

oo
E Hy\p20,
k=0

which is dense in C>(P%Q).

Proof. Based on the preceding arguments it will be enough to remark the last assertion, which is a standard
argument.

Since any smooth function on P2Q can be extended to a smooth function on an open neighborhood of
P20 and the Weierstrass approximation theorem guarantees that any smooth function can be approximated
in the C">°—topology by polynomials. Hence the space ) Hy|p2g is dense in C>° (P20). O
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Before interpreting the decomposition stated in Theorem 8.22 in the framework of the Peter-Weyl theorem
for a symmetric space of our case P20 we remark about the Riemannian metric on P2Q.

Proposition 8.23. The Cayley projective plane P*(Q) = Fy/Spin(9) is an irreducible Riemannian sym-
metric space, that is, the stationary subgroup Spin(9) acts irreducibly on the tangent space Tx, P*(Q). By
Schur’s lemma this implies that P%2(Q) has an essentially unique Fy-invariant Riemannian metric. Thus,
(-, -)Pz@ coincides with the metric on P?(Q) induced from the Killing form of the Lie algebra of Fy up to a
constant factor.

Let @y, : H, ® Hy," — C°°(Fy) be a map defined by
Hy, ®Hk* = h®§0 — (I)k(h@) (P)(g) = (P(ngl(h)), g < Fy,

then the Peter-Weyl theorem says that the image of the map ¥ is a subspace consisting of the dim Hy,
number of the spaces, all of which are isomorphic to Hy.

Recall we explained the identification (3.2) of the quotient space Fy/Spin(9) with P2Q through the corre-
spondence Fy > g — g(X;) € P2?0.

If we consider a subspace H}"|gpin(9) consisting of linear forms in Hj,* which are invariant under the action
by Spin(9), then the functions in

Oy (Hy @ Hi" |spin(9))
are Spin(9) invariant, so that it can be descended naturally to functions on Fy/Spin(9) = P20 C J(3).
For X € J(3) we denote the linear form Jx € Hy"
Hy 5 h— Jx(h) = h(X),

that is, this is an evaluation at X € J(3). In particular, we take a linear form Jx, € Hy"|gpin(9), then it can
be written as

Ix,(Pg-1(h)) = Py-1(h)(X1) = h(g(X1)).

Hence through the identification F;4 /Spin(9) = P20 the function Jx, (P,-1(h)) is the restriction of the original
polynomial function h € Hjy, to P?20Q. Then we have

Z Qp(Hp @ {Jx,}) = Z Hyp20-
k=0

k=0

[ee]
Since dim Hyy1 > dim Hy (see Appendix) and the space ) Hy|pzg is already dense in C*>(P?0), a
k=0

fundamental theorem on compact symmetric spaces gives us

Proposition 8.24. Each irreducible representation of the group Fy appears in C°°(P%Q) with multiplicity
one as in the above way and incidentally dim Hk*‘spin(g) = 1. Moreover by the Proposition 8.23 we can see
that this decomposition is the eigenspace decomposition of the Laplacian on P?0.

The dimension of the space Hk*|5pm(9) is always one and the linear form Jx, can be seen as a base vector
of the space Hi"|spin(o) for any k.

9. INVERSE OF BARGMANN TYPE TRANSFORMATION

In this section, based on the data obtained until §8 we consider our Bargmann type transformation
B: Y Pil[Xg] — C(P°0)

with respect to the parameter family of the inner products {(x, %)} _22<. on the space > Pi[Xgp] on its
boundedness and invertibility. It has a dense image from Y Pi[Xg] always for a possible value of the
parameter &, but unlike the cases of spheres and other projective spaces (see [Ra2],[Ful], [FY]), it need not
be an isomorphism when € = 0. This means in cases of the values of the parameter ¢ > —47/2 there are
quantum states in Ly(P?0) which can not be seen by classical observables.
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9.1. Inverse transformation. Let Ay be a transformation defined by

(9.1) Ap: Hy, 3 pr—s P(X) - (tr (X 0 A))* dopag(X) € Py[Xg).
P20
and
(9.2) Ay Hi 30— Ap(p) =70 Alp) = Ax(p) - to ® Qp € Tg (L® K9,Xg) .

The correspondence by + is defined in (5.4).

Proposition 9.1. For any inner product defined on the space Py[Xo] according to the value of the parameter
€, the operator Ay is a constant times a unitary operator.

Proof. For ¢ € Hy, the inner product
(9.3) (Ax(9); Ar(9))e

is expressed as

(Ak(90)7 Ak(so))s

/x@

:/m /1:2@ (/X (tr(XoA))k(tr(XoA))k-6_2‘/5””“”1/2-|A||5-Q@/\Q@> x

x o(X)o(X)dvp2o(X)dvpzo(X).

2
/ P(X)(tr (X 0 A) rdvpag(X)| - e 2V | 41700 A Qg
P20

Here we consider the operator By

PrlXo] 3 h— By(h) := /X h(A) - (tr (X o A)) e 22 IAIM ) 4] 12 Qg (A) A Qo(A) € Hy.

Since Hj, consists of linear sums of functions of the form (tr (X o A))k by arbitrary A € Xg (see Proposition
8.20), we see that By(h) € Hy. Then the inner product (9.3) is understood as

(Ar(9), Ar())e = (Bi o Ak(@),go)Pz@.

Then the operator By o Ay commutes with the Fy action on Hy. Hence it must be a constant times identity
operator (which constant we put by) so that the kernel function defined by the integral

Lip(X,X) := (/X (tr(X 0 A))"(tr(X o A))* . e 2V2r A Al - Qg /\Q@>

must satisfies the invariance:

(94) Lk(g(X)vX) = Lk(ng_l(X))a for ge F4a XvX € PQ@

Then the constant by is given by

(9.5) Trace of the operator By o Ay = / L (X, X)dvpzg = by, dim Hy,.
P20

and the integral / L (X, X)dvp2g is given by
P20

/ Li(X, X)dvp2g = Li(X, X) - Wl (P%0),
P20

since by the invariance (9.4) the function Ly (X, X) is a constant function and apparently is non-zero.
Now we know By, is injective and so

dim Hj, < dim Py [Xg].
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On the other hand, degree k polynomials generated by the invariant polynomials which are naturally extended
to the complexification [7(3)C, that is, the polynomials

k k
> PrilIB)) Iei =Y Hii- I
=0 =0

(see Lemma 8.10) are all vanishing on the manifold Xg so that

k
dim P[Xg] < dimP[7(3)%] = ) _ dim H}, - dim Iy,
=0

(see Proposition 8.17).
Hence the operator By, is also surjective to the space Py[Xp]. Consequently, the operator By is a constant
times a unitary operator. 0

Next, we determine the concrete value of the constant by:

Proposition 9.2.

I'(4k 4 44 4 2¢)
98Kk +66+3¢ pAk+44+2¢

Li(X, X) = by, - dim Hy, = 2% . 10l(S(P?Q)) -

where the constant Vol(S(P%Q)) is the volume of the unit cotangent sphere bundle S(P?Q) of P?Q with
respect to the volume form
dos(pag) = PO A ( P2©)15

16! |s(p20)’

2%k
tr (X o A) ‘ -6_2\/§ﬂ”AH1/2||A||6 -Qo(A) AQg(A) does not depend on the

Proof. Since Li(X,X) = /
Xo

point X € P20, we have

Li(X, X) = /x@

-, </ “(9’1<X>0A>\2k~e‘m’“""”2-|A||€-Q@<A>Aszom> dvr, (9)

(9.6) —/X</F (%o () )

where dvp, is the normalized Haar measure on Fj.

The function
(9.7) /F (X g(nfxm

does not depend neither on X € P?Q nor on A € Xg, since the trace function A — tr (A) is Fy-invariant,

2k 1 .
(X oA)| e 2/ 419 o (4) A Qo (4)

dvp, <g>> JAJPRrE e 2VERIAIE O (A) A Qo (A),

2k
dUF4 (g)

TO
the group Fj acts both on the spaces P?Q and the cotangent sphere bundle S(P?Q) = S(Xg) transitively
and the Haar measure dvp, is bi-invariant.
Let (X,Y) € T§ (P?0). Put 4,(X,Y) := g(70(X,Y)), then

oo ¥) =g (IVIPX =2+ v=1o Uy ) — gy pg - gy + vete 12800y ),

Hence
70 (A(X,Y) = (X(4,(X,Y)), Y (4y(X,Y)) = (9(X), g(Y)) € T5 (P?0).
The integral (9.7) is expressed as

||Ag(le)||2k/F [tr X (A4(X,Y)) 0 Ay(X,Y) \deUF4(g)

_ ! /
Y11+ Jr,

dUF4 (g)

trg(X)o(llg(Y>ll29( )~ g(¥)? +F®'g(ﬁ)' v >)
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2k
1 1 ) 1
= [V [* /F4 (2|9(Y)|| > dvp, = 22k

since

and we used the property
tr(XoY)oZ=trXo(YoZ).
Now the integral (9.6) is

.

1 1/2 TRy
- / o2k AP+ =2V L (A) A Qo(A)
Xo

2k 1/9
wX o g(A)| dup,(9) - 2V3IAI 4| g (4) A o A)

226

(9.8)

_ 2@/ o) |‘Y||4k+28+2€ . e—2\/§7r||Y|| 'dVT*(P2©)~
Tg (P20

where we used the relation (6.8). Then according to the decomposition of the space Tg (P?0) = R, x S(P?0),
we can decompose the Liouville volume form dVr«(p2q) as

dVT*(PQ@) =t15dt A dO’S(pQ(@),

where dog(p20) is the volume form on the unit cotangent sphere bundle S (P?Q). Finally we have the integral
(9.8) as

226 4k+28+2 2v2n||Y 220 ™ ak+2842 22 15
— / [1Y]| +28+2e  g—2v2r|] Hdez@ = —~ / dUs(P2@)/ A28 t2e gm2vamt 415 gy
22k s (p20) 22k Js(p0) 0
926 oo T(4k + 44 + 2¢) 1 oo T(4k + 44 + 2¢)
~ 92k Vol(S(P70)) - (2+/27 ) th+id+2e ~ 940,44 -Vol(S(P70)) - o8k+3e pdkt2e
and
1 o T(4k + 44 + 2¢)
(9.9) by, = 240+3¢ 744+2¢ -Vol(S(P70)) - 98k 4k dim H,,

O

Proposition 9.3. Since both of the transformations Ay and the restriction of the transformation B to the
space P[Xg] (for short we denote it by Ty := Bp[x,)) commute with Fy action and the representation of
Fy on Hy is irreducible (see (8.24)), the composition Ty o A on Hy p2g 1s a constant multiple operator
Ty o A = axld and the constant ay, is given by
'(2k + 22)

QRFIT . 2k+22 dim H,

L(2k + 22)
22k . w2k dim Hy,

ap = 2% - 101(S*) - Wl (P%0) -

(9.10) Jol(S) - Vol (P?Q) -

T 95p22

Proof. Let f € Hy then by Corollary 7.9
Ty (A (1)) (X) - dvpao(X)
= 20q, (/ FX) - {tr (X 070(X, %))} - dopa (X) - V2T 4|9 @V (pagy (X7*)>
P20
=2 [ F0a.({or (X omo(X,5) )} enVE I || PV proy (X, %)) dopro (X)

=2 | JE)EK(X, X)dvpo(X) - dvpro(X),

where we put the fiber integral as

Ki(X, X) - dopag(X) = q, ({trf( o 1o(X, #)}F - e VI || 4 ||V pag) (X, *)).
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The kernel function K (X, X) satisfies the property similar to the kernel function Ly (X, X):

Then by this property (9.11) that Kj (X, X) is constant and we have

tr (Ty, o Ay) = ay, - dim Hy, = 2° - Kp(X, X)dvp2o(X) = 2% - Ki(X, X) - WI(P?0).
P20

Since tr (X o 1(X,Y)) = 1/2|]Y|]?,
e ({tr (X 0 70 (X, ) )} ™2 | |10+ Vi (pagy (X, 1))
= (1/2)" - au (|| #1202 QW oy (X, 4)).
If we choose a point X = X, then the above fiber integral is expressed as
(/2% qu (|| 2440620 Vs (1, ) )
= (1/2)*- / 1 [V [[2R+6e=V2rIVIlag A - - AdBrAdyoA - -AdyA
o AdboA - - -Adby AdcoA - - -Ndez,
(9.12) = (1/2)F- / 1 [V |[2RH6e= V2T IVIAB A - - - AdBr AdoA - - -Adyr Advpao(X1),
a 1(Xy
where we express the integral using the local coordinates on Wi (see (7.5)) around the point X; and the dual

coordinates (X,Y) = (b,c, B,7) «— >, Bidb; + vidc; € T (VT@) Then the integral (9.12) over the point X
is

(1/2)% / oy VIS0V a5 A Ay A

k+3 - : - (2% + 22
a2t [ (e ) e EVETTE gy g = i Tol(SY),
R

92k+11 . 2k+22

Here 10I(S'0) is the volume of the standard 15-sphere. O
Now we have
. I'(2k + 22) I'(2k + 22)
_ o6 15 2 15 2

Proposition 9.4.

1 T(2k+22)
25722 92k 2k . dim H,

B|p,[xo] © Ak = 0l(S'5) - Vol(P?0) Id

Corollary 9.5. The operator norm || B~ p, x| s given by

Vol(5(P20)T (4k 4444 2¢2))
by, 240F 3= 44+ 2= 28k 4k dim Hp,
an  Vol(S®)-Vol(P?0) T (2k+22)

22k 72k dim Hy,

(9.13) 197 pepolll =

:=C(e)- N(k),

where C(e) includes only € and N (k) is a function of k and

24k . dim Hy, - I'(4k + 44 + 2¢)

(9.14) Nk = 25FT (2k + 22)2

It is enough to see (9.14) for the behavior of the norm (9.13) when &k — oo and for this purpose we
mention two properties of the Gamma function.

Lemma 9.6.
T(k+a1)- Dk + ar) +oo, if Y a; > B,

W Tkt Br) Tkt Br) (1) ZZ % Z < % g
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Lemma 9.7.

nnz—l/? n—-1 j
j=
Then by Lemma 9.7
94d-+4e S oTk+11+e/2+5/4
(9.15) N(k)? = - dim Hy, - o I /2434
V2m N(k+11)2-T(k+ 114 1/2)2

By the relation of the Poincaré polynomials PP(t) = PH(t)- PI(t) (see (A.2)), the dimension of Hy, is given
as

(9.16) dim Hy, = 244x-1Ck + 2-2415—2Ck—1 + 2:2441-3Ck—2 + 244 £ —4Cr—3.
Hence (9.15) is

N(k)

p  2Mrae (I‘(24 +k)

I(23+k) _T(22+k)  T(21+k)
- 2 2 )

T(k+1) (k) Tki—1) « Th-2)
[_oT(k+11+e/2+j/4)
T+ 112 T(k+ 11+ 1/2)2

Hence finally by Lemma 9.6 have
Theorem 9.8. (1) Let ¢ = —%, then the Bargmann type transformation
P 3747/4 — LQ(PQ(O),CZ’Upz@)

s an tsomorphism, although it is not unitary.
2) If =22 < e < —3T_ then the inverse of the Bargmann type transformation
4

iB_l : LQ(PQ,dUPZ(O)) — e

1s bounded, but and the Bargmann type transformation can not be extended to the whole Fock-like space §e.
(3) If e > —%, then the Bargmann type transformation is bounded with the dense image, but not an
isomorphism between the spaces T and La(P?, dvpzq).
(4) Let e < —22. Then, for such a k that 4k + 44 + 2e < 0, the integral (6.9) does not converge, although
the Bargmann type transformation is defined for such polynomials. Hence by defining an inner product on the
finite dimensional space Z4k+44+25§0 Pir[Xo] in a suitable way, the Bargmann type transformation behave in

the same way as the case of (2) (see Remark 8).

Remark 11. The result in the above theorem differs from the original Bargmann transformation and other
cases of the spheres, complex projective spaces and quaternion projective spaces for which the Bargmann type
transformations are always isomorphisms ([Ba], [Ra2], [Ful], [FY]) without a modification factor in the weight
for defining an inner product in the Fock-like space.

10. SOME ADDITIONAL RESULTS

10.1. Reproducing kernel of the Fock-like space §.. As an application of the explicit determination of
the constant by we show our Fock-like space §. has the reproducing kernel.

Since the operator Ay, is an isomorphism from Hj, to P [Xp] and the operator Byo Ay, = by, the composition
Ay, 0 By, = by, too. The kernel function (we put it as Ry (A, B), (A, B) € Xg x Xg) of the composition

Ak: o Bk
by
which is the identity operator on Py[Xg], is expressed as
o (tr X 0 A)¥(tr X 0 B)rdupag - e~ 2V2rUAIMZHIBI) (1| A]| - || B )14+

by,
— _ - 1/2 1/2 .
e (tr (X o A/||AIN)(tr (X o B/||B||)* - dvpag - e=2V2RUAITEHIBIFE (| A]| - || B[ F+14+
- » .
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Hence the sum
R(A,B)):= )Y Rk(A,B)
k=0

%) - _ - 1/2 1/2
Jp2g (tr X o A/||A[))*(tr X 0 B/|| B||)edvpag - e 2V2rUAIMEHIBITZ) (|| A]| - || Bk +14+e

D bk

k=0

is estimated as

— _ - 1/2 1/2
2 [pag (tr X o A/||A[)¥(tr X 0 B/||BI|)* - dvpag - =22 UAIEHIBIE (] )| - || B ht1d+e

2 »

k=0
WU(PROZ T s e S 2 (LAIIBID
T6l(S(P20)) T(dk + 44 + 20)
P24+k) T@23+k T(22+k) TD@1+k)
< T(k+1) (k) T(k—1) ' T(k—2) >

This inequality implies that the series converges locally uniformly on the space Xgp X Xg and the function
R(A, B) is holomorphic there. So R(A, B) is the reproducing kernel of the Hilbert space F. (¢ > —22).

10.2. Geodesic flow and eigenspaces of Laplacian on P?Q. Let ¢; (t € R) be an action on Xg defined
by

Xo 3 A ¢y(A) = V1. A

Then this is an interpretation of the geodesic flow action onto the space Xg through the map 7g.
Let p € Py, [X@] Then

(10.1) 6" (p - to ® Qo)(A) = >R L p(4) - t9(4) @ Qo(A).
Let p € Py[Xp] and ¢ € Py[Xg] with k # ¢, then

Lemma 10.1.

(pﬂq)s:/ 790 || AlIF - Qo ATl = 0.
Xo

Proof. The transformation ¢;* on I'g(L ® K9, Xg) is unitary, hence
(6" (p): &1" (@) = (p, q)< for any t € R.
On the other hand
o (p-T < to,to >X Qo A Qo) = 2V7IEDL (1.7 < to,t0 > Q0 A Q).
Hence (p,q). = 0. U

Let AP°C be the Laplacian on P2Q. Then

Proposition 10.2. The geodesic flow action on Xg and the action given by the one parameter group

{62\/?1t \ A}32@“1} of unitary transformations consisting of the Fourier integral operators commute through
the Bargmann type transformation.

Proof. This is shown based on the data that the eigenvalues of the Laplacian AP °0 g given by k2 + 11k
and the Bargmann type transformation on each subspace Py[Xg] maps to Hy which coincides with the k-th
eigenspace of the Laplacian (Propositions 8.23, 8.24). O

Remark 12. Finally we mention that in a forthcoming paper the reproducing kernel above will be made clear
to relate with a differential equation satisfied by some hypergeometric functions and also a Téplits operator
theory on P20 will be discussed.



BARGMANN TYPE TRANSFORMATION 43

APPENDIX A. APPENDIX:GENERATING FUNCTIONS OF POINCARE SERIES
In this Appendix we consider the generating functions of the Poincaré series of
(1) the polynomial algebra: PP(t) = Z dim Py t*,
(2) the algebra of invariant polynomials : PI(t) = Z dim I, t* and
(3) the space of the Cayley harmonic polynomials : PH(t) = Z dim Hy, t*,
and prove the inequality :
(A1) dim Hyiq, > dim Hy.

In fact, these formal power series converge for |¢| < 1, which will be seen by explicitly determining their
generating functions.
The generating function PI(t) of the Poincaré series of the dimensions of invariant polynomials I = > I,
is determined as
00 . oo [k/3] E_ 3¢ i 00 i
Pty =Y dimpt =Y ) ({2}—#1)15 D VD SR
k=0 k=0 £=0 k=0 414+2i2+3i3=k, i1,i2,i3ENp

_ Z tirt2ia+3is _ 1 . 1 . 1
— _ 42 _ 43"
(il,ig,ig)eNDXNQXNo 1 t 1 t 1 t

The generating function PP(t) of the polynomial algebra C[sy, - ,sy| =Y. P is given by
PP(t) = Z dim Pk tk = Z N+k710k tk
k=0

N
1
= Z gritrztotry <1t> , in which N = 27 for our case.

(r1,72,...,rn)ENg N

Let PH (t) be the generating function of the Poincaré series of the dimensions of Cayley harmonic polynomials,
then by Lemma 8.16 and Proposition 8.17

(A.2) PP(t) = PH(t) - PI(t)

and we have

24
1
PH(t) = <H> L+ +t+ 1)
(A.3) = oaik1Cpth - (1426426 +£%) = dim Hy "
k=0 k=0
Then

Proposition A.1. dim Hy, < dim Hy41.
This can be proved by the following elementary fact:

Lemma A.2. Let f(t) = apt® and g(t) = 3 bpt® be formal power series with positive coefficients and
satisfies the condition that
for alln, b, <b,i1.

Then the coefficients of the product formal power series f - g is increasing.

Proof. Since the n-th coefficient ¢, of the product fg is

n
Cpn = § an—ibi
=0

Cntl = Cn = Any1bo + an(by —bo) + -+ + ao(bpt1 — by).
In the above expression, each term is non-negative by assumption so that ¢,+1 — ¢, > 0. In addition if {b,}
is strictly increasing, then {c,} is also strictly increasing at least one of the coefficient being ay > 0. g
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Proof of Proposition A.1.
In our case, all the coefficients of the polynomial (1+¢)(1+¢+t?) = 1+ 2t +2t2 + 3 are positive and the

24
coefficients of the power series expansion of the factor (lt) are positive and strictly increasing. In fact,

24
the k-th coeflicient of the power series expansion of the function (” is 244k —1C and strictly increasing,

since it is a generating function of the Poincaré power series of the polynomial algebra C[sy, - - , s24] of 24

24
1
variables. Hence the assertion for our power series PH(t) = (1 + 2t + 2t* +¢3) - <1t> is proved. |
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