1 問 B.1.1 V , W は R^n の部分ベクトル空間とする。 $V+W=\{v+w|v\in V,w\in W\} \text{ もまた } R^n \text{ の部分ベクトル空間であ ることを示せ。}$

2 答

[x]V,W は \mathbb{R}^n の部分空間なので $0 \in V, 0 \in W$ により $0 = 0 + 0 \in V + W$ となり成立

 $[2] \forall x \in V + W$ に対し、 $\exists p \in V, \exists q \in W \text{ s.t. } x = p + q$ が成り立つ

そこで $\forall x,y \in V+W$ をとると、 $\exists p,r \in V, \exists q,s \in W$ s.t. x=p+q,y=r+s したがって x+y=p+q+r+s また、p,q,r,s はベクトルなので加法について可換でかつ結合的なので (p+q)+(r+s)=(p+r)+(q+s) が成り立つ。

よって $p+r \in V$, $q+s \in W$ より $x+y=(p+r)+(q+s) \in V+W$ となり成立

 $[3] \forall z \in V + W, \forall a \in R$ をとる。

[2] と同様に $\exists v \in V, \exists w \in W$ s.t. z=v+w ここで az=a(v+w), 分配法則により a(v+w)=av+aw $av \in V, aw \in W$ より、 $az=av+aw \in V+W$ となり成立

したがって、[I],[2],[3] により V+W は \mathbb{R}^n の部分空間である