
Classical Poincaré conjecture via 4D topology

Akio KAWAUCHI

Osaka City University Advanced Mathematical Institute

Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

kawauchi@sci.osaka-cu.ac.jp

March 30, 2021

ABSTRACT

The classical Poincaré conjecture that every homotopy 3-sphere is diffeomor-
phic to the 3-sphere is proved by G. Perelman by solving Thurston’s program on
geometrizations of 3-manifolds. A new confirmation of this conjecture is given
by combining R. H. Bing’s result on this conjecture with Smooth Unknotting
Conjecutre for an S2-knot and Smooth 4D Poincaré Conjecture.
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1. Introduction
A homotopy 3-sphere is a smooth 3-manifold M homotopy equivalent to the 3-

sphere S3. It is well-known that a simply connected closed connected 3-manifold is
a smooth homotopy 3-sphere. The following theorem, called the classical Poincaré
Conjecture coming from [14, 15] is positively shown by Perelman [12, 13] solving
positively Thurston’s program [16] on geometrizations of 3-manifolds (see [11] for
detailed histrical notes).

Theorem 1.1. Every homotopy 3-sphere M is diffeomorphic to the 3-sphere S3.

The purpose of this paper is to give an alternative proof to Theorem 1.1 by com-
bining R. H. Bing’s result in [1, 2] on the classical Poincaré conjecture with Smooth
Unknotting Conjecutre and Smooth 4D Poincaré Conjecture which are explained from
now. Smooth Unknotting Conjecture (for a surface-knot) is the following conjecutre.
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Smooth Unknotting Conjecture. Every smooth surface-knot F in the 4-sphere
S4 is a trivial surface-knot if the fundamental group π1(S

4 \F, x0) is an infinite cyclic
group.

The positive proof of this conjecture for any surface-knot is claimed in [7], where
a revised proof of the uniquness of an O2-handle pair is in preparation. (See also [8]
for a generalization to a surfece-link). A homotopy 4-sphere is a smooth 4-manifold
X homotopy equivalent to the 4-sphere S4. Smooth 4D Poincaré Conjecture is the
following conjecutre.

Smooth 4D Poincaré Conjecture. Every 4D smooth homotopy 4-sphere X is
diffeomorphic to the 4-sphere S4.

The positive proof of this conjecture is claimed in [9]. The result of R. H. Bing in
[1, 2] used for the proof of Theorem 1.1 is in the form of the following lemma.

Lemma 1.2. A homotopy 3-sphere M is diffeomorphic to the 3-sphere if for every
knot K in M , there is a meridian-longitude-preserving isomorphism from the funda-
mental gorup π1(M \K, x0) onto the fumndamental group π1(S

3 \K ′, x′
0) of a knot

K ′ in S3.

The proof of Lemma 1.2 is given in Section 2 together with an explanation of
Bing’s result. The main result of this paper to prove the follwing lemma.

Lemma 1.3. Every homotopy 3-sphere M meets the assumption of Lemma 1.2.
Namely, for every knot K in M , there is a meridian-longitude-preserving isomorphism
from the fundamental gorup π1(M \K, x0) onto the fundamental group π1(S

3\K ′, x′
0)

of a knot K ′ in the 3-sphere S3.

For the proof of Lemma 1.3, a homotopy 3-sphere version of Artin’s spinning
construction on S3 is used. This explanation is done in Section 3. In Section 4, the
proof of Lemma 1.3 is done. Lemmas 1.2 and 1.3 complete the proof of Theorem 1.1.

Troughout the paper, the notations of the unit disk D = {x ∈ C| |x| ≤ 1} and the
unit circle S1 = ∂D are fixed.

2. Proof of Lemma 1.2

The proof of Lemma 1.2 is made as follows.
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Proof of Lemma 1.2. R. H. Bing’s result in [1, 2] is stated as follows:

Bing’s Theorem. A homotopy 3-sphere M is diffeomorphic to S3 if, for every knot
K in M , there is a 3-ball in M containing the knot K.

Let K be a knot in M with a meridian-longitude preserving isomorphism

π1(M \K, x0) ∼= π1(S
3 \K ′, x′

0)

for a knot K ′ in S3. Let N(K) be a tubular neighborhood of the knot K in M .
Let E(K;M) = cl(M \ N(K)) be the compact exterior of the knot K in M . By
H. Kneser’s prime factorization of a compact 3-manifold in [10] (see [4, p.31], the
compact 3-manifold E(K;M) is written as a connected sum

E(K;M) ∼= E ′#M1#M2# . . .#Mk

for an irreducible compact connected 3-manifold E ′ with torus boundary and finitely
many irreducible homotopy 3-spheres Mi (i = 1, 2, . . . , k). The 3-manifold E ′ is un-
derstood as the compact exterior E(K;M ′) of a knot K in a homotopy 3-sphere M ′.
Note that the meridian-longitude system of E(K;M) is taken over by a meridian-
longitude system of the irreducible 3-manifold E ′. Thus, there is a meridian-longitude-
preserving isomorphism

π1(E
′, x0) ∼= π1(E(K ′), x′

0)

for the compact exterior E(K ′) = cl(S3 \N(K ′)) of the knot K ′ in S3.

If π1(E
′, x0) ∼= Z, then by Dehn’s lemma (cf. e.g. [6]), the compact 3-manifold E ′

is diffeomorphic to the product S1 × D by a diffeomorphism sending the meridian-
longitude pair of E ′ to the pair (1× S1, S1 × 1). Then we see the knot K is a trivial
knot in a 3-ball in M .

Assume that π1(E
′, x0) ̸∼= Z. Then the compact 3-manifold E ′ is a Haken manifold

and hence by F. Waldhausen’s result in [17] (see [4]), there is a meridian-longitude-
preserving diffeomorphism E ′ ∼= E(K ′) (cf. [6, p. 74]), which means that the knot K
is also in a 3-ball in M .

Thus, it is shown that for any knot in M with a meridian-longitude preserving
isomorphism π1(M \ K, x0) ∼= π1(S

3 \ K ′, x′
0) for a knot K ′ in S3, it is shown that

there is a 3-ball B containing the knot K. Since the assumption of Lemma 1.2 is that
every knot in M admits a meridian-longitude preserving isomorphism π1(M \K, x0) ∼=
π1(S

3 \K ′, x′
0) for a knot K ′ in S3, Bing’s theorem means that M is diffeomorphic to

S3. This completes the proof of Lemma 1.2. □

3. Artin’s pinning construction
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Let M be a smooth homotopy 3-sphere, and M o the compact once-punctured
manifold cl(M \B) of M for a 3-ball B in M . The closed smooth 4-manifold

ΣM
B = (∂B)×D ∪M o × S1

is a smooth homotopy 4-sphere by van Kampen theorem and a homological argument,
which is called the Artin’s spinning construction of the pair (M,B).

The product Λ′ × D for a subspace Λ′ ⊂ ∂B in (∂B) × D, the product Λ′′ × S1

for a subspace Λ′′ ⊂ M0 in M o × S1, or the union Λ′ × D ∪ Λ′′ × S1 in S(M,B) is
called a round object.

By Smooth 4D Poincaré Conjecture, the closed smooth 4-manifold ΣM
B is deffeo-

morphic to the 4-sphere S4. For a knot K in the interior of M o, the spun torus-knot
K × S1 in the 4-sphere ΣM

B is a round object uniquely given by the inclusions

K × S1 ⊂ M o × S1 ⊂ ΣM
B .

Let c : K × [0, 1] → M o be a collar embedding of K in M o such that c(K, 0) = K
and ℓ(K) = c(K, 1) is a longitude of K in M o. For a base point p ∈ K, let ℓ̄(S1) =
c(p, 1)× S1 and ℓ̄(K) = c(K, 1)× 1 ⊂ M0 × S1 be the simple loops around the spun
torus-knot K × S1 in the 4-sphere ΣM

B . Take the point x0 = c(p, 1) ∈ M o \K as the
base point of the longitude ℓ(K) of K and the point x̄0 = c(p, 1)× 1 ∈ ΣM

B \K × S1

as the base point of the loops ℓ̄(S1) and ℓ̄(K). Let m(K) be a meridian loop of K
in M o with base point x0, and m̄(K × S1) a meridian loop of K × S1 in ΣM

B with
base point x̄0, respectively. The following lemma is directly obtained by van Kampen
theorem.

Lemma 3.1. For every knot K in the interior of M o and the spun torus-knot K×S1

in the 4-sphere ΣM
B , the fundamental group π1(Σ

M
B \ K × S1, x̄0) is isomorphic to

the fundamental group π1(M
o \ K, x0) by an isomprphism sending the homotopy

class [ℓ̄(S1)] to the trivial element {1}, the homotopy class [ℓ̄(K)] to the homotopy
class [ℓ(K)] and the meridian element [m̄(K × S1)] to the meridian element [m(K)],
respectively.

Proof of Lemma 3.1. Apply van Kampen theorem for (M o \K)×S1 and (∂B)×D
to obtaine the desired result. □

The following lemma is essentially a corollary to Lemma 3.1.

Lemma 3.2. For a 3-ball B and the standard spin structure on the product B×S1,
let φ : B × S1 → S4 be a spin-preserving smooth embedding. For a knot K in the
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interior of B, the torus-knot K × S1 in S4 given by the composite embedding

K × S1 ⊂ B × S1 φ−→ S4

has the fundamental group π1(S
4\K×S1, x′

0) which is isomorphic to the fundamental
group π1(B \ K, x0) by an isomprphism sending the homotopy class [ℓ̄(S1)] to the
trivial element {1}, the homotopy class [ℓ̄(K)] to the homotopy class [ℓ(K)] and the
meridian element [m̄(K × S1)] to the meridian element [m(K)], respectively.

Proof of Lemma 3.2. Let S4 = (∂B)×D ∪ B × S1 be the union of round objects
(∂B) × D and B × S1. The embedding φ is smoothly isotopic to an embedding
φ′ : B × S1 → S4 with φ′(B × S1) = B × S1. By the isotopy classification of the
orientable handle S1×S2 by H. Gluck [3] and the spin assumption on φ, we can assume
that the restriction of φ′ to the orientable handle (∂B)×S1 is the identity map. Hence
the embedding φ′ : B×S1 → S4 extends to a diffeomorphism (φ′)+ : S4 → S4 whose
restriction to the round object (∂B) × D is the identity map. By Lemma 3.1, the
desired result is obtained. □

For a connected spatial graph Γ in M and a maximal tree T of Γ, let B be a regular
neighborhood of T in M which is a 3-ball. Let a(Γ) = cl(Γ \ B ∩ Γ) be a proper arc
system in M o = cl(M \ B), and ȧ(Γ) = (∂B) ∩ Γ the boundary point system in the
2-sphere ∂M0 = ∂B. The spun S2-link LΓ

T is a round object uniquely constructed
from the pair (Γ, T ) in the 4-sphere ΣM

B by taking the union of the annulus system
a(Γ)× S1 and the disk system ȧ(Γ)×D as follows:

LΓ
T = a(Γ)× S1 ∪ ȧ(Γ)×D.

The following lemma is a generalization of Lemma 3.1 to the spun S2-link, which was
observed in [6, p.204].

Lemma 3.3. For every connected spatial graph Γ in M and the spun S2-link LΓ
T

in the 4-sphere ΣM
B , the fundamental group π1(Σ

M
B \ LΓ

T , x̄0) is isomorphic to the
fundamental group π1(M \ Γ, x0) by an isomprphism sending the meridian system of
LΓ
T to a meridian system of the proper arc system a(Γ) in M o.

Proof of Lemma 3.3. Note that there is a canonical isomorphism

π1(M
0 \ a(Γ), x0) ∼= π1(M \ Γ, x0).

Then apply van Kampen theorem between (M o \ a(Γ))× S1 and ((∂B) \ ȧ(Γ))×D.
The result is obtained. □
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Figure 1: The round object Y = Γ× S1 ∪ β ×D

Let V be a handlebody of genus n in M , and F = ∂V . Notions on graphs in the
surface F are introduced as follows:

Let β be a simple arc in F . Let Oi (i = 1, 2, . . . , n) be a system of mutually disjoint
simple loops in the surface F with β ∩ Oi = ∅ for every i, and vi (i = 1, 2, . . . , n) a
system of distinct points in β enumerated in this order with ∂β = {v0, vn}. Let
ai (i = 1, 2, . . . , n) be a system of mutually disjoint simple arcs in F such that ai
spans the point vi and a point pi ∈ Oi with interior Int(ai) disjoint from β ∪n

i=1 Oi.
The graph

Γ = β ∪n
i=1 (ai ∪Oi)

is called an n-bouquet graph with based arc β in F . Let P = N(Γ;F ) be a regular
neighborhood of an n-bouquet graph Γ with based arc β in F , which is a planar surface
in F . Slide the based arc β of the n-bouquet graph Γ to a boundary component of
P . Then the n-bouquet graph Γ is a spine graph of the handlebody V with based arc
β if the framings of the loops Oi determined by P are 0-framings in M and there is
a diffeomorphism

c : P × [0, 1] → V

such that c(x, 0) = x for all x ∈ P . This planar surface P in F is called a spine
surface of V . We have always a spine graph Γ and a spine surface P of V with based
arc β for every handlebody V of genus n. For a maximal tree T of Γ around the arc
β and a 3-ball neighborhood B of T in M , the spun S2-link LΓ

T in the 4-sphere ΣM
B

is constructed from the pair (Γ, T ).

To construct a slightly different construction of a S2-link in the 4-sphere ΣM
B
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equivalent to the spun S2-link LΓ
T , consider a 3-ball B in M so that the intersection

B ∩ V = (∂B) ∩ F = ∆

is a disk and the intersection

B ∩ Γ = (∂B) ∩ Γ = β

is an arc in the boundary circle ∂∆ of the disk ∆ so that the disk ∆ is considered as
the product [0, 1]× β with 0× β = β. Let

Y = β ×D ∪ Γ× S1

be a round object in ΣM
B which is the union of the solid cylinder β×D and the round

object Γ × S1 for the spine graph Γ of V with based arc β. The round object Y is
illustrated in Fig. 1 where note that the solid cylinder β × D is fixed setwise under
the one rotation on Y along the central axis β×0. In Fig. 1, we find mutually disjoint
disks

Di = vi ×D ∪ ai × S1 (i = 1, 2, . . . , n).

Let h2
i (i = 1, 2, . . . , n) be mutually disjoint 2-handles on the tori Oi × S1 (i =

1, 2, . . . , n) thickening the disks Di (i = 1, 2, . . . , n), respectively. The 2-sphere com-
ponents of LΓ

T are equivalent to the 2-spheres Si (i = 1, 2, . . . , n) obtained from the
tori Oi × S1 (i = 1, 2, . . . , n) by the surgeries along the 2-handles h2

i (i = 1, 2, . . . , n),
respectively. The S2-link LΓ

β = ∪n
i=1Si in ΣM

B constructed in this way is a round object
and called the spun S2-link constructed from the n-bouquet graph Γ with based arc β.
The 2-handle h2

i on the torus Oi × S1 is considered as a 1-handle h∗1
i on the 2-sphere

component Si. Note that this construction is done in the 3-manifold

A(P ) = β ×D ∪ P × S1.

In the round object Y , let βj (j = 1, 2, . . . , n−1) be the arcs obtained by dividing the
central axis β× 0 of the solid cylinder β×D at the points vi× 0 (i = 1, 2, . . . , n) such
that the arc βj connects vj × 0 to vj+1× 0 for every j (j = 1, 2, . . . , n− 1), so that the
arc βj connects the disk Dj to the disk Dj+1 (see Fig. 1). The arc βj is a core arc of
the 1-handle h1

j = βj×D on LΓ
β connecting the component Sj to the component Sj+1

for all j (j = 1, 2, . . . , n− 1). Let αi (i = 1, 2, . . . , n) be the core arcs of the 1-handles
h∗1
i (i = 1, 2, . . . , n) in the central axis β × 0 of the solid cylinder β ×D, so that the

union
∪n

i=1αi ∪n−1
j=1 βj

is a division of the central axis β× 0 of the solid cylinder β×D. Thus the S2-link LΓ
β

with divided central axis β × 0 = ∪n
i=1αi ∪n−1

j=1 βj is obtained (see Fig. 2). Note that
this construction is also done in the 3-manifold A(P ). We have the following lemma.
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Figure 2: The S2-link LΓ
β with divided central axis β × 0 = ∪n

i=1αi ∪n−1
j=1 βj

Lemma 3.4. The 3-manifold A(P ) is obtained from a regular neighborhood of the
S2-link LΓ

β with divided central axis β × 0 in A(P ) by adding a boundary collar
(∂A(P ))× [0, 1] of A(P ) and the 4-manifold ∆×D ∪ V × S1 is a collar A(P )× [0, 1]
of the 3-manifold A(P ) in ΣM

B .

Proof of Lemma 3.4. By constructuin, the round object Y is naturally contained
in A(P ) ant the closed complement cl(A(P )\N(Y )) for a regular neighborhood N(Y )
of Y in A(P ) is a boundary collar (∂A(P ))× [0, 1]. Since

h2
i ∪Oi × S1 = h∗1

i ∪ Si

for every i, the closed complement of a regular neighborhood of the union

LΓ
β ∪n

i=1 h
∗1
i ∪n−1

j=1 h1
j

in A(P ) is also a boundary collar (∂A(P ))× [0, 1]. Thus, the closed complement of a
regular neighborhood of the union

LΓ
β ∪n

i=1 αi ∪n−1
j=1 βj

in A(P ) is also a boundary collar (∂A(P )) × [0, 1]. Since the handlebodey V is a
collar P × [0, 1] in ΣM

B and the disk ∆ is the product [0, 1] × β with 0 × Γ = β, we
see that the 4-manifold ∆ ×D ∪ V × S1 is a collar A(P )× [0, 1]. □

The following lemma is technically important to the proof of Lemma 1.3.
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Lemma 3.5. Let LΓ
β be the S2-link with divided central axis β × 0 in ΣM

B for a
handlebody V in M , and S̄ the S2-knot S̄ obtained from the spun S2-link LΓ

β by the
surgeries along the 1-handles h1

j = βj ×D (i = 1, 2, . . . , n − 1). If the S2-knot S̄ is a
trivial S2-knot in ΣM

B , then the round object V × S1 extends to the product U × S1

for a 3-ball U which is a smooth spin 4-submanifold of ΣM
B .

Proof of Lemma 3.5. Note that the central axis β× 0 spans the trivial 2-sphere S̄.
Let B̃ be a 3-ball in ΣM

B bounded by the S2-knot S̄. By [5], the central axis β × 0 is
moved to an arc β̃ in B̃ which is paralell to the 2-sphere S̄ by a diffeomorphism of the
4-sphere ΣM

B isotopic to the identity by an isotopy keeping the 2-sphere S̄ fixed and
LΓ
β setwise fixed. Hence there is a diffeomorphism f of the 4-sphere ΣM

B isotopic to
theidentity by an isotopy keeping the 2-sphere S̄ fixed and LΓ

β setwise fixed such that
f sends LΓ

β ∪ β × 0 to itself identically and and the central axis β × 0 is unknotted in

the 3-ball f(B̃). By the spin assumption on the spine P of V , we can assume f sends
a tubular neighborhood β × d of β × 0 in β ×D to a tubular neighborhood β × d of
β× 0 in f(B̃) identically, so that f sends LΓ

β ∪β×d to itself identically. Assume that

LΓ
β ∪ β × d ⊂ B̃

in ΣM
B . Let d′ be a disk in the interior of d. Let LΓ

β × [0, 1] be a collar of LΓ
β in ΣM

B

so that the collars of the disks vi × d, (i = 1, 2, . . . , n) belong to β × d. Then the
3-manifold

cl(LΓ
β × [0, 1] ∪ β × d) \ β × d′)

is canonically diffeomorphic to P × S1 in ΣM
B and is included in the solid torus

cl(B̃ \ β × d′). By the spin assumption on P , this means that there is an inclusion

P × S1 ⊂ U1 × S1

for a disk U1 in ΣM
B with U1 × S1 as a spin submanifold. Since V × S1 is a collar

of P × S1 in S(M,B) by Lemma 3.4, there is an inclusion V × S1 → U × S1 for a
3-ball U in S(M,B). By construction, the 4D solid torus U × S1 is a smooth spin
4-manifold of S(M,B). □

4. Proof of Lemma 1.3
Now we are in a position to the proof of Lemma 1.3.

Proof of Lemma 1.3. Let M be a homotopy 3-sphere. Let V ∪ V ′ be a Heegaard
splitting ofM of a Heegaard genus n for some n with Heegaard surface F = ∂V = ∂V ′.
Let Γ be a spine graph of the handlebody V with a based arc β in F . In the notation
of Section 3, the n-bouquet graph Γ with based arc β is written as Γ = β∪n

i=1 (ai∪Oi)
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in F . Similarly, let Γ′ be a spine graph of the handlebody V ′ with the same based
arc β as Γ but with different vertices in β. Push the part Γ′ \ β into the interior of
V ′ by using a boundary collar of F in V ′. Let Γ̄ = Γ ∪ Γ′ be a 2n-bouquet graph in
M with the based arc β. Let B be a 3-ball used for the construction of the 4-sphere
ΣM

B such that

B ∩ V = (∂B) ∩ F = ∆

is a disk and

B ∩ Γ̄ = (∂B) ∩ Γ̄ = β

is a boundary arc in the disk ∆ so that the disk ∆ is considered as the product [0, 1]×β
with 0×β = β. Let M o = cl(M \B). Let N(Γ̄) be a regular neighborhood of Γ̄ in M0.
The union N̄(Γ̄) = N(Γ̄) ∪ B is a regular neighborhood of Γ in M . By construction,
the closed complement cl(M o \ N̄(Γ̄)) is diffeomorphic to the product F o × [0, 1] for
the once-punctured compact surface of F obtained from F by removing the interior of
a disk ∆ in F . This means that the fundamental group π1(cl(M \ N̄(Γ̄)), x0) is a free
group of rank 2n given by a free product F∗F′ where the free direct product summand
F has a basis represented by a meridian loop system of Oi (i = 1, 2, . . . , n). Note that
some meridian loops of O′

i (i = 1, 2, . . . , n) do not always represent elements of the free
product summand F′ (see Example 4.1 later for an example). Let x′

i (i = 1, 2, . . . , n)
be a basis of the free group F′. Let

LΓ̄
β̄ = LΓ

β ∪ LΓ′

β

be the 2n-component spun S2-link of the 2n-bouquet graph Γ̄ with based arc β in
the 4-sphere ΣM

B . The n component spun S2-link LΓ
β of the n-bouquet graph Γ with

based arc β is an S2-sublink of the S2-link of LΓ̄
β . By van Kampen theorem, the

fundamental group π1(Σ
M
B \ LΓ̄

β , x̄0) is canonically isomorphic to the fundamental
group π1(cl(M \ N̄(Γ̄), x0) which is the free product F ∗ F′ where a meridian system
of LΓ

β represents the basis xi (i = 1, 2, . . . , n) of F.

Let αi (i = 1, 2, . . . , n) and βj (j = 1, 2, . . . , n − 1) be the arc systems in the
central axis β × 0 used for the spun S2-link LΓ

β with central axis β × 0. Let S̄ be
the 2-sphere obtained from the spun S2-link LΓ

β by the surgery along the 1-handles
h1
j (j = 1, 2, . . . , n− 1) with the core arc system βj (j = 1, 2, . . . , n− 1). The 2-sphere

S̄ is an S2-knot in ΣM
B which is a round object. By construction, note that the

free product summand F changes into the infinit cyclic group Z by the epimorphism
sending the basis element xi to the generator 1 ∈ Z of Z for every i, so that the
S2-link LΓ̄

β changes into the (1 + n)-component S2-link L̃ = S̄ ∪ LΓ′

β in ΣM
B with a

fundamental group isomorphism

π1(Σ
M
B \ L̃, x̄0) ∼= Z ∗ F′
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sending the meridian element of the component S̄ to the generator 1 ∈ Z. This
means that the fundamental group π1(Σ

M
B \ S̄, x̄0) is a quotient group of the infinite

cyclic group Z. Since the first homology group H1(Σ
M
B \ S̄;Z) ∼= Z, the fundamental

group π1(Σ
M
B \ S̄, x̄0) must be isomorphic to the infinite cyclic group Z. By Smooth

Unknotting Conjecutre, the S2-knot S̄ is a trivial S2-knot. By Lemma 3.5, the round
object V × S1 extends to a smooth spin 4-submanifold U × S1 of ΣM

B for a 3-ball U .
Every knot K in M is isotopic to a knot K ′ in V , so that we have the following

inclusions:
K ′ × S1 ⊂ V × S1 ⊂ U × S1 ⊂ ΣM

B .

By Lemmas 3.1 and 3.2, there are meridian-longitude-preserving isomorphisms

π1(M \K, x) ∼= π1(U \K ′, x′) ∼= π1(DU \K ′, x′)

for the fundamental groups π1(M\K, x) and π1(U\K ′, x′), whereDU = ∂(U×[0, 1]) =
U×0∪U×1 denotes the double of the 3-ball U with U×0 = U which is diffeomorphic
to the 3-sphere S3. This completes the proof of Lemma 1.3. □

This completes the proof of Theorem 1.1.

In the proof of Lemma 1.3, although the basis elements xi (i = 1, 2, . . . , n) of the
free product summand F are represented by a meridian system of the S2-sublink LΓ

β

of the S2-link L(Γ̄, β), the S2-sublink LΓ
β itself is not necessarily a trivial S2-link.

Here is an example.

Figure 3: A 2-bouquet graph Γ with based arc β whose funfamental group is a free
group of rank 2

Example 4.1. Let Γ be a 2-bouquet graph with based arc β in S3 illustrated in
Fig. 3 whose fundamental group π1(S

3 \ Γ, x0) is a free group of rank 2. A regular
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neighborhood V of Γ in S3 and the closed complement V ′ = cl(S3 \ V ) constitute a
genus 2 Heegaard splitting V ∪ V ′ of S3 by noting that the 3-manifold V ′ is shown
to be a handlebody of genus 2 by the loop theorem and the Alexander theorem (cf.
e.g. [6]). The graph Γ with based arc β is used to be a spine graph Γ of V by
moving the based arc β to the Heegaard surface F = ∂V = ∂V ′. Let Γ′ be any spine
graph of V ′ with base arc β obtained by pushing Γ′ \ β into the interior of V ′. Let
LΓ̄
β = LΓ

β ∪LΓ′

β be the 4-component spun S2-link in the 4-sphere ΣS3

B constructed from

the pair (Γ̄, β). The fundamental group π1(Σ
S3

B \ LΓ̄
β , x̄0) is canonically isomorphic

to the free group π1(cl(S
3 \ N(Γ̄), x0) of rank 4 which is the free product F ∗ F′ of

free groups F and F′ of rank 2 such that a basis of F is represented by a meridian
system of LΓ

β . The 2-component S2-sublink LΓ
β is not a trivial S2-link, because LΓ

β

contains a component of the spun trefoil S2-knot in S4. Thus, the fundamental group
π1(Σ

S3

B \ LΓ
β , x̄0) is not any meridian-based free group. This also implies that there

is a meridian element of LΓ′

β in the fundamental group π1(Σ
S3

B \ LΓ̄
β , x̄0) which is not

conjugate to any element of the free product summamd F′, because otherwise the
fundamental group π1(Σ

S3

B \ LΓ
β , x̄0) would be a meridian-based free group.
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