問 27.1(2)

(解答)

X が有限集合のとき, $X = \{x_1, x_2, ..., x_n\}$ とする。

X の任意の開被覆 $\bigcup_{\lambda \in \Lambda} U_{\lambda}$ をとると, $x_1, x_2, ..., x_n \in \bigcup_{\lambda \in \Lambda} U_{\lambda}$ より

 $^{\exists}\lambda_{1},...,\lambda_{n}\in\Lambda$ s.t $x_{1}\in U_{\lambda_{1}},...,x_{n}\in U_{\lambda_{n}}$ とできる。

このとき, $X=\{x_1,...,x_n\}\subset \bigcup_{\lambda=\lambda_1}^{\lambda_n}U_\lambda$ なので, X はコンパクト。

X が無限集合のとき, X は離散位相空間なので

 $\forall x \in X$ に対して $\{x\}$ は X の開集合。このとき $\bigcup_{x \in X} \{x\}$ は X の開被覆。

ここで、X: コンパクトと仮定すると、 $X \subset \bigcup_{i=1}^m \{x_i\}$ とできる。

X は有限集合の部分集合なので有限集合となるが、これは X が無限集合であることに矛盾。

よって X はコンパクトでない。□