位相数学1 演習 問 2.12

問題

 \mathbb{R}^n において、(O2),(O3) が成り立つことを、定義に戻って示せ。

参考

- (O2) 有限個、無限個を問わず開集合の和集合は開集合
- (O3) 有限個の開集合の共通部分は開集合

(解答)

(O2)

Proof.

 $\forall \lambda \in \Lambda, O_{\lambda} \in \mathfrak{O} \ \mathcal{E} \ \mathcal{E}$

 $m{a}\inigcup_{\lambda\in\Lambda}O_\lambda$ より、ある $\lambda_0\in\Lambda$ が存在して、 $m{a}\in O_{\lambda_0}$

 O_{λ_0} は開集合であるから、ある $\varepsilon > 0$ が存在して、 $B(a; \varepsilon) \subset O_{\lambda_0} \subset \bigcup_{\lambda \in \Lambda} O_{\lambda}$

つまり、任意の $\mathbf{a} \in \bigcup_{\lambda \in \Lambda} O_{\lambda}$ に対して, \mathbf{a} は $\bigcup_{\lambda \in \Lambda} O_{\lambda}$ の内点であるから、 $\bigcup_{\lambda \in \Lambda} O_{\lambda}$ は \mathbb{R}^n の開集合である。

よって、
$$\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathfrak{O}$$

(O3)

Proof.

 $\forall n \in \mathbb{N} \ \mathcal{E} \succeq \mathcal{O}, O_1, O_2, \cdots, O_n \in \mathfrak{O} \succeq \mathcal{O} \succeq \mathcal{O}$

$$\forall \boldsymbol{a} \in \bigcap_{i=1}^{n} O_{i}$$
をとる。

$$oldsymbol{a} \in \bigcap_{i=1}^n O_i$$
より、 $oldsymbol{a} \in O_1 \cap O_2 \cap \cdots \cap O_n$ が成り立つ。

 O_1, O_2, \cdots, O_n は開集合であるから、

各 $i(i = 1, 2, \dots, n)$ に対して、ある $\varepsilon_i > 0$ が存在して、 $B(\boldsymbol{a}; \varepsilon_i) \subset O_i$ が成り立つ。

ここで、 $\varepsilon := min\{\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n\}$ とおくと、 $\varepsilon > 0$

$$B(\boldsymbol{a};\varepsilon)\subset B(\boldsymbol{a};\varepsilon_i)\subset O_i (i=1,\cdots,n)$$
 であるから、 $B(\boldsymbol{a};\varepsilon)\subset O_1\cap O_2\cap\cdots\cap O_n=\bigcap_{i=1}^n O_i$

つまり、任意の
$${m a}\in \bigcap_{i=1}^n O_i$$
に対して, ${m a}$ は $\bigcap_{i=1}^n O_i$ の内点であるから、 $\bigcap_{i=1}^n O_i$ は \mathbb{R}^n の開集合である。

よって、
$$\bigcap_{i=1}^n O_i \in \mathfrak{O}$$