問 6.4

後呂 悠惟 (AHA23051)

2024年7月22日

1 問題内容

写像 $f: X \longrightarrow Y$ について、次の問に答えよ.

- (1) X が離散位相空間のとき, f は連続であることを示せ.
- (2) Y が離散位相空間のとき、写像 f が連続であるための条件を求めよ.

2 回答

2.1 (1)の回答

任意の Y の開集合の逆像が X の開集合であることを示せばよい.

任意の $O_Y \in \mathcal{O}_Y$ をとる. このとき, 逆像の定義より $f^{-1}(O_Y) \subset X$. X は離散位相空間より, $\mathcal{O}_X = \mathfrak{P}(X)$. したがって $f^{-1}(O_Y) \in \mathcal{O}_X$. よって f は連続.

2.2 (2) の回答

写像 f が連続であるための必要十分条件として以下を考える.

X の連結成分の族を $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ としたとき,

 $f: 連続 \Leftrightarrow \forall \lambda_0 \in \Lambda, \exists \Lambda'(\lambda_0 \in \Lambda' \subset \Lambda) s.t. Z = \bigcup_{\lambda \in \Lambda'} A_\lambda: 開集合 \wedge f|_Z: 定値写像 これを示す.$

2.2.1 (⇒)の証明

補題として以下を示す:

任意の
$$y \in f(X)$$
 に対し $f^{-1}(\{y\}) = \bigcup_{\lambda \in \Lambda'} A_\lambda$ なる $\Lambda'(\subset \Lambda)$ が存在する.

任意の $y \in f(X)$ をとる.

y のとり方より $f^{-1}(\{y\}) \neq \emptyset$ で、一点集合は必ず連結であるため、ある空でない X の連結集合の族 $\{B_{\mu}\}_{\mu \in M}$ が存在して、

$$f^{-1}(\{y\}) = \bigcup_{\mu \in M} B_{\mu} \cdots \bigcirc$$

このとき各 $\mu\in M$ に対し, B_μ が含まれるような $A_{\lambda_\mu}(\lambda_\mu\in\Lambda)$ が存在する $(B_\mu$ を含む X の連結成分を考えればよい).

各 $\mu \in M$ に対する λ_{μ} 全体を Λ' とおくと, $\Lambda' \subset \Lambda$. この Λ' が補題を満たすことを示す. Λ' のとり方より,

$$\bigcup_{\mu \in M} B_{\mu} \subset \bigcup_{\lambda \in \Lambda'} A_{\lambda} \cdots \bigcirc$$

任意の $\mu \in M$ に対し $f(B_{\mu}) = \{y\}$ で, $B_{\mu} \subset A_{\lambda_{\mu}}$ より $\{y\} \subset f(A_{\lambda_{\mu}})$.

ここで, A_{λ_u} が連結で f が連続より, $f(A_{\lambda_u}) \subset Y$ は連結.

Y は離散位相空間で任意の一点集合が開集合であるから,要素が 2 つ以上あるような Y の部分集合は連結でない. また,任意の一点集合と空集合は連結である.

つまり $,f(A_{\lambda_{\mu}})$ は空でないため一点集合である. よって $,f(A_{\lambda_{\mu}})=\{y\}.$ すなわち $A_{\lambda_{\mu}}\subset f^{-1}(\{y\}).$ $\mu\in M$ は任意だから,

$$\bigcup_{\lambda \in \Lambda'} A_{\lambda} \subset f^{-1}(\{y\}) \cdots \mathfrak{J}$$

(1),(2),(3) $\sharp \mathfrak{h},$

$$\bigcup_{\mu \in M} B_{\mu} \subset \bigcup_{\lambda \in \Lambda'} A_{\lambda} \subset f^{-1}(\{y\}) = \bigcup_{\mu \in M} B_{\mu}$$

つまり.

$$f^{-1}(\{y\}) = \bigcup_{\lambda \in \Lambda'} A_{\lambda}$$

よって補題が示せた.

さて、補題を用いて当初の命題を示す.

任意の $\lambda_0 \in \Lambda$ をとる. A_{λ_0} は連結で f は連続だから $f(A_{\lambda_0}) \subset Y$ は連結.

Y は離散位相空間であるため $f(A_{\lambda_0})$ は一点集合. つまり, ある $y \in Y$ が存在して $f(A_{\lambda_0}) = \{y\}$. $y \in f(A_{\lambda_0}) \subset f(X)$ で, 補題より $f^{-1}(\{y\}) = \bigcup_{\lambda \in \Lambda'} A_{\lambda}$ なる $\Lambda'(\subset \Lambda)$ が存在する.

このとき, $A_{\lambda_0} \subset f^{-1}(\{y\})$ で各 A_{λ} は互いに共通部分を持たないから, $\lambda_0 \in \Lambda'$.

 $Z=\bigcup_{\lambda\in\Lambda'}A_\lambda$ とおく. $f^{-1}(\{y\})=Z$ で $y\in f(X)$ より $f(Z)=\{y\}.$

よって $f|_Z$ は常に y を返す定値写像.

Y は離散位相空間より $\{y\}$ は開集合.f は連続なのでこの逆像は開集合.

 $f^{-1}(\{y\}) = Z$ より Z は開集合.

2.2.2 (⇐)の証明

Y が離散位相空間であることから次が成り立つ:

f: 連続 \Leftrightarrow 任意の Y の開集合の f による逆像が X の開集合 \Leftrightarrow 任意の Y の部分集合の f による逆像が X の開集合 \Leftrightarrow 任意の Y の部分一点集合の f による逆像が X の開集合

よって、任意のYの部分一点集合のfによる逆像がXの開集合であることを示せばよい.

任意の $\{y\} \subset Y$ をとる. さらに、任意の $x \in f^{-1}(\{y\})$ をとる.

x が属する連結成分を $A_{\lambda_x}(\lambda_x \in \Lambda)$ とおく.

仮定より, $\lambda_x \in \Lambda_x' \subset \Lambda$ を満たす Λ_x' で, $Z_x = \bigcup_{\lambda \in \Lambda_x'} A_\lambda$: 開集合 $\wedge f|_{Z_x}$: 定値写像となるものが存在する.

 $x \in A_{\lambda_x} \subset \bigcup_{\lambda \in \Lambda'_x} A_{\lambda} = Z_x$ より $x \in Z_x$. よって,

$$f^{-1}(\{y\}) \subset \bigcup_{x \in f^{-1}(\{y\})} Z_x \cdots \bigcirc$$

また, $x \in f^{-1}(\{y\})$ より f(x) = y だから $f|_{Z_x}(x) = y$ で, $f|_{Z_x}$: 定値写像より $f(Z_x) = \{y\}$. よって $Z_x \subset f^{-1}(\{y\})$. $x \in f^{-1}(\{y\})$ は任意だから,

$$\bigcup_{x \in f^{-1}(\{y\})} Z_x \subset f^{-1}(\{y\}) \cdots \textcircled{2}$$

$$f^{-1}(\{y\}) = \bigcup_{x \in f^{-1}(\{y\})} Z_x$$

各 Z_x は開集合であるから $\bigcup_{x\in f^{-1}(\{y\})} Z_x$ も開集合. よって $f^{-1}(\{y\})$ も開集合. したがって, 任意の Y の部分一点集合の f による逆像が X の開集合であるから, f は連続.