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Dedicated to the memories of
87Rb atoms

which were released from the dispenser,

captured in the MOT,

evaporatively cooled in the magnetic trap

until they Bose-Einstein condensed,

confined in the optical lattice,

shined by resonant light

to produce a shadow on the CCD,

and

dissapeared into the walls of the ion pumps.
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Chapter 1

Introduction

1.1 Historical overview

1.1.1 Developments of quantum many-body theory

In 1995, the first achievements of Bose-Einstein Condensation (BEC) in dilute atomic gases were reported
almost simultaneously by three American groups (Anderson et al. [2], Davis et al. [3], Bradley et al. [4].)
Since then, more and more atomic species have been cooled to reach quantum degeneracy (BEC for bosons
and Fermi degeneracy for fermions.) Realization of BEC in a dilute atomic gas is often phrased as the “holy
grail of physics,” since it offers quite many opportunities in study of the quantum many-body systems. In
order to appreciate its significance, we take a quick look at the history of the quantum theory of matters.

The efforts to study physical properties of solids and liquids (collectively termed as condensed mat-
ters) from the microscopic view of points dates back to the 1920’s. At the turn of the 20th century, a
completely novel branch of physics describing energy levels of electromagnetic radiations and atoms was
born; quantum mechanics. Before its birth, the majority of physicists and mathematicians thought that
physics is a “mature,” or just “dead” branch of science. Ironically, among those scientists was Michelson,
whose experimental work would later become the basis for the another revolution in physics; that is, the
theory of relativity by Einstein (but we will not go further in this topic.) Feuer [5, Ch. 3] illustrates such
an atomosphere by quoting memoirs by Millikan [6], who experienced the revolution in physics as a young
physicist and himself made great contributions to it through measurement of the elementary charge:

“My first view of Michelson was at the convocation [of the Ryerson Laboratory in 1894]. He
gave the address on the place of very refined measurement in the progress of physics—an address
in which he quoted someone else, I think it was Kelvin, as saying that it was probable that the
great discoveries in physics had all been made, and that future progress was likely to be found
in the sixth place of decimals.”

However, the triumph of Bohr’s atomic theory showed that there was large amount of problems to be
investigated in the microscopic world. As shown in Table 1.1 (adapted from Brown et al. [7],) the “old”
quantum theory, whose heart is Bohr’s atomic theory based on simple quantization rule of electron orbits,
successfully explained most of the phenomena found at that time with regard to atomic structure. Among
them, the Stark shift, the (normal) Zeeman effect and the formation rule of periodic table of the elements
are the most significant (the last one lead to finding of Pauli exclusion principle.) Note also that the basis
for Bose-Einstein and Fermi-Dirac statistics was already found. However, as noticed by Pauli, the failure
of Bohr theory in explanation of anomalous Zeeman effect had so deep root that the whole theory needed
to be rebuild on a new solid foundation.

Schrödinger presented what is now called Schrödinger equation which describes time evolution of a
wavefunction of a quantum state. It had a structure of wave equation, so his theory was called “wave
mechanics.” It correctly explained quantum phenomena discovered so far, including level structures of
complex atoms such as sodium and the anomalous Zeeman effect. At the same time, Heisenberg formulated
his quantum theory of electron orbits in terms of non-commuting position and momentum variables (at
first defined in terms of Fourier coefficients.) With the help by Jordan, Born reformulated Heisenberg’s
theory into infinite-dimensional matrix algebra. Then their theory was called “matrix mechanics.” Finally,
Heisenberg realized that both of matrices and waves are representation of quantum states. That is, two
formulations were equavalent. The success of unification of two different-looking theories convinced us the
correctness of both of two theories.

1
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Researcher Year Achievement

M. Planck 1900 Use of discrete energy levels in explaination of blackbody
radiation spectrum

A. Einstein 1905 Introduction of “energy quanta” in explaination of the
photoelectric effect

E. Rutherford 1910 Rutherford model of an atom consisting of a nucleus and
orbiting electrons

N. Bohr 1913 Quantum theory of hydrogen energy spectrum; Bohr’s
quantization rule

J. Stark 1913 Observation of Stark shift
J. Franck and G. Hertz 1914 Franck-Hertz experiment of electron-atom inelastic scatter-

ing
P. Epstein / 1916 Explanation of Stark shift in terms of Bohr theory

K. Schwarzschild
A. Einstein 1916 The concept of spontaneous emission
W. Kossel 1916 First trial to relate periodic table of the elements to Bohr

theory
A. Sommerfeld / P. Debye 1916 Explanation of Zeeman∗1 effect in terms of Bohr theory
L. de Broglie 1923 The concept of matter waves
S. Bose 1924 Bose-Einstein stastistics of photons
A. Einstein 1925 Bose-Einstein statistics of massive particles; prediction of

BEC for ideal bose gas
W. Pauli 1925 Pauli exclusion principle
C. J. Davisson / 1927 Electron beam diffraction

G. P. Thomson

Table 1.1: Historical developments of “old” quantum theory (“pre-Schrödinger” era.) Their subject was
electromagnetic radiation and energy structure of simple atoms, such as hydrogen. Note that this and
subsequent tables slightly overlap in time.

Researcher Year Achievement

O. Stern and W. Gerlach 1922 Stern-Gerlach experiment of spin projection
G. Uhlenbeck and S. Goudsmit 1925 The concept of electron spin
W. Heisenberg 1925 Quantum theory in terms of non-commuting variables
M. Born and P. Jordan 1925 Reformulation of Heisenberg theory in terms of infinite-

dimensional matrices
G. Uhlenbeck and S. Goudsmit 1925 The concept of electron spin

Table 1.2: Historical developments towards modern theory of quantum mechanics. The main subjects was
energy structure of complex atoms. Formulations developed through these works endured the test of time
and still plays the central role in modern physics.

As the correctness of quantum theory become more and more convincing, reseachers began to apply it
to condensed matter systems. Matters should be in principle described by quantum mechanics, just like
its ingredients, electrons and atoms. The application of quantum mechanics was first limited to one-body
approximation. However, systematic approach to quantum many-body systems were gradualy developed.
Recent topics attracting interests from many researchers are systems such that quantum nature of particles
dominates the characteristics of the system.

In particular, a classical picture of matters breaks down if the phase space of the ensemble of particles
is densely filled (see textbook by Leggett [8];) in other words, quantum mechanics becomes important in
describing a many-body system if the thermal de Broglie length λdB ≡ h/

√
2πmkBT of particles is compa-

rable or larger than the interparticle distance. In addition, we should take into account indistinguishability
of particles and resultant bosonic and fermionic statistics if particles can exchange their positions and can
overlap. In fact, in metals, that is the principal object in study of condensed matter systems, both of the
above conditions are satisfied by electrons. Electrons in metals behave very much like an ideal degenerate
Fermi gas (see classical monographs by Pines and Nozières [9, 10, 11].) They can move almost freely in a
crystal, so statistical treatment is necessary. The density of electron gas is so high that they are almost
always in a Fermi degeneracy. In fact, some of the properties of metals which could not be explained
within the framework of classical physics were successfully understood by proper applications of quantum



1.1. HISTORICAL OVERVIEW 3

mechanics. The first successes of quantum mechanics in condensed matters include derivation of the lin-
ear temperature dependence of the electronic heat capacity, and findings of the electronic band structure
calculations of the kinetic coefficients in the transport phenomena, just to name a few.

However, as the research progresses, the novel form of the matter which did not allow application
of simple quantum theory was discovered: the superfluidity in liquefied 4He discovered by Kapitsa. For
normal liquids at sufficiently low temperature T , the thermodynamic free energy F = E −TS is minimized
when kinetic energy E is minimized at the cost of low entropy S. However, 4He atoms are so light that
quantum fluctuations due to Heisenberg’s uncertainty principle does not allow to form a crystalline structure.
Although the ingenuity of Onsager captured its essence that the superfluidity is the result of BEC (1940), the
high density of superfluid helium (or He-II) and resultant strong interactions between 4He atoms prevented
further theoretical investigations. Theoretical methods which successfully described its properties such as
Ginzburg-Landau theory were to some extent phenomenological. There were Bogoliubov’s theory for weak
excitations of BEC, but it was not to meant to be a foundation of complete microscopic theory; it only
predicts resultant various phenomena provided that macroscopic occupation will occur. Various methods
based on perturbative techniques were developed, but they are hard to verify experimental agreements. In
order to develop further understandings of the quantum nature of matter, reseachers dreamed of an ideal
test bed for quantum many-body theories for long time.

The principal question is: how properties of a many-body system of interacting particles differ from those
of non-interacting ones? First, ground state of each of them are different. Secondly, one may well look
at elementary excitations from the ground states. They can be classifiend into two; that is, quasiparticles
and collective modes. Moreover, one may hope to understand properties which are defined in thermal
equilibrium states and are related to temperature of the system, or those whose manifestation are observed
in irreversible phenomena to recover thermal equilibrium from inequilibrium states.

The historical remark was the BCS theory which describes a fermionic many-body system. Nextly,
atomic nuclear theories accelerated its progress. Only a few phenomenology were known at that time,
such as the shell-model describing the nuclear structure and a few kinds of collective modes of nucleons.
However, applications of multiple scattering theory revealed the fact that strong short-range interactions
between nucleons do not alter excitation spectra very much, and thus nucleons are best described as
quasiparticles obeying the shell model. And findings in theories of superconductivity and electron gas were
imported to the nuclear theory. Then collective modes were proved to occur from weak interaction between
quasiparticles which originate from bare nucleons and interaction between them and are described by the
shell model,

Lastly, theoretical models of many-body systems were developed to improve understandings of the
essential characterics of many-body phenomena. Under appropriate assumptions, they give exact solutions
whose analytic properties can be thoroughly investigated and be compared with experiments. An example
is Tonks-Girardeau gas; a problem first raised for 1D classical bose gas by Tonks [12], and for quantum
bose gas by Girardeau [13] more than 40 years ago. The physics of such a gas is dominated by the repulsive
interactions between bosonic particles. Due to their mutual repulsion, the bosons cannot occupy the same
position in space; thus the repulsive interaction between bosons is shown to have similar effect on the
physics of the system as the Pauli exclusion principle for fermions (sometimes termed as “fermionization”
of bosons.) As another example, we refer to the review by Tasaki [14] on mathematical results obtained
for original (or, Fermi-) Hubbard model. A modified version of Hubbard model for bosons (Bose-Hubbard
model) is also presented for superconducting currents in Josephson Junction Arrays (JJA) and it is also
used for description of behavior of atoms confined in optical lattice. Lastly, we cite recent achievements in
2002 by Lieb and his coworkers which proved the existence of BEC in a weakly interacting (i.e. non-ideal)
bose gas. For long time it has been believed that perturbation from ideal bosons works for interacting
bosons, but no proof has been done before. However, starting from the expression of ground state energy
for interacting bose gas, Note that, according to Baumgartner [15], there exists an interatomic potential
such that its scattering length is positive and it can hold no two-body bound state, but leads to a many-body
bound state. Such a complexity add a twist in the study of quantum many-body systems.

∗1In fact, the phenomena observed by Zeeman was, in modern terminology, the anomalous Zeeman effect in which D1 and
D2 lines of sodium split into four and six, respectively (Brown et al. [7].) However, Zeeman thought that the number of
split lines was three. That erroneous observation accidentaly agreed well with the prediction based on the classical picture of
motion of electrons and polarization of light. Later, Cornu correctly observed that the number of split lines was four, and the
case in which splitting is more than three came to be termed as “anomalous” Zeeman effect. Today the case of three split
lines is understood as a more special case than “anomalous” case, because such a splitting occurs only for atoms posessing
electronic ground state with zero nuclear spin.



4 CHAPTER 1. INTRODUCTION

1.1.2 Quests for BEC in a dilute atomic gas

Here we look back at the history of quests for BEC in a dilute atomic gas, following Kleppner et al. [16]. In
1976, based on a phenomenology, Stwalley and Nosanow [17] predicted that a gas of spin-polarized hydrogen
(H↑) might have a remarkable property in views of low temperature physics. Because there is no bound
state in the triplet molecular potential between two H↑ atoms, a H↑ gas behaves like a simple monatomic
gas. And because of the weak interaction between them and the atom’s low mass, they would not liquefy
even at absolute zero temperature. Consequently, it might be possible to cool H↑ to the quantum regime
and achieve BEC. That paper essentially launched the search for BEC in an dilute atomic gas. Moreover,
H↑ has three advantages over other atoms:

• BEC can be understood as overlapping of matter waves of atoms, whose scale of spacial length is
thermal de Broglie length λdB ≡ h/

√
2πmkBT . As it depends on the mass m of the atom as m−1/2,

use of the lightest atom H↑ is favorable.

• H↑ has anomalously small s-wave scattering length and thus can be regarded as a quite nearly ideal
gas.

• The hydrogen plays a major role in fundamental physics as its energy structure can be calculated
from first principle.

However, it was soon understood that the large dipolar loss in hydrogen gas was the major obstacle to cool
hydrogen to reach BEC. Other reseachers began to seek other ways to cool atoms. In 1975, Hänsch and
Schawlow [18] published the idea of laser cooling of neutral atoms, and in the same year, Wineland and
Dehmelt [19] also published the same idea for trapped ions. Then it evolved into Magneto-Optical Trap
(MOT) that not only cool atoms, but also trap them at the center of quadrupole magnetic field formed in
free space. The first MOT was demonstrated by groups at Bell labs in 1987 (Raab et al. [20].) See Metcalf
and van der Straten [21, Sec. 6.2 and 11.4], Weiner [22, Sec. 10.2] and references therein. Alkali and alkali
earth atoms have only one electron in the outer shell, and thus have simple electronic energy structure.
Laser cooling depends on repeated absorptions and spontaneous emissions of laser photons forming a closed
cycle of electronic states, and thus the simple electronic energy structure is advantageous for other species.
In fact, uses of so-called “repump” laser which put atoms which got out of the closed cycle again into the
cycle are doable for them. However, the highest phase space density reachable by MOT is not enough to
reach BEC. This is because a random walk of an atom caused by repeated scattering of photons balances
at the velocity termed as Doppler velocity vD ≡

√
~γ/2m.

Thus one need another method for further cooling of atoms. The evaporative cooling, first proposed by
Hess [23] in 1986, was soon demonstrated by the joint group of MIT and Bell labs in 1988 (Masuhara et al.
[24].) So far all achievements of producing BEC in dilute atomic gases use evaporative cooling as the final
step of the procedure.

After the first achievement of BEC, various kinds of its properties were investigated. Among them, the
thermodynamic properties were the most basic. The agreement with theory was quite good for BEC of
weakly interacting atoms. Collective modes which comes from interaction were also studied.

See Table 1.3 for list of the first achievements of quantum degeneracy for each atomic specie. Note that,
most of them are alkalis and alkali earthes that have simple electronic energy structure and are suitable for
laser cooling, but quantum degeneracy in other species is realized as well. The first success for a non-alkali
atom is hydrogen[25] which was pre-cooled by a criogenic liquid helium chamber and then evaporatively
cooled.

In 2003, reseachers at Innsbruck successfully produced BEC of 133Cs (Weber et al. [26].) To circumvent
the unwanted loss of atoms due to the atom’s peculiar resonant scattering properties, they utilized Feshbach
resonance (Chin et al. [27]) along with the usual optical trapping methods. The significance of cesium in
modern physics and metrology is best understood when we look at atomic clocks. Modern atomic clocks
that serve as frequency standard has cesium atoms in their heart to use its hyperfine transition as an
oscillator. Currently the definition of second, established at the 13th meeting of CGPM∗1 in 1967 [28], is
based on such cesium atomic clocks. Likewise, in 2007, Italian group successfully produced 39K BEC (Roati
et al. [29].) They circumvent problems due to the negative and small scattering length of 39K (−33 a0)
which leads to unstability of the condensate by utilizing Feshbach resonance (D’Errico et al. [30].) By
inducing Feshbach resonance during evaporative cooling, they changed the scattering length to the large
positive value (150 a0.) In fact, this is larger than that of 87Rb, leading to a good efficiency of evaporative

∗1CGPM (Conférence Générale des Poids et Mesures) is one of the three international organizations created by the Metre
Convention.
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Bosons

Isotope Group Year N n [cm−3] T [nK]
87Rb JILA and Colorado [2] 1995 2 × 103 2.5 × 1012 170
7Li Rice [4, 31] 1995 1 × 105 3.7 × 1012 300

23Na MIT [3] 1995 5 × 105 > 1014 2000
1H MIT [25] 1998 1 × 109 4.8 × 1015 5000
4He∗ Orsay [32] 2001 > 5 × 103 1013 160

41K LENS [33] 2001 1 × 104 6 × 1011 160
133Cs Innsbruck [26] 2003 1.6 × 104 1.3 × 1013 21
174Yb Kyoto [34] 2003 5 × 103 4.7 × 1014 460
52Cr Stuttgart [35] 2005 5 × 104 700

170Yb Kyoto [36] 2007 1 × 104 200
39K LENS [29] 2007 3 × 104 100

Fermions

Isotope Group Year N n [cm−3] T/TF

40K JILA and Colorado [37] 1995 7 × 105 0.5
6Li Rice [38] 1995 1 × 103 0.25

Molecular BEC

Isotope Group Year
23Na2 MIT [39] 2003
6Li2 JILA, Colorado, and NIST [40] 2003

Table 1.3: Achievements of quantum degeneracy in a dilute atomic gas (mixture,) sorted by Year.

Homonuclear resonance

Isotope Group Year

Bosons 133Cs [27] 2000
7Li [41, 42] 2002

23Na [43] 1998
85Rb [44] 1998
87Rb [45] 2002
52Cr [46] 2005
41K [47] 2009

Fermions 6Li [48] 2002
40K [49, 50] 2002

Heteronuclear resonance

Isotopes Group Year

BF 85Rb-87Rb [51] 2006
7Li- 87Rb [52] 2009

FF 6Li- 40K Innsbruck,
Amsterdam,
Eindhoven,
NIST, and
Maryland [53]

2008

Table 1.4: Observations and theoretical predictions of Feshbach resonance in a dilute atomic gas (mixture,)
sorted by Year.

cooling. Feshbach resonances observed for other atomic species such as also have similar possibilities to
“tame” undesirable collisional properties for efficient evaporative cooling. Moreover, heteronuclear Feshbach
resonances found for Bose-Fermi mixtures such as

1.1.3 Optical lattice: an ideal tool for simulating crystalline matters

The research of optical lattice was developed along with that of BEC. Various methods to form various
kinds of periodic lattices are proposed using standing waves. See the reviews for “crystallography” of an
optical lattice[54, 55]. Some of them have various advantages, such as insensitivity to phase fluctuations
of the laser and approximate uniformness of the potential[56]. Moreover, an optical lattice can be used for
cooling atoms[55, 57, 58] when combinated with optical methods producing dissipative force, such as PGC
(polarization gradient cooling.)

Then two flows of researches combines as one; in 2002, the German groups announced their success in
observation of the phase transition of dilute gas of atoms confined in an optical lattice. This is a mile-stone
in the field of ultracold atoms, since this opens the way to simulate condensed matter systems in the real
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world which consists of periodic lattice of ions and electrons spread inside it.
There are many possibilities for use of optical lattices exept for simulation of crystalline materials. For

example, the variation of effective mass is observed in an optical lattice. Lastly, our group seeks the way
towards the realization of ultracold polar molecules in the absolute (both electronic and rovibrational)
ground state.

Our method goes as follows: first, we simultaneously create pure samples of 87Rb and 41K BECs by
evaporative cooling in a magnetic trap. Then we adiabatically transfer them into a FORT (far-off-resonance
optical dipole trap) to reduce their density to about 1013 cm−3. Finally, we superimpose an optical lattice
onto them. Here, the reduced densities of BEC assure unit filling factors of the lattice for each specie. Then
we apply magnetic field to induce the heteronuclear Feshbach resonance to bind them into a single molecule.
Such a kind of molecules, called Feshbach molecules, is not suitable for experiments in which interactions
between electric dipole moments play dominant roles, because they are so shallowly bound that their electric
dipole moments are small. Thus we use STIRAP (stimulated Raman adiabatic passage) to adiabatically
transfer them into the absolute ground state. Note that, the fact mentioned above explains the need for an
optical lattice during combination process by Feshbach resonance. Collisions between atoms and Feshbach
molecules lead to dissociation of Feshbach molecules, since the kinetic energy of atoms in BEC is comparable
(about tens of kilohertz times h, Planck constant) than the binding energy of Feshbach molecules (about
hundreds of kilohertz.) Thus we need to confine BEC in the combined potential of a magnetic trap and an
optical lattice to Then we will obtain a pure sample of BEC of ultracold polar molecules.

1.2 Contribution of this work

We constructed a 3D optical lattice which can be superimposed onto a mixture of 87Rb and 41K BECs in
a magnetic trap. We used each axis of the 3D optical lattice as a 1D optical lattice to obtain interference
patterns formed by a 87Rb BEC released from the combined potential of the magnetic trap and the 1D
optical lattice.

Moreover, we deepened the 1D optical lattice so that the interference patterns could be diminished
and finally lost. This loss of the interference patterns may be attributed to suppression of tunneling of
atoms between neighboring sites of the 1D optical lattice. We confirmed that the possibility of heating the
atoms could be denied by shallowing the 1D optical lattice from the level at which there was no interference
pattern, and then observing the recovery of the interference patterns. This assures that the whole procedure
was done in an adiabatic manner.

Nextly, by using two of the three axes of the 3D optical lattice as a 2D optical lattice, we again obtained
interference patterns that was 2D in this case. By adiabatic tuning of the depth of the 2D lattice, we
observed similar loss of the interference pattern and its recovery.

These result suggests that the 3D optical lattice can be used to observe the superfluid to Mott insulator
transition of 87Rb BEC when we properly reduce the density of the BECs (an ongoing project in our
group) and activate all axes of the 3D optical lattice simultaneously. Moreover, it can be adiabatically
superimposed onto a mixture BEC of 87Rb and 41K that is already realized in our group so that for the
mixture BEC with unit filling factors for each specie. Then we will be able to combine them into ultracold
polar molecules in the absolute ground state using Feshbach resonance and STIRAP.

1.3 Structure of this thesis

First, the basic theoretical concepts are introduced (Chap. 2.) The main object of this field of research is
an atom. Some formulas on interactions between an atom and electromagnetic fields used in subsequent
sections are summarized (Sec. 2.1.) By cooling atomic gas, and thus reducing its degrees of freedom, we
can observe a transition from the classical to the quantum degenerate state, namely, the Bose-Einstein
condensation. Its properties relevant to our experiment are summarized (Sec. 2.2.) The macroscopic
quantum nature of BEC is by itself so rich and attractive, but its significance in modern condensed matter
physics can be much more enhanced by the combination with an optical lattice; that is why we choosen
it as the main topic of this master’s thesis. Physics governing a BEC in an optical lattice is explained,
including important consequenses used in analysis of the experimental results (Sec. 2.3.)

Nextly, our experimental system is described (Chap. 3.) We describe the structure of our vacuum
chamber, in which our experiments have been done (Sec. 3.1.) There we also describe a process to obtain
ultra high vacuum to make a lifetime of the condensate long enough. As another basis of our experimental
system, we describe optical system to provide frequency-locked lasers with various amounts of frequency
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shift and having enough powers (Sec. 3.2.) We also describe our setup of MOT and the procedure of CMOT
(Compressed MOT) for effective increase of phase space density (Sec. 3.3.) The procedure of optical pump-
ing to prepare atoms in desirable spin states are also described there. After CMOT, further cooling of
atomic cloud is done by rf-forced evaporative cooling. We use a magnetic trap in Ioffe-Pritchard configura-
tion to confine atomic clouds. Its parameters and subsystems attached for various purposes are described
(Sec. 3.4.) As its name suggests, rf-forced evaporative cooling needs rf (radio-frequency electromagnetic
radiation) with a high power. The system to apply rf on atomic clouds are described (Sec. 3.5.) At the
final stage of evaporative cooling, BEC is created and the optical lattice is superimposed on it. In order to
suppress hopping of atoms between neighboring lattice sites, we need a deep potential. Our experiments
heavily rely on visual image of the atomic cloud for measurement of its properties. The imaging system for
absorption imaging of the cloud is described (Sec. 3.7.)

Then we describe our experimental results (Chap. 4.) Our final objective is creating ultracold polar
molecules of 41K-87Rb and we are each step for its realization. Implementation of a 3D optical lattice is
one step; and as one of other sub-goals, we created 41K BEC.



Chapter 2

Theoretical Backgrounds

2.1 Interactions of Atoms and Electromagnetic Radiations

Here we summarize the theory of interaction of atoms and electromagnetic radiations which are relevant
to use for the subsequent analysis of experiment results. Though one may work out in a fully quantum-
mechanical treatment in which both atoms and electromagnetic waves are quantized and expressed as
so-called “dressed” states, the semiclassical theory is known to give correct results (see, e.g. Grimm et al.
[59].) So the following discussion is based on the semiclassical theory.

2.1.1 Optical Dipole Traps

To a first approximation, the interaction between a neutral atom and electric field E is the dipole interaction:

∆E = −1
2
d · E, (2.1)

where d denotes the induced dipole of the atom. This energy shift ∆E is called (ac) Stark shift. Let α
denote the polarizability of the atom: d = αE. Assuming the classical model of an electron bound to the
atomic nucleus by a harmonic potential, α generally depends on the driving frequency ω, and has complex
value to describe absorption of photons by the atom. The energy shift ∆E, corresponding to the real part
of α, give rise to the optical dipole potential Udip felt by an atom. And the imaginary part corresponds to
the photon scattering rate Γsc, which is the rate of spontaneous emission of a photon absorbed by the atom.

The expression for the depth of the dipole potential for the laser with intensity I is

Udip(I;ω, ωX) = −3πc2

2ω3
X

(
Γ

ωX − ω
+

Γ
ωX + ω

)
I, (2.2)

where c is the speed of light, ω = 2πc/λ is the (angular) frequency∗1 of the laser of wavelength λ, ωX is the
resonant frequency of atom X (X = K or Rb in our case,) and Γ is the natural linewidth of that transition,
which is the measure of expectation value of the dipole matrix element. The values of Γ are tabulated for
major species∗2 and for alkali atoms, but the approximated value Γ/2π ≈ 6 MHz usually suffices. Then we
can use the well-known rotating-wave approximation in which Γ/(ωX + ω) ∼ 10−8 is set to zero, obtaining

Udip(I;ω, ωX) ≈ 3πc2

2ω3
X

Γ
∆

I ≡ Udip(ω, ωX) · I. (2.3)

Here, ∆ ≡ ω−ωX is the detuning of the laser frequency from the resonant frequency of the atom. From this
definition of the detuning, we see that the red-detuned laser, for which the detuning is negative, creates an
attracting potential for atoms. And in the last formula, we defined the propoptional coefficient Udip(ω, ωX)
to separate dependence of the potential depth on ω from linear dependence on I.

Similarly, the expression for the photon scattering rate is

Γsc(I; ω, ωX) =
3πc2

2~ω3
X

(
ω

ωX

)3 (
Γ

ωX − ω
+

Γ
ωX + ω

)2

I ≈ 3πc2

2~ω3
X

(
ω

ωX

)3 Γ2

∆2
I

≡ Γsc(ω, ωX) · I, (2.4)
∗1We use s−1 as the unit of angular frequency and Hz as frequency. We also use s−1 as the unit of rate of events in

probabilistic phenomena; Hz is only used for periodic phenomena.
∗2See, e.g. Steck [60] for 87Rb, 85Rb, 23Na, and 133Cs. And see Gehm [61] and cLeBlanc [62] for 6Li and 40K, respectively.

8
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Figure 2.1: Udip(I; ω, Rb) and Γsc(I; ω, Rb) plotted for several laser frequencies.

where we again used the rotating-wave approximation and separated linear dependence on I. The sponta-
neous emission is an incoherent process leading to the unwanted heating of the atomic cloud. In order to
supress the photon scattering rate to the level at which it does no harm during experiments, we can use
the far-detuned (|∆| ≫ Γ) laser for the optical dipole traps. It is worthwhile to compare dependences of
Udip on ∆ and I, and that of Γsc:

Udip ∝ I

∆
vs. Γsc ∝

I

∆2
, (2.5)

where ω/ωX is approximated to unity. As |∆| increases, Γsc decreases faster than |Udip|. Thus we can
find the optimal point in the ∆-I plane at which |Udip| is high enough (about 10 µK) and Γsc is low
enough (1/Γsc ≫ texp, where the length of experiment texp is about 0.1 s.) In Figure 2.1, we plotted the
dependencies of Udip(I; ω, Rb) and Γsc(I; ω, Rb) on laser intensity I for several values of laser frequencies
ω = 2πc/λ corresponding to λ = 781, 800, 900, 1064 nm. Here we took into account of D1 line (explained
later,) though it does not significantly alter the shapes of the curves. We clearly see that the photon
scattering rates (dashed lines) decays faster than the potential depth (solid lines) as we increase detuning
from 781 nm to 1064 nm. Moreover, under the constraint that the photon scattering rate is kept at a
constant value G, we can numerically solve Γsc(I; ω, ωX) = G for ω to obtain laser frequency ω(I,G;ωX)
which gives the necessary amount of detuning for that particular value of the photon scattering rate. The
resultant function Udip(I,G) ≡ Udip(I; ω(I,G; ωX), ωX) is plotted in Figure 2.1 for G = 0.1 s−1 and X =
Rb. As we increase the intensity, we need larger (red) detuning, thus longer wavelength, to keep the photon
scattering rate constant. But resultant depth of the optical dipole potential increases almost linearly with
I in the region shown in the Figure.

For application to the trapping of alkali atoms, we need to take into account both of D1 (2S1/2 → 2P1/2)
and D2 (2S1/2 → 2P3/2) transitions, because our optical lattice uses a far-detuned laser with wavelength
of 1064 nm. The detuning is larger than the difference between the frequencies of two lines, as can be seen
in Figure 2.3. In the figure, the lower and upper horizontal axis shows wavenumbers and corresponding
wavelengths of transitions, respectively. The area of the bars indicates the relative intensity of observed
signal with wavenumbers ranging from 9000 cm−1 to 17000 cm−1, adapted from NIST database[63]. The
largest and the second largest bars are D2 and D1 line, respectively. The vertical broken line shows
the wavenumber of the optical lattice. We clearly see that both of the D1 and D2 lines have dominant
contribution to optical dipole interaction potential of the optical lattice, and that contributions from other
transitions are negligible. Other alkali atoms have similar wavenumbers for D1 and D2 transitions. Then
the depth of the optical dipole trap with linear polarization is calculated from the following formula:

Udip(ω,X) =
πc2

2ω3
X

(
2Γ
∆2

+
Γ
∆1

)
, (2.6)

where ∆i denotes the detuning from the Di line of the atom X. Here, the hyperfine structures of both the
ground and the excited states are assumed to be unresolved because of the large detunings. For example,
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in the case of 87Rb and the laser with wavelength of 1064 nm, we have

∆2

2π
=

c

1064 nm
− c

780 nm
= (282 − 384) THz = −103 THz, (2.7)

∆1

2π
=

c

1064 nm
− c

795 nm
= (282 − 377) THz = −95 THz, (2.8)

for respective lines (remember that negative values of ∆ means red-detuning.) The two terms in brackets
of eq. (2.6) represent the contributions of two lines to the total dipole potential. Likewise, the expression
for the photon scattering rate is

Γsc(ω,X) =
πc2

2~ω3
X

(
2Γ2

∆2
2

+
Γ2

∆2
1

)
. (2.9)

Assuming again the laser with wavelength λ = 1064 nm (corresponding to ω = 1.77× 1015 s−1,) we set

U
(Rb)
dip ≡ Udip[(ω, ωRb,1, ωRb,2)/2π = (282, 377, 384) THz]

= kB · [4.45 µK/(W/cm2)] = h · [3.68 MHz/(W/cm2)] = [46.2/(W/cm2)] · E(Rb)
rec , (2.10a)

U
(K)
dip ≡ Udip[(ω, ωK,1, ωK,2)/2π = (282, 389, 391) THz]

= kB · (4.01 µK/W) = h · (3.31 MHz/W) = 19.6 E(K)
rec (2.10b)

For the definition of the recoil energy Erec, see Sec. 2.3.
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2.1.2 Rabi frequency

Basics: Rabi frequency of the two-level system (without decay)

Here, we consider the two-level system coupled to a coherent monochromatic eletromagnetic wave. The
wavefunction of the system |ψ(t)⟩ is expressed by two time-dependent coefficients cg(t) and ce(t), whose
square represent the probability of finding a system in the ground state |g⟩ or the excited state |e⟩, respec-
tively; that is,

cg(t) ≡ ⟨g|ψ(t)⟩, ce(t) ≡ ⟨e|ψ(t)⟩. (2.11)

We are going go use the time-dependent perturbation theory explained in App. A.2. The unperturbed
Hamiltonian H0 is represented by the following matrix:

H0 =
(

0
~ω0

)
(2.12)

The upper-left zero means that we measure energies from that of the ground state |g⟩. The perturbation
Hamiltonian V is represented by the following matrix:

V =
(

~Ωcos(ωt)
~Ωcos(ωt)

)
(2.13)

Here we used the so-called electric dipole approximation in which the spatial dependence is neglected in,
e.g.,

⟨e|V |g⟩ = ⟨e|[ϵE0 cos(kz − ωt) · (−er)]|g⟩ (2.14)

and thus

−eE0 cos(ωt)ϵ · ⟨e|r|g⟩ = ~Ωcos(ωt) (2.15)

is used instead. Here, we defined the (one-photon) Rabi frequency Ω such that

~Ω ≡ −eE0ϵ · ⟨e|r|g⟩. (2.16)

Suppose that the two-level system under consideration is a hydgrogen atom. Then the numerical value for
the Rabi frequency can be computed from the first principle. Denoting the wavefunctions of the 1 2S1/2

state and the 2 2P3/2 state by ϕg(r) and ϕe(r), respectively, we have

⟨e|r|g⟩ =
∫

ϕ∗
e(r)rψg(r)dr. (2.17)

However, we rarely do such a calculation and alwasy use the experimental value. The state vector |ψ(t⟩
can be represented by the following 2-dimensional column vector:

|ψ(t)⟩ =
(
⟨g|ψ(t)⟩
⟨e|ψ(t)⟩

)
=

(
cg(t)
ce(t)

)
. (2.18)

Then we go to the interaction picture. From Eq. (2.12), we have

eiH0t/~ =
(

1
eiω0t

)
. (2.19)

Thus, in the interaction picture, the state vector |ψI(t)⟩ and the perturbation Hamiltonian V I(t) is respec-
tively represented as

|ψI(t)⟩ =
(

1
eiω0t

)(
cg(t)
ce(t)

)
=

(
cg(t)

eiω0tce(t)

)
≡

(
dg(t)
de(t)

)
, (2.20)

V I(t) =
(

1
eiω0t

)(
~Ωcos(ωt)

~Ωcos(ωt)

)(
1

e−iω0t

)
=

(
~Ωe−iω0t cos(ωt)

~Ωeiω0t cos(ωt)

)
. (2.21)

Here, for each of i = g, e, we defined di(t) ≡ eiϵit/~ci(t), where ϵi ≡ ⟨i|H0|i⟩ is 0 for |g⟩ and ~ω0 for |e⟩.
Moreover, we use the so-called rotating-wave approximation (RWA); that is, we neglect oscillating term with
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a high frequency such as ei(ω + ω0), as its frequency is so high that its effects is averaged out and it never
have influence on physically observable quantities. We can do such an approximation for the matrix-element
of V I(t). For example, we have

e−iω0t cos(ωt) =
1
2

[
ei(ω−ω0)t + e−i(ω+ω0)t

]
≈ 1

2
ei(ω−ω0)t ≡ 1

2
ei∆t. (2.22)

Here, we defined the detuning ∆ as ∆ ≡ ω − ω0. Then the perturbation Hamiltonian can be written as

V I(t) ≈ ~Ω
2

(
ei∆t

e−i∆t

)
. (2.23)

Then the explicit solution of the coupled linear differential equations

i~∂t|ψI(t)⟩ = V I(t)|ψI(t)⟩ ⇐⇒
(

ḋg(t)
ḋe(t)

)
= − iΩ

2

(
ei∆t

e−i∆t

)(
dg(t)
de(t)

)
. (2.24)

can be obtained by standard techniques. Here, we denote the time-derivative by the dot over a variable.
First, we apply simple substitutions:

d̈e(t) = −i∆
[
− iΩ

2
e−i∆tdg(t)

]
− iΩ

2
e−i∆tḋg(t) = −i∆ḋe(t) −

iΩ
2

e−i∆t ·
[
− iΩ

2
ei∆tde(t)

]
.

∴ d̈e(t) + i∆ḋe(t) +
Ω2

4
de(t) = 0. (2.25)

The uncoupled equation for dg(t) is a second-order linear differential equation with constant coefficients.
Thus it can be solved by looking at the characteristic equation:

α2 + i∆α +
Ω2

4
= 0 ⇐⇒ α = − i

2
(∆ ± Ω′) , (2.26)

where we defined the effective Rabi frequency Ω′ under the detuning ∆ as Ω′ ≡
√

Ω2 + ∆2. Using the above
α’s, we can write down the general solution using two coefficients D+ and D−:

de(t) = D+e−i(∆+Ω′)t/2 + D−e−i(∆−Ω′)t/2. (2.27)

The values of these two coefficients are determined by the initial conditions, typically at t = 0. For example,
we specify that dg(0) = 1 and de(0) = 0; that is, all the population accumlates in the ground state. Then,
using the latter condition, we have

de(0) = D+ + D− = 0 ∴ de(t) = −2D+e−i∆t/2 sin
(

Ω′t

2

)
. (2.28)

Then, using the former, we have

dg(0) =
2i

Ω
ei∆tḋe(t)

∣∣∣∣
t=0

= −2i

Ω
D+Ω′ = 1 ∴ D+ =

i

2
Ω
Ω′ . (2.29)

Finally, we have

ce(t) = e−iω0tde(t) = −i
Ω
Ω′ e

−i(ω+ω0)t/2 sin
(

Ω′t

2

)
, (2.30a)

cg(t) = dg(t) =
2i

Ω
ei∆tḋe(t) = ei∆t/2

(
cos

Ω′

2
t − i

∆
Ω′ sin

Ω′t

2

)
. (2.30b)

Thus, the population of each state is as follows:

|ce(t)|2 =
Ω2

Ω2 + ∆2

1 − cosΩ′t

2
, (2.31a)

|cg(t)|2 =
Ω2

Ω2 + ∆2

1 + cosΩ′t

2
+

∆2

Ω2 + ∆2
(2.31b)

The dynamics of this system is illustrated in Metcalf and van der Straten [21]. Note that, though the
population for each state goes back to the the initial state after the time of 2π/Ω′ passed, the wavefunction
of the system acquires the extra factor of −1. This is the remarkable feature of the spin-1/2 system.

Note that, if we take into account of the decays from the excited states to lower states, then the process
needs to be described by the density matrix, since the decay is an incoherent process and the resultant
statistical mixture of the states cannot be written by a state vector in any Hilbert space. We do not discuss
such cases; refer to the standard textbooks on quantum mechanics.
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Advanced: Rabi frequency of the symmetric V-shaped system (without decay)

Now we calculate the three-level case. However, we restrict ourselves to the case of symmetric V-shaped
structure. There are a ground state |g⟩ and two excited states |e1⟩ and |e2⟩ whose energies are degenerate.
Let ~ω0 denote such energies. Then the unperturbed Hamiltonian H0 and perturbation Hamiltonian V are
respectively represented as

H0 =

~ω0

0
~ω0

 , (2.32a)

V =

 ~Ωcos(ωt)
~Ωcos(ωt) ~Ωcos(ωt)

~Ωcos(ωt)

 , (2.32b)

in the Schrödinger picture. Here, Ω again denotes the one-photon Rabi frequency. In the following, we see
how the shape of the level structrue makes the effective Rabi frequency differs from Ω. From Eq. (2.32a),
we have

eiH0t/~ =

eiω0t

1
eiω0t

 . (2.33)

Thus, in the interaction picture, we have

|ψI(t)⟩ = eiH0t/~

⟨e1|ψ(t)⟩
⟨g|ψ(t)⟩
⟨e2|ψ(t)⟩

 =

eiω0t

1
eiω0t

 ce1(t)
cg(t)
ce2(t)

 ≡

de1(t)
dg(t)
de2(t)

 . (2.34)

And the perturbation Hamiltonian is

V I(t) =

eiω0t

1
eiω0t

 ~Ωcos(ωt)
~Ω cos(ωt) ~Ω cos(ωt)

~Ωcos(ωt)

 e−iω0t

1
e−iω0t


= ~Ω

 eiω0t cos(ωt)
e−iω0t cos(ωt) e−iω0t cos(ωt)

eiω0t cos(ωt)

 ≈ ~Ω
2

 e−i∆t

ei∆t ei∆t

e−i∆t

 (2.35)

Again, we used RWA in the last equation. Then we again try to solve the coupled linear differential
equations with respect to di(t)’s (i = g, e1, e2.) However, to simplify subsequent calculations, we assume
the special initial condition: dg(0) = 1 and de1(0) = de2(0) = 0. Then the time-evolution is symmetric with
respect to i = e1 and e2. Thus we rename those coefficients as follows:

d0(t) ≡ dg(t), d1(t) ≡ de1(t) = de2(t). (2.36)

Then the coupled differential equations are rather simplified:(
ḋ0(t)
ḋ1(t)

)
= − iΩ

2

(
2ei∆t

e−i∆t

)(
d0(t)
d1(t)

)
. (2.37)

It is worthwhile to compare the above quation with Eq. (2.24). The factor of two in the matrix element
appears because there are in fact two final states for the transition from the ground state. Solving the
coupled equations with the above initial condition, we have

ce1(t) = ce2(t) = e−iω0td1(t) = −i
Ω
Ω′ e

−i(ω+ω0)t/2 sin
(

Ω′t

2

)
, (2.38a)

cg(t) = d0(t) =
2i

Ω
ei∆tḋ1(t) = ei∆t/2

(
cos

Ω′

2
t − i

∆
Ω′ sin

Ω′t

2

)
. (2.38b)

These solutions are same with Eq. 2.30 except the definition of the effective Rabi frequency, Ω′ ≡
√

2Ω2 + ∆2.
Note that, even under the resonance condition ∆ = 0, the maximal population in the excited states is 1/2.
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2.2 Bose-Einstein condensation of ideal bosons

Here we present a few properties of BEC which are relevant to the subsequent analysis of their behavior in
a optical lattice.

The condensate fraction N0/N can be expressed as a function of temperature T :

N0

N
= 1 −

(
T

Tc

)3

. (2.39)

Thus by the measurement of the condensate fraction, we know the temperature of the atomic cloud con-
sisting of the condensate and thermal gas.

Quite many aspects of BEC can be explained in terms of Gross-Pitaevskii equation:

i~
∂

∂t
Ψ(r, t) =

[
−∇2

2m
+ U(r) +

4πa~2

m
|Ψ|2

]
Ψ(r, t). (2.40)

This is a time-dependent nonlinear Schrödinger equation. By separation of variables Ψ(r, t) ≡ eµt/(i~)Φ(r),
we have time-independent one:

µΦ(r) =
[
−∇2

2m
+ U(r) +

4πa~2

m
|Φ|2

]
Φ(r). (2.41)

Here µ have the meaning of the chemical potential of the condensate.
In Thomas-Fermi approximation, one ignores the kinetic term of the Gross-Pitaevskii equation, obtaining

µΦ(r) =
[
U(r) +

4πa~2

m
|Φ|2

]
Φ(r) (2.42)

for the time-independent case. Then we can define the so-called “Thomas-Fermi radius” l of the condensate
for which trapping potential U(l) equals the chemical potential µ and thus density term (∝ |Φ|2) vanishes.
Due to the anisotropy in the trapping potential, Thomas-Fermi radius generally depends on the direction.
Thus, by li we denote Thomas-Fermi radius for the direction i ( = r or z.)

For each direction of the trap, Thomas-Fermi radius of the condensate can be calculated from the
corresponding trap frequency using the following formula:

li =
1.72
ωi

(
Na~2ω̄3

m2

)1/5

=
{

5.62 (87Rb)
6.82 (41K)

}
× 100

ωi/2π

[
(ω̄/2π)3

5 × 105
· N

105

]1/5

µm. (2.43)

Here, ω̄ ≡ (ωxωyωz)1/3 is the geometric mean of trapping frequencies for three directions of the trap.
Coefficients for respective atoms are calculated using these values:

aRb = 100 a0 aK = 60 a0 (2.44)

mRb = 86.9 u = 1.44 × 10−25 kg mK = 41.0 u = 6.80 × 10−26 kg (2.45)

2.3 Optical lattice

By utilizing a standing wave formed by two counter-propagating laser beams, one can form an optical
analogue of the periodic lattice of ions in a crystal. Here we discuss the behavior of atoms confined inside
it.

2.3.1 Periodic potential formed by a standing wave of two counter-propagating
lasers

For simplicity, our discussion begins with the case of plane waves. Suppose that two plane waves E and
E′ have same frequency ω and opposite direction of propagation k and −k, respectively. Then the electric
field Etot formed by superposition of the two is

Etot(r, t) = E(r, t) + E′(r, t)

=

(∑
i

ϵiEi cos(ωt − k · r + δi)

)
+

(∑
i

ϵiE
′
i cos(ωt + k · r + δi + ∆i)

)
, (2.46)
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where ϵi’s are unit vectors pointing to the direction of polarization (hereafter i varies over two symbols “s”
and “p” representing s- and p-polarization, respectively,) δi’s are initial phases for each linearly polarized
wave with wave vector k, and ∆i’s are additional terms to represent initial phases for waves with wave
vector −k. Such treatment implies that the waves with −k originates from retroreflection of those with k.
In the following, we will discuss in a very general manner in that both amplitudes and initial phases are
treated as independent eath other, unless otherwise stated.

According to the classical theory of interaction between atoms and electric fields, the energy shift Udip

due to an electric dipole moment induced by the electric field is proportional to the squared amplitude of
the electric field:

Udip ∝ |Etot|2 =
∑

i

[
E2

i cos2(ωt − k · r + δi) + E′2
i cos2(ωt + k · r + δi + ∆i)

+ 2EiE
′
i cos(ωt − k · r + δi) cos(ωt + k · r + δi + ∆i)]

=
∑

i

{
E2

i

2
+

E′2
i

2
cos[2(ωt − k · r + δi)] +

E′2
i

2
+

E′2
i

2
cos[2(ωt + k · r + δi + ∆i)]

+ EiE
′
i[cos(2ωt + 2δi + ∆i) + cos(2k · r + ∆i)]

)
. (2.47)

Here, we used the identity

cos A cos B =
1
2
[cos(A + B) + cos(A − B)] (2.48)

and its corollary cos2 A = (1 + cos 2A)/2, obtained by setting A = B.

The frequency of light as an electromagnetic wave is so large as several hundreds of THz∗3, so only their
time-average can physicaly affect atoms, or in particular, the electrons which are its ingredients. Denoting
the time-averaged value of a physical quantity A by ⟨A⟩, we have

⟨|Etot|2⟩ =
∑

i

[
E2

i

2
+

E′2
i

2
+ EiE

′
i cos(2k · r + ∆i)

]
, (2.49)

since all terms containing cos 2ωt are averaged out to zero.

Idealized case

In an idealized case in which ∆i = 0, E′
s = Es and E′

p = Ep, we have

⟨|Etot|2⟩ =

(∑
i

E2
i

)
[1 + cos(2k · r)] . (2.50)

That is, we have a periodic (in particular, sinusoidal) potential for atoms with period of 2π/(2k) = λ/2.
Here, λ is the wavelength of the laser. The origin of the coordiate system is understood to lie on the plane
of retroreflection, since the boundary condition∗4

⟨|Etot(r, t)|2⟩
∣∣
r·k=0

= 0 (2.51)

is satisfied for any t. Note that the (anti)nodes for the both directions of polarization agrees regardless of
the initial phases δi. Thus we set Ep = 0 and write Es as just E. Shifting the origin by multiples of λ/2,
that is, to one of the antinodes at which the potential takes its minimum (for red-detuned case,) we expand
the above expression to obtain its harmonic approximation:

2E2 cos(2k · r) = 2E2
[
1 − (k · r)2 + O(k · r)4

]
. (2.52)

This result will be used to calculate the frequency of a small oscillation of atoms confined in an optical
lattice.

∗3For example, IR (infrared) light with wavelength of 1064 nm has frequency of 282 THz.
∗4Here we assumed the use of metallic mirrors made of metallic material having a nearly infinite conductivity (σ = 4.9×107

(Ω · cm)−1 for gold, for example) for the boundary condition. The same also applies for dielectric mirrors that are used in
part of our experimental system.
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Ee⃗1

E′e⃗2

d2 = ⟨|Etot|2⟩
θ ≡ 2k · r mod 2π

Loss in visibility {

θ
d

Figure 2.4: Geometric interpretation of the effect of broadening of a retroreflected beam.

Considerations on non-ideal case I: broadening of beams

For evaluation of the effect of misalignment, consider the case in which Ep = E′
p = 0 and ∆i = 0, but

E′
s ≡ E′ < E ≡ Es. The physical meaning of this is as follows: we assume Gaussian beams which have

nonzero curvature for their wavefront. Thus their intensity decays like 1/z2 as it propagates through free
space (z → ∞.) In order to compensate this decay, we use a concave mirror for retroreflection. The radius
of curvature R is chosen so that foci of the two beams coincide at the center of a magnetic trap. That is,
the distance d between the beam waist of the forward beam and the concave mirror should be set as d = R
(or equivalently, d = 2f , if we use the focal length f .) Nevertheless, a real experiment cannot be free from
deviations from ideal conditions. One need to evaluate effects of mismatch between d and R on visibility
of an optical lattice.

First, we give an intuitive image of the problem under consideration. Under the above assumpiton, we
have

⟨|Etot|2⟩ =
1
2
[E2 + E′2 + 2EE′ cos(2k · r)] =

1
2
|Ee⃗1 + E′e⃗2|2. (2.53)

In the last equation, we used two abstract 2D geometric vectors e⃗1,2 of unit length such that the mutual
angle between them is 2k · r modulo 2π (as depicted in Figure. 2.4.) Imagine that the root of E′e⃗2 is set
at the tip of Ee⃗1, and E′e⃗2 changes its orientation in a circular motion. Then the distance between the
root of Ee⃗1 and the tips of E′e⃗2 changes accordingly, and the square of the distance gives the depth of the
periodic potential of a non-ideal optical lattice.

For example, we analyze experimental data taken at our lab. An example plot is shown in Figure 2.5.
The cross-shaped markers are measured values of 1/e2 diameter of intensity of an output beam from a fiber
coupler F230FC-C used at Path (A) of the optical lattice. Least-square fit of those by a phenomenological
fitting function

f(z; w0, z0, zR) = 2 × w0

√
1 +

(
z − z0

zR

)2

(2.54)

yielded parameters of w0 = 0.14(1) mm, z0 = 520(4) mm, and zR = 61(6) mm. The fitting function
f(z; w0, z0, zR) given above is “phenomenological” because it treats beam radius w0 at the beam waist and
Rayleigh length zR of the beam as two independent parameters, though the latter is given by πw2

0/λ, where
λ is the wavelength. Such a treatment is often nesessary for better prediction of far-field properties of the
beam because of existence of higher order TEM modes. In this case, however, we obtained zR = 61 mm.
This agrees well with zR = 58 mm predicted from w0 = 0.14 mm, and thus the influence of higher order
TEM modes can be ignored. The broken curve is the most important entity in the figure, the diameter of
the retroreflected beam. The position of its beam waist and its radius at the waist is calculated using the
“thin lens equation for Gaussian beams” (→ Appendix)

b̃(ã, zR; f) =
ã(ã − 1) + z̃R

2

(ã − 1)2 + z̃R
2 , where ã ≡ a

f
, b̃ ≡ b

f
, and z̃R ≡ zR

f
, (2.55a)

w′
0(ã, zR; f) =

w0√
(ã − 1)2 + z̃R

2
(2.55b)

⇐⇒ z′R(ã, zR; f) =
zR

(ã − 1)2 + z̃R
2 , where z′R ≡ π(w′

0)
2

λ
. (2.55c)

For concave mirrors, a relationship f = R/2 is used[64]. Then we can estimate visibility of the optical
lattice for a given distance d between the beam waist and the concave mirror. Assuming that the waist
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Figure 2.5: Plot of 1/e2 diameter of forward- and backward-propagating Gaussian beams.

Figure 2.6: Calculated visibilities at a few points on the standing wave corresponding to Figure 2.5. (a)
z = z0, that is, at the beam waist. (b) z = z0 + 0.1zR. (c) z = z0 − 0.1zR.

Figure 2.7: The effect of broadening.

of the forward beam is made coincide with the center of the magnetic trap within error whose order of
magnitude is Rayleigh length, we substitute E with

E0
w0

w(z)
exp

[
− r2

w2(z)

]
exp

[
−ik

(
z +

r2

2R(z)

)
+ iζ(z)

] ∣∣∣∣
z=0

. (2.56)

Note that the origin of coordiate system is shifted to make it coincide with the beam waist. This is justified
by the fact that the intensity of Gaussian beams decays very slowly compared with the period of a standing
wave formed by superposition of them. Thus we may safely forget about the boundary condition (2.51).
And simultaneously we substitute E′ with

E0
w′

0

w′(z − b)
exp

[
− r2

w′2(z − b)

]
exp

[
−ik

(
z − b +

r2

2R′(z − b)

)
+ iζ(z − b)

] ∣∣∣∣
z=d

,

where b ≡ f · b̃(d/f, zR, R/2), (2.57)

and variables with primes are understood as transformed ones. By computing numelical values for realistic
experimental conditions, we can estimate the effect of power imbalance between two beams. The resultant
decrease in visibility is about 10–20 %.

Considerations on non-ideal case II: extra reterdation

Dielectric mirrors are formed by many thin layers of dielectric materials with different values of dieletric
constants. Their values are designed so that destructive interference causes transmitted light to vanish,
leading to reflectivity as high as 99.9 %. Such an high reflectivity is not attainable with metal mirrors that
cannot be free from absorption, and leads to the great advantage of dieletric mirrors over metal mirrors.
However, this subtle mechanism often leads to unwanted effect of retardation of phase∗5. That is, dieletric
mirrors works as reterdation plate with small but unspecifield retardation δ. Therefore when the incident
wave is linearly polarized but whose direction is neither parallel nor orthogonal to the plane of incidence,
then the reflected wave is no longer linearly polarized. (As a corollary, the ellipticity of the elliptically
polarized wave changes upon reflection by dielectric mirrors.)

∗5There exist phase retarders (such as half-wave plates or quarter-wave plates) which utilize this effect positively. Such
products are called “geometric” or “reflection-mode” phase retarders and differs from traditional phase retarders that are
made of birefrengent crystals having different indeces of refraction for “ordinary” and “extraordinary” light in that even when
the direction of polarization of the incident wave is rotated along the axis of propagation, its functionality is not affected.
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Quantity Ours Michigan

Total number of atoms [104] 40 5–8
Radial and axial trap frequency (ωr, ωz)/2π [Hz] (225,10) (45,15)
Density of atoms [cm−3]
Wavelength of the optical lattice beam [nm] 1064 852
Maximal power of the 1D lattice beam [mW] 800 200
Diameter of the 1D lattice beam [µm] 280 (e−2) 80 (FWHM)

Table 2.1: Comparison between our and Michigan group’s experimental conditions. Note that, our value
for the beam diameter in the last column refers to the e−2 diameter at which the intensity falls to e−2 of
the peak value, while that of Michigan’s group refers to the FWHM (full width at the half maximum) at
which the intensity falls to a half of the peak value. For a gaussian beam, the former is about 1.700 times
wider than the latter.

Figure 2.8: Diffraction relation of atom and the principle of Bragg diffraction.

Similar effect is observed for the AR- (anti-reflection) coatings on lenses and surfaces of the glass cell of
our vacuum chamber. The AR-coating has almost similar structure as dielectric mirrors except that constr
the transmitted wave is no longer linearly polarized in the situation stated above.

Therefore we need to treat ∆i’s as nonzero, or specifically, ∆ ≡ ∆p −∆s as nonzero. Assuming, in turn,
that E′

i = Ei for simplicity, we have

⟨|Etot|2⟩ =
∑

i

E2
i [1 + cos(2k · r + ∆i)]

= E2
s + E2

p + E2
s cos(2k · r + ∆s) + E2

p cos(2k · r + ∆s + ∆), (2.58)

and in the worst case such that Es = Ep ≡ E and ∆ = −π/4, we have

⟨|Etot|2⟩ = E2 + E2 + E2 cos(2k · r + ∆s) + E2 sin(2k · r + ∆s) = 3E2. (2.59)

That is, there is no standing wave at all! This circumstance rather resembels Polarization Gradient Cooling
(PGC), or Sisyphus cooling, in which two counter-propagating, circularly polarized lasers form a “standing
wave” of polarization.

Michigan group (Sapiro et al. [65]) exploited the Kapitza-Dirac KD diffraction to calibrate the depth
of the lattice potential. They observed the population oscillation of the undiffracted (p = 0) state, and
fitted the oscillation by the zeroth-order Bessel function J0(x), thereby obtaining the Rabi frequency Ω0

of the Bragg pulse from the first zero z0 = π/∆ ≈ 2.405 of J0(x). Alternatively, one might use the
ratios between populations of diffraction peaks of higher orders. However, Michigan group’s method is
advantageous in practice, because the populations of the peaks of higher orders often have large deviations
from the theoretical prediction. And they also observed the reversible loss of superfluidity of BEC. As they
deepen the 1D lattice, the sharp interference peaks which was originally present dissapeared around the
depth of 30Erec. Their experimental conditions (adapted from Sapiro et al. [65] and Zhang et al. [66]) are
summarized and compared with ours in Table 2.1.

Moreover, was obtained experimentaly counterintuitive result on interference patterns from periodic
arrays of BECs (Hadzibabic et al. [67].)

Ideally, ToF imaging of trapped atoms corresponds to the Fraunhofer diffraction (FD) in classical optics.
However, Gerbier et al. [68] points out that the FD condition is often not met in current BEC experiments.
They propose the criterion

tToF ≫ τFF ≡ mlcohR0

~
, (2.60)

where tToF denotes the expansion time of ToF, m the mass of the atom, lcoh the characteristic coherence
length, and R0 the characteristic size of the cloud before expansion.

Last but not least, the dissertation by Greiner [69] contains much useful information.
One may consult Weiner [70, Sec. 5.7] for a table summarizing a number of scattering lengths, especially

those between two identical alkali atoms. As of February, 2009, the newest reports for rubidium, potassium
and cesium are Falke et al. [71] and Lange et al. [72], respectively. For an accurate determination of
scattering lengths, PA (photoassociation) spectroscopy is widely used (see, for example, Jones et al. [73],
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Stwalley and Wang [74], and references therein.) Especially it can produce the so-called purely-long-range
molecules in which the Born-Oppenheimer (or, adiabatic) potential of the relative vibrational motion of two
nuclei has a minimum located an order of magnitude further than that of ordinary molecules (Stwalley et al.
[75].) Therefore the entire vibrational motions for low-lying vibrational levels take place in a long-range
manner; in particular, the inner classical turning point is located at a distance of more than 50 a0 (a0 is
the Bohr radius.) Then the energy levels for such molecules are solely determined by the van der Waals
interaction and one can neglect the interactions due to exchange and overlap of valence electrons that leads
to relatively lower accuracy of theoretical analysis.



Component Company Product Name

Ion pump (1st; 20 ℓ/s) Varian StarCell
(2nd; 75 ℓ/s) Varian StarCell

87Rb dispenser
41K dispenser Homemade

Table 3.1: Components used in the vacuum chamber.

Chapter 3

Experimental Setup and Procedure

3.1 Vacuum chamber

3.1.1 Structure

Our BEC machine employs a double-stage MOT design for efficient loading of atoms into MOT. Thus our
vacuum chamber can be regarded as composed of two sections, connected by a thin pressure-differential
tube. A vapor-loaded MOT in the 1st section of the chamber (hereafter “1st MOT”) serves as a high-flux
atom source for a MOT in the 2nd section (“2nd MOT.”) The 1st section has relatively higher vapor
pressure (low vacuum.) On the other hand, the 2nd section is kept at an UHV (ultra-high vacuum) Low
conductance of the pressure-differential tube, via which atoms are transferred, is responsible for keeping
pressure difference between the two section.

Our vacuum chamber is illustrated in Figure 3.1 and 3.2. On each of the two opposite side of the 1st
section of the chamber, An AR- (anti-reflection) coated glass cell (10 cm × 2.5 cm × 2.5 cm) and a pressure-
differential tube are mounted. Moreover, a hot-filament ionization vacuum gauge and several dispensers of
atomic vapor are contained in the 1st section. Vacuum is drawn by a 20 ℓ/s ion getter pump dedicated for
the 1st section. Inside the ion pumps, high voltage (usually 2 kV; 7 kV at maximum) is applied so that
junk molecules are ionized and absorbed into titanium walls of the pump.

The dispensers release atomic vapor by chemical reaction when heated by current of 4.2 A. To minimize
release of junk molecules when they are heated by 4.2 A, they are always moderately heated by 3 A;
otherwise junk molecules might be absorbed into the dispensers when the dispensers are as cold as the
chamber at the room temperature, rather than drawn by the ion pump. The vapor pressure of the 1st
section is kept relatively high (about 1 × 10−9 torr) by vapor from the dispenser so that it works as a
high-flux atomic source (→ Sec. 3.3.1.) On the other hand, that of the 2nd section is kept as low as possible
(lower than the detection limit of a gauge, 2 × 10−11 torr,) to make lifetime of a condensate longer.

We can understand the effect of the pressure-differential tube as follows: For dry air at the room
temperature in the molecular flow regime, conductance C of a long tube is given by

C =
12.1D3/L

1 + (4/3)D/L
ℓ/s, (3.1)

by taking account into finite sizes of openings[76]. Here, D and L are numerical values of the diameter and
length of a pipe, respectively, measured in cm. In our case, D = 0.8 [cm] and L = 14 [cm], yielding C = 0.36
ℓ/s. When we make pressure difference between 1st and 2nd section, the ratio P1/P2 between pressures
at those sections are related to the ratio between pumping speed P at the 2nd section and conductance C

20
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between the two as P1/P2 = P/C. In our case, we have

P1

P2
=

10−9 torr
10−11 torr

= 102 (3.2a)

P

C
=

75 ℓ/s

0.36 ℓ/s
= 210. (3.2b)

Thus we can expect that the desired pressure difference is safely maintained.

3.1.2 Preparation of ultra-high vacuum

Here, we briefly summarize procedures to draw ultra-high vacuum of the chamber.
First, the chamber was roughly drawn by rotary pumps until the pressure went down below 1 × 10−7

torr. Then TMPs (turbomolecular pumps) were operated and the whole chamber was baked for higher
vacuum.

The temperature was slowly raised to 200 ◦C for a day to avoid leakage at flanges or angle valves. Those
components are made of stainless-steels that has relatively low thermal conductivity (about 16 W/m · K)
compared with other metals like Duralumin or steel (about 140 W/m · K and 50 W/m · K, respectively.)
When one side of such a component is heated, which is unavoidable because of limited number of heaters,
and the temperature raise is too fast, they may be strained due to acute temperature gradient and may
lead to leakage. Therefore we need to wait long until temperature becomes almost uniform over the whole
component. In our case, the angle valve located between the two section determined the upper limit of rate
of heating. We baked the chamber for a week, so that we surely removed most of the molecules absorbed
into inner walls of the chamber by enhanced detachments of them at the high temperature. Then the
temperature was lowerd, again slowly, to the room temperature.

The resultant pressure after baking (5 × 10−11 torr) was an order of magnitude higher than the ideal
value. So, as a final stage, we ran a TSP (titanium sublimation pump) for several times. The 2nd section
has a large pipe dedicated to the TSP, in order to provide wide surface near filaments of the TSP. We
passed the current of more than 40 A to the filament for about 30 seconds. Then the filament sublimates
due to Joule heat, and the resultant titanium vapor coats nearby surfaces. The fresh surface coated with
titanium absorbs junk molecules. Thus it operates as a pump (getter pump.)

After the pressure at the 2nd section reached 3 × 10−11 torr, we closed the gate valve to isolate the 1st
section from the 2nd, and passed current of 5 A to the dispenser for degassing. Then the pressure of the
1st section increased to 8 × 10−7 torr at maximum. However, because of the operation of the ion pump,
the pressure decreased to 3 × 10−11 torr within an hour. The degassing was repeated for a few times for
each dispenser.

During the time, we sprinkled methanol on the chamber several times to locate the leakage, especially
from flanges. When we sprinkled methanol on leakage, it was absorbed into the chamber and raised the
pressure inside the chamber. So we could know that the place where we sprinkled methanol had a leakage.
Then we tighten bolts of that flange again with care that all bolts are tighten by equal torque (20 N · m.)
For this purpose, we used a digital torque wrench.

The chamber have been kept closed for one and half year. We have maintained stable ultra-high vacuum
though we had several planned power outage of the building. In such a case, we used portable gasoline
generator of AC 20 A instead of mains power outlet of the building.

3.2 Frequency-locked lasers

In Figure 3.5, we show a schematics of the optical system to provide lasers whose frequency is locked to
87Rb D2 line. We apply SA (saturated absorption) spectroscopy with FM sideband technique for frequency
locking. We separately prepare two subsystems (lower left of the figure) of SA spectroscopy for each of
trap and repump laser. For trap laser, the frequency of the master laser is locked to the center of the
crossover signal of |5 2S1/2, F = 2⟩ → |5 2P3/2, F

′ = 3⟩ and |5 2S1/2, F = 2⟩ → |5 2P3/2, F
′ = 2⟩ transitions.

The master laser is emitted from an ECLD (external cavity laser diode) whose frequency is tunable via
current and angle of a PZT (piezoelectric transducer) attached to a diffration grating which is a part
of the ECLD (details are described elsewhere[77].) A PI- (proportional-integral) control circuit is used
to stabilize the frequency against its random fluctuation (typical timescale being several kHz) and drift
(typical timescale being an hour.) Likewise, the frequency of the repump laser is locked to the crossover
signal of |5 2S1/2, F = 1⟩ → |5 2P3/2, F

′ = 2⟩ and |5 2S1/2, F = 1⟩ → |5 2P3/2, F
′ = 1⟩ transitions.
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Figure 3.5: Schematics of the optical system to provide frequency-locked lasers.

The master laser is first split into two: one for probe beam and the other for further amplification.
Considering the importance of the probe beam, we used a beam directly emitted from the master ECLD
and did not use injection locking method (described later) here. Possible imperfection of injection locking
may leads to self-sustained pulsation with broad spectrum from a slave ECLD. If such a pulsation light is
mixed with an amplified laser whose spectral width is narrow enough (≈ 8 MHz,) OD (optical density∗1) of
images taken by absorption imaging method is reduced by a few times smaller. The split beam for probe
passes a double-path AOM (acoustico-optical modulator) and its frequency is shifted by +67 × 2 = +134
MHz. The amount of shift is experimentally determined to maximize absorption by the atomic cloud in
MOT. As we tune the detuning, OD of the cloud varies as shown in Figure 3.6. The maximizing value

∗1OD is defined to be logarithm of ratio of transmitted power to incident power; OD ≡ ln Pt/Pi.
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Figure 3.6: The dependence of OD of an atomic cloud of 87Rb on detuning of the probe beam.
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Figure 3.7: Schematics showing “MOT operation” of the coils of the Ioffe-Pritchard magnetic trap.

agrees well with the theoretical value

133.3
2

= 66.5 MHz. (3.3)

The other beam is injected to a slave ECLD for amplification by injection locking method. In the
figure, injection locking is denoted by incidenting of a beam on the side of the second PBS (polarizing
beamsplitter) of a Faraday isolator. Faraday rotation is a phenomenon in which plane of polarizing is
rotated because of circular birefrengence (difference in the index of refraction for two circular polarized
rays) of the crystal. Circular birefrengence is caused by ferromagnetic resonance and thus depends on the
strength of bias magnetic fields. Remembering that magnetic field is antisymmetric under time-reversal, we
can use reciprocity theorem to conclude that, in order to have effect on only one of the two rays of opposite
directions, we need a phenomenon which involves magnetic field. Utilizing Faraday rotation, we can inject
a beam from the master ECLD into the slave ECLD at normal incidence, without a beam emitted from
the slave ECLD going back to the master ECLD. If it happens, lasing of the master ECLD may become
unstable, because the modes other than one selected by a diffraction grating may become dominant by the
influence of the incoming beam in the competition to consume population inversion of the laser medium.
On the other hand, the repump

For each of trap (|5 2S1/2, F = 2⟩ → |5 2P3/2, F
′ = 3⟩) and repump (|5 2S1/2, F = 1⟩ → |5 2P3/2, F

′ = 2⟩)
transition,

3.3 Magneto-optical trap

As stated in the last section, our BEC machine employs a double-stage MOT design. Here we describe the
detailed properties of each MOT.

3.3.1 1st MOT

The 1st MOT is used as a high-flux atom source for the 2nd MOT. First we made MOT with N = 7× 109.
However, it was tuned to optimize the loading rate of the 2nd MOT under the influence of push beam.
Thus, currently, the number of atoms, density, and temperature of the 1st MOT itself is not even measured
precisely, much less optimized.

Besides the 1st cell, we mount a pair of anti-Helmholtz coils for MOT with their symmetry axis oriented
parallel to gravity. They are rigidly fixed to cope with Lorentz force to attract the coils.

The coils were capable of producing a quadrupole magnetic field with linear gradients per 1 A of
(Br, Bz) = (15, 7) G/cm in the radial and horizontal direction, respectively. We usually operate the MOT
coil at 1.5 A.

As a result, the time constant of loading into the 1st MOT is so fast as about 0.5 s.
Atoms were initially collected from the background vapor into the 1st MOT. Each of the MOT laser

beams has a diameter of about 3 cm, an peak intensity of 10Isat, and was tuned 9 MHz to the red of
the |5S1/2, F = 2⟩ → |5P3/2, F

′ = 3⟩ transition of 87Rb. Here, Isat is the saturation intensity for the
|F = 2,mF = 2⟩ → |F ′ = 3, m′

F = 3⟩ transition. Another laser beam of intensity 0.2Isat, tuned 2.5 MHz
below the F51to F852 tran- sition, was used to repump atoms. A 4-mm-diam dark spot in the center of
this beam, lled with a second beam tuned to the F52to F852 transition, was used to mitigate
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Loading time 0.4 s
Beam Diameter 5 cm

Total power Trap 200 mW
Repump 5 mW

Table 3.2: Properties of the 1st MOT.
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Figure 3.8: A typical signal from a etalon coupled with the injection laser of the TA for the 1st MOT.

Loading time 50 s
Beam Diameter 5 cm

Total power Trap 250 mW
Repump 5 mW

Table 3.3: Properties of the 2nd MOT. See also remarks on the Table 3.2.

We summarize properties of the 1st MOT in Table 3.2. In the table, total power is measued just after the
optical fiber from which six beams for each direction are split. Isat is the saturation intencity 3.2 mW/cm2

for D2 line of 87Rb. Note that, direct measurement of each of trap and repump beam is impossible for
the 1st MOT, because they are amplified by the TA as a single combined beam and cannot be split for
measurement after amplification. Their powers shown in the table are obtained from scaling of total power
by relative magnitude of signals of a photodiode located after a Fabry-Perot etalon to which part of the
1st MOT beam is coupled. See Figure 3.8 for a typical signal of the etalon. In the figure, larger (smaller)
peaks correspond to the trap (repump) laser, respectively. The width of the etalon is scanned by varying
the voltage applied to a PZT on which one of the high-reflectivity mirrors of the etalon is attached. The
FSR (free spectral range) of the etalon is estimated to be about 1.24 GHz. Note that, the etalon and the
scanning system are homemade and they are not intended to realize exactly linear scanning.

3.3.2 2nd MOT

The 2nd MOT is created inside the ultra-high vacuum chamber in order to prevent collisions from the
background gas with the condensate. The velocity of atoms pushed from the 1st MOT is about 20 m/s.

In Figure 3.9, we show a typical loading into the 2nd MOT. The curve is shown with offset (≈ 0.02 V)
subtracted. Curve fitting with exponential yielded the time constant of 8.23 s. However, one can observe
a strong saturation of the curve after 12 s of loading. In fact, the curve becomes completely flat after 12 s
with height of 395 mV. This is far lower than the estimated final value (522 mV) of the loading part of the
curve.
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Figure 3.9: A typical loading of pushed 87Rb atoms into the 2nd MOT.

3.4 Magnetic trap

The magnetic trap used for evaporative cooling were constructed as a part of the author’s undergraduate
research project. For convenience of the readers, we describe its properties here.

Wing[78] showed that, in a free space, the strength of a static magnetic field can have local minima but
not local maxima. Thus, by using a dc magnetic field,

One of the most successful design for such traps is Ioffe-Pritchard type[79][80, Sec. 3.5], which we employ
for our magnetic trap. It is made of four pairs of cloverleaf coils, a pair of curvature coils, and a pair of
anti-bias coils. The roles of each set of coils are as follows:

Cloverleaf coils for radial confinement. They are four pairs of coils. Each pair consists of two coils
sharing a common axis in which current flows in the opposite direction. Axes of those pairs are all parallel.
Centers of those pairs forms a square around the center of the Ioffe-Pritchard trap in a plane parpendicular
to the center axis. Current flows in the same direction for the two pairs in a diagonal line of the square, but
in the opposite direction for the other two pairs. Thus they produce a quadrupole magnetic field in that
plane: Bclv ≈ B′(xx̂ − yŷ) = B′r[cos(2ϕ)r̂ − sin(2ϕ)ϕ̂]∗2. Here, B′ is a proportional constant to express
linear dependence of magnitude on r: |Bclv| ≈ B′r. The dependence of B′ on coil current is shown in
Table 3.5. Note that Bclv does not produce axial confinement.

Curvature coils for axial confinement. They are just a pair of coils which share a common axis
with the whole trap itself and in which current flows in the same direction. However, they do not form
so-called “Helmholtz” pair. When we look at only one of these, the magnetic field decays as z−2/3 as the
distance z from the center increases along the center (z-)axis. Let Bcurv denote the combined magnetic
field by the pair. Since the center of the Ioffe-Pritchard trap is the middle point of the centers of two
coils (each having radius R and located at ±a,) we see that |Bcurv| ∝

∑
±[(z ± a)2 + R2]−3/2 along the

center axis, and thus axial confinement is realized. In Figure 3.10, we plotted |Bcurv| for a unit current
versus z in the unit of R. Precisely speaking, the combined magnetic field of two coils is written as
Bcurv(r, z) ≈ −(B′′

curvz/2)(xx̂ + yŷ) +
[
Bcurv,0 + B′′

curvz
2/2 − B′′

curv(x2 + y2)/4
]
ẑ. Here the typical value

of B0,curv is so large as hundreds of Gauss.

Anti-bias coils to compensate for loosening effect by curvature coils on radial confinement.
The combination of the above two sets of coils do not suffice for strong confinement of the atomic cloud.
By noting that the value of the combined magnetic field Bclv+curv at the center is commont for both r and
z directions, we see that the dependence of Bclv+curv on r is significantly alterd from that of Bclv by the
presence of B0,curv. Actually it can be approximated as |Bclv+curv(r, z)| ≈

√
BB′r+0,curv. The magnetic

field produced by curvature coils for axial confinement have the side effect to loosen radial confinement.
The strength of magnetic field is proportional to r From calculation, radial confinement can be shown to
be proportional to B′4/3/B

1/3
0 . Therefore it is better to lower B0 for strong confinement. However, it must

be lager than 1 or 2 gauss to avoid Majorana spin flipping that leads to loss of the atoms.
The components used to build the trap is listed in Table 3.5 for convenience of the reader.

∗2Here, for example, x̂ is the unit vector parallel to the x-axis.
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Figure 3.10: Magnetic field produced by a pair of coils sharing a common axis.

Component Company Product ID

DC power supply Agilent Technology 6691A
IGBT Mitsubishi Electric CM600HA-24H
IGBT driver Isahaya Electronics Industry M57962CL-01
Diode International Rectifier SD400N/R
Heatsink for IGBT Takagi Manufacturing M-400W
Heatsink for diode Takagi Manufacturing P-100S
Liquid cooling system 3R-Systems Poseidon WCL-04
Copper tube Hitachi Cable 1/8” square tube with 1/16”

square hole
Epoxy adhesive Konishi E250 for concrete
Coil holders Glass epoxy
Water pressure booster pump

Table 3.4: Components used in the magnetic trap.

Magnetic field at full operation B′ 270 G/cm
B′′ 67 G/cm2

B0 ≈ 2 G

Voltage drop at full operation Cloverleaf 27 V
Curvature 12 V
Anti-bias 12 V

Trapping frequencies for 87Rb radial 223 Hz
axial 10 Hz

Trapping frequencies for 41K radial 325 Hz
axial 15 Hz

Table 3.5: Properties of the magnetic trap.

In Table 3.11, we summarize properties of the magnetic trap. All of them are based on numerical
calculation by Mathematica, exept the dependence of the bias field at the center of the trap on Anti-bias
current. It is experimentally measured by varying the Anti-bias current and observing the minimal rf
frequency of evaporative cooling which does not completely remove atoms from the trap.

In Figure 3.11, we show the circuit for Cloverleaf coils of the Ioffe-Pritchard magnetic trap. In order to
improve the rising transients of the DC power supply, we attached a large capacitor (15 mF) resistant of
high voltage (250 V) as a fast DC power supply. As the capacitor emits its charge by passing current into
the coils, the voltage of the capacitor decays. However, it is slow enough that Agilent DC power supply
can response and manage to keep the constant voltage (therefore constant current.)
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Figure 3.12: Circuit for Curvature and Anti-bias coils of the Ioffe-Pritchard magnetic trap.

Time [s] 0 1 1.1 2 2.1 3
Frequency [MHz] 87 62 87 62 87 62

Time [s] 5 13 21 29 35 37 39 40 41
Frequency [MHz] 147 75 38 15 4 1.2 0.6 0.38 0.36

Table 3.6: Typical time sequence of a rf sweep for rf-forced evaporative cooling of 87Rb.

In Figure 3.12, we show the circuit for Curvature and Anti-bias coils of the Ioffe-Pritchard magnetic
trap. They are also used for producing a quadrupole magnetic field for MOT (→ Fig. 3.7.) Moreover,
Anti-bias coils can be used to produce uniform bias magnetic field (≈ 60 G) to induce Feshbach resonance
of 41K.

3.5 RF generator and controller for evaporative cooling

Here we briefly describe the system for applying rf for evaporative cooling. Its details are described else-
where. Typical sequence of rf sweep is shown in Figure 3.13 and corresponding numerical values are shown
in Table 3.6. We use linear interpolation in the region between specified points. Values are separately
shown for the first and latter half of the sweep. The first half having zig-zag form is the “cleaning” rf for
|2, 1⟩ atoms that cause unwanted inelastic loss during evaporative cooling. By three ramping down of the
rf, |2, 1⟩ → |1, 0⟩ transition is induced. The latter half is a ordinal rf sweep, as found in JILA’s guide[81].
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Figure 3.13: A typical time sequence of a rf sweep for rf-forced evaporative cooling of 87Rb. Actual
frequencies are the above values plus 6.842 GHz, which is the HFS (hyperfine splitting) of 5 2S1/2 state of
87Rb.
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Figure 3.14: A trajectory of a typical evaporative cooling of 87Rb.

The resultant trajectory showing the dependence of PSDon decrease of the number of atoms are shown
in Figure 3.14. In the figure, the red broken line indicates the theoretical threshold of BEC transition
PSD = ζ(3) ≈ 1.202 for ideal Bose gas confined in a harmonic trap. As “hot” atoms, or atoms having the
highest kinetic energy among the cloud, are removed from the magnetic trap by spin-flipping caused by rf
coupling the initial, weak-field-seeking state that can be tightly trapped by the magnetic trap, to the final,
strong-field-seeking state that is repelled from the trap. The trajectory forms an almost straight line. The
incline of the line is a measure of efficiency of evaporative cooling[82]. When the points The final frequency
at which BEC is produced sometimes fructuates by a few tens of kHz. Especially, the temperature of the
laboratory and the magnetic trap affects the final frequency.

For 87Rb, we succeeded to produce BEC by both of the above two methods. In particular, as for the
transition between Zeeman sublevels, the loss of atoms due to the inelastic collision between 87Rb atoms in
the |2, 1⟩ state is essential factor for this success. Burke et al. [83] ascribes the exceptionally small inelastic
loss rate to the coincidence between the singlet and triplet scattering length. Scattering lengths for other
rubidium isotopes are summarized in the dissertation by Burke [84].



3.6. OPTICAL LATTICE 31

A
O

+80

-80

+110

-110

400

750

500
111 6162126

1

6

11

16

21

26

AO AOM

Mirror

PBS

HWP

Plano-

convex

lens

Faraday isolator

(EOT)

F230FC-C

fiber coupler

Power meter for

retrorefrected beam

Iris

PAF-X-5-C

adjustable fiber coupler

1div = 25.4 mm

Beam

damper

(A)

(B)

(C)

(ODT)

Beam

profiler for

telescope

A
O

A
O

A
O

Figure 3.15: Schematics of the optical system for providing laser beam with an optical lattice.

3.6 Optical lattice

3.6.1 1 µm, 5 W fiber laser and an auxiliary optical system

We use a DFB (distributed feedback) fiber laser with MOPA (master-oscillator power amplifier) produced
by Furukawa Electric as a laser source. Its linewidth is less than 10 kHz and its output power is 5 W at
maximum. We split the emitted laser into four; three for each axis of a 3D optical lattice that is described
in later sections, and one for other purposes.

The optical system for splitting is shown in Figure 3.15. In order to show the way how lengths of the
four paths are matched, the figure is correctly drawn with respect to lengths between optical components.
The grid have distances of 25.4 mm, which is the distance between threaded holes on the optical table.

The output from fiber laser is emitted from a optical fiber attached to a adjustable fiber coupler. It
is located at the upper right corner in the figure, directing to the bottom. The adjustable fiber coupler
have multiple nobs. Two of them are used to tune transversal position of an aspheric collimation lens with
respect to an endpoint of a optical fiber for changing direction of the output beam. Three of them are
used to tune longitudinal distance between the collimation lens and the endpoint for changing diameter of
the output beam, and the angle of the collimation lens for changing divergence. They are optimized to
minimize divergence of the output beam.

Faraday optical isolators

The beam is first coupled to the Faraday optical isorators. When the depth of a standing wave formed by
the laser beam is maximized, a considerable portion of the retroreflected beam is coupled to the optical
fiber and the AOM, eventually reaching the fiber laser itself. Therefore isolators are necessary to avoid
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Figure 3.16: A typical configuration of the telescope.

instability. We use two isolators produced by Electro-Optics Technology with designed isolation of 30 dB
each, yielding the total isolation of 60 dB (= 10−6.) Assuming that 1/3 of the emitted power is reflected
back to the isolator, we have

5 W × 1
3
× 10−6 = 2 µW (3.4)

as a maximum power of the retroreflected beam reaching the fiber laser. Moreover, the fiber laser itself
has built-in optical isolators. So we may safely conclude that we are free from instabilities caused by the
retroreflected beam.

“Telescope”

Nextly, we use lenses (a “telescope”) for fine tuning of the diameter and the divergence of the beam, because
the efficiency of the AOMs located after it depends on them. The wide space reserved for the telescope is
for assurance of its flexibility. A typical configuration is shown in Figure 3.16.

Currently, only a single lens (f = 400 mm) is sufficient for maximizing the efficiencies of the AOMs.
That is, it is not a telescope in a strinct sence! The apertures of all the AOMs are about 1 mm square in
common, so we tune the telescope so that the beam waist agrees with the locations of the AOMs and the
diameter at the waist is 0.8 mm. Then Rayleigh length πw2

0/λ (where w0 is the beam radius at the waist
and λ is the laser wavelength) becomes

3.14 · (0.4 mm)2

0.001064 mm
≈ 470 mm. (3.5)

The minimum distance between the AOMs and the telescope is about 500 mm and is comparable to Rayleigh
length. So we cannot ignore broadening due to diffraction and need fine tunings of the telescope to avoid
power loss at the aperature of the AOM. The radius at the waist is related to divergence θ as

θ =
λ

πw0
(3.6)

By the way, we have a choice in the future to replace the fiber laser with a new one with 1080 nm
wavelength and 10 W output power. In such a case, we may utilize the flexibility of the telescope to adapt
to the new one that emits beam with possibly different diameter and divergence.

When we tune the telescope, we can put a mirror before the iris to reflect to the left. Then we can
observe the far-field cross section of the beam with a beam profiler. The space between AOMs and fiber
couplers is reserved for that purpose.

A pair of irises

In case of replacement of the fiber laser, we have a pair of irises which indicates the optimal optical path for
AOMs and fiber couplers. They can be useful when the fiber laser or mirrors before AOMs are accidentaly
moved and need to be fixed to the original configuration.

A series of PBSs and HWPs

We split the beam into four by these PBSs. Relative powers between the four pathes can be tuned by
rotating these HWPs. Note that they are not intended for fine tunings. PBSs are air-gapped and therefore
resintant to high input power up to about 10 W. They are designed to realize the maximum extinction ratio
of 1:1000.

AOMs

The AOMs are used to avoid interference between different axis of the optical lattice and an optical dipole
trap for reduction of the density of condensates. We used two kinds of AOMs which are designed for a
frequency shift of 80 and 100 MHz, respectively. We use 1st diffracted beam whose frequency is shifted ±80
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Coupler Fitting results
a [µm/mm] b [mm]

F240FC-C (h) 3.85(52) 1558(251)
F240FC-C (v) 3.83(46) 1533(218)
F240APC-C (h) 1.95(2) 1277(11)
F240APC-C (v) 1.73(10) 1338(48)
F230FC-C (h) 0.885(49) 763(22)
F230FC-C (v) 0.942(25) 697(11)

Table 3.7: Fitted parameters for data shown in Figure 3.17. Note that, a is so small that it can be used as
divergence θ of the ray measured in mili-radian, since tan θ ≈ θ when θ ≪ 1.

MHz or ±110 MHz for each of the four beams. Therefore the minimal frequency differece between any two
of the four beams is 110 − 80 = 30 MHz, which is enough.

The efficiency of those AOMs are maximized with collimated input beams rather than focused ones.
The maximum efficiency ranges from 90 % to 93 %. The dependency of the efficiency on the input power
is not observed.

We should note that the maximum efficiency stated above is measured for the stationary case. The
efficiency strongly depends on the temperature of the AOM and the temperature itself is affected by the
input laser power and the input rf power. So when one changes the rf power to control the power of the
diffracted beam, a strong hysteresis is observed with typical period of several seconds. Or we may say that
the large-signal slew rate of the AOM is several orders of magnitude smaller than the one for small-signal.
Especially, we may need to take care so that the temperature of the AOM is kept high by maintaining
input rf power maximum for finer control of the power of the diffracted beam. In such a case we may need
to attach mechanical shutters to cut the diffracted beams until they are used in the particular step of the
experiment.

Fiber couplers

We choose F230FC-C over F240FC-C and F230APC-C because of its smaller diverngence and easiness to
purchace. Those fiber couplers are designed for wide range of wavelength (800–1100 nm) and not adjustable.
As a result, the divergence is not optimal for our 1064 nm laser. The measured width of collimated beams
by each of those fiber couplers are shown in Figure 3.17. The results of least-square fit of them by linear
function f(x) = ax + b is summarized in Table 3.7.
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Figure 3.18: Shematics of the optical lattice.

3.6.2 Dimensions of the optical lattice

Our design of the optical lattice is somewhat complicated because of the limited capacity for optical com-
ponents. The laser beams of the optical lattice must pass through the spaces between optical components
aligned around the glass cell and surrounding magnetic trap. Moreover, they need to cross each other at
right angle. In order to satisfy these requirements, we used a dichroic mirror which transmits the MOT
lasers (780 nm for 87Rb and 767 nm for 41K) and reflects the lattice laser. We inserted them at 45 degrees
into each of the three optical path of MOT which are aligned orthogonal to each other. the lattice beams
are shined orthogonally to the MOT beams onto the dichroic mirrors and upon reflection their optical paths
overlap to those of the MOT beams. Fine tunings of the optical path are done by mirrors inserted before the
dichroic mirrors. Their holders are attached with micrometers and their angles can be tuned with accuracy
of 0.01 rad per one division of the micrometer. The longest distance between the mirror with micrometer
and the center of the optical lattice is about 940 mm of Path (B). In this case, the beam is parallelly moved
by

2 × 0.01 rad × 940 mm = 18 µm.

The beam diameter at the beam waist is tuned to 280 µm and Thomas-Fermi diameter of the BEC is 72 µm
(→ Sec. 4.2.) Therefore we can safely rely on them for reproducibility of fine tunings. We use retroreflection
by a concave mirror to form standing waves. Thus we first split the lattice beam from the MOT beam by
using a dichroic mirror again after it passed the center of the optical lattice, and then place the mirror to
retroreflect it.

These three paths are named Path (A), (B), and (C). Schematics of them are shown in Figure 3.18. The
lengths in the figure are all measured in milimeters. Note that they have error of several milimeters due to
difficulty in measurements because of complex structure of the system. The beam width are configured by
telescopic configuration of lenses. Design of telescopes used in each optical path of the optical lattice are
shown in Figure 3.19. Calculated lengths for each of three axis are shown in Table 3.8. They are calculated
by Maxima based on the formula of Gaussian beams. Here w′

0 is the 1/e2 radius of intensity at the beam
waist inside the telescope. However, the thickness of the lenses are ignored in calculation. Their typical
thickness ranges from 5 to 10 mm. We needed fine tunings of the configuration of lenses based on location
and width of the beam waist measured by a digital laser beam profiler.
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Figure 3.19: Detailed design of telescopes of the optical lattice. See Table 3.8 for actual lengths.

Path F–C f1 f2 F–L1 L1–W W–L2 L1–L2 L2–C w′
0

(A) 530 50 75 51 49 99 148 300 0.042
(B) 940
(C) 730 50 100 52 49 124 173 505 0.030

Table 3.8: Actual lengths (measured in milimeters) in Figure 3.19, for each path.
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Figure 3.20: An example of measured divergence of output beam from F230FC-C.



36 CHAPTER 3. EXPERIMENTAL SETUP AND PROCEDURE

Component Company Product ID

Fiber laser Fitel (Furukawa Electric) ASF15403
Faraday isolator Electro-Optics Technology HP-04-I-1064-000
Mirror Thorlabs BB1-E03
Lens Thorlabs LA1***-B
Half wave plate ZOWP-1064-15.00mm-2mntd
PBS WZW Optics STR12.7B-LT110
AOM (80 MHz) Crystal Technology 3080-197

(110 MHz) 3110-197
RF Amplifier Mini Circuits ZHL-1-2W
DBM Mini Circuits ZAD-1H+
VCO Mini Circuits ZOS-150
Optical fiber Oz Optics PMJ-3A3A-980-6/125-3-5-1
Fiber coupler Thorlabs F230FC-C
Dichroic mirror CVI Laser SWP-45-Rs-1064-Tp-780-PW-2025-C
Concave mirror Edmund Optics Techspec SPH 1.00IN F/6.0 Gold TS

Table 3.9: Components used in the optical lattice.

3.6.3 Properties of the optical lattice

Here we consider a Gaussian beam. The peak intensity Iadv,0 at the center of its beam waist is related to
its total power Padv as

Iadv,0 =
2Padv

πw2
0

= 0.637
Padv

w2
0

, (3.7)

where w0 is the 1/e2 radius of intensity at the beam waist. When we make a standing wave, the square
of the amplitude of its electric field, |E(r, t)|2, reaches its maximum at antinodes around the beam waist.
It is four times larger than that of the original Gaussian beam because of constructive interference. We
express this fact by saying “a standing wave has a fictious power P = 4Padv and a fictious peak intensity

I0 = 4Iadv,0 (3.8)

at its antinodes,” even though a standing wave carries no power (it is superposition of two waves advancing
in opposite directions.) Such a treatment can be justified by the fact that power and intensity (power per
unit area) are proportional to the square of the field amplitude.

Now we consider experimental conditions to estimate the upper limit for I0. The transmittance efficiency
of Faraday optical isolators used in our group was about 96 %. We used two isolators in serial, yielding
the total transmittance of (96 %)2 ≈ 92 %. The efficiency to produce 1st diffracted beam at the AOM
(acousto-optic modulator) is a little more than 90 % at maximum. Fiber coupling efficiency ranges from 80
% to 85 %. Therefore when we split the beam emitted by the fiber laser into four∗3 beams of equal powers
and couple them to optical fibers, we have

Padv = 5 W × 92 % × 1
4
× 90 % × 80 % =

(
5 W × 1

4

)
× (92 % × 90 % × 80 %)

≈ 1.25 W × 66 % ≈ 0.82 W (3.9)

for each beam emitted from a fiber. Then the intensity at the center of the beam waist of the emitted beam
is

Iadv,0 = 0.637 × 0.82 W
(280 × 10−6 m)2

= 2.66 × 107 W/m2 = 2.66 kW/cm2, (3.10)

and the corresponding fictious intensity at antinodes around the center of the standing wave is

I0 = 4Iadv = 10.7 kW/cm2. (3.11)

Here we used the measured value 2w0 = 280 µm for our optical lattice.
∗3The fourth beam is saved for other use than the optical lattice. If more than (5 × 1/4) W is needed for the fourth beam,

the above calculation needs to be adapted accordingly.
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Power emitted from each fiber Padv 0.65 W
Beam diameter at the waist 2w0 280 µm
Beam intensity at the waist I0,adv 1.86 kW/cm2

Equivalent peak intensity of the standing wave I0 7.44 kW/cm2

Potential depth, divided by kB
87Rb 10.9 µK
41K 9.85 µK

in the unit of Erec
87Rb 10.9 E

(Rb)
rec

41K 9.85 E
(K)
rec

Photon scattering rate 87Rb 0.04 s−1

41K 0.03 s−1

Recoil energy, divided by kB
87Rb 96.5 nK
41K 205 nK

divided by h 87Rb 2.02 kHz
41K 4.28 kHz

Table 3.10: Properties of the optical lattice.

Using the above value for the maximum intensity of the lattice beam and formulas derived in Sec. 2.3,
we have

U
(Rb)
0 ≡ U

(Rb)
dip · I = kB · (11.7 µK) = h · (220 kHz) = 123 E(Rb)

rec , (3.12a)

U
(K)
0 ≡ U

(K)
dip · I = kB · (10.5 µK) = h · (210 kHz) = 51 E(K)

rec , (3.12b)

for the maximum depth of the optical lattice. Here, the recoil energies E
(X)
rec for atom X and a laser with

wavelength λ are defined as

E(X)
rec ≡ (h/λ)2

2mX
. (3.13)

The interpretation of this quantity is as follows: Initially there was an atom X with mass mX which
was at rest, and then it is kicked by absorption of a photon with momentum ~k = h/λ (where k is the
wavenumber.) The atoms begins to move with momentum h/λ and the corresponding kinetic energy is
(h/λ)2/2mX ; the above definition can be understood to refer to this quantity. The formulae below is useful
for calculation of the numerical value for recoil energies:

Erec(λ̃, A) =
[h/(λ̃ µm)]2

2Au
=

1.32 × 10−28

Aλ̃2
J = kB ·

(
9.57 × 103

Aλ̃2
nK

)
(3.14a)

= h ·
(

200
Aλ̃2

kHz
)

. (3.14b)

Here, λ̃ is the numerical value of the laser wavelength measured in µm and A = Z + N is the mass number
for the atom X. Then Aλ̃2 is usually between 101 and 102. For example, for the lattice beam used in this
research, we have λ̃ = 1.064 (1064 nm,) thus

87Rb: λ̃2ARb = 1.0642 · 87 = 98.5 ∴ E(Rb)
rec = kB · (97.2 nK) = h · (2.03 kHz), (3.15a)

41K: λ̃2AK = 1.0642 · 41 = 46.4 ∴ E(K)
rec = kB · (206 nK) = h · (4.31 kHz). (3.15b)

Note that, the accurate mass of these atoms are not exact multiples of atomic mass unit u, or 1.660 538 73(13)×
10−27 kg[85]. However, deviations from exact multiples∗4 can be safely neglected for our purpose, as done
in the above calculations. For example, the accurate mass of 87Rb atoms is 1.443 160 60(11)× 10−25 kg[86].
This amounts to 86.909 180 520(15) u and the fractional difference is only 86.909 180 520/87 = 0.1 %.

3.7 Imaging system

Our imaging system can be operated in three ways; magnified vertical imaging, reducted vertical imaging,
and magnified horizontal imaging (Fig. 3.21.) We can switch between those operation modes by insertion

∗4These quantities corresponds to the binding energy of the nucleus of an atom, which is the basis for the nuclear fission
(and possibly, in the future, nuclear fusion) reactors.
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Component Company Product Name

CCD camera Princeton Instruments PhotonMax
CCD camera driver Princeton Instruments WinView
Compiler for fitting program∗1 Microsoft Visual Basic 6

Table 3.11: Components used in our imaging system.

Operation mode Magnification

Magnified vertical 4.2
Reducted vertical 0.3

Table 3.12: Magnification of the imaging system for each operation mode.
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Figure 3.21: Measurement of falling atomic cloud.

and removal of mirrors attached on a magnetic mount. The accuracy of position of the magnetic mounts
are well within tolerance, judging from the fact that images are quite reproducible over repeated insersion
and removal of those mirrors.

The magnification factors of two vertical imaging mode was measured by imaging thin scale made of
paper and comparing its periodicity. That of horisontal imaging was measured by multiple images of falling
atomic cloud and comparing its accelaration with gravitational accelaration.

∗1The program for curve fitting and overall control of the imaging system originates from JILA. It uses Microsoft Automation
technology to control WinView. The API (application programming interface) of WinView necessary for programming is
described in the manual[87].
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Results and Discussions

4.1 BEC of 41K

After rf-forced evaporation, we obtained a pure sample of 41K BEC[47]. The number of atoms in the
condensate NBEC was determined by fitting Thomas-Fermi density profile on the OD data integrated along
the radial (tight) axis of the magnetic trap. For a pure condensate, we obtained NBEC = 3 × 105.

We started from a MOT with N = 1.6 × 109, n = 1.6 × 1010 cm−3 and T = 5 mK, corresponding to
phase space density of ρPS = 10−9 (Tab. 4.1). This is two orders of magnitude smaller than that of 87Rb,
because of the inefficiency of MOT. The hyperfine splitting of 42P3/2 of 41K has an anomalously small value
of only 14 MHz. Therefore if we detune trap and repump lasers of MOT for efficient cooling, the hyperfine
states are not resolved and closed transition is violated, leading to the inefficiency mentioned above. To
circumvent this undesirable feature, we employed a version of CMOT technique[89], in which the prodecude
is split into two stages for different purposes[77].

Compression (usual CMOT) The duration of this stage is 40 ms. We ramp up the magnetic field
gradient from about 3 G/cm to about 30 G/cm. Simultaneously, we lower intensity of the trap laser
from 5.6Isat to 0.1Isat to avoid pressure from spontaneously emitted photons, and lower detuning from
34 MHz to 31 MHz to enhance trapping effect.

Doppler cooling The duration of this stage is 12 ms. At the beginning of this stage, we suddenly lower
the magnetic field gradient to 2 G/cm and keep this value until the end of this stage.

After these stagse, phase space density of 41K has a comparable value (1×10−6) to that of 87Rb (6×10−6).
The data of 87Rb is adapted from experimental report from MIT group who are regarded to have the
current state-of-the-art BEC machine. Thus our result is quite satisfactory.

Then we adiabatically transfere the 41K cloud into the Ioffe-Pritchard magnetic trap (→ Sec. 3.4.) For
41K, we need to scale trap frequencies described in Sec. 3.4 because of the different masses of 41K and 87Rb.
Since the mass of 41K is 40.961 825 4(12) u ≈ 41 u (0.09 % error,) the trap frequency differs by a factor of√

41/87.
As we lower the rf frequency for evaporative cooling, bimodal structure of a ToF image was observed.

Figure 4.5 shows such images and vertical sum of OD. Plots (orange dots) below images are OD integrated

41K in 87Rb∗1 in 41K after 87Rb∗1

stable stable two-stage after
MOT MOT CMOT CMOT

Splitting between F ′ = 2, 3 [MHz] 14 267
Natural linewidth of D2 line [MHz] 6.2 6.1

Temperature [µK] 5000 150 100 10
Density [1010 cm−3] 1.6 1 5.1 10

Number of atoms [109] 1.6 40 1 ≈ 10
Phase space density [10−7] 0.01 100 10 60

Table 4.1: Comparison between MOT of 41K and 87Rb.
∗1Adapted from report of MIT[88].
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Figure 4.1: Combination of CMOT and following Doppler cooling for 41K. (a) Loading into MOT (≈ 10
s.) (b) CMOT for higher density. (c) Doppler cooling for lower temperature.

Figure 4.2: Transitions used for rf-forced evaporative cooling of 41K for successful (blue) and unsucsessful
(red) methods.

Time [s] 0 16 24 28 32 34.9 35
Frequency [MHz] 300 300 269.2 264.3 260.3 259.48 311

Table 4.2: A typical time sequence of a rf sweep for rf-forced evaporative cooling of 41K.

along the vertical axis (the axis of tighter confinement of magnetic trap) in arbitrary units. Results of
least-square fitting by the bimodal density profile function are also shown in red curves.

As a conculusion of this section, we summarize keypoints of our realization of 41K BEC.

• CMOT followed by Doppler cooling was effective to cope with peculiar hyperfine level structure of
41K

• A hyperfine transition |2, 2⟩ → |1, 1⟩ was effective to avoid unwanted inelastic collision |2, 1⟩+ |2, 1⟩ →
|2, 2⟩ → |2, 0⟩ which releases energy due to quadratic Zeeman effect.
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Figure 4.3: A typical time sequence of a rf sweep for rf-forced evaporative cooling of 41K. Note that the
HFS of 4 2S1/2 state of 87Rb is 259.0 GHz.

Figure 4.4: Typical trajectory of evaporative cooling of 41K, for successful (blue) and unsucsessful (red)
methods.

4.2 Bragg diffraction of the condensate

After rf-forced evaporation, we obtained a pure sample of 87Rb BEC. By the use of absortption imaging,
the number of atoms N in the condensate was determined to be N = 4 × 105.

In our case, N = 4 × 105 and (ωr, ωz)/2π = (223, 10.3) Hz for 87Rb atoms, so Thomas-Fermi radii are{
lr
lz

}
= 5.62 ·

{
1/2.23
1/0.103

}
· 1.005 · 1.32 =

{
3.34
72.3

}
µm (4.1)

for the radial and axial direction of the Ioffe-Pritchard magnetic trap. Thus the condensate is split into

2 ·
{

3.34
72.3

}
µm

/
1.064 µm

2
≈

{
13 (radial)
270 (axial)

}
(4.2)

components for each direction. Then the density of the condensate is estimated to be

n = 4 × 1014 cm−3. (4.3)

As a preliminary experiment, we performed diffraction experiments of the condensate using optical
lattice. First, we worked out in the short-interaction (Kapitza-Dirac) regime, in which an opital pulse gives
only phase difference to the atoms, without significant displacement of the atoms. Next, we worked out in
the long-interaction (Raman-Nath) regime, in which

By this experiment, we confirmed that the Rabi frequency is about 4 kHz.
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(a) (b) (c)

Figure 4.5: Images of 41K BEC, taken after ToF of 40.3 ms. Below those images, vertically integrated OD
are plotted. (a) Thermal cloud. (b) Mixture of thermal cloud and BEC. (c) Pure condensate.

(A) 15Erec (B) 15Erec (C) 15Erec

Figure 4.6: Interference pattern of a 1D array of 2D BEC.

4.3 Interference patterns by condensates in 1D optical lattices

In Figure 4.6, we show interference pattern of a 1D array of 2D BEC formed by each of the 1D optical
lattices (A), (B), and (C), respectively. These images are taken along the vertical imaging axis.

4.4 Interference pattern of the condensate in 2D lattice

In Figure 4.8, we show interference pattern of a 2D arrays of 1D BEC formed by the 2D optical lattice.
Here axes (B) and (C) were used. We can observe 2D interference in figures (b)–(e).

By curve fitting, we can extract the number of atoms in each of the center peak, four diffracted compo-
nents, and background component. We used the following function:

z(x, y) =
∑

i=c,1,2,3,4

Ai · TF2(x − Xi, y − Yi; li) + Abg exp

[
− (x − Xbg)2 + (y − Ybg)2

w2
bg

]
(4.4)

Here, TF2(x, y; l) is a density profile of BEC in a harmonic trap obtained using Thomas-Fermi approxima-
tion:

TF2(x, y; l) ≡
[
max

(
1 − x2 + y2

l2
, 0

)]3/2

(4.5)
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Figure 4.8: Interference pattern of a 2D arrays of 1D BEC.

where l is a parameter of the function TF2 denoting the circular radius of the region filled with a condensate.
Here, we assumed that the harmonic trap is isotropic in xy-plane. The derivation of this function is
as follows; we have a anisotropic parabolic density profile n(x, y, z) = n0 · TF3(x, y, z; lx, ly, lz), where
n0 = µ/U0 is the peak density∗1 of the condensate and the function TF3 is defined as

TF3(x, y, z; lx, ly, lz) = max

(
1 −

(
x

lx

)2

−
(

y

ly

)2

−
(

z

lz

)2

, 0

)
(4.6)

where three parameters dx, dy and dz denotes the radius of the region in the parabola filled with a con-
densate. In Thomas-Fermi approximation, kinetic energies of atoms are approximated to zero because it is
far smaller than the mean-field energy due to interatomic interactions. By absorption imaging, the density
profile is integrated along the axis of propergation of a probe laser beam. Therefore we integrate TF3 along
(for example) z-axis,∫ ∞

−∞
TF3(x, y, z; lx, ly, lz)dz =

∫ lz
√

1−(x/lx)2−(y/ly)2

−lz
√

1−(x/lx)2−(y/ly)2

[
1 −

(
x

lx

)2

−
(

y

ly

)2

−
(

z

lz

)2
]

dz (4.7)

∗1in fact, n0 can be probed to be equal to µ/U0, where µ is chemical potential of the atomic cloud and U0 is the strength
of δ-like pseudopotential resulting from interatomic interaction.
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Figure 4.9: Example of curve fitting on the absorption image obtained above.
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Figure 4.10: Typical time sequence of ramping up and down of the optical lattice.

One can observe that the curve (surface) agrees well with the OD except in the middle-right region.
There S/N ratio is not good and one cannot expect good results of curve fitting. The four diffracted
components have almost same sizes, with only a slight difference in the lower right peak.

In Figure 4.9, we show three examples of curve fitting, corresponding to (b), (d), and (e) in Figure 4.8.
The middle, colored surface is obtained by averaging over nearest 5 × 5 pixels around a particular pixel in
order to reduce noise. As one can see in Figure 4.8, the typical length scale in the original images is more
than 10 pixels, so the averaging process does no harm. The lower plane shows a contour plot of the middle
surface. The seven countours correspond indicates levels with OD of {40, 80, . . . , 280}. The upper mesh is
a plot of the result of curve fitting. For visual clarity, the mesh is shifted upwards from the surface. The
top of the surface is cropped because the center peak is so high that other lower peaks become hard to see
in the figure if it is entirely shown.

A typical sequence is shown in Figure 4.10. The images shown in Figure 4.8 are taken by ToF of 30.7
ms just after the sequence (A), with peak potential depth (30Erec in the above) varied. We also observed
a sharp peak like (a) in Figure 4.8 by ToF after the sequence (B). The peak potential depth was 100Erec

at that time.
The TOF image obtained after raising the barrier between sites in the optical lattice shows that there is

no coherence between sites. Therefore we conclude that Mott insulator phase is realized. The characteristic
time for quantum tunneling τ is estimated to be order of 10 to 100 seconds.
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Parameter Value
(d’)

Ac 692(5)
lc 16.85(4)

(Xc, Xc) (182.2(2),134.3(2))
A1 125(2)
l1 13.4(1)

(X1, Y1) (218.62(9),157.6(9))
A2 141(2)
l2 11.6(1)

(X2, Y2) (162.42(8),159.30(8))
A3 135(2)
l3 11.4(1)

(X3, Y2) (161.61(8),112.33(8))
A4 115(2)
l4 14.0(1)

(X4, Y2) (216.7(1),110.6(1))
A23 64(2)
l23 11.3(2)

(X23, Y23) (137.1(2),137.4(2))
Abg 420(3)
wbg 21.66(9)

(Xbg, Xbg) (190.96(5),135.97(4))
y0 15.7(2)

Table 4.3: Obtained values for fitting parameters.

Here we compare these results with those observed by Bloch et al.[90].



Chapter 5

Conclusion and Outlook

By the standard method, we obtained 41K and 87Rb BEC with the numbers of atoms of NK = 3 × 105

and NRb = 4 × 105, respectively. Then we superimposed the one- and two-dimensional optical lattice on
the 87Rb condensate in the magnetic trap. After release from the combined trap, the condensate formed
interferrence patterns. The shape of the patterns agreed well with the prediction from band theory. As the
depth of the optical lattice is increased, the visibility of the patterns decreased and finally vanished. This
is explained from the suppression of tunneling of atoms between neighboring sites in the optical lattice.
Moreover, when we subsequently lowered the depth, the atomic cloud went back to the BEC. This is the
proof that the dissapearance of the patterns is not caused by the heating up the atomic cloud. Therefore
we conclude that our optical lattice can be used for its final objecitive, namely, confining the mixture of
BECs of 87Rb and 41K to produce ultracold heteronuclear molecules by combination of Feshbach resonance
and STIRAP.
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Appendix A

Theoretical Techniques

Here we describe some of the relevant points to analyze properties of BEC in a optical lattice.

A.1 Classical Optics

A.1.1 ABCD-matrix

Wide range of optical systems can be described in terms of the so-called ABCD-matrices. See standard
textbooks such as Yariv [91] for its details.

We define the co-called q-parameter q(z), also known as the complex curvature, of a Gaussian beam via

1
q(z)

≡ 1
R(z)

− i
λ

πw2(z)
=

1
z + izR

. (A.1)

(The last equality follows from the definitions of R(z) and w(z).) Then the effect of an optical apparatus
located at z0 can be written as

q′(z − z0) =
A · q(z − z0) + B

C · q(z − z0) + D

(
or, equivalently,

1
q′(z − z0)

=
D/q(z − z0) + C

B/q(z − z0) + A

)
, (A.2)

where q′(z) is the q-parameter of the transformed beam, and A, . . . ,D are elements of the ABCD-matrix
for that apparatus. That is, by requiring continuity of the q-parameter q(z) for the original beam and q′(z)
for the transformed beam at z0, we obtain the complete specification, e.g., both of the radius w′

0 at the
beam waist and the Rayleigh length z′R, of the transformed beam. Let ML denote an ABCD-matrix for a
lens with focal length f . Its elements are given as follows:

ML ≡
(

AL BL

CL DL

)
=

(
1

−1/f 1

)
. (A.3)

Moreover, a concave mirror can be treated as a lens, when we define the coordinate system for the reflected
beam so that z-axis points the opposite direction of that of the original system.

A.1.2 Effect of thin lens on Gaussian beam

The elementary folmula of the effect of lens is as follows: We are familiar with the

1
a

+
1
b

=
1
f

. (A.4)

Here, a and b are respectively the distance between foci and the lens for the incident and transmitted beams.
This may be called the ray approximation, since this formula assumes that the wave propagates as ray and
ignores the finite diameter of the beam waist. By introducing “normalized” lengths

ã ≡ a

f
, b̃ ≡ b

f
, (A.5)
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Figure A.1: Coordinate systems to derive the lens formula for Gaussian beams.

we have a more symmetric form of Eq. (A.4) as

b̃ =
ã

ã − 1
. (A.6)

Additionally, further transformation leads to b̃ − 1 = 1/(ã − 1), revealing that it is a hyperbola with its
origin at (ã, b̃) = (1, 1).

We want a similar formula for Gaussian beams which propagates through free space under the effect of
diffraction. This can be treated using ABCD-matrices as follows. First, we set up coordinate systems for
the original and transformed beams, as shown in Figure A.1. Then at the location of a lens, where both
z = a and z′ = −b are satisfied, we have

q′(z′ = −b) =
A · q(z = a) + B

C · q(z = a) + D
⇐⇒ −b + iz′R =

a + izR

(−1/f)(a + izR) + 1
, (A.7)

where z′R represents the Rayleigh length of the transformed beam. Dividing both sides by f , we obtain

−b̃ + iz̃R
′ =

ã + iz̃R

1 − ã − iz̃R
=

(ã + iz̃R)(1 − ã + iz̃R)
(ã − 1)2 + z̃R

2 =
ã(1 − ã) − z̃R

2 + iz̃R

(ã − 1)2 + z̃R
2 , (A.8)

where z̃R ≡ zR/f and z̃R
′ ≡ z′R/f . Comparing real and imaginary parts of both sides yields the following

two equations:

b̃ =
ã(ã − 1) + z̃R

2

(ã − 1)2 + z̃R
2 , (A.9a)

z′R =
zR

(ã − 1)2 + z̃R
2 ⇐⇒ w′

0 =
w0√

(ã − 1)2 + z̃R
2
. (A.9b)

Here, the beam waist size w′
0 of the transformed beam satisfies z′R = λ/(πw′2

0 ).
By comparing Eqs. (A.6) and (A.9a), we see the effect of Gaussian beam, or effect by Fraunhofer

diffraction. The difference becomes significant when a → f ⇐⇒ ã → 1. In the ray approximation,
we have b̃ → ∞; i.e., the focal point can be as far as possible. However, in the Gaussian case, we have
b̃ → 1 ⇐⇒ b → f because of z̃R in both of the numerator and the denominator. In Figure A.2, Note that
this plot does not depend on wavelength of the Gaussian beam. Note also that in the limit of long focal
length (z̃R ≡ zR/f → 0,) the effect of diffraction is negligible, thus Eq. (A.9a) reduces to Eq. (A.6).

A.1.3 Numerical evaluation

Since the equation we want to solve is a general cubic equations in z, we should use numerical rather than
analytic (symbolic) solutions. Though the latter may be computable by the use of CAS (compter algebra
systems,) it is slower and do not have advantage over the former, since we eventually need a numerical
value for z. However, there is one thing we care about; among multiple solutions for z, we need to find
a “physical” one which leads to positive values for distances between various lenses and foci. Numerical
solutions often finds only one of multiple solutions for z. Even if multiple solutions can be simultaneously
obtained, there is no difference in that we can often use only one of these solutions.

In order to do so, we begin with parameters for which an obviouslly correct solution can be obtained.
Then we slightly vary parameters towards the final value and calculate the corresponding solution. The
solution can be used for the seed value for the next calculation with parameters which are more closer to the
final values. By repeatedly varying parameters and the seed value for z, we may finally obtain a solution
for the condition under consideration.
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Figure A.2: Plot of Eqs. (A.9).

The following codes can be used to calculate the optimal value for z under fixed parameters. We used
GNU Maxima which is a free software. Visit the website of GNU Maxima http://maxima.sf.net/ for
details. However, there are less information on this CAS, so we present the code with comments.

lambda:1064e-3 $ ← GNU Maxima denotes asignment by ‘:’ and end of a command by ‘$’.
new_loc(a,f,w0):= ( a/f * (a/f-1) ← ‘:=’ is used to define a function.

+ (%pi * w0^2 /lambda /f)^2 )
/ ( (a/f-1)^2 ← Spaces and line-breaks may be inserted anywhere you like.

+ (%pi * w0^2 /lambda /f)^2 ) $
new_wid(a,f,w0):= w0 / sqrt( (a/f-1)^2

+ (%pi * w0^2 /lambda /f)^2 ) $
load(mnewton) $ ← Loading package for Newton’s iteration method with multiple variables
fpprintprec:5 $ ← ‘‘floating-point-number print precicision’’ is set to 5 digits.

block( ← The block clause introduces local variables∗1.
[a:93, w0:0.36, L:730, f1:50, f2:100, w02:0.125], ← Asigning values to the local variables.

mnewton([ b+c+d+e - L, ← Execution of the mnewton function (See below.)
c/f1 - new_loc(b-a,f1,w0),
w01 - new_wid(b-a,f1,w0),
e/f2 - new_loc(d,f2,w01),
w02 - new_wid(d,f2,w01) ],

[b, c, d, e, w01],[0, 50, 130, 510, 0.05])
); ← To print a value, use ; at the end of a command instead of $.

The function mnewton([e1, . . . , en],[v1, . . . , vn],[i1, . . . , in]) executes Newton’s method to find the val-
ues of variables v1, . . . , vn for which all expressions e1, . . . , en vanish, with the initial values of variables
set to i1, . . . , in. To solve the coupled equations fk(v1, . . . , vn) = gk(v1, . . . , vk) (k = 1, . . . , n), choose

∗1The variables which are ‘‘local’’ to a block cannot be referred outside of that block. They are advanta-
geous in that they are less likely to be confused with variables which accidentally have the same name but are used with dif-
ferent meanings.
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fk(v1, . . . , vn) − gk(v1, . . . , vk) as ek.

A.2 Time-dependent Perturbation Theory

Details are found in standard textbooks on quantum field theory. We recommend those written for appli-
cation for condensed matter systems Feynman [92].

We work out in the convenient interaction picture which eliminates obvious dependence on the un-
perturbed states from calculations. Remember the two different pictures of quantum mechanics: the
Schrödinger picture in which state vectors are responsible for all time-dependences, and the Heisenberg
picture in which states are time-independent and instead observables carries all time-dependences. Both of
the two pictures yield the same value for the expectation values ⟨A⟩ψ of an observable A for the state ψ:

⟨A⟩ψ = ⟨ψ|A|ψ⟩. (A.10)

If the introduction of the time-dependence is necessary, we can use both of the above two pictures:

⟨A⟩ψ(t) = ⟨ψ(t)|A|ψ(t)⟩ (Schrödinger) (A.11a)
= ⟨ψ|A(t)|ψ⟩. (Heisenberg) (A.11b)

Here, |ψ(t)⟩ is defined as the vector which experienced the time-evolution due to (total) Hamiltonian H
from the initial value |ψ0⟩; that is, |ψ(t)⟩ ≡ e−iHt/~|ψ0⟩. However, in performing the time-dependent
perturbation for the Hamiltonian H = H0 + V , there is a third way to introduce the time-dependence.
Beginning with, for example, the Schrödinger picture,

⟨A⟩ψ(t) = ⟨ψ(t)|e−iH0t/~eiH0t/~Ae−iH0t/~eiH0t/~|ψ(t)⟩ ≡ ⟨ψI(t)|AI(t)|ψI(t)⟩, (A.12)

where we defined

|ψI(t)⟩ ≡ eiH0t/~|ψ(t)⟩, (A.13a)

AI(t) ≡ eiH0t/~Ae−iH0t/~. (A.13b)

The definitions of |ψI(0)⟩ can be understood as follows: In the simplest case of commuting H0 and V , we
have

|ψI(t)⟩ = eiH0t/~e−i(H0+V )t/~|ψ0⟩ = e−iV t/~|ψ0⟩. (A.14)

Thus this can be seen as a solution of the Schrödinger equation with the Hamiltonian V but without H0.
Of cource, things are more complicated in the general case, because [a, b] ̸= 0 implies eaeb ̸= ea+b. However
it remains correct to understand its essence as removing the obvious dynamics due to the unperturbed
Hamiltonian.

We can translate the Schrödinger equation into the interaction picture by substitution of |ψ(t)⟩ with
e−iH0t/~|ψI(t)⟩:

i~∂te
−iH0t/~|ψI(t)⟩ = (H0 + V )e−iH0t/~|ψI(t)⟩ ⇐⇒ e−iH0t/~i~∂t|ψI(t)⟩ = V e−iH0t/~|ψI(t)⟩

⇐⇒ i~∂t|ψI(t)⟩ = V I(t)|ψI(t)⟩. (A.15)

Incorporating the boundary condition |ψI(t = t0)⟩ = |ψ0⟩, this differential equation can be rewritten to the
integral equation:∫ t

t0

∂t|ψI(t)⟩dt

= |ψI(t)⟩ − |ψ0⟩ =
1
i~

∫ t

t0

dtV I(t)|ψI(t)⟩. (A.16)

In order to solve this equation, we introduce a unitary operator U(t, t0) called propagator such that |ψI(t)⟩ =
U(t, t0)|ψ0⟩. By substitution, we have the following integral equation for the propagator:

[U(t, t0) − 1]|ψ0⟩ =
1
i~

∫ t

t0

dt V I(t)U(t, t0)|ψ0⟩

⇐⇒ U(t, t0) − O[U(t, t0)] = 1 ⇐⇒ U(t, t0) = (1 − O)−1 (A.17)
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Figure A.3: A one-to-one correspondance between a parametrized surface and its tangent plane.

where we have defined the integral operator O as

O[f(t)] ≡ 1
i~

∫ t

t0

dt V I(t)f(t). (A.18)

Here we used t both as the upper limit and as the formal variable of the integration. Their meanings should
be understood from the context. Using the familiar expression (1 − a)−1 =

∑
n≥0 an for the geometric

series, we have the following formal expansion:

U(t, t0) =
∑

n

1
(i~)n

∫ t

t0

dtn

∫ tn

t0

dtn−1 · · ·
∫ t2

t0

dt1 V I(tn)V I(tn−1) · · ·V I(t1) (A.19)

Usually we truncate the infinite sum at the first few terms. Alternatively, we can obtain this formal
expansion by iterated substitution. Beginning with Eq. (A.17), we have

U(t, t0) = 1 + O[U(t, t0)] = 1 + O{1 + O[U(t, t0)]} = 1 + O(1 + O{1 + O[U(t, t0)]}) = . . . , (A.20)

and we can go ad infinitum. Again, after a few iteration of substitution, we truncate the infinite sum by
substitution of U(t, t0) with 1. These formal series expansion has the advantage of being able to control
how many orders of perturbative term we incorporate in the calculation, and t need not be small. For a
theoretical interest, we explain how to use the superoperator of time-ordering product T .∫ t

t0

dtn

∫ tn

t0

dtn−1 · · ·
∫ t2

t0

dt1 V I(tn)V I(tn−1) · · ·V I(t1)

=
1
n!

∫ t

t0

dtn

∫ t

t0

dtn−1 · · ·
∫ t

t0

dt1 T [V I(tn)V I(tn−1) · · ·V I(t1)] (A.21)

(A.19)

A.3 n-dimensional Laplacian and Laplace-Beltrami operator

For the arbitrary n-dimensional space (n ≥ 2,) the Laplacian can always be split into the radial part

1
rn−1

∂rr
n−1∂r = ∂2

r +
n − 1

r
∂r (A.22)

and the angular part (the Laplace-Beltrami operator) which is free of r and ∂r. Though this may be proven
by a differential geometric calculation based on a metric tensor which gives a complete characterization
of an arbitrary surface embedded in the n-dimensional space, it is somewhat lengthy. Instead we give a
concise proof focusing on the above relation, following Matano and Jimbo [93].

A.3.1 Gradient operator on a surface

First, we define the gradient operator on a surface. Let S denote an arbitrary (n − 1)-dimensional smooth
surface embedded in the n-dimensional space. For each point a on S, there corresponds a pair (Ta, Pa)
where Ta is a (n− 1)-dimensional tangent plane of S at a and Pa is a projection from S onto Ta. Because
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S is “smooth,” there is a finite region around a where Pa : S → Ta is not only a projection but also a
one-to-one correspondance, and we can go back from c ≡ Pa(b) ∈ Ta to the original b ∈ S. (Pa is not a
one-to-one correspondance only in a region where S and Ta are vertical or where a part of S away from a
is folded to lie between a and Ta; See Figure A.3.) Then for any function f : S → R and any point a on
S, one can associate a composite function f̃ : Ta → R defined as

f̃(c) ≡ f(b) ≡ f(P−1
a (c)). (A.23)

Since Ta is just a (n − 1)-dimensional Euclidean space, there is no difficulty in calculating the gradient of
f̃ at a ∈ Ta:

∇Taf̃(c = a) ≡
t(

. . . , lim
h→0

f̃(a + heaj) − f̃(a)
h

, . . .

)
. (A.24)

Here, the right hand side is a (n− 1)-dimensional vector with its j-th element corresponding to directional
derivative along j-th basis vector eaj of Ta. Then this is used to define the gradient operator for u : S → R;
i.e., for each a in S (the domain of f ,) we construct a tangent space Ta and define the gradient of f on S,
or ∇Sf(a), as the gradient of f̃ on Ta, or ∇Taf̃(c)

∣∣
c=a

.

Example: We choose the one-dimensional unit sphere S1 as S. Then S as a subset of R2 can be
parametrized by u ∈ (−1 . . . 1) as

S ∋ a(u) = t(x(u), y(u)) =

{
t(u,±

√
1 − u2) (−1 < x < 1 and y ≷ 0),

t(±
√

1 − u2, u) (−1 < y < 1 and x ≷ 0).
(A.25)

Each of these four ways of parametrization covering its own region of S is called a chart of S, and the whole
set of charts is collectively called the atlas of S. For the case of the first chart, the tangent space Ta is
parametrized by v ∈ R as

Ta ∋ c(v) =
(

c1(v)
c2(v)

)
=

(
u −

√
1 − u2v√

1 − u2 + uv

)
. (A.26)

This parametrization indeed satisfies
−→
Oa ·

−→
ac = 0. Since Ta is a one-dimensional space, there is only one

vector ea1 in a basis of Ta. For ea1, we choose

ea1 ≡
(
−
√

1 − u2

u

)
. (A.27)

Note that c(v) can be expressed as a + vea1. Then the gradient operator on Ta is expressed as

∇Tag(c) = lim
h→0

g(c + hea1) − g(c)
h

= ea1 · ∇g(c1, c2) = −
√

1 − u2
∂g

∂c1
(c1, c2) + u

∂g

∂c2
(c1, c2). (A.28)

In order to express the gradient operator on S using the above result, we first express the projection from
S onto Ta. That can be done by inner product with ea1. For another point b in S whose parameter is w,
the projection is

Pab ≡ a + [ea1 · (b − a)]ea1 = a +

[
t(−

√
1 − u2

u

)(
w − u√

1 − w2 −
√

1 − u2

)]
ea1

= a + (u
√

1 − w2 −
√

1 − u2w)ea1. (A.29)

Its inverse P−1
a is obtained by equating the above expression with c(v) and solving for w. That amounts

to equating coefficients of ea1:

v = u
√

1 − w2 −
√

1 − u2w ∴ w = u
√

1 − v2 −
√

1 − u2v. (A.30)

Then we have

P−1
a [c(v)] = b(w = u

√
1 − v2 −

√
1 − u2v) =

(
u
√

1 − v2 −
√

1 − u2v√
1 − u2

√
1 − v2 + uv

)
=

√
1 − v2a + vea1. (A.31)

This is a function of the parameter v of c. Using c(v) = a + vea1, we can express v as the function of c as
in v = ea1 · c. Then we can express P−1

a as the function of c:

P−1
a c =

√
1 − (ea1 · c)2a + (ea1 · c)ea1. (A.32)
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Finally, using the results obtained so far, we have

∇Sf(a) = ∇Taf̃(c = a) = ea1 · ∇f̃(c = a) = ea1 ·
∂P−1

a

∂c
(c = a) · ∇f(a)

= ea1 ·
(
− 0√

1 − 02
aea1 + ea1ea1

)
· ∇f(a) = |ea1|2

t(−
√

1 − u2

u

)(
∂f(a1, a2)/∂a1

∂f(a1, a2)/∂a2

)
= −a2

∂f

∂a1
(a1, a2) + a1

∂f

∂a2
(a1, a2). (A.33)

During calculation, we used the dyadic notation; e.g., aea1 is a second-rank tensor which maps a vector v
to another vector a(ea1 · v). They originates as follows:

∂P−1
a

∂c
(c) =

∂

∂c

[√
1 − (ea1 · c)2a + (ea1 · c)ea1

]
= − ea1 · c√

1 − (ea1 · c)2
aea1 + ea1ea1. (A.34)

The gradient operator on the one-dimensional surface S1 (A.33) can be seen as derivative with respect to
θ when we parametrize S1 as {(cos θ, sin θ) | θ ∈ [0 . . . 2π)}.

A.3.2 Proof of the theorem

The Laplace-Beltrami operator ∆S on a arbitrary surface S can be defined as the operator such that the
equation∫

S

(∇Sψ) · (∇Su)dσ = −
∫

S

ψ∆Su dσ (A.35)

holds for arbitrary functions u and ψ on S. Here, dσ denotes the surface element of S. Note that ∆S is
the derivative operator involving coordinates on the surface S only. This definition is delibarately made to
look like the following identity (Green’s theorem) involving the ordinary Laplacian:∫

V

(∇ψ) · (∇u)dV =
∫

∂V

ψ(∇u · n)dS −
∫

V

ψ∇2u dV = −
∫

V

ψ∇2u dV. (A.36)

Here, ∂V denotes the boundary of the region V , which is large enough, and n denotes the normal vector
pointing towards the outside of V . Moreover, ψ is assumed to have a finite support∗2; this leads to the last
equality, since V is so large that it contains supp f .

A point r in the n-dimensional space Rn can be written as r = (r, σ), where r is the distance from
the origin and σ is the direction of the point from the origin; e.g., all the angular coordinates (coordinates
except for r) in the n-dimensional spherical coordinates are collectively denoted by σ. Thus any function
f(r) in Rn can be seen as a function of r and σ; i.e., f(r) = f(r, σ). Note that σ can be seen as a point on
the (n − 1)-dimensional sphere Sn−1 ≡ S. Based the point of view stated above, we consider the following
integral involving two arbitrary functions ψ and u, where we assume that ψ has a finite support:∫

Rn

ψ∇2u dV = −
∫

Rn

(∇ψ) · (∇u)dV = −
∫ ∞

0

dr rn−1

∫
S

dσ(∇ψ) · (∇u)

= −
∫

S

dσ

∫ ∞

0

dr rn−1(∂rψ)(∂ru) −
∫ ∞

0

dr rn−1 1
r2

∫
S

dσ (∇Sψ) · (∇Su). (A.37)

Here we used the fact that n-dimensional volume element dV is written as rn−1drdσ, and the identity

(∇ψ) · (∇u) = (∂rψ)(∂ru) +
1
r2

(∇Sψ) · (∇Su). (A.38)

Using integration by parts, we have∫ ∞

0

dr rn−1(∂rψ)(∂ru) = [rn−1ψ(∂ru)]∞r=0 −
∫ ∞

0

dr ψ∂r[rn−1(∂ru)]. (A.39)

Here, the first term vanishes because of the assumption that ψ has a finite support. Thus, for the first term
of Eq. (A.37), we have

−
∫

S

dσ

∫ ∞

0

dr rn−1(∂rψ)(∂ru) =
∫

S

dσ

∫ ∞

0

dr ψ∂r[rn−1(∂ru)] =
∫

Rn

1
rn−1

ψ∂r[rn−1(∂ru)]dV. (A.40)

∗2The support of a function f is the subset of the domain of f such that f is nonzero; supp f ≡ {x | f(x) ̸= 0}. “A function
f with a finite support” means that f vanishes outside of some finite region.
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For the second term of Eq. (A.37), we use the definition of the Laplace-Beltrami operator (A.35) to obtain

−
∫ ∞

0

dr rn−1 1
r2

∫
S

dσ (∇Sψ) · (∇Su) =
∫ ∞

0

dr rn−1 1
r2

∫
S

dσ ψ∆Su =
∫

Rn

1
r2

ψ∆Su dV. (A.41)

Using the above results, we have∫
Rn

ψ∇2u dV =
∫

Rn

ψ

[
1

rn−1
∂r(rn−1∂ru) +

1
r2

∆Su

]
dV. (A.42)

Since ψ is an arbitrary function, the terms in [· · · ] must coincide with ∇2u. Therefore we have proven the
main theorem (A.22) of this appendix.

A.4 Contour Integral

Here we summarize how to calculate certain kinds of integrals using the technique of contour integration.
See standard textbooks on complex analysis such as Ahlfors [94] for details. We racall that the contour
integral

∮
C

f(z)dz of a function f defined on a closed path C in the complex plane C is defined through
parametrization of C; i.e., when we write each point z on C as z(t) in terms of t ∈ (a . . . b), where the
upper and lower limits a and b may be infinite, then∮

C

f(z)dz ≡
∫ b

a

f(z(t))
dz

dt
(t)dt. (A.43)

We often split C into multiple curves (lines) {Ik | k = 0, 1, . . . , n} such that each curve Ik has its own
parametrization zk(t) : (ak . . . bk) → Ik and the disjoint sum

⊔
k Ik coincides with C. Then we have∮

C

f(z)dz =
∑

k

∫ bk

ak

f(zk(t))
dzk

dt
(t)dt. (A.44)

The main reason for physicists to be interested in contour integration is that, it is often possible to calculate
a difficult real definite integral

∫ u

l
f(x)dx through a related contour integral which can be more easily

calculated. In order to do so, we find an appropriate closed path C satisfying the following conditions:

1. C can be split into multiple curves {Ik} such that

(a) One of Ik’s (say Im) coincides with the domain of integration of the original integral: Im =
(l . . . u).

(b) Complex integrals over curves other than Im can be somehow calculated by standard techniques.

2. C contains only poles∗3 of f , rather than its essential singularities.

Then, because the contour integral
∮

C
f(z)dz can be calculated using the residue theorem explained below,

we know the definite value of the integral
∫ u

l
f(x)dx as∫ u

l

f(x)dx =
∫

Im

f(x)dx =
∮

C

f(z)dz −
∑
k ̸=m

∫
Ik

f(z)dz. (A.45)

The residue theorem is a strong theorem which states that a contour integral
∮

C
f(z)dz (for a simple∗4

closed path C) can be calculated as∮
C

f(z)dz = 2πi
N∑

k=1

Res(f, pk), (A.46)

where Res(f, pk) is the residue of f at a pole pk of f enclosed by C, and N is the total number of poles of
f enclosed by C. Moreover, the residue Res(f, p) of f at its pole p with order n can be calculated as

Res(f, p) =
1

(n − 1)!
lim
z→p

dn−1

dzn−1
[(z − p)nf(z)]. (A.47)

∗3A pole p of a function f with order n is a point in the domain of f such that f behaves as f(z) ∼ C/(z − p)n around p
for some C. However, at an essential singularity a of f , the behavior of f is something like “C/(z − a)∞.” For example, the
function e1/z has an essential singularity at z = 0.

∗4A simple curve is a curve which does not intersect itself.
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∫ u

l

f(x)dx =
∮

C

f(z)dz −
∫ b2

a2

f(z2(t))
dz2

dt
(t)dt

−
∫ b3

a3

f(z3(t))
dz3

dt
(t)dt

I1 ≡ (l . . . u)l u

C

I3

I2

x

Figure A.4: Calculation of a real definite integral through a contour integral.

This can be understood if we assume that f is expandable into the Laurent series
∑

n∈Z an(x− p)n around
p. Those theorems stated above can be proven by Cauchy’s integral theorem, but we omit the proofs.

Various examples of the uses of the residue theorem can be found as excersises of complex analysis; see,
e.g., Spiegel [95]. Some of them have significance also in physics. For example, the Airy’s integral used
for decription of the Fraunhofer diffraction can be calculated in this way. Moreover, using the technique of
contour integration, Wittig [96] gave a proof for the Landau-Zener formula

P = exp (−2πΩτ) (A.48)

describing the probability of the diabatic transition in an time-dependent process. In the context of ultracold
atomic physics, the Landau-Zener formula is important in ARP (adiabatic rapid passage) used to flip spin
states of an atomic ensemble.

A.5 Mathieu equation

Here we explain mathematical properties of the Mathieu equation

d2f

dz2
(z) + [a − 2q cos(2z)]f(z) = 0. (A.49)

Its details are found in the standard references like Sin [97, Sec. 10], Barrett [98], and Meixner and Schäfke
[99].

The Mathieu equation is a homogeneous linear second-order differential equation characterized by the
functional coefficient [a − 2q cos(2z)] of f(z) with two parameters a and q. This form∗5 is particularly
called the normal form of the equation. It was introduced by Mathieu [100] in 1868 in order to analyze the
vibration of elliptical membranes. The equation is notorious for its difficultness in the field of differential
equations. But by setting q = 0, it reduces to the familiar equation of a harmonic oscillator with frequency√

a. Therefore we see that the difficulties arise from the “modulation” 2q cos(2z).
In the context of ultracold atomic physics, its significance is twofold: (a) the classical equation of motion

describing parametric oscillation of an atom confined in a time-dependent harmonic potential∗6, and (b) the
Schrödinger equation of an atom moving within an optical lattice (mimicking that of an electron moving
within a crystal lattice.) The case (a) is described by the time-domain Mathieu equation

m
d2x

dt2
(t) + [mω2 + K1 cos(ω1t)]x(t) = 0, (A.50)

where m is an atom’s mass, x(t) the location of the atom at time t, and ω the trap frequency of the harmonic
trap U(x) = mω2x2/2 felt by the atom in the unmodulated case. Moreover, K1 and ω1 are respectively the
amplitude and the frequency of amplitude modulation of the trap depth; i.e. the modulated trap potential
U1(x) is written as

U1(x) = U(x) +
K1

2
x2 =

1
2
[mω2 + K1 cos(ω1t)]x2. (A.51)

Eq. (A.50) is obtained from the normal form (A.49) by the substitutions

f(z) = x(t), z =
ω1

2
t, a =

(
2ω

ω1

)2

, q = −2
K1

mω2
1

. (A.52)

∗5Unfortunately, different authors use different conventions for the Mathieu equation and related functions.
∗6Jones [1] discusses its application in design of the Paul trap (a trap for ions.)
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Figure A.5: Plot of stable regions of the Mathieu equation by the C proglam written by Jones [1].

The case (b) is described by the space-domain Mathieu equation[
− ~2

2m

d2

dx2
+ U sin2(kx)

]
ϕ(x) = Eϕ(x) ⇐⇒ ~2

2m

d2ϕ

dx2
(x) +

[
E′ +

U

2
cos(2kx)

]
ϕ(x) = 0, (A.53)

where m is an atom’s mass, ϕ(x) is Schrödinger’s (time-independent and, in this case, 1D) wavefunction,
E ≡ E′+U/2 is the energy eigenvalue, U and 2k = 2π/(λ/2) are respectively the depth and the wavenumber
of the sinusoidal potential with period λ/2 felt by the atom. Eq. (A.53) is obtained from the normal form
(A.49) by the substitutions

f(z) = ϕ(x), z = kx, a =
2mE′

(~k)2
, q = − mU

2(~k)2
. (A.54)

Observe that a and q can be respectively seen as the ratio of the eigenenergy and the depth of the lattice
to the recoil energy of the lattice laser (→ Sec. 2.3.)

In the following, we follow the notation of Meixner and Schäfke [99], except that we use a and q
instead of λ and h2, respectively. Exploiting the periodicity of the modulation in the Mathieu equation, we
apply Bloch’s theorem in solid state physics, or equivalently, Floquet’s theorem in the theory of differential
equations, which restricts forms of its solutions. Those theorem states that, for the fixed values of a and
q > 0∗7, the equation has complex-valued solutions me±ν(z) called the Floquet solutions which have the
form of

me±ν(z) ≡ me±ν(z; a, q) = e±iνzuν(z). (A.55)

Here, ν is a function of a and q called the characteristic exponent (also known as the crystal momentum or
the quasimomentum in the field of solid state physics; see Ashcroft and Mermin [101, Ch. 8],) and uν(z)
is a periodic complex-valued function with period π which corresponds to the Bloch function, and can be
determined only up to a multiplicative factor. The periodicity of uν(z) can be understood to originate
from that of the modulation 2q cos(2z). The imaginary part of the characteristic exponent determines the
stability of the Floquet solution, and thus has been subject to intense research by mathematicians. See, e.g.,
Sträng [102] for algorithms to compute it. Its implementation by Jones [1] in C language yields Figure A.5
which shows regions in the a-q plane corresponding to the real ν and hence stability of the Floquet solution
(Contours shows the iso-ν points.) The blank region corresponds to complex ν (instability of the Floquet
solution.) We can observe that, in the context of a classical particle moving in a modulated potential,
strong parametric heatings occur at a = ±n2 for an integer n; that is, the minimal value for the strength q
of the potential leading to the stable orbit of the particle approaches zero under such a condition.

As with the case of linear second-order differential equations, one can choose two independent solutions
(a basis of the solution space) such that general solutions of the Mathieu equation can be obtained by

∗7The case of q < 0 is easily handled by substitution of z with z + π/2; 2q cos[2(z + π/2)] = −2q cos(2z). The trivial case of
q = 0 is omitted.
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linear combination of them. Except for the special case in which e±iπν is either 1 or −1 (which respectively
corresponds to ν = 2n or 2n + 1 for an integer n,) we can choose {meν(z), me−ν(z) = meν(−z)} for the
basis. Alternatively, two real-valued functions called the Mathieu (or elliptic) cosine yI(z) and sine yII(z)
may be chosen∗8. They are characterized by the normalization conditions

yI(z = 0) = 1, y′
I(z = 0) = 0, (A.56a)

yII(z = 0) = 0, y′
II(z = 0) = 1, (A.56b)

and in fact, reduced to the corresponding trigonometic functions for the special case of q = 0:

yI(a, q = 0; z) = cos(
√

az), yII(a, q = 0; z) =
sin(

√
az)√

a
. (A.57)

However, the Mathieu cosine and sine are generally not periodic in z. In fact, they can be related to the
Floquet solutions by formulae such as

yI =
1
2
(meν + me−ν). (A.58)

There are countably many values of a (that depend on q; thus we may denote the n-th of them by
an(q) and bn(q),) leading to the special cases e±iπν = 0, 1. Then meν(z) and me−ν(z) coincides, have true
periodicity or antiperiodicity with period π, and become an even or odd function, corresponding to ν = 2n
or 2n + 1.

Mathematical analysis shows that am(q) ∼ bm+1(q) when q → ∞, i.e., the m-th “allowed” energy
range in the band structure gets narrower and narrower in the limit of a deep periodic potential (it indeed
approaches a flat “band,” which is obtained in the case of a simple harmonic oscillator.) However, there
always remains a finite width for the m-th band which can be proven to be

bm+1(q) − am(q) ∼ 24m+5

m!

√
2
π

qm/2+3/4e−4
√

q

(
1 − 6m2 + 14m + 7

32
√

q

)
(q → ∞). (A.59)

(A standard reference by Abramowitz and Stegun [103] cites Meixner and Schäfke [99] for this expression,
though the latter only presents the result without a proof. The reader may found Dingle and Müller
[104] and Liang and Müller-Kirsten [105] helpful.) Applying this expression to the spacial-domain Mathieu
equation Eq. (A.53) for an optical lattice yields an approximated formula for the hopping matrix element
J in the limit of deep lattice (See, e.g., Bloch et al. [106, Sec. II.B])

J̃ ∼ 4√
π

(Ũ)3/4 exp(−2
√

Ũ) (Ũ → ∞). (A.60)

Here, we wrote the formula in terms of the “normalized” energies by the recoil energy Erec; J̃ ≡ J/Erec

and Ũ ≡ U/Erec. This formula is based on the fact that the hopping matrix element J for the atoms in the
lowest band can be obtained from the width W ≡ b1 − a0 of the lowest (m = 0) band as J = W/4 (Jaksch
[107, Sec. 7.2].) Then Eq. (A.60) immediately follows from substitution q = U/(4Erec)∗9 and m = 0.

In addition to the rich mathematical literature on analytic properties of solutions of the Mathieu equa-
tion, we may utilize CAS (computer algebra systems) such as Mathematica and Maple which have built-in
functions for the Mathieu functions, as well as the characteristic exponent.

∗8Note that different parameter regions require different elements for a basis for the solution space. See Barrett [98] for
details.

∗9Forget about the sign of q! It is inessential, as explained in p. 56, ft.



Appendix B

Converter program from SPE image
for WinView to JPEG image

It is convenient when the SPE image files obtained are shown in thumbnail list during a series of runs in
which we change one of the parameters to ingestigate the dependence on the parameter. If we convert
the SPE image to standard JPEG image, Windows Explorer or Microsoft Image Viewer can show them as
thumnail image list. So we made a converter from SPE to JPEG.

Here we show the source code in Java. The program is in the public domain.
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package spe2jpg;

import java.io.*; import java.util.*; import java.util.regex.*; import java.awt.*; import java.awt.event.*;
import java.awt.dnd.*; import java.awt.datatransfer.*; import java.awt.image.*; import javax.swing.*;
import javax.imageio.*; import javax.imageio.stream.*;

/**
* @author NODA Kai
*/

public class Main extends JFrame {
DropTargetAdapter dta; JTextArea area; static Pattern pat;

/**
* @param args the command line arguments
*/
public static void main(String[] args) {

if (args.length == 0) { new Main(); }
else { convertAux(args, System.out); }

}

public Main() {
super("SPE to JPG converter");
setSize(new Dimension(600, 400)); setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
area = new JTextArea("Use Drag-and-Drop to convert SPE files. "

+ "If you DnD a directory, its all entries are processed.\n"
+ "(Altenatively, you can specify files/directries with command-line arguments.)\n"
+ "Please note that, though the pseudo color used in this program looks almost same to that used in WinView, "
+ "they are a bit different.");

area.setEditable(false); area.setLineWrap(true);
JScrollPane sp = new JScrollPane(area); getContentPane().add(sp);
dta = new DropTargetAdapterImpl();
pat = Pattern.compile(".*\\.spe", Pattern.CASE_INSENSITIVE);
setVisible(true);

}

/**
* A method that does the actual work.
* Refer to Appendix B of WinView 2.5 User Manual for the binary format of SPE file.
* @param f SPE file.
* @throws java.io.FileNotFoundException
*/
public static void convert(File f) throws FileNotFoundException {

try {
BufferedInputStream is = new BufferedInputStream(new FileInputStream(f));
byte[] header = new byte[4100]; is.read(header);
int xDim = ((0xff & header[43]) << 8) | (0xff & header[42]);
int yDim = ((0xff & header[657]) << 8) | (0xff & header[656]);
int frames = ((0xff & header[1449]) << 24) | ((0xff & header[1448]) << 16)

| ((0xff & header[1447]) << 8) | (0xff & header[1446]);
int type = header[108];
// System.out.printf("%d %d %d %d\n", xDim, yDim, frames, type);
if (frames == 1) {

byte[] raw = new byte[xDim * yDim * 8]; is.read(raw);
BufferedImage img = new BufferedImage(xDim, yDim, BufferedImage.TYPE_INT_RGB);
DataBufferInt db = (DataBufferInt) img.getRaster().getDataBuffer();
for (int i = 0; i < xDim * yDim; ++i) {

long val = ((0xffL & raw[8 * i + 7]) << 56) | ((0xffL & raw[8 * i + 6]) << 48) |
((0xffL & raw[8 * i + 5]) << 40) | ((0xffL & raw[8 * i + 4]) << 32) |
((0xffL & raw[8 * i + 3]) << 24) | ((0xffL & raw[8 * i + 2]) << 16) |
((0xffL & raw[8 * i + 1]) << 8) | (0xffL & raw[8 * i]);

// NOTE: Put your own scaling factor here (default: 1e3 == 1000)
db.setElem(i, pseudoColor(Double.longBitsToDouble(val) / 1e3));

}
Iterator writers = ImageIO.getImageWritersByFormatName("jpg");
if (writers.hasNext()) {

ImageWriter iw = (ImageWriter) writers.next();
String origName = f.getAbsolutePath(), jpgName;
int pos = origName.lastIndexOf(’.’);
jpgName = origName.substring(0, pos >= 0 ? pos : origName.length()) + ".jpg";
ImageOutputStream ios = ImageIO.createImageOutputStream(new File(jpgName));
iw.setOutput(ios); iw.write(img); iw.dispose(); ios.close();

}
} else {

for (int fi = 0; fi < frames; ++fi) { /* TODO: the case when there are multiple frames */ }
}

}
catch (IOException ex) { ex.printStackTrace(); }

}

/**
* This method is responsible for the pseudo-color.
* You might well to change the constants to modify the color curve.
* @param gray gray-scale value.
*/
static int pseudoColor(double gray) {

gray = Math.min(Math.max(gray, 0), 1d);
float h = 2f / 3 - (float) (Math.min(5d / 6 * gray, 2d / 3));
float s = (float) (Math.min(15 * (gray - 1) * (gray - 1.1), 1));
float b = (float) (0.4 + 3 * Math.min(gray, 0.2));
return Color.HSBtoRGB(h, s, b);
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}

static void convertAux(String[] paths, PrintStream out) {
File[] files = new File[paths.length];
for (int i = 0; i < paths.length; ++i) { files[i] = new File(paths[i]); }
PseudoPrintStream pps = new PseudoPrintStream() {

PrintStream strm;
public void print(String s) { strm.print(s); }
public void setDestination(Object o) { strm = (PrintStream) o; }

};
pps.setDestination(out); convertAux2(files, pps);

}

static void convertAux(java.util.List<File> files, JTextArea area) {
File[] arr = new File[files.size()]; int cnt = -1;
for (File f : files) { arr[++cnt] = f; }
PseudoPrintStream pps = new PseudoPrintStream() {

JTextArea ta;
public void print(String s) {

ta.append(s);
ta.setCaretPosition(ta.getText().length());

}
public void setDestination(Object o) { ta = (JTextArea) o; }

};
pps.setDestination(area); SwingWorker worker = new SwingWorkerImpl(arr, pps); worker.execute();

}

static void convertAux2(File[] files, PseudoPrintStream out) {
try {

for (File f : files) {
if (f.isDirectory()) {

out.print("\n");
File[] entries = f.listFiles();
for (File e : entries) {

if (pat.matcher(e.getName()).matches()) {
out.print("\nConverting " + f.getName() + "/" + e.getName() + "...");
convert(e); out.print(" done.");

}
}

} else {
if (pat.matcher(f.getName()).matches()) {

out.print("\nConverting " + f.getName() + "...");
convert(f); out.print(" done.");

}
}

}
}
catch (Exception ex) { ex.printStackTrace(); }

}

private class DropTargetAdapterImpl extends DropTargetAdapter {
public DropTargetAdapterImpl() {

DropTarget target = new DropTarget(area, DnDConstants.ACTION_COPY_OR_MOVE, this, true);
}

@Override
public void dragEnter(DropTargetDragEvent e) { e.acceptDrag(DnDConstants.ACTION_COPY_OR_MOVE); }

public void drop(DropTargetDropEvent e) {
e.acceptDrop(DnDConstants.ACTION_COPY_OR_MOVE);
try {

if ((e.getDropAction() & DnDConstants.ACTION_COPY_OR_MOVE) != 0) {
Transferable tr = e.getTransferable();
java.util.List<File> lst =

(java.util.List<File>) tr.getTransferData(DataFlavor.javaFileListFlavor);
convertAux(lst, area); e.dropComplete(true);

} else { e.dropComplete(false); }
}
catch (Exception ex) { ex.printStackTrace(); e.dropComplete(false); }

}
}

private interface PseudoPrintStream {
public void print(String s);
public void setDestination(Object o);

}

private static class SwingWorkerImpl extends SwingWorker {
private final File[] arr; private final PseudoPrintStream pps;

public SwingWorkerImpl(File[] arr, PseudoPrintStream pps) {
this.arr = arr; this.pps = pps;

}

@Override
protected Object doInBackground() throws Exception {

convertAux2(arr, pps); return null;
}

}
}
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